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1. Introduction

A Mackey functor is an algebraic structure possessing operations which behave like

the induction, restriction and conjugation mappings in group representation theory. Op-

erations such as these appear in quite a variety of diverse contexts — for example group

cohomology, the algebraic K-theory of group rings, and algebraic number theory — and it

is their widespread occurrence which motivates the study of such operations in abstract.

The axioms for a Mackey functor which we will use were first formulated by Dress [24],

[25] and by Green [30]. They follow on from earlier ideas of Lam on Frobenius functors

[36], described in [19]. Another structure which appeared early on is Bredon’s notion of a

coefficient system [15].

A major preoccupation in studying Mackey functors is to compute their values, be it

in the context of specific examples such as computing the cohomology or character ring of

a finite group, or in a more general setting. It is important to develop techniques to do

this, and if some method of calculation can be formulated within the general context of

Mackey functors then we have the possibility to apply it to every specific instance without

developing it each time from scratch.

One argument which generalizes to Mackey functors in this way is the method of stable

elements which appears in the book of Cartan and Eilenberg [16], and which provides a way

of computing the p-torsion subgroup of the cohomology of a finite group as a specifically

identified subset of the cohomology of a Sylow p-subgroup. An ingredient in the general

form of this calculation is the notion of relative projectivity of a Mackey functor, similar in

spirit to the notion of relative projectivity of group representations. We will see in Section

3 how the method of stable elements can be formulated for all Mackey functors.

Induction theorems are another kind of result which are among the most important

methods of computation. They have a very well-developed and well-known theory, espe-

cially in the context of group representations. Such theorems may also be formulated in

the general setting, and in Section 6 we present an important induction theorem due to

Dress. Work of great refinement obtaining explicit forms of induction theorems has been

done by Boltje [5], [6], [7], but this goes beyond what we can describe here.

In order to present these applications we develop the technical machinery which they

necessitate, and we do this in an order which to a large extent reflects chronology. As

the theory of Mackey functors became more elaborate it became apparent that they are

algebraic structures in their own right with a theory which fits into the framework of

representations of algebras. They may, in fact, be identified with the representations of

a certain algebra — called the Mackey algebra — and there are simple Mackey functors,

projective and injective Mackey functors, resolutions of Mackey functors, and so on. We

describe this theory in outline in Section 5.

A new notion of Mackey functor began to appear, namely that of a globally-defined

Mackey functor, an early instance of which appeared in the work of Symonds [52]. These

are structures which have a definition on all finite groups (whereas the original Mackey
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functors are only defined on the subgroups of some fixed group) and we present in Section

8 the context for these structures envisaged by Bouc [10]. We describe three uses for these

functors: a method of computing group cohomology in Section 9, an approach to the stable

decomposition of classifying spaces BG in Section 10, and a framework in which Dade’s

group of endopermutation modules plays a fundamental role in Section 11.

There is no full account of Mackey functors in text book form, and with this in mind

I have tried to be comprehensive in my treatment. In this I have failed, and on top of

everything the proofs that are given are often sketchy or left to the reader who must either

work them out as an exercise or consult the literature. This guide to Mackey functors is

deliberately concise. The omissions which seem most regrettable are these: the definition

of a Mackey functor on compact Lie groups and other more general classes of groups (see

[38], [21]); the theory of Green functors (see [59], [12]); and the theory of Brauer quotients

(see [59]).

Finally, I wish to thank Serge Bouc for his comments on this exposition.

2. The definitions of a Mackey functor

There are several ways of giving the definition of a Mackey functor, but they all

amount to the same thing. We present two definitions here, the first in terms of many

axioms and the second in terms of bivariant functors on the category of finite G-sets. They

may also be defined as functors on a specially-constructed category, an approach which is

due to Lindner [40].

The most accessible definition of a Mackey functor for a finite group G is expressed in

terms of axiomatic relations. We fix a commutative ring R with a 1 and let R-mod denote

the category of R-modules. A Mackey functor for G over R is a function

M : {subgroups of G} → R-mod

with morphisms
IH
K : M(K)→M(H)

RH
K : M(H)→M(K)

cg : M(H)→M(gH)

for all subgroups H and K of G with K ≤ H and for all g in G, such that

(0) IH
H , R

H
H , ch : M(H) → M(H) are the identity morphisms for all subgroups H and

h ∈ H

(1) RK
J R

H
K = RH

J

(2) IH
K I

K
J = IH

J

}

for all subgroups J ≤ K ≤ H

(3) cgch = cgh for all g, h ∈ G
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(4) R
gH
gKcg = cgR

H
K

(5) I
gH
gK cg = cgI

H
K

}

for all subgroups K ≤ H and g ∈ G

(6) RH
J I

H
K =

∑

x∈[J\H/K] I
J
J∩xKcxR

K
Jx∩K for all subgroups J,K ≤ H.

We use the letters I, R and c because these operations are reminiscent of induction,

restriction and conjugation of characters. We should properly write cg,H instead of cg,

since our notation does not distinguish between the conjugation morphisms with the same

element g but different domain M(H). The most elaborate of these axioms is (6), which is

called the Mackey decomposition formula, and is responsible for the name of these functors.

It is familiar from representation theory and cohomology. In this axiom we are using the

notation [J\H/K] to denote a set of representatives in G for the double cosets J\H/K.

We write xH = xHx−1 and Hx = x−1Hx.

Mackey functors form a category denoted MackR(G) in which the morphisms are

natural transformations of Mackey functors; that is, a morphism η : M → N is a family

of R-module homomorphisms ηH : M(H) → N(H) commuting with all operations I, R

and c. This category is abelian, the reason being that R-mod is abelian, and in fact we

may define kernels, cokernels, subfunctors, quotient functors and so forth pointwise using

the fact that they exist in R-mod. We may speak of the intersection of subfunctors of a

Mackey functor, defined pointwise, and it is again a subfunctor. If we are given for each

subgroup H ≤ G a subset N(H) ⊆M(H) we may speak of the subfunctor 〈N〉 generated

by N : it is the intersection of the subfunctors containing N .

We will encounter also the notion of a Green functor, which is a Mackey functor M

with an extra multiplicative structure. Specifically, for each subgroup H ≤ G, M(H)

should be an associative R-algebra with identity so that

(7) the RH
K and cg are always unitary R-algebra homomorphisms, and

(8) for all subgroups K ≤ H, a ∈M(K) and b ∈M(H) we have

IH
K (a ·RH

K(b)) = IH
K (a) · b and IH

K (RH
K(b) · a) = b · IH

K (a)

Axiom (8) is called the Frobenius axiom. Green functors have in some ways a tighter

structure than Mackey functors, but we will not describe their theory in detail here. Fuller

accounts of recent theory may be found in [58], [59] and [12].

We mention now some examples of Mackey functors that immediately come to mind.

We may take M(G) to be

• G0(kG): the Grothendieck group of the category of finitely generated kG-modules. In

characteristic zero this may be identified as the group of characters of kG-modules,

and in characteristic p as the group of Brauer characters.

• A(G): the Green ring of finitely generated kG-modules [19, Sect. 81].

• Hn(G,U), Hn(G,U), Ĥn(G,U): the cohomology, homology and Tate cohomology of

G in some dimension n with coefficients in the ZG-module U .

• B(G): the Burnside ring of G. We may identify this as the free abelian group with

the isomorphism types of transitive G-sets as a basis.
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• Kn(ZG): the algebraic K-theory of ZG, and other related groups such as the White-

head group.

• Cl(O(FG)): the class group of the ring of integers of the fixed field FG where G is a

group of automorphisms of a number field F (see [35], [50], [8]).

For some more examples see [59, Sect. 53].

In the first instance these examples are only Mackey functors over the ground ring

Z. If we have some other ground ring R in mind we may always form a Mackey functor

R ⊗Z M whose values are R ⊗Z M(H) for each subgroup H of G. Some examples may

already be naturally defined over a ring R other than Z, for example Tate cohomology.

Since |G| annihilates Tate cohomology, this example gives a Mackey functor over Z/|G|Z;

if the module U happens to be defined over some further ring R then M(G) = Hn(G,U)

is also a Mackey functor over R.

It is important to have available a different definition of Mackey functors, less depen-

dent on a large number of axioms. It is phrased in terms of the category G-set whose

objects are the finite left G-sets, and whose morphisms are the G-equivariant mappings.

We will be especially interested in the space of left cosets G/H for each subgroup H of

G: each G-set is isomorphic to a disjoint union of these. We may now define a Mackey

functor over R to be a pair of functors M = (M∗,M
∗) from G-set to R-mod so that M∗ is

covariant, M∗ is contravariant, M∗(Ω) = M∗(Ω) for all finite G-sets Ω, and such that the

following axioms are satisfied:

(1) for every pullback diagram of G-sets

Ω1
α
−→ Ω2





y

β





y

γ

Ω3
δ
−→ Ω4

we have M∗(δ)M∗(γ) = M∗(β)M∗(α), and

(2) for every pair of finite G-sets Ω and Ψ, applying M∗ to Ω → Ω t Ψ ← Ψ gives the

component maps in a morphism M(Ω)⊕M(Ψ)→M(ΩtΨ), which we require to be

an isomorphism.

