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1 Introduction

In this paper we discuss a number of conjectures concentrated around the notion
of the slice filtration and the related notion of the rigid homotopy groups. Many of
the ideas discussed below are in greater or lesser degree the result of conversations
I had with Fabien Morel, Mike Hopkins and, more recently, Charles Rezk.

In topology there is a direct connection between the homotopy groups of a
spectrum and the Postnikoff tower which describes how one can build this spec-
trum from the topological Eilenberg-MacLane spectra. On the level of cohomol-
ogy theories this results in the existence of a spectral sequence which starts from
cohomology with coefficients in the homotopy groups of a spectrum and converges
to the cohomology theory represented by the spectrum. The connection exists be-
cause the Eilenberg-MacLane spectrum corresponding to an abelian group A has
only one non trivial homotopy group which equals A.

The motivic Eilenberg-MacLane spectrum corresponding to an abelian group A
has many non trivial motivic homotopy groups. As a result, for a motivic spectrum
E, one can not recover a Postnikoff tower describing how to bulid E out of mo-
tivic Eilenberg-MacLane spectra by looking at the motivic homotopy groups of E.
There is a spectral sequence which starts with cohomology with coefficients in the
sheaves of motivic homotopy groups of E and converges to the theory represented
by E but the cohomology with coefficients in the sheaves of homotopy groups are
not ordinary cohomology theories in the sense of the motivic homotopy theory. In
particular the trace maps p, defined by a finite field extension E/F in these the-




4 VLADIMIR VOEVODSKY

ories fail to satisfy the condition p,p* = deg(E/F)Id which holds for ordinary
motivic cohomology. The problem of constructing the “right” spectral sequence
recived a lot of attention in the particular case of algebraic K-theory. Recently S.
Bloch and S. Lichtenbaum gave a construction which works for fields in [1] and
E.M. Friedlander and A. Suslin generalized it to varieties over a field in [3].

In the first section of this paper we define for any spectrum E a canonical Post-
nikoff tower (2.1) which we call the slice tower of E. The main conjecture of this
paper (Conjecture 10) implies that for any spectrum E its slices s;(F) have unique
and natural module structures over the motivic Eilenberg-MacLane spectrum Hy
and therefore represent ordinary cohomology theories. The main theme of all the
conjectures presented here is that the slices s;(F) play the same role in the motivic
homotopy theory as objects of the form EiH,,i( g) Play in topology. In Section 3
we formulate conjectures providing explicit description of the slices of the motivic
Eilenberg-MacLane spectrum, motivic Thom spectrum, algebraic K-theory spec-
trum and the sphere spectrum. The most surprising here is the description of the
slices of the sphere spectrum which was first suggested by Charles Rezk.

In section 4 we introduce a class of slice-wise cellular spectra whose slices
are the motivic Eilenberg-MacLane spectra corresponding to complexes of abelian
groups (as opposed to complexes of sheaves with transfers which may appear for
a general E). Modulo the conjectures of Section 3 we show that it contains all the
standard spectra mentioned above. For spectra of this class the slices are dertmined
by actual abelain groups which we call the rigid homotopy groups. An important
property of rigid homotopy groups is that for the standard spectra they are expected
to be finitely generated abelain groups which do not depend on the base scheme
(as long as it is normal and connected). In Section 5 we show (again modulo the
conjectures) that rigid homotopy groups have a number of properties which are
similar to the properties of the usual stable homotopy groups. In particular rigid
homotopy groups are finitely generated if rigid homology are finitely generated
and rationally rigid homotopy groups are isomorphic to rigid homology.

The slice tower defines a slice spectral sequence which, for a slice-wise cellular
spectrum, starts with motivic cohomology with coefficients in the rigid homotopy
groups of the spectrum and tries to converge to the motivic homotopy groups of
the spectrum. ~ We conjecture that for the algebraic K-theory the slice spectral
sequence coincides with the spectral sequence constructed in [1] and [3] but the
precise relation of the two approaches remains to be understood. In general it
seems to be hard to figure out whether or not the slice spectral sequence converges.
In Section 7 we formulate some conjectures about the convergence of the slice
spectral sequence and show how they are related to the convergence problem for
the motivic Adams spectral sequence. Unlike all the rest of conjectures of this paper
for which a clear strategy exists at least for varieties over a field of characteristic
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zero the convergence conjectures are simply guesses.

Three other groups of conjectures in motivic homotopy theory, not included in
to this paper, seem to be slowly crystallizing. One group describes the behavior of
slice filtration with respect to the functors f, f*, f1, f' for morphisms of different
types. In view of Conjecture 10 one should probably include Conjecture 17 into
that group. The second group describes a theory of operadic description of T-loop
spaces. The third one concerns explicit constructions of the slice filtration. It seems
that something like the construction used by E. M. Friedlander and A. Suslin to get
the spectral sequence for algebraic K-theory can be used to produce explicit models
for the spectra f, E for any E. Somehow the third and the second group should be
related and should in particular provide a proof of Conjecture 16 but it is still all
very murky.

This paper was written during my stay at the Institute for Advanced Study in Prince-
ton. It is a very special place and I am very grateful to all people who make it to be
what it is.

2 Slice filtration

Let S be a Noetherian scheme and SH(S) the stable motivic homotopy cate-
gory defined in [14, §5]. Recall that we denote by X7 (X, z) the suspension spec-
trum of a pointed smooth scheme X over S. The T-desuspensions

»®I(X,z) = SRINP (X, x)

of the suspension spectra for all smooth schemes over S and all ¢ > 0 form a set of
generators of SH (S) i.e. the smallest triangulated subcategory in SH (S) which is
closed under direct sums and contains objects of the form £*°~7(X, z) coincides
with the whole SH(S). Let SH/f(S) be the smallest triangulated subcategory
in SH(S) which is closed under direct sums and contains suspension spectra of
spaces but not their T-desuspensions. The categories ¥1SH eff(8) for g € Z form
a filtration of S H (S) in the sense that we have a sequence of full embeddings

- nEHSH(S) c SLSHH(S) c SESHI(S) C

and the smallest triangulated subcategory which contains %4.5H eff(S) for all ¢
and is closed under direct sums coincides with SH(.S). This filtration is called the
slice filtration.
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Remark 2.1 The intersection of ©5.SH®//(S) for all ¢ is non-zero. As an example
suppose that S = Spec(k) where k is a field and choose a prime number [ not equal
to the characteristic of k. Consider the sequence of morphisms between the motivic
Eilenberg-MacLane spectra

Z\O,n(l—l)HZ/l N 20,(n+1)(l—1)HZ/l
given by multiplication with the motivic cohomology class
n € H% Y (Spec(k), Z/1)

Let H.; 7/, be the homotopy colimit of this sequence. It is clear from the definition
that there is a canonical isomorphism X1 H,, 7/, = He 7/, Therefore, if this
object belongs to %5 H®/f for at least one ¢ then it belongs to the intersection
of these subcategories for all g. In fact H,; 7/, belongs to SH eff since Hy, /i 1s an
effective spectrum (see Conjecture 1 below) and SH®// is closed under formation
of homotopy colimits. This example is particularly important because the spectrum
Hegy 7.1, at least for varieties over a field, represents the etale cohomology with Z /!
coefficients

HEY (X4) = Hoy(X, 1)

Since all the triangulated categories we consider have arbitrary direct sums and
sets of compact generators a theorem of Neeman [8, Th. 4.1] implies that the
inclusions i, : RSH®// — SH(S) have right adjoints r. Since 4, is a full
embedding the adjunction Id — 744 is an isomorphism. Define f, as i, 0 r;. Note
that we have canonical morphisms fo11 = fgr1fy — fq- A standard argument
implies the following result.

