Convenient Categories of Topological Spaces for Homotopy Theory

By

RAINER M. VOGT

For many questions in homotopy theory, the category \mathscr{T} of topological spaces is not a very good one to work in. For example, if $q: X \to Y$ is an identification map then $1 \times q: Z \times X \to Z \times Y$ need not be one. Or take the free topological monoid over a space, then one only knows that its multiplication is continuous on compact subsets. So many attempts have been made to find a suitable category, closely related to the category \mathscr{T} , in which a variety of constructions can be made without further assumptions on the spaces involved. In recent years, the following three categories have enjoyed increasing popularity:

1) The category \mathcal{W} of spaces having the homotopy type of a CW-complex [1]. It allows a semi-efficient theory of homotopy type.

2) The category \mathscr{CG} of compactly generated Hausdorff spaces [3]. A space X is in \mathscr{CG} if it is Hausdorff and $A \subset X$ is closed provided its intersection with each compact subset of X is closed.

3) The category $\mathscr{2F}$ of quasi-topological spaces and quasi-continuous maps [2]. A quasi-topological space is a set X together with a collection of sets Q(C, X) of functions $C \to X$, one for each compact Hausdorff space C, such that

(a) the constant functions $C \to X$ are in Q(C, X);

(b) if $f: C \to C'$ is a continuous map and $r \in Q(C', X)$, then $r \circ f \in Q(C, X)$;

(c) if $f: C \to C'$ is a continuous surjection, then $r \in Q(C', X)$ iff $r \circ f \in Q(C, X)$;

(d) if C is the disjoint union of C_1 and C_2 , then $r \in Q(C, X)$ iff

$$r \mid C_i \in Q(C_i, X), \ i = 1, 2.$$

A function $f: X \to Y$ is called quasi-continuous if $r \in Q(C, X)$ implies that

$$f \circ r \in Q(C, Y)$$
.

Both categories \mathscr{CG} and \mathscr{DT} are suited for the study of *H*-spaces, classifying spaces, infinite symmetric products etc. Unfortunately both have some disadvantages: Many topologists dislike working with things that are not topological spaces. This may be the reason why the category \mathscr{CG} is more popular than \mathscr{DT} . But \mathscr{CG} has the disadvantage that its colimits are not what they are supposed to be. More precisely, the forgetful functor $\mathscr{CG} \to \mathscr{Sets}$ does not preserve colimits. For example, a quotient space of a space in \mathscr{CG} need not be in \mathscr{CG} .

Archiv der Mathematik XXII

35

The aim of this paper is to construct full subcategories of \mathscr{T} which enjoy all the nice properties of \mathscr{CG} but do not have this disadvantage. Among our examples, we have a category which contains \mathscr{CG} and is closely related to \mathscr{DT} . In fact, it is isomorphic to the image of the functor $\mathscr{T} \to \mathscr{DT}$ which maps each topological space to its associated quasi-topological space.

Some of the results of this paper have been announced in [4]. I want to thank Professor A. Kock, Professor D. PUPPE, and Dr. TH. BRÖCKER for helpful comments.

1. The Construction. Let \mathscr{S} be a non-empty full subcategory of \mathscr{T} . For any topological space X, let \mathscr{S}/X be the category whose objects are all maps $f: B_f \to X$ in \mathscr{T} , where $B_f \in ob \ \mathscr{S}$, and whose morphisms from f to g are all maps $h: B_f \to B_g$ in \mathscr{S} such that $f = g \circ h$. The spaces $B_f, f \in ob \ \mathscr{S}/X$, and the maps $h: B_f \to B_g$ form a (may be big) diagram D(X) in \mathscr{T} . Define $k(X) = \lim D(X)$.

Lemma 1.1. For any $X \in ob \mathcal{T}$, there is a canonical choice of k(X) such that X and k(X) have the same underlying sets.

