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H o m o t o p y  L i m i t s  a n d  C o l i m i t s  

Rainer M. Vogt 

1. Introduction 
It is well-known that the canonical projection functor from the 

category ~/~ of topological spaces and maps (= continuous functions) 
to the category ~ p ~  of topological spaces and homotopy classes of maps 
does not preserve limits and colimits and that 3-~/~ has very few limits 
and colimits. 'The same holds for the category ~/~* of based spaces and 
based maps and its homotopy category ~- * ~ .  Therefore, when dealing 
with constructions involving homotopies, one often has to substitute 
limits and colimits by something else, and the homotopy limits and 
colimits are in many cases the spaces having the universal properties one 
wants. 

Let cg be a small category and D: ~ - * J @  [or D: c g ~ - ; / ~ . ]  a 
Cg-diagram in ~ p  [respectively ~-5/~*]. Let 

cg,(A,B)={(f,, . . . ,f~)e(mor cg)"lf,, . . . . .  f l :  A ~ B  is defined in c~} n > 0  

cg o (A, A) = {(idA)} ~o (A, B) = ~ for A =k B. 

(1.1) Definition. The homotopy colimit of D, h-colim D is 

L[~C,(A,B)•215 w {*}/~ 
A, ~gn=O 

where I is the unit interval and {,} an extra point, with the relations 

(t,, L ... .  , t~, f~ ; x)=  

(t~ ...,t2,A;x) 

(t., f . ,  . . . ,  f / + l ,  ti t i - l , f i - 1 ,  . . .  , f l  "~ x) 

( t , ,L, . . . , t i+ , , f~+,  of~, t i_,  . . . .  , f ~ ; x )  

( t ,_ l ,L_l  . . . . .  f~;x) 

(t., f , ,  ..., f/+ 1; D ( f  . . . . .  fa) (x)) 

fl = id 

f~ = id, 1< i  

t i=l  , i<n 

t.= 1 

t i=O 

x = base point 

with {*} as base point for a diagram D in ~fi*.  The unbased version is 
obtained by deleting {.} and the last relation. The homotopy limit of D 
is defined dually. 
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To my knowledge, Puppe was the first to use a homotopy colimit as a 
"substi tute" for a colimit. Let C I be the reduced mapping cone of the 
based map f :  X ~ E Then he proved [13] that the sequence 

(1.2) X Y~ Y e~PL~ y C s 

induces an exact sequence of based sets 

[X, Z] ~ [Y, Z] ~ [C s, Z] 

where IX, Z] denotes the set of based homotopy classes of maps from 
X to Z. So Cf, which is the homotopy colimit of the diagram 

Y ~ f - X --~ �9 = one-point space 

in .Y~fi*, "substitutes" the cokernel of f In his second chapter, Puppe 
showed that the sequence (1.2) is invariant under homotopy equiv- 
alences. More precisely, given a homotopy commutative diagram 

(1,3) 

we can extend it to a diagram 

whose right 

X f ~Y 

X' g ~ Y' 

X f -). Y Pf ) C f  

X' g ~ Y' eg _~ cg 

square commutes. Moreover, if h and k are homotopy 
equivalences, then H is a homotopy equivalence. This result, which 
requires some work to be proved, is a special case of a more general 
theorem about homotopy colimits. Note first that (1.3) can be extended 
to a homotopy commutative diagram 

Y~ f X ~ *  

y ' ~ T ~  X'  --~,  

Our general result is (it follows from (4.6) below) 

(1.4) Theorem. Let cd be a small category and let D and E be Cg-diagrams in 
~ f i  [or in ~ f i*  of well-pointed spaces]. I f  f:  D-~ E is a [based] mor- 
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phism of ~-diagrams up to compatible [based] homotopies such that ./br 
all A e o b  ~ the map D(A)--, E(A) given by f is a homotopy equivalence, 
then f induces a homotopy equivalence h-colim D ~ h-colim E. 

Another special case of (1.4) occurring in the literature is due to Milnor 
[12; Appendix]. Given a topological space X and a sequence of subspaces 
Xo c X1 = X2 ~ " ' ,  he considers the question to what extent is the homo- 
topy type of X determined by the homotopy types of the X~. For this he 
considers the "telescope" 

X~=Xo x [0, lJ uX1 x [1, 2] wX2 x [2, 3] u ... 

topologized as a subset of X x 1R. It is easy to see that X~ is naturally 
homotopy equivalent to the homotopy colimit of the diagram 

Let Y be another space and I1o ~ Y~ c Y2 c . . .  a sequence of subspaces; 
then his main result (which also is a consequence of (1.4)) is 

(1.5) Theorem (Milnor). Let f: X - *  Y be a map which carries each Xi 
into Y~ by a homotopy equivalence; then f induces a homotopy equivalence 
X~-~ Y~. 

So the question reduces to the problem of showing that X~ is homo- 

topy equivalent to X. This is, for example, the case if X =  ~) X i and 
Xi c Xi+ 1 is a cofibration, i= o 

A more general result along these lines has been proved by tom Dieck 
[5] using the work of Segal [14]. 

(1.6) Definition. A covering U = ( X ,  fe~A) of X is called numerable if 
there exists a locally finite partition of unity (t~ J ee  A) such that the closure 
of t~-l(0, 1] is contained in X~. 

(1.7) Theorem (tom Dieck). Let U=(X~Jc~A) and V=(Y~[c~A) be 
numerable coverings of X and Y. For any non-empty subset a c A  let 
X~ = ~ X~. Let f: X --, Y be a map which carries each X~ , a ~ A finite, 

N E f f  

into Y~ by a homotopy equivalence. Then f is a homotopy equivalence. 

This theorem is an immediate consequence of (1.4). By assumption, 
the map f induces a morphism of the diagram of the X~, a ~ A finite, 
and their inclusions to the diagram of the Y~ and their inclusions, and the 
maps of this morphism are homotopy equivalences. Hence the homotopy 
colimits are homotopy equivalent. But by a result of Segal [14], the 
homotopy colimits are homotopy equivalent to X respectively Ii. 

Milnor's telescope construction can also be used to prove (see [11]) 
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(1.8) Proposit ion (Milnor). Let X o ~ X 2 ~ . . .  be a sequence of cofibrations 

and X =  U X~. Let k* be an additive cohomology theory. Then there is 
n = 0  

an exact sequence 
0 --~ lira 1 k q- 1 (Xi) --" k q (X) ~ lira k q (Xi) ~ 0 

where lim p denotes the p-th right derived of the limit. 

One of the standard proofs uses a Puppe sequence argument to show 
that there is an exact sequence 

(1.9) 0 --* lim 1 k q - 1  ( X i )  ~ k q (Xz) --, lim k q (X~) ~ 0 

for any sequence of spaces X 0 c X1 c X2 c " "  and that Xz has the homo- 
topy type of X under the special assumptions on this sequence stated 
in the proposition. The sequence (1.9) generalizes to homotopy colimits 
of arbitrary diagrams: Let D: c~__~ ~ f i  be a diagram and k* a generalized 
cohornology theory. In w 9 we show that there is a spectral sequence 

E~ 'q~- lira p kq(D) ~ kP+q(h-colim D). 

If D is the diagram of Proposition (1.8), the spectral sequence collapses 
and induces the short exact sequence (1.9). If D is the diagram 

X I ~ A c X  2 

whose maps are cofibrations, then the spectral sequence collapses and 
induces the Mayer-Vietoris sequence of (X1 uaX2, X1, Xz). 

Given a Cg-diagram one often wants to substitute some of its spaces 
by a homotopy equivalent one. One obtains an induced diagram which 
is only a Cg-diagram up to compatible or coherent homotopies (a precise 
definition will be given later). This leads us to consider homotopy 
C~-diagrams which are Cg-diagrams up to coherent specified homotopies. 
Such diagrams also occur "in nature": Let t2X be the space of based 
loops on a based space X. Define 2,: (t '2x)n~ t-2X by 

2,(co,,...,co,)(t)=co~(nt--i+ 1), t E l i n  1 ' nil ~I"  

Then the diagram of spaces (Y2X) n and of maps 2rl x . - .x2r  : (f2X)m-~ 
((2 X)" with m -  r~ + . . .  + r, and of their composites is such a diagram. 

Led by Puppe's considerations (see (1.3)) we define as maps between 
homotopy CGdiagrams a morphism between usual diagrams up to 
coherent homotopy commutativity relations. Introducing a suitable 
notion of homotopy between such maps we can define the category 
Wcg of homotopy Cg-diagrams, provided cg satisfies some weak conditions. 
There is a canonical functor J: ~/z~--~ ~fc~ mapping a space X to the 
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constant homotopy %diagram on X. Extending the definition of the 
homotopy limit and colimit to homotopy Cg-diagrams we show that they 
are functors from J4~cg to ~p~ and that h-lira is right adjoint and h-colim 
left adjoint to J. This justifies the terminology homotopy limit and co- 
limit, because recall that the functors lim and colim from the category 
J/tog of ~-diagrams to ~ p  are right respectively left adjoint to the can- 
onical inclusion functor ~/~ -~ J~g. 

The first part of this paper treats the category of homotopy %dia- 
grams, in Section 5-8 we introduce the homotopy limit and colimit 
functor and compare them with the definition of Segal [14] who defined 
the homotopy colimit for commutative diagrams. In the remaining part 
we introduce the spectral sequences and give some minor applications. 

As mentioned before, the notions introduced in this paper are not 
completely new. Segal has defined homotopy colimits for commutative 
diagrams. His idea was taken up by Bousfield and Kan who gave a first 
detailed treatment of homotopy limits and colimits of commutative 
diagrams in the category of simplicial sets. Our treatment has been 
developed independently of theirs. Nevertheless there is some overlap 
in the results. For example, our spectral sequences coincide with theirs 
if we restrict to commutative diagrams and work semisimplicially. Our 
treatment is more general because we allow diagrams which commute 
only up to coherent homotopies so that we for example may change a 
diagram by homotopies. The connection to the Bousfield-Kan theory is 
expressed by [4; Chap. IX, w 8] and our results (4.8) and (6.5). They show 
that our category ~ is a model category of their category Ho(SP~). 
Our method is an outgrowth of the author's joint work with Boardman 
[3]. The machine developed there enables us to give a more or less 
satisfactory treatment of the category ~4~cg and to prove results like 
Theorem (1.4). I also should mention a paper of Mather [10], in which 
he defines homotopy limits and colimits for special types of homotopy 
commutative diagrams, but important homotopy limits and colimits 
such as the mapping torus are not contained in his concept, nor does he 
introduce the category of such diagrams. 

Some of the results on homotopy colimits have been sketched in [3]. 
I am indebted to T. tom Dieck for many helpful comments and sug- 
gestions. 

2. Homotopy Diagrams 

Let ~ / ~  c~/~* be the full subcategory of well-pointed topological 
spaces X, i.e. (X, *) is a NDR (=neighbourhood deformation retract), 
where *6X is the base point. Here we call a pair of spaces (X, A) a 
NDR if A ~ X  is a closed unbased cofibration. Let ~ ~ ~ * 0'@~ c 3@~ denote 
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the associated homotopy categories. There is an inclusion functor 

(+): ~ - - ,  y O ~  

sending X to X + =Xvo {,} with the additional point * as base point. 
Since the theory of homotopy limits and colimits can best be developed 
in the category cg~ of compactly generated spaces [17], called k-spaces, 
but one often wants results in full generality, we work in cg~ and ~-'~fi 
respectively their based versions cgcs cg~,, ~ y ,  ~ f i ,  simultaneously. 
Of course, if we deal with k-sPaces, products, sums, and other limits and 
colimits are formed in the category cg~. 

(2.1) Definition. A pretopologica! category is a small category cg whose 
morphism sets are topologized. If in addition composition is continuous, 
cg is called topological. Call c~ well-pointed if it is topological and each 
pair (Cg(A,A), idA), A~obCg, is a NDR. A continuous functor of pre- 
topological categories is a functor which is continuous as map of the 
morphism spaces. 

A small category in the usual sense is considered as topological cate- 
gory with the discrete topology and hence called discrete (not to be 
mixed up with the category theoretical notion of a discrete category}. 

Let y--cg be the category of small topological categories and continuous 
functors. We define a functor 

T: 3-c6--~ j-cg 

as follows: Let %(A,B)={ ( f , , f , _  1 . . . . .  fl)~(morCg)"lf, . . . . .  f l :  A--,B 
is defined in cg}, n > O, with the subspace topology from (mor cg),, and 
put 

Cgo(A,B)={{~dA} A=B 
A~:B. 

Define o b T ~ = o b  ~ and 

T~(A, B)= LI cg,+l (A, B) x I". 
n>__0 

Composition in T~  is given by 

(f, ,  t,, ..., fo) o (gin, u,,, ..., go) = (f, ,  t,, ..., fo, O, g,,, u,~, ..., go). 

If F: cg__+ ~ is a continuous functor, we define TF: TOg--+ T~  by 

TF(f,,  t . . . . .  ,fo)=(F A, t,, ..., F fo). 

