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C o n v e n i e n t  C a t e g o r i e s  o f  T o p o l o g i c a l  S p a c e s  

f o r  H o m o t o p y  T h e o r y  

By 

I~AINER IV[. VOGT 

For  many  questions in homotopy theory, the category 3-  of topological spaces is 
not a very good one to work in. For example, if q: X -+ Y is an identification map 
then 1 x q: Z x X -+ Z x Y need not be one. Or take the free topological monoid 
over a space, then one only knows tha t  its multiplication is continuous on compact 
subsets. So many  at tempts  have been made to find a suitable category, closely 
related to the category fl-, in which a var iety of constructions can be made without 
further assumptions on the spaces involved. In  recent years, the following three 
categories have enjoyed increasing populari ty:  

1) The category $4/" of spaces having the homotopy type of a CW-complex [1]. 
I t  allows a semi-efficient theory of homotopy type. 

2) The category ~ of compactly generated Hausdorff  spaces [3]. A space X is 
in ~ if it is Hausdorff and A c X is closed provided its intersection with each com- 
pact  subset of X is closed. 

3) The category 2 3 -  of quasi-topolo~eal spaces and quasi-continuous maps [2]. 
A quasi-topological space is a set X together with a collection of sets Q (C, X) of 
functions C -+ X, one for each compact Hausdorff space C, such tha t  

(a) the constant functions C -+ X are in Q (C, X) ; 
(b) ff / :  C -+ C' is a continuous map and r e Q (C', X), then r o ] e Q (C, X) ; 
(c) i f / :  C -+ C' is a continuous surjection, then r eQ(C' ,  X)  iff r o / e Q(C, X); 
(d) ff C is the disjoint union of C1 and C2, then r e Q (C, X) iff 

r[C~eQ(Ci ,  X), i = 1,2.  

A function /:  X --> Y is called quasi-continuons if r e Q (C, X) implies tha t  

/ o r ~ Q ( C ,  Y). 

Both categories ~ and ~ J -  are suited for the s tudy of H-spaces, classifying 
spaces, infinite symmetric products etc. Unfortunately both have some disadvantages: 
Many topologists dislike working with things tha t  are not  topological spaces. This 
m a y  be the reason why the category ~ is more popular than  Ag-. But  ~J~ has 
the disadvantage tha t  its colimits are not  what they are supposed to be. More pre- 
cisely, the forgetful functor ~ - - >  ~ d ~  does not preserve colimits. For example, 
a quotient space of a space in ~ need not be i n ~ .  
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The aim of this paper is to construct full subcategories of ~-  which enjoy all the 
nice properties of ~ but do not have this disadvantage. Among our examples, we 
have a category which contains ~ and is closely related to .~3-. In  fact, i t  is iso- 
morphic to the image of the functor ~-" --> 3 9 -  which maps each topological space 
to its associated quasi-topological space. 

Some of the results of this paper have been announced in [4]. I want  to thank  
Professor A. Kocx ,  Professor D. Pur rE ,  and Dr. T~:. BR6Ct:m~ for helpful comments. 

1. The Construction. L e t  ~ be a non-empty full subcategory of 3-.  For any 
topological space X, let ~ / X  be the category whose objects are all maps /: B/--> X 
in J - ,  where Bf  e o b  ~ ,  and whose morphisms from / to g are all maps h: B I --> Be 
in ~ such tha t  / ~ - g  o h. The spaces B/ ,  / e  ob 5f /X,  and the maps h: B I --> B a 
form a (may be big) di'agTam D (X) in 3-. Define k(X)  = lira D (X). 

Lemma 1.1..For any X e ob 9-, there is a canonical choice of k (X) such that X and 
k (X) have the same underlying sets. 