Theorem 2.2 There exist unique up to a canonical isomorphism triangulated func-
tors sq : SH(S) — SH(S) and natural transformations

g Id — 84
) 1,0
Og:8¢g = L7 fg41
satisfying the following conditions:

1. for any E the sequence

2.1) for1E = f,E D sy(B) B 205, 1 E

is a distinguished triangle
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2. for any E the object s,(E) belongs to £3.SHe/

3. for any E the object s4(E) is right orthogonal to Z%HSH eff ie. for any
object X in T4 SHEI we have Hom(X, s¢(E)) = 0.

For any E in SH(S) the sequence of distinguished triangles (2.1) is called the
slice tower of E. The direct sum s, of functors s4 for ¢ € Z is a triangulated
functor from SH to SH which commutes with direct sums. This functor does not
commute with smash products but for any E and F there is a canonical morphism
5+(E)As«(F) = s«(EAF). In the following section we will see that in many ways
the functor s, reminds of the functor H,, from the topological stable homotopy
category to itself which takes a spectrum F to @ieZEiHm( g)- The main difference
bewteen s, and H, is that the former is a triangulated functor while the later is
not.

3 Main conjectures

This section contains the main conjectures predicting the structure of the slices
of four standard spectra. The first three are the spectra described in [14, §6]. The
Eilenberg-MacLane spectra representing motivic cohomology are considered in the
first section, the algebraic Thom spectrum representing algebraic cobordisms in
the second and the spectrum representing algebraic K-theory in the third. In the
last section we consider the sphere spectrum representing the motivic stable (co-
Yhomotopy groups. In the standard topological approach one associates to a ring
spectrum F a graded Hopf algebroid whose ring of objects is the ring of homotopy
groups of E and the ring of morphisms is a ring of homotopy groups of E'A E. This
algebroid can then be used to compute the Adams spectral sequence build on £ and
other interesting things. Unfortunately this approach only works for nice enough
E which is usually reflected by some “flatness” condition. Already in the case of
the ordinary Eilenberg-MacLane spectrum corresponding to integral cohomology it
does not work very well. Instead we are going to consider directly the cosimplicial
spectrum N (E) with terms of the form N*(E) = ENi+1) | cofaces given by unit
morphisms and codegeneracies given by the multiplication morphisms. Since our
goal here is to present some conjectures describing the structure of the motivic sta-
ble homotopy category we do not discuss the definition of the homotopy category
of cosimplicial spectra of which N (E) is an object. In most examples we deal with
below it will be enough to think of V(E) as of a cosimplicial object in SH.
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3.1 Motivic Eilenberg-MacLane spectra Our first group of conjectures de-
scribes the slices of the motivic Eilenberg-MacLane spectrum Hgz, and of the asso-
ciated standard cosimplicial spectrum N (Hz).

Conjecture 1

3.1) sq(Hz) = { g-’Z ;Z:g ;g

This conjecture is equivalent to the combination of two statements. One is that
Hy is an effective spectrum. This seems to be easy enough to prove by showing
that the motivic Eilenberg-Maclane spaces K (Z(n), 2n) can be build out of n-fold
T-suspensions. Another one is that HP9(X,Z) = 0 for ¢ < 0. This is currently
known for regular schemes S over a field through the comparison of motivic coho-
mology with the higher Chow groups.

Our next goal is to describe s,(N(Hz)). Unfortunately we do not know how to
formulate the expected answer in one coherent conjecture. Instead we formulate a
rather imprecise conjecture about the structure of s*(HQ”) and conjectures giving
explicit descriptions for s, (N (Hy)) where k = Qor k = Z/1.

Conjecture 2 The objects sq(Hz, A Hg) are isomorphic to direct sums of the form
®p>0LP9Hx, , where for q or p non zero X, 4 is a finite abelian group of the form
®Z/1; where |; are prime numbers and Xo,0 = Z.

This conjecture is known for S = Spec(k) where k is a field of characteristic zero
(see Section 8). Conjecture 2 clearly implies a similar result for all smash powers
of Hz and Hy, for k = Q or k = Z/! and in combination with Conjecture 1 it
implies that all the terms of the cosimplicial spectra so(IV(Hy)) are direct sums of
finitely many copies of 3P 9H.

To describe s, (N(Hy)) explicitly define a Hopf algebra A7 (k) which we call
the rigid Steenrod algebra (over k) as follows. For k = Q we set Aiff (k) = Q
Denote by Sk[z1,...,Zn] and Ag[z1,. .., T,] the symmetric and exterior algebras
in variables z1, ... ,z, over a field k. For k = Z /I we set

A:?f(k) :Sk[fl,...,fn,...]®Ak[7’0,...,’7’n,...]

where the bidegree of ¢; is (2(1* — 1),1* — 1), the bidegree of 7; is (20* — 1,1* — 1)
and the comultiplication is given by

n—1

All) =& @1+ & ®&+10%

i=1

M~ N B

S
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n-—1
Alm)=Ta®1+ Y & @71 +1@m
1=0
For [ # 2 the rigid Steenrod algebra is the usual (dual) Steenrod algebra of
topology (see [4, Th.3]). Any Hopf algebra A over a field k defines a cosimplicial
algebra N(A) with terms N(A)* = A®?, coface maps given by the unit and co-
multiplication and codegeneracy maps given by the counit. For a bigraded abelian
group A, , denote by H4, , the spectrum @, ,>P9H,, . A graded Hopf algebra
A, defines a cosimplicial spectrum H (4, ,) Whose terms are spectra of the form
H A% -

Conjecture 3 For k = Q or k = Z/I there is an isomorphism of cosimplicial
spectra
s«(NV(Hi)) = Hyaris 1))

such that for any q € Z
sq(N(H)) = T Hy yria )

Using the standard elements in the motivic homology and cohomology of the lense
spaces

K(Z/1(1),1) = (A% —{0})/m
one can assign elements in my, ¢(Hz /; A Hz ;) to the generators &, and 7y, and then
use the multiplicative structure on Hy,; to define a homomorphism from Aifﬂ (z]1)
considered as a bigraded vector space generated by the monomials in &, and 7,
to w*,*(HZ/l A HZ/,). The Hz /-module structure on Hgz/; A Hz allows one to
extend any element of the homotopy group 7, o(Hz /1 A Hg, /l) to a morphism from
YP9Hy  to Hz ;i A Hzy and thus gives a morphism

(3.2) HA:ff(Z/l) — HZ/l A HZ/l

Conjecture 4 The morphism (3.2) is an isomorphism.

We know how to prove this conjecture for S = Spec(k) where k is a field of
characteristic zero (see [11] and further papers of these series). It is one of the
elements of the computation of the algebra of cohomological operations in motivic
cohomology needed for the proof of the Milnor conjecture given in [13]. Doing the
same thing with the higher smash powers of Hy, one can define morphisms

. A(i+1)
(3.3) H(ACT?(Z/;))@' - HZ/t
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and Conjecture 4 implies that they are also isomorphisms. The morphisms (3.3)
do not commute with the coface and codegeneracy morphisms and thus do not
give a morphism H N(ATE @) N(Hz ). For example the two morphisms
Hz; — Hz; A Hgj defined by the unit 1 — Hgz,; which are the zero dimen-
sional coface morphisms in IV(Hz ;) do not coincide while the coface morphisms
Hz;— H AT (Z)1) coincide by construction. When we pass to slices this problem
should disappear and explicit computations confirm it. However we do not know

an explicit construction of a morphism in either direction required by Conjecture 3
fork =7Z/1.