There is an augmentation functor 
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given by e(f,,  t,,, . . . , f o ) = f n C ~ f n _ l  . . . .  o fo  , which is continuous, and a 
continuous, non-functorial standard inclusion 

t/=t/((g): (g-~ T(g 

defined by t / ( f )= ( f ) .  Both are natural, i.e. if F: ( g ~ @  is a continuous 
functor, then 

~(~) o T F = F  o e(c~) 

tl (9) o F = TF o rl ((g). 

(2.2) Definition. Let (g be a pretopological category. A (based) (g- 
diagram D consists of a function Do: ob cg--+'ob ~f i*  and a collection 
of maps 

DA, B: (g(A,B)xDoA--~ DoB 

one for each pair of objects (A, B) of (g such that 

(i) DA, ,4 (ida ; x) = x for x ~ D O A, 
(ii) DA, B(f; *)=*,  * denotes base points, 

(iii) DA, B(g~ x)=Dc,~(g; DA, c( f;  x)) for f :  A--~ C,g: C-~ B. 
Call a Cg-diagram D well-pointed if each D o A is well-pointed. An unbased 
(g-diagram D consists of a function Do: ob(g--+obd/-2fi and maps 
DA, B: (g(A, B) x D o A-~ D O B satisfying (i) and (iii). 

Remark. If we give (gff* (X, Y) the k-function space topology respec- 
tively ~ f i*  (X, Y) the compact-open topology, then the function D o 
together with the adjoints of the DA, B defines a functor (g--~ (g(r respec- 
tively (g--+~/~* which is continuous on the morphism spaces. The 
converse always holds in (gfr because we have full adjointness there, 
but not in general in ~-~fi* unless each space D o A is locally compact or 
(g discrete. Hence in cg~. or if (g is discrete our definition coincides with 
the usual one. The same holds for the unbased version. If we consider 
diagrams in (g~ or cg$*, we, of course, assume that the spaces (g(A, B) 
are k-spaces. 

(2.3) Definition. Let (g be a topological category. A (based) homotopy 
(g-diagram, or h(g-diagram for short, is a T(g-diagram D such that 

DA, B ( L , t .  . . . .  ,fo;x) 

/ DA, B(f,, t,, ..., t2, f~ ; x) 

DA, ~(f,,, t . . . . . .  f + l ,  ti+l t i , f - 1  . . . .  ,fo; x) 

= DA B(f,_~,t ,_,  . . . .  , fo ;x)  
o DA,~(f,, t,, ..., t i+l,f/  Ji-1, ti-1 . . . .  ,fo; x) 

Math. Z., Bd. 134 

f o = i d  

f = i d ,  0 < i < n  

s  

t i= 1 
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with x e D o A ,  ( f . , t  . . . . . .  fo)eTCg(A,B). If D is well-pointed or unbased 
and satisfies the equations, we call it a well-pointed respectively unbased 
hC~-diagram. 

We can define a quotient pretopological category WCg of TOg such that 
in (gN* a h~-diagram is a WC~-diagram (note that WCg is topological if 
we work in (gfq). Define ob WCg = ob cg and WCg(A, B) = TOg(A, B ) / ~  with 
the relations 

(f,, t , ,  . . . ,  tE,f l)  fo=id  

, . ( f , , t , , . . . , f i + l , t i + a t i , f i _ l , . . . , f o )  f = i d ,  0 < i < n  
(L, t , ,  / 

/ ( f , -1 ,  ,-1, ...,fo) f ,= id  .... f~  t 
! 

[ ( f , , t , , . . . , t i + l , f ~  . . . .  ,fo) t ,= l .  

Composition is induced by the composition in TOg. It is easily checked 
that a hOg-diagram induces a WCg-diagram and that the converse holds 
in (gN, because identifications commute with products. 

Example. Let ~ be the category given by the commutative diagram 

B 

A .C 

Then a h(g-diagram is a homotopy commutative diagram of the same 
type with specific homotopies H: fl ~  K: i t o f o l i o ,  L: izofl ~ i l ,  
M: i2 ofz--io such that the loop 

i2oH 

L o (fo x id) 

~ i l  ~ "io K 

can be filled in by a specific homotopy. 

The example suggests that a hOg-diagram is a (g-diagram up to 
coherent homotopies. This is indeed true as the following result shows, 
which we shall prove later. 
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(2.5) Theorem. I f  ~ is well-pointed, the augmentation e: TCg--~ cg induces 
a functor g: WCg-~ cg which is a homotopy equivalence on each morphism 
space. 

Let 5r be the category with objects 0, 1, 2 . . . . .  n and exactly one 
morphism i<=j: i--~j if i<=j. 

(2.6) Definition. Let cg be a topological category and D and E two 
C6-diagrams. A homomorphism f:  D--~E is a (cg x •l)-diagram whose 
restriction to cg x 0 is D and to cg x 1 is E, or equivalently, a collection 
of based maps fA: Do A-+ E o A, one for each A ~ ob c~, such that 

Cg(A, B) x D O A ~ Do B 
LPA, B 

~(A, B) x E o A ~ E o B 
15A, B 

commutes. The fA are called the underlying maps of the homomorphism. 
A homomorphism of unbased %diagrams is defined similarly. 

Again we find that this definition is equivalent to the usual one if 
we work in cgN. or ~ or if ~g is discrete. 

Homomorphisms as maps between h ~-diagrams are not good enough 
for our purposes. Instead we want the diagram of (2.6) commute up to 
coherent homotopies only. 

A continuous functor F: cg--~N transforms a N-diagram D into a 
~-diagram F* (D) by 

F* (D)o = D O o ( f  lob c~), F* (D).4, B = DFa, FB ~ (F[Cg( A, B) x id). 

If (g is topological, F is the augmentation e(cg): T(g---, cg, and D a ~g- 
diagram, then F*(D) is a hOg-diagram. Hence we may consider a ~-  
diagram as a hOg-diagram. In "geometric" termes, a Cg-diagram is a 
h~f-diagram with trivial homotopies. Just so, if F: ~ - - .  N is a continuous 
functor and D a hN-diagram, then TF* (D) is a h~g-diagram. 

Every order-preserving maps e: {0, 1 . . . .  , m} ~ {0, 1, ..., n} induces a 
functor ~,~ ~ A~ and hence a functor 

T(Id x ct): T(~g x 2,q.~) -~ T(C~ x 2.c~ ). 

Let ~i: ~ - 1  - ,Sf~  and ai,: ~ - 1  --, 2,r be the functors given by the 
maps 

{0,1,. n-1}~ jF-~ fJ  
j < i  

. . ,  e {0, 1, . . . ,  n} 
j + l  j>=i 

{0, 1, . . . , n +  1}~je+ - 1  j > i  "'" 
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Define a simplicial class ycg ,  by taking as n-simplexes all h(~  x f . ) -  
i by diagrams and defining the face and degeneracy operations d ~, and s, 

d~(D)= T(Id x 5i,)*(D) and se,(D)= r ( Id  x a~n) * (D). Similarly, let 5Peg and 
5fog- be the simplicial classes whose n-simplexes are all unbased respec- 
tively well-pointed h (cs x 5~ and whose face and degeneracy 
operations are defined as for 5e~f*. The corresponding versions in the 
category of k-spaces are denoted by 5Pcs 5~ and 5 ~  

For  convenience, we write A ~ for (A, i)~ob(Cg x ~ )  and denote the 
unique morphism (idA, 0 <  1): A~ A 1 by JA. 

From now on we state our definitions for (based) h<g-diagrams in 
~ f i ~  only. The corresponding definitions for unbased or well-pointed 
hOg-diagrams are obtained by substituting "hOg-diagram '' by "unbased 
h~f-diagram" or "well-pointed h~-diagram". 

(2.7) Definition. Given two h<g-diagrams D and E. A homotopy homo- 
morphism, a h-morphism for short, from D to E is a h(Cs x ~l)-diagram H 
such that d o (H) = E and d 1 (H) = D. We call the collection of maps 

fA: DoA--~ EoA:x~-+ HAo, AI((JA); x) 

the underlying maps of H and say {fa} carries a h-morphism. Two h- 
morphisms H and K from D to E are called simpIiciatty homotopic if there 
is a 2-simplex ~ in 5 ~  * such that d o (a) = H, d 1 (a) - K, and d ~ (~) = s o (D). 

Given h-morphisms H: D -~ E and K: E -~ F of hOg-diagrams we run 
into trouble when we try to define a composite h-morphism K o H: D ~ E 
We can define a composite by explicit construction but, as usually when 
homotopies are around, we cannot make composition associative. The 
way around this difficulty is suggested by the following property of the 
simplicial classes 5~<g ~ and 5Qc~, which we shall prove later. 

(2.8) Lemma. I f  cg is a well-pointed category, the simplicial classes 5Pcg, 
5'~c~ ~ ocfcg~, and 5 ~  satisfy the restricted Kan extension condition, i.e. 
given ( n -  D-simplexes ~o, ~1, . . . , ~ - 1 ,  ~ +1, . . . ,  %, where 0 < r < n ,  such 
that d ~- 1 as = d i ~ for 0_~ i < j ~ n, i #: r ~ j, then there exists an n-simplex a 
such that di a=~i ,  i:~ r. In other words, the simpliciaI classes satisfy the 
usual Kan extension condition, except that the omitted face in the data is 
not allowed to be the first  or the last. 

(2.9) Definition. Let H: D~ 1 and K: D1--~D 2 be h-morphisms of 
hOg-diagrams. We call L: D o --~ D 2 a composite of H and K if there is a 
2-simplex a in 5Peg * such that d o a = K, d 1 a = L, and d 2 a = H. 

For a well-pointed ~ one deduces easily from (2.8) that composites of 
h-morphisms of well-pointed or unbased hOg-diagrams or of arbitrary 
based or unbased hOg-diagrams if we work with k-spaces always exist, 
that the relation of simplicial homotopy is an equivalence relation on the 
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sets of h-morphism from such a h~-diagram to another one, that the 
homotopy class of a composite K o H  depends only on the homotopy 
classes of K and H, and that up to homotopy composition is associative 
and has sO(D) as identity of D. For details see [3; p. 104ft.]. Hence we 
can form the categories ~ c g  ~, ~4~ of well-pointed respectively unbased 
hOg-diagrams and simplicial homotopy classes of the corresponding h- 
morphisms, and if we work with k-spaces, the categories ~ c g ,  and ~(g~ 
of arbitrary based respectively unbased hC~-diagrams and simplicial 
homotopy classes of the corresponding h-morphisms. 

When we consider h-morphisms from a h~-diagram D to a (g- 
diagram E, which we interprete as h(g-diagram, the homotopies inside E 
are trivial and hence could be deleted. The same holds for h-morphisms 
from a (g-diagram to a h~-diagram. To get rid of unnecessary structure, 
we define ~ Y c ~  x Y '  to be the full subcategories of all objects A ~ 
respectively A", A eob (g, and modify the definition of a h-morphism as 
follows. 

(2.10) Definition. Call a h(Cgxs176 H source reduced or 
hs~ (~ x Y~)-diagram if 

HA, B(fp, tv . . . . .  fo; X) = HA, B(fP, fP . . . . . .  t i+2, f / + l  ofl . . . . .  fo; x) 

i f f / e ~  Call it target reduced or hf(Cg x s if 

HA, B(fp, t, . . . . .  fo; X) = HA, B(fp . . . . .  f /~ ti_~, ..., tl, fo; x) 

if f/e3-. 
Let D, D' be h~f-diagrams, and E a (~-diagram. A source reduced h- 

morphism from E to D, a ~-morphism for short, is a h-morphism 
H: e(~)*(E)--,D such that H is source reduced. Two ~-morphisms 
H, K: E - ~ D  are called simplicially homotopic if there is a hs.ffg x ~2)- 
diagram ~r such that d o (~)= s o (D), d 1 (~)= K, d 2 (0)= H. A J -morph i sm 
L: E--~D is called a composite of the ~-morphism H: E--,D' and the 
h-morphism K: D ' ~  D if there is a h~. ((~ x ~2)-diagram ~ with d o (r) = K, 
d 1 (z) = L, and d 2 ('C) = H. 

Analogously, a target reduced h-morphism or J'-morphism from D 
to E is a h-morphism H: D-+e(cg)*(E) such that H is target reduced. 
Two ~--morphisms H, K: D ~ E are called simplicially homotopic if there 
is a hg-(~g x 5r )-diagram o- such that d o (o-)= H, d l(Cr) = K, and d e (o-)= 
s o (D). A J--morphism L: D --+ E is called a composite of the h-morphism 
H: D--~D' and the J--morphism K: D'-+E if there is a he,-((gx S2)- 
diagram ~ with d o (~)= K, d 1 (~)= L, and d 2 (z)= H. 

There is a modified version of (2.8) which implies that simplicial homo- 
topy is an equivalence relation on the sets of 5P-morphisms and ~-- 
morphisms between appropriate diagrams, that a composite of a 5 p- 
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morphism with a h-morphism and of a h-morphism with a .Y--morphism 
of such diagrams always exists and that its homotopy class depends only 
on the homotopy class of the h-morphism, 5P-morphism, or J--morphism. 

