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Convenient Categories of Topological Spaces
for Homotopy Theory

By

Ramer M. VogT

For many questions in homotopy theory, the category 7~ of topological spaces is
not a very good one to work in. For example, if g: X — Y is an identification map
then 1 X g: Z X X —Z x Y need not be one. Or take the free topological monoid
over a space, then one only knows that its multiplication is continuous on compact
subsets. So many attempts have been made to find a suitable category, closely
related to the category Z, in which a variety of constructions can be made without
further assumptions on the spaces involved. In recent years, the following three
categories have enjoyed increasing popularity:

1) The category #~ of spaces having the homotopy type of a CW-complex [1].
It allows a semi-efficient theory of homotopy type.

2) The category €% of compactly generated Hausdorff spaces [3]. A space X is
in ¥ if it is Hausdorff and 4 c X is closed provided its intersection with each com-
pact subset of X is closed.

3) The category 2 of quasi-topological spaces and quasi-continuous maps [2].
A quasi-topological space is a set X together with a collection of sets @(C, X) of
functions C — X, one for each compact Hausdorff space C, such that

(a) the constant functions ¢ — X are in @(C, X);

(b) if f: ¢ — (" is a continnous map and r € Q(C’, X), then r o f e @(C, X);

(¢) if f: ¢ — ('’ is a continuous surjection, then r € Q(C’, X) iff r o f e Q(C, X);

(d) if C is the disjoint union of C; and (s, then r € Q(C, X) iff

r|CieQ(Ci, X), i =1,2.
A function f: X —Y is called quasi-continuous if r € @(C, X) implies that
fore@Q(C,Y).

Both categories ¥¥% and 29 are suited for the study of H-spaces, classifying
spaces, infinite symmetric products ete. Unfortunately both have some disadvantages:
Many topologists dislike working with things that are not topological spaces. This
may be the reason why the category ¥¥ is more popular than 29 . But €% has
the disadvantage that its colimits are not what they are supposed to be. More pre-
cisely, the forgetful functor €% — Feds does not preserve colimits. For example,
a quotient space of a space in ¥¥ need not be in ¥%.
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The aim of this paper is to construct full subcategories of 4~ which enjoy all the
nice properties of €% but do not have this disadvantage. Among our examples, we
have a category which contains €% and is closely related to 2.9 In fact, it is iso-
morphic to the image of the functor 5 —+ 29 which maps each topological space
to its associated quasi-topological space.

Some of the results of this paper have been announced in [4]. I want to thank
Professor A. Kocg, Professor D. PuprE, and Dr. TH. BrockER for helpful comments.

1. The Construction. Let & be a non-empty full subcategory of . For any
topological space X, let % /X be the category whose objects are all maps f: By — X
in 7, where By e ob &, and whose morphisms from f to ¢ are all maps k: By — By
in & such that f = g o . The spaces By, feob #/X, and the maps 2: By — By
form a (may be big) diagram D(X) in J . Define k(X)) = lElD(X).

Lemma 1.1. For any X € ob 7, there is a canonical choice of k(X) such that X and
k(X)) have the same underlying sets.

Proof. Let ¥ be the topological space given by |Y| = | X|, where |Z| denotes
the underlying set of the space Z, and U c Y open iff {1(U) is open for all f € ob &/ X.
Then the identity function 1: Y — X is continuous, and each f € ob &/X factors as

By
7 N\
Y 1 X

in 7. Given maps ky: By—Z, one for each vertex By of D(X), such that hgjou =4y
for any morphism «: By — By of D(X), then there exists a unique map A: ¥ —Z
such that % o f/ = k. The map % is defined as follows: For each y €Y, there exists
a By and an z € By such that f'(x) = y. Put A (y) = hr(x). Note that this definition
is forced upon us. Suppose there exists a z € By, some By, such that ¢'(z) = y.
Then we can find a B, and morphisms %: By — By and v: By — B, in D{X) such
that #(By) = x and v(B,) = z. Hence :

hy(@) = hyou(By) = he(By) = hg 0o v(By) = ky(2),

so that % is well-defined. To show the continuity of %, let U c Z be open. Then
[ (1 (U) = k7 (U)

is open for all f. Therefore 2~1(U) is open in Y. The space Y is the canonical choice
for k(X).