Proof. Let Y be the topological space given by |Y| = |X|, where |Z| denotes the underlying set of the space Z, and $U \in Y$ open iff $f^{-1}(U)$ is open for all $f \in \text{ob } \mathscr{S}/X$. Then the identity function 1: $Y \to X$ is continuous, and each $f \in \text{ob } \mathscr{S}/X$ factors as

in \mathscr{T} . Given maps $h_f: B_f \to Z$, one for each vertex B_f of D(X), such that $h_g \circ u = h_f$ for any morphism $u: B_f \to B_g$ of D(X), then there exists a unique map $h: Y \to Z$ such that $h \circ f' = h_f$. The map h is defined as follows: For each $y \in Y$, there exists a B_f and an $x \in B_f$ such that f'(x) = y. Put $h(y) = h_f(x)$. Note that this definition is forced upon us. Suppose there exists a $z \in B_g$, some B_g , such that g'(z) = y. Then we can find a B_r and morphisms $u: B_r \to B_f$ and $v: B_r \to B_g$ in D(X) such that $u(B_r) = x$ and $v(B_r) = z$. Hence

$$h_f(x) = h_f \circ u(B_r) = h_r(B_r) = h_g \circ v(B_r) = h_g(z)$$

so that h is well-defined. To show the continuity of h, let $U \in Z$ be open. Then

$$f'^{-1}(h^{-1}(U)) = h_f^{-1}(U)$$

is open for all f. Therefore $h^{-1}(U)$ is open in Y. The space Y is the canonical choice for k(X).

Proposition 1.2. (a) The identity function $k(X) \rightarrow X$ is continuous.

(b) k(X) has the finest topology such that any map from $B \in ob \mathscr{S}$ to X factors through the identity function $k(X) \to X$.

(c) If $B \in \text{ob } \mathcal{S}$, then there exists a one-one correspondence between maps $B \to X$ and $B \to k(X)$.

(d) k(B) = B for $B \in \text{ob } \mathscr{S}$.

(e) k(k(X)) = k(X) for all X in \mathcal{T} .

Vol. XXII, 1971

(f) If the composites $h \circ f \colon B \to k(X) \to Y$ are continuous for all maps $f \colon B \to k(X)$ with $B \in ob \mathcal{S}$, then h is continuous.

(g) If the standard simplexes are in \mathcal{S} , then the identity function $k(X) \to X$ induces isomorphisms of singular homology and cohomology groups.

(h) If the standard spheres Σ^n and the cylinders $\Sigma^n \times I$, n = 0, 1, 2, ... are in \mathscr{S} , then the identity function $k(X) \to X$ induces isomorphisms of homotopy groups.

Proof. (a) and (b) follow from the canonical choice of k(X). Property (c) is a consequence of (b). If $B \in ob \mathcal{S}$, then it is a terminal object of D(B), which implies (d). Property (e) follows from the definition of k(X), and (f) from the definition of a colimit. The properties (g) and (h) are immediate consequences of (c).

Lemma 1.3. For any map $h: X \to Y$ in \mathcal{F} , the function $k(h) = :h: k(X) \to k(Y)$ is continuous.

Proof. In the following commutative diagram

the composite $h \circ f$ is continuous. Hence, by (c), the composite $h \circ f'$ and therefore, by (f), the function k(h) = h are continuous.

Let \mathscr{K} be the full subcategory of \mathscr{T} consisting of all objects k(X), $X \in \text{ob } \mathscr{T}$. Then k is a functor from \mathscr{T} to \mathscr{K} . In abuse of notation, we often consider k as a functor from \mathscr{T} to \mathscr{T} by composing it with the inclusion $\mathscr{K} \subset \mathscr{T}$.

Corollary 1.4. The inclusion functor $i: \mathcal{K} \to \mathcal{T}$ is left adjoint to the functor $k: \mathcal{T} \to \mathcal{K}$. In fact, we have an equality

$$\mathscr{K}(X, k(Y)) = \mathscr{T}(i(X), Y)$$

 $X \in ob \ \mathscr{K}, \ Y \in ob \ \mathscr{T}$. (Here we consider the maps as functions on their underlying sets.)

Proof. Apply 1.2 (a) and (e).

Proposition 1.5. Given full subcategories \mathscr{S}_1 and \mathscr{S}_2 of \mathscr{T} which give rise to functors $k_i: \mathscr{T} \to \mathscr{K}_i, i = 1, 2.$

(a) If $\mathscr{S}_1 \subset \mathscr{S}_2$, then $\mathscr{K}_1 \subset \mathscr{K}_2$.

(b) If $\mathscr{S}_1 \subset \mathscr{S}_2 \subset \mathscr{K}_1$, then $\mathscr{K}_1 = \mathscr{K}_2$ and $k_1 = k_2$.