(2.11) Lemma. Let cg be a well-pointed category. Given well-pointed 
[or unbased, or if we work with k-spaces arbitrary based or unbased] 
h~o(cg x 5r 1)-diagrams 0~1, . . .  , ar_l, O~r +l, ... , a n where 1 < r < n, and a well- 
pointed [respectively unbased, arbitrary based or unbased] h ((g x 2#~_ 1)- 
diagram % such that dJ-~ei=diaj for O ~ i < j < n ,  i4=r=t=j, then there 
exists such a h~o(cg x ~**)-cliagram ~ with d i ~ - -~ ,  i ~ r. 

Analogously, given such he,-(cgxZ#1)-diagrams ~o,~1 . . . . .  o~_1, 
~+1, . . . ,~ ,_~ where 0 < r _ < n - 1 ,  and such a h(Cgx~,_l)-diagram ~, 
with dJ-Jcq=diej for O<=i<j<=n, i ~ r ~ j ,  then there exists such a 
hg- (cg x s )-diagram a with d ~ a = ai, i =i= r. 

The proofs of (2.8) and (2.11) for k-spaces can be found in [3; chap. IV 
or VIII. For the topological cases the tools for the proofs are developed 
in the next section. 

3, Extension and Lifting Results 

From now on we only consider the based case. The necessary modifi- 
cations of the proofs for the unbased case are mentioned at the end of 
each section. 

In proving (2.8), for example, we are given a U-diagram E for a sub- 
category ~ of Tog, which we have to extend to a TOg-diagram. Since 
TCg(A,B)~ ]_Icg,+l(A,B)xI ", we do this inductively by constructing 

n > O  

the required map for each space R"(A, B)= cg, +2 (A, B )x  1". Let Qcg ~ TOg 
be the subcategory of all morphisms (f, ,  t,, ... ,fo) with some ti =0  or 1 
or some f an identity, let Q"(A,B)=R"(A,B)c~QCg(A,B), and let 
V"(A, B) = R"(A, B) r "U(A, B). Suppose we have constructed the maps 
D k " R k (A, B) x Do A ~ D O B of a hOg-diagram D for k < n. Then D" is A,B" A , B  
determined by the D k k< n, and the given U-diagram E on A,B~ 

(Q"(A, B) u V"(A, B)) x DoA ~ R'(A,  B) x {*}, 

because D~,B has to satisfy the conditions (2.2) and (2.3). If V"(A, B) is 
closed in R"(A, B) and if ~f is well-pointed, the function given by EA, n 
and the k Da, B on this subspace is continuous. For the inductive step it 
remains to extend this map to R"(A, B) x Do A. Conditions (2.2) and (2.3) 
are then automatically satisfied because no morphism in R ' ( A , B ) -  
Q'(A, B) can be decomposed. 

The situation is somewhat different for h~(CgxS,)-diagrams, 
~ = ~ . Y ; ,  because the conditions(2,10) kill the freeness of T(Cgx ~,) .  
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To give an example, let (f , ,  t,, ..., fo; x) be an element of 

T(CgxS1)(A~215 A~ with fo: A~ 

k Suppose we inductively have defined the maps DaIB~. Rk(Ai, BJ)x 
Do A i - ,  Do B i of a hs~(~r x L~ I )-diagram D for k<n.  Unless one of the fi 
is an identity, or some t~=0, 1, or x = . ,  the map D"Ao, 8, is not given on 
our element. Since fo is of the form fo =(fd  ,J) with f~scg and j = ( 0 <  1): 
0 ~ 1 in ~1 ,  it can be decomposed fo = (idc, j) o (f~, ido), and condition 
(2.10) imposes the following condition on D" to be constructed 

D~o, B~ (f,, t,, ..., f0 ; X) = D~o, B1 (f,,  t,, ..., tl ,  (idc, j ) ;  D~ co [(f(~, ido); x]). 

The example also indicates a way around this difficulty. A morphism 
(fi, tr, . . . , fo) in (cg x ~.,)r+l(A, B) x Ir=Rr(A,  B) is called ~.~-reduced, 

for ~,~ = 5 P: f0 is of the form (idc, (0 < i)) or A 6 ob ~ or r = 0 

for f f  = f :  f~ is of the form (idc, (i < n)) or B r  Y,, or r = 0. 

If . ~ - - ~ ,  all elements of Rr(A,B) are called if-reduced. If P~(A,B)= 
Rr(A, B) is the subspace of i f-reduced elements, let 

Q~ (A, B) = P~- (A, B) c~ Q (~ x ~ , )  (A, B) 

and let V~(A,B)=P~(A ,B)c~U(A,B)  for a subcategory U of TO#. Now 
suppose we are given a ~--diagram E satisfying (2.3) and (2.10) for f f  
and, as a partial data of a h :  (cd • 5e)-diagram D, the maps DA, B for 
A, B e f f  and D~,R = DA, B] Rk (A, B) • D O A for k < r, compatible with the 
given U--diagram. To construct the maps D~.n: Rr(A, B) x D o A ~ DoB 
we need maps hA, B: P~(A, B)• DoA-+DoB which are compatible with 
EAB. and the D kA,B on ( Q ~ ( A , B ) w V ~ ( A , B ) ) x D o A  and which map 
P~(A, B)x {.} to .. If ~---- ~, then h a B is the required extension D r , A , B "  

So let ~ = 5:. It remains to define D r A,B on the subspace of all elements 
(fi, tr, . . . , fo ;x )  such that f~= (f / , j )  with j = ( 0 < p )  for some i and fi' 4=id 
if i=0.  Put 

D~A,B(f~, t~, ... , fo;  X) 
" r - - i  Dc, B(fi, t . . . . .  , t~+~,(id,j); D~ . . . . .  fo; x)) i , O  

= hA,~(fr, tr, q,  (id, j) o , �9 .., ; DA, c((f~, id); x)) i=  0. 

This is a continuous extension of hA, B to the whole of R~(A, B )x  DoA , 
it is compatible with the D k k <r,  and satisfies the conditions (2.2), A , B ,  

(2.3), and (2.10), but it is compatible with the ~--diagram E only under 
extra conditions on ~ given in the next definition. For  Y =  J -  the 
reasoning is analogous. 
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(3.1) Definition. Let ~ = ~ , Y , ,  or ~. A subcategory Y#r 
is called ~-admissible if it satisfies the following conditions 

(a) an indecomposable morphism in ~/~ is indecomposable in 
T((~ x ~,) ,  

(b) each V~(A, B) is a closed subspace of p~(A, B), 
(c) each pair (P~ (A, B), V~ (A, B) ~ Q~ (A, B)) is a NDR. 

(d) If ~ =  50 [ Y =  Y3 and (fk, tk, ..., fo)e V with fo = (f~ ,J), 

j = ( 0 ~ p )  and fo4:id[fk=(f i , j ) ,  j=(p~n)  and fi4=id], 

then (~,  tk . . . . .  tl, (id,j))e ~,, [((id, j), tk, fk-1 . . . .  , f0) e ~ 3  and :Y contains 
the full subcategory of T((~ • ~ , )  of all objects in ~ [in Y] .  

(3.2) Definition. A sequence of closed subspaces ~- -  X_I ~ X0 ~ X1 
X2 c . . .  of a space X is called a filtration if X = colim X,. A filtered 
category is a topological category (~ with a filtration (~" (A, B) of each 
space cs (A, B). 

(3.3) Definition. Call a triple (~, (~, F) consisting of a continuous functoc 
F: ~' -~ (~ of filtered categories acceptable if 

(a) ob ~ = ob (~ and F preserves objects and the filtration, 
(b) ~ (A, B) • X = colim (~" (A, B) • X) for any space X, 

(c) ~"(A,B) is obtained from (~"-~(A,B) by attaching ~"(A,B) 
relative to a subspace D~"(A, B) such that (~"(A, B), D~"(A, B)) is a 
NDR, and the induced map ~"  (A, B) ~ ~" (A, B) is F. 

(3.4) Definition. Let @ be a pretopological category. A family D ~, 
t ~ I ,  of @-diagrams is called a homotopy of ~-diagrams if D~ is inde- 
pendent of t and the maps 

I •  xD~ A ~  D~ B 

D t (t, f, x) ~-~ a,B ( f ,  X) are continuous. 

(3.5) Proposition. Let ~ = ~ , ~ , ,  or ~. Let i: ~F~T(C~xS,)  be a ~-  
admissible subcategory and c~ be well-pointed. Suppose given a well- 
pointed h~ (cd • ~_~',)-diagram E and a homotopy of well-pointed ~r-diagrams 
D t satisfying conditions (2.3) and (2.10) for ~,, when defined, such that 
D~ Then there is a homotopy U of well-pointed h~(C~ • Y,)- 
diagrams with E~ E and Dr= i* (E t) for all t e I. 

Proof. If~r is the full subcategory of T(C~ • ~ , )  of all objects in ~ , then 
s~ is either in ~U in which case EtA,~ for A, B e o b ~  is given by D tA,B, or 
s~ c~ Y/~ is empty or contains only identities in which case we put U - A, B - -  

0 EA,~ for A, B e o b ~  and tel .  If not both A and B are in ob .M, we in- 
ductively assume that we have constructed maps fd, B: I X R ~ (A, B) x E o A 
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E o B for k < r such that fA, B I t X R k (A, B) x E o A is part of the data 
of the required ho~ (off x ~,)-diagram EtA, B. By the considerations above 
we need a map 

hA, B: I xP} (A ,B)  xEoA--~ EoB 

which is already given on the subspace 

Z = I  x (Q~(P, B) u V~(A, B)) x E  o A • I x Pr x {*} 

O x P~(A, B) x EoA 

by the previously defined k f], B, the condition (2.2 ii), and the requirement 
EOA,B =Ea, B" Since (Q~(A,B)u  V A ( A , B ) ) x E o A u P ~ ( A , B ) x  {*} is a 
N D R  of Pf, (A, B) x E o A by the product theorem for NDRs  [15; Thin. 6], 
Z is a retract of I x P~ (A, B) x E o A so that the required extension exists. 

The following result substitutes [2; Thin. 3.17] and translates the 
methods of [3; IV w 1, 2, 3] to our situation. 

(3.6) Proposition. Let Y =  5~, f,, or ~, and let qgrc T(Cg x Sn) be the full 
subcategory of objects in ~ Given a diagram 

T(r x ~.Of ,,) x.~, N ~ = e (~  x 5f .)  

~ X S n  K ' #  

of topological categories and continuous functors and a well-pointed 
d-diagram D such that 

(i) (,J, N, F) is acceptable, ~ a ~-admissible subcategory containing 
r and cg well-pointed, 

(ii) /f f g e d ( A , B )  are such that F ( f ) = f ( g ) ,  then DA, B( f ;x )=  
OA, s(g; X) for xeDo A, 

(iii) H* (D) satisfies the conditions (2.3) and (2.10)for ~ when defined, 

(iv) o b N = o b g  and G preserves objects. I f  J) '~#)  and g ' c ?  are 
the full subcategories of objects in K o e ( ~ ) ,  then G[~' :  N ' - * g '  is an 
isomorphism with inverse G and G is a homotopy equivalence on each 
morphism space of 8 ,  

(v) F o (HI ~t/) = G o K o ~ o (il ~ ) ,  
(vi) Lt is a homotopy through functors from K o e o i to G o F o H and 

Ltl ~l/'= Go F o (HI i##) for all te l .  

Then there exists a h~ (~ x 2,(',)-diagram E with the following properties: 

(a) E extends H* (D) 
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(b) I f  r: ob T(~ x ~L,r ob d is given by K o ~, then E o =D O o r. 

(c) Let Z(A,B)=~C(rA,  r B ) x E o A / ~  with ( f ; x )~ (g ;x )  if F ( f ) =  
F(g) and let Z' ~ Z  be the subspace of elements of the form ( f ;  .), let 
JA, B : Z (A, B) ---, ~ (r A, r B) x Eo A and dA, ~: Z (A, B) ~ Eo B be the maps 
induced by F x id~o A respectively DA, B, let U~A,B=(K o ~[ pC(A, B)) x idDo~A 
and Va, e=(GJ~(r  A, r B)) x idDora. Then E*A,B]Pr B) x EoA factors as 

PC (A, B) x Eo A ~ Z (A, B) ~ Eo B 

such that f~, B (P~ (A, B) x ,) ~ Z', and there are homotopies 

mA B." I • x E o A - * 8 ( r A ,  rB) •  

from u], B to VA, B ojA, B ~ B extending (LI I x V~(A, B)) x id~oA, such 
that m~A, B (1 X F~ (A, B) x *) ~ g (r A, r B) x *. 

Moreover, given two h~(Cg x 5~,)-diagrams E ~ and E 1 satisfying (a), 
(b), (c), then there is a homotopy E t of h~ (~ x ~,)-diagrams from E ~ to 
E 1 such that each E t satisfies (a), (b), (c). 

For the proof we need the following result (see [3; Appendix 3.5]). 