Proposition 1.2. (a) The identity function k(X) — X is continuous.

(b) k(X) has the finest topology such thai any map from Beob & to X factors
through the identity function k(X) — X.

(¢) If Beob &, then there exists a one-one correspondence between maps B.— X
and B — k(X).

(d) k(B) = B for Beob &. .

(e) k(k(X)) =k(X) for all X tn T .
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(f) If the composites ho f: B — kE(X) — Y are continuous for all maps f: B — k(X) |
‘with B e ob &, then h 1s continuous.

(g) If the standard stmplexes are in &, then the identity function k(X) — X induces
tsomorphisms of singular homology and cohomology groups.

(h) If the standard spheres 2% and the cylinders Znx I, n=0,1,2,... are in &,
then the identity function k(X)) — X induces isomorphisms of homotopy groups.

Proof. (a) and (b) follow from the canonical choice of k(X). Property (c) is a
consequence of (b). If B eob &, then it is a terminal object of D (B), which implies
{d). Property (e) follows from the definition of k(X), and (f) from the definition of
a colimit. The properties (g) and (b) are immediate consequences of (c).

Lemma 1.3. For any map h: X —Y in J, the function k(h) =: h: k(X)) — k(Y)
18 conlinuous.

Proof. In the following commutative diagram

X—t ¥

/f
1 1
e ]
E(X)—2t-k(Y)
the composite & o f is continuous. Hence, by (c), the composite % o f* and therefore,
by (f), the function k(%) = k are continuous.
Let 4 be the full subcategory of J cons1st1ncr of all objects k(X), X eob 7.

Then k% is a functor from 7 to 24 . In abuse of notation, we often consider % as a
~ functor from 7 to J by composing it with the inclusion " c I

Corollary 1.4. The inclusion funcior i: A —J is left adjoint to the functor k:T A
In fact, we have an equality
(X E(Y)) =T (1(X), Y)

X eob A, Y eob 7. (Here we consider the maps as functions on their underlying
sets.)

Proof. Apply 1.2 (a) and (e).

Proposition 1.5. Given full subcategories 1 and 2 of T~ which give rise to functors
bi: T A, i=1,2.

(a) If S1¢c Fa, then A 1Cc A o.

(b) If ArcSFaciH, then A = A>3 and k1 = ks.

Proof. (a) Let X eob 71, and let U c X be a subset such that f~1(U) is open
for all maps f: B — X with B € ob &%. Then this holds in particular if B €ob #.
Hence U is open in X and therefore X e ob %.

(b) Let X €ob 7. Then k;(X) has the finest topology such that f: B — X fac-
tors through k;(X) if Beob &;, ¢ =1, 2. Hence the topology of k;(X) is finer
than the one of k3(X). On the other hand, let f: B — X be a map and B € ob S%.
Then, by 1.2 (e), the function f: B — k1(X) is continuous. Hence the topology of
ko (X) is finer than the one of k; (X).

35%
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Remark 1.6. The construction of the functor k from & is known to category
theorists as the Kan extension of the inclusion functor ¥ c .7 .

Remark 1.7. Some topologists may prefer to consider the following category 7™:
Its objects are the topological spaces, and its morphisms from X to Y are all func-
tions A: X — Y such that the composites Ao f: B — X — Y are continuous for all
fe #/X. It follows easily from Proposition 1.2 that A" and %~ are equivalent
categories. We prefer to stick to the version ¢ .