Proof. (a) Let $X \in \text{ob } \mathscr{H}_1$, and let $U \subset X$ be a subset such that $f^{-1}(U)$ is open for all maps $f: B \to X$ with $B \in \text{ob } \mathscr{S}_2$. Then this holds in particular if $B \in \text{ob } \mathscr{S}_1$. Hence U is open in X and therefore $X \in \text{ob } \mathscr{H}_2$.

(b) Let $X \in ob \mathcal{F}$. Then $k_i(X)$ has the finest topology such that $f: B \to X$ factors through $k_i(X)$ if $B \in ob \mathcal{S}_i$, i = 1, 2. Hence the topology of $k_1(X)$ is finer than the one of $k_2(X)$. On the other hand, let $f: B \to X$ be a map and $B \in ob \mathcal{S}_2$. Then, by 1.2 (e), the function $f: B \to k_1(X)$ is continuous. Hence the topology of $k_2(X)$ is finer than the one of $k_1(X)$.

35*

Remark 1.6. The construction of the functor k from \mathscr{S} is known to category theorists as the Kan extension of the inclusion functor $\mathscr{S} \subset \mathscr{T}$.

Remark 1.7. Some topologists may prefer to consider the following category \mathscr{K}' : Its objects are the topological spaces, and its morphisms from X to Y are all functions $h: X \to Y$ such that the composites $h \circ f: B \to X \to Y$ are continuous for all $f \in \mathscr{S}/X$. It follows easily from Proposition 1.2 that \mathscr{K} and \mathscr{K}' are equivalent categories. We prefer to stick to the version \mathscr{K} .

2. Properties of \mathcal{K} . Limits and colimits.

Theorem 2.1. Let D be any diagram in \mathcal{K} (it may be big).

(a) If $\lim D$ exists in \mathcal{T} , then it exists in \mathcal{K} .

(b) If $\lim D$ exists in \mathcal{T} , then it exists in \mathcal{K} .

- (c) The functor $k: \mathcal{T} \to \mathcal{K}$ preserves limits and the functor $i: \mathcal{K} \subset \mathcal{T}$ colimits.
- (d) The forgetful functor $\mathscr{K} \to \mathscr{S}$ ets preserves limits and colimits.

In particular, \mathcal{K} is complete and cocomplete.

Proof. Statement (c) holds because *i* is left adjoint to *k*, and (d) is an immediate consequence of (c). Let $C = \lim_{\to} D$ and $L = \lim_{\to} D$, both in \mathscr{T} . Then $k(L) = \lim_{\to} k(D)$ by (c). But k(D) = D by 1.2 (e). Let $\{i_B: B \to C, B \in \text{ob } D\}$ be the collection of universal maps. Since k(B) = B, the function $i_B: B \to k(C)$ is continuous. Hence $1: C \to k(C)$ is continuous. On the other hand, $1: k(C) \to C$ is continuous, whence k(C) = C. So $C \in \text{ob } \mathscr{K}$.

Corollary 2.2. A quotient space of a space in \mathcal{K} is in \mathcal{K} .

Proof. A quotient space is a colimit.

Subspaces. One cannot expect that any subspace of a space in \mathscr{K} is again in \mathscr{K} . In fact, counter examples can be found [3; 2.3].

Let $X \in \text{ob } \mathcal{T}$. We denote the space given by a subset A of X with the relative topology by A_r , and define $A_k = k(A_r)$. A function $Z \to A_r$, $Z \in \text{ob } \mathcal{T}$, is continuous iff its composite with the inclusion $A_r \subset X$ is continuous. The space A_k has the same property for spaces in \mathcal{K} .

Proposition 2.3. Let $X \in ob \mathcal{K}$ and $A \subset X$. A function $f: Z \to A_k$, where $Z \in ob \mathcal{K}$, is continuous iff the composite

$$g: Z \xrightarrow{J} A_k \subset X$$

is continuous.

Proof. Suppose g is continuous. We have to show that the composites

$$f \circ r \colon B \to Z \to A_k$$

are continuous for all maps r with $B \in \text{ob } \mathscr{S}$. Since the composite $Z \to A_k \to A_r$ is continuous, the maps $f \circ r$ are continuous by 1.2 (b).

We next show that under certain conditions on \mathscr{S} and A the topologies of A_r and A_k coincide.

Axiom 1. If A is a closed subset of an object in \mathcal{S} , then A_r is in \mathcal{K} .