The definition we have just given is a special case of the definition given by Dress

[25], who phrased it in terms of more general categories than G-set and R-mod, given by

certain axioms.

To some extent the definition of Mackey functors in terms of G-sets is a question of

notation: according to the first definition we would write M(H) for the value of M at the

subgroup H, whereas with the G-set definition we would write M(G/H). In this account

we will sometimes use both of these notations and switch from one to the other without

special comment. It should be clear by looking at whether the argument is a subgroup or

a G-set which notation we are using.
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To make the connection between the two definitions on morphisms, we first identify

two particular morphisms of G-sets. When H is a subgroup of K there is a morphism

πK
H : G/H → G/K specified by πK

H (xH) = xK. When g ∈ G and H is a subgroup of G

there is also a morphism cg : G/H → G/gH specified by cg(xH) = xg−1 gH. It is the case

that any morphism between coset spaces is a composite of these two types of morphisms

(and it is an instructive exercise to prove it).

We now identify the operation IK
H of a Mackey functor given according to the first

definition with the morphism M∗(π
K
H ), and RK

H with M∗(πK
H ). The operation cg of the

first definition is identified with M∗(cg), which is necessarily equal to M∗(cg−1) in the

presence of the axioms.

We have to check that the axioms of the first definition imply the axioms of the

second, and vice-versa. Most of this is routine, and the most sophisticated aspect is the

reformulation of the Mackey formula as the axiom on pullbacks. The key here is the

following result.

(2.1) LEMMA. Whenever H and K are subgroups of J , itself a subgroup of G, there

is a pullback diagram of G-sets

Ω −→ G/K




y





y

G/H −→ G/J

where Ω =
⊔

x∈[H\J/K]G/(H ∩
xK). With this identification of Ω the map Ω→ G/H has

components πH
H∩xK , and Ω→ G/K has components πK

Hx∩Kcx−1 .

Proof. We first observe that

J/H × J/K −→ J/K




y





y

J/H −→ J/J

is a pullback diagram and that J/H×J/K ∼=
⊔

x∈[H\J/K] J/(H∩
xK). Now apply induction

of G-sets from J to G (defined in the next section) to this diagram.

In view of this it is immediate that the pullback axiom of the second definition implies

the Mackey decomposition formula of the first. Conversely, the Mackey decomposition

formula implies the pullback axiom for pullbacks of this form, and this is in fact sufficient

to imply the axiom for all pullbacks.
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3. The computation of Mackey functors using relative projectivity

The basic notion which permits the computation of a Mackey functor along the lines

of the Cartan-Eilenberg stable elements method is that of relative projectivity, which is

formally similar to relative projectivity in the context of representation theory. It may be

expressed most intuitively in terms of induction and restriction.

We define induction and restriction of Mackey functors in terms of induction and

restriction of G-sets. If Ω is a G-set and H a subgroup of G then Ω ↓GH denotes the set

Ω regarded as an H-set by restriction of the action. If Ψ is an H-set we define a G-set

Ψ ↑GH= G ×H Ψ, namely the equivalence classes in G × Ψ of the equivalence relation

(gh, ψ) ∼ (g, hψ) whenever g ∈ G, h ∈ H and ψ ∈ Ψ. Another way to describe this is that

it is the set of orbits under the action of H on G×Ψ given by h(g, ψ) = (gh−1, hψ) where

g ∈ G, h ∈ H and ψ ∈ Ψ. The action of G on G×H Ψ comes from the left multiplication

of G on G. We may check that ↑GH is left adjoint to ↓GH (but it is not right adjoint in

general). We now define restriction and induction of Mackey functors by

N ↑GH (Ω) = N(Ω ↓GH)

M ↓GH (Ψ) = M(Ψ ↑GH).

Restriction of Mackey functors is what we would expect: regarding M as being defined on

subgroups of G, if K ≤ H then M ↓GH (K) = M(K). Induction is more complicated, and

for subgroups H,K of G there is a formula

N ↑GH (K) =
⊕

g∈[H\G/K]

N(H ∩ gK).

Induction and restriction of Mackey functors satisfy relationships inherited from the

corresponding operations for G-sets and most of them are what we would expect; for

example there is a Mackey decomposition formula for M ↑GK↓
G
J . The property which is

perhaps surprising is that induction of Mackey functors is both left and right adjoint to

restriction. A formal consequence of this, which we mention now and will use later, is that

both induction and restriction are exact functors, and they send injective and projective

Mackey functors (that is, injective and projective objects in the category MackR(G)) to

objects of the same type.

The notions of projectivity and injectivity are, however, distinct from those of relative

projectivity and relative injectivity, which we now define. By applying M∗ to the natural

map of G-sets Ω ↓GH↑
G
H→ Ω we obtain a morphism of Mackey functors M ↓GH↑

G
H→ M

specified by M ↓GH↑
G
H (Ω) = M(Ω ↓GH↑

G
H)→M(Ω). If X is a set of subgroups of G we may

form the morphism
⊕

H∈X

M ↓GH↑
G
H→M
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We define M to be X -projective, or projective relative to X if and only if this morphism

is a split epimorphism (in the category of Mackey functors). What this means is that for

each subgroup J of G the sum of induction maps

⊕

H∈X

⊕

x∈[J\G/H]

M(J ∩ xH)
(IJ

J∩xH)
−→ M(J)

is surjective, and furthermore each of these surjections can be split in a manner compatible

with inductions restrictions and conjugations. It is possible to write out these compatibility

conditions explicitly, but not entirely illuminating. It is usually better to work with the

abstract formalism.

Dually, we may apply M∗ instead of M∗ as above to obtain a morphism

M →
⊕

H∈X

M ↓GH↑
G
H .

We say that M is X -injective if and only if this morphism is a split monomorphism.

It turns out to be convenient to express induction in a notationally different form,

using G-sets. If X is a G-set and M is a Mackey functor we define a new Mackey functor

MX by MX(Ω) = M(Ω×X) on objects and on morphisms as follows: if α : Ω1 → Ω2 then

MX∗(α) = M∗(α × 1), M∗
X(α) = M∗(α × 1). The point about this is that in the special

case when X is the G-set G/H we have Ω × G/H ∼= Ω ↓GH↑
G
H from which it follows that

MG/H
∼= M ↓GH↑

G
H . We define natural transformations

θX : MX →M θX : M →MX

by putting
(θX)Ω = M∗(pr) : MX(Ω) = M(Ω×X)→M(Ω)

(θX)Ω = M∗(pr) : M(Ω)→M(Ω×X) = MX(Ω)

where pr : Ω × X → Ω is projection onto the first coordinate. There are some details to

check to see that θX and θX are indeed natural transformations.

(3.1) PROPOSITION. Let X be a set of subgroups of G and let X =
⊔

H∈X G/H

be the disjoint union of the transitive G-sets G/H. The following are equivalent.

(i) M is X -projective.

(ii) M is X -injective.

(iii) θX is split surjective.

(iv) θX is split injective.

(v) M is a direct summand of MX .

In view of this we may take any of these equivalent conditions as the definition of

X -projectivity. There is also an equivalent definition analogous to Higman’s criterion [51].

For each Mackey functorM it may be quite important to know whetherM is projective

relative to some proper set of subgroups, and we need techniques to determine whether or

not this is so. The following straightforward result is useful in this connection.
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(3.2) LEMMA. Let X ⊆ Y be sets of subgroups of G.

(i) If M is X -projective then M is Y-projective.

(ii) If M is X -projective then M is Xmax-projective, where Xmax is a set of representatives

up to conjugacy of the maximal elements of M .

In view of this, for each set of subgroups X , M is X -projective if and only if M is

projective relative to the closure of X under taking subgroups and conjugates. Provided

we do this, there is in fact a unique minimal set of subgroups relative to which M is

projective. This may be deduced from the next result.

(3.3) PROPOSITION.

(i) Let X and Y be G-sets and M a Mackey functor. If M is X-projective and also

Y -projective then M is X × Y -projective.

(ii) Let X and Y be sets of subgroups closed under taking subgroups and conjugation. If

M is X -projective and also Y-projective then M is X ∩ Y-projective.

Proof. We leave (i) as an exercise. Then (ii) follows from (i) because when we put

X =
⊔

H∈X G/H and Y =
⊔

H∈Y G/H the stabilizers of G acting on X×Y are the groups

in X ∩ Y.

We see from this that there is a unique minimal set of subgroups closed under conju-

gation and taking subgroups relative to which M is projective. This set is called a defect

set (or defect base) for M . Thus a defect set of M is (informally) a set of subgroups X

minimal such that the sum of the maps I from subgroups in X is surjective and split, in the

sense previously discussed. This implies in particular that M(G) =
∑

H∈X IG
HM(H) and

it was this condition alone which Green used in his definition of a defect set. However, he

was working in the context of Green functors, and in that case this condition is sufficient

to imply everything else as we are about to see.

