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Homotopy Limits and Colimits

Rainer M. Vogt

1. Introduction

It is well-known that the canonical projection functor from the
category Jos of topological spaces and maps (=continuous functions)
to the category oz, of topological spaces and homotopy classes of maps
does not preserve limits and colimits and that g4, has very few limits
and colimits. The same holds for the category 4™ of based spaces and
based maps and its homotopy category Joz}. Therefore, when dealing
with constructions involving homotopies, one often has to substitute
limits and colimits by something else, and the homotopy limits and
colimits are in many cases the spaces having the universal properties one’
wants.

Let  be a small category and D: € — Jop [or D: € — Jop*] a
%-diagram in Jz4 [respectively Jos™]. Let

%.(A, B)={(},,....f)emor B)"|f,o---of;: A—> Bisdefinedin 4} n>0
%, (A, A)={(id )} %,(A,B)=& for A+B.

(1.1) Definition. The homotopy colimit of D, h-colim D is

(H U%(A,B)xl”xD(A))u{*}/~

A, Bc¥€ n=0
where I is the unit interval and {+} an extra point, with the relations
(tn:ﬁn"-7t2=f2;x) f1=ld
(s Srr s fiars titisys fimts - 1 X)) fi=id, 1<i
(tn’.f;n"'7ti+1:ﬁ+1°ﬁ’ti—la--'7fi;x) ti:1= l<n

(tnaj;u'--,l]’f;;x):

(tn—laf;l~1a"->f1;x) tnzl
(tws Sus o5 Srars D(fio -+ 0 1) (X)) ;=0
* x =base point

with {*} as base point for a diagram D in Jox™*. The unbased version is
obtained by deleting {} and the last relation. The homotopy limit of D
is defined dually.
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To my knowledge, Puppe was the first to use a homotopy colimit as a
“substitute” for a colimit. Let C, be the reduced mapping cone of the
based map f: X — Y. Then he proved [13] that the sequence

(1.2) x-L.v ¢,
induces an exact sequence of based sets
[X.Z] Y, Z]<[C[, Z]

where [X, Z] denotes the set of based homotopy classes of maps from
X to Z. So C, which is the homotopy colimit of the diagram

Y «ZL- X — % =one-point space

in Jop*, “substitutes” the cokernel of f. In his second chapter, Puppe
showed that the sequence (1.2) is invariant under homotopy equiv-
alences. More precisely, given a homotopy commutative diagram

) QU

(1.3) Jh Jk

Xl g Y/
we can extend it to a diagram

x—1f Y~Lf—+Cf

Jvh jk JH
Xty -f,C,

whose right square commutes. Moreover, if h and k are homotopy
equivalences, then H is a homotopy equivalence. This result, which
requires some work to be proved, is a special case of a more general
theorem about homotopy colimits. Note first that (1.3) can be extended
to a homotopy commutative diagram

YL X *

Y e X — %

Our general result is (it follows from (4.6) below)

(14) Theorem. Let % be a small category and let D and E be €-diagrams in
Jote [or in Top* of well-pointed spaces]. If f: D —E is a [based] mor-
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phism of €-diagrams up to compatible [based] homotopies such that for
all Aeob € the map D(A)— E(A) given by f is a homotopy equivalence,
then f induces a homotopy equivalence h-colim D — h-colim E.

Another special case of (1.4) occurring in the literature is due to Milnor
[12; Appendix]. Given a topological space X and a sequence of subspaces
Xo<X, <X, <, he considers the question to what extent is the homo-
topy type of X determined by the homotopy types of the X;. For this he
considers the “telescope”

X=Xy x[0,1]UX, x[1, 21U X, x[2,3]u--

topologized as a subset of X x R. It is easy to see that X is naturally
homotopy equivalent to the homotopy colimit of the diagram

XocXjcX,con

Let Y be another space and Y,=Y,c Y,=--- a sequence of subspaces;
then his main result (which also is a consequence of (1.4)) is

(1.5) Theorem (Milnor). Let f: X — Y be a map which carries each X;
into Y, by a homotopy equivalence; then f induces a homotopy equivalence
X;— Y.

So the question reduces to the problem of showing that X5 is homo-

topy equivalent to X. This is, for example, the case if X= [ ) X; and
X,cX;,, is a cofibration. i=0

A more general result along these lines has been proved by tom Dieck
[5] using the work of Segal [14].

(1.6) Definition. A covering U=(X,|acA) of X is called numerable if
there exists a locally finite partition of unity (t,] «e A) such that the closure
of t;71(0, 17 is contained in X, .

(1.7) Theorem (tom Dieck). Let U=(X,|acA) and V=(Y,|acA) be
numerable coverings of X and Y. For any non-empty subset c <A let
X,=()X,. Let f XY be a map which carries each X,,c<A finite,

XEC

into Y, by a homotopy equivalence. Then f is a homotopy equivalence.

This theorem is an immediate consequence of (1.4). By assumption,
the map f induces a morphism of the diagram of the X,, o = A finite,
and their inclusions to the diagram of the Y, and their inclusions, and the
maps of this morphism are homotopy equivalences. Hence the homotopy
colimits are homotopy equivalent. But by a result of Segal [14], the
homotopy colimits are homotopy equivalent to X respectively Y.

Milnor’s telescope construction can also be used to prove (see [11])
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(1.8) Proposition (Milnor). Let X, < X, <--- be a sequence of cofibrations

and X = | ) X;. Let k* be an additive cohomology theory. Then there is
n=0
an exact sequence

0— lim! k1 (X,) — k4(X) — lim k%(X,) - 0
where lim? denotes the p-th right derived of the limit.

One of the standard proofs uses a Puppe sequence argument to show
that there is an exact sequence

(1.9) 0 - lim! kK2-1(X,) — k%(X;) — lim k%(X,;) — 0

for any sequence of spaces X, = X; = X, <--- and that X; has the homo-
topy type of X under the special assumptions on this sequence stated
in the proposition. The sequence (1.9) generalizes to homotopy colimits
of arbitrary diagrams: Let D: ¥ — 2/ be a diagram and k* a generalized
cohomology theory. In §9 we show that there is a spectral sequence

E% *lim? k?(D) = k?*4(h-colim D).

If D is the diagram of Proposition (1.8), the spectral sequence collapses
and induces the short exact sequence (1.9). If D is the diagram

X 2A=X,

whose maps are cofibrations, then the spectral sequence collapses and
induces the Mayer-Vietoris sequence of (X, U, X;, X;, X,).

Given a %-diagram one often wants to substitute some of its spaces
by a homotopy equivalent one. One obtains an induced diagram which
is only a #-diagram up to compatible or coherent homotopies (2 precise
definition will be given later). This leads us to consider homotopy
%-diagrams which are ¥-diagrams up to coherent specified homotopies.
Such diagrams also occur “in nature”: Let QX be the space of based
loops on a based space X. Define 4,: (QX)"— QX by

Ao, ..., 0)O)=w;(nt—i+1), te[l nl ,-:l—] cl.

Then the diagram of spaces (2X)" and of maps 4, x---x 4, : (@X)"—
(QX)" with m=r,+---+7, and of their composites is such a diagram.

Led by Puppe’s considerations (see (1.3)) we define as maps between
homotopy %-diagrams a morphism between usual diagrams up to
coherent homotopy commutativity relations. Introducing a suitable
notion of homotopy between such maps we can define the category
HE of homotopy ¥-diagrams, provided ¥ satisfies some weak conditions.
There is a canonical functor J: o, — #'% mapping a spacc X to the
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constant homotopy %-diagram on X. Extending the definition of the
homotopy limit and colimit to homotopy #-diagrams we show that they
are functors from #€ to Jo4, and that h-lim is right adjoint and h-colim
left adjoint to J. This justifies the terminology homotopy limit and co-
limit, because recall that the functors lim and colim from the category
ME of ¢-diagrams to Tz are right respectively left adjoint to the can-
onical inclusion functor Jo4 — H#E.

The first part of this paper treats the category of homotopy %-dia-
grams, in Section 5-8 we introduce the homotopy limit and colimit
functor and compare them with the definition of Segal [ 14] who defined
the homotopy colimit for commutative diagrams. In the remaining part
we introduce the spectral sequences and give some minor applications.

As mentioned before, the notions introduced in this paper are not
completely new. Segal has defined homotopy colimits for commutative
diagrams. His idea was taken up by Bousfield and Kan who gave a first
detailed treatment of homotopy limits and colimits of commutative
diagrams in the category of simplicial sets. Our treatment has been
developed independently of theirs. Nevertheless there is some overlap
in the results. For example, our spectral sequences coincide with theirs
if we restrict to commutative diagrams and work semisimplicially. Our
treatment is more general because we allow diagrams which commute
only up to coherent homotopies so that we for example may change a
diagram by homotopies. The connection to the Bousfield-Kan theory is
expressed by [4; Chap. IX, § 8] and our results (4.8) and (6.5). They show
that our category #% is a model category of their category Ho(¥%).
Our method is an outgrowth of the author’s joint work with Boardman
[3]. The machine developed there enables us to give a more or less
satisfactory treatment of the category #% and to prove results like
Theorem (1.4). I also should mention a paper of Mather [10], in which
he defines homotopy limits and colimits for special types of homotopy
commutative diagrams, but important homotopy limits and colimits
such as the mapping torus are not contained in his concept, nor does he
introduce the category of such diagrams.

Some of the results on homotopy colimits have been sketched in [3].
I am indebted to T.tom Dieck for many helpful comments and sug-
gestions.

2. Homotopy Diagrams

Let Jo4° < Jofe™ be the full subcategory of well-pointed topological
spaces X, i.e. (X, *) is a NDR (=neighbourhood deformation retract),
where =€ X is the base point. Here we call a pair of spaces (X, A) a
NDR if A=X is a closed unbased cofibration. Let Jos; = Jopi denote
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the associated homotopy categories. There is an inclusion functor
(+): Teopp— Top”

sending X to X" =X u {x} with the additional point * as base point.
Since the theory of homotopy limits and colimits can best be developed
in the category 4% of compactly generated spaces [17], called k-spaces,
but one often wants results in full generality, we work in €% and oz
respectively their based versions €%°, €9*, Jos’, Jop* simultaneously.
Of course, if we deal with k-spaces, products, sums, and other limits and
colimits are formed in the category ¢9.

(2.1) Definition. A pretopological category is a small category € whose
morphism sets are topologized. If in addition composition is continuous,
% is called topological. Call € well-pointed if it is topological and each
pair (¢(4, 4), id,), Aeob®, is a NDR. A continuous functor of pre-
topological categories is a functor which is continuous as map of the
morphism spaces.

A small category in the usual sense is considered as topological cate-
gory with the discrete topology and hence called discrete (not to be
mixed up with the category theoretical notion of a discrete category).

Let 7 ¢ be the category of small topological categories and continuous
functors. We define a functor

T-T€—9¢%

as follows: Let %,(A, B)={(f,, fu_1s..-» fi)e(mor )| fyo - o fi: A—>B
is defined in €}, n>0, with the subspace topology from (mor %)", and

ut
P {id,} A=B

Define obT% =0b % and
TE(A,B)= U%HI(A, Byx I".
nz0
Composition in T¥ is given by
(f;lvtn’ “'JfO)O(gmaum’ "'7g0):(fn>tn> “'aanoagmaum7 ~"7g0)'

If F: € — 2 is a continuous functor, we define TF: T4 — T by

TF(f;n tna afO):(an: tn’ LR FfO)
There is an augmentation functor

e=¢(@)TE€—%
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given by e(f,,t,, ..., fo)=Jnofu_1 0 ofy, Which is continuous, and a
continuous, non-functorial standard inclusion

n=n(¥).€—TF

defined by 7 (f)=(f). Both are natural, i.e. if F: 4 — & is a continuous
functor, then
e(@D)o TF=F o ¢(%)

n(@)e F=TF on(%).