Axiom 1*. If A is an open subset of an object in \mathcal{S} , then A_r is in \mathcal{K} .

Proposition 2.4. If \mathscr{S} satisfies Axiom 1 [Axiom 1^{*}] and A is a closed [open] subset of a space in \mathscr{K} , then $A_r = A_k$.

Proof. Let A be a closed subset of a space X in \mathscr{K} . For any map $f: B_f \to X$, let $A_f = f^{-1}(A)$. Substituting the vertices B_f and the morphisms $h: B_f \to B_g$ in D(X) by A_f and $h | A_f$, we obtain a diagram D, which by assumption lies in \mathscr{K} . Let U be a subset of A_r such that $(f | A_f)^{-1}U$ is closed for all maps $(f | A_f)$. Then $f^{-1}(U)$ is closed in B_f , hence U closed in X and therefore in A. Using the same arguments as in the proof of Lemma 1.1, one sees that A_r is the colimit of D. Hence $A_r = A_k$.

The second part of the proposition follows similarly.

3. Products and Function Spaces. Throughout the sections 3 and 4 we require that \mathscr{S} satisfies the following axiom.

Axiom 2. (a) The cartesian product of two spaces in \mathscr{S} is again in \mathscr{S} . (b) If $X \in \operatorname{ob} \mathscr{S}$ and $Y \in \operatorname{ob} \mathscr{T}$, then the evaluation map

$$e_{X,Y}: \mathscr{T}_t(X,Y) \times X \to Y$$

is continuous. Here $\mathscr{T}_t(X, Y)$ is $\mathscr{T}(X, Y)$ with the compact-open topology and $e_{X,Y}$ is defined by $e_{X,Y}(f, x) = f(x)$.

To avoid confusion, we denote the cartesian product of two spaces X and Y in \mathscr{K} by $X \times Y$ and their category theoretical product in \mathscr{K} by $X \otimes Y$.

It is well-known that the evaluation map has the following universal property: Given a map $f: X \times Y \to Z$, there exists a unique map $\hat{f}: X \to \mathcal{T}_t(Y, Z)$, called the adjoint of f, such that

(3.1)
$$\begin{array}{c} \mathscr{T}_{t}(Y,Z) \times Y \xrightarrow{e_{Y,Z}} Z \\ \widehat{f}_{\times 1} \\ X \times Y \end{array}$$

commutes. This holds even if $e_{Y,X}$ is not continuous. Necessarily, $\hat{f}(x)(y) = f(x, y)$, which implies that \hat{f} is unique even as a function between the underlying sets.

If $e_{Y,Z}$ is continuous, diagram (3.1) induces a function

$$l: \mathscr{T}_t(X, \mathscr{T}_t(Y, Z)) \to \mathscr{T}_t(X \times Y, Z) \,.$$

Proposition 3.2. If X and Y are in \mathcal{S} , then l is a natural homeomorphism.

Proof. Consider the diagram

$$\begin{array}{c|c} \mathcal{T}_{t}(X,\mathcal{T}_{t}(Y,Z)) \times X \times Y \xrightarrow{e_{1} \times 1} \mathcal{T}_{t}(Y,Z) \times Y \\ & \downarrow \\ I \times 1 \times 1 \\ \mathcal{T}_{t}(X \times Y,Z) \times X \times Y \xrightarrow{e_{3}} Z \end{array}$$

with $e_1 = e_{X, \mathcal{F}_l(Y, Z)}, e_2 = e_{Y, Z}, e_3 = e_{X \times Y, Z}$. Since l makes the square commute, it

is continuous by the universal property of e_3 . The lower triangle commutes by definition of \hat{e}_3 . Hence $\hat{e}_3 \circ (l \times 1) = e_1$ because of the universal property of e_2 . By the universal property of e_1 , there exists a unique map

$$h: \mathcal{T}_t(X \times Y, Z) \to \mathcal{T}_t(X, \mathcal{T}_t(Y, Z))$$

such that $e_1 \circ (h \times 1) = \hat{e}_3$. Now

$$e_3 \circ ((l \circ h) \times 1 \times 1) = e_2 \circ (e_1 \times 1) \circ (h \times 1 \times 1) = e_2 \circ (\hat{e}_3 \times 1) = e_3,$$

$$e_1 \circ ((h \circ l) \times 1) = \hat{e}_3 \circ (l \times 1) = e_1.$$

Hence $l \circ h = 1$ and $h \circ l = 1$ by the universal properties of e_3 and e_1 .