(3.4) THEOREM (Dress [25, Theorem 1]). Let M be a Green functor and X a set of

subgroups of G. For M to be X -projective (as a Mackey functor) it suffices that the sum

of the induction maps

(IG
H) :

⊕

H∈X

M(H)→M(G)

be surjective.

This makes it easy to deduce the relative projectivity of many familiar examples of

Mackey functors, and in many cases to find their defect sets. So, for example, the character

rings Q⊗Z G0(kG) where k is a field have as their defect sets all cyclic subgroups of G in

case char k = 0, and all cyclic p′-subgroups in case char k = p. In the characteristic zero

case, Artin’s induction theorem coupled with Theorem 3.4 gives projectivity relative to

cyclic subgroups. No smaller set of subgroups is possible since for no cyclic group is the
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sum of the induction maps from proper subgroups surjective. For a full discussion of these

defect sets, as well as those of G0(kG) and the Green ring A(G) see sections 9 and 10 of

[56].

Provided n ≥ 1 the cohomology Mackey functor Hn(G,U) is the direct sum of functors

giving the p-torsion subgroup Hn(G,U)p. Each p-torsion functor is projective relative to

p-subgroups of G. We may see this either using Theorem 3.4 applied to H∗(G,Z)p since

the corestriction from a Sylow p-subgroup is surjective, and then quoting further theory

to do with the fact that cohomology in general is a Green module over H∗(G,Z); or for a

different approach, see Section 7. We deduce that Hn(G,U) is projective relative to the

set of all p-subgroups for all the prime divisors of |G|.
In general Hn(G,U)p may have a defect set smaller than all p-subgroups, depending

on the module U . For example, if K ≤ G then H0( , V ↑GK) ∼= (H0( , V )) ↑GK as Mackey

functors [62, 5.2], and so this functor is projective relative to K. On the other hand

H0( ,Z/pZ) has defect set all p-subgroups since if H is a p-subgroup which is not a

Sylow p-subgroup then the corestriction map IG
H = 0. From this we may see by dimension

shifting that for each n there is a choice of module U so that Hn( , U)p has defect set all

p-subgroups of G.

The Burnside ring Mackey functor B(G) has defect set all subgroups of G since the

G-set consisting of a single point is never an orbit in a properly induced G-set.

Dress observed [25] that under the hypothesis of relative projectivity, not only is the

value of a Mackey functor the sum of the images of induction maps, but that also the kernel

of this map is determined. To show this he studied a resolution of the Mackey functor

which he called an Amitsur complex, and which we now describe.

We suppose that X is a finite G-set and let Xr = X × · · · × X denote the r-fold

product of X with itself. Let prī : Xr → Xr−1 denote projection off component i. We

consider the complex of Mackey functors

C : · · ·
d2−→MX2

d1−→MX
d0−→M −→ 0

which evaluated on Ω is

M(Ω×X ×X) M(Ω×X)

‖ ‖

C(Ω) : · · ·
d2−→ MX×X (Ω)

d1−→ MX(Ω)
d0−→ M(Ω) −→ 0

where

dr =

r
∑

i=0

(−1)iM∗(1× prī).

Thus d0 = θX , and by a standard calculation we verify that drdr−1 = 0.

There is a similar construction using M ∗ which gives a complex

D : 0 −→M
d0−→MX

d1−→MX2

d2−→· · ·

with d0 = θX . The next result implies that the complexes C and D are acyclic in case M

is X-projective or, equivalently, X-injective.
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(3.5) THEOREM. If M is X-projective then both C and D are chain homotopic to

the zero complex.

Proof. It is useful to say that a chain complex is contractible if it is chain homotopic

to the zero complex. Summands of contractible complexes are contractible. Since M is a

summand of MX it suffices to prove the result for the functor MX . The complex we obtain

replacing M by MX evaluated at a G-set Ω is

M(Ω×Xr+1 ×X) M(Ω×Xr ×X)

‖ ‖

· · ·
dr+1

−→ MX(Ω×Xr+1)
dr−→ MX(Ω×Xr)

dr−1

−→ · · · .

It is a routine check that the degree 1 mapping sr : M(Ω×Xr×X)→M(Ω×Xr+1×X)

given by sr = (−1)r−1M∗(1 × 1r × ∆), where ∆ : X → X × X is the diagonal, satisfies

sr−1dr+dr+1sr = 1, showing that the identity mapping on this complex is chain homotopic

to 0.

To say that the complexes C and D are contractible is equivalent to saying that they

are isomorphic to a direct sum of complexes of the form · · · → 0→ A
α
→A→ 0→ · · · where

α is an isomorphism. This means that the complexes are acyclic, and are everywhere

split. The acyclicity implies that the values M(K) of the Mackey functor are given as the

cokernel (if we use M∗) or the kernel (if we use M∗) of the explicitly given map d1, and

this description is compatible with inclusions of subgroups and conjugations in G.

The cokernel of the map MX2(G) → MX(G) in the complex C may be described

as a colimit, and the kernel of MX(G) → MX2(G) in complex D may be described as

a limit, as we may see in an elementary fashion. We will see in the next section that

the other homology groups of C and D can be interpreted as derived functors of colimit

and limit functors. For these results we only really need to work with half of the Mackey

functor, either the covariant half M∗ — which is known as a coefficient system — or the

contravariant half M∗.

(3.6) PROPOSITION.

(i) In the complex C, Coker(MX2(G)
d1→MX(G)) is the colimit of the diagram made up

of all possible morphisms of R-modules

M(Hg ∩K)
IK

Hg∩K−→ M(K) and M(Hg ∩K)
IH

H∩gKcg

−→ M(H)

where H,K ∈ X and g ∈ G.

(ii) In the complex D, Ker(MX(G)
d1→MX2(G)) is the limit of the diagram made up of all

possible morphisms of R-modules

M(K)
RK

Hg∩K−→ M(Hg ∩K) and M(H)
c

g−1RH
H∩gK

−→ M(Hg ∩K)
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where H,K ∈ X and g ∈ G.

Proof. In a similar way to Lemma 2.1 (note that X ×X is the pullback of X → pt←
X) we see in the covariant case thatMX2 →MX is the direct sum of terms with component

maps MG/Hg∩K →MG/H ⊕MG/K specified by (−IH
H∩gKcg, I

K
Hg∩K). The cokernel of this

is the stated colimit, and the contravariant case is similar.

This observation provides the connection with one of the main examples which moti-

vates this general development, namely the ‘stable elements’ formula of Cartan and Eilen-

berg [16]. If we take M to be the p-part of group cohomology and X to be all p-subgroups

of G then the assertion that Hn(G,U)p is isomorphic to the stable elements in Hn(P,U),

where P is a Sylow p-subgroup is exactly the assertion that it is isomorphic to the limit

of the above-mentioned diagram. We thus see how to generalize this formula to arbitrary

Mackey functors.

(3.7) COROLLARY. If M is X -projective then M(G) ∼= colimX M∗
∼= limX M

∗

where these terms denote the colimit and limit described in the last result. In particular,

if M is a Green functor and the sum of the induction maps from subgroups in X to M(G)

is surjective, then these isomorphisms hold.

4. Complexes obtained from G-spaces

A deficiency of the Amitsur complex considered by Dress is that it has infinite length,

and it is often more useful to have a resolution of finite length. The Amitsur complex is in

fact a particular case of a theory in which we obtain exact sequences of Mackey functors

from the action of G on a suitable space and we now describe this. We first have to say with

what kind of G-spaces we will work, and the most elegant formulation is to define a G-space

to be a simplicial G-set, that is, a simplicial object in the category of G-sets. For the reader

unfamiliar with these we may equally consider admissible G-CW complexes (or admissible

G-simplicial complexes), namely CW complexes (simplicial complexes) equipped with a

cellular (simplicial) action of G and satisfying the condition that for each cell (simplex) σ

the stabilizer Gσ fixes σ pointwise. If Z is a G-space we denote the set of (non-degenerate)

simplices (or cells) in dimension i by Zi. For each i this is a G-set.

Given a Mackey functor M we may construct a covariant functor FM : G-set →
MackR(G) defined by FM (X) = MX , using the covariant part of the functor M∗ to give the

functorial dependence on X. We may also define a contravariant functor FM : G-setop →
MackR(G) defined again by FM (X) = MX , but using the contravariant part of the functor

M∗ to give the functorial dependence on X. Now given a G-space Z we may construct

complexes of Mackey functors

· · · →MZ1
→MZ0

→M → 0

12



and

· · · ←MZ1
←MZ0

←M ← 0

as follows. Regarding Z as a functor Z : ∆op →G-set (where ∆ is the category of sets of the

form {0, . . . , n} with monotone maps as morphisms) we obtain by composition a simplicial

Mackey functor FM ◦ Z. The first sequence is now the normalized chain complex of this

simplicial object, augmented by the map θZ0
: MZ0

→M . The second sequence is obtained

similarly from FM ◦ Zop, augmenting by the map θZ0 : M → MZ0
. For future reference,

let us denote by MZ the sequence · · · →MZ1
→MZ0

→ 0 without augmentation, and by

MZ the sequence · · · ←MZ1
←MZ0

← 0 again without augmentation.