P r o o f .  Le t  Y be the topological space given by  [Y[ ---- IX[ ,  where IZ[ denotes 
the underlying set of the space Z, and U c Y open iff /-1 (U) is open for all / e ob 5~/X. 
Then the identi ty function 1 : Y --~ X is continuous, and each / e ob 3~/X factors as 

Bz 

y t . . . .  X 

in f .  Given maps hi: By->Z, one for each vertex By of D(X) ,  such tha t  haou=--h / 
for any morphism u: By---> B a of D(X),  then there exists a unique map h: Y -->Z 
such that  h o / '  ---- hi. The map h is defined as follows : For each y ~ Y, there exists 
a By and an x ~ By such tha t  ]'(x) = y. P u t  h(y) = hi(x ). Note that  this definition 
is forced upon us. Suppose there exists a z e B a, some Bg, such tha t  g'(z) = y. 
Then we can find a Br and morphisms u: Br --> By and v: Br -~ B a in .D (X) such 
tha t  u ( B r ) =  x and v ( B r ) =  z. Hence 

h I (x) = h s o u (Br) ---- hr (Br) = ha o v (Br) = ha (z), 

so tha t  h is welt-defined. To show the continuity of h, let U c Z be open. Then 

/,-1 (h-: (U)) = h71 (U) 

is open for a l l / .  Therefore h-l(U) is open in Y. The space Y is the canonical choice 
for k(X).  

Proposition 1.2. (a) The identity/unction k (X) --> X is continuous. 
(b) k(X)  has the finest topology such that any map /rom B ~ ob ~ to X /actors 

through the identity/unction k (X) --> X.  
(c) I /  B e ob 5 f,  then there exists a one-one correspondence between maps B--+ X 

and B--> k(X) .  
(d) k(B) ~- B /or B ~ o b  St. 
(e) k(k(X))  -~ k (X)  /or all X in J ' .  
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(f) I / the  composites b, o f: B --> k(X)  --> Y are continuous/or all maps f: B --> k (X)  
wi th  B e ob  S z, then h is continuous. 

(g) I f  the standard simplexes are in 5 a, then the identity function k (X) --> X induces 
isomorphisms of singular homology and cohomology groups. 

(h) I f  the standard spheres Z, n and the cylinders •n • I ,  n = O, 1, 2 . . . .  are in 5 a, 
then the identity function k (X)  -> X induces isomorphisms of homotopy groups. 

P r o o f .  (a) and (b) follow from the canonical choice of k(X).  Property (c) is a 
consequence of (b). I f  B ~ ob :T, then it is a terminal object of D (B), which implies 
(d). Property (e) follows from the definition of k(X) ,  and (f) from the definition of 
a colimit. The properties (g) and (h) are immediate consequences of (c). 

Lemma 1.3. For any map h: X - +  Y in 3-, the function k(h) ----:h: k(X)  --> k (Y )  
is continuous. 

P r o o f .  In the following commutative diagTam 

f X h > y  

Y y, (iX " " ~ k  ) h : .k (Y)  

the composite h o / is continuous. Hence, by (e), the composite h o [' and therefore, 
by (f), the function k (h) = h are continuous. 

Let S be the full subcategory of 3-  consisting of all objects k (X), X e o b  3-. 
Then k is a funetor from 3-  to Yr. In  abuse of notation, we often consider k as a 
functor from 3-  to 3-  by composing it  with the inclusion ~ c 3-. 

Corollary 1.4. The inclusion functor i : 3g'-->3- is left ad}oint to the functor k: 3----> J~f . 
In  fact, we have an equality 

JT'(X, k( Y)) = 3-  (i (X), Y) 

X ~ ob ~ ,  Y ~ ob 3-. (Here we consider the maps as functions on their underlying 
sets.) 

P r o o f .  Apply 1.2 (a) and (e). 

Proposition 1.5. Given lull subcategories 5al and ~a 2 of 3-  which give rise to functors 
ki: 3--->YCl, i----1,2. 

(a) I f  5al r SP2, then o,~fl c u~f2. 
(b) /If 5al c Sa2 c Jr1, then .%"1 = o~'2 and kl  = k2. 

P r o o f .  (a) Let  X c o b  ~/~1, and let U c X be a subset such t h a t / - I ( U )  is open 
for all maps /:  B -+ X with B e o b  SP~. Then this holds in particular ff B e o b  Sal. 
Hence U is open in X and therefore X e o b  ~2 .  