(3.7) Given a homotopy equivalence p: Y-*Z ,  a NDR (X,A), maps 
fa: A--~Y and g: X--~Z and a homotopy HA: pofA~--glA. Then there 
exist extensions f:  X ~ Y o f f  A and H: p of  ~-g of HA. 

Proof of (3.6). We construct E~4,B again by induction on r. For 
A, Be ob ~K we put EA, B=H * (D)A,B and m~A,B=(L]I X V~(P,B)) x ideoA. 
If not both A and B are in ~ we inductively suppose we have constructed 
EkA, B and the homotopies mA,k B for k < r. 

Induction proceeds if we construct a map f~,B: PC( A, B) x E o A 
Z(A, B) extending the map given by H* (D) and the k hA, B for k < r on 
(Q~(A, B )u  V} (A ,B ) ) xEoA  such that f~ ,B(Pr  and a 

r . u r  homotopy ma, B. A,B_VA, BOjA, BOf~,B extending the homotopy given 
by L a n d  the mk x.B, k<r,  on I x ( Q ~ ; ( A , B ) u V ~ ( A , B ) ) x E o A  and such 
that m~A,B(I X PC(A, B) x . ) c g ( r A ,  rB) x .. We will prove in an appendix 
that JA, B: Z(A,B)-- - '~(rA,  rB) x E o A  and its restriction J'A,B: Z ' ~  
N(rA, rB) x .  are homotopy equivalences. We now apply (3.7) twice: 
To the diagram Z' v'A,,o~'~,~ , g(rA,  rB) x �9 

(Q~ (A, B) w V} (A, B)) x * c p} (A, B) • * 

where ' denotes restrictions. Recall that f~,~ is already given on 
(Q~(A, B)u  I/~(A, B))x E o A. The restriction of m~ A,B, which is already 
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defined on I x (Q~ (A, B)u Vr B))x EoA, makes this diagram com- 
mute up to homotopy. Hence we can extend (fd,~)' to P}(A, B ) x ,  and 
(m~, s)' to a homotopy 

(m~, ,) ': I x PC (A, B) x �9 -* g (r A, r B) x �9 v~,, oj~,, (f~, B) -- (U~,,)'. 

Now apply (3.7) to 
Z "'~"~ - - .  N(rA, rB) x EoA 

(f~, .) I~IA,/3" 

(Q~ (A, B) w V# (A, B)) x E o A ~ p~ (A, B) x �9 c P~ (A, B) • E o A 

Since (m~, B)' makes this diagram commute up to homotopy, the required 
extensions f~,s and m~,B of (f~,,)' and (m~,~)' exist. The map E~,~: 
R~(A ,B)xEoA~EoBis then inducedby themapsd  oct A,B JA,B" 

The proof of the second part is similar. Let E ~ and E 1 be two 
h ~ ( ~  • L~,)-diagrams satisfying (a), (b), (c) with the maps f;,B and 
g~., and the homotopies m~,B and n ~ For A , B ~ o b ~  r define CE - A,B" A , B - -  
H* (D).4, ~. If not both A and B are in ~ we inductively suppose we have 
constructed homotopies 

F k �9 I x P~ (A, B) • E o A Z (A, B) A,B" 

from J~,~ to k gA, B, k < r, and homotopies of homotopies 

M k " l •  rB)xEoA A,B" 

from ma, s k  to n~x.B, k<r, satisfying (c) for each t e l  The map/;~,~ and the 
homotopy M r A, B to be constructed are already given on 

I x (Q~ (A, B) u V~ (A, B)) x Eo A ~ OI x P~ (A, B) • E o A 

respectively on 

r A ~r x r I x l x ( Q ~ (  ,B)~2I~(A ,B) )xEoAuc?IxI  p~(A,B) xEoA 

and have to satisfy extra conditions with respect to the base point of E o A. 
We now proceed as in the proof of the first part. 

Proof of (2.8) and (2.11), We prove the results for ~--, the other proofs 
are similar. By assumption we are given h.z(qex~,,_l)-diagrams 
Do, D1, ..., D~_ 1, D~ + 1,-.-, D, _ t, 0 < r ~ n - 1 and a h (~, x ~ _  1)-diagram 
D, such that d 2"- l(Di)= di(Dj) for 0 <  i<  j<n. Let C c T(~  • ~q~) be the 
subcategory generated by the diT(rd• O<_i<_n~ i# r ,  where 
d ~ r ( ~  • S . ) =  T(Id~ • ~ ) ( r ( ~  • ~ -  1))- Then the D/induce a ~Y=diagram 
D which satisfies the conditions (2.3) and (2.10) for J .  Let g be the 
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quotient category of Y~ obtained by factoring out the relations (2.3) and 
(2.10) for Y-~ forgetting the space coordinate. In the proof of [-3; Thm. 4.9] 
one finds that the functor ~---, qf x ~qo induced by the augmentation is 
a homotopy equivalence on each morphism space. Now apply (3.6) 
with d = ~/, g-~ cg x Y~, H = id, K = id, G induced by ~, and Lt the con- 
stant homotopy. We obtain a hj(Cg x s176 extending the 
fZdiagram D. Hence d i E = d i D = Di for i + r. 

We close this section with a proof of (2.5). It contains an argument 
which applied to 4//- in the previous proof shows that (~, N, F) is accept- 
able, where F: Y/-~N is the projection functor, filling a gap we left in 
the proof of (2.8) and (2.11). Filter WCg(A,B) by the subspaces Fp of 
morphisms represented by a morphism in some Rk(A,B), k<p. Let 
NP(A,B)cRP(A,B)  be the subspace of all elements (fv, tp . . . .  ,fo) such 
that some ti = 1 or some f~ is an identity. Then Fp is obtained from F v _ t 
by attaching RP(A, B) relative to NP(A, B). Since cg is well-pointed, 
(RV(A,B), NV(A,B)) and hence (Fp,Fv_l)are NDRs. Hence it suffices 
to show that N v (A, B) is a SDR (strong deformation retract) of R v (A, B) 
because g[ F o is a homeomorphism. But this follows from [15; Thm. 6]. 

Evidently, the results of this section also hold for unbased diagrams. 
In fact, the proofs are easier in this case because the extra considerations 
for base points are redundant. 

4. Properties of h-Morphisms 
Throughout this section let c~ be well-pointed. We list a few properties 

of the category ~ ~  of well-pointed hOg-diagrams. The proofs can be 
obtained from the corresponding results of [-3; Chap. IV, V] by modi- 
fying their proofs in the same manner as we modified the proof of [-3; 
Thin. 4.9] to obtain our statements (2.8) and (2.11) and by substituting 
[-3; Prop. 3.14] by (3.5) where applied. 

(4.1) Proposition. Let A ,B be well-pointed h~-diagrams and E a well- 
pointed P-diagram. Two h-morphisms H, K: A -~ B [~-morphisms H, K: 
E ~, A; g-morphisms H, K: B--+ E-J are simplicially homo~opic iff there 
is a homotopy I2 through h-morphisms A---~B [5~-morphisms E - , A ;  
.Y--morphisms B ~ E] from H to K. 

(4.2) Proposition. Let H: D--~E be a h-morphism of well-pointed hog - 
diagrams with underlying maps {fA: Do A---~EoA}. Given a collection 
of maps {gA: DoA-+EoA] A~obcg} such that fA~--gA, there exists a 
h-morphism K: D-* E homotopic to H having {gA} as underlying maps. 

This result can be generalized; the proof is the same as for (4.2). 

(4.3) Proposition. Given a well-pointed hOg-diagram D and maps E"A,B." 
R"(A,B) x D o A - * D o  B for A, BeobCg and n<k, such that the E"a,~ 
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satisfy the conditions (2.2) and (2.3) /f defined and there are homotopies 
F~,B(t):R"(A, B) x DoA--~ DoB for A, BEobCg andn<=k fromDa, B[R"(A,B) 
x DoA to E" A.B such that each F~.B(t) satisfies (2.2) and (2.3). Then the 

E" A,B can be extended to a well-pointed h%diagram E which is homotopic 
to O in the sense of (3.4). 

(4.4) Proposition. Let H: D~ D 1 and K: D1--~ D 2 be h-morphisms of 
well-pointed hOg-diagrams with underlying maps {fa} and {gA}" Then there 
is a composite of H and K having {ga ~ fA} as underlying maps. 

(4.5) Proposition. Let ~ be a subcategery of cg such that ob ~ =  ob cg 
and each (Cg(A, B), ~(A,  B)) is a NDR.  Let i: T ~ =  TC~ and j: T ( ~  x 5Yi)~ 
T(Cg • ~ ) be the inclusion functors. Suppose we are given a well-pointed 
h~-diagram D, a well-pointed hOg-diagram E, and a h-morphism 
H: D-+i*(E) of h~-diagrams whose underlying maps are homotopy 
equivalences. Then we can extend D to a well-pointed hOg-diagram D' and 
H to a h-morphism H': D'--+ E ofh OK-diagrams, i.e. D = i* (D') and H =j* (H'). 

(4.6) Proposition. Let ~ and cg be as in (4.5). Suppose we are given a 
h-morphism H: D ~ E of well-pointed hOg-diagrams whose underlying maps 
are homotopy equivalences and a h-morphism K': i*(E)--+i*(D) of h ~ -  
diagrams such that K' is homotopy inverse to j* (H), i.e. j* (H) represents 
an isomorphism in ~ whose inverse is represented by K'. Then there 
exists an extension K: E--~ D of 1<2 such that K is a homotopy inverse of 
H. In particular, any h-morphism of well-pointed hOg-diagrams whose 
underlying maps are homotopy equivalences is a homotopy equivalence, 
i.e. it represents an isomorphism in2/Ycg ~ 

(4.7) Remark. The results (4.1), ..., (4.6) also hold in the unbased case. 
If we work with k-spaces, the assumption that the diagrams are well- 
pointed can be dropped in (4.1), ..., (4.4). For a proof see [3; chap. IV, V]. 

We now want to give an alternative description of ~ f  ~ ~,'4,<g, ~ f * ,  
and -Yecg,, which to some extend links our theory with the approaches 
of Bousfield-Kan E4], Quillen, and others. Let / / leg be the category of 
based <g-diagrams and JClCg ~ the full subcategory of well-pointed c~_ 
diagrams. If we work with k-spaces, the corresponding categories are 
distinguished by a subscript k, for the unbased versions we drop the 
superscript. Let Z be the class of all homomorphisms whose underlying 
maps are homotopy equivalences, and denote the associated categories 
of fractions (see [7]) by jNcgo [Z -  1] etc. 

(4.8) Proposition. Let cg be a well-pointed category such that each off(A, B) 
is locally compact unless we work with k-spaces. (X locally compact means 
that each x e X  has a compact, not necessarily Hausdorff neighbourhood 
base.) Then the categories Yt~cg ~ Hog, 2/~cg[, 24~ are equivalent to 
~/16~r E~-l] ,  j ~ E ~ - l ] ,  ~/l(~f [E-1],  ~A((~ e [2-1]  respectively. 
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For k-spaces the proof is in [3; Prop. 4.54]. In the topological case 
it is a modification of [3; Prop. 4.54] of the same kind as the proof of 
(5.4) below is a modification of [3; Thin. 4.49]. 

5. Homotopy Colimits 

From now on we always assume that cg is a topological category. If 
H: D --, D' is a h-morphism of hOg-diagrams and if f :  C ~ D and g: D ' ~  E 
are homomorphisms of hOg-diagrams, there is a canonical way for defining 
a composite goHof, so that such a composite exists even if c~ or the 
diagrams are not well-pointed. 

(5.1) Definition. The h-morphism L: C--* E given by 

LAO. B 1 = g n  o HAO ' B1 o (idT.(AO, ~1) • fA):  T~( A~ B1) x C O A ~ E o B 

is called the canonical composite goHof  off,/ ,/ ,  and g. (The other data 
of L is determined by C and E.) 

(5.2) Definition. (a) If f :  C-~ D is a homomorphism of h~-diagrams, 
H: D --~ D' a f - m o r p h i s m  and g: D'--* E a homomorphism of ~-diagrams, 
then the formula of (5.1) defines the canonical composite J--morphism 
goHof  

(b) If f :  C ~ D is a homomorphism of C6-diagrams, H: D ~ D' a 
Y'-morphism, and g: D'---~ E a homomorphism of h~-diagrams, then the 
formula of (5.1) defines the canonical composite ~-morphism g o 14 of. 

Define a continuous functor p: T(Cf x ~ ) ~ T~  x ~ by taking the 
identity on T(Cf x 0) and T(~ x 1) and mapping fE T(~ x L,r l )(A ~ B 1) to 
(idB,j)os~ where j=(0=< 1 ) 6 ~  and the image of s~ T(Cfx G ) ~  Tc~ 
is identified with T ~  x 0 in TCf x Yl.  This functor allows us to consider 
a homomorphism of hC~-diagrams as a h-morphism. 

Suppose we are given her-diagrams D, D', E, a h-morphism H: D ~ D' 
and a homomorphism g: D'~E.  We construct a h(C~ x ~2 )-diagram F 

by F [ d O T ( ~ x ~ ) = p , ( g ) ,  FId2T(C~xSF2)=H, 
and 

FAo ' e a = g B  o HAO ' B,O (T(Id x o -1) X id) 
with 

T(Id x a 1) x id: T(~ x ~r ) ( A~ B2) x D O A ~ T(~ x ~ i )  (A ~ B1) x Do A. 