3.2 Motivic Thom spectrum Let M GL be the motivic Thom spectrum repre-
senting the algebraic cobordism. An analog of the standard argument from topol-
ogy should be sufficient to show that

(3.4) MGL**((B®)") = MGL**(1)[[t1, ..., ta]

Together with the obvious properties of the morphism P x P — P, this for-
mula implies that the image of ¢; under the induced map on algebraic cobordisms
is a formal group law. It gives a homomorphism

(3.5) MU, -+ MGL, (1)

from the Lazard ring MU, to MG L, «(1) which sends MUszq to MG Log 4(1).
Conjecture 5 There exists an isomorphism

(3.6) sq(MGL) = £ Hyu,,

compatible with the homomorphism (3.5).

The compatibility condition in this conjecture means the following. An isomor-
phism of the form (3.6) defines in particular a homomorphism of abelian groups
MUy, — mog4(sq(MGL)). On the other hand the definition of s;’s shows that
we have a canonical homomorphisms 7p 4(E) — 7p 4(54(E)) and, therefore, (3.5)
also defines a homomorphism MUszq — g 4(sq(MGL)). The condition requires
the two homomorphisms to be the same. Conjecture 10 discussed in the follow-
ing section implies that that there exists a unique morphism Hasy,, — sq(MGL)
satisfying the compatibility condition.

Consider the graded cosimplicial ring 7, (N (MU)) where MU is the complex
cobordisms spectrum and 7, refer to topological homotopy groups. Alternatively
it can be defined as the ring of functions on the simplicial scheme which represents
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the functor sending an affine scheme Spec(R) to the nerve of the groupoid whose
objects are the formal group laws of dimension one over R and morphisms are
changes of the generator.

Conjecture 6 There is an isomorphism
s¢(N(MGL)) = L3.Hy, (N(MU))
which coincides with the isomorphism (3.6) on the zero term.

It seems to be possible to repeat the argument used to compute oriented coho-
mology of classifying spaces for algebraic cobordism which leads to a canonical
isomorphism

MGLAMGL = MGL[by,...,bn,...]

where )
Elzy,...,20] = @4,...;in>0F

In ‘particular it seems that Conjecture 6 is relatively simple modulo Conjecture 5.
Thus the situation here is different from the case of Eilenberg-MacLane spectra
where Conjecture 1 is relatively easy while Conjecture 3 is hard.

3.3 Algebraic K-theory spectrum In this paper we denote the algebraic K-
theory spectrum by K'G L to distinguish it from the space BG'L. It is (2,1)-periodic
that is we have a canonical isomorphism 7' A KGL = KGL. This immediately
implies that sq(KGL) = £%.so(KGL) for all g.

Conjecture 7
so(KGL) = Hyg,

The slices of the standard cosimplicial spectrum associated with the algebraic K-
theory are described by the following analog of Conjecture 6.

Conjecture 8
sq(N(KGL)) = T3 Hupo (N (k)

3.4 Sphere spectrum

Conjectures 1 and 6 lead to a complete computation of the slices of the sphere
spectrum. Observe first that the cone of the unit morphism 1 — MGL belongs
to SLSH eff. 1t can be seen from the fact that this cone is built out of the n-fold
T-desuspensions of the suspension spectra of the Thom spaces M G L(n) and each




i
[

i

12 VLADIMIR VOEVODSKY

MGL(n) can be built out of the n-fold T-suspensions of open subsets of B GL(n).
This observations implies that for n > ¢ the morphisms

sq(coskn+1N(MGL)) — 54(1)

are isomorphisms and in patticular that sq(1) = Tot(sq(N(MGL))). The right
hand side can be computed from Conjecture 6. The n-th term of s(N(MGL)) is
Just

54 Hy, (No(MU))- Correspondingly the total object Tot(sq(N(MGL))) is
nothing but the Elenberg-MacLane spectrum of the form Ei}qu N(MU) Where
H, N(Mmu) is the Eilenberg-MacLane spectrum corresponding to the complex of
abelian groups associated with the cosimlicial abelian group meq(N(MU)). The
cohomology groups of m.(N(MU)) are denoted in topology by

H™ (g (N (MU))) = Bty (g (MUsy, MU )2q.

They form the E;-term of the Adams-Novikov spectral sequence (see [10]). Sum-
marizing we have.

Conjecture 9
5q(1) = E7Hoy, (N(MD))

The particular case of this conjecture for ¢ = 0 looks as follows.

Conjecture 10
So(l) = HZ

Consider the canonical morphism 1 — Hgz and let Hy be its fiber (the desuspen-
sion of its cone). Conjecture 10 is equivalent to the combination of two statements.
One is that Hyz belongs to £35S H®/f and another one is that Hy, is right orthogonal
to SLSH//. Let us call the first one the divisibility conjecture and the second
one the T-rigidity conjecture. T-rigidity conjecture is also a part of Conjecture 1
and was discussed there. The divisibility part so far is unknown even over a field
of characteristic zero. This conjecture seems to be very important and more funda-
mental that the rest of the conjectures of this paper. In particular it provides the only
way we know to characterize the Eilenberg-MacLane spectra without giving an ex-
plicit definition. One of the jmplications of Conjecture 10 is that for any spectrum
its slices have unique and natural module structures over the Eilenberg-MacLane
spectrum which explains that all our conjectures predict that different objects of the
form s, (—) are generalized Eilenberg-MacLane spectra.

e R S e

R et S PN g WSS WlemE

'Y

v e, s SRS g v Mgt

T, W - T A )

w
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4 Slice-wise cellular spectra -

Many important spectra including the algebraic cobordism spectrum and the
algebraic K-theory spectrum are T-cellular that is they belong to the smallest tri-
angulated subcategory closed under direct sums which contains the spheres T* for
i € Z. Unfortunately we do not know whether or not the Eilenberg-MacLane
spectrum is T-cellular. In this section we will describe another class of spectra
which contains Hyz "and such that its objects have many of the nice properties of
T-cellular spectra. Using Conjectures 10 and Conjecture 2 we will show that it
contains T-cellular spectra.

_ Definition 4.1 An object E of SH (S) is called slice-wise cellular if for any q € Z
the slice s4(E) of E belongs to the smallest triangulated subcategory of SH(S)
closed under direct sums which contains the Eilenberg-MacLane spectrum E%H Z-

Our definition immediately implies that the subcategory of slice-wise cellular ob-
jects is a triangulated subcategory closed under direct sums and direct summands.
Conjecture 1 implies that the Eilenberg-MacLane spectrum Hz, is slice-wise cellu-
lar.

Lemma 4.2 The subcategory of slice-wise cellular spectra is closed under smash
product.

Proof. The proof is modulo Conjecture 2. Let E and F be slice-wise cellular
spectra. We need to show that sq(E A F') is in the smallest triangulated subcate-
gory of SH(S) closed under direct sums which contains the Eilenberg-MacLane
spectrum $4.Hz. Replacing E or F by an appropriate T-suspention we may as-
sume that ¢ = 0. For any F' we have F' = hocolimf_pF and both the smash
product and the functor so commute with homotopy colimits. Thus so(E A F) =
hocolimso(f-nE A f—nF) and itis enough to prove that so(f_nE A f_nF) is of
the required form for any n. For any n > n the smash product f, E A f_,F' is
in E%WSH eff. Thus the slice tower of E gives a finite sequence of distinguished
triangles of the form

0 = 5o(faE A f-nF) = s¢(snE A f-nF)

SO(an A f—nF) - SO(fn—lE A f~nF) — 50(3n—1E A fonF)

SO(fl—nE A f—nF) — SO(f—nE A f—-nF) — SO(S—nE A f—nF)
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It is enough to check now that so(s_, E A f_,F') are in the smallest triangulated
subcategory closed under direct sums which contains Hz. Our assumption on E
implies that it is enough to check that so(XP9Hz A f_, F) is of the required form.
Using the slice tower of F' we reduce the problem to the case of so(XP9Hyz A Hz)
where our result follows from Conjectures 2 and 1. a

Definition 4.3 An object is called T-connective or just connective if it belongs to
$TSHY for some q.