(2.2) Definition. Let ¥ be a pretopological category. A (based) 4-
diagram D consists of a function D,: ob % —0ob Z24* and a collection
of maps

D, 5. 4(4,B)xDyA—DyB

one for each pair of objects (4, B) of € such that
(i) Dy 4(idy; x)=x for xe Dy A,
(i) D4 p(f;*)=x, * denotes base points,
(ili) Dy (gof; x)=Dc p(g; Da,c(f; %)) for f: A— C,g: C—B.
Call a ¥-diagram D well-pointed if each D, A is well-pointed. An unbased

%-diagram D consists of a function D,: ob%—ob %24 and maps
D, p: (A, B) x Dy A— D, B satisfying (i) and (iii).

Remark. I we give $9*(X, Y) the k-function space topology respec-
tively Zes* (X, Y) the compact-open topology, then the function D,
together with the adjoints of the D, p defines a functor ¢ — ¥%* respec-
tively 4 — Jop* which is continuous on the morphism spaces. The
converse always holds in ¥%* because we have full adjointness there,
but not in general in Jo4* unless each space Dy A is locally compact or
% discrete. Hence in ¥4* or if ¢ is discrete our definition coincides with
the usual one. The same holds for the unbased version. If we consider
diagrams in €9 or ¥%*, we, of course, assume that the spaces (4, B)
are k-spaces.

(2.3) Definition. Let & be a topological category. A (based) homotopy
&-diagram, or h%-diagram for short, is a T#-diagram D such that

DA,B(f;x’tna---:fO;x)

Dy g(fartur sz, f15X) o=id
Dy g(fustusooos fivts tizitisfict> - Joi X)) fi=id, 0<i<n
DA,B(fn—lsfn_u ooy Joi X) fi=id

DA,B(ﬁa[ns "'ati+17f;'°.f;'—17ti—‘1= ""fO;x) ti:1

2 Math Z, Bd. 134
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with xeDg A4, (f,,t,, ..., fo)e T€(4, B). If D is well-pointed or unbased
and satisfies the equations, we call it a well-pointed respectively unbased
h%-diagram.

We can define a quotient pretopological category W% of T# such that
in €%4* a h¢-diagram is a W% -diagram (note that W% is topological if
we work in ¥%). Define ob W¢ =0ob & and W% (4, B)=T%(A, B)/ ~with
the relations

(ﬁzatna"-’t25f1) f0=ld
(f;la [n, ---)fO): (f;”tn’ .“’f;+1,ti+1 ti,fl:_l’ .“,fO) Jﬁl:.id’ 0<i<n
(fn»l’tn—l,--wfo) fo=1d

(f;latna"-’ti+1>fiofi717ti—ls"'afO) tizl'

Composition is induced by the composition in T%. It is easily checked
that a h%-diagram induces a W%-diagram and that the converse holds
in %, because identifications commute with products.

Example. Let 4 be the category given by the commutative diagram

D
Then a h¥-diagram is a homotopy commutative diagram of the same

type with specific homotopies H: fiofy~ f,, K: i ofy~iq, Lt ijof, =i,
M: i, f,~i, such that the loop

. iroH .
iyofyofor—= irof>

Lo(fo x id) M

iy o fo X o
can be filled in by a specific homotopy.

The example suggests that a h¥-diagram is a %-diagram up to
coherent homotopies. This is indeed true as the following result shows,
which we shall prove later.
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(2.5) Theorem. If ¥ is well-pointed, the augmentation ¢: T% — € induces
a functor £: W% — € which is a homotopy equivalence on each morphism
space.

Let #, be the category with objects 0,1,2,...,n and exactly one
morphism i< j:i—jif i<j
(2.6) Definition. Let ¥ be a topological category and D and E two
%-diagrams. A homomorphism [: D—E is a (% x &,)-diagram whose
restriction to € x0 is D and to ¥ x 1 is E, or equivalently, a collection
of based maps f,: Dy A— E, A, one for each Acob %, such that

(g(A,B)XDOA—‘m-)DOB

jvidxf/; st

G(A, B)x Eg A——> Eo B

commutes. The f, are called the underlying maps of the homomorphism.
A bomomorphism of unbased %-diagrams is defined similarly.

Again we find that this definition is equivalent to the usual one if
we work in ¥%* or €% or if € is discrete.

Homomorphisms as maps between h%-diagrams are not good enough
for our purposes. Instead we want the diagram of (2.6) commute up to
coherent homotopies only.

A continuous functor F: ¥ — & transforms a Z-diagram D into a
%-diagram F*(D) by

F*(D)o=Doo(Flob®),  F*(D)4 p=Dpa, rso(FI%(4, B)xid).

If % is topological, F is the augmentation ¢(%). T4 — %, and D a %-
diagram, then F*(D) is a h¥-diagram. Hence we may consider a %-
diagram as a h%-diagram. In “geometric” termes, a %-diagram is a
h%¥-diagram with trivial homotopies. Just so, if F: € — 2 is a continuous
functor and D a h@-diagram, then TF* (D) is a h%-diagram.

Every order-preserving maps «: {0,1,...,m} — {0, 1, ..., n} induces a
functor £, — %, and hence a functor

T(dxa): T(€xZ,)—> T%x Z,).

Let 6:: £, ,—~>%,and o': &, ,— &£, be the functors given by the
maps

{0,1,...,n——1}ajk~>{§+1 j:l’ ef0,1,...,n}

, i =i
{0,1,....,n+1}3j+> o1 > €{0,1,...,n}.

2%
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Define a simplicial class #%* by taking as n-simplexes all h(4¢ x Z,)-
diagrams and defining the face and degeneracy operations d. and s by
d (D)= T(Id x 8L y*(D) and s.(D)=T(Id x ¢')* (D). Similarly, let % and
%€’ be the simplicial classes whose n-simplexes are all unbased respec-
tively well-pointed h(¥ x %£,)-diagrams and whose face and degeneracy
operations are defined as for #%*. The corresponding versions in the
category of k-spaces are denoted by €%, ¥%4,, and F¥;.

For convenience, we write A’ for (4, ))eob(% x £,) and denote the
unique morphism (id,,0=1): A°— 4 by j,.

From now on we state our definitions for (based) h%-diagrams in
Jepe” only. The corresponding definitions for unbased or well-pointed
h%-diagrams are obtained by substituting “h¢-diagram™” by “unbased
h%-diagram” or “well-pointed h¥-diagram”.

(2.7) Definition. Given two h%-diagrams D and E. A homotopy homo-
morphism, a h-morphism for short, from D to E is a h(% x .%;)-diagram H
such that d° (H)=E and d'(H)=D. We call the collection of maps

fu: DgA— EyA: xHHAo,A{((jA); x)

the underlying maps of H and say {f,} carries a h-morphism. Two h-
morphisms H and X from D to E are called simplicially homotopic if there
is a 2-simplex o in #%* such that d°(a)=H, d*(2)=K, and d*(«)=5°(D).

Given h-morphisms H: D — E and K: E — F of h%-diagrams we run

into trouble when we try to define a composite h-morphism Ko H: D — F.
We can define a composite by explicit construction but, as usually when
homotopies are around, we cannot make composition associative. The
way around this difficulty is suggested by the following property of the
simplicial classes %~ and &%, which we shall prove later.
(2.8) Lemma. If ¥ is a well-pointed category, the simplicial classes ¥,
FEC, SE,, and FEC} satisfy the restricted Kan extension condition, i.e.
given (n—1)-simplexes oy, 0y, ..., 0, _1, %, ...,%,, where O<r<n, such
that &~ ta,=d' o; for 0Li< j<n, iZr+ j, then there exists an n-simplex ¢
such that d'c =uw;, i%r. In other words, the simplicial classes satisfy the
usual Kan extension condition, except that the omitted face in the data is
not allowed to be the first or the last.

(29) Definition. Let H: D° - D' and K: D' — D? be h-morphisms of
h%-diagrams. We call L: D° — D? a composite of H and K if there is a
2-simplex ¢ in ¥%* such that d°c=K,d* c=L, and d*c=H.

For a well-pointed % one deduces easily from (2.8) that composites of
h-morphisms of well-pointed or unbased h%-diagrams or of arbitrary
based or unbased h%-diagrams if we work with k-spaces always exist,
that the relation of simplicial homotopy is an equivalence relation on the
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sets of A-morphism from such a h#-diagram to another one, that the
homotopy class of a composite K<H depends only on the homotopy
classes of K and H, and that up to homotopy composition is associative
and has s°(D) as identity of D. For details see [3; p.104ff.]. Hence we
can form the categories #'%€°, #% of well-pointed respectively unbased
h®-diagrams and simplicial homotopy classes of the corresponding k-
morphisms, and if we work with k-spaces, the categories # €} and #'%,
of arbitrary based respectively unbased h%-diagrams and simplicial
homotopy classes of the corresponding h-morphisms.

When we consider h-morphisms from a h%-diagram D to a %-
diagram E, which we interprete as h%-diagram, the homotopies inside E
are trivial and hence could be deleted. The same holds for z-morphisms
from a ¥-diagram to a h%-diagram. To get rid of unnecessary structure,
we define %, <€ x %, to be the full subcategories of all objects 4°
respectively A", Aeob %, and modify the definition of a h-morphism as
follows.

(2.10) Definition. Call a h(% x &, )-diagram H source reduced or
hy (€ x &, )-diagram if

Hy g(fostoy s Jos X)=H, g(Jfos tos - s Ligas frarofio0fo5 X)
if f;e& Call it target reduced or h, (€ x &£, )-diagram if

HA,B()?JJIIH "':fO;x)zHA,B(fF"O“'Ofl"Oﬁmlzti—17"'7t1af0;x)

if fie.

Let D, I be h¥¢-diagrams, and E a %-diagram. A source reduced h-
morphism from E to D, a &-morphism for short, is a h-morphism
H: ¢(€)*(E)— D such that H is source reduced. Two &-morphisms
H,K: E— D are called simplicially homotopic if there is a hy (€ x %, )-
diagram ¢ such that d°(0)=s°(D), d'(6)=K, d*(¢)=H. A &-morphism
L: E— D is called a composite of the &-morphism H: E— D' and the
h-morphism K: D'— D if there is a hy (€ x &, )-diagram t with d°(r) =K,
d'(tr)=L, and d*(t)=H.

Analogously, a target reduced h-morphism or  -morphism from D
to E is a h-morphism H: D - ¢(%)*(E) such that H is target reduced.
Two J -morphisms H, K: D — E are called simplicially homotopic if there
is a h, (¢ x %,)-diagram o such that d°(6)=H, d'(¢)=K, and d*(o)=
s®(D). A 7 -morphism L: D — E is called a composite of the h-morphism
H: D— D and the 9 -morphism K: IV — E if there is a h,(¢ x %)-
diagram t with d°(1)=K, d'(t)=L, and d*(t)=H.

There is a modified version of (2.8) which implies that simplicial homo-
topy is an equivalence relation on the sets of #-morphisms and 7 -
morphisms between appropriate diagrams, that a composite of a -
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morphism with a A-morphism and of a k-morphism with a 7 -morphism
of such diagrams always exists and that its homotopy class depends only
on the homotopy class of the h-morphism, & -morphism, or  -morphism.