Then d 1 (F) is the canonical composite g o H, which hence is a composite 
in the sense of (2.9) of the h-morphism H and the canonical h-morphism 
p* (g) induced by g. Similarly we can show in the situation of (5.1) and 
(5.2 a) that the canonical composite H of is a composite H o p* (f) in the 
sense of (2.9) respectively (2.10), and in the situation (5.2 b) that the 
canonical composite go H is a composite 5D-morphism p* (g)o H in the 
sense of (2.10). 
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(5.5) 

(5.3) Definition. We call two homomorphisms f g: E --~ E' of ~-diagrams 
homotopic if there are homotopies Fa(t): fA~--gA from the underlying 
maps {fA} o f f  to the underlying maps {gA} ofg such that each collection 
{FA(t): EoA~E 'oAIA~ob(g}  is the collection of underlying maps of a 
homomorphism F(t). 

Evidently, this definition is equivalent to saying that there is a 
homotopy of (c~ x S/)-diagrams from f to g which is constant on c~ x 0 
and cd x 1. 

(5.4) Proposition. Let cd be a topological category such that each Cd(A, B) 
is locally compact unless we work in the category cgN of k-spaces and let D 
be a hOd-diagram. Then there is a Cd-diagram MD and a Y-morphism 
,Up: D--> MD such that 

(a) MD is well-pointed if cg and D are well-pointed, 

(b) the underlying maps ma: Do A ~  MD o A, A ~ ob cg, are inclusions as 
SDRs, 

(c) a g-morphism H: D-+E is the canonical composite of #D and a 
unique homomorphism h: MD -* E of C~-diagrams, 

(d) if ~ is well-pointed and if H, H': D--~ E are simplicially homotopic 
3T-morphisms, then the induced homomorphisms, h, h': MD --, E are homo- 
topic provided D and E are well-pointed or we work with k-spaces. 

Proof. Define MD o : ob c6 -~ ~/~ ~ by 

M D o A =  [_[ LIcd ,+I (B ,A) •215  
n>O B e ~  

with the relations 

( f . ,  t., ..., t2, fl ; x) f o = i d  

(f,, t,,-..,f~+l, ti+l ti ,f ._l,  ..-,fo; x) f /=id,  0 < i < n  

( f , , t , , . . . , fo ;X)=,  ( f , , t  . . . . .  ,ti+,,f~ofi_l, ti_ 1 . . . . .  fo ;x)  t i=l  

( f , , t ,  . . . . .  fi;Dn, c(fi-1, h-1, . . . , fo; x)) ti=O 

(idA ; *) x = * 

where f~-i . . . . .  fo: B -+ C. The base point is (ida; .). By standard methods 
one finds that MD o A is well-pointed if cd and every Do A is well-pointed. 
If we work with k-spaces or if Cd(A, A') is locally compact, the map 

~(A, A') x ( L  [ [_ICdn+I(B,A) x l n x D o B ) ~ C ~ ( A , A ' ) x M D o  A 
n>O B ~  

is an identification so that the maps ~ ( A ,  A') • M D  o A ~ M D  o A' given by 

[f, ( f . ,  t. . . . . .  fo ; x)] ~ [ fo f . ,  t. . . . . .  )Co; x] 

are continuous and define the Cg-diagram MD. 
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Let (f~, r,, t , , f , _ l ,  r ,_, ,  tn_l . . . . .  f l ,  q ,  q , f o ;  x) with (f~,fn 1, ... ,fo) ~ 
%+1(A, B), t ~ I  and r~e {0, 1} denote the element ( s  tn,f~_~, ... ,f~; x)s 
T( cg • ~q~z ) ( A~ B1) x D O A, where fi' = (fi, (rl ~ r i + 1))e ~ X ~ i ,  F0 ~--- 0, r~ +t = 1. 
Then the N-map #D: D-+ M D  is given by D and M D  on d ~ T(c~ x s176 ), 
i=  0, 1 and the remaining data 

(#O)AO, B' : T ( ~  x S t  ) (A ~ B 1) x D O A --~ M D  o B 

is defined by 

(f . ,  r., t . , fn-1,  r.-1, t . _ t ,  . . .  ,fo; x)~-~ ( f .  . . . . .  f~, t,,f~_, . . . . .  f*, q , fo;  x) 

if ri=O and ri+ 1 = 1 (again ~b=0, r,+l = 1). The underlying maps are 

mA: Do A---~MDoA: x~( idA;  x) 

and the strong deformation F: I x M D  o A---~MDoA of M D o A  into DoA 
is given by 

F(u, (f, t, . . . .  ,fo; x))=(idA, u, f , ,  t,, ..., fo; x). 

Given a f - m o r p h i s m  H: D --* E, then 

hA: M D o A - ~  EoA:  

( f , ,  t . . . . . .  fo; x)~->HBo, A~(f . ,  O, t , , fn_1 ,0 ,  t ,_ l ,  ... , f l ,  0, t l , fo;  x) 

where B = source fo, defines the unique homomorphism of Of-diagrams 
such that H is the canonical composite ho#n. If H,H ' :  D - * E  are 
simplicially homotopic f -morphisms ,  then there is a homotopy H t 
through N-maps D--, E from H to/4' by (4.1), and/-P induces a homotopy 
h t of the induced homomorphisms M D  --~ E. 

Let ~4z~f* be the category of (d-diagrams and homotopy classes of 
homomorphisms and ~Az~ ~ the full subcategory of well'pointed C~-dia- 
grams. A subscript k indicates that we work with k-spaces. Proposi- 
tion(5.4) enables us to define a functor M: ~qf~_+A/'cgo We send a 
hOg-diagram D to M D  and a representing h-morphism H: D--~ D' to the 
homotopy class of the homomorphism M D  ~ MD' induced by some 
composite ff-morphism pn, oH. Since the homotopy class of #w oH is 
independent of the choice of the representative H if cg is well-pointed, 
the homotopy class of M(H) is independent of the choice of the representa- 
tive. So if ~ is well-pointed and each (g(A, B) locally compact, there is a 
functor M: YFc~~ JV'cg ~. 

Under the same assumptions there is also a functor 
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sending a Cg-diagram E to e(cg) * (E) and a representing homomorphism 
h: E-+ E' to the simplicial homotopy class of e(c~ x ~ )* (h). We can 
regard J' as a sort of inclusion functor. Similarly, if we work with k-spaces 
and if cg is a well-pointed category, there are functors 

M: d4fc~ *-~  ~cg* and j , :  ycg~ _~ 2/f~f~'. 

(5.6) Theorem. (a) I f  c~ is a well-pointed category such that each C~(A, B) 
is locally compact, the functors 

M: ~cg~-~ d c g ~  J' : sUcg~ Wcg ~ 

D ~-~MD E k+e(cg)*E 

exist. M is fully faithful and left adjoint to J'. 

(b) I f  we work with k-spaces and cg is well-pointed, the analogous 
functors M: 2/gcg]-+~Ucg * and J': ./Ucg~---> ~ c g  * exist. M is left adjoint 
to J' and its restriction to ~cg ;  is fully faithful. 

Let D, D' be hOg-diagrams and E, E' be E-diagrams which we assume 
to be well-pointed unless we work with k-spaces. Denote the sets of 
simplcial homotopy classes of 5~ E-+ D and ~--morphisms 
D - * E  by 5~(E, D) respectively Y(D, E). Since any hs~(cg x 5~ 
and any hg-(cg x 5r is a h(Cg x 5~,,)-diagram, there are maps 

Psi: 5P(E,D)-+ Wc~+(e* E, D) Pg-: J(D,E)--> g/gcg+(D,e* E), 

which are by (2.8) and (2.11) natural with respect to homomorphisms 
E--* E' and to h-morphisms D---, D'. For k-spaces we have to substitute 
Hog ~ by ~gc~E]. 

(5.7) Lemma. I f  cg is well-pointed, the maps Ps~ and Pg- are natural bi- 
jections. 

Proof Let H, K: D-+ E be two ~--morphisms such that p~- (H) = pj(K).  
If we consider H and K as h-morphisms, we denote them by H' and K'. 
Since the identity homomorphism E--->E can be considered as J-mor-  
phism e* (E)-+ E, there is a h s (cg x Lf2)-diagram r such that d o (r)= ida, 
d l(r) = H, and d 2 (r)= H', and a similar one for K and K'. Now apply 
(2.11) to the situation 

E 

3 Math. Z., Bd. 134 
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By assumption, the h-morphisms H' and K' are simplicially homotopic 
so that the face opposite to e* (E) is the only one missing. We fill in and 
obtain a simplicial homotopy of Y--morphisms from H to K. 

If H': D--+ ~* (E) is a h-morphism, we apply (2.11) to the situation 

e* E 

/ 
D ~E H 

We fill in and obtain a Y-morphism H: D --~ E lifting H' up to simplicial 
homotopy. This follows from the fact that two h-morphisms F, G: D--+ D' 
are simplicially homotopic iff there is a h(gxSe2)-diagram o- with 
d o (0-) = s o (D') = ido,, d 1 (0-) = G, and d 2 (~r) = F, which can easily be deduced 
from (2.8). 

The proof  that p~ is bijective is analogous. 

Proof of (5.6). By (5.4) and (5.7) we have natural bijections 

H g  ~ (D, a' E) ~ J ( D ,  E) ~ Azg  ~ (MD, E). 

The front adjunction D--, J' MD is given by po, which is an isomorphism 
in W g "  by (4.6). Hence M is fully faithful. The proof is the same for 
k-spaces. 

Let colimh: x g *  ~- * --~ g/~//~ be the functor mapping each g-diagram to 
its colimit in the usual based topological sense and a representing 
homomorphism of a morphism E---> E' in X g *  to the based homotopy 
class of the induced map colim E ~ colim E'. This homotopy class is 
independent of the choice of the representing homomorphism. Let 

J":  ~z~/;~ --> w g  

be the functor mapping each space X to the constant Cg-diagram on X. 
It is well-known that the homomorphisms from a g-diagram E to the 
constant diagram on X are in one-to-one correspondence with con- 
tinuous based maps colim E ~  X. This bijection is compatible with 
taking homotopy classes. Hence colimh: ~/~g* ~ * --+ Yo/~ is left adjoint to 
the inclusion functor J". 

Similarly the usual limit functor lira: Xgcg*---> ~%/~* induces a functor 
limb: ~Arg*--> ~ / ;~  which is right adjoint to J". The same holds in both 
cases for k-spaces. 

Although colimh(Arg" ) does not lie in ~ / ~ ,  we shall later on see 
that colimh(M(~g~))  lies in ~/~2. Hence we can define 

(5.8) Definition. The homotopy colimit functor h-colim: ~cgo_§  
l-.;/g~g * --~ gf#~'] is defined to be the composite h-colim = colimho M. 
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Let J = J'o J":  ~ / ~  --~ ~gt~cg ~ [c~N~ ~ ~cg~]. Then J sends X to the 
constant diagram on X, i.e. ( J X ) o A = X  for all A~obCg and (JX)A,~: 
TC~(A, B) x X ~ X is the projection. Putting (5.6 b) and the considerations 
about colim h together we obtain 

(5.9) Proposition. I f  we work with k-spaces and cg is a well-pointed cate- 
gory, then h-colim: ~cg~--~ ~ *  exists and is left adjoint to J: cg(y, ~ .~(g~. 

By (5.6a) we have the same result for oVfcgo ~ / ~ 2  provided each 
Cg(A, B) is locally compact. We shall later on see that the condition of 
local compactness is unnecessary. 

The Unbased Case. Let ~ be a well-pointed category. Given an un- 
based hOg-diagram D, we make it into a based one D + by substituting 
each DoA by (DoA) +. Then the base point of each space of M D  + is an 
extra component. By deleting it, we obtain a functor jfcg ~ VC-cg or 
~ f ~ - + J V c ~ .  Following it by the functor colim~: ~Arcg--+~/~ or 
##cg~ _+ ~ we obtain the unbased homotopy colimitfunctor. This functor 
is left adjoint to the inclusion functor ~ f i ~  jfcg respectively cg(r ___, yfcg~ 
by the unbased versions of (5.12) below or (5.9). 

(5.10) From (5.5) and the construction of the colimit functor one can 
deduce a direct description of h-colim D of a based hOg-diagram D: 

h-col imD=(  ]_[ ] _ [ c d . ( A , B ) x I " x D o A ) w { , } / ~  
A, Be~ n>--O 

"( t , , f . ,  . . . , t z , f 2 ; x )  f~--id 

( t , , f , . . . , f i + l , h t i _ l , f i _ ~ , . . . , f l ; x )  f i= id ,  1< i 

( t , , f ,  . . . . .  t i+l , f /+lofi , t i_  1 . . . .  , f l ; x )  t i = l ,  i < n  
(t,,,J;,, . . . ,  tl, f~ ; x)= 

( t ,_~ , f ,_ l ,  . . . , f~;  x) t , = l  

(t,,f~, . . . ,fi+l;DA, c(f~, ti_~, . . . ,f~;x)) t i=0 

f~ . . . . .  f~ : A -* C, f ,  . . . . .  f~+~ : C ~ B. In the unbased version we drop 
(.) and the last relation. Using this description of h-colim D it is an easy 
exercise to show that h-colim D is well-pointed if cg and D are. 