2. Properties of #". Limits and eolimits.

Theorem 2.1. Let D be any diagram in 5 (it may be big).
(@) If l'_11£ D exists in T, then it exists in A .
(b) If ligl D exists tn T, then it exists in A .
(¢) The functor k: T — A preserves limils and the functor i: A c T colimits.
(d) The forgetful functor A — Fels preserves limits and colimits.
In particular, " is complete and cocomplete.

Proof. Statement (c) holds because 7 is left adjoint to k, and (d) is an immediate
consequence of (¢). Let C = h_Iil Dand L = 111}1 D, bothin 7. Then k(L) = ]iim k(D)
by (c). But k(D) =D by 1.2 (e). Let {ix: B— C, Beob.D} be the collection of
universal maps. Since k(B) = B, the function ig: B — k(C) is continuous. Hence
1: ¢ — k(C) is continuous. On the other hand, 1: £(C) — C is continuous, whence
E(C)=0C. So Ceob X.

Corollary 2.2. A quotient space of a space in A is in A .
Proof. A quotient space is a colimit.

Subspaees. One cannot expect that any subspace of a space in X" is again in .
In fact, counter examples can be found [3; 2.3].

Let X e ob J. We denote the space given by a subset 4 of X with the relative
topology by A4,, and define Ay = k(4,). A function Z - 4,, Zeob J, is con-
tinuous iff its composite with the inclusion 4, ¢ X is continuous. The space Ay has
the same property for spaces in %,

Proposition 2.3. Let X cob X and 4 c X. A function f: Z — Ay, where Z € ob A,
s continuous iff the composite
g:Z2 1 dycX
18 conlinuous.

Proof. Suppose ¢ is continuous. We have to show that the composites
for: B—~Z— 4,

are continuous for all maps r with B € ob &. Since the composite Z — Ay — A4, is
continuous, the maps f o r are continuous by 1.2 (b).

We next show that under certain conditions on & and A the topologies of A,
and A4 coincide.
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Axiom 1. If A is a closed subset of an object in &, then A, s in X .
Axiom 1*. If A is an open subset of an object in &, then A, 18 1n A .

Proposition 2.4. If & satisfies Axziom 1 [Aziom 1*] and A is a closed [open] subset
of a space in KA, then Ay = Ag.

Proof. Let 4 be a closed subset of a space X in 2£". For any map f: Bf - X,
let Ay = f-1(A4). Substituting the vertices By and the morphisms %2: By — By in
D(X) by As and k| Af, we obtain a diagram D, which by assumption lies in J¢".
Let U be a subset of 4, such that (f|4y)~1U is closed for all maps (f| 4s). Then
f71(U) is closed in By, hence U closed in X and therefore in 4. Using the same
arguments as in the proof of Lemma 1.1, one sees that 4, is the colimit of .D. Hence
Ay = Ag.

The second part of the proposition follows similarly.

3. Products and Funetion Spaces. Throughout the sections 3 and 4 we require that
& satisfies the following axiom.

Axiom 2. (a) The cartesian product of two spaces in & is again in .
(b) If X €ob & and Y €ob T, then the evaluation map

eX,y:Ft(X, Y)XX—>Y

is continuous. Here (X, Y) is 7 (X, Y) with the compact-open topology and ex,y
is defined by ex, ¥ (f, ) = f(x).

To avoid confusion, we denote the cartesian product of two spaces X and Y in ¢~
by X X Y and their category theoretical product in 4" by X ® Y.

It is well-known that the evaluation map has the following universal property:
Given a map f: X X ¥ — Z, there exists a unique map f: X = T4(Y, Z), called the
adjoint of f, such that

TY,Z)yxY—2> 7
3.1) N A
XxY
commutes. This holds even if ey, x is not continuous. Necessarily, f(x)(y) = f(z, ),
which implies that f is unique even as a function between the underlying sets.
If ey, z is continuous, diagram (3.1) induces a function

2T X, 7Y, 2) > T (X xY,Z).
Proposition 3.2. If X and Y are in &, then l is a natural homeomorphism.
Proof. Consider the diagram
T X, T(Y,Z)) x XX Y—a2ls (Y, Z) XY
b -