(2.11) Lemma. Let € be a well-pointed category. Given well-pointed
[or unbased, or if we work with k-spaces arbitrary based or unbased]
hy(€ % L, _))-diagrams o, ..., 0 _(, 0,1, .-., 0, where 1< r<n, and a well-
pointed [respectively unbased, arbitrary based or unbased] h(¢ x £,_,)-
diagram oy such that &'~ 'o;=d'«; for 0<i<j<n, i%r=j, then there
exists such a hoo(€ x &L )-diagram o with d =0, i+7r.

Analogously, given such hg (€ x %, _;)-diagrams og, o, ..., 0, _,
Oyigsr-»rOy_y Where O0<r=<n—1, and such a h(¥ xZ,_,)-diagram a,
with &~ 'a;=d'a; for 0Si<j<n, i%r+j, then there exists such a
h, (€ x &,)-diagram o withd' o=, i%.

The proofs of (2.8) and (2.11) for k-spaces can be found in [3; chap. IV
or VII]. For the topological cases the tools for the proofs are developed
in the next section.

3. Extension and Lifting Results

From now on we only consider the based case. The necessary modifi-
cations of the proofs for the unbased case are mentioned at the end of
each section.

In proving (2.8), for example, we are given a ¥ -diagram E for a sub-
category ¥ of T¥, which we have to extend to a T¥-diagram. Since
T€(A, B)= ]_[ w1(A, ByxI", we do this inductively by constructing

nzo
the required map for each space R"(A4, B)=%,,1(4, B)xI". Let Q¥ < T%¥
be the subcategory of all morphisms (f,, ., ..., fo) with some ;=0 or 1
or some f; an identity, let Q"(A4, B)=R"(A, B)nQ%(4, B), and let
V™"(A, B)=R"(A, B)n ¥ (A, B). Suppose we have constructed the maps
D% g R*(4,ByxDyA— Dy B of a h¢-diagram D for k<n. Then D7  is
determined by the D% g, k< n, and the given 7 -diagram E on

(Q"(4, B)U V*(4, B)) x Dy AU R" (4, B)x {x},

because D7 p has to satisfy the conditions (2.2) and (2.3). If V"(4, B) is
closed in R”(4, B) and if ¥ is well-pointed, the function given by E,
and the D g on this subspace is continuous. For the inductive step it
remains to extend this map to R"(A4, B) x D, A. Conditions (2.2) and (2.3)
are then automatically satisfied because no morphism in R"(4, B)—
Q"(A4, B) can be decomposed.

The situation is somewhat different for hg(% x %, )-diagrams,
F =¢%,7, because the conditions (2.10) kill the freeness of T(% x &,).
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To give an example, let (f,,¢,, ..., fo; x) be an element of
T@ x % )(A% BYyx Dy A° with fy: A°— CL.

Suppose we inductively have defined the maps D p;: R¥(4), B) x
Dy A'— Dy B of a hy (% x &£, )-diagram D for k<n. Unless one of the f;
is an identity, or some t;=0, 1, or x==, the map Do p is not given on
our element. Since f is of the form fo=(fs,/) with fge€ and j=(0<1):
0-—1in &,, it can be decomposed f, =(id¢, j)o(f5,id,), and condition
(2.10) imposes the following condition on D" to be constructed

DZO,Bl(f;u ly, -"9f0; x):Dgo,Bl(f;latm ceey tl?(idcﬁj); Dgo, CO[(f(;aldO)7 X:])

The example also indicates a way around this difficulty. A morphism
(f, t,, s fo) In (Ex2),.1(A, B)xI"=R"(A,B) is called #-reduced,
F=57,1

for =" fy isof the form (id¢, (0<i)) or A¢ob % orr=0
for # =7 f, is of the form (id¢, (i<n)) or B¢ob 7, or r=0.

If # =g, all elements of R"(A, B) are called #-reduced. If P;(A4, B)c
R"(A, B) is the subspace of #-reduced elements, let

05 (A4, B)=F;(4, B)n Q(¢ x £,)(A4, B)

and let V5 (A, B)=F; (A4, B)n ¥ (A, B) for a subcategory ¥~ of T%. Now
suppose we are given a ¥-diagram E satisfying (2.3) and (2.10) for #
and, as a partial data of a h; (% x £, )-diagram D, the maps D, p for
A,BeF and DY ;=D, 3| R*(4, B)x Dy A for k<r, compatible with the
given ¥-diagram. To construct the maps DY p: R'(4,B)x Dy A— DyB
we need maps h, p: P; (A, B)x DyA— Dy B which are compatible with
E,p and the D% p on (Q%(4,B)UVi(4,B)xDyA and which map
Pi(A,Byx {} to = If #=, then h, y is the required extension D, 5.
So let # =4. It remains to define D, ; on the subspace of all elements
(frslyy---5 fo; %) such that fi=(f/,j) with j=(0<p) for some i and f; *id
if i=0. Put

DZ{,B(ﬁa [ra f07 x)

z{ Bt o tign, (id); DY c((ffsido)o (fimg oo fo; X)) i%0
A,B(fr: rv"'ath(id?j); D?l,C((f(;ﬂld)ax)) i=0.

This is a continuous extension of h, 5 to the whole of R"(A4, B)x Dy 4,
it is compatible with the D¥ 5, k<r, and satisfies the conditions (2.2),
(2.3), and (2.10), but it is compatible with the #-diagram E only under
extra conditions on ¥ given in the next definition. For # =7 the
reasoning is analogous.
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(3.1) Definition. Let =%, 7, or &. A subcategory ¥ < T(¥ x .%,)
is called #-admissible if it satisfies the following conditions

(a) an indecomposable morphism in ¥  is indecomposable in
T(€xZ,),

(b) each VE(A, B) is a closed subspace of Pk (4, B),

(c) each pair (P5(A, B), VE(A, Byu Q% (4, B)) is a NDR.

d) ¥ F=L{F=7]and (fi,t, ..., fo)e?¥ with fo=(15,])

j=(0=p) and f(;:f:ld[fk=(f;c/d)’]=(l7§”) andfklﬂr:ld]’

then (fy, &, ... ty, (id, ))e 7, [((d. ), &, fi—1, .-, fo)e¥ ] and ¥~ contains
the full subcategory of T(% x %,) of all objects in & [in 7 ].

(3.2) Definition. A sequence of closed subspaces g=X_;cXycX; <
X,c--- of a space X is called a filtration if X =colim X,. A filtered
category is a topological category € with a filtration 4"(4, B) of each
space € (A, B).

(3.3) Definition. Call a triple (%, %, F) consisting of a continuous functor
F: #— % of filtered categories acceptable if

(a) ob Z=0b¥ and F preserves objects and the filtration,

(b) #(A, B) x X =colim(%"(4, B) x X) for any space X,

(c) €"(A,B) is obtained from ¥”"~'(4,B) by attaching %"(A4, B)
relative to a subspace D#"(A, B) such that (%"(A, B), D#"(A,B)) is a
NDR, and the induced map %"(4, B)— %"(A, B) is F.

(3.4) Definition. Let & be a pretopological category. A family I,
“tel, of Z-diagrams is called a homotopy of P-diagrams if D is inde-
pendent of ¢ and the maps

Ix%(A,Byx D3 A— D}B
(t, f, x)— D p(f; x) are continyous.

(3.5) Proposition. Let F=% 7, or &. Let i: V"< T(¥x%¥,) be a F-
admissible subcategory and € be well-pointed. Suppose given a well-
pointed h; (€ x £,)-diagram E and a homotopy of well-pointed ¥-diagrams
D' satisfying conditions (2.3) and (2.10) for &, when defined, such that
D°=i*(E). Then there is a homotopy E' of well-pointed hu (6 x &L,)-
diagrams with E°=E and D'=i*(E") for all tel.

Proof. If o/ is the full subcategory of T(% x &,) of all objects in %, then
</ is either in ¥~ in which case E', ; for A, Beob.eZ is given by D, p, or
o/ "V 1s empty or contains only identities in which case we put Ey ;=
ES p for A,Beobs/ and tel. If not both 4 and B are in ob &, we in-
ductively assume that we have constructed maps f¥ z: I x R*(4, Byx E, A
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— EyB for k<r such that f, gltx R*(4, B)x E;A is part of the data
of the required h; (% x %,)-diagram E', ;. By the considerations above
we need a map

hy g IxPL(A,Byx Eg A— Eq B

which is already given on the subspace
Z=Ix(Q%(P,BYU VL (A, B)x Eg AUT X Bo(A4, B) x {x} U
OxPL{(A,B)xEyA
by the previously defined f% 5, the condition (2.21i), and the requirement
ES y=E . Since (Q%(A4,B)UVL(A, B)XxE,AUPL(A,Byx{x} is a

NDR of P} (A4, B) x Ey A by the product theorem for NDRs [15; Thm. 6],
Z is a retract of I x Py (A, B) x E, A so that the required extension exists.

The following result substitutes [2; Thm. 3.17] and translates the
methods of [3; 1V § 1, 2, 3] to our situation.

(3.6) Proposition. Let =%, 7, or &, and let W <=T(¥ x Z,) be the full
subcategory of objects in F Gwen a dzagram

A
il
TExY%) e B e=e¢(ExZ)

d lG

(gxg—_i——‘)

4

]

N

of topological categories and continuous functors and a well-pointed
a-diagram D such that

(i) (o B, F) is acceptable, ¥~ a F~admissible subcategory containing
W, and € well-pointed,

(i) if f,gesd(A4,B) are such that F(f)=F(g), then D, y(f;x)=
D, 5(g; x) for xeDy A,

(ii1) H*{(D) satisfies the conditions (2.3} and (2.10) for & when defined,

(iv) ob#=0bé& and G preserves objects. If B <F# and &' <& are
the full subcategories of objects in Kog(#'), then G|%': B — & is an
isomorphism with inverse G and G is a homotopy equivalence on each
morphism space of %,

(V) Fo(H|#)=GoKogo(i|¥),

(vi) L, is a homotopy through functors from Kogoi to GoFoH and
LiW=GoFo(H|#) for all tel.

Then there exists ahz (€ x £,)-diagram E with the following properties:

(a) E extends H* (D)
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(b) If r: ob T(¥€ x Z,)— ob of is given by K o¢, then Eq=Dgor.

(¢) Let Z(A,B)=s/(rA,rByxEy A/~ with (f;x)~(g;x) if F(f)=
F(g) and let Z' < Z be the subspace of elements of the form (f;x), let
jaB Z(A,B)>AB(r A,y ByxEgA and d4 g: Z(A, B)— EoB be the maps
induced by F xidy, , respectively D, g, let uy p=(K o ¢| Pf (A, B)) x idp,, 4
and v, 5=(G|B(r A,rB)xidp,, 4. Then E} 3| P5(4, B)xEy A factors as

P;(A, B) XEOA—/-;‘—E"Z(A, B)TAB—)EOB
such that f} 5(P5 (A, Byx x)= Z', and there are homotopies
'y g I x Po(A, B)x EqA— &(r A,rB)x Eq A

from uly g 10 vy pojapofip extending (LIIxV5(A,B))xidg,,, such
that my g(I x P5(A, Byx )= & (r A,r B) x .

Moreover, given two hz (% x &,)-diagrams E° and E' satisfying (a),
(b), (c), then there is a homotopy E' of hz (% x £,)-diagrams from E° to
E! such that each E' satisfies (a), (b), (c).

For the proof we need the following result (see [3; Appendix 3.5]).