(b) Let  X e o b  3-. Then ki (X) has the finest topology such tha t  /:  B --> X fac- 
tors through ki (X) if B e o b  Sf~, i ---- 1, 2. Hence the topology of kl (X) is finer 
than the one of k2 (X). On the other hand, let /: B --> X be a map and B e ob 5a2. 
Then, by  1.2 (e), the function f: B--> k l (X)  is continuous. Hence the topology of 
k2 (X) is finer than the one of kl (X). 

35* 
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Remark 1;6. The construction of the funetor k from 5e is known to category 
theorists as the Kan  extension of the inclusion functor ~9 a c 9-. 

Remark 1.7. Some topologists may prefer to consider the following category ~ ' :  
I t s  objects are the topological spaces, and its morphisms from X to Y are all func- 
tions h: X --> Y such tha t  the composites h o /: B --> X --~ Y are continuous for all 
/e  5P/X. I t  follows easily from Proposition 1.2 tha t  ~ and ~f" are equivalent 
categories. We prefer to stick to the version ~f'. 

2. Properties of ~ .  Limits and colimits. 

Theorem 2.1. Let D be any diagram in ~ (it may be big). 
(a) I] lira D exists in ~-', then it exists in d .  

(b) I] lim D exists in ~--, then it exists in Jd'. 
<--- 

(c) The functor k: ~'- --> ~f" preserves limits and the/unctor i: ~ c ~-- colimits. 
(d) The forgetful [unctor M'--+ 6a, dr preserves limits and colimits. 

In  particular, ~ is complete and cocomplete. 

P r o o f .  Statement  (c) holds because i is left adjoint to k, and (d) is an immediate 
consequence of (c). Let C = lira D and L = lira D, both in #-. Then k(L) = ] i m  k(D) 

< - -  -6-- 

by (c). But k(D) = D by  1.2 (e). Let  {iB: B - +  C, B e o b  D} be the collection of 
universal maps. Since k(B)  = B, the function iB: B--> k(C) is continuous. Hence 
1: C -+ k(C) is continuous. 0 n  the other hand, 1: /c(C) --> C is continuous, whence 
k (C) = C. So C eob  ~t ~. 

Corollary 2.2. A quotient space o[ a space in ~ is in Jff'. 

P r o o f .  A quotient space is a colimit. 

Subspaees. One cannot expect that  any  subspace of a space in ~ is again in :r 
In  fact, counter examples can be found [3; 2.3]. 

Let  X e ob J - .  We denote the space given by  a subset A of X with the relative 
topology by  At ,  and define Ag = k(Ar). A function Z---> Ar, Z ~ o b J - ,  is con- 
tinuous iff its composite with the inclusion Ar c X is continuous. The space Ag has 
the same property for spaces in S .  

Proposition 2.3. :Let X eob  ~ and A c X .  A ]unction ]: Z --+ Ag,  where Z e ob S ,  
is continuous i]] the composite 

g :Z  S - ~ A g c X  
is continuous. 

P r o o f .  Suppose g is continuous. We have to show tha t  the composites 

/ o r :  B--+Z---~Ak 

are continuous for all maps r with B e o b  6 a. Since the composite Z --+ A~ ---> Ar is 
continuous, the maps ] o r are continuous by 1.2 (b). 

We next show tha t  under certain conditions on Sz and A the topologies of Ar 
and A~ coincide. 
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Axiom 1. I[ A is a closed subset o /an  object in I f ,  then Ar is in ~Y'. 

Axiom 1". I / A  is an open subset o /an  object in I f ,  then Ar is in ~f .  

Proposition 2.4. I[ I f  satis/ies Axiom 1 [Axiom 1"] and A is a closed [open] subset 
o / a  space in JY', then Ar = As. 