As an example we indicate how the Amitsur complex which Dress considered may be

constructed in this way. Given a G-set X, we construct a space Z as the nerve of the

category in which the objects are the elements of X, and in which there is precisely one

morphism (an isomorphism) between each ordered pair of objects. Thus the r-simplices

(including the degenerate ones) are in bijection with Xr+1. Dress’s complex is the (unnor-

malized) chain complex of FM ◦Z, augmented by θZ0
. The augmented normalized complex

is a quotient of this by a contractible subcomplex, and has the same homology.

The following is the theorem which ties all this together.

(4.1) THEOREM ([65], [9], [27]). Let G be a finite group, M a Mackey functor for G,

X and Y sets of subgroups of G which are closed under taking subgroups and conjugation,

and Z a G-space. Suppose that

(i) M is projective relative to X .

(ii) For every Y ∈ Y, M(Y ) = 0.

(iii) For every subgroup H ∈ X − Y, the fixed points ZH are contractible.

Then the complexes of Mackey functors

· · · →MZ1
→MZ0

→M → 0 and · · · ←MZ1
←MZ0

←M ← 0

are contractible; that is, they are acyclic and everywhere split.

In the case of the Amitsur complex we take X =
⊔

H∈X G/H and Y = ∅. Then

for every H ∈ X the space Z previously constructed satisfies the condition that ZH is

contractible, since it is the nerve of the category whose objects are the elements of XH

and where there is a single morphism between each pair of objects. This category is

equivalent to a category with only one object and morphism, and its nerve is contractible.

When we evaluate the sequences of the theorem at G we get sequences which express

M(G) in terms of the values of M on the stabilizer groups of the simplices in Z. Thus the

covariant sequence may be written

· · · →
⊕

σ∈[G\Z1]

M(Gσ)→
⊕

σ∈[G\Z0]

M(Gσ)→M(G)→ 0.

13



This is particularly useful when the G-space Z has finite dimension, in which case the

sequences have finite length and the acyclicity and splitting mean that the isomorphism

type of M(G) is determined by the isomorphism types of the remaining terms.

This approach has been used quite extensively to assist in the computation of group

cohomology, and a description of these applications is given in [1] (in a more rudimentary

version phrased only in terms of group cohomology, and without the force of the exact

sequence). For this we fix a prime p and let M(G) = Hn(G,U)p be the Sylow p-subgroup

of the group cohomology in degree n of G with coefficients in the ZG-module U , for some

n > 0 and U . For Z we may take various spaces, for example the order complex (i.e. the

nerve) of the poset

Sp(G) = {H ≤ G
∣

∣ 1 6= H is a p-subgroup}

with G acting by conjugating the subgroups, or equally one of a number of other G-spaces

(see [27], [64]). We take X to be all p-subgroups of G and Y to contain just the identity

subgroup. Then the conditions of the theorem are satisfied, and the isomorphism type of

Hn(G,U)p is conveniently expressed by the equation

Hn(G,U)p =
∑

σ∈[G\|Sp(G)|]

(−1)dim σHn(Gσ, U)p

the sum being over representatives of the G-orbits of (non-degenerate) simplices in the

order complex |Sp(G)|. This equation holds in the Grothendieck group of finite abelian

groups with relations given by direct sum decompositions.

We should mention also that in this context the truncated sequences MZ(G) and

MZ(G) make up the E1 and E1 pages of what we may call (c.f. [27]) the ‘isotropy spectral

sequences’ for the equivariant homology and cohomology of G acting on Z.

There is another interpretation of the sequences MZ and MZ , which is that they

compute the derived functors of certain limit and colimit functors. These have importance

because they appear in the spectral sequence of Bousfield and Kan (see [27]). It is also

interesting to have an interpretation like this of the homology of complexes such as Dress’s

Amitsur complex. The general framework is that we have a small category C and another

category D. Let DC denote the category of functors from C to D, and let lim, colim : DC →

D denote the limit and colimit functors (assuming they exist). If D is an abelian category

then so is DC, and we may consider the right derived functors limi of lim and the left

derived functors colimi of colim.

We need to consider the situation where our G-space Z is constructed as the homotopy

colimit Z = hocolimα of a diagram α : C → G-set. For this construction see [27], where

it is shown that |Sp(G)| and many other spaces may be constructed in this way up to

equivariant homeomorphism.

As an example we show how to construct the space which gives the Amitsur complex

in this way. Starting with a G-set X we let C be the category whose objects are the orbits

of G on the various sets Xr+1, r ≥ 0 and where the morphisms Ω→ Ψ are the restrictions
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of all possible projection mappings prI : Xr+1 → X |I| where I is a subset of the set

{0, 1, . . . , r} indexing the product Xr+1. Let α : C → G-set be the inclusion functor. Now

hocolimα is G-homeomorphic to the space described earlier which gives Dress’s Amitsur

complex. This can be proved using the methods of [27], by showing that the ‘Grothendieck

construction’ of α is a category whose nerve is the desired space.

Given a Mackey functor M and a diagram of G-sets α : C → G-set, we obtain diagrams

of R-modules by composition M∗ ◦ α : C → R-mod and M∗ ◦ αop : Cop → R-mod.

(4.2) PROPOSITION. Let Z = hocolimα where α : C → G-set. Then

colimi(M∗ ◦ α) ∼= Hi(MZ),

and

limi(M∗ ◦ α) ∼= Hi(M
Z).

Proof. The idea of the proof is that the construction of the homotopy colimit of the

diagram α of sets may also be done with the diagram M∗ ◦ α of R-modules, in which case

the result is a simplicial R-module whose degree i homology is colimi(M∗ ◦ α) [28, App.

II, 3.3]. We get the same answer if we form hocolimα, apply M∗ and take homology. The

argument for the second isomorphism involving limi is dual.

As a consequence of this identification and the previous theorem we obtain the fol-

lowing corollary.

(4.3) COROLLARY. Let M be a Mackey functor for G and X and Y be sets of

subgroups of G which are closed under taking subgroups and conjugation. Suppose that

(i) M is projective relative to X .

(ii) For every Y ∈ Y, M(Y ) = 0.

Let C be the full subcategory of G-set whose objects are the coset spaces G/H where

H ∈ X −Y. Then M∗ : C → R-mod and M∗ : Cop → R-mod may be regarded as diagrams

of R-modules and we have limiM∗ = 0 and colimiM∗ = 0 for all i > 0.

Proof. Let α : C → G-set be the inclusion functor. The space hocolimα is considered

in [27] where it is denoted Xβ
C , and it is shown that if H ∈ X − Y then (hocolimα)H is

contractible. Thus the conditions of the previous theorem are satisfied and we deduce that

Hi(Mhocolim α) = 0 = Hi(M
hocolimα) when i > 0.
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5. Mackey functors as representations of the Mackey algebra

The structure of Mackey functors may be analyzed in a similar way to the representa-

tion theory of finite groups with many similarities in the results. We describe this approach

in this section.

To start with, Mackey functors really are the same thing as modules for a certain

finite-dimensional algebra defined by Thévenaz and Webb in [62] as follows. As always we

work over a commutative ground ring R, which has a 1. We consider the free algebra on

non-commuting variables IK
H , R

K
H , cx,H where H and K range over subgroups of G with

H ≤ K, and x ranges over elements of G. The Mackey algebra µR(G) is the quotient of

this algebra by the ideal given by the following relations.

(0) IH
H = RH

H = ch,H for all subgroups H and h ∈ H

(1) RK
J R

H
K = RH

J

(2) IH
K I

K
J = IH

J

}

for all subgroups J ≤ K ≤ H

(3) cg, hKch,K = cgh,H for all g, h ∈ G and subgroups K

(4) R
gH
gKcg,H = cg,KR

H
K

(5) I
gH
gK cg,K = cg,HI

H
K

}

for all subgroups K ≤ H and g ∈ G

(6) RH
J I

H
K =

∑

x∈[J\H/K] I
J
J∩xKcxR

K
Jx∩K for all subgroups J,K ≤ H

(7)
∑

H≤G I
H
H = 1

(8) All other products of IL
H , R

K
J , ch,Q are zero.

A Mackey functor M may be regarded as the µR(G)-module
⊕

H≤GM(H) where the

generators IK
H , R

K
H and cx,H act on each summand in this direct sum as the mappings

IK
H : M(H) → M(K), RK

H : M(K) → M(H), cx,H : M(H) → M(xH) where this is

possible, and as zero on other summands.