Proposition 4.4 A connective spectrum E is slice-wise cellular if and only if E A
Hgy is slice-wise cellular.

Proof. The proof requires Conjectures 10, 1, 2. We will only prove the “only if”
part. We may clearly assume that E belongs to SH®//. Consider the Adams tower
for the Eilenberg-MacLane spectrum

B o B o EYUAH
@.1)
FIQZ — I_{Z — f_Iz/\HZ
H; — 1 - Hy,

By the divisibility part of Conjecture 10, 4™ belongs to LRSHe -and since E
is assumed to be effective so does E A H. »™. Therefore applying the functor 54 to
the tower (4.1) smashed with & we get a finite sequence of distinguished triangles
of the form

0 = sg(EANHRY) = s,(ENHYAHy)
@D G BARY) — s(EAHD) - suEAHgAHg)
s¢(BEANHz) — sq(E) - sq(E AN Hg)

Therefore it is enough to show that objects sq(E A HL™ A Hy) are of the required
form. The multiplication morphism allows one to make H /M A Hz into a direct

summand of -0, 2" +1)_ Our result follows now from Conjectures 2 and 1. O

Corollary 4.5 The category of slice-wise cellular spectra contains the sphere
spectrum 1 and therefore all T-cellular spectra.
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The algebraic cobordism spectrum M GL is a slice-wise cellular spectrum. There
are two ways to see it. One is to use the fact that

MGL A Hgz, = Hgy,,...p,,...]

where b; are of bidegree (2i,4) and Proposition 4.4. Another one is to note that
the Thom spaces M GL(n) out of which the motivic Thom spectrum is built can
be built in turn out of spheres and then use Corollary 4.5. Similarly the spectrum
KGL is a slice-wise cellular spectrum. We can not use Proposition 4.4 directly
to prove it since it is not connective but we can use the fact that it is built out of
suspension spectra of the space BG'L and these spaces are T-cellular.

5 Reformulations in terms of rigid homotopy groups

Definition 5.1 The rigid homotopy groups of an object E in SH(S) are given by

Td () = mp,q(34(E))
More generally we define the presheaves of rigid homotopy groups setting

T9(E) : U/S — Hom(SPIZPUy, 54(E)).
Note that by definition the rigid homotopy groups are the values of the presheaves
of rigid homotopy groups on the base scheme S. Conjecture 10 implies that a slice
of any spectrum has a unique structure of a module over the Eilenberg-MacLane
spectrum. This leads to the following conjecture (for the definition of a presheaf
with transfers over a general base scheme S see [11]). indextermspresheaves!with
transfers

Conjecture 11 The presheaves of rigid homotopy groups have canonical struc-
tures of presheaves with transfers.

We have canonical homomorphisms from the motivic stable homotopy groups
pq(E) = Hom(EXP?1, E) to the rigid homotopy groups. For any E the group
T« (E) is a module over the ring of motivic homotopy groups of spheres T (1)
and one can easily see that the submodule 7, «o(1)7,.(E) goes to zero in the
rigid homotopy groups. In general it seems that nothing else can be said about this
homomorphism.

.«,.._,T;‘;__;:._.,‘




16 VLADIMIR VOEVODSKY

Conjectures of the previous sections allow us to compute the rigid homotopy groups
of the standard spectra explicitly provided we know homotopy groups of the form
7p,0Hz i.e. the motivic cohomology of weight zero.

Conjecture 12 For a normal connected scheme S one has

_J Z forp=0
-1 WP’OHZ_{ 0 forp#0

For aregular S over a field this conjecture is known. It follows from the comparison
of motivic cohomology with the higher Chow groups. For any S of characteristic
zero it can be proved using resolution of singularities and the blow-up long exact
sequence in generalized cohomology established in [12]. In this case one can prove
more namely that for any Noetherian S of characteristic zero which is of finite
dimension and any p € Z one has

7p,0(Hz) = H_} (S, Z).

C
The same should be true for all Noetherian S of finite dimension.

Conjecture 10 implies that the map
Hom(Hgz, %P Hz) — 7p,0(Hz)

defined by the unit map 1 — Hz is an isomorphism for any n € Z. Together with
Conjecture 12 it implies that for a normal connected scheme .S the functor

(5.2) D(Ab) — SH(S)

which sends a complex of abelian groups C to the Eilenberg-MacLane spectrum
Hc¢ is a full embedding and its image coincides with the smallest triangulated
subcategory of SH(S) closed under direct sums which contains the Eilenberg-
MacLane spectrum Hz. Thus in the case of a normal connected scheme S a spec-
trum E is slice-wise cellular if and only if there exist complexes of abelian groups
I14(E) such that s,E = X% Hy_(p.

Combining Conjecture 12 with Conjectures 1, 5, 7 and 9 we get that for a normal
connected S the rigid homotopy groups of the standard spectra are given by the
following formulae:

: Z forp=q=0
rig —
(5.3) Tpiq (Hz) { 0  otherwise
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; MUy, forp=2g
rig — q
(5.4) Tp.g (MGL) { 0 for p # 2q
; Z forp=2q
719 —
(5.5) Tp.q (KGL) { 0 forp # 2q
1 29—

In particular these groups do not depend on S which is one of the reasons we call
them “rigid”. Note that in the first three cases the rigid homotopy groups of a
motivic spectrum coincide with the homotopy groups of its topological counterpart
but in the last case they do not.

6 Rigid homology and rigid Adams spectral seque-
nce

Define the rigid homology of a spectrum with coefficients in a commutative
ring R setting ) .
Hy%(E,R) = n,q (E A Hg).

The unit map 1 — Hp defines the rigid analog of the Hurewicz map

T3 (E) — H7¥(E,R)

These homomorphisms have a number of useful properties analogous to the prop-
erties of the usual topological Hurewicz map which are missing for the motivic
Hurewicz homomorphisms 7p g — Hp g

Lemma 6.1 Let E be a connective spectrum such that the rigid homology groups
Hpd(E,Z) are finitely generated. Then the rigid homotopy groups npa (E)
are finitely generated.

Proof. Conjecture 10 implies that smashing the Adams tower (4.1) with £ and
applying s, one gets a finite Postnikoff tower for s,(£) whose quotients are direct
summands of objects of the form s4(E A Hp™). Conjecture 2 implies that they are
finite direct sums of objects of the form s,(E A H4) for finitely generated abelian
groups A. Together with our condition on E it implies that mp,g (E) = p,q(s¢(E))
are finitely generated. O

|
|
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: Lemma 6.2 For any spectrum E the homomorphism
T (B) ® Q = H¥(B,Q)
is an isomorphism.

Proof. Note first that both sides as functors in F take filtered homotopy colimits
to filtered colimits. Thus since any spectrum F is a filtered homotopy colimit of
its connective parts f_, F we may assume that E is connective and thus that it is
in SHe//. The rational version of Conjecture 10 implies that smashing the Adams
tower with the rational Moore spectrum 1g and with E and applying functor 54 We
get a finite Postnikoff tower for sq(E A 1g) and the rational version of Conjecture
3 implies that this tower degenerates providing an isomorphism s,(E A 1lg) —
sq(E A Hg). Finally since 1g is a filtered homotopy colimit of sphere spectra we
have s4(E A 1g) = s4(E) A 1g and the homotopy groups of this spectrum are
isomorphic to 754 (E) ® Q. O

Remark 6.3 The statement of Lemma 6.2 does not hold for motivic homotopy

groups. In particular while s,;(1g) should be isomorphic to s,(Hg) that is should

be zero for ¢ # 0 and Hg for ¢ = 0 the morphism 1g — Hg is not an isomorphism
i at least in some cases.