P r o o f .  Let  A be a closed subset of a space X in JYf. For  any map ]: BI --> X, 
let A/----[-1 (A). Substituting the vertices By and the morphisms h: By--> Bg in 
D(X)  by A / a n d  h[A I, we obtain a diagram D, which by assumption lies in ~t ~. 
Let  U be a subset of Ar such tha t  (/I AY) -1 U is closed for all maps ([1A/). Then 
]-1 (U) is closed in Bf,  hence U closed in X and therefore in A. 'Using the same 
arguments as in the proof of Lemma 1.1, one sees that  Ar is the colimit of D. Hence 
A r =  A~. 

The second part  of the proposition follows similarly. 

3. Products and Function Spaces. Throughout the sections 3 and 4 we require that 
I f  satisfies the following axiom. 

Axiom 2. (a) The cartesian product o/ two spaces in I f  i8 again in I f .  
(b) I / X  e o b  I f  and Y ~ ob ~-, then the evaluation map 

ex, r :  3- t (X,  Y) • X - ~  Y 

is continuous. Here 3-t (X, Y) is ~-  (X, Y) with the compact-open topology and ex, r 
is defined by ex, r (/, x) = [ (x). 

To avoid confusion, we denote the cartesian product of two spaces X and Y in ~ f  
by X x Y and their category theoretical product in ~ by  X Q Y. 

I t  is well-known that  the evaluation map has the following universal property: 
Given a m a p / :  X • Y --> Z, there exists a unique map f :  X -+ ~-t ( Y, Z), called the 
adjoint o f / ,  such that  

(3.1) f •  / 

X •  

commutes. This holds even ff ey, x is not continuous. Necessarily, f(x) (y) ----- ] (x, y), 
which implies tha t  f is unique even as a function between the underlying sets. 

I f  er, z is continuous, diagram (3.1) induces a function 

l: J - t (X ,  9 - t (Y ,Z ) )  --> J ' t ( X  • Y , Z ) .  

Proposition 3.2. I / X  and Y are in I f ,  then l is a natural homeomorphism. 

P r o o f .  Consider the diagram 

~ - t ( X , ~ - - t ( Y , Z ) ) x X x Y  el• ~_~--t(y,Z) x y  

~-'t (X • Y,  Z) x X • Y ~ , Z 

with el = ex,~-,(r,z), e2 = ey, z ,  e3 ~ -  e x •  Since l makes the square commute, it 
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is continuous by  the universal p roper ty  of  e3. The lower triangle commutes  by  de- 
finition of  ~3. Hence ~3 o (1 x 1) = et because of  the universal proper ty  of  e2. By  the 
universal proper ty  of  el, there exists a unique map 

h: ~-t(X x Y, Z) -+ 9-~ (X, 3-~(Y, Z)) 

such t h a t  el o (h X 1) ---- ~3- Now 

e3o ((loh) x 1 x 1 ) :  e2 o ( e l x  1) o(h  x 1 x 1) = e2 o (~a x 1 ) : e 3 ,  

el o ( ( h o  l) x 1) = ~3 o (1 x 1) = el. 

Hence t o h = 1 and  h o l = 1 by  the universal properties of  e3 and el. 

Corollary 3.3. (a) I f  X eob  ~ ,  then the ]unctor -- X X :  ~- --+ ~" preserves colimits. 

(b) I] X e ob ~ and Y e ob ~ ,  then X x Y = X Q Y. 

P r o o f .  (a) holds since 3 - t ( X , - - ) :  3 - - + ~ -  is a r ight  adjoint  of  - - •  By  
definition, X Q Y = lira D ( X  x Y). Since X x D ( Y )  is a cofinal subdiagram of  

D (X x Y), par t  (a) implies 

X (~) Y = l im(X x D(Y) )  ---- X x l i m D ( Y )  = X x Y.  

We next  want  to show a version of  Proposit ion 3.2 for the case tha t  X and Y 
are in ~%r. Since 3-t  (X, Y) need not  be in ~ even if  X and Y are, we define 

~ ' ,  (X, Y) = k (9-t (X, Y)). 

This definition makes sense for a rb i t rary  topological spaces. I f  we know 

(3.4) Given a map 1; X @ Y-->Z,  where X and Y are in ~ ,  then the adjoint  f ,  
defined as in (3.1), is a continuous map from X to ~ t ( Y , Z ) .  

and 

(3.5) The. evaluat ion maps  ey, z of (3.1) are continuous as maps from S t ( Y ,  Z) Q Y 
to  Z, provided tha t  Y is in jir. 

then we can obtain the following result  in the same manner  as Proposi t ion 3.2. 