It is immediate to see that the ideal of relations will act as zero, since these relations

are part of the definition of the Mackey functor. Conversely we note that 1 =
∑

H≤G I
H
H

is a sum of orthogonal idempotents, and so if we have a µR(G)-module V we may write it

as V =
⊕

H≤G I
H
H · V . The specification M(H) = IH

H · V defines a Mackey functor, with

the action of IK
H , R

K
H and cx,H coming from the module structure.

The standard approaches to the representation theory of finite-dimensional algebras

may now be applied to Mackey functors. This has been done in [9], [37], [51], [60], [62],

[67] to name just a few sources, and there is a summary in [57]. We will describe some

of the principal ideas. We will refer to Mackey functors, but we could equally refer to

µR(G)-modules, and similarly we will refer to subfunctors instead of submodules.

There are simple Mackey functors (having no proper subfunctors), and if R is a field

(or a complete local ring) they have projective covers, which form a complete list of inde-

composable projective Mackey functors. These simple Mackey functors are parametrized

and explicitly described in [60], where it is also proved that if R is a field of characteristic 0
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or of characteristic not dividing |G| then µR(G) is semisimple (see also [62, (14.4)]). There

is a decomposition map analogous to that for group representations. It is surjective, the

Cartan matrix satisfies the equation C = DtD (where D is the decomposition matrix) and

hence it is symmetric and non-singular [62]. This also provides a very effective way to

compute the Cartan matrix. Further information about the projectives of a rather deep

and fundamental nature is given in [9].

The notion of relative projectivity was developed in [51] into a theory of vertices and

sources, as well as Green correspondence. We have seen that for each Mackey functor

M there is a unique set of subgroups X closed under conjugation and taking subgroups,

minimal with respect to the property that M is X -projective. If R is a field or a complete

discrete valuation ring and M is indecomposable this set consists of a single conjugacy class

of subgroups together with their subgroups. A representative of this single conjugacy class

is called a vertex ofM . The notions of source and Green correspondence are now formulated

in the usual way. Unlike the situation with group representations in characteristic p, the

vertex of an indecomposable Mackey functor need not be a p-subgroup of G; in fact any

subgroup of G may be the vertex of an indecomposable Mackey functor, even when the

Mackey functor is projective. This points to another difference with group representations,

which is that whereas an indecomposable Mackey functor whose vertex is the identity and

whose values are projective R-modules is necessarily projective, the converse is not true

(assuming G 6= 1).

Various techniques are available to analyze in detail the subfunctor structure of a

specific Mackey functor. A method is described in [62] to find the composition factors of

the Mackey functor, and there is developed a way to compute Ext groups between the

simple functors. We generally expect the subfunctor structure of a Mackey functor to be

more complicated than the submodule structure of representations of the same groups,

but still in small cases it can be done. In [62] it is proved that when R is a field of

characteristic p and p divides |G| to the first power, but not the second, µR(G) is a direct

sum of semisimple algebras and Brauer tree algebras in an explicitly given way, so that

all Mackey functors can be completely described in this situation. Such algebras are self-

injective and of finite representation type. It is proved that if p2
∣

∣ |G| then µR(G) is neither

self-injective, nor of finite representation type.

The Mackey algebra is a direct sum of indecomposable ideal summands, and these

are the blocks of Mackey functors. In [62] these are explicitly parametrized in terms of the

blocks of G and its sections, and properties are described which enable us to determine

the block to which a given indecomposable Mackey functor belongs.
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6. Induction theorems and the action of the Burnside ring

The Burnside ring plays a particularly important role with regard to Mackey functors.

On the one hand it provides an example of a Mackey functor M(G) = B(G), which is in

fact a Green functor. As a Mackey functor, B is generated by the (isomorphism class of

the) G-set which consists of a single point. Furthermore it satisfies a universal property,

that given any Mackey functor N , every assignment η(point) ∈ N(G) extends uniquely to

a morphism of Mackey functors η : B → N . It follows from this that B is a projective

object in MackR(G). More generally, if we denote by BH the Burnside ring functor as

a Mackey functor on H and its subgroups, then BH ↑GH is a projective Mackey functor

(since induction carries projectives to projectives). If we assume R is a field or a complete

discrete valuation ring then every indecomposable projective Mackey functor is a summand

of some BH ↑GH (see [62, 8.6]).

Turning to another structure, there is an action of the ring B(G) as a ring of endo-

morphisms of every Mackey functor for G. This action may defined in several equivalent

ways. In terms of G-set notation, if X is a finite G-set and M a Mackey functor we have

previously defined (in the context of relative projectivity) natural transformations

M
θX

−→MX
θX−→M.

We define X to act on M as the composite θXθ
X . It is hard to see at first what this

composite is doing. In the particular case when X = G/K for some subgroup K, the effect

on M(G/H) is a composite of maps M(G/H)→M(G/H ×G/K)→M(G/H) where we

have an identification

M(G/H ×G/K) ∼=
⊕

g∈[H\G/K]

M(G/H ∩ gK).

From this we may see that if x ∈M(G/H) then

G/K · x =
∑

g∈[H\G/K]

IH
H∩gKR

H
H∩gK(x).

Yet another way to specify the action of the Burnside ring is to observe that there is

an R-algebra homomorphism B(G)→ µR(G) specified on basis elements by

G/K 7→
∑

H≤G

∑

g∈[H\G/K]

IH
H∩gKR

H
H∩gK .

This homomorphism is injective [62], and because the resulting action commutes with the

Mackey functor operations, it embeds B(G) as a subalgebra of the center of µR(G).

It follows from this that any expression 1 = e1+· · ·+er in B(G) as a sum of orthogonal

idempotents gives a decomposition of every Mackey functor as M = e1M ⊕· · ·⊕ erM , and
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that the indecomposable summands of each eiM lie in distinct blocks from the summands

of the other ejM with j 6= i. This is because blocks may be identified as the primitive

central idempotents in µR(G), and each ei is a sum of blocks.

It becomes important to have a description of the primitive idempotents in B(G).

When |G| is invertible in R, B(G) is semisimple and an explicit description of the idem-

potents appears in [68] and [29]. In practical applications with Mackey functors whose

values have torsion it is helpful to know the result of Dress [23] which shows that when

p is a prime and all prime divisors of |G| other than p are invertible in R, the primitive

idempotents in B(G) are in bijection with conjugacy classes of p-perfect subgroups of G.

(A subgroup J is p-perfect if it has no non-identity p-group as a homomorphic image.)

Writing fJ for the corresponding primitive idempotent of B(G), several descriptions are

given in [62] which characterize the summand fJM of M . In particular when R is addi-

tionally a field or complete discrete valuation ring, the summands of fJM are precisely the

summands of M which have a vertex containing J as a normal subgroup of p-power index.

This means we can tell which of the summands fJM are non-zero by knowing a defect

set of M . For example, if M(G) = Hn(G,U)p is the Mackey functor given by taking the

p-torsion subgroup of group cohomology in degree n with some ZG-module U , a defect set

will consist entirely of p-subgroups of G. Here we may regard M as a Mackey functor over

R = Zp, the p-adic integers. Every indecomposable summand of M has a p-subgroup as a

vertex. Since the only p-perfect subgroup of a p-group is the identity subgroup, we have

f1M = M , all other summands being zero, and so the decomposition of M given by Burn-

side ring idempotents is of no help in examining the structure of M . On the other hand,

when the defect set of M is larger there may be more summands and useful information

may be obtained. This is exemplified very nicely in [49] with the algebraic K-theory of

ZG.

We now describe an induction theorem of Dress, and for this we introduce certain

subfunctors of a Mackey functor M . Let X be a set of subgroups of G which is closed

under conjugation and taking subgroups and put X =
⊔

H∈X G/H. We will again use the

natural transformations θX : MX → M and θX : M → MX from Section 3, and write

IXM = θX(M) and RXM = Ker θX . These are subfunctors of M and the letters in the

notation are suggested by the fact that they are specified as the image of induction maps

from subgroups in X , and the kernel of restriction maps to subgroups in X , respectively.

(6.1) LEMMA. Let X be a set of subgroups of G closed under conjugation and taking

subgroups. Then

IXM(K) =
∑

J≤K, J∈X

IK
J M(J)

and

RXM(K) =
⋂

J≤K, J∈X

KerRK
J .
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If π is a set of primes (possible empty) we write π′ for the complementary set of primes

and let |G| = |G|π · |G|π′ be the product of numbers whose prime divisors lie respectively

in π and π′. Given a set of subgroups X we will write

HπX = {K ≤ G
∣

∣ there exist p ∈ π and H /K with H ∈ X and K/H a p-group}.

(6.2) THEOREM (Dress [25, Theorems 2 and 4], [24, Theorem 7.1]). Let X be a set

of subgroups of G closed under conjugation and taking subgroups and let π be a set of

primes. We have

|G|π′M ⊆ IHπXM + RXM

and

|G|π′ · (IXM ∩RHπXM) = 0.