(5.11) Examples. (a) If D: Y~ I X g ~Z, then h-colim D is the reduced 
double mapping cylinder in the based case and the unreduced one in the 
unbased case. In particular, if Z is a single point, then h-colim D is the 
reduced (unreduced) mapping cone Cy. 

(b) If D: Xz-Z-~,Y, then h-colimD is the reduced mapping torus 
g 

in the based case and the unreduced one in the unbased case. 
3* 

with the relations 
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(c) Let Gbe a topological monoid in cgff, i.e. an H-space in cs with 
associative multiplication and a strict unit e. Suppose (G, e) is a NDR. 
Let qf be the category consisting of one object P with cr 
Composition is given by the multiplication in G. Let D be the unique 
h (g-diagram on a one-point space. Then the unbased version MD is the 
total space EG and the unbased h-colim D the base space BG of Milgram's 
classifying space construction. In particular, EG is contractible by (5.4 a). 
For a proof see [3; VI, w 1]. 

For the construction (5.10) of h-colim D we did not need that each 
space Cg(A,B) is locally compact. This assumption was only needed 
in the proof of (5.4) when we showed that MD is a W-diagram. Let 
cg d be the category cg with the discrete topology. Then the identity cg d ~ cg 
is a continuous functor inducing a functor d q r  ~ ---, Xcg~. Now 

commutes. Hence it is reasonable to conjecture that (5.9) and its unbased 
version hold for arbitrary spaces too. We need the assumption that cg 
is well-pointed, because otherwise ~cg~ might not exist. In fact, we can 
show 

(5.12) Theorem. I f  cg is a well-pointed category, then h-colim: ~ o _ _ ~  
~o/~ exists and is left adjoint to the inclusion functor J. The same holds 
for the unbased version. 

Proof Consider X e ~ / ~  as a constant %diagram and let H: D ~ X 
be a Y-morphism. Construct MD as in (5.4). Then MD is a cgd-diagram 
although it might not be a Cg-diagram and h: MD--, X as defined in (5.4) 
is a homomorphism of cgd-diagrams inducing a continuous map k: 
h-colimD--~X. Let {iA: MDoA--~colimMD} be the set of universal 
maps. Then the composite {iA} o #D as defined in (5.2) is a .Y--morphism 
from D to the constant h Cg-diagram h-colim D, and k is the unique map 
such that the canonical composite k o ({ia} o #D) equals H. A homotopy 
through ~--morphisms D - ,  X from H to H' induces a homotopy of the 
induced maps k, k': h-eolim D ~ X. Hence the result follows from (5.7) 
in the same manner as (5.6) follows from (5.4). 

6. Homotopy Limits 
For topological spaces X and Y let F(X, Y) denote the space of all 

maps X - *  Y with the compact-open topology or the usual function 
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space topology if we work in (gN. If Y has a base-point, the constant 
map X -~ {*} c Y is a natural base point for F ( X ,  I7) even if X is not 
based. 

(6.1) Proposition. Let  cg be a topological category such that each Cg (A, B) 
is locally compact unless we work in (gf~, and let D be a hC~-diagram. Then 
there is a C~-diagram ND and a 5P-morphism vv: ND--~ D such that 

(a) the underlying maps n A : ND o A ~ D o A, A ~ ob ~, are deformation 
retractions 

(b) a 5~-morphism H: E--~D is the canonical composite of  a unique 
homomorphism h: E--+ ND and v v. 

(c) I f  (g is well-pointed and if H, H' : E -~ D are simplicially homotopic 
5P-morphisms, then the induced homomorphisms h, h' : E- - .  ND are homo- 
topic, provided E and D are well-pointed or we work with k-spaces. 

Proof  Define ND o A to be the subspace of all elements 

{~slBe ob c~} ~ 1-I F (  L l  cg,+,(A,B) x P,  Do B) 
Be~' n__>0 

satisfying 

(6.2) 

:~B ( f . ,  t .  . . . . .  fo )  = 

:ZB(f, , t . . . . .  , f /+l ,  ti+, t i , f i -1  . . . . .  fo) 

:~B (f~- 1, t ,_l ,  .. �9 f0) 

:~B(f,, t,, . . . ,  t i+ l , f  ~ ti_, . . . .  ,fo) 

Dc, B(f., t . . . . .  ,fi; ac(f i-1,  t ,_, . . . .  ,fo)) 

f = i d ,  0 < i < n  

s  

ti = 1 

t i = 0  

where f ,  . . . . .  f~: C - + B  in ~. The base point of NDoA is the product 
of the constant maps. If Cg(A, C) is locally compact or we work with 
k-spaces, the correspondence (f,  {C~B} ) ~ {~B} with 

~ B ( f n ,  tn, " "  , f o ) = O ~ B ( f n ,  tn,  " " ,  t l , f 0  o f )  

defines a continuous map Cg(A, C ) x N D o A - - , N D o C  extending the 
function NDo to a Cg-diagram ND. For the definition of v D we again 
adopt the notation of the proof of (5.4). The diagrams D and ND and the 
maps 

(•D)A ~ B 1 [ T( cg • ~ l  ) ( A~ Ba) x NDo A --~ Do B 

given by 

(( f , ,r , ,  t , , f , _ l , r , _ ,  tn_ 1 . . . . .  fo), {:~c})~:~B(f,, t,, . . . , f  of~_ 1 . . . . .  f0) 

ifr i = 0 and r i +1 = 1, define the 5~ %. The (%)AO, B' are continuous 
because (g(A,B)  and hence c~ ,+I (A ,B)x I"  is locally compact or we 
work in cgN. The underlying map hA: ND o A--~ D o A is given by nA({XC}  ) 
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= :Z A (idA). The correspondence x ~-, {~c} with 

C~c (fn , t,, ... , fo)=DA, c ( f , ,  t,, ... ,fo; x) 

defines a section SA: DoA --~ N D o A  of hA, and Ht({:~c})-- {:~b} with 

~b (f , ,  t,, ..., fo )=  ac(f , ,  t . . . . . .  fo, t, idA) 

is a deformation of NDo A into the section. 

If H: E--~D is a ~-morphism, then the maps ha: E o A - - , N D o  A 
given by hA (X)(f , ,  t,, ... , fo)= HAo, Rl(fn, 1, t,, f ,_ l ,  1, t,_l, ... f b  1, tl, fo; X) 
define the unique homomorphism h: E--+ ND such that H =  v u o h. If 
H, H': E--~D are simplicially homotopic SP-morphism, then there is 
a homotopy through 5~-morphisms E - ~ D  from H to H' inducing a 
homotopy through homomorphisms from h to the homomorphism 
h' : E --* ND induced by H'. 

In the same manner as in the previous section we can show 

(6.3) Theorem. (a) Let  cg be a well-pointed category such that each 
C~(A,B) is locally compact. Then we can extend the correspondence 
D~-~ ND to a functor N: J f c ~ - +  dc~* .  I f  E~JVcg ~ there is a natural 

bijection jfcg~ (j, E, D) "~ JVc~ * (E, ND).  

(b) I f  we work with k-spaces and if c~ is a well-pointed category, we 
can extend the correspondence DP--~ ND to a functor N: * * 
which is right adjoint to J' : ~/Vc~ ~ Wc~,~. 

We cannot prove a strong result of the type of (5.6) because ND is in 
general not well-pointed even if D is. 

(6.4) Definition. The homotopy limit functor h-lira: ~gfc~o__.~fi, 
[-Wc~ * -~ ~N~"] is defined to be the composite h-lira = liIn h o N. 

(6.5) Theorem. (a) I f  c~ is a well-pointed category such that each c~ (A, B) 
is locally compac t, then the func tot h-lira: Wc~ ~ -~ ~ f l *  exists. I f  X ~ ~ f i~ ,  
then there is a natural bijection 

y f c ~  (JX,  D) ~ ~-~fi~ (X, h-colim D). 

(b) I f  we work with k-spaces and if c6 is a well-pointed category, the 
functor h-lim: Y F ~ - - ~ N *  exists. I t  is right adjoint to the functor 

The Unbased Case. In the unbased case the functor N: ~ - ~  
~V~ [ ~  ~ ~ / ~ ]  is constructed in exactly the same way as the functor 
N: ~ ~ ~V'~7*, we just do not mention base points. We follow N by 
the unbased limit functor lim G ~ V ~ - ~ [ . ~ - ~ 7 ~ ]  and obtain 
the unbased homotopy limit functor. Since we do not have to worry 
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about well-pointedness, we have 

(6.6) Theorem. (a) Let cg be a well-pointed category such that each 
Cg(A,B) is locally compact. Then the correspondence D~-~ND can be 
extended to a fully faithful functor N: ~ - - - ~  ~A/'cg which is right adjoint 
to J" y c g  ~ y f~ .  The homotopy limit functor h-lira = lira h o N: ~ c g  
~ / ~  exists and is right adjoint to J: ~ / ~  -+ jfc~. 

(b) I f  we work with k-spaces and if c~ is a well-pointed category, the 
same holds for the corresponding categories and functors. 

(6.7) From the Eqs. (6.2) and the well-known construction of the limit 
functor we obtain a direct description of the space h-lira D for a based 
or unbased h Cg-diagram D: 

h - l i m D c  [ I  F(Hc~ , (A ,B)x I " ,DoB)  
A, B e ~  n>=O 

is the subspace of all elements {aA, B: ]_[ cg, (A, B) x I" ---, D o B I A, B e oh c~} 
satisfying , => o 

r~A,B(f,, t,, ... ,fi+l, ti+l t i , f i-1, . . . ,  q) f~ = id, i<n 

[~XA, B(fn--1,  t . - - i  . . . .  , q) L = i d  

~A,B(f, t ..... ,fl, q)= XA, B(f, , t , , . . . , t i+l,fofi_a, ti_l, . . . , t l) t i= l ,  i>1  

Xc,. (f. ,  t . . . . .  , t2) t 1 = 1 

,DE, B((fn, t,, ".',fl; ~A,~(fi-1, ti--1,'", tl)) ti=O 
where 

f l : A - + C ,  f~-a . . . . .  f2: C-+E,  f~ . . . . .  f : E - + B .  

If D is a based diagram, then the product of the constant maps is 
the base point of h-lim D. 

(6.8) Example. If D: A ~ X ~ B ,  then h-limD is the space of all paths 
in X from A to B. 

Although we can construct the space h-lira D if the spaces Cg(A, B) 
are not locally compact, we cannot drop this conditions because we 
needed it for the continuity of the induced homomorphism in the proof 
of (6.1). The reason actually lies deeper: The functor h-lira can be defined 
without this assumption if we modify the definition of a %diagram. 
Instead of having maps Oa, B: Cg( A, B)x  D O A--* Do B we have to take 
maps 

DA, B: DoA -* F(Cg(A, B), DoB ) 

satisfying a number of conditions. These two definitions coincide in 
cgN but not in ~ f i  because we there do not have full adjointness. We do 
not intend to consider this sort of diagrams because their treatment 
requires a basic modification of the tools of w 3. 
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We close this section with a result on base points which occassionally 
is of interest in applications. 

(6.9) Proposition. Let cg be a well-pointed category with finitely many 
objects such that each Cg(A, B) is compact. Assume further that there is 
a k < o o  such that g = f ,  . . . . .  f~ with n > k  implies that some f~=id. Then 
the homotopy limit of a well-pointed h %diagram D is well-pointed. 

Proof Let E o A = D o A  to I / (*~  1) with 0 e I  as base point. Projecting 
I to 1 ~ I, we obtain a based map PA: Eo A --+ D o A, which is a based homo- 
topy equivalence. Note that E o A is well-pointed. Define 

EA, B : Tog (A, B) x E o A ~ Eo B 

by Ea, BITCd(A,B)xDoA=DA, B and E , R ( f ; t ) = t ,  feTCd(A,B),  te l .  
We obtain a hOd-diagram E such that the PA form a homomorph i sm 
p: E -+ D. By (4.6) and (6.5) the spaces h-lira E and h-lira D have the same 
based homotopy  type. Define a retraction r A: E o A x I -+ Eo A x 0 to * x I 

by [(x, 0) x~D o A 

/(0, t-zx] 
rA(x , t )= i \  1 - x  ! x~I ,  t > 2 x  

|(2x-t d 
[ \  2 - t  ' ! x e I ,  t < 2 x .  

Then we obtain a retraction r: (h- l imE)x  l - + ( h - l i m E ) x O w ,  x I as 
follows. Let q~: Eo B x 0 to �9 x I --+ Eo B and q2: Eo B x 0 vo �9 x I --+ I be the 
projections. Then r({~a, B}, t) = ({fia, B}, U) where 

fia, B: LIcd,(A,B) x I "  ~ ' " - + E o B x I ~ E o B x O v o * x I  & ~EoB 
n>_O 

with t cA, ~ (Y) - (c~A, B (Y), t) and where 

u = m i n  {q 2o rBO ~,B(y)I yeg , (A ,  B) x P, n< k} . 