Theorem 3.6. Let X and Y be spaces in ~/~. Then the correspondence ]--> ] is a 
natural homeomorphism 

~t  (x, s t  (Y, z)) ~ ~ (x | y, z ) .  

P r o o f  o f  (3.4). Le t  B e o b  5 ~ and r:  B -> X be a map.  The commuta t iv i ty  of  

B |  rv l .  X |  / . Z  

. B x , Y  r x l  . X X ] Z  

shows t h a t  ] o (r X1)  is continuous and hence has an adjoint.  Since each x e X is 
in the  image of  some r, there is a factorization 
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A 

B /o(~• ~t(Y,Z)  

x f , .~Kt(Y,z)  

The continuity of f follows now from 1.2. 

P r o o f  o f  (3.5). Let  B e o b S  a and r =  (rl ,r2):  B - - + ~ t ( Y , Z )  Q Y  be a map. 
The  s ta tement  follows from the eommuta t iv i ty  of 

i dlagonal i~ 'Ie~.z 
B Q B  n | 1 7 4  r* |174  1 , . J - ~ ( B , Z ) •  

Theorem 3.6 has a number  o f  interesting consequences. 

Theorem 3.7. Let X be a space in JY. 

(a) The/unctor or162 (X, --)  : :~ff ---> ~ preserves limits. In  particular 

~ ,  (x, y | z) ~ ~ ,  (x, y) | ~6 (x, z) 
/or Y and Z in .~. 

(b) The ]unctor --  | X : ~--+ vY" ffreserves colimits. 

(e) The/unctor  S t  (--,  X): ~ - +  ~ trans/ers colimits to limits. 

P r o o f .  ~ t ( X ,  - - )  is a right adjoint of - -  | X, which implies (a) and (b). To 
prove (c), we have to show tha t  ~ (-- ,  X) as a functor from the dual category v'FoP 
of ~ to ~ preserves limits. You can also consider ~ t  (-- ,  X) as a functor from 

�9 to ~o~. Now 

~ (  Y, o~, (Z, X)) H o~( Y | Z, X) H ~ ( Z ,  ~4  ( Y, X)) = ~ o ~  ( ~ t  (Y, X), Z).  

Hence ~/rt (-- ,  X) : ~ o v  _+ S/r has a left adjoint. 

Corollary 3.8. Let [: X ---> X '  and g: Y --> Y" be identi/ication maps between spaces 
in ~K. Then / Q g : X | Y -+ X '  | Y '  is an identification map. 

P r o o f .  Since ] Q g = ( / (~  1) o (1 | g) and since composites of identification maps 
are identification maps, it Suffices to prove the result for g = l r .  But  X '  is a colimit, 
which is preserved by  - -  (~) Y. 

A similar result can be shown for inclusions. 

Definition. Let X and Y b e  spaces in ~ .  A map /: X--> Y is called an inclusion 
in ~ ff a function h : Z --> X with Z e ob ~ is continuous whenever [ o h is. 

Using just the definition we can show 

Proposition 3.9. I / / :  X --> X '  and g: Y --+ Y '  are inclusions in o,~, then so is 

/ |  x|174 

Another consequence of Theorem 3.6 is 
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Theorem 3.10. I / X  and Y are spaces in ..r then the composition o] maps induces 
a continuous map 

c: YYt(Y,g) |  Y ) - + ~ t ( X , g ) .  

Proof. The map c is the adjoint of the composite 

er, z o  (1 (~ex, y): 3fft(Y,Z) (~ o,~t(X, Y) (~ X ---> S t (  Y,Z) Q Y--+ Z.  

I t  is well-known tha t  the function l: ~-t(X, J- t (Y,  Z))-->~-t(X x Y ,Z)  of (3.1) 
is defined and is a bijection ff Y is locally compact. 