In his original formulation Dress stated this result only for the evaluation of the

Mackey functors at G. In view of the identifications given in the preceding lemma, the

form of the result we have given is immediate.

This theorem is perhaps most useful when we take π either to be empty, or to be

all primes. Evidently H∅X = X . When π consists of all primes let us simply write HX

instead of HπX . In these cases we obtain:

(6.3) COROLLARY. For any set of subgroups X closed under conjugation and taking

subgroups we have

|G| ·M ⊆ IXM + RXM, |G| · (IXM ∩RXM) = 0

and

M = IHXM + RXM, IXM ∩ RHXM = 0.

As a consequence:

(6.4) COROLLARY. Suppose that |G| is invertible in R. Then

M = IXM ⊕ RXM.

An example of the application of this is Conlon’s theorem [19, (81.36)] giving a de-

composition of the Green ring A(G) of finitely generated kG-modules where k is either a

field of characteristic p or a complete discrete valuation ring with residue field of charac-

teristic p. If P ≤ G is a p-subgroup we consider the subspace U of A(G) spanned by the

modules which are relatively P -projective and the subspace V spanned by all expressions

[B]− [C]− [A] arising from short exact sequences of kG-modules 0 → A → B → C → 0

which split on restriction to P . Then taking

X = {H
∣

∣ H/Op(H) is cyclic, Op(H) is conjugate to a subgroup of P}
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it follows from the discussion in [19] that U = IXA(G) and V = RXA(G). We have

A(G) = U ⊕ V .

At this point we should mention that the semisimplicity of the category of Mackey

functors over a field R of characteristic 0 mentioned in Section 5 allows us to say that

every subfunctor of a Mackey functor M over R, and in particular IXM , is a direct

summand of M . The extra information in Dress’s result is that it identifies RXM as a

direct complement.

We also point out that if we have several sets of subgroups of G in a chain

X0 ⊂ X1 ⊂ · · · ⊂ Xn

then evidently

IX0
M ⊆ IX1

M ⊆ · · · ⊆ IXn
M

and

RX0
M ⊇ RX1

M ⊇ · · · ⊇ RXn
M.

When |G| is invertible in R we have

M = IXi
M ⊕RXi

M

for each i and by the modular law we have

IXi
M = IXi−1

M ⊕ (IXi
M ∩ RXi−1

M).

Hence

M =
n

⊕

i=0

IXi
M ∩RXi−1

M

where RX−1
M = M . This decomposition is exemplified by a different part of Conlon’s

theorem [19, (81.36)].

The penultimate equality in Corollary 6.3 is very useful in obtaining induction theo-

rems in situations where we know RXM to be zero. So for example there is an induction

theorem due to Conlon [19, (80.50)] for the Green ring A(G) over Q of finitely generated

kG-modules where k is either a field of characteristic p or a complete discrete valuation ring

with residue field of characteristic p. It says that if X = {H ≤ G
∣

∣ H/Op(H) is cyclic }

then A(G) is the sum of the images of the induction maps from the subgroups in X , or

in our language A = IXA. From this and Corollary 6.4 we obtain RXA = 0. If we now

let a(G) denote the Green ring over Z of finitely generated kG-modules, allowing only

linear combinations over Z, we deduce that RXa = 0, since it embeds in RXA = 0. We

deduce from Corollary 6.3 that a = IHXa, which is the integral form of Conlon’s induction

theorem, due to Dress in [26].

21



7. Cohomological Mackey functors

A Mackey functor is said to be cohomological if for every pair of subgroups H ≤ K of

G the map IK
HR

K
H : M(K)→M(K) is multiplication by |K : H|. These functors take their

name because group cohomology M(K) = Hn(K,U) satisfies this condition. The functor

which assigns to each subgroup of the Galois group of an extension of number fields the

class group of the ring of integers of the fixed field is another example of a cohomological

Mackey functor, since the Mackey functor operations derive from taking fixed points.

Perhaps the most striking result about cohomological Mackey functors is the theorem

of Yoshida which identifies them as modules for the Hecke algebra

E = EndRG(
⊕

H≤G

R[G/H]),

the endomorphism ring of the direct sum of all permutation modules R[G/H] where H

ranges over the subgroups of G. They are also related to the category HG defined to be

the full subcategory of RG-modules whose objects are the finitely generated permutation

RG-modules.

(7.1) THEOREM (Yoshida [69]). The following categories are equivalent:

(i) the full subcategory of MackR(G) whose objects are the cohomological Mackey func-

tors,

(ii) the category of R-linear functors HG → R-mod, and

(iii) the category of E-modules.

This result identifies E with what we might call the ‘cohomological Mackey algebra’,

obtained by imposing the relations IK
HR

K
H = |K : H| · IK

K on the Mackey algebra. The

equivalence of (ii) and (iii) is a routine piece of category theory, immediate from the

definitions.

What is behind the equivalence of (i) and (ii) is that all morphisms in HG can be

expressed as linear combinations of composites of three kinds of morphism: the morphisms

iKH : R[G/H]→ R[G/K]

rK
H : R[G/K]→ R[G/H]

cg : R[G/H]→ R[G/gH]

specified by iKH (xH) = xK and rK
H (xK) =

∑

k∈[K/H] xkH whenever H is a subgroup of K,

and cg(xH) = xg−1 gH whenever g ∈ G and H ≤ G. These morphisms satisfy all the rela-

tions satisfied by the corresponding Mackey functor operations, and also the relation that

iKHr
K
H is multiplication by |K : H| whenever H is a subgroup of K. Further, all relations

between the morphisms are deducible from the relations just mentioned. It follows that

any R-linear functor HG → R-mod can be regarded as a cohomological Mackey functor,
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and conversely, any cohomological Mackey functor can be regarded as being defined on

HG.

The use of this approach is that any isomorphism between direct sums of permutation

modules yields a relationship between the values of a cohomological Mackey functor. Such

relationships are exploited in [50], [63] and [8].

The following is an exercise in working from the definitions.

(7.2) PROPOSITION. Suppose that M is a cohomological Mackey functor and that

H ≤ G is a subgroup such that |G : H| acts invertibly on all of the R-modules M(K),

where K ≤ G. Then M is projective relative to {H}.

In view of this, when R = Q all cohomological Mackey functors are 1-projective, and

when R = Zp cohomological Mackey functors are projective relative to the p-subgroups of

G. In this case, according to the section on Burnside ring action, they are acted on as the

identity by the Burnside ring idempotent f1.

It is shown in [62] that every cohomological Mackey functor is in fact a homomorphic

image of a Mackey functor of the form M(G) = H0(G,U), where U is a permutation

module. In fact, the indecomposable summands of these functors are precisely the in-

decomposable projective cohomological Mackey functors. Further information about the

projective and simple cohomological Mackey functors is given in [62].

8. Globally-defined Mackey functors

We describe now another kind of Mackey functor which has appeared more recently

and which appears to be important. These are the globally-defined Mackey functors. In

some ways they are more general than the original Mackey functors, and in some ways more

restrictive. One main difference is that instead of being defined just on the subgroups of a

particular group, they are defined on all finite groups. This is in keeping with many of the

natural examples of Mackey functor, such as group cohomology with trivial coefficients, or

the character ring, which are in fact defined on all groups. A second main difference is that

whereas the original Mackey functors only possess operations corresponding to inclusions of

subgroups and conjugations, the globally-defined Mackey functors may possess operations

for all group homomorphisms. This possibility necessitates slightly more restrictive axioms

to make it work.

Let R be a commutative ring with a 1. By saying that a group K is a section of

a group G we mean that there is a subgroup H of G and a surjective homomorphism

H → K. Let X and Y be classes of finite groups satisfying the following two conditions:

(1) if G lies in X and K is a section of G then K lies in X ; and (2) if 1→ A→ B → C → 1

is a short exact sequence of groups with A ∈ X and C ∈ X then B ∈ X . We say that a

globally-defined Mackey functor over R, with respect to X and Y, is a structure M which
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specifies an R-module M(G) for each finite group G, together with for each homomorphism

α : G→ K with Kerα ∈ Y an R-module homomorphism α∗ : M(G)→M(K) and for each

homomorphism β : G → K with Ker β ∈ X an R-module homomorphism β∗ : M(K) →

M(G). These morphisms should satisfy the following relations:

(1) (αγ)∗ = α∗γ∗ and (βδ)∗ = δ∗β∗ always, whenever these are defined;

(2) whenever α : G→ G is an inner automorphism then α∗ = 1 = α∗;

(3) for every commutative diagram of groups

G
β
−→ H

γ

x





x





α

β−1(K) −→
δ

K

in which α and γ are inclusions and β and δ are surjections we have α∗β∗ = δ∗γ
∗

whenever Ker β ∈ Y, and β∗α∗ = γ∗δ
∗ whenever Ker β ∈ X ;

(4) for every commutative diagram

G
γ
−→ H/KerαKer β

β

x





x




δ

H −→
α

K

in which α, β, γ and δ are all surjections, with Ker β ∈ Y and Kerα ∈ X , we have

β∗α
∗ = γ∗δ∗;

(5) (Mackey axiom) for every pair of subgroups J,K ≤ H of every group H we have

(ιHK)∗(ιHJ )∗ =
∑

h∈[K\H/J ]

(ιKK∩hJ)∗ch∗(ι
J
Kh∩J)∗

where ιHK : K ↪→ H and ιHJ : J ↪→ H etc. are the inclusion maps and ch : Kh ∩ J →

K ∩ hJ is the homomorphism ch(x) = hxh−1.