T X XY, Zyx X XY £3 Z

with e; = ey 7.y, 2y, 2 = ey, z, e3 = exxy, z- Since [ makes the square commute, it
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is continuous by the universal property of e3. The lower triangle commutes by de-
finition of €3. Hence €3 o (I X 1) = e; because of the universal property of es. By the
universal property of ¢;, there exists a unique map

h: T (X xY,Z)—- T (X, T4(Y,2)
such that e; o (A X 1) = &3. Now
ego((loh)x1X1)=epo(e1X o (A X1IX1)=¢eg0(é3x1)=eg,
e1o((holy X 1)=¢ézo(IxX1)=1¢;.

Hence lo2 =1 and Aol =1 by the universal properties of ez and e;.

Corollary 3.3. (a) If X € ob &, then the functor — X X: J — T preserves colimits.

(b If Xcob ¥ and Yeob A, then X xY =X XY.

Proof. (a) holds since (X, —): I — T is a right adjoint of — x X. By
definition, X ® ¥ = liiI)l D(X xY). Since X xD(Y) is a cofinal subdiagram of
D(X x Y), part (a) implies

XY =lm(XxD(Y)) = X xlim D(¥) =X x¥.

We next want to show a version of Proposition 3.2 for the case that X and Y
are in A" Since 7 4(X,Y) need not be in £ even if X and Y are, we define

This definition makes sense for arbitrary topological spaces. If we know

(3.4) Given a map f: X ® Y — Z, where X and Y are in ¢, then the adjoint f,
defined as in (3.1), is a continuous map from X to H3 (7Y, Z).
and

(3.3) The evaluation maps ey, z of (3.1) are continuous as maps from (Y, Z2) ® Y
to Z, provided that Y is in 4"

then we can obtain the following result in the same manner as Proposition 3.2.

Theorem 3.6. Let X and Y be spaces in . Then the correspondence f —f is a
natural homeomorphism

Hp (X, A (Y, 2)) = A1 (X RY, Z).
Proof of (34). Let Beob & and r: B— X be a map. The commutativity of

BRY 1@, X®Y—Ls7

[ A

BxY—1xi X xY

shows that fo (r X 1) is continuous and hence has an adjoint. Since each ze X is
in the image of some r, there is a factorization
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B LX), 7,(7, Z)

v I

XL (Y, 2)
The continuity of f follows now from 1.2.

Proof of (3.5). Let Beob & and r = (r1,r): B— A3 (Y,Z) ®Y be a map.
The statement follows from the commutativity of

B : A3(Y,2) Q@Y — Z
diagonal 1®rz €5,z

B® B_nst A(Y,Z)Q B o1 A (B, Z)RQ B-1>»J4(B,Z)X B

Theorem 3.6 has a number of interesting consequences.

Theorem 3.7. Let X be a space in A
(@) The functor H1(X, —): A — A preserves limits. In particular

H(X, Y QZ) = A1(X, Y)Q A1 (X, Z)
for Y and Z in X
(b) The functor — @ X: A — A" preserves colimits.
(¢) The functor A (—,X): A — A transfers colimits to limits.
Proof. & (X, —) is a right adjoint of — ® X, which implies (a) and (b). To
prove (c¢), we have to show that /3 (—, X) as a functor from the dual category £ °»

of A" to A" preserves limits. You can also consider J£;(—, X) as a functor from ¢
“to o, Now
HY, K12, X)) == A (Y Q2Z, X) = H(Z, Ko (Y, X)) = A 0P (A1(Y, X), Z).
Hence #;(—, X): o2 — 4 has a left adjoint.
Corollary 3.8. Let f: X — X' and g: Y — Y’ be identification maps between spaces
in . Then {Rg: X ® Y - X' ® Y’ is an identification map.

Proof.Since f ® g = (f ® 1) o (1 & g) and since composites of identification maps
are identification maps, it suffices to prove the result for ¢ = 1y. But X' is a colimit,
which is preserved by — ® Y.