Since each cg,(A, B) is compact,  r is continuous. Hence h-lim E is well- 
pointed. By [6; (2.7) and (3.26)] the proposition is proved if there is a 
map v: h - l imD--* I  with v -~ (0 )= , .  Since each DoA is well-pointed, 
there are maps ua: Do A --* I with u2 ~ (0) = ,. Put 

/3 ({~A, B})=max {NB(O~A,B(y)) t y~Cg,(A, B) x I", n< k }. 

7. Homotopy Limits and Colimits as Functors from d/l~* to ~-v~* or ~ *  

For some applications it is desirable to have h-colim and h-lira as 
functor from the category J/ /~* of based ~-diagrams and based homo-  
morphisms to .Y-5//* and cg~, because passing to o7. �9 3,~/a~ implies a loss of 
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information. Moreover, both functors are then defined for arbitrary 
topological categories cg. Define functors 

H-lira, H-colim: ~ c g ,  _~ ~ f i ,  

as follows: If D is a ~-diagram, then H-lira D and H-colim D are the 
based topological spaces h-lime*(D) respectively h-colim e* (D) as 
defined in (6.7) and (5.10). If g = {ga: Do A ~ E o A} is a homomorphism 
of Cg-diagrams g: D ~ E, then 

H-lira (g): H-lira D ~ H-lim E, H-colim (g): H-colim D -~ H-colim E 

are given on representatives by 

H-lim (g) ({CZA. B}) = {gB o ~A. B} 

H-colim (g) (t, , f ,  . . . . .  A ; x ) = ( t , , L , . . . , A ; g B ( x ) )  x~DoB. 

The unbased version is defined analogously. 

Let P: ~ f i "  ~ ~fi,~ and P': #?/ego _~ A/~cg~ be the projection functors. 
Suppose cg is well-pointed so that Wcg~ exists. Then put R = J '  o p ' :  
~cgo ~ jV-cg~___~ yfcgo. As an immediate consequence of the definitions 
we obtain 

(7.1) Proposition. Suppose c~ is a small well-pointed topological category. 
Then the diagram 

. /~  (~? o H-colim ~ a  

.i l" 
commutes. The same holds for the unbased version and for based or unbased 
k-spaces. I f  in addition each C~ (A, B) is locally compact ot" we work with 
k-spaces, the same holds if we replace H-coIim by H-lira, h-colim by 
h-lim, and ~fi~, 3-~fi~ by ~f i*  and 2/~fi~.~ * 

If we work with k-spaces or if each Cg(A, B) is locally compact, the 
functors H-colim and H-lira factor as 

H-colim = colim o M,  H-lim = lim o N: jgcg,  _~ J~t~* ~ ~ # *  

with M(D)=M(e*O), N(D)=N(~*O) as defined in (5.4) and (6.I) and 

M(g)(f, ,  t . . . . . .  fo; x ) - - ( f , ,  t,, ... ,fo; gB(x)) x~DoB 

N (g)({~B})= {g~ o ~} .  
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Again we have commutative diagrams 

2C~g o i ( ~  Scg* 

Of course the same holds in the unbased case and for the based and un- 
based case with k-spaces. 

8. S impl i c ia l  P a r a m e t e r s  

It is the purpose of this section to relate our notions of homotopy 
limits and colimits with those of Segal [14 3 and the topological versions 
of those of Bousfield and Kan [4]. We study the unbased version; the 
treatment of the based version is analogous. Let cg be a discrete category 
and D a %diagram. Then Segal's homotopy colimit S (D) is defined to 
be the topological realization of the following simplicial space FD: 
The space of n-simplexes is 

[I • 
A,B~Cg 

with the following face and degeneracy operations 

di(f, , f~_x . . . .  ,fl  ; a)=~ (f~, . . . , f i+l  f~, . . . , f l  ; a) O < i < n  
| 
( ( f , -  1 . . . .  , f l ;  a) i=n 

s i ( f , , f , - l , . . . , f l ; a )  = ( f , , f , - 1  . . . .  , f i+l ,  1,fl, ...,f~ ; a) O<-i<-n. 

We give a different description of S (D) which allows us to compare 
it with our construction. Let A" be the standard n-simplex i.e. the space 
of all points (u~, u2 . . . . .  u,) ~ IR" such that 0 < Ux < u2 <"-_-< u, < 1. Let 

T(D)o(B)= IJ c~.+1 (A, B) • A" • Do(A)/~ 
A ~  

with the relations "~ o 

(8.1) ( f , , u , , f , _  1 . . . .  , u l , f o ; a  ) 

I ( f , ,u  . . . . . .  f i+1 ,u l , i _ l , u i_ l  . . . .  ,fo; a) if f i = i d  

] ( f n  . . . . .  f /+ l ,Ui+l , f / /  f i i_ l ,u i_ l , . . . , fo ;a)  if U i ~ - U i +  1 

-- ](fn ~ Un-1 . . . .  , fo ;  a) if u , =  1 

! [(f,  . . . .  , u2 ,~ ;Da ,  c(fo,a)) if u~=O and foeCg(A, C). 
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Extend T(D)o to a Cg-diagram T(D) by 

[g, (f", u . . . . .  ,/0)] ~ (g of., u,, f"_ 1 . . . .  ,fo). 
The diagram TD can be considered as the topological realization of the 
%diagram z D of simplicial spaces defined as follows: 

(8.2) The space of n-simplexes of vDo(B ) is L[ cg,+l(A, B)x Do(A ) and 
AE~g 

the face and degeneracy operations are given by 

, f ( L , L - 1 ,  . . . , f~~ a) O<i<=n 
di ( f . ,L -1 ,  . . . , fo; a~=~(f",f"_~ . . . . .  f~ ; DA, c(fo; a)) i = 0  and foeCS(A, C) 

s i ( f . , f . _ l , . . . , f o ;a )=( f . , . . . , f~ , l , f~_~ , . . . , f o ;a )  O<i<n.  

The simplicial maps [g, (f, ,  f"_ 1, ..., fo; a)] ~ (g o f . ,  f ._  1, --., fo; a) ex- 
tend z D o to a %diagram of simplicial spaces. It is easy to check that 
FD=colim'cD taken in the category of simplicial spaces, and since the 
topological realization preserves colimits, we obtain 

(8.3) Lemma. S(D)=colim T(D). 
Given a homomorphism h: D---, E of ~-diagrams with underlying 

maps {hA}. Then the correspondence ( f . ,u , ,  . . . , fo;  a ) ~ ( f . , u , ,  . . . ,fo; 
h A (a)) induces a homomorphism T(h): T(D)--+ T(E), which makes T into 
a functor T: jdcg ---, j~cg. 

(8.4) Proposition. The functors T and M from jgcg to +//~cg are naturally 
isomorphic. 

Proof The correspondence (f., t,, ..., fo ; a) ~-~ (f. ,  u, . . . .  , fo ; a) with 
ui = t, t ,_ i . . ,  h determines homeomorphisms h D A: MD o A ~ TD o (A), 
whose inverses are given by (f. ,  u . . . . .  , f  o; a ) ~ ( f . ,  t , , - . . , f  o; a) with 
t~=uJu++~ and the convention that 0/0=1 and u,+1=1. Of course, we 
use strongly that D is a Cg-diagram. The h DA are the underlying maps 
of a homomorphism hD: M D - *  TD, and it follows directly from the 
definitions that given a homomorphism f :  D-~ E of Cg-diagrams, then 
h E A o M f A = T f A o h D  A for all A~Cg, which implies the naturality of 
h: M-+ T. 

(8.5) Corollary. The functors H-colim and S from jgcg to ~ f i  are 
naturally isomorphic. In particular, if D is a Cg-diagram, then H-colim D 
is naturally homeomorphic to the topological realization of the simplicial 
space FD. 

Of course, these results can be extended totopological  categories 
c~ if we only want the result (8.5). Since T and M are only defined if in 
addition each cg (A, B) is locally compact or if we work with k-spaces, we 
have to add this extra assumption to obtain (8.4) for more general 
topological categories. The details are left to the reader. 
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Segal's construction can be dualized to provide similar results for 
homotopy limits. 

(8.6) Definition. Let X =  {X,} be a cosimplicial space with face and 
i .  degeneracy operations d~: X~_I ~ X~ and s.. X,+I --* X. (for a definition 

see [7; II, w Let 3~.: A"-I---~A ~ and a~,: A "+t--*A" be the face and 
degeneracy maps of the standard n-simplex. The topological realization 
IIXI[ of X is defined by 

II X II = {(y, In = 0,1 . . . .  )~ I-I F(A", X")ly,, o 61, = d ~(2._1) and y,o o-i, = s~'(y, +0} 
n>0 

with the subspace topology. 

With any r D we associate a Cg-diagram p (D) of cosimplicial 
spaces as follows: 

(8.7) The space of n-simplexes of p D O (A)is l-[ V(Cg,+l( A, B), Do B)and 
Berg 

the face and degeneracy operations are given by d i ({:~BIB ~ cg}) = {~BIB ecg} 
with 

= (:~B (f,, . . . , f i + l ~  . . . . .  fo) O<=i<n 
~B(L,...,fo) ~ ~Dc,,(L; ~c(L_I ..... fo)) i=n, Le~(C,B) 

and 

with 
si({~BIB e ~ } ) =  {~,IB e% ~} 

~8(f~, . " ,  fo) = c~B(s . . . .  , fi+l,  1 , f  ..... f0) O ~ i ~ n .  

We extend p Do to a C~-diagram by sending (g, {~n}) to {~B} where 
~n(f~, . . . , f~,fo)=~B(f,  . . . . .  f~,foog). Let O D = l i m p D  taken in the 
category of cosimplicial spaces and cosimplicial maps. The topological 
realization of p (D) is a C~-diagram R(D). A homomorphism h: D ~ E of 
~-diagrams induces a homomorphism of cosimplicial C~-diagrams by 
{~B}--~ {hB~ where {hR} are the underlying maps of h. Hence R 
extends to a functor rig<g--, S/dog. 

(8.8) Proposition. The functors R and N fi'om J///~ to j /cg are naturally 
isomorphic. 

Proof 

R (D)o A ~ [ I  F (A", [I  F(~. +1 (A, B), D O B)) ~- 1-[ F( LI c~. +t (A, B) • A", Do B) 
n>O BE~ B ~  n>--O 

because c~ is discrete and A ~ locally compact. The maps I"--~ A" given by 
(t . . . . . .  q) ~ (u,, ..., Ul) with ui = t, t ,_l ... ti determine a map 

I-I F( An, 1-[ F(C~n +1 (A, B), D O B)) --~ I]  F( LI ~n +1 (A, B) • I n, D O B) 
n>O BeCg B ~ '  n>O 
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sending the subspace R(D)oA homeomorphically onto the subspace 
N(D)oA. These homeomorphisms h(D)A are the underlying maps of a 
natural homomorphism R(D) --~ N(D). 

Since the topological realization functor II - I[ preserves limits we have 

(8.9) Corollary. The functors H-lim and limoR, the topological version 
of the homotopy limit functor of Bousfield and Kan, from ~c~ to J@ are 
naturally isomorphic. In particular, H-lira D is naturally homeomorphic to 
the topological realization of the cosimplicial space OD. 

The results (8.8) and (8.9) can also be proved if c~ is a topological 
category such that each C~(A, B) is locally compact or if ~ is an arbitrary 
topological category and we work with k-spaces. 

9. Spectral Sequences for Homotopy Colimits 
Throughout  this section let c~ be a discrete category and D be an 

P 

unbased h~-diagram. The images of [ I  I_I~n(A,B)• in 
A,B~C n = 0  

h-colim D define a filtration Fp D of h-colim D. Let k, be an arbitrary 
homology and k* an arbitrary cohomology theory. For  f~Cg(A, B) let 
f :  Do A ~ D o B  denote the map f(x)=DA.B(t/(f); x), where t/ is the 
standard inclusion. Since D is a C~-diagram up to coherent homotopies, 
the correspondences fw-~ kq (f) respectively fF-~ kO(f) define a covariant 
functor kq(~* D): ~ f ~  d ~  and a contravariant functor kq(tl * D): Z---, d ~  
into the category of abelian groups. 

(9.1) Theorem. Let cg be a discrete category, k, a homology, and k* a 
cohomology theory. Assume that k, and k* are additive unless ob c~ and 
each space cg n (A, B) is finite. Then 

E 2, p ~ colim p kq (tl* D) 

in the spectral sequence {E ~ D} derived from the k, exact couple of the 
filtration of h-colim D, and 

E~' q --- lira ~ k ~ (t/* D) 

in the spectral sequence {E,. D} derived from the k* exact couple of the 
filtration of h-colim D. Here colim p arm lira p denote the p-th left derived 
of  colim and the p-th right derived of tim. 