Multiplication on Hpr, defines for any E and F' a homomorphism
H¥(E,R) ®r H[%Y(F, R) - H[')(E A F, R)

Charles Rezk pointed out that using Conjectures 2, 1 and 10 one can prove the
following “Kiinneth Theorem”.

Theorem 6.4 Let E be a slice-wise cellular spectrum, F any spectrum and k a
field. Then the multiplication homomorphism

| HI%(B, k) @ HT'(F, k) — HI9(E A F, k)

is an isomorphism.

For any commutative ring R and any spectrum E we can apply the functor sq to
the Adams tower (4.1) based on Hy smashed with E. This gives a sequence of
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distinguished triangles of the form

sq(EAENMY o s (EAHRY = so(EANHY A Hp)
6.1)
sq(EAHEY)  — s(EAHR) — sq(ENHRAHR)
sq(E N HR) — sq(E) — sq(E N HR)

which defines a spectral sequence whose E;-term consists of the rigid homology
groups . B )
E;,n = Hpd(E A HR") = mp,q(sq(E N HE" A Hp))
and the r-th differential is of the form
' ; = A+
HTS(E A B — HY) (B A HR™)

This spectral sequence is called the rigid Adams spectral sequence with coefficients
in R. The complexes

EAHg — SHEANHgAHg) = S2(EAHR? ANHg) —

which define the E;-term of the Adams spectral sequence are isomorphic to the
normalizied chain complexes of the cosimplicial objects E A N(Hpg) (this is ac-
tually true for the Adams spectral sequence based on any commutative ring spec-
trum). Thus the E;-term of the rigid Adams spectral sequence with coefficients in
R can be identified with the collection of complexes of abelian groups of the form
o9 (E A N(HR)). If k is a field we have by Theorem 6.4

wi9(B A Hp ™)) = HIS(E A HY™) = (HI9(B) © HiS (He)® )pg

Together with Conjecture 3 this implies that the rigid homology with coefficients
in Z /1 are comodules over the rigid Steenrod algebra AT¥(k) and that the Ep-term
of the rigid Adams spectral sequence with coefficients in Z /I can be identified with
Ext-groups from k to H,'Y(E, k) in the category of comodules over AT,

According to Conjecture 10 for any connective spectrum E and any g there
exists n such that s,(E A HMN*+Y) = 0. Thus if R = Z and E is connective
the triangles (6.1) give a finite Postnikoff tower for s¢(E) and we conclude that
the rigid Adams spectral sequence with intergral coefficients converges for any
connective spectrum E. Unfortunately this spectral sequence is not very convenient
in practice since we do not know how to describe its Ep-term. To describe the
convergence properties of the rigid Adams spectral sequence with coefficients in
Z]1 denote the associated filtration on rigid homotopy groups by

(E) = Im(7r”-‘7(E A HQ}l) — ”g(E))
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Proposition 6.5 Let E be an effective spectrum. Then one has

(6.2) af "'rT8(E) C Inh4(E)

Proof. Denote by M; the Moore spectrum cone(1 4 1). To show that the
inclusion (6.2) holds we have to show that the composition

(B A HpW) = whi(E) - w79 (B A M)
is zero. This composition factors through the morphism
(B A My A H D) 779 (B A M)
which by Lemma 6.6 factors through the morphism
w59 (E A My A ByUD) o 7i9(B A M)
Since E is effective so is £ A M; and thus by Conjecture 10 we have

w9 (B A My A Hp ) = my o (sg(B A M A B0y =0,

Lemma 6.6 For any i > 0 there exists a morphism
(6.3) M A Hpy — My A HpY
such that the diagram

M; A FIQ}'l — M AHp

4 d
M, = M,

commutes.

Proof. Proceed by induction on . To prove the lemma for i = 1 it is sufficient to
show that the composition

6.4) M; A EZ/! - M; — M;ANHg
is zero. Consider the morphism of distinguished squares

M;/\EZ - M, - M ANHg

L ! !
Ml/\HZ/l - M; — Ml/\HZ/l
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The composition of (6.4) with the right vertical arrow is the composition of the two
lower arrows which is zero. On the other hand the right vertical arrow is a split
monomorphism. Therefore (6.4) is zero. For ¢ > 1 one defines the morphism (6.3)
inductively as the composition

M; A Z/l—Ml A}: )Aﬂz/l—)Ml/\EQ(i_l)/\Ez/l—)

— My A B A Hg = My A Y

Proposition 6.5 easily implies the following convergence result.

Proposition 6.7 Let E be a connective spectrum and | a prime number such that
the rigid homology groups Hpg (E, Z(l)) are finitely generated. Then the rigid

Adams spectral sequence for E with coefficients in Z [l converges to np.q (E )®Zy,
that is
Niz0aimhd (E) ® Zgy =0

and the canonical homomorphisms

T (B)/aj 1 4(B)) ® Zy — Hyd (B A Hzjoo

where the subscript oo denotes the infinite term of the spectral sequence, are iso-
morphisms.

Proof. A four term exact sequence similar to the one used in the proof of Lemma
7.2 implies that it is sufficient to prove that for any p, ¢ and n one has

(6.5) NisoIm(rh9(E A Hy\7*Y) — n7i9(B A Hf)) = 0

We can invert all the primes but [ and assume that the rigid homology of E are
finitely generated Z;-modules. The same argument as the one used in the proof of
Lemma 6.1 shows that then the rigid homotopy groups of E are finitely generated
Z(;y-modules. Conjecture 2 implies that the same holds for the spectra E A HQ”I
and thus (6.5) follows from Proposition 6.5. ' é

The E,-term of the rigid Adams spectral sequence with Z/I-coefficients for
E = 1 consists of the Ext-groups Ext 4, ()(Z /!, Z/!) in the category of comodules
over the rigid Steenrod algebra and according to (5.6) and Proposition 6.7 the Eoo-
term gives the quotients of a filtration on the groups Extpry, (muy (M Uy, MUL) ®
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Z). For | > 2 the rigid Steenrod algebra coincides with the topological Steenrod
algebra and therefore, as was pointed out by Charles Rezk, the rigid Adams spec-
tral sequence in this case looks exactly like the algebraic Adams-Novikov spectral
sequence [9], [10]. There is no doubt that these two spectral sequences are indeed
isomorphic.

7 Slice spectral sequence and convergence prob-
lems

For any n € Z the slice tower (2.1) of a spectrum FE defines in the usual
way a spectral sequence of abelian groups which starts with groups of the form
Tp,n(8q(E)). We call these spectral sequences the slice spectral sequences for E.
The r-th differential in the n-th slice spectral sequence goes from 7, (54(E)) to
Tp—1,n(Sq+r (E)) which suggests that one can visualize it in the same way as one
visualizes the Adams spectral sequence in topology. One considers p as the hori-
zontal and g as the vertical index. The differentials then go from a given column
(“stem”) to the previous one reaching higher and higher in the vertical direction.
For any n one has m, »(54(E)) = 0 for ¢ < n therefore each of this spectral
sequences is zero below the horizontal line n = ¢. In particular for each term
there are only finitely many incoming differentials. Let fqmpn(E) be the image
of 7y n(feF) In mp n(E). These subgroups form a filtration on Tpn(F) and one
verifies in the standard manner that one gets canonical monomorphisms

(7.1) faTpn(E)/ far1mpn(B) = pn(5¢(E))oo

where the subscript co indicates that we consider the infinite term of the spectral
sequence.