Corollary 3.3. (a) If $X \in ob \mathcal{S}$, then the functor $- \times X : \mathcal{T} \to \mathcal{T}$ preserves colimits. (b) If $X \in ob \mathcal{S}$ and $Y \in ob \mathcal{K}$, then $X \times Y = X \otimes Y$.

Proof. (a) holds since $\mathscr{T}_t(X, -): \mathscr{T} \to \mathscr{T}$ is a right adjoint of $- \times X$. By definition, $X \otimes Y = \varinjlim D(X \times Y)$. Since $X \times D(Y)$ is a cofinal subdiagram of $D(X \times Y)$, part (a) implies

$$X \otimes Y = \lim (X \times D(Y)) = X \times \lim D(Y) = X \times Y.$$

We next want to show a version of Proposition 3.2 for the case that X and Y are in \mathcal{K} . Since $\mathcal{T}_t(X, Y)$ need not be in \mathcal{K} even if X and Y are, we define

$$\mathscr{K}_t(X, Y) = k(\mathscr{T}_t(X, Y)).$$

This definition makes sense for arbitrary topological spaces. If we know

(3.4) Given a map $f: X \otimes Y \to Z$, where X and Y are in \mathscr{K} , then the adjoint \hat{f} , defined as in (3.1), is a continuous map from X to $\mathscr{K}_t(Y, Z)$.

(3.5) The evaluation maps $e_{Y,Z}$ of (3.1) are continuous as maps from $\mathscr{K}_t(Y,Z) \otimes Y$ to Z, provided that Y is in \mathscr{K} .

then we can obtain the following result in the same manner as Proposition 3.2.

Theorem 3.6. Let X and Y be spaces in \mathcal{K} . Then the correspondence $f \to f$ is a natural homeomorphism

$$\mathscr{K}_t(X, \mathscr{K}_t(Y, Z)) \cong \mathscr{K}_t(X \otimes Y, Z).$$

Proof of (3.4). Let $B \in \text{ob } \mathscr{S}$ and $r: B \to X$ be a map. The commutativity of

$$\begin{array}{c} B \otimes Y \xrightarrow{r \otimes 1} X \otimes Y \xrightarrow{f} Z \\ \| & & \downarrow^1 \\ B \times Y \xrightarrow{r \times 1} X \times Y \end{array}$$

shows that $f \circ (r \times 1)$ is continuous and hence has an adjoint. Since each $x \in X$ is in the image of some r, there is a factorization

Categories for Homotopy Theory

$$\begin{array}{c} B \xrightarrow{f \circ (r \times 1)} \mathcal{T}_t(Y, Z) \\ \downarrow^r & \uparrow^1 \\ X \xrightarrow{f} \mathcal{K}_t(Y, Z) \end{array}$$

The continuity of \hat{f} follows now from 1.2.

Proof of (3.5). Let $B \in \text{ob } \mathscr{S}$ and $r = (r_1, r_2)$: $B \to \mathscr{K}_t(Y, Z) \otimes Y$ be a map. The statement follows from the commutativity of

Theorem 3.6 has a number of interesting consequences.

Theorem 3.7. Let X be a space in \mathcal{K} .

(a) The functor $\mathscr{K}_t(X, -): \mathscr{K} \to \mathscr{K}$ preserves limits. In particular

 $\mathscr{K}_t(X, Y \otimes Z) \cong \mathscr{K}_t(X, Y) \otimes \mathscr{K}_t(X, Z)$

for Y and Z in \mathcal{K} .

- (b) The functor $\otimes X \colon \mathscr{K} \to \mathscr{K}$ preserves colimits.
- (c) The functor $\mathscr{K}_t(-, X): \mathscr{K} \to \mathscr{K}$ transfers colimits to limits.

Proof. $\mathscr{K}_t(X, -)$ is a right adjoint of $-\otimes X$, which implies (a) and (b). To prove (c), we have to show that $\mathscr{K}_t(-, X)$ as a functor from the dual category \mathscr{K}^{op} of \mathscr{K} to \mathscr{K} preserves limits. You can also consider $\mathscr{K}_t(-, X)$ as a functor from \mathscr{K} to \mathscr{K}^{op} . Now

$$\mathscr{K}(Y, \mathscr{K}_t(Z, X)) \cong \mathscr{K}(Y \otimes Z, X) \cong \mathscr{K}(Z, \mathscr{K}_t(Y, X)) = \mathscr{K}^{op}(\mathscr{K}_t(Y, X), Z).$$

Hence $\mathscr{K}_t(-, X): \mathscr{K}^{op} \to \mathscr{K}$ has a left adjoint.