Proof E~, q D = kp+q( Fp D, Fp_ 1 D) and the differential d 1 is the bound- 
ary operator of the triple (FeD , Fp_ID, Fe_2D ). We obtain FpD from 
F~_ ~ D by attaching ~ cgp (A, B) x D o (A) x I p =:  C e x I p along R~ • I r u 

A,B  
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CpX ~I v where Rpc Cp is the space of all elements ( fp, fp-1,  ... , f l ;  a) 
with some f~=id. Define maps d~: Cp--. Cp_ 1 for O<<_i<_p by 

(9.2) [ (fv, fp-1 . . . . .  f2 ; DA, B (t/fl ; a)) 

d'(fv,fv-1, . - . , f l ;  a )= / ( fp '  "'" ' f i+l~ . . . .  , f ,  ; a) 

(fv-1 , fp-2 . . . . .  f t ;  a) 

Consider the diagram 

i=0,  f l e ~ ( A , B )  

0 < i < p  

i=p .  

P P I r 

~:=0, 1 G e=0,  1 H 

i (3) (4) 

; ~ ( c ;  1) ~  " _ -----*kp+q_l(Cp_ t • lp - I /Cp_I  • OI p-l) 

Here c~I p is the boundary of I p and ~21 p the (p-2)-skeleton, a v is the 
p-fold suspension isomorphism a and the sign of a is determined by the 
boundary maps 

~3IP ~ ~?IV/O 2 I p ~ lP-1/~ lp-1 

where pr;: 01P/c?ElP~1p-1/~?lP-1 is induced by the projection of I p to 
the face t 2 = r e = 0, 1. The maps zc are induced by the attaching maps. 
The component (j, e) of F is multiplication with ( - 1 )  i-~. The maps G 

+ and H are induced by the constant map C ;  --, Cp_ 1 on the components 
(j, 1) for j > 1, by d o on (1, 1) and by d j on (j, 0). The map r is the isomor- 
phism of the Mayer-Vietoris sequence of the inclusions 

5~: (C e x IP-1/Ce x OIe-1)--~(Cp x OlP/C v x 32 1 v) 

sending I p-1 to the face tj=e. The inverse of r is on its (j, ~)-component 
given by pr~. Then (2) and (3) commute by the naturality of a and c?, 
and (4) commutes by (5.10); here observe that ~ o c~} c Fp_ 2 D if j > 1. The 
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commutativity of (1) follows from naturality and from 

[cp+q(iP/Oip)_ e [Cp+q_t(Oip) . - , proj,, kp +q_l (OIP/az IP) 

~ 

kp+q_, (F-1/~I p-') = ~p+q_~ (i~-~ /oi ~-~) 

in which the square commutes by the choice of the sign of o- and the 
triangle commutes up to ( -  1) j-~. 

By the assumptions on k,  we have 

/~q (C~-) = kq (Cp) = 1_[ c@ (A, B) x kq (D O (A)) 
A , B  

and the maps di: Cp--* Cp_~ induce maps 

di~: kq(Cp)--~kq(Cp_1) 

satisfying the identities (9.2) with a replaced by a homology class x in 
kq(Do(A)) and DA, B(rlf~; a) replaced by kq(rl*D(f~))(x). The composite 
map GoF: kq(Cp)-*kq(Cp_ 0 is given in terms of the d i* by 

P 

Go F = ~ ( - 1) i d i*. 
i = O  

Introduce maps si*: kq( Cp) -* kq( Cp+ 0 by 

s"( L , . . . , f , ; x ) = (  L .. . .  ,f~+~,l,f~ .. . .  , f~;x) 

to obtain a simplicial abelian group k,(C,). Then GoF is the boundary 
map of the associated chain complex CD,. By [-9, chapter VIII, Thin. 6.1] 
CD, is chain equivalent to the normalized chain complex of CD,, 
which in turn is given by (kq(Cp/Rp), p=0 ,  1, ...). Because of the com- 
mutativity of 

YZq ( C 2) , Y:q ( Cp/Rp) 

~cp+q( Cp x I n, G x c ~ I P ) ~  kp+q(FpD/Fo_ , D) @-/~p+q(G x IP/(Rp x IPu G x OIP)) 

E 2, q D is isomorphic to the homology of the normalized chain complex 
and hence to the homology of the chain complex CD,. By I-7; appendix II, 
Prop. 3.3], Hp (CD,) = colim p (kq (r/* D)). 

The proof for the cohomology spectral sequence is completely dual. 

Remark. For ~-diagrams this result is an immediate consequence of 
Segal's spectral sequence of a simplicial space 1-14] and the result of 
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Gabriel and Zisman used in the proof (also see [1] for convergence 
questions and applications). In this case, (9.1) is the topological analogue 
of the spectral sequence [4; p. 336]. Our argument is strongly influenced 
by Segal's. 

Remark. One obtains similar results for based h~-diagrams and 
reduced homology and cohomology theories. 

10. The Spectral Sequence of a Homotopy Limit 
Throughout this section let ~ be a discrete category and D a based 

hT-diagram. The inclusion 
p 

LI cK.(A, B) • I" ~ I_I cd.(A, B) • I" 
n = 0  n_>0 

induces a projection 

h-limD--*(h-limD)ca l-I F c d ~ ( A , B ) x I ' , D o B  . 
A, B ~  

Let Gp be its image. Then we have a cofiltration 

(10.1) Go k+~_~ _ G1 ~ _  G2 ( k3 -.. ~- h-lim D 

of h-lira D such that h-lira D ~ G v and hence each kp is surjective. 

(10.2) Lemma. The map kp: Gp---+Gp_ 1 is a fibration. 

Proof Let Qp (A, B) ~ ~p (A, B) be the subspace of all elements (fp, ... , f )  
with some f~ = id. Then we have a pull back diagram 

Gp - - ~  l-[ F (% (A, B) • I p, D O B) 

Gp_l -~ y~ F (Qp (A, B) • I" w C~p (A, B) x ~I', D O B) 
A,B 

in which qp is the fibration induced by the cofibration 

Qp (A, B) • I e w ~p (A, B) • ~I p ~ c~p (A, B) x I v . 

Since the kp are surjective, the exact sequences of the fibrations 
Gp+ 1 --~ G v with fibre Fp give rise to an exact couple 

D _  k -~D 

\ /  
E 
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with DP'q=[sq-PX, Gp+I] and EP'q=[Sq-PX, Fp] for q>p and 0 other- 
wise. The maps i, k, 6 have bidegrees (0, 0), ( -  1, - 1), (1, 0). Here IX, Y] 
denotes the set of based homotopy classes of based maps from X to Y, 
and we assume that the functor IX, - ]  takes values in the category of 
abelian groups. 

(10.3) Theorem. Let (~ be a discrete category and D a based h%diagram. 
Let X ~ p *  be a space such that IX, - ]  is a functor into abelian groups. 
Then 

E~' q D ~- lira p [Sq X, ~1" D] 

in the spectral sequence {ErD } of the exact couple obtained from the 
cofiltration of h-lira D. 

The proof is practically dual to the one of (9.1). 

Remark. For %diagrams this spectral sequence is a topological 
version of the spectral sequence [4; p. 309]. In [4-] the derived limp of 
lira is studied for not necessarily abelian group x, atued functors, thus 
extending the applicability of (10.3), and a convergence proof is included. 

11. W e a k  Limits  and Col imits  in ~-'zT, ~ 

As an application of our methods not of our results we prove the 
following folk theorem. 

(11.1) Theorem. The homotopy category ~/z~ has weak limits and co- 
limits. 

Proof. Let ~ be a discrete category and E a X-diagram in ~ / ~ .  
We have to show that there is a space X and a homomorphism i: E -~  X 
from E to the constant %diagram on X in 3-5//~ such that given a homo- 
morphism f :  E -~ Y from E to a constant diagram Y in ~ / ~  there exists 
a morphism h: X---, Y in ~/ ;~  such that f = h o i  as homomorphism. 
Let D be any lifting of E to ~/~ such that an identity is lifted to an identity 
(then D is not a Cg-diagram). Put 

X =  [I  ~(A, B)x I x DoB~]__I DoB 
A, B B 

with the relations (compare (5.10)) 

x g = i d  

(g, t; x) = D (g; x) t = 0 

x t - -1 .  

The maps ia: Do A--*X given by iA(X)=X represent the underlying 
maps of the homomorphism i: E -~ X. Given a homomorphism f :  E ---, Y 
4 Math. Z.,Bd. 134 
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in ~ # ~ .  We regard it as a ~ x s162 and lift it to ~ / ;  such that 
D lifts the c~ x 0-part E. Let )CA denote the lift of the morphism E o A ---, Y. 
Then we have maps 

FA, B: ~(A ,B)  x I x Do A---~ Y 
such that 

[ fA(X) g = i d  

FA, B(g, t; x ) = l  fB(D(g; x)) t=O 

[ fA (X) t = 1. 

Define h: X + Y to be the homotopy class of the map given on D o B by 
f8 and on ~g (A, B) x I • D O B by FA, B. 

The construction for weak limits is dual. 

12. A Remark on Generalizations 

It should be possible to carry out our constructions in any category 
with a strong notion of homotopy, i.e. in a category containing suitable 
non-trivial cosimplicial objects substituting cubes or simplices, and 
having limits and colimits. The category ~ '  of small categories has 
these properties. With the correct definition of homotopy one should 
be able to interpret Boardman's category of finite spectra (see [2] or [16]) 
as homotopy limit of the diagram 

... s ~  s ~  s ~ .  s ~ . . .  

in ~zg, where ~ is the category of finite CW-complexes and S the sus- 
pension functor. 

Appendix 
The following result closes the gap we left in the proof of (3.6). 

Proposition. Let f :  X - ~  Y be a filtration preserving map of filtered 
spaces such that 

(a) X x Z = colim (Xn • Z) for any space Z. 
(b) Y~ is obtained from Y,-1 by attaching X ,  relative to a subspace 

DX,, such that (Xn, DXn) is a N D R  and the induced map X~ -* Y~ is f Let 
Z be an arbitrary space and Y |  = X  • Z/..~ with (x, z)~(x ' ,  z ) / f f ( x ) =  
f(x'). Then the identity Y |  Z -* Y • Z is a homotopy equivalence. 

The proof relies on the following more or less well-known results 
(see [8; p. 60if.I). 

Lemma 1. Let (X, A) be a NDR, f:  A --~ Y a map and Z an arbitrary 
space. Then the identity function (X • Z) w A • z (Y x Z) -* (X WA Y) x Z is 
a homotopy equivalence. 
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Lemma 2. Let X be a filtered space such that each pair (X,,, X._I) 
is a NDR. Then the identity colim (X. x Z) ---, (colim 2(.) x Z is a homotopy 
equivalence. 

Proof 1. Let M and M' be the double mapping cylinders of X = A -* Y 
and X x Z ~ A x Z ~ Y x Z. Since (X, A) and (X x Z, A x Z) are NDRs,  
the natural projections M ~ (X UA Y) and M' ---, (X x Z) wA • z (Y x Z) 
are homotopy equivalences. One can show as in [13; Hilfssatz 18] that 
the identity function M'--+ M x Z is a homotopy equivalence, which 
implies Lemma 1. 

Proof& Let T and T' be the telescopes of the X. and the Xn x Z 
(see w 1). Then T and T' are the mapping tori of the diagrams 

X ~ ~- -~  Z) x"' H • I_I (x~ • 
= = n > O  l a  n > O  

where f = I _ I f ,  and g = [ I ( f . x  id) with f. :  X . c X . + I .  Since the pairs 
(X., X ._0  and (X. x Z, X._I  x Z) are NDRs, the natural projections 
T ~  colim X. and T' -~ colim (X. x Z) are homotopy equivalences. Hence 
Lemma 2 follows from 

Lemma 3. Let T ( f  g) denote the mapping torus of 

g 

and let Z be any space. Then the identity map 

T ( f  x idz, g x idz) --~ T(f, g) x Z 

is a homotopy equivalence. 

Proof Let h: Xx3I- -+ Y be given by h I X x O = f  and h I X x  1=g. 
Then T ( f  g) = X  x I wx • o~ Y, and the result follows from Lemma 1. 

Proof of the Proposition. Let p: X x Z---, Y |  be the identification 
map and let Q. be the image of X. x Z. Then the Q. filter Y |  and Q. 
is obtained from Q._~ by attaching X.  x Z relative to DX,, x Z. Note that 
Q0= Yo x Z  because X0=  Yo. Inductively assume that the identity 
(2. ~ ~ Y.- 1 x Z is a homotopy equivalence. By [3; appendix (4.6)] and 
by Lemma 1 the identity function 

Q. =Q.-1WDx.• z(X.  x z)--+ (Y.-1 x z)~-bx. • z (X,, x Z) 

---, (Y._~ wox X.) x Z = Y. x Z 

is a homotopy equivalence, Since each pair (Q. ,Q.-O and (Y., Y~-t) 
is a N D R  the identity function 

Y| Z --- colim Q. --. colim (Y. x Z) ~ (colim Y.) x Z = Y x Z 

is a homotopy equivalence by [3; appendix (4.4)] and by Lemma 2. 
4* 
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