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On motivic cohomology with
Z/l-coefficients

By Vladimir Voevodsky

Abstract

In this paper we prove the conjecture of Bloch and Kato which relates

Milnor’s K-theory of a field with its Galois cohomology as well as the

related comparisons results for motivic cohomology with finite coefficients

in the Nisnevich and étale topologies.
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1. Introduction

In this paper we prove the Bloch-Kato conjecture relating the Milnor

K-theory and étale cohomology. It is a continuation of [10] where the particular

case of Z/2-coefficients (“Milnor’s conjecture”) was established, and we refer to

the introduction to [10] for general discussion about the Bloch-Kato conjecture.

The approach of this paper also provides a different proof of the conjecture for

l = 2.

The goal of Sections 2 and 3 is to prove Theorem 3.8 which relates two

types of cohomological operations in motivic cohomology. One of the opera-

tions appearing in the theorem is defined in terms of symmetric power functors

in the categories of relative Tate motives and another one in terms of the mo-

tivic reduced power operations introduced in [9]. Our proof of this theorem is

inspired by [3] and uses a uniqueness argument based on the computations of
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[13]. This is the only place where the results of [13] (and therefore of [14]) are

used and the only place where the results of [12] are used in an essential way.

In Section 4 we consider motives over a special class of simplicial schemes

which are called “embedded simplicial schemes” (see [12]). Up to an equiva-

lence, embedded simplicial schemes correspond to subsheaves of the constant

one point sheaf on Sm/k, i.e., with classes of smooth varieties such that

(1) if X is in the class and Hom(Y,X) 6= ∅ then Y is in the class; and

(2) if U → X is a Nisnevich covering and U is in the class, then X is in

the class.

In particular, for a symbol a = (a1, . . . , an) we have an embedded simplicial

scheme Xa associated with the class of all splitting varieties for a, and the

motivic cohomology of Xa plays a key role in our proof of the Bloch-Kato

conjecture.

The main goal of Section 4 is to prove a technical result — Theorem 4.4,

which is used in the next section to establish the purity of the generalized Rost

motives. We call this result “a motivic degree theorem” because it is analogous

to the simplest degree formula for varieties which asserts that a morphism from

a νn-variety to a variety without zero cycles of degree prime to l has degree

prime to l. The main difference between the standard degree formula and our

result is that the target of the morphism in our case is a motive rather than

a variety. As a consequence of this higher generality we also require stronger

conditions on the target than simply the absence of zero cycles of degree prime

to l.

In Section 5 we introduce the construction which represents the key dif-

ference between the case of Z/2-coefficients and Z/l-coefficients for l > 2. In

the Z/2-coefficients case the Pfister quadrics provide canonical νn−1-splitting

varieties for symbols of length n. The explicit nature of these varieties made it

possible for Markus Rost to invent a simple geometric argument which showed

that the motive of a Pfister quadric splits as a direct sum of an “essential part”

(which we called the Rost motive in [10]) and a “nonessential part” which can

be ignored as far as our goals are concerned. The fact that the Rost motive is

a direct summand of the motive of a νn−1-variety and at the same time has a

description in terms of Tate motives over the embedded simplicial scheme Xa
defined by the symbol puts strong restrictions on the motivic cohomology of

Xa. These restrictions allowed us to reformulate the vanishing result needed

for the proof of the Milnor conjecture in terms of a motivic homology group of

the Pfister quadric which can be analyzed geometrically.

A direct extension of these arguments to the l > 2 case fails for two main

reasons. First, we do not have nice geometric models for νn−1-splitting varieties

for symbols of length n. Second, the argument which for l = 2 transfers the

vanishing problem to a motivic homology group having an explicit geometric
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description fails to produce the same result for l > 2 ending in a group which

is not any easier to understand than the original one.

We show in Section 5 that any embedded simplicial scheme X which has

a nontrivial motivic cohomology class of certain bidegree and such that the

corresponding class of varieties contains a νn-variety defines a generalized Rost

motive. This motive is constructed from the Tate motives over X , and we

use the motivic degree theorem of the previous section to prove that it is a

direct summand of the motive of any νn-variety over X . The key ingredient of

the proof is the relation between the (l − 1)-st symmetric powers and Milnor

operations Qi provided by Theorem 3.8 and Lemma 5.13.

Generalized Rost motives unify two previously known families of motives

— the Rost motives for l = 2 discussed above and the motives of cyclic field

extensions of prime degree. The generalized Rost motives correspond to mo-

tivic cohomology classes which have νn-splitting varieties in the same way as

the motives of the cyclic field extensions correspond to the motivic cohomology

classes in H1,1(k,Z/l).