A similar result can be shown for inclusions.

Definition. Let X and ¥ be spaces in 4" A map f: X - Y is called an inclusion
i A if a function h: Z — X with Z € ob £ is continuous whenever f o 4 is.
Using just the definition we can show

Proposition 3.9. If f: X — X" and ¢: Y — Y’ are inclusions in A", then so is
I Rg: XRY->X"'®RY.

Another consequence of Theorem 3.6 is
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Theorem 3.10. If X and Y are spaces in X, then the composition of maps induces

a continuous maop
c: A Y, 2R A (X, Y) > A (X, Z).

Proof. The map ¢ is the adjoint of the composite
ev,zo (1 Qex,v): (Y, D) R (X, NRX - H(Y,Z)RY —~Z.

It is well-known that the function I: (X, (Y, 2)) - T +(X xY,Z) of (3.1)
is defined and is a bijection if Y is locally compact.

Definition. A space Y is called locally compact, if each neighbourhood of any point
yeY contains a compact (not necessarily Hausdorff') neighbourhood of .

Proposition 3.11. Let X and Y be spaces in A and Y locally compact. Then
X®RY=XxY.

Proof. By definition, X = li_r)n D(X) because X is in 2¢". Since ! is a bijection,

the functor — X Y: 9 — 7 preserves colimits. Since the colimits in 4 and in ¢
coincide we obtain from 3.3

XY =lmDX)®Y)=ln(DX)x¥)=HmDX)x¥=Xx7.

4. The Based Category. In this section we sketch that the category £, of based
spaces in J¢ enjoys the same nice properties as 4. Since 5, can be considered as
the category 2 under a one-point space P, the following result follows from formal
arguments.

Proposiﬁon 4.1. The category A, is complete and cocomplete.

This result can also be obtained in the manner of 2.1 by deriving 4", from the
category 7 , of based topological spaces. The colimits of ", are the same as the
ones of 7. The limits of £, are the ones of /" but with a distinguished base point.
More precisely, the forgetful functor 4", — £ preserves limits.

Ore of the advantages of ", over 7, is that it has a wellbehaved smash product
functor. Let (X4, x € A) be any set of spaces in #,. Let W, Xy be the subset
of those points of the product HXOL in X, which have at least one coordinate at
the base point. *€A

x€A
Propesition 4.2. Let I be the disjoint union of the sets A and B. Then there is a natural
homeomorphism '

Definition. The smash product A\ X, is the quotient (H Xa) / ( WaeA-XOC) .
€A

(/\Xoc>/\(/\Xﬁ)%/\Xy~

acA BeB vel

Proof. In the following diagram, let s, 7, p, ¢ be the obvious identification maps
and A the bijection making the diagram commute.
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T1 Xy_a_,([‘[ )@ (ﬂxﬁ) 224 (A Xa) © (A Xs)

yel' aEA BeB agA BeB
; V
F : (A% (%)

Since both s and r o (p ® ¢) are identifications, the function 4 is a homeomorphism.

Corollary 4.3. The funclor — A —: Ay X H o — A, is associative.

We next want to prove an exponential law for the smash product. We consider
A (X,Y) as a subset of (X, Y) forgetting the base points, and we define

H (X, Y)=H (X, YA (X,Y)
(see section 2). The base point of # (X, Y) is the constant map.
Theorem 4.4. The evaluation map induces a based natural homeomorphism
H st (X, H5t(Y, 2)) 2 A4 (X 1Y, Z).

Proof. Define ey y: #*;(X,¥)AX —Y to be the function given on represen-
tatives by the evaluation map ex,y. It is continuous because of the commutativity of

» ex.Y

A (X, V) A X —trr ¥

where p is the identification map and ¢ the inclusion.