Definition 7.1 A spectrum E is called convergent with respect to the slice filtration
if for any p,n,q € Z one has

(7.2) miZqu+i7rp,n(qu) =0

Lemma 7.2 Let E be a spectrum convergent with respect to the slice filtration.
Then the homomorphisms (7.1) are isomorphisms.

Proof. A standard argument shows that the homomorphisms (7.1) fit into exact
sequences of the form

0 = foTp,nlE)/ fgr17p,n(E) = pn(5q(E))oo —

i



OPEN PROBLEMS IN THE MOTIVIC STABLE HOMOTOPY THEORY, I 23

= Ni>1fq+iTp-1,2(fgr1E) = Ni>ofetimp—1,n(E)

which implies the statement of the lemma. O

For E as in Lemma 7.1 fomyn(E) is a nondegenerate filtration on mp ,(E)
and its quotients are subquotients of the groups m,n(s,(E)). We say that E is
bounded with respect to the slice filtration if for any p, n there exists g such that
Tpn(fg+iE) = 0 fori > 0. Any bounded F is clearly convergent. If in a distin-
guished triangle two out of three terms are bounded then so is the third. If one term
is bounded and another one is convergent then the third one is convergent. Any
direct sum of convergent spectra is convergent. Conjecture 1 implies that any E of
the form XP?H¢ where C is a complex of abelian groups or more generally any
spectrum which belongs to the smallest triangulated subcategory which contains
objects of this form is bounded. We will see below that the intersection (7.2) is non
zero for the rational Moore spectrum 1¢ and thus one can not expect any spectrum
to be convergent. We say that  is a finite spectrum if it belongs to the smallest
triangulated subcategory which contains T-desuspensions of suspension spectra of
smooth schemes over S and is closed under direct summands.

Conjecture 13 Any finite spectrum is convergent with respect to the slice filtration.

The convergence property for the slice spectral sequence is closely related to the
convergence property for the motivic analog of the classical Adams spectral se-
quence which is defined by taking motivic homotopy groups of the Adams tower
(4.1) smashed with E. We will show this modulo the following conjecture.

Conjecture 14 Let (X, z) be a smooth pointed scheme of dimension d over S.
Then

Tpq(SF (X, 2) A Hz) =0
forg>d.
The existing techniques imply this conjecture for S = Spec(k) where k is a field
of characteristic zero. Using resolution of singularities and the blow-up long exact
sequence in generalized homology (see [12]) one reduces the problem to a smooth

proper X of pure dimension d’ < d. The Spanier-Whitehead duality (loc.cit) and
the Thom isomorphism for motivic cohomology imply that for such X one has

Tpo(EF X A Hz) = HX P4 ~4(x 7)

The right hand side is zero for d’ < g by the rigidity part of Conjecture 1 which is
known for varieties over a field.
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Assuming Conjecture 14 we immediately see that for any finite spectrum E the
spectrum E A Hyz is bounded and in particular convergent. Conjectures 2 and
4 imply that Hz A Hy splits into a direct sum of the form ZOIqHCq where C,
is a complex of abelian groups which is bounded in both directions and has no
homology groups in dimensions less than 2¢g. Together with the fact that for any
smooth scheme X one has

Tpo(SF X AHz) =0

for 2¢ — p > dim(S) it implies that for a finite F only finitely many summands of
HJ* will contribute to 7, ,, (f4(E A Hp1)) for any given p. This implies in turn that
for a finite spectrum E and any ¢ > 0 the spectrum E A HQi is bounded. Thus a
finite spectrum E is convergent with respect to the slice filtration if and only if all
the spectra E A H/ forming the Adams tower for E are.

Lemma 7.3 If E is a finite spectrum convergent with respect to the slice filtration  §
then E is convergent with respect to the Adams filtration i.e. for any p, n and q one  §
has ;

(7.3) NisoIm(mpn(BE A HYTTY o5y (B A HHY)) =0

Proof. We may assume that F is effective. If E is convergent with respect to  §
the slice filtration then as was shown above the spectra E A HQ" are convergent §
with respect to the slice filtration. On the other hand Conjecture 10 implies that the @
morphism
iy (g+i) 77Ag
ENHy, — ENH,

1

factors through the morphism ‘ ;
|

F(E AT —» EATL |

Combining we conclude that (7.3) holds. g

Lemma 7.4 Let E be a connective spectrum convergent with respect to the Adams
filtration (in the sense of Lemma7.3) and such that E A\ Hg, is bounded with respect §
to the slice filtration. Then E is convergent with respect to the slice filtration. "

Proof. Conjecture 10 implies that for any E and any ¢ the morphism s¢(E) —
sq(E) A Hgz is a split monomorphism and thus the morphism Hz A s4(E) —




OPEN PROBLEMS IN THE MOTIVIC STABLE HOMOTOPY THEORY, I 25 V'

sq(F) is zero. It implies easily that a connective spectrum F is convergent with )
respect to the Adams filtration if and only if f¢E are convergent with respect to the

. Adams filtration for all g. Therefore, it is sufficient to show that for E satisfying the

* conditions of the lemma the intersection Ng>0fqmpn(E) is zero. Our assumption
on E together with Conjecture 2 implies that all the spectra £ A HQ" A Hg are

. bounded with respect to the slice filtration. An inductive argument shows now that
any element in this intersection will lie in the image of the homomorphism

7rp,n(E A I:Ié;\(i-l-l)) - '”p,n(E) 1

for any ¢ and thus is zero by the assumption. a

Combining Lemmas 7.3 and 7.4 we see that, modulo the rest of the conjec- |
tures, Conjecture 13 is equivalent to the conjecture predicting that finite spectra are '
convergent with respect to the Adams filtration. ‘

Consider the slice spectral sequence for a slice-wise cellular spectrum E. For sim- T
plicity let us assume that S is normal and connected such that s¢(E) = $O9H, ,(E) :
where II; is a complex of abelian groups whose homology are the rigid homotopy
groups of F and thus

Tpn(sq(B)) = H™PI7(S, Iy (E)).

should still be isomorphic to motivic cohomology with coefficients in some com-
plexes of sheaves with transfers whose cohomology presheaves are the presheaves
of rigid homotopy groups of E. Thus for an arbitrary E the slice spectral sequence
starts with motivic cohomology and approximates the motivic homotopy groups of |
the spectrum. !f ;

Remark 7.5 If E is not a slice-wise cellular spectrum the groups mp n(sq(E)) |

The canonical filtration

- C 7220, (E) C 721, (E) ¢ 72T, (E) C ...
on the complex II,(FE) gives a sequence of distinguished triangles of the form

0.4
EO’QH—rZ(pH)Hq(E) — ZO'qHTZPHq(E) - Zp’qHHP(IIq(E)) — Zl’qHTZ(P+1)Hq(E) |

and since s¢(E) = hocolimp<020’qHszHq( E) this sequence defines a spectral
sequence which starts with the groups HP~P4-"(S, nb¥(E)) and converges to
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o m(5q(F)) (the fact that it really converges requires some extra work based on
the vanishing of H®7(S, A) for i > j + dimS). We see that in the case of a
slice-wise cellular spectrum the combination of the slice spectral sequence with the
spectral sequences generated by the towers (7.4) provides an “approximation” of
the motivic homotopy groups of E by motivic cohomology of S with coefficients
in the rigid homotopy groups of E.

Let us look in more detail on the slice spectral sequences for MGL, KGL and 1.
Conjecture 5 predicts that so(MGL) = £?%7H sy, and in particular the complex
I, in this case has only one nontrivial cohomology group in dimension —2gq. Thus
the tower (7.4) degenerates and we have

(71.5) Tpn($¢MGL) = H*7P9~™(S, MUy,).