In Section 6 we give a proof of the Bloch-Kato conjecture based on the

results of the previous sections, reference [10], and a key result (Theorem 6.3)

announced by Markus Rost and proved in [7].

The approach to the Bloch-Kato conjecture used in the present paper goes

back to the fall of 1996. The proof of Theorem 3.8 in the first version of this

paper (see [11]) was based on a lemma ([11, Lemma 2.2]), the validity of which

is, at the moment, under serious doubt. In [15], C. Weibel suggested another

approach to the proof of Theorem 3.8. In the present version of the paper

we use a modified version of Weibel’s approach in which [11, Lemma 2.2] is

replaced by Lemma 2.4.

I would like to specially thank several people who helped me to under-

stand things used in this paper: Pierre Deligne for explaining to me how to

define sheaves over simplicial schemes and for help with the computation of

H∗(BGa,Ga), Peter May for general remarks on tensor triangulated cate-

gories, Fabien Morel for helping me to figure out the relation (5.9), and very

specially Chuck Weibel for continuing support and encouragement.

2. Computations with cohomological operations

For the purpose of this section a pointed smooth simplicial scheme is a

pointed simplicial scheme whose terms are (possibly infinite) disjoint unions of

smooth schemes of finite type over k and a disjoint basepoint. For a pointed

smooth simplicial scheme X , the simplicial suspension S1
s∧X is again a pointed

smooth simplicial scheme. For a motivic cohomology class

α ∈ Hp,q(X , R)
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of a pointed smooth simplicial scheme X , we let

σsα ∈ Hp,q(S1
s ∧ X , R)

denote the simplicial suspension of α. The goal of this section is to prove the

following uniqueness result.

Theorem 2.1. Let k be a field of characteristic zero. Let φi, i = 1, 2 be

two natural transformations (cohomological operations) of the motivic coho-

mology functors on pointed smooth simplicial schemes of the form‹H2n+1,n(−,Z/l)→ ‹H2nl+2,nl(−,Z/l)

such that :

(1) for b ∈ Z/l one has φi(bα) = bφi(α), and

(2) for any α ∈ H2n,n(X ,Z/l) one has φ(σsα) = 0.

Then there exists c ∈ Z/l such that φ1 = cφ2.

Observe first that since motivic cohomology respects local equivalences

and any pointed simplicial sheaf is locally equivalent to a pointed smooth sim-

plicial scheme, operations φi extend canonically to operations on the motivic

cohomology of pointed simplicial sheaves.

Let Km, m = 2n, 2n + 1, be a pointed simplicial sheaf which represents

on the pointed motivic homotopy category the functor ‹Hm,n(−,Z/l). Let αm
be the canonical class in ‹Hm,n(Km,Z/l).

Since both operations φi are natural for morphisms of pointed smooth

simplicial schemes, and any morphism in the motivic homotopy category can

be represented by a hat of morphisms of pointed smooth simplicial schemes, it

is sufficient to show that

φ1(α2n+1) = cφ2(α2n+1)

for an element c ∈ Z/l.

Lemma 2.2. For all i > 0 one has αi2n 6= 0.

Proof. Since K2n represents the functor ‹H2n,n(−,Z/l), the condition αi2n
=0 would imply that for any X and any α ∈ H2n,n(X,Z/l) one has αi=0. Tak-

ing X to be PN for N large enough and α to be a generator of H2n,n(PN ,Z/l)

we get a contradiction. �

Lemma 2.3. Let k be a field of characteristic zero. Then the Kunnet

homomorphism‹H∗,∗(K2n,Z/l)⊗H∗,∗ · · · ⊗H∗,∗ ‹H∗,∗(K2n,Z/l)→ ‹H∗,∗(K∧i2n,Z/l)

is an isomorphism for all i ≥ 0.
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Proof. The Kunnet homomorphism is an isomorphism for all spaces whose

motives are direct sums of Tate motives. In particular, it is an isomorphism

for K2n which is a direct sum of Tate motives by [13, Cor. 3.33]. �

Choosing Km to be a sheaf of Z/l vector spaces we get an action of

Aut(Z/l) = (Z/l)∗ by automorphisms on Km. This action defines an action

on the motivic cohomology of Km with Z/l-coefficients which gives a canonical

splitting of these cohomology groups into the direct sum of subspaces of weights

0, . . . , l−2. To distinguish the weight in this sense from the weight as the second

index of motivic cohomology, we will call the former one the scalar weight and

specify it by a third index such thatHp,q,r(Km,Z/l) is the subgroup of elements

of scalar weight r in Hp,q(Km,Z/l). A class γ is in this subgroup if for any

a ∈ (Z/l)∗ the automorphism fa defined by a takes γ to arγ.