(3.7) Given a homotopy equivalence p: Y—Z, a NDR (X, A), maps
fio A—>Y and g: X—Z and a homotopy H,: pofy~g|A. Then there
exist extensions f: X > Y of fyand H: pof~g of H,.

Proof of (3.6). We construct Ej p again by induction on r. For
A,Beob# we put E, y=H*(D), 5 and m) z=(LII x V5(P,B)) xidg, 4.
If not both 4 and B are in %, we inductively suppose we have constructed
E¥ 5 and the homotopies m¥ 5 for k<r.

Induction proceeds if we construct a map fj p: Br(4,B)yxE;4—
Z(A, B) extending the map given by H*(D) and the K4  for k<r on
(Q5(4, B)U V5 (4, B)) X EoA such that f 5(Ph(4,B)x*)<Z, and a
homotopy m', p: Wy p~v4 pojsp°fs s extending the homotopy given
by L and the m¥ 5, k<r, on Ix(Q%(A4, B)u Vi(A4, B))x EoA and such
that m!y (I x Py(A, Byx )= & (r A, 7 B) x +. We will prove in an appendix
that j, 50 Z(A,B)>#(rA,rB)xEyA and its restriction j, g Z'—
A (rA,rB)x * are homotopy equivalences. We now apply (3.7) twice:
To the diagram

7 ABYAB L £ A v B) X *

(T B)I '[(MVA, 8’

(Q5 (A, B)U VL (4, B)) x * < P%(A, B) x »

where ’ denotes restrictions. Recall that f] , is already given on
(Q%(A4, B)u Vi (A, B)) x E; A. The restriction of m’ 5, which is already
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defined on I x(Q% (4, Byu Vi (4, B)) x Ey 4, makes this diagram com-
mute up to homotopy. Hence we can extend (f; p) to Bz(4, B} x* and
(my, g)’ to a homotopy

Mg IXPr(A,B)xx—>&(rA,rB)X =: vy gojy go(fi g~y 5)-

Now apply (3.7) to o4 BisB e Ao rB)x Eo A
,Boia, ; v .

(4, 8) T ua B ]

(Q5 (4, ByL Vi {A, B) x Eg 4 U Pp (A, B) < x < Py (4, B) x Eo 4

Since (m’; p) makes this diagram commute up to homotopy, the required
extensions ff g and mj p of (f] 5 and (m} py exist. The map EJ ;:
R"(A, Byx Ey A— E,Bisthen induced by the maps d 4 zo f] 5.

The proof of the second part is similar. Let E° and E' be two
hg (€ x &Z,)-diagrams satisfying (a), (b), (c) with the maps f{z and
g% p and the homotopies m), p and 1y . For A, Beob #” define 'E =
H*(D), - lf not both 4 and B are in #, we inductively suppose we have
constructed homotopies

Ff o I PE(A, Byx Eq A Z(A, B)
from f§ 5 to g4 5, k<r, and homotopies of homotopies
MY g IXIxPE(A,B)xEyA— E(rA,rB)x Ex A

from m¥_g to n* g, k<r, satisfying (c) for each tel. The map Fj y and the
homotopy M’ ; to be constructed are already given on

Ix(Q% (A, B)U VE(A, B)) X Eg AT x Py (A, B)x Ey A
respectively on
IXIx(Q% (4, BYU VE(A, B)) x Eq AUl x I x PL(A, B)x Eo A

and have to satisfy extra conditions with respect to the base point of Ey A.
We now proceed as in the proof of the first part.

Proof of (2.8) and (2.11). We prove the results for 7 the other proofs
are similar. By assumption we are given h, (¥ %Y, _,)-diagrams
Do, Dy, B 1,8, 1, D, 1, 0<rEn—1 and a h(¥ x &L,_,)-diagram
D, such that &/~ Y(D)}=d"(D}) for 0Si<j<n. Let ¥ < T(¥ x Z,) be the
subcategory generated by the d'T(#x %), 0<i<n, i%r, where
A TE X L)=T{dyx 8){T(% x &, _,)). Then the D; induce a ¥ diagram
D which satisfies the conditions (2.3) and (2.10) for 7. Let & be the
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quotient category of ¥~ obtained by factoring out the relations (2.3) and
(2.10) for 7 forgetting the space coordinate. In the proof of [ 3; Thm. 4.9]
one finds that the functor # — € x &, induced by the augmentation is
a homotopy equivalence on each morphism space. Now apply (3.6)
with # =7, E=¢x ¥, H=id, K =id, G induced by ¢, and L, the con-
stant homotopy. We obtain a h, (% x %, )-diagram E extending the
¥-diagram D. Hence d'E=d' D=D, for i .

We close this section with a proof of (2.5). It contains an argument
which applied to ¥~ in the previous proof shows that (7] %, F) is accept-
able, where F: ¥ — 4 is the projection functor, filling a gap we left in
the proof of (2.8) and (2.11). Filter W%(A, B) by the subspaces F, of
morphisms represented by a morphism in some R¥(4, B), k<p. Let
N?(A, B)c RP(4, B) be the subspace of all elements (f,,¢,, ..., f;) such
that some ¢;=1 or some f; is an identity. Then F, is obtained from F,_,
by attaching R?(A4, B) relative to N?(A4, B). Since % is well-pointed,
(RP(A, B), N?(4, B)) and hence (F,, F,_,) are NDRs. Hence it suffices
to show that N?(A4, B) is a SDR (strong deformation retract) of R?(A4, B)
because £| K, is a homeomorphism. But this follows from [15; Thm. 6].

Evidently, the results of this section also hold for unbased diagrams.
In fact, the proofs are easier in this case because the extra considerations
for base points are redundant.

4. Properties of h-Morphisms

Throughout this section let 4 be well-pointed. We list a few properties
of the category #%¢° of well-pointed h%¥-diagrams. The proofs can be
obtained from the corresponding results of [3; Chap. IV, V] by modi-
fying their proofs in the same manner as we modified the proof of [3;
Thm. 4.9] to obtain our statements (2.8) and (2.11) and by substituting
[3; Prop. 3.14] by (3.5) where applied.

(4.1) Proposition. Let A, B be well-pointed h¥-diagrams and E a well-
pointed 6-diagram. Two h-morphisms H,K: A — B [S-morphisms H, K:
E — A; -morphisms H, K: B— E] are simplicially homotopic iff there
is a homotopy L through h-morphisms A— B [Fmorphisms E— A;
T-morphisms B— E] from H to K.

(4.2) Proposition. Let H: D— E be a h-morphism of well-pointed h¥%-
diagrams with underlying maps {f,: Dy A— E,A}. Given a collection
of maps {g4: DoA—>EyA|Acob¥} such that fy~g,, there exists a
h-morphism K: D — E homotopic to H having {g,} as underlying maps.

This result can be generalized; the proof is the same as for (4.2).

(4.3) Proposition. Given a well-pointed h%-diagram D and maps EY g:
R*(A,B)xDyA— DyB for A,Bcob¥ and n=<k, such that the E g
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satisfy the conditions (2.2) and (2.3) if defined and there are homotopies
4,8t R"(A, By x Dy A— DB for A, Beob¥ andn<k fromD 4 zg| R"(A4, B)
x Dy A to E} p such that each Fj (1) satisfies (2.2) and (2.3). Then the
E’,  can be extended to a well-pointed h%-diagram E which is homotopic
to D in the sense of (3.4).

(4.4) Proposition. Let H: D° — D' and K: D'— D? be h-morphisms of
well-pointed h€-diagrams with underlying maps { f,} and {g,}. Then there
is a composite of H and K having {g,°f4} as underlying maps.

(4.5) Proposition. Let & be a subcategery of € such that ob Z=0b ¥
and each (¢ (A, B), 2(A, B)) isaNDR. Leti: T9<T€ and j: T(9 x ¥})<
T(% x %) be the inclusion functors. Suppose we are given a well-pointed
h&-diagram D, a well-pointed h%-diagram E, and a h-morphism
H: D—i*(E) of h@-diagrams whose underlying maps are homotopy
equivalences. Then we can extend D to a well-pointed h%-diagram D' and
H to a h-morphism H' : D'— E of h®¢-diagrams, i.e. D =i*(D') and H =j*(H').
(4.6) Proposition. Let 2 and € be as in (4.5). Suppose we are given a
h-morphism H: D — E of well-pointed h€-diagrams whose underlying maps
are homotopy equivalences and a h-morphism K': i*(E)— i*(D) of h&-
diagrams such that K' is homotopy inverse to j*(H), i.e. j*(H) represents
an isomorphism in H#9° whose inverse is represented by K'. Then there
exists an extension K: E— D of K’ such that K is a homotopy inverse of
H. In particular, any h-morphism of well-pointed h¥-diagrams whose
underlying maps are homotopy equivalences is a homotopy equivalence,
i.e. it represents an isomorphism in#A' €.

(4.7 Remark. The results (4.1), ..., (4.6) also hold in the unbased case.
If we work with k-spaces, the assumption that the diagrams are well-
pointed can be dropped in (4.1), ..., (4.4). For a proof see [3; chap. IV, V].

We now want to give an alternative description of #€°, H'E, #E€F,
and #°%,, which to some extend links our theory with the approaches
of Bousfield-Kan [4], Quillen, and others. Let .#% be the category of
based #-diagrams and .#%° the full subcategory of well-pointed %-
diagrams. If we work with k-spaces, the corresponding categories are
distinguished by a subscript k, for the unbased versions we drop the
superscript. Let 2 be the class of all homomorphisms whose underlying
maps are homotopy equivalences, and denote the associated categories
of fractions (see [7]) by A% [>~ 1] etc.

{4.8) Proposition. Let € be a well-pointed category such that each €(A, B)
is locally compact unless we work with k-spaces. (X locally compact means
that each xe X has a compact, not necessarily Hausdorff neighbourhood
base.) Then the categories H#E°, #'C, HC;, H%C, are equivalent to
ME (21, ME[Z1], ME 2], ME,[2~1] respectively.
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For k-spaces the proof is in [3; Prop. 4.54]. In the topological case
it is a modification of [3; Prop. 4.54] of the same kind as the proof of
(5.4) below is a modification of [3; Thm. 4.49].

5. Homotopy Colimits

From now on we always assume that % is a topological category. If
H:D— D' isa h-morphism of h¢-diagrams and if f: C—Dand g: D'—> E
are homomorphisms of h%-diagrams, there is a canonical way for defining
a composite goHof, so that such a composite exists even if € or the
diagrams are not well-pointed.

(5.1) Definition. The h-morphism L: C — E given by
Lo g1 =8g° H g0, gro(idre (a0, g1y X f4): T%(A°, B)x CoA— E, B

is called the canonical composite goHof of f, H, and g. (The other data
of L is determined by C and E.)

(5.2) Definition. (a) If /: C— D is a homomorphism of h%-diagrams,
H:D— D a7 -morphism and g: D' — E a homomorphism of ¢¥-diagrams,
then the formula of (5.1) defines the canonical composite F-morphism
goHof.

{b) If /: C— D is a homomorphism of ¥-diagrams, H: D— D" a
-morphism, and g: IY — E a homomorphism of h%-diagrams, then the
formula of (5.1) defines the canonical composite & -morphism go H of.

Define a continuous functor p: T(¥¢ x %, )— T% x %, by taking the
identity on T(# x 0) and T(% x 1) and mapping fe T(% x %, )(A°, B) to
(idg, j)os°(f), where j=(0< 1)e %, and the image of s°: T(¥ x &%) > T¥
is identified with T¢ x 0 in T% x %,. This functor allows us to consider
a homomorphism of h%-diagrams as a h-motrphism.