The slice spectral sequence starts with groups H24=P4="(S, MUs,) and the r-th
differential is of the form

H2q-—p,q—-n(S, MUzq) = H2q—P+2r+1,II+T——n(S, MUZ(q—H‘))'

If we reindex it we get the “motivic Atiyah-Hirzebruch spectral sequence” for
MGL.

Conjecture 15 The spectrum M GL is convergent with respect to the slice filtra-
tion.

For ¢ > dim(S) -+ p—n the group (7.5) is zero and thus Conjecture 15 implies that
MGL is bounded with respect to the slice filtration. If S is regular and local over a
field one has HP9(S,Z) = 0 for p > 2g or p = 2g and ¢ # 0 and H%%(S,Z) = Z.
The same is expected to be true for any regular local S. Thus in this case the
only nontrivial groups in the slice spectral sequence contributing to ma4 (MG L are
HOY(S, MU,,) = MUy, and all outgoing differentials are zero. Togther with
the convergence conjecture it implies that the homomorphism (3.5) maps MUy,
surjectively to M G Lyg 4 which implies the surjectivity part of [14, Conj.1 p.601].
Since MU, has no torsion the injectivity part can be proved by considering the
rational coefficient case where everything splits.

For the algebraic K-theory spectrum Conjecture 7 implies that the slice spectral
sequence has the same form as the spectral sequence constructed in [1] and [3]. We
expect that these two spectral sequences are isomorphic. K-theory

Consider now the case of the sphere spectrum 1. By Conjecture 9 s4(1) is of
the form Z‘%H Na, Where Ny, is a complex of abelian groups whose cohomology
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groups are given by
(7.6) H"(Nog) = E:ctﬁ,,U*(MU) (MU,, MU,)2q

These groups are zero for r < 0 and 7 > ¢ and thus the sequences (7.4) in this case
give finite Postnikoff towers for s4(1) and we have a strongly convergent spectral
sequence which starts with the groups

17)  HTTPATNS,7T9(1)) = HPATNS, Botl ] oy (MU, MUL)s)

and converges to mpn(S4(1)). Let us consider two particular cases. First assume
that S = Spec(k) where k is an algebraically closed field of characteristic zero.
Then for a torsion abelian group A we have H*I(k, A) = 0 fori # 0 or j < 0 and
H%(k, A) = A(j) for j > 0 where A(j) denotes the twisting by the j-th power of
roots of unity. For ¢ # 0 the groups (7.6) are torsion and thus the spectral sequence
computing 7p »(s4(1)) degenerates and for ¢ # 0 we get

Tpn(8q(1)) = H> (S, mi4(1))

= Ho’q_n (S, Ext?‘;][—[}f(MU) (MU*, MU*)2¢1)
20—
= Botygg! auy(MUs, MUs)2g(q = 1)

For n = 0 the slice spectral sequence in this case becomes isomorphic to the usual
Adams-Novikov spectral sequence in topology which shows that our conjectures
predict that for S = Spec(k) as above one has

mp,0(1) = mp(S°)

Let now k be any field and consider the part of the slice spectral sequence
.which contributes to 7o o(1). The picture one gets here is very similar to the picture
obtained by Fabien Morel in his work in [6] and [5] on 7 based on the motivic
Adams spectral sequence. The groups which contribute to 7 o(1) are g g(s4(1))
and the groups which contribute to 7 o(s4(1)) in the spectral sequence, defined by
the tower (7.4), are

H™(S, 7% (1)) = H™(S, Batygy” iy (MUs, MUL)2g)

For any field k we have

H“(Spec(k), A) = 0

for 4 > j thus the only nontrivial contributions come from cohomology with co-
efficients in Ext?\fraf( MU) (MU,, MU,)y, for r < q. All such groups are zero
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except for the ones with r = ¢ which are equal to Z for 7 = ¢ = 0 and to Z /2 for
r =g > 0([10]). This is consistent with the conjecture of Fabien Morel predicting
that m,0(1) for any field & is isomorphic to its Grothendieck-Witt ring of quadratic
forms. In terms of the Grothendieck-Witt ring the fq filtration is then expected to
coincide with the filtration by the powers of the ideal of forms of even dimension
and the Milnor conjecture becomes a degeneracy result for the spectral sequence in
this range. The results of [6] and [5] imply that in this case the slice filtration fam
coincides with the Adams filtration. In general it is not so since the Adams filtration
on any spectrum which is a module over the Eilenberg-MacLane spectrum is trivial
while the slice filtration may be not.

Finally consider the slice spectral sequence for the rational Moore spectrum
1 such that mp 4(1g) = (1) ® Q. We have sy(1g) = 0 for ¢ # 0 and
So(lQ) = Hg. Thus .

Tonlogtie)) = { D Tora =0

The slice spectral sequence in this case degenerates and the intersection of all the
terms of the filtration fy7, »(1g) equals to the kernel of the motivic Hurewicz
homomorphism

7Tp,n(]-Q) - H—p,—n(s’ @)

If k = Q the group mp,0(1) ® Q contains at least two linearly independent elements
while

H*"(Spec(Q),Q) = Q

which implies that in this case the intersection (7.2) is not zero.

8 Possible strategies of the proof

We know of two strategies which can be used to prove the conjectures of this
paper. The first one looks as follows. One starts with Conjecture 1. The existing
techniques are sufficient to prove it in the case when S is a regular scheme over a
field. For any such S one has p*(Hz) = Hz where p : S — Spec(k) is the canon-
ical morphism. An unstable version of this fact is proved in [11]. A stable version
which easily follows will be done in one of the later papers of the series. The in-
verse image functor p* obviously takes effective objects to effective objects and,
for p of the form we consider here, it also takes rigid objects to rigid objects (see
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[12]). This argument show that it is enough to consider the case S = Spec(k). The
effectiveness part of the conjecture in this case should follows from the description
of the Eilenberg-MacLane spaces in terms of effective cycles given in [11] and will
be considered in the next paper of the series. The rigidity part follows from the
comparison between motivic cohomology defined in terms of motivic complexes
in [17] and motivic cohomology defined in terms of SH since for the former one
has HP4 = ( for ¢ < 0 by definition. The s-stable form of this comparison result
is proved in [11]. The T-stable form will be proved in one of the later papers of
the series. It requires the cancellation theorem proved through comparison with
higher Chow groups in [15]. The same argument proves Conjecture 12 for regular
schemes S over a field.

The next step in this strategy is to prove Conjecture 2. The existing techniques
are sufficient to do it for a regular scheme S of characteristic zero. As before
one first reduces the problem to S = Spec(Q) by showing that p*(Hz) = Hz.
The Eilenberg-MacLane spectrum is built out of the suspension spectra of the
Eilenberg-MacLane spaces K (Z(g), 2q) and thus it is sufficient to prove an ana-
Jog of Conjecture 2 for ¥ K (Z(g),2q) A Hz and show that the corresponding
direct sum decompositions are compatible with the assembly morphisms of the
Eilenberg-MacLane spectrum. To do it one constructs a functor p from DM, the
stable version of the category DMT of [17], to SH right adjoint to the functor
X : SH — DM which takes the suspension spectrum of a smooth scheme to its
“motive”. The unstable version of this construction is described in [11]. For any F
one gets a natural morphism of the form

(8.1) E A Hyz, — pA(E)

The morphism (8.1) is an isomorphism if E is a sphere. Using the Spanier-
Whitehead duality established in [12] one can show that it is an isomorphism if
E is the suspension spectrum of a scheme which is smooth and proper over S. If
S is the spectrum of a field of characteristic zero the resolution of singularities im-
plies that the suspension spectra of smooth projective varieties generate SH and
thus (8.1) is an isomorphism for any E. In particular one concludes that

SR K (Z(q), 29) A Hz, = pM (K (Z(q),2q))

where M is the functor which takes a pointed space to its “motive” in DM. The
spaces K (Z(q), 2q) for ¢ > 0 can be represented by spaces of effective cycles (see
[11]) on T and thus in the case of characteristic zero by infinite symmetric powers
of T9. In the second paper of the series started by [11] we analyze the structure of
the motives of infinite symmetric powers. We first show that they admit an analog
of the Steenrod splitting such that the motive of an infinite symmetric product splits
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as a direct sum of motives of “reduced” finite symmetric products. For any prime

[ the motive of each finite symmetric product localized in [ can be represented

as a direct summand of the iterated circle powers (the u,-version of the cyclic

power). This construction uses the fact that motives are functorial with respect to

“correspondences” given by finite relative cycles. Finally the motives of iterated

v circle powers of spheres are explicitly computed and showed to be isomorphic to
direct sums of Tate motives of the form required by Conjecture 2.