Corollary 3.8. Let $f: X \to X'$ and $g: Y \to Y'$ be identification maps between spaces in \mathscr{K} . Then $f \otimes g: X \otimes Y \to X' \otimes Y'$ is an identification map.

Proof. Since $f \otimes g = (f \otimes 1) \circ (1 \otimes g)$ and since composites of identification maps are identification maps, it suffices to prove the result for $g = 1_Y$. But X' is a colimit, which is preserved by $- \otimes Y$.

A similar result can be shown for inclusions.

Definition. Let X and Y be spaces in \mathscr{K} . A map $f: X \to Y$ is called an *inclusion* in \mathscr{K} if a function $h: Z \to X$ with $Z \in ob \mathscr{K}$ is continuous whenever $f \circ h$ is.

Using just the definition we can show

Proposition 3.9. If $f: X \to X'$ and $g: Y \to Y'$ are inclusions in \mathcal{K} , then so is

$$f \otimes g \colon X \otimes Y \to X' \otimes Y'.$$

Another consequence of Theorem 3.6 is

Theorem 3.10. If X and Y are spaces in \mathcal{K} , then the composition of maps induces a continuous map

$$c: \mathscr{K}_t(Y,Z) \otimes \mathscr{K}_t(X,Y) \to \mathscr{K}_t(X,Z)$$

Proof. The map c is the adjoint of the composite

$$e_{Y,Z} \circ (1 \otimes e_{X,Y}) \colon \mathscr{K}_t(Y,Z) \otimes \mathscr{K}_t(X,Y) \otimes X \to \mathscr{K}_t(Y,Z) \otimes Y \to Z.$$

It is well-known that the function $l: \mathscr{T}_t(X, \mathscr{T}_t(Y, Z)) \to \mathscr{T}_t(X \times Y, Z)$ of (3.1) is defined and is a bijection if Y is locally compact.

Definition. A space Y is called *locally compact*, if each neighbourhood of any point $y \in Y$ contains a compact (not necessarily Hausdorff) neighbourhood of y.

Proposition 3.11. Let X and Y be spaces in \mathcal{K} and Y locally compact. Then

$$X \otimes Y = X \times Y.$$

Proof. By definition, $X = \lim_{\to} D(X)$ because X is in \mathscr{K} . Since l is a bijection, the functor $- \times Y \colon \mathscr{T} \to \mathscr{T}$ preserves colimits. Since the colimits in \mathscr{T} and in \mathscr{K} coincide we obtain from 3.3

$$X \otimes Y = \lim_{X \to Y} (D(X) \otimes Y) = \lim_{X \to Y} (D(X) \times Y) = (\lim_{X \to Y} D(X)) \times Y = X \times Y.$$

4. The Based Category. In this section we sketch that the category \mathscr{K}_* of based spaces in \mathscr{K} enjoys the same nice properties as \mathscr{K} . Since \mathscr{K}_* can be considered as the category \mathscr{K} under a one-point space P, the following result follows from formal arguments.

Proposition 4.1. The category \mathscr{K}_* is complete and cocomplete.

This result can also be obtained in the manner of 2.1 by deriving \mathscr{K}_* from the category \mathscr{T}_* of based topological spaces. The colimits of \mathscr{K}_* are the same as the ones of \mathscr{T}_* . The limits of \mathscr{K}_* are the ones of \mathscr{K} but with a distinguished base point. More precisely, the forgetful functor $\mathscr{K}_* \to \mathscr{K}$ preserves limits.

One of the advantages of \mathscr{K}_* over \mathscr{T}_* is that it has a wellbehaved smash product functor. Let $(X_{\alpha}, \alpha \in A)$ be any set of spaces in \mathscr{K}_* . Let $W_{\alpha \in A} X_{\alpha}$ be the subset of those points of the product $\prod_{\alpha \in A} X_{\alpha}$ in \mathscr{K}_* which have at least one coordinate at the base point.