Suppose we are given h%-diagrams D, D', E, a h-morphism H: D — D’
and a homomorphism g: D'— E. We construct a h(% x .%, )-diagram F

by FId® T x £,)=p*(g), FI&> T@x %,)=H,
and Fio, 2= g5 Hyo o (T(Id x 67) x id))
with

TAd x ") xid: T(€ x % )(A°, B*)x Dy A— T(% x £;)(A°, BYyx D, A.
Then d*(F) is the canonical composite go H, which hence is a composite
in the sense of (2.9) of the h-morphism H and the canonical A--morphism
0*(g) induced by g. Similarly we can show in the situation of (5.1) and
(5.2a) that the canonical composite Hof is a composite Hop*(f) in the
sense of (2.9) respectively (2.10), and in the situation (5.2b) that the
canonical composite go H is a composite -morphism p*(g)oH in the
sense of (2.10).
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(5.3) Definition. We call two homomorphisms f, g: E - E’ of ¥-diagrams
homotopic if there are homotopies F,(): f,~g, from the underlying
maps { f4} of fto the underlying maps {g,} of g such that each collection
{F,(t): E,A— EyAlAeob €} is the collection of underlying maps of a
homomorphism F(?).

Evidently, this definition is equivalent to saying that there is a
homotopy of (¢ x % )-diagrams from f to g which is constant on € x0
and € x 1.

(5.4) Proposition. Let € be a topological category such that each (A, B)
is locally compact unless we work in the category €% of k-spaces and let D
be a h¥-diagram. Then there is a €-diagram MD and a F -morphism
up: D — MD such that

(a) MD is well-pointed if € and D are well-pointed,

(b) the underlying maps m,: Dy A— MDy A, Acob ¥, are inclusions as
SDRs,

(c) a 7 -morphism H: D— E is the canonical composite of py, and a
unique homomorphism h: MD — E of €-diagrams,

(d) if € is well-pointed and if H, H': D — E are simplicially homotopic
T -morphisms, then the induced homomorphisms, h, h': MD — E are homo-
topic provided D and E are well-pointed or we work with k-spaces.

Proof. Define MD,: ob € — Jo” by
MDoA=[] [1%.+1(B, A)xI"xDy B/~

n=0 Be¥
with the relations

(5.5) (frstuy -5 ta, f15 %) o =1d
(Frstns s fivts tivi s fim1r - Jos X)) fi=1d,0<i<n
(Jortus s S0 X) = Jas us s s fio i to tims - fo3 X)) (=1
(fastus s fis Pp c(fiis ti g5 os fo3 X)) £,=0
(id,; %) X=#%
where f;_;o---ofy: B— C. The base point is (id 4; *). By standard methods

one finds that M Dy A is well-pointed if € and every D, A is well-pointed.
If we work with k-spaces or if €(4, 4) is locally compact, the map

@A, A)x (][ 11 %,+1(B, A)xI"x Dy B)—>%(A, A') x MD, A

n=0 Be¥

is an identification so that the maps €(4, A)x MD, A— MD, A’ given by
[f; (f;t’ tn’ "'5f0; X)]H [fof;n tna "'9f0; x]

are continuous and define the ¥-diagram MD.
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Let(ﬁt:rn’ tn’f;1~1,rn——ls tn~1’ '-'7f17r15 t1>f0§ x)WIth (fmfn—la ---’fo)e
%,.,(A, B), t;el and r,€{0, 1} denote the element (f,, t,., fi_1,-.-, fo; X)€
T(% x %,)(A°, B*) x Dy 4, where f{ =(f;, (<1, ))eC X &1, 16=0,, . =1.
Then the J-map pp: D — MD is given by D and MD on & T(% x %),
i=0, 1 and the remaining data

(Up) o, B T(% x %)(A% B')x Dy A— MDy B
is defined by
Fos s bs S 15 Ty 15 Bnts oo s fo3 XV (oo fis tis it vvs J1o B1s Joi X)
if =0 and r,,, =1 (again ¥,=0, r, ., =1). The underlying maps are
my: Dy A— MDyA: xi—(id,; x)
and the strong deformation F: I x MDy A~ MDyA of MDy A into Dy A

is given by
Flu,(fity, -5 fos X)=0d g, u, fy. t,, ..., fo3; X).
Given a J -morphism H: D — E, then
hy: MDyA—Ey A:
(fn’tn’--"fO;X)HHBO,Al(f;nO’tnafn—l’oatn—la“-afh()’tlvfo;x)

where B=source f,, defines the unique homomorphism of ¥-diagrams
such that H is the canonical composite hopy. If H,H': D—E are
simplicially homotopic 7 -morphisms, then there is a homotopy H'
through 7 -maps D— E from H to H' by (4.1), and H' induces a homotopy
i of the induced homomorphisms MD — E.

Let A €* be the category of #-diagrams and homotopy classes of
homomorphisms and 4 '€° the full subcategory of well-pointed #-dia-
grams. A subscript k indicates that we work with k-spaces. Proposi-
tion (5.4) enables us to define a functor M: #%* — A €°. We send a
h%-diagram D to MD and a representing A-morphism H: D— D' to the
homotopy class of the homomorphism MD— MD' induced by some
composite 7 -morphism o H. Since the homotopy class of upoH is
independent of the choice of the representative H if € is well-pointed,
the homotopy class of M (H) is independent of the choice of the representa-
tive. So if % is well-pointed and each % (4, B) locally compact, there is a

functor M: #%4°— VG,

Under the same assumptions there is also a functor

J. NG —>HE°
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sending a ¥-diagram E to ¢(%)* (E) and a representing homomorphism
h: E— E' to the simplicial homotopy class of (% x %, )* (h). We can
regard J' as a sort of inclusion functor. Similarly, if we work with k-spaces
and if ¢ is a well-pointed category, there are functors

M: #G—> V€ and J: NEC— HEE

(5.6) Theorem. (a) If ¥ is a well-pointed category such that each €(A, B)
is locally compact, the functors

M: #C > NG T: NG~ HE”
D > MD E &e@)*E

exist. M is fully faithful and left adjoint to J'.

(b) If we work with k-spaces and € is well-pointed, the analogous
functors M: HECF— NCF and J': NCF - HE} exist. M is left adjoint
to J' and its restriction to #'6; is fully faithful.

Let D, D’ be h¢-diagrams and E, E' be ¢-diagrams which we assume
to be well-pointed unless we work with k-spaces. Denote the sets of
simplcial homotopy classes of #-morphisms E — D and .7 -morphisms
D — E by #(E, D) respectively 7 (D, E). Since any h, (% x &, )-diagram
and any hy (% x £, )-diagram is a h(% x &,)-diagram, there are maps

py: P(E,D)—> H#% (c*E,D) ps: T(D,E)— #%°(D,e*E),

which are by (2.8) and (2.11) natural with respect to homomorphisms
E — E' and to h-morphisms D — D'. For k-spaces we have to substitute
HEC by HEC].

(5.7) Lemma. If € is well-pointed, the maps py, and ps are natural bi-
Jjections.

Proof. Let H, K: D — E be two 7 -morphisms such that p-(H) = p,(K).
If we consider H and K as h-morphisms, we denote them by H' and K'.
Since the identity homomorphism E— E can be considered as Z-mor-
phism ¢* (E)— E, there is a hy (¢ x %,)-diagram t such that d°(r)=id,,
d*(t)=H, and d*(r)=H’, and a similar one for K and K. Now apply
(2.11) to the situation

3 Math. Z,Bd. 134
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By assumption, the h-morphisms H' and K' are simplicially homotopic
so that the face opposite to ¢*(E) is the only one missing. We fill in and
obtain a simplicial homotopy of 7 -morphisms from H to K.

If H': D— g*(E) is a h-morphism, we apply (2.11) to the situation

We fill in and obtain a J -morphism H: D — E lifting H' up to simplicial
homotopy. This follows from the fact that two h-morphisms F, G: D— D’
are simplicially homotopic iff there is a h(% x %, )-diagram o with
d®(0)=s°(D')=idy, d*(6)=G, and d?(s) = F, which can easily be deduced
from (2.8).

The proof that p, is bijective is analogous.

Proof of (5.6). By (5.4) and (5.7) we have natural bijections
HE°(D,J Ey=7 (D,EyxAV¥€°(MD,E).

The front adjunction D— J MD is griven by up, which is an i1somorphism
in #E€* by (4.6). Hence M is fully faithful. The proof is the same for
k-spaces.

Let colimy,: A 6* — Jo} be the functor mapping each #-diagram to
its colimit in the usual based topological sense and a representing
homomorphism of a morphism E — E' in A/€* to the based homotopy
class of the induced map colim E— colim E’. This homotopy class is
independent of the choice of the representing homomorphism. Let

J' Tops— NEC*
be the functor mapping each space X to the constant ¢-diagram on X.
It is well-known that the homomorphisms from a #-diagram E to the
constant diagram on X are in one-to-one correspondence with con-
tinuous based maps colim E— X. This bijection is compatible with
taking homotopy classes. Hence colimy,: A ¢* — Jos} is left adjoint to
the inclusion functor J”.

Similarly the usual limit functor lim: .#%* — Jz4* induces a functor
lim, : A"€*— Josf which is right adjoint to J”. The same holds in both
cases for k-spaces.

Although colim,, (A4 ) does not lie in Joz;, we shall later on see
that colim, (M (#°% 7)) lies in Zosr;. Hence we can define

(5.8) Definition. The homotopy colimit functor h-colim: HE€* — Jop;
[#E€F — €%5F] is defined to be the composite h-colim = colimy o M.
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Let J=JoJ": Jop— HC° [€9] — #HE€}]. Then J sends X to the
constant diagram on X, L.e. (JX)oA=X for all Acob® and (JX), z:
T%(A, B) x X — X is the projection. Putting (5.6 b) and the considerations
about colim,, together we obtain

(5.9) Proposition. If we work with k-spaces and € is a well-pointed cate-
gory, then h-colim: #CF — €%} exists and is left adjoint to J: €95 — HC}.

By (5.6a) we have the same result for #%” — Jop,; provided each
(A, B) is locally compact. We shall later on see that the condition of
local compactness is unnecessary.

The Unbased Case. Let € be a well-pointed category. Given an un-
based h®-diagram D, we make it into a based one D* by substituting
each Dy A by (D, A)*. Then the base point of each space of MD* is an
extra component. By deleting it, we obtain a functor #€ - A€ or
HC;— N€,. Following it by the functor colim,: A'¥— Jop, or
NE,— €%, we obtain the unbased homotopy colimit functor. This functor
is left adjoint to the inclusion functor Zo4,—» H#€ respectively €9 ,— #E,
by the unbased versions of (5.12) below or (5.9).

(5.10) From (5.5) and the construction of the colimit functor one can
deduce a direct description of h-colim D of a based h%-diagram D:

hcolim D=( ] []%.(4, ByxI"x Do A)u {x}/~

A4, Beg nz0
with the relations

(tas s o5 25 25 X) Si=id

(tps frs ooos Sivts itits ficts o i X)) fi=id, 1<
(tus Sor oo bigts fivrofis tigs o /13 X)) =1, i<n

(tzwf;n"')tlﬁfl;x):

(tn—l’f;l—l')""fi;x) tn:]"
(tn5ﬁt,"'aﬁ+1;DA,C(.ﬁ7ti-l""yfi;x)) ti:()
* X==%

Jio-ofit A= C, fio---of;,1: C— B. In the unbased version we drop
(+) and the last relation. Using this description of h-colim D it is an easy
exercise to show that h-colim D is well-pointed if ¢ and D are.