These globally defined Mackey functors form an abelian category denoted MackX ,Y
R .

At first sight some conditions appear to have been omitted which are necessary to

make things work. Thus in both (3) and (4), if Ker β ∈ Y it follows that Ker δ ∈ Y also; in

(1), if Kerα ∈ Y and Ker γ ∈ Y then Kerαγ ∈ Y also; and so on. Axiom (4) implies that

if α : H → K is an isomorphism, then (α−1)∗ = α∗ and (α−1)∗ = α∗. The automorphisms

of each group G act on M(G), and because the inner automorphisms act trivially each

M(G) has the structure of an R[OutG]-module.

The main reason for having the classes X and Y as part of the definition is that a

globally-defined Mackey functor need not possess all operations α∗ and α∗ when α is a

surjective group homomorphism, and with each example we discuss the possibilities for X
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and Y. It is always possible to take X and Y to consist only of the identity group, which

is the same as saying that α∗ and α∗ are only defined when α is injective. Sometimes it is

possible to take X and Y to be larger classes of groups.

Some of the examples of ordinary Mackey functors we have previously discussed also

give examples of globally-defined Mackey functors; and some do not. The following are

examples of globally-defined Mackey functors.

• G0(kG) and B(G): in both these examples we may take X and Y to be all finite groups.

Whenever α : G→ H is a group homomorphism we may restrict both representations

of H and H-sets along α. Also we may form RH ⊗RG U and H ×G Ω whenever U is

an RG-module and Ω a G-set, and this allows us to form α∗.

• Hn(G,R), Hn(G,R), Ĥn(G,R): the cohomology, homology and Tate cohomology of

G in some dimension n with trivial coefficients (arbitrary coefficient modules are not

possible since they must be modules for every finite group). For cohomology we may

take X to be all finite groups and Y to be the identity group. If α : G → H is

a surjective group homomorphism then α∗ is inflation. However, provided we allow

such inflations it is not possible to define α∗ (except on isomorphisms) so as to satisfy

the axioms. To see this, consider the fixed point functor M(G) = H0(G,R) for each

finite group G, and also the homomorphisms 1
ι
→G

β
→1. We know that ι∗ = |G| · id and

ι∗ = id. Since βι = id we have β∗ι∗ = id and ι∗β∗ = id. From this we deduce that

β∗ = id and β∗ = |G|−1 · id. At this point if |G|−1 does not exist in R we see that β∗
cannot be defined. Even when |G|−1 does exist in R, consider axiom (4) applied to

the square
1 −→ 1

β

x





x





G −→
β

1

This allows us to deduce that β∗β
∗ = id, that is |G|−1 = 1, which cannot hold for all

finite groups G.

• Kn(ZG), the algebraic K-theory of ZG. Here we may take Y = all finite groups but

put X = 1 (see [49]), the point being that if α : G → H is a group homomorphism

and P is a projective ZG-module then ZH ⊗ZG P is a projective ZH-module, but the

restriction of a projective module along a homomorphism α is only projective when α

is injective.

• Q ⊗ D(G) when G is a p-group and D(G) is the Dade group of endopermutation

kG-modules, where k is a field of characteristic p (see [14]). Here we have to consider

a modified version of the theory where we consider functors defined only on p-groups.

We may take X and Y to be all p-groups.

As is the case with ordinary Mackey functors, there is another definition of globally-

defined Mackey functors [10] which is less immediately transparent, but which is usually

easier to work with. Given a pair of groups G and H we consider the finite (G,H)-bisets.
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These are finite sets Ω with a left action of G and a right action of H so that the two

actions commute: g(ωh) = (gω)h for all g ∈ G, h ∈ H and ω ∈ Ω. By analogy with the

Burnside ring, let AX ,Y(G,H) be the Grothendieck group with respect to disjoint unions

of all finite (G,H)-bisets Ω with the property that StabG(ω) ∈ X and StabH(ω) ∈ Y for

all ω ∈ Ω. This is the free abelian group with the isomorphism classes of transitive such

bisets as a basis — we say Ω is transitive if given ω ∈ Ω, every element of Ω may be written

gωh for some g ∈ G and h ∈ H. We now define AX ,Y
R (G,H) = R⊗Z A

X ,Y(G,H).

Given a third group K there is a product

AX ,Y
R (G,H)× AX ,Y

R (H,K)→ AX ,Y
R (G,K)

defined on basis elements as (Ω,Ψ) 7→ Ω ×H Ψ where the latter amalgamated product is

the set of equivalence classes under the relation (ωh, ψ) ∼ (ω, hψ) whenever ω ∈ Ω, ψ ∈ Ψ

and h ∈ H. This product is associative, and provides in particular a ring structure on

AX ,Y
R (G,G). When X consists of all finite groups and Y consists of the identity group,

this ring is known as the double Burnside ring of G, see [3] or [43]. (We have chosen the

opposite convention to many authors, who take X = 1 and Y = all finite groups.)

With all this we associate a category CX ,Y
R whose objects are all finite groups and

where HomCX ,Y

R

(H,G) = AX ,Y
R (G,H). The composition of morphisms is the product we

have defined, and because we have (apparently perversely!) reversed the order of G and H

this composition is correct for applying mappings from the left. Finally, a globally-defined

Mackey functor (with respect to X and Y) is an R-linear functor M : CX ,Y
R → R-mod.

The key to understanding why this definition is equivalent to the first one is to consider

for each group homomorphism α : G → K the bisets KKG and GKK where in the first

case K acts on K from the left by left multiplication and G acts on K from the right via

α and right multiplication, and in the second case the reverse happens. Given a functor

M as just defined we define α∗ = M(KKG) and α∗ = M(GKK). It is the case that

these bisets satisfy relations which imply the axioms we have given. Conversely, every

transitive biset is a composite of bisets of this special form, and the axioms are sufficient

to imply that a Mackey functor defined in the first way gives rise to an R-linear functor

M : CX ,Y
R → R-mod.
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9. The computation of globally-defined Mackey functors using simple functors

We describe the first of two applications of globally-defined Mackey functors together

with further properties which seem to suggest their importance. The applications depend

on a description of the simple globally-defined Mackey functors and we start with this.

This material is developed in [66] and [10].

As with ordinary Mackey functors, we can speak of subfunctors of globally-defined

Mackey functors, kernels and so forth. We thus have the notion of a simple functor,

namely one which has no proper non-zero subfunctors.

(9.1) THEOREM ([10], [66]). The simple globally-defined Mackey functors are in

bijection with pairs (H,U) where H is a finite group and U is a simple R[OutH]-module

(both taken up to isomorphism). The corresponding simple functor SH,U has the property

that SH,U (H) ∼= U as R[OutH]-modules, and that if G is a group for which SH,U (G) 6= 0

then H is a section of G. Provided R is a field or a complete discrete valuation ring each

simple functor SH,U has a projective cover PH,U , and these form a complete list of the

indecomposable projective functors.

It is a feature of this classification that it is independent of the choice of X and Y,

although the particular structure of the simple functors changes as we vary X and Y. In

the special case when X = Y = 1 an explicit description (stated below) of the values

SH,U (G) was given in [66], as well as a less transparent description in the case when X

is all finite groups and Y = 1. In this latter case it is shown that the dimension of the

SH,U (G) is related to the stable decomposition of the classifying space BG (as will be

explained later) and existing computations of these decompositions are really equivalent

to computing this dimension. When X and Y consist of all finite groups it appears to be

rather difficult to describe the simple functors explicitly, in general, but we will return to

this question in the last section of this article.

(9.2) THEOREM ([66]). When X = Y = 1 the simple globally-defined Mackey

functors are given explicitly by

SH,U (G) =
⊕

α:H∼=L≤G

up to G−conjugacy

tr
NG(L)
L (αU)

where H ranges over finite groups and U ranges over simple R[Out(H)]-modules.

Here the direct sum is taken over G-orbits of isomorphisms α from H to subgroups L of

G, and αU means U with the action transported to NG(L)/L via α. The symbol tr means

the relative trace, i.e. multiplication by the sum of coset representatives of L in NG(L).