Definition. The smash product $\bigwedge_{\alpha \in A} X_{\alpha}$ is the quotient $(\prod_{\alpha \in A} X_{\alpha})/(W_{\alpha \in A} X_{\alpha})$.

Proposition 4.2. Let Γ be the disjoint union of the sets A and B. Then there is a natural homeomorphism

$$\begin{pmatrix} \bigwedge X_{\alpha} \end{pmatrix} \land \begin{pmatrix} \bigwedge X_{\beta} \end{pmatrix} \cong \bigwedge_{\gamma \in \Gamma} X_{\gamma}.$$

Proof. In the following diagram, let s, r, p, q be the obvious identification maps and h the bijection making the diagram commute.

Since both s and $r \circ (p \otimes q)$ are identifications, the function h is a homeomorphism.

Corollary 4.3. The functor $- \wedge -: \mathscr{K}_* \times \mathscr{K}_* \to \mathscr{K}_*$ is associative.

We next want to prove an exponential law for the smash product. We consider $\mathscr{H}_*(X,Y)$ as a subset of $\mathscr{H}_t(X,Y)$ forgetting the base points, and we define

$$\mathscr{K}_{*t}(X,Y) = \mathscr{K}_{*}(X,Y)_k \subset \mathscr{K}_t(X,Y)$$

(see section 2). The base point of $\mathscr{K}_{*t}(X, Y)$ is the constant map.

Theorem 4.4. The evaluation map induces a based natural homeomorphism

$$\mathscr{K}_{*t}(X, \mathscr{K}_{*t}(Y, Z)) \cong \mathscr{K}_{*t}(X \wedge Y, Z).$$

Proof. Define $e'_{X,Y}$: $\mathscr{H}^*_t(X,Y) \wedge X \to Y$ to be the function given on representatives by the evaluation map $e_{X,Y}$. It is continuous because of the commutativity of

$$\begin{aligned} \mathcal{K}_{*t}(X,Y) \otimes X \xrightarrow{i \otimes 1} \mathcal{K}_{t}(X,Y) \otimes X \\ \downarrow^{p} \qquad \qquad \qquad \downarrow^{e_{X,Y}} \\ \mathcal{K}_{*t}(X,Y) \wedge X \xrightarrow{e'_{X,Y}} Y \end{aligned}$$

where p is the identification map and i the inclusion.

Let $f: Z \wedge X \to Y$ be any map in \mathscr{H}_* and $q: Z \otimes X \to Z \wedge X$ the identification. The composite $f \circ q$ has an adjoint $r: Z \to \mathscr{H}_t(X, Y)$, which factors as

$$Z \xrightarrow{r} \mathcal{H}_{t}(X, Y)$$

By 2.3, the function g is continuous. Since it can be considered as a based map, we define g to be the adjoint of f in \mathscr{K}_* . By definition, $f = e'_{X,Y} \circ (g \wedge 1_X)$ and g is the unique map satisfying this equation.

Theorem 4.4 now follows in the same manner as 3.2.

We can again draw a number of consequences like in section 3. Let us mention just one.

Theorem 4.5. The functor $X \wedge -: \mathscr{K}_* \to \mathscr{K}_*$ preserves colimits. In particular, there is a natural based homeomorphism

$$X \wedge \left(\bigvee_{\alpha \in \mathsf{A}} Y_{\alpha} \right) \cong \bigvee_{\alpha \in \mathsf{A}} (X \wedge Y_{\alpha})$$

where $\bigvee_{\alpha \in A} Y_{\alpha}$ is the wedge (one-point union) of the family $(Y_{\alpha}, \alpha \in A)$.

5. Examples. (i) Let \mathscr{S} be the category consisting of a one-point space only. Denote the resulting category \mathscr{K} by \mathscr{DG} . Since the functor $k: \mathscr{T} \to \mathscr{DG}$ maps each topological space to the discrete space on its underlying set, the category \mathscr{DG} is not particularly interesting.

(ii) Let \mathscr{S} be the category of all compact Hausdorff spaces. Let \mathscr{HG} denote its corresponding category \mathscr{K} .

Theorem 5.1. (a) \mathscr{S} satisfies each of our axioms so that all of our previous results hold in \mathscr{HG} .

(b) The category \mathscr{CG} of compactly generated Hausdorff spaces [3] is contained in \mathscr{HG} .

(c) If X is a locally compact Hausdorff space and $Y \in ob \mathscr{HG}$, then $X \times Y = X \otimes Y$.