(5.11) Examples. (a) If D: Y«X— X —2- Z, then h-colim D is the reduced
double mapping cylinder in the based case and the unreduced one in the
unbased case. In particular, if Z is a single point, then h-colim D is the
reduced (unreduced) mapping cone C;.

(b) If D: X i"Y, then h-colim D is the reduced mapping torus
g

1n the based case and the unreduced one in the unbased case.
]*
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(c) Let G'be a topological monoid in €%, i.c. an H-space in 4% with
associative multiplication and a strict unit e. Suppose (G, ¢) is a NDR.
Let % be the category consisting of one object P with € (P, P)=G.
Composition is given by the multiplication in G. Let D be the unique
h#-diagram on a one-point space. Then the unbased version MD is the
total space EG and the unbased h-colim D the base space BG of Milgram’s
classifying space construction. In particular, EG is contractible by (5.4a).
For a proof see [3; VI, § 1].

For the construction (5.10) of h-colim D we did not need that each
space % (A, B) is locally compact. This assumption was only needed
in the proof of (5.4) when we showed that MD is a %-diagram. Let
%, be the category ¥ with the discrete topology. Then the identity €, — %4
is a continuous functor inducing a functor /' ¢° — A €5. Now

N E*

%}
=
M)

N

commutes. Hence it is reasonable to conjecture that (5.9) and its unbased
version hold for arbitrary spaces too. We need the assumption that €
is well-pointed, because otherwise s#%” might not exist. In fact, we can
show

(5.12) Theorem. If € is a well-pointed category, then h-colim: #%° —
Topy exists and is left adjoint to the inclusion functor J. The same holds
for the unbased version.

Proof. Consider X € 724 as a constant ¥-diagram and let H: D - X
be a Z-morphism. Construct MD as in (5.4). Then MD is a €,-diagram
although it might not be a ¢-diagram and h: MD — X as defined in (5.4)
is a homomorphism of €,-diagrams inducing a continuous map k:
h-colim D— X. Let {i,: MD, A— colim MD} be the set of universal
maps. Then the composite {i,} o up as defined in (5.2) is a J-morphism
from D to the constant h%-diagram h-colim D, and k is the unique map
such that the canonical composite ko ({i,} o up) equals H. A homotopy
through -morphisms D — X from H to H' induces a homotopy of the
induced maps k, k': h-colim D — X. Hence the result follows from (5.7)
in the same manner as (5.6) follows from (5.4).

6. Homotopy Limits

For topological spaces X and Y let F(X,Y) denote the space of all
maps X — Y with the compact-open topology or the usual function
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space topology if we work in ¥%. If Y has a base-point, the constant
map X — {*#} <Y is a natural base point for F(X, Y) even if X is not
based.

{6.1) Proposition. Let € be a topological category such that each € (A, B)
is locally compact unless we work in €%, and let D be a h%-diagram. Then
there is a G-diagram ND and a Smorphism vp: ND — D such that

(2) the underlying maps ny: NDy A— Dy A, Ac ob €, are deformation
retractions

(b) a Hmorphism H: E— D is the canonical composite of a unique
homomorphism h: E— ND and vp.

(c) If % is well-pointed and if H, H': E — D are simplicially homotopic
Fmorphisms, then the induced homomorphisms h,h': E— ND are homo-
topic, provided E and D are well—poznted or we work with k-spaces.

Proof. Define ND, A to be the subspace of all elements

{#z| Beob @} e ﬂF(U(gM(A B)xI", Dy B)

Beg nz=0
satisfying
(6.2) “B(ﬁ;atn, ...7ﬁ+17ti+1 ti;fiﬁl, ...,fo) fi:id,0<i<n
Ap(Jn—1stn_1s--5 - _id
%5 (s bus - Jo)= B(fa1stazts -5 fo) /.
OCB(fr.latna-.-gti+l5fl:0ﬁ~1, ti‘—l""’fo) tlzl

DC,B(.f;n tn’ 5f;9 o(C(fi——b ti—l’ ’fo)) tiZO

where fio---of;: C-— B in ¥. The base point of NDyA4 is the product
of the constant maps. If (A4, C) is locally compact or we work with
k-spaces, the correspondence (f, {ag})+— {3z} with

ﬁw na"'af O‘B(fn’ n:"'atl’foof)

defines a continuous map (4, C)x NDyA— ND,C extending the
function ND, to a %-diagram ND. For the definition of v, we again
adopt the notation of the proof of (5.4). The diagrams D and ND and the

maps
p (p)ao gt T x L,)(A°, BY x NDy A—> Dy B

given by
((.f;nrnatn’f;l 17 n—1» n 15+ -- fO) {1C})'_)18(f;17 n,__.’ﬁo iﬁlo'uofO)

ifr;=0andr, ., =1, define the #*morphism vj,. The (vp) 40 p: are continuous
because %(A, B) and hence %,.,(4,B)xI" is locally compact or we
work in ¥%. The underlying map n,: NDy A — Dy A is given by n({%})
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=u,(id,). The correspondence x> {a} with

O‘C(ﬁn tn’ "-’fO)ZDA,C(fn: tna '-"fO;x)

defines a section s,: Dy A — NDgA of n,, and H,({2c})={«} with

“tc(f;” tn: “ﬂfO):“C(ﬁn tns *--7f0’ ta 1dA)

is a deformation of NDy A into the section.

If H: E—~D is a %morphism, then the maps h,: E,4—>NDyA
giVCIl by hA(x)(J‘;n ISP ’fO)zHA(’,Bl(ﬂn 17 tmfn—l: 1’ tn—l’ fi, 1: tl’fO;x)
define the unique homomorphism h: E— ND such that H=vpoh. If
H,H: E—D are simplicially homotopic #morphism, then there is
a homotopy through %morphisms E— D from H to H inducing a
homotopy through homomorphisms from h to the homomorphism
I': E— ND induced by H'.

In the same manner as in the previous section we can show

(6.3) Theorem. (8) Let € be a well-pointed category such that each
€ (A, B) is locally compact. Then we can extend the correspondence
D ND to a functor N: H€° — VE€*. If EeNVE°, there is a natural

bijection H%*(J E, D)= N€*(E, ND).

(b) If we work with k-spaces and if € is a well-pointed category, we
can extend the correspondence D> ND to a functor N: #E€% — N EC%
which is right adjoint to J': /' €} — HECF.

We cannot prove a strong result of the type of (5.6) because ND is in
general not well-pointed even if D is.

(6.4) Definition. The homotopy limit functor h-lim: #6° — Jopi
[H€F — €%F] is defined to be the composite h-lim =1im, o N.

(6.5) Theorem. (a) If ¥ is a well-pointed category such that each € (A4, B)
is locally compact, then the functor h-im: H'E” — Top} exists. If X e Tef,
then there is a natural bijection

HE (JX, Dy=Top (X, h-colim D).

(b) If we work with k-spaces and if € is a well-pointed category, the
Sfunctor h-lim: #ECF - €Y} exists. It is right adjoint to the functor
J. G — HEF

The Unbased Case. In the unbased case the functor N: #% —
NC[HC,— NE6,] is constructed in exactly the same way as the functor
N: #€ — N/E*, we Just do not mention base points. We follow N by
the unbased limit functor lim,: A€ — s, [NV €6, — €9;] and obtain
the unbased homotopy limit functor. Since we do not have to worry
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about well-pointedness, we have

(6.6) Theorem. (a) Let ¥ be a well-pointed category such that each
% (A, B) is locally compact. Then the correspondence Di> ND can be
extended to a fully faithful functor N: #€ — N'€ which is right adjoint
to J': /€ — HE. The homotopy limit functor h-lim=lim,o N: #EC —
Topry exists and is right adjoint to J: Jop,— H'E.

(b) If we work with k-spaces and if € is a well-pointed category, the
same holds for the corresponding categories and functors.

(6.7) From the Egs. (6.2) and the well-known construction of the limit
functor we obtain a direct description of the space h-lim D for a based
or unbased h%-diagram D:

h-imDe [] F(]]%.(4, B)xI", D, B)

A,Beg nz0

is the subspace of all elements {o, 5: | [ %,(A, B)xI"— D,B| A, Beob ¥}

satisfying nz0
%, 8(for tus o Siwts Lisa bis fimy s -5 1) fi=id,i<n
g (foetstuots s ty) fo=1d
g, (S Tur oo S1 1) =%, B (S b -5 Big s Jiofias ticas s 1) =1, i>1
’ 6,5y Ly ovs 1) f=1
Dy, B((fm tus oo i3 0 B fim s imts oo tl)) ;=0

where
firA—>C, fi_jo---ofy: C—E, fio---ofiit E—>B.

If D is a based diagram, then the product of the constant maps is
the base point of h-lim D.

(6.8) Example. If D: Ac X > B, then h-lim D is the space of all paths
in X from A to B. ~

Although we can construct the space h-lim D if the spaces € (A4, B)
are not locally compact, we cannot drop this conditions because we
needed it for the continuity of the induced homomorphism in the proof
of (6.1). The reason actually lies deeper: The functor h-lim can be defined
without this assumption if we modify the definition of a %-diagram.
Instead of having maps D, p: ¥(4, B)xDyA— Dy B we have to take

maps D, : DyA~>F(%(A, B), D, B)

satisfying a number of conditions. These two definitions coincide in
%% but not in Jz4 because we there do not have full adjointness. We do
not intend to consider this sort of diagrams because their treatment
requires a basic modification of the tools of § 3.
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We close this section with a result on base points which occassionally
is of interest in applications.

(6.9) Proposition. Let € be a well-pointed category with finitely many
objects such that each € (A, B) is compact. Assume further that there is
a k<o such that g=f,o--- o f; with n>k implies that some f,=1d. Then
the homotopy limit of a well-pointed h @-diagram D is well-pointed.

Proof. Let E;A=DyAwI/(x~1) with Oel as base point. Projecting
I'to lel, we obtain a based map p 4: Eq A — Dy A, which is a based homo-
topy equivalence. Note that E, A is well-pointed. Define

E.p T%(A,B)xEqA— E, B

by E p|T%(A,B)xDyA=D,p and E, z(f;t)=t, feT%(4,B), tel.
We obtain a h@-diagram E such that the p, form a homomorphism
p: E— D. By (4.6) and (6.5) the spaces h-lim E and h-lim D have the same
based homotopy type. Define a retraction r,: EqAXI— EqgAxQ0u=x1I

by (x,0) xeDy A
t—2x
il >
rox, f)= (0, 1—x> xel, t=22x
2x—t
(_—,0) xel, t<2x.
2—1t

Then we obtain a retraction r: (h-lim E)x ] — (h-lim E)x0u % x1 as
follows. Let gh: EBx0uU % x I — E,B and g3: EoBx0uU *xI— I be the
projections. Then r({a, g}, ) =({f 4 5}, 4) Where

Bas: ];Iofﬁn(A,B)xI"—“i"—B>EOBx[-'iaEOBXOU*xI—qli»EOB

with o 5(y)=(04 p(y), t) and where
u=min {gzorgo %y 5 ()| ye%, (4, Byx I",n<k}.

Since each %,(4, B) is compact, r is continuous. Hence h-lim E is well-
pointed. By [6; (2.7) and (3.26)] the proposition is proved if there is a
map v: h-lim D —1 with v=!'(0)== Since each D,A is well-pointed,
there are maps uy: Dy A — I with u;!(0)=x Put

v({oy, p}) =max {ug(oty 5(»))| ye%,(4, Byx I", n<k}.