This straightforward description of the simple functors when X = Y = 1 gives rise

to a method of computing the values of globally-defined Mackey functors which has been
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applied in the case of group cohomology in [66] and [18]. We work with the p-torsion

subgroup M(G) = Hn(G,R)p for a fixed prime p. Although M can be defined with

inflation operations α∗ when α is a surjective group homomorphism we choose to forget

these and regard M as a globally-defined Mackey functor with X = Y = 1. In the category

of such functors we consider a ‘composition series’ of M , namely a filtration

· · · ⊂Mi−1 ⊂Mi ⊂Mi+1 ⊂ · · · ⊂M

such that
⋂

Mi = 0,
⋃

Mi = M and Mi+1/Mi is always a simple functor. It is shown that

such a series exists, and the multiplicity of each simple functor as a factor is determined

independently of the choice of the series. Furthermore, the fact that — as an ordinary

Mackey functor — cohomology is projective relative to p-subgroups implies that the only

simple functors which arise as composition factors in the global situation are SH,U where

H is a p-group; and furthermore the multiplicities as composition factors are determined

by knowledge of the cohomology of p-groups. Putting all this together, we get a formula for

the size of M(G) knowing the composition factor multiplicities and the values SH,U (G),

and it is expressed in terms of the cohomology of the p-subgroups of G and conjugacy

of p-elements. Given explicit information about the cohomology of the p-subgroups, the

formula for the cohomology of G gives completely explicit numerical results. A remarkable

feature of this approach is that we obtain a uniform formula which applies at once to all

finite groups G with a given Sylow p-subgroup.

10. Stable decompositions of BG

For surveys of the background material to this section see [3] and [43]. We denote

by (BG+)∧p the p-completion of the suspension spectrum obtained from the classifying

space BG after first adjoining a disjoint base point to give a space BG+. The problem

of decomposing (BG+)∧p stably as a wedge of indecomposable spectra is a fundamental

question which — thanks to Carlsson’s proof of the Segal conjecture — comes down to an

analysis of the double Burnside ring Aall,1
Zp

(G,G) defined in an earlier section. By studying

the representations of this ring it was proved by Benson and Feshbach [4] and also by

Martino and Priddy [44] that the indecomposable p-complete spectra which can appear as

a summand of some (BG+)∧p (allowingG to vary over all finite groups) are parametrized by

pairs (H,U) where H is a p-group and U is a simple Zp[Out(H)]-module. They also gave a

method for determining the multiplicity with which each spectrum in the parametrization

occurs as a summand of a given BG+.

We describe in this section how a proof of their theorem may be given entirely within

the context of globally-defined Mackey functors (assuming Carlsson’s theorem). The com-

plete description can be found in [66]. We work with globally-defined Mackey functors

where we take X to be all finite groups and Y to be the isomorphism class of the iden-

tity group, and we will see that there is an equivalence of categories between the full
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subcategory of the category of spectra whose objects are the summands of the (BG+)∧p ,

and the full subcategory of MackX ,Y
Zp

whose objects are the projective covers PH,U of the

simple functors SH,U where H is a p-group. The advantage of this approach is that we

work with the projective objects in a category — and such a situation is often felt to be

well-understood — rather than a more mysterious subcategory of the category of spectra.

For each group K there is a representable functor FK = HomCX ,Y

Zp

(K, ) which is a

projective object in MackX ,Y
Zp

by Yoneda’s lemma. This decomposes as a sum of indecom-

posable projectives, and the particular form of the decomposition will be of use to us in

what follows.

(10.1) LEMMA. The representable functor FK decomposes as FK ∼=
⊕

P
nH,U

H,U where

nH,U = dimSH,U (K)/ dimEndZp[Out H] U.

Thus PH,U is only a summand of FK if H is a section of K, and PK,U does occur as a

summand of FK with multiplicity dimU/ dim EndZp[Out H] U .

The dimensions are taken over Z/pZ here. This is possible since the values of a simple

functor over Zp are actually Z/pZ-vector spaces.

Proof. From the properties of a projective cover we have

Hom(PH,U , SJ,V ) =
{

End(SH,U ) if (H,U) ∼= (J, V )
0 otherwise.

If we write FK ∼=
⊕

P
nH,U

H,U for some integers nH,U to be determined, we have

dim Hom(FK , SH,U ) = nH,U · dimEnd(SH,U ).

Now

Hom(FK , SH,U ) ∼= SH,U (K)

by Yoneda’s lemma, and also

End(SH,U ) ∼= EndZp[Out H](U)

from [66] or [10]. Rearranging these equations gives the claimed expression for nH,U . We

obtain the remaining statements from Theorem 9.1.

29



Again by Yoneda’s lemma, Hom(FG, FH) ∼= Hom(H,G) = AX ,Y
Zp

(G,H) and composi-

tion of morphisms on the left corresponds to the product on the right. It is a consequence

of Carlsson’s theorem that when P is a p-group we have [(BP+)∧p , (BG+)∧p ] ∼= AX ,Y
Zp

(G,P ),

where the left hand side denotes the homotopy classes of maps of spectra. We have re-

versed the expected order of G and P on the right hand side so that composition of maps

written on the left corresponds to the product of bisets.

We immediately have the first part of the next result.

(10.2) THEOREM. Let p be a prime.

(i) The assignment (BP+)∧p → FP gives an equivalence of categories between the full

subcategory of the category of spectra whose objects are the (BP+)∧p where P is a

p-group, and the full subcategory of MackX ,Y
Zp

whose objects are the representable

functors FP .

(ii) The equivalence in (i) extends to an equivalence between the full subcategory of

the category of spectra whose objects are stable summands of the classifying spaces

(BG+)∧p as G ranges over finite groups, and the full subcategory of MackX ,Y
Zp

whose

objects are the indecomposable projectives PH,U with H a p-group.

Proof. To prove the second part we first observe that the equivalence in part (i)

can be extended to summands of the objects, since these correspond to idempotents in the

endomorphisms rings of objects, and corresponding objects have isomorphic endomorphism

rings. We see from Lemma 10.1 that the indecomposable summands of the F P with P a

p-group are precisely the PH,U with H a p-group. Also it is well known that (BG+)∧p is

stably a summand of (BP+)∧p where P is a Sylow p-subgroup of G, and so the summands

of all the (BG+)∧p are the same as the summands of all the (BP+)∧p . This completes the

proof.

We now deduce that the stable summands of the (BG+)∧p are parametrized the same

way as the PH,U with H a p-group, and the multiplicities of these summands are given

by 10.1. The properties given in 10.1 are exactly the properties of the summands of the

(BG+)∧p given in [4] and [44]. By analyzing the structure of SH,U (G) we are also able to

obtain their general formula for these multiplicities.
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11. Some naturally-occurring globally-defined Mackey functors

We conclude by pointing out that some very important naturally-occurring Mackey

functors are in fact simple in some cases and projective in another. It is remarkable that

this highly technical theory encapsulates natural examples in this way. We state results

only over Q but in fact they hold over any field of characteristic 0.

(11.1) THEOREM (Bouc [10], Bouc and Thévenaz [14]). Let X and Y be all finite

groups.

(i) The Burnside ring Mackey functor Q⊗Z B is the indecomposable projective P1,Q.

(ii) The functor M(G) = Q ⊗Z G0(QG) which assigns the representation ring of QG-

modules, tensored with Q, is the simple functor S1,Q.

(iii) Let p be a prime. The kernel of the projective cover map P1,Q → S1,Q, regarded as

a functor only on p-groups, is the functor Q ⊗ D, where D(P ) is the Dade group of

endopermutation modules of the p-group P . This functor is simple: Q⊗D ∼= SCp×Cp,Q.

The first statement in this theorem is straightforward. For each group G we have a

representable functor FG and in case G = 1 we may see from the definitions that F 1 =

Q⊗ZB. We also know the decomposition of this functor as a direct sum of indecomposable

projectives, as given in Lemma 10.1, and from this we see it is P1,Q. The second statement

is less obvious and appears in [10]. We know from Artin’s induction theorem that the

natural map Q ⊗Z B → Q ⊗Z G0(QG) is surjective. It requires some further argument

to show that the target is simple. Statement (iii) is not obvious at all. Dade’s group is

described in [59] and [14], and we will not discuss it here. By regarding a functor as defined

only on p groups, we mean that we are considering the restriction of the functor to the full

subcategory of CX ,Y
Q whose objects are the p-groups, and this restriction is asserted to be

simple in the category of functors on this subcategory.

The kernel of the projective cover map P1,Q → S1,Q is not simple as a functor defined

on all finite groups, although it is not a straightforward matter to determine its composition

factors. We have the following:

(11.2) THEOREM (Bouc [10]). Let X and Y be all finite groups. The composition

factors of the Burnside functor Q⊗Z B all have the form SH,Q for various groups H. Each

such simple functor appears with multiplicity at most 1.

Bouc also characterizes in [10] those groups H for which the simple functor SH,Q does

appear as a composition factor of Q ⊗Z B by means of a certain combinatorial condition

(he calls such groups ‘b-groups’). There is also information in [14] about the composition

factors of k ⊗Z B when k is a field of prime characteristic.
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