The next step which is again possible to do over a general base scheme is to
construct reduced power operations and use them to prove Conjecture 4. Together
with explicit computations of the action of reduced power operations in motivic

u cohomology of the lense spaces this should lead to a proof of Conjecture 3.

The next step is to prove Conjecture 10. We do not know how to deal with the
divisibility part of it yet but one may hope to prove it by looking at the geometry of
the symmetric products of spheres. Over a field of characteristic zero K (Z(q), 2q)
is built out of q-fold T-suspensions of L1(A™~14 — {0})/S,, where Sy, is the
symmetric group and A(™~14 js identified with the the g-th power of the subspace
V of A™, on which Sy, acts by permutation of cooordinates, given by the equation
' > z; = 0. What one has to show is that the suspension spectrum of (Am~1)9 —
{0})/Sm considered as a pointed space belongs to ©+SH®//. It can probably be
done by explicit computaion using some resolution of singularities for these spaces.

Assuming Conjecture 10 one can try to prove Conjecture 5 as follows. Fisrt
note that Conjecture 10 shows that there exists a unique homomorphism MU, —
T« (M GL) compatible with the homomorphism (3.5). To verify that it is an iso-
morphism it is sufficient to check that its analogs with coefficients in Q and Z /I are
isomorphisms. The usual approach to the compuation of the homology of MU as a
m module over the Steenrod algebra should work with no problem in the rigid setting
‘ which together with this identification of the Ey-term of the rigid Adams spectral
" sequence and the convergence theorem 6.7 should lead to a proof of Conjecture 5.
§ Conjecture 6 seem to be easy modulo Conjecture 5 and how one proves Conjecture

9 using Conjecture 6 is explained in Section 3.2.

Conjectures 7, 8 about algebraic K-theory can not be proved by means of the Adams
spectral sequence since K G L is not a connective spectrum. There are several things
one can do about it. One is to try to prove an analog of Conner and Floyd formula

(2]

—

; K**(X) = MGL**(X) ®uqgr+(s) K™ (S)

and use it together with Conjecture 5 to get Conjecture 7. Alternatively, one can use
the Adams spectral sequence to approximate the slices of the suspension spectrum
of BG L and use the fact that K G L = hocolimy,>oX7" L BG L. One can also use




OPEN PROBLEMS IN THE MOTIVIC STABLE HOMOTOPY THEORY, I 31

the following approach!. Define the s-stable homotopy category SH(S) starting
from the unstable A!-homotopy category and inverting S! but not S}. We get the
s-suspenison spectrum functor

TP Har o(S) = SH(S)
and the t-suspension spectrum functor
¥° 1 SH(S) — SH(S)

such that ¥ = 2¢°¥°. The functor 3$° has a right adjoint which we denote by
Qg°. The definition of the slice filtration can be given in the context of SHj in the
same way as we did for SH(S) except that all s-spectra are effective.

Conjecture 16
QP (ZRSHF(S)) C TRSH,(T)

This conjecture says that for a space (X, z) the space QFER(X7(X,z)) can be
bulit, at least s-stably, from n-fold T-suspensions. It connects the theme of this pa-
per to another bunch of conjectures describing the hypothetical theory of operadic
description of T-loop spaces. Any such theory should provide a model for QX%
which could then be used to prove Conjecture 16.

Let us show how Conjecture 16 can be used to prove Conjecture 7. The unit
1 — KGL of the ring structure of K GL defines by Conjecture 10 a morphism
Hz — so(KGL). The functor Q5° clearly reflects isomorphisms between effec-
tive spectra. Thus to prove Conjecture 7 it is sufficient to show that

(8.2) QX Hz — Q°so(KGL)
is an isomorphism. Consider the distinguished triangle

[1KGL - foKGL — so(KGL)
Applying to it the functor Q§° we get a triangle of the form
(8.3) QP HLKGL = QP foKGL — Q°so(KGL)

It is easy to see that Q£° fo (KGL) = Q°(KGL) and that Q£°so(K G L) is orthog-
onal to ©L.SH,. Conjecture 16 implies that Q5° f{ KGL belongs to £1.SH, and
therefore the triangle (8.3) is isomorphic to the triangle

AQPKGL = Q°KGL — 500X (KGL)

This approach is further elaborated in [16].
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Since the space BGL X Z represents algebraic K-theory in the unstable category
at least for a regular S (see [7]) the s-spectrum Q§° K GL can be represented by
the sequence of spaces which consists of s-deloopings of BGL x Z. Since BGL
is build out of spheres in a rather explicit way it seems to be easy to show that
50§2°(BGL) = Hyg where Hy is considered as the Eilenberg-MacLane s-spectrum
i.e. just the sequence of usual simplicial K (Z,n)’s. Finally Conjectures 1 and 12
imply that for a normal connected S one has Q{°(Hz) = Hyz. Thus we see that
(8.2) is an endomorphism of Hz, and one verifies immediately that it takes unit to
the unit which in turn implies that it is an identity.

This is how the first strategy looks like. It can be extended to prove the conjec-
tures for all schemes S of characteristic zero but we have no idea how to extend it
to positive or mixed characterstic. The bottleneck of this approach is the method
used to prove Conjecture 2. One problem is that in positive characteristic the spaces
of effective cycles are not representable by symmetric products and the argument
used to establish the fact that their motives are direct sums of Tate motives does not
work. The other problem is that without resotution of singularities I do not know
how to prove that the morphism (8.1) is an isomorphism for £ = Hg.

The second strategy is much less detailed than the first one but it may offer a way
to prove conjectures of this paper in their full generality. I learned the ideas on
which it is based from Mike Hopkins, Fabien Morel and Markus Rost.  This
strategy takes Conjecture 5 and closely related to it Conjecture 6 as the starting
point. Over a general base scheme it is much easier to work with cobordisms
than with motivic cohomology since the Thom spectrum is built directly from the
suspension spectra of smooth varieties while the Eilenberg-MacLane spectrum is
not. One can then attempt to prove the torsion part of Conjecture 6 by some analog
of Quillen’s argument. We do not know what to do with the rational part but may be
one can prove Lemma 6.2 directly. This would imply in particular that so(MGL) =
Hy, and thus we get Conjecture 10 since so(MGL) = s¢(1) for simple geometric
reasons. On the other hand knowing Conjecture 6 it seems possible to show that
Hy, is the homotopy colimit of an explicit diagram built out of many copies of
suspended MG L’s and since the rigid homology of M GL are easy to compute
we can compute rigid homology of Hy, thus solving Conjecture 3. This approach
would also imply another result which deserves a separate formulation.

Conjecture 17 For any morphism of schemes f : S’ — S the natural morphism
f*Hz — Hg is an isomorphism.
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