7. Homotopy Limits and Colimits as Functors from .#€* to Zop* or €G*

For some applications it is desirable to have h-colim and h-lim as
functor from the category .#%* of based ¢-diagrams and based homo-
morphisms to Jo4*¥ and ¥%* because passing to Jos} implies a loss of
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information. Moreover, both functors are then defined for arbitrary
topological categories %. Define functors

H-lim, H-colim: .#%* — Jop*

as follows: If D is a %-diagram, then H-lim D and H-colim D are the
based topological spaces h-lim ¢*(D) respectively h-colim ¢*(D) as
defined in (6.7) and (5.10). If g={g,: Dy A — E, A} is a homomorphism
of ¢-diagrams g: D — E, then

H-lim(g): B-lim D — H-lim E, H-colim(g): H-colim D -» H-colim E
are given on representatives by

H-Iim (2)({o 4, 5})={gp° %4, 5}
H-colim{g)(ta, fi > fi3 X)={ty, frr .-, f1:88(X)) x€D,B.

The unbased version is defined analogously.

Let P: Yo4® — Jopiy and P': ME° — A"€* be the projection functors.
Suppose ¥ is well-pointed so that S#°%” exists. Then put R=JoP":
MEC — NEC — #E€°. As an immediate consequence of the definitions
we obtain

(7.1)  Proposition. Suppose € is a small well-pointed topological category.
Then the diagram

ﬂ(go H-colim % ﬁo

R "[ P

HoGe —beeolim e
commutes. The same holds for the unbased version and for based or unbased
k-spaces. If in addition each 4{A, B) is locally compact or we work with

k-spaces, the same holds if we replace H-colim by H-iim, h-colim by
h-lim, and Jop®, Topeg by Top* and Jopi;.

If we work with k-spaces or if each €(4, B) is locally compact, the
functors H-colim and H-lim factor as

H-colim=colimoM, H-lim=limoN: AE* > HE* — Top*

with M (D)=M(¢* D), N(D)=N (¢* D) as defined in (5.4) and (6.1} and

M@)(fos tus s fo; X)=(fos tws - fo3 85(X))  xED, B
N(g)({otg})={g30a3}.
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Again we have commutative diagrams

M Es g

J{R jPl
HE M0 v+

Of course the same holds in the unbased case and for the based and un-
based case with k-spaces.

8. Simplicial Parameters

It is the purpose of this section to relate our notions of homotopy
limits and colimits with those of Segal [14] and the topological versions
of those of Bousfield and Kan [4]. We study the unbased version; the
treatment of the based version is analogous. Let € be a discrete category
and D a ¢-diagram. Then Segal’s homotopy colimit S(D) is defined to
be the topological realization of the following simplicial space I'D:
The space of n-simplexes is

[ %.(A,ByxDoA

A,Be¥

with the following face and degeneracy operations

l(fn"":fz;DA,C(fl;a)) i:()a ﬁe(g(Av C)
di(f;wfn—la "'afl;a)z (.f;n ~"’fi+1°fi, ...,fl; a) O<i<n
(fazts s 15 0) i=n

Si(j;ufn—~1’ aflaa)r‘ (ﬁnﬁz—la "'>fi+1: 19ﬁ:"~>f1;a) 0§l§l’l

We give a different description of S(D) which allows us to compare
it with our construction. Let A" be the standard n-simplex i.e. the space
of all points (4, u,, ..., u,)eIR" such that 0=y, Su, <---Zu,<1. Let

T(D)o(B) =ALEI(g‘5n+1 (4, B) x 4" x Do (A)/ ~

nz0

with the relations

(81) (fnrunsfn—la ulﬁf(); a)

(f;li n?" f+17uz= i— 13 i—15 - fo; lf _fl:ld
(f;u-- f;+1= 1+17,fu° i1 Ui_q, - ,f0> ) if U=u;
(f;l .f;l 1, U n— 1a'-'af07a) lf un-:l

(fos ooty f13 Dy c(fo, @) if u,=0 and fye%(4, C).
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Extend T(D), to a ¢-diagram T(D) by
[g’ (.fr‘n Upsy oo 7f0)]H(goﬁ1> Uy Ju—1> '-':f())'

The diagram TD can be considered as the topological realization of the
%-diagram 1 D of simplicial spaces defined as follows:

(8.2) The space of n-simplexes of ©Dy(B) is [ ] %, (4, B)x Dy(4) and
Ae¥
the face and degeneracy operations are given by

; o N Sacts s fiofizas s Jos @) 0<izn
d(f"’ﬁ'”l’”"fo’a)_{(f,,,f,,_l,...,fl;DA,C(fO;a)) i=0 and f,e%(4,C)

Si(ﬁl:ﬁl»l: "'afO;a):(f;n "':fi?l’fi—la""fo;a) Oélén

The simplicial maps [g, (fu, fi_1s -5 Jos A1 fos fots s fo; @) €X-
tend tD, to a ¥-diagram of simplicial spaces. It is easy to check that

I'D=colim 7D taken in the category of simplicial spaces, and since the
topological realization preserves colimits, we obtain

(8.3) Lemma. S(D)=colim T(D).

Given a homomorphism h: D — E of #-diagrams with underlying
maps {h,}. Then the correspondence (f,,uy, ..., fo; A (fos Uy, -5 fo3
h 4(a)) induces a homomorphism T(h): T(D)— T(E), which makes T into
a functor T: H#HEC — HE.

(8.4) Proposition. The functors T and M from M€ to M€ are naturally
isomorphic.

Proof. The correspondence (f,, t,, ..., fo; @ (fus Uy, ..., fo; a) with
w;=t,t,_y...1; determines homeomorphisms hD,: MDyA— TD,(A),
whose inverses are given by (f,, 4y, ..-> fo; @F>(fus bus - for @) With
t;=u;/u;,; and the convention that 0/0=1 and u,,,=1. Of course, we
use strongly that D is a %-diagram. The h D, are the underlying maps
of a homomorphism hD: MD — TD, and it follows directly from the
definitions that given a homomorphism f: D— E of %diagrams, then
hE oM f,=Tf,ohD, for all Ae¥, which implies the naturality of
h:M—T.

(8.5) Corollary. The functors H-colim and S from .#E to Jop are
naturally isomorphic. In particular, if D is a é-diagram, then H-colim D
is naturally homeomorphic to the topological realization of the simplicial
space I'D.

Of course, these results can be extended to topological categories
% if we only want the result (8.5). Since T and M are only defined if in
addition each ¥ (A, B) is locally compact or if we work with k-spaces, we
have to add this extra assumption to obtain (8.4) for more general
topological categories. The details are left to the reader.
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Segal’s construction can be dualized to provide similar results for
homotopy limits.

(8.6) Definition. Let X = {X,,} be a cosimplicial space with face and
degeneracy operations d4: X, _, — X, and Syt Xy 41— X, (for a definition
see [7; 11,§2]). Let 8i: 4" ' — A" and o': 4"*' — A" be the face and
degeneracy maps of the standard n-simplex. The topological realization
| X of X is defined by

”X” = {(yn| n=0> 17 .. .)E H F(Ana Xn)ly"oéflz di(yn-—l) and Yn® 0-51 zs?(yn+1)}
nz0
with the subspace topology.
With any ¢-diagram D we associate a ¢-diagram p (D) of cosimplicial
spaces as follows:
(8.7) The space of n-simplexes of p Dy(A) is || F(%,+:(A4, B), D, B) and
Be®
the face and degeneracy operations are given by d' ({xg| Be%}) ={3%3|Be%}

with
&B(j;”...’fo):{xB(f;‘""’ﬁ'i—lo ia«--,fo) 0§l<n

Dc,z;(ﬁd“c(fn—um:fo)) i=n, f,€%4(C,B)
and

s'({up| Be4}) = {85/ Be ¥}
with
aB(fn’ "',fO)zch(fns "‘uﬁ+13 l’fi»""fo) O§l§n

We extend p D, to a ¥-diagram by sending (g, {zp}) to {&z} where
(S s fio S =a5([0s ..oy fia forg). Let @D=limpD taken in the
category of cosimplicial spaces and cosimplicial maps. The topological
realization of p(D) is a ¥-diagram R(D). A homomorphism h: D — E of
%-diagrams induces a homomorphism of cosimplicial ¥-diagrams by
{ag} — {hgoay} where {hp} are the underlying maps of h. Hence R
extends to a functor A€ — AE.

(8.8) Proposition. The functors R and N from M€ to ME are naturally
isomorphic.

Proof.
R(DYo A= [] F(4" [] F(%,.1(A, B), Do B))= [1F(][ €.+1(4,B)x 47, D, B)

nz0 Be% Beg nz0

because ¥ is discrete and A" locally compact. The maps I"— 4" given by
(tyy .. ) (U, -, uy) With u;=1,t,_4 ... t; determine a map

TTF(4" [1 F(%,.1(A, B), Do B))— [T F(] ] ,+1(4, Byx I", Do B)

n20 Be¥ Be¢ nz0
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sending the subspace R(D), A homeomorphically onto the subspace
N(D)o A. These homeomorphisms h(D), are the underlying maps of a
natural homomorphism R(D)— N(D).

Since the topological realization functor || — || preserves limits we have

(8.9) Corollary. The functors H-lim and limo R, the topological version
of the homotopy limit functor of Bousfield and Kan, from M€ to Top are
naturally isomorphic. In particular, H-lim D is naturally homeomorphic to
the topological realization of the cosimplicial space ®D.

The results (8.8) and (8.9) can also be proved if € is a topological
category such that each €(A, B) is locally compact or if € is an arbitrary
topological category and we work with k-spaces.

9. Spectral Sequences for Hoinotopy Colimits
Throughout this section let ¥ be a discrete category and D be an

b4
unbased h%-diagram. The images of [] [][%,(4,B)xI"xDyA in
A, BeC n=0

h-colim D define a filtration F, D of h-colim D. Let k, be an arbitrary
homology and k* an arbitrary cohomology theory. For fe#(A, B) let
f: DgA— Dy B denote the map f(x)=D, 5(n(f); x), where n is the
standard inclusion. Since D is a ¢-diagram up to coherent homotopies,
the correspondences f— k,( f) respectively fi— ki(f) define a covariant
functor k,(n* D): ¢ — «/¢ and a contravariant functor k%(n* D): € — /¢
into the category of abelian groups.

(9.1) Theorem. Let € be a discrete category, k,, a homology, and k* a
cohomology theory. Assume that k, and k* are additive unless ob % and
each space %,(A, B) is finite. Then

E2 ,xcolim” k,(n* D)
in the spectral sequence {E" D} derived from the k, exact couple of the
Sfiltration of h-colim D, and

EZ 9= lim? k*(4* D)

in the spectral sequence {E, D} derived from the k* exact couple of the
Siltration of h-colim D. Here colim? and lim? denote the p-th lefi derived
of colim and the p-th right derived of lim.