Let f: ZAX —Y be any map in ", and ¢: Z ® X — Z » X the identification.
The composite f o ¢ has an adjoint r: Z — #;(X, Y), which factors as :
Z z H (X, Y)

g T

H (X, Y)

By 2.3, the function g is continuous. Since it can be considered as a based map, we
define g to be the adjoint of f in J. By definition, f = ex y o (¢ A 1x) and g is the
unique map satisfying this equation.

Theorem 4.4 now follows in the same manner as 3.2.

We can again draw a number of consequences like in section 3. Let us mention
just one.

Theorem 4.5. The functor X n —: Ay — A, preserves colimits. In particular,
there is @ natural based homeomorphism

XA(\/ Ya)z V(X A Yy)

aeA achA

where \/ Yy is the wedge (one-point union) of the family (Y, o€ A).
aeA
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5. Examples. (i) Let &% be the category consisting of a one-point space only.
Denote the resulting category 2 by 29. Since the functor £: 7 — 9% maps each
topological space to the discrete space on its underlying set, the category 2¢ is not
particularly interesting.

(ii) Let & be the category of all compact Hausdorff spaces. Let #% denote its
corresponding category 7.

Theorem 5.1. (a) & satisfies each of our axioms so that all of our previous results
kold in H°Y.

(b) The category €9 of compactly generated H ausdorff spaces [3] is contained in H#Z.

(¢) If X is a locally compact Hausdorff spaceand ¥ € ob # G, then X x Y = X R Y.

(d) The identity map k(X) - X, X € ob J, induces isomorphisms of homotopy and
singular homology and cohomology groups.

Proof. Let X be a Hausdorff space such that 4 c X is closed iff its intersection
with each compact subset of X is closed. Then X is in s#¥ because the compact
subsets of X together with the inclusions form a cofinal diagram in D (X). This im-
plies (b). Exaroples of such spaces X are the locally compact Hausdorff spaces. So (c¢)
follows from 3.11. Statement (d) holds by 1.2. It is well-known that & satisfies
Axiom 1 and Axiom 2. Since any open subset of a compact Hausdorff space is locally
compact, it is in #'%. Hence Axiom 1* holds too.

The category #'% is closely related to the category 29 of quasitopological
spaces [2].

Define functors

DA NyT RN
as follows: Q(X) = (| X|,{Q(C,|X|)=7(C,X)}), and Q(f) =f. The space Z =
= P(Y,{Q(C,Y)}) has Y as underlying set and U c Z is open iff ~1(U) is open in
C for all re @(C,Y) and all C. On morphisms, we define P (f) = f.
Let 25 be the image of 2 in 27 . Let

HY s 9# 25 H#Y
be the functors given by ¢ = Q|#’% and p = ko (P [.@Jf ). One verifies easily

Proposition 5.2. The functor q: H#G — 2 is an isomorphism of categories with
tnverse p.

(iii) Let & be the category of locally compact Hausdorff spaces. It is easy to verify
that & satisfies the axioms. We have seen that this % is contained in J#¥%. Since
all compact Hausdorff spaces are in &, the corresponding category % is again #°9,
by 1.5 (b).

{iv) Let & be the category of locally compact spaces. Let £¥ denote its corres-
ponding category .

Theorem 5.3. (a) & satisfies all axioms so that all our resulis hold for £%.

(b) PG cCGcHYG LY.
(c) If X s locally comgact and ¥ € %, then X Y = X X Y.
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(d) The identity map k(X) — X, X € ob J, induces isomorphisms of homotopy and
singular homology and cohomology groups.

Proof. It is well-known that Axiom: 2 holds for &, and it is easy to check that
open or closed subspaces of objects in & are again in %. Hence all axioms hold.
The statements (b), (¢), and (d) follow from 1.5 (a), 3.3 (b), and 1.2 respectively.

Remark. We do not know whether #% ¢ 9 is a proper inclusion or not.

The general problem is to find a full subcategory & of 7, as big as possible, such
that all our results hold for &#. The category £¥ is the biggest one we found. It
contains all the spaces one usually deals with in homotopy theory such as the CW-
complexes.
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