Definition. A space Y is called locally compact, ff each neighbourhood of any point 
y e Y contains a compact (not necessarily Hausdorff) neighbourhood of y. 

Proposition 3.11. Let X and Y be spaces in Jgf and Y locally compact. Then 

X Q Y = X •  

P r o o f .  By  definition, X = lira D(X) because X is in ~ff. Since 1 is a bijection, 

the funetor - -  x Y: ~---> ~-  preserves eolimits. Since the colimits in 3-  and in S 
coincide we obtain from 3.3 

Z (~ Y = lira (D (Z) Q Y) = li>m (D (Z) • Y) = (li>m D (X)) • Y = Z • Y. 

4. The Based Category. In  this section we sketch tha t  the category Y ,  of based 
spaces in • enjoys the same nice properties as ~f~. Since ~ ,  can be considered as 
the category ~ under a one-point space P,  the following result follows from formal 
arguments. 

Proposition 4.1. The category ~ ,  is complete and cocomplete. 

This result can also be obtained in the manner of 2.1 by  deriving S ,  from the 
category ~--, of based topological spaces. The colimits of ~ ,  are the same as the 
ones of 9 - , .  The limits of ~ f ,  are the ones of 3/r but  with a distinguished base point. 
More precisely, the forgetful functor OK, -~ X preserves limits. 

One of the advantages of S ,  over J - ,  is that  it has a wellbehaved smash product 
functor. Let  (X~, ~ e A) be any set of spaces in ~ , .  Let  W~+AX~ be the subset 
of those points of the product 1-[ Xa in X ,  which have a t  least one coordinate at  
the base point. ~A 

Definition. The smash product A X:r is the quotient I I~  X ~ t / ( W ~ A X ~ .  
r 

Proposition 4.2. Let I ~ be the disjoint union o/the sets A and B. Then there is a natural 
homeomorphism 

~ A  / fl y e F  

P r o o f .  In  the following diagram, let s, r, p, q be the obvious identification maps 
and h the bijeetion making the diagram commute. 
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A X v  --. ~ - .  ( A X ~ I  ^ ( A X a I  
\~EA ] \fl~B ] 

Since both 8 and r o (p (~) q) are identifications, the function h is a homeomorphism. 

Corollary 4.3. The functor -- A -- : ~T-, • J~", --> 2C, is associative. 

We next  want  to prove an exponential law for the smash product. We consider 
• ,  (X, Y) as a subset of ~f t  (X, Y) forgetting the base points, and we define 

~f ,~(X,  Y) = ~ f ,  (X, Y)~ c ~ t ( X ,  Y) 

(see section 2). The base point of :)e',t (X, Y) is the constant map. 

Theorem 4.4. The evaluation map induces a based natural homeomorphism 

3~-,~(X, ~e',t( Y, Z)) ~ X , t ( X  A Y, Z).  

P r o  o f. Define e~r. r :  aSf*t (X, Y) A X --> Y to be the function given on represen- 
tatives by  the evaluation map ex, r .  I t  is continuous because of the commutat iv i ty  of 

o , ~ , ~ ( X , Y ) |  ~ | 1 7 4  

I P lex. r 
# f  .~(X, Y) ^ X "~,Y , Y 

where p is the identification map and i the inclusion. 
Let  f: Z A X--> Y be any map in ~ ,  and q: Z ~ )X- ->  Z A X the identification. 

The composite f o q has an adjoint r: Z --> JT',(X, Y), which factors as 

Z " - ~r (X,  Y) 

\ / 
~",~(X,  Y) 

By 2.3, the flmction g is continuous. Since it can be considered as a based map, we 
define g to be the adjoint of f in . ~ , .  By definition, f -= e'x,r o (g A lx)  and g is the 
unique map satisfying this equation. 

Theorem 4.4 now follows in the same manner as 3.2. 
We can again draw a number  of consequences like in section 3. Let  us mention 

just one. 