Proof. E, D=k, (F,D, F, | D)and the differential 4' is the bound-
ary operator of the triple (F,D,F,_, D, F, , D). We obtain F,D from
F,_, D by attaching H%(A, B)x Do(A)x IP=:C,x I* along R, x I"U
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C,x 0I* where R,=C, is the space of all elements (f,,f, 1,....f;; a)
with some f;=id. Define maps d': C,— C,_; for 0<i<p by

(92) (fpvfp—l’ -'-afZ;DA,B(nfi; a)) i:0= fle(g(AaB)
A(fos fots s fis @)= (fps s fivrofis s fi3 0) 0<i<p
(fp—l,fp—li"'afl;a) l=p

Consider the diagram

ke (CHYy——Z— k,, (C,x I?/C,x 0I") —— "k, (F,DJF,_, D)

a
|
Foo(D) kyyq 1(C,x0I7/C,x 3% I7) 2) 0
r . p-1 P ~
@ k,(C)-E— _@1 kypqr(CpxIP=1/C x 01771 k,.q_1(F,_,D/F,_, D)
;| i
& H Ty
l A3) )

L

gP ~ 1

k (C+ l)——>Ep+q—l(Cp—1 X Ip~—1/Cp_1 X GIP‘I)

Here 417 is the boundary of I” and 6 I? the (p—2)-skeleton, 6? is the
p-fold suspension isomorphism o and the sign of ¢ is determined by the
boundary maps

6IPW(3]P/62 Ip_r)‘r%_)Ip—l/aIp—l

where prf: 017/0* I* — 1?71 /oI*~ ! is induced by the projection of I” to
the face t;=¢, £=0, 1. The maps 7 are induced by the attaching maps.
The component (j, ¢) of F is multiplication with (—1)'~% The maps G
and H are induced by the constant map C; — C,_, on the components
(j, 1) for j>1,by d° on (1, 1) and by &’ on (j, 0). The mapr is the isomor-
phism of the Mayer-Vietoris sequence of the inclusions

8% (C,x IP=H/C,x AIP~Y) > (C, X OIP/C, x 8> I?)
sending I?~* to the face ¢;=¢. The inverse of r is on its (j, ¢)-component

given by pr;. Then (2) and (3) commute by the naturality of ¢ and 9,
and (4) commutes by (5.10); here observe that nodjc F, _, D if j>1. The
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commutativity of (1) follows from naturality and from
Ky g [P/OID) =Ky gy (O 20 kL (17/02 17)
g1 (pri), (pr),

Ep+q—1 (Ip#l/alp_l) - lzp+q—1 (Ip_l/alp_l)
in which the square commutes by the choice of the sign of ¢ and the
triangle commutes up to (—1)'~%.
By the assumptions on k, we have

ky(CH=k,(C,)= ALL%I, (4, B) x k(Do (A))

and the maps d': C,— C,_; induce maps
dr ky(Cp)—ky(Cp_y)

satisfying the identities (9.2) with a replaced by a homology class x in
ky(Dy(A)) and D, g(nf;; a) replaced by k,(n* D(f,))(x). The composite
map GoF: k,(C,)—k,(C,_,) is given in terms of the d"* by

}4
GoF=Y (—1)d"
i=0

Introduce maps s™*: k,(C,)— k,(C,.,) by

Si*(J[p:"'afi;x):(f;n "':.fi+15 13ﬁ7"'aﬁ;x)

to obtain a simplicial abelian group k,(C,). Then GoF is the boundary
map of the associated chain complex CD,,. By [9, chapter VIII, Thm. 6.1]
CD, is chain equivalent to the normalized chain complex of CD,,
which in turn is given by (Eq(Cp/Rp), p=0,1,...). Because of the com-
mutativity of

k,(C) ky(C,/R))
. .

fpeqlCpx 17, Cpx 817) "> K,y . (F, DJE, _; D) <%k, o(C, x /R, x I?U C, x OI7))

E? D is isomorphic to the homology of the normalized chain complex
and hence to the homology of the chain complex CD,,. By [7; appendix 11,
Prop. 3.3], H,(CD,)=colim? (k,(y* D)).

The proof for the cohomology spectral sequence is completely dual.

Remark. For %-diagrams this result is an immediate consequence of
Segal’s spectral sequence of a simplicial space [14] and the result of
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Gabriel and Zisman used in the proof (also see [1] for convergence
questions and applications). In this case, (9.1) is the topological analogue
of the spectral sequence [4; p. 336]. Our argument is strongly influenced
by Segal’s.

Remark. One obtains similar results for based h%-diagrams and
reduced homology and cohomology theories.

10. The Spectral Sequence of a Homotopy Limit
Throughout this section let % be a discrete category and D a based
h%-diagram. The inclusion

p
[1%.(4, Byx I"< | [ ,(A, Byx I"
n=0 nz0

induces a projection

h-lim D — (b-lim D)~ [] F (U%(A B)x I, DOB)

A, Be¥ n=0
Let G, be its image. Then we have a cofiltration
(10.1) Gy« Gy« 2= G, «2—-.. «h-lim D

of h-lim D such that h-lim D — G, and hence each k, is surjective.

(10.2) Lemma. The map k,: G,— G,_, is a fibration.

Proof.Let Q (A, B)=%,(A, B) be the subspace of all elements (f,,..., f;)
with some f;=id. Then we have a pull back diagram

G,— [ F(%,(4, B)x I, D, B)

A, B

G, ——— [ F(Q,(4, B)x I"U®,(4, B)x oI", D, B)
A, B

kp dp

in which g,, is the fibration induced by the cofibration
Q (A, B)x IPU%,(A,B)x 01" c%,(A,B)x I”.

Since the k, are surjective, the exact sequences of the fibrations
G,1— G, with fibre F, give rise to an exact couple

D—*->D

AV
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with DP1=[8§9"7 X, G, ,,] and E»?=[S§*"F X F,] for g=p and O other-
wise. The maps i, k, 0 have bidegrees (0,0), (—1, —1), (1,0). Here [ X, Y]
denotes the set of based homotopy classes of based maps from X to Y,
and we assume that the functor [ X, —] takes values in the category of
abelian groups.

{10.3) Theorem. Let € be a discrete category and D a based h%-diagram.
Let X €eJop* be a space such that [ X, —] is a functor into abelian groups.

Th
en EZ4D=lim?[$°X, n* D]

in the spectral sequence {E,D} of the exact couple obtained from the
cofiltration aof h-lim D.

The proof is practically dual to the one of (9.1).

Remark. For %-diagrams this spectral sequence is a topological
version of the spectral sequence [4; p. 309]. In [4] the derived lim? of
lim is studied for not necessarily abelian group valued functors, thus
extending the applicability of (10.3), and a convergence proof is included.

11. Weak Limits and Colimits in oz,

As an application of our methods not of our results we prove the
following folk theorem.

{11.1) Theorem. The homotopy category Jop, has weak limits and co-
limits.

Proof. Let % be a discrete category and E a %-diagram in Jos,.
We have to show that there is a space X and a homomorphism i: £ X
from E to the constant ¥-diagram on X in Jos, such that given a homo-
morphism f: E— Y from E to a constant diagram Y in Z24, there exists
a morphism h: X —Y in Js4, such that f=hoi as homomorphism.
Let D be any lifting of E to oz such that an identity is lifted to an identity
(then D is not a ¥-diagram). Put

X=]]%(4,B)xIxDyBu]] D,B
A B B

with the relations (compare (5.10))

X g=id
(g, t;x)={D(g;x) =0
X t=1.

The maps iy: DoA— X given by i, (x)=x represent the underlying
maps of the homomorphism i: E — X. Given a homomorphism f: E— Y
4 Math.Z,Bd. 134
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in Jop,. We regard it as a 4 x &,;-diagram and lift it to oz such that
D lifts the % x O-part E. Let f, denote the lift of the morphism Eq4 — Y.
Then we have maps

Fypg: (A, ByxIxDyA—Y

such that ‘
Jax) g=id

Fyp(g, t;x)=1 fs(D(g;x)) =0

fa(x) t=1.

Define h: X — Y to be the homotopy class of the map given on Dy B by
frand on (4, B)xIxDyBby F, .
The construction for weak limits is dual.

12. A Remark on Generalizations

It should be possible to carry out our constructions in any category
with a strong notion of homotopy, i.e. in a category containing suitable
non-trivial cosimplicial objects substituting cubes or simplices, and
having limits and colimits. The category $a# of small categories has
these properties. With the correct definition of homotopy one should
be able to interpret Boardman’s category of finite spectra (see [2] or [16])
as homotopy limit of the diagram

Sea/,‘ng;Sg,;S

in €, where F is the category of finite CW-complexes and S the sus-
pension functor.

Appendix
The following result closes the gap we left in the proof of (3.6).

Proposition. Let f: X — Y be a filtration preserving map of filtered
spaces such that

(a) X x Z=colim(X, x Z) for any space Z.

(b) Y, is obtained from Y,_; by attaching X, relative to a subspace
DX, such that (X,, DX,) is a NDR and the induced map X,— Y, is f. Let
Z be an arbitrary space and YQZ=X x Z]~ with (x,z)~(x', z) if f(x)=
f(xX'). Then the identity YQ®Z — Y x Z is a homotopy equivalence.

The proof relies on the following more or less well-known results
(see [8; p. 601.]).

Lemma 1. Let (X, A) be a NDR, f: A— Y a map and Z an arbitrary
space. Then the identity function (X x Z)\U,,z(YXZ)—>(X U, Y)xZ is
a homotopy equivalence.
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Lemma 2. Let X be a filtered space such that each pair (X,, X, _))

is a NDR. Then the identity colim (X, x Z) — (colim X,) X Z is a homotopy
equivalence.

Proof 1. Let M and M’ be the double mapping cylindersof X o4 - Y
and X xZ>5AxZ— Y xZ. Since (X, A) and (X xZ, 4 x Z) are NDRs,
the natural projections M —(Xuw,Y) and M' —>(X xZ)u,, (Y x Z)
are homotopy equivalences. One can show as in [13; Hilfssatz 18] that
the identity function M'— M x Z is a homotopy equivalence, which
implies Lemma 1.

Proof 2. Let T and T be the telescopes of the X, and the X,xZ
(see § 1). Then T and T" are the mapping tori of the diagrams

L ¢
nIEIOX" id n]ZIOXn’ I_[ (X, x Z)TnIEI()(X" x Z)

n=0

where f=]]f, and g=]](f,xid) with f,: X,=X,,,. Since the pairs
(X,,X,_;) and (X, xZ, X,_,xZ) are NDRs, the natural projections
T— colim X, and T'— colim (X, x Z) are homotopy equivalences. Hence
Lemma 2 follows from

Lemma 3. Ler T(f, g) denote the mapping torus of
X==3y
and let Z be any space. Then the idengtity map
T(f xidg,gxidz) > T(f,g)xZ
is a homotopy equivalence.

Proof. Let h: X x3I — Y be given by Al X x0=f and 2| X x1=g.
Then T(f, 2)=X xI Uy, o Y, and the result follows from Lemma 1.

Proof of the Proposition. Let p: X x Z — Y® Z be the identification
map and let Q, be the image of X, x Z. Then the Q, filter Y® Z and Q,
is obtained from Q,_; by attaching X, x Z relative to DX, x Z. Note that
Qo=Y,xZ because X,=1Y,. Inductively assume that the identity
0, 11— Y,_,xZ is a homotopy equivalence. By [3; appendix (4.6)] and
by Lemma 1 the identity function

00 =0u_1Ypx,xz(Xu X Z) > (Y, _1 X Z) Upy, x z(X,, X Z)
(Y 1 Upx, X)X Z=Y,x Z

is a homotopy equivalence. Since each pair (Q,,0,_,) and (Y,,Y,_)
is a NDR the identity function

Y® Z=colim @, — colim(Y, x Z) — (colim ¥} x Z=Yx Z
is a homotopy equivalence by [3; appendix (4.4)] and by Lemma 2.

4%
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