(d) The identity map $k(X) \to X$, $X \in ob \mathcal{T}$, induces isomorphisms of homotopy and singular homology and cohomology groups.

Proof. Let X be a Hausdorff space such that $A \,\subset X$ is closed iff its intersection with each compact subset of X is closed. Then X is in \mathscr{HG} because the compact subsets of X together with the inclusions form a cofinal diagram in D(X). This implies (b). Examples of such spaces X are the locally compact Hausdorff spaces. So (c) follows from 3.11. Statement (d) holds by 1.2. It is well-known that \mathscr{S} satisfies Axiom 1 and Axiom 2. Since any open subset of a compact Hausdorff space is locally compact, it is in \mathscr{HG} . Hence Axiom 1* holds too.

The category \mathscr{HG} is closely related to the category \mathscr{QF} of quasitopological spaces [2].

Define functors

$$\mathcal{T} \xrightarrow{Q} \mathcal{Q} \mathcal{T} \xrightarrow{P} \mathcal{T}$$

as follows: $Q(X) = (|X|, \{Q(C, |X|) = \mathcal{T}(C, X)\})$, and Q(f) = f. The space $Z = P(Y, \{Q(C, Y)\})$ has Y as underlying set and $U \in Z$ is open iff $r^{-1}(U)$ is open in C for all $r \in Q(C, Y)$ and all C. On morphisms, we define P(f) = f.

Let $\mathcal{2H}$ be the image of $\mathcal{2}$ in $\mathcal{2T}$. Let

$$\mathscr{HG} \xrightarrow{q} \mathscr{QH} \xrightarrow{p} \mathscr{HG}$$

be the functors given by $q = Q | \mathscr{HG}$ and $p = k \circ (P | \mathscr{QH})$. One verifies easily

Proposition 5.2. The functor $q: \mathcal{HG} \rightarrow \mathcal{2H}$ is an isomorphism of categories with inverse p.

(iii) Let \mathscr{S} be the category of locally compact Hausdorff spaces. It is easy to verify that \mathscr{S} satisfies the axioms. We have seen that this \mathscr{S} is contained in \mathscr{HG} . Since all compact Hausdorff spaces are in \mathscr{S} , the corresponding category \mathscr{K} is again \mathscr{HG} , by 1.5 (b).

(iv) Let \mathscr{S} be the category of locally compact spaces. Let \mathscr{LG} denote its corresponding category \mathscr{K} .

Theorem 5.3. (a) \mathscr{S} satisfies all axioms so that all our results hold for \mathscr{LG} .

(b) $\mathscr{DG} \subset \mathscr{CG} \subset \mathscr{HG} \subset \mathscr{LG}$.

(c) If X is locally compact and $Y \in \mathcal{LG}$, then $X \otimes Y = X \times Y$.

(d) The identity map $k(X) \to X$, $X \in ob \mathcal{T}$, induces isomorphisms of homotopy and singular homology and cohomology groups.

Proof. It is well-known that Axiom 2 holds for \mathscr{S} , and it is easy to check that open or closed subspaces of objects in \mathscr{S} are again in \mathscr{S} . Hence all axioms hold. The statements (b), (c), and (d) follow from 1.5 (a), 3.3 (b), and 1.2 respectively.

Remark. We do not know whether $\mathscr{HG} \subset \mathscr{LG}$ is a proper inclusion or not.

The general problem is to find a full subcategory \mathscr{F} of \mathscr{T} , as big as possible, such that all our results hold for \mathscr{F} . The category \mathscr{LG} is the biggest one we found. It contains all the spaces one usually deals with in homotopy theory such as the CW-complexes.

References

 J. MILNOR, On spaces having the homotopy type of a CW-complex. Trans. Amer. Math. Soc. 90, 272-280 (1959).

[2] E. SPANIER, Quasi-topologies. Duke Math. J. 30, 1-14 (1963).

- [3] N. E. STEENROD, A convenient category of topological spaces. Mich. Math. J. 14, 133-152 (1967).
- [4] R. M. VOGT, Convenient categories of topological spaces for algebraic topology. Proc. Adv. Study Inst. Alg. Top., Aarhus 1970.

Eingegangen am 15. 10. 1970

Anschrift des Autors: Rainer M. Vogt Mathematisches Institut der Universität 66 Saarbrücken 11