Theorem 4.5. The functor X A -  : ~T-,--> o7r preserves colimits. In  particular, 
there is a natural based homeomorphism 

X A (~YAY~) ~- ~eAV (X A Y~) 

where V Y~ is the wedge (one-point union) of the family ( Y~, ~ ~ A). 
c~eA 



554 R.M. VoGT ARCH. MATH. 

5. Examples. (i) Let  50 be the category consisting of a one-point space only. 
Denote the resulting category ~ by ~ f .  Since the functor k: 3-  -+ ~ f  maps each 
topological space to the discrete space on its underlying set, the category ~ f  is not 
particularly interesting. 

(fi) Let 50 be the category of all compact Hausdorff spaces. Let  ~ f f  denote its 
corresponding category ~ .  

Theorem 5.1. (a) 50 satis/ies each o /our  axioms so that all o /our  previous results 
hold in ~ f .  

(b) The category ~ f o] compactly generated Hausdor]] spaces [3] is contained in ~-f ~. 

(c) I / X  is a locally compact Hausdor H space and Y eo b  ~ f ,  then X x Y : X Q Y. 

(d) The identity map k (X) ---> X,  X eob  ~--, induces isomorphisms o] homotopy and 
singular homology and cohomology groups. 

' P r o o f .  Let  X be a Hausdorff space such that  A c X is closed iff its intersection 
with each compact subset of X is closed. Then X is in ~ f  because the compact 
subsets of X together with the inclusions form a cofinal diagram in D (X). This im- 
plies (b). Examples of such spaces X are the locally compact tIausdorff spaces. So (c) 
follows from 3.11. Statement (d) holds by 1.2. I t  is well-known that  50 satisfies 
Axiom 1 and Axiom 2. Since any open subset of a compact Hausdorff space is locally 
compact, it is in ~ f f .  Hence Axiom 1" holds too. 

The category o~ff is closely related to the category .~3- of quasitopological 
spaces [2]. 

Define functors 
3- o .r P 3-  

as follows: Q ( X ) =  ( [ X [ , { Q ( C , ] X ] ) =  3-(C,X)}),  and Q ( / ) = J .  The space Z = 
---- P ( Y ,  {Q(C, Y)}) has Y as underlying set and U c Z  is open iff r- l(U) is open in 
C for all r ~ Q(C, Y) and all C. On morphisms, we define P(/)  ---- ]. 

Let .~J/~ be the image of .~ in .~--. Let  

j f f  q) . ~ j f  p~ ~ t f f  

be the functors given by q ---- Q [o~ff and p : / ~  o (P[.~5~). One verifies easily 

Proposition 5.2. The /unctor q: 2 / f f  -> .~%f is an isomorphism o/ categories with 
inverse p. 

(ifi) Let  50 be the category of locally compact Hausdorff spaces. I t  is easy to verify 
that  50 satisfies the axioms. We have seen that  this 50 is contained in o%ff. Since 
all compact Hausdorff spaces are in 5 ~ the corresponding category of" is again 9 f f ,  
by 1.5 (b). 

(iv) Let  50 be the category of locally compact spaces. Let  ~ P f  denote its corres- 
ponding category o~f. 

Theorem 5.3. (a) 50 satis[ies all axioms so that all our results hold ]or s  . 

(b) .@f  c r d f  c - . ~ f  c ,Left. 

(c) I /  X is locally comfact and ]z e , ~ f  , then X Q Y = X X it. 
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(d) The identity map ]r (X) --> X, X ~ ob 3-, induces isomorphisms o] homotopy and 
singular homology and cohomology groups. 

P r o o f .  I t  is well-known tha t  Axiom 2 holds for 5z, and it is easy to check tha t  
open or closed subspaces of objects in $f are again in 5 p. Hence all axioms hold. 
The statements (b), (e), and (d) follow from 1.5 (a), 3.3 (b), and 1.2 respectively. 

Remark. We do not know whether ~ c ~ f ~  is a proper inclusion or not. 

The general problem is to find a full subcategory ~ of 3-, as big as possible, such 
tha t  all our results hold for ~ .  The category L f ~  is the biggest one we found. I t  
contains all the spaces one usually deals with in homotopy theory such as the CW- 
complexes. 
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