For an element x in H∗,∗(Km,Z/l) we let s(x) (resp. w(x), d(x)) denote

its scalar weight (resp. its motivic weight, its dimension) if it is well defined.

Lemma 2.4. Let 0 ≤ s ≤ l − 2, and let x ∈ H∗,∗,s(Kn,Z/l), x 6= 0. Then

one has :

(2.1) w(x) ≥
®
sn if s > 0

(l − 1)n if s = 0.

If n > 0 and the equality holds in (2.1), then there is c ∈ Z/l such that

(2.2) x =

®
cαs2n or c(βα2n)αs−1

2n if s > 0

cαl−1
2n or c(βα2n)αl−2

2n if s = 0,

where β is the Bockstein homomorphism.

Proof. We may assume that n > 0. Then by [13, Thms. 3.32, 3.25] we

have

H∗,w,s(Kn,Z/l)

=
⊕

m≥1,m≡smod (l−1)

HomDM (Smtr (Z/l(n)[2n]⊕ Z/l(n)[2n+ 1]),Z/(w)[∗]).

By [13, Th. 2.76] one has

HomDM (Smtr (Z/l(n)[2n]⊕ Z/l(n)[2n+ 1]),Z/(w)[∗]) = 0

for

w <
(∑

mi

)
n+

(∑
imi

)
(l − 1),

where m =
∑
mil

i, 0 ≤ mi ≤ l − 1.

If s > 0, we have

sn ≤
(∑

mi

)
n+

(∑
imi

)
(l − 1)
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for any m such that m ≡ smod (l − 1) since
∑
mi ≡ mmod (l − 1). If s = 0,

we have
∑
mi ≡ 0 mod (l−1). Since

∑
mi > 0, we conclude that

∑
mi ≥ l−1,

and we get

(l − 1)n ≤
(∑

mi

)
n+

(∑
imi

)
(l − 1).

An equality may be achieved only if
∑
imi = 0, i.e., if m < l. For m < l we

have

Smtr (Z/l(n)[2n]⊕ Z/l(n)[2n+ 1]) = Z/l(nm)[2nm]⊕ Z/l(nm)[2nm+ 1],

and it is easy to see that the corresponding motivic cohomology classes of Kn

are αm2n and (βα2n)αm−1
2n . For s > 0 we have m = s, and for s = 0 we have

m = l − 1 which finishes the proof. �

Lemma 2.5. As a H∗,∗(Spec(k))-module, H∗,∗(Kn,Z/l) is generated by

classes x such that d(x) ≥ 2w(x).

Proof. It follows immediately from [13, Thms. 3.32, 3.25], [13, Th. 2.76]

and the definition of a proper Tate object (loc. cit.). �

The first condition of the theorem means that

φi(α2n+1) ∈ ‹H2nl+2,nl,1(K2n+1,Z/l).

The second condition says that φi(α2n+1) lie in the kernel of the homomorphism‹H2nl+2,nl(K2n+1,Z/l)→ ‹H2nl+2,nl(Σ1
sK2n,Z/l))

defined by the obvious morphism

(2.3) i : Σ1
sK2n → K2n+1.

The statement of the theorem follows now from the proposition below.

Proposition 2.6. The kernel of the homomorphism

(2.4) ‹H2nl+2,nl,1(K2n+1,Z/l)→ ‹H2nl+2,nl(Σ1
sK2n,Z/l)

is generated by one element.

Proof. We can choose K2n to be a sheaf of abelian groups. Then we may

realize K2n+1 as the simplicial sheaf B•K2n where B• refers to the standard

simplicial classifying space of a group space such that

Bp(K2n) = Kp
2n.

Let M(w) be fibrant (injective) model for the complex Z/l(w). The complexes‹H0(BpK2n,M(w)) form a cosimplicial complex, and we let

N ‹H0(B∗K2n,M(w))
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denote the corresponding normalized bicomplex. Note that its terms along the

former cosimplicial dimension are of the form ‹H0(K∧p2n ,M(w)). Then we have‹Hd,w(K2n+1,Z/l) = Hd(Tot(N ‹H0(B•K2n,M(w)))),

where Tot refers to the total complex of our bicomplex. Hence we have a

standard spectral sequence of a bicomplex with the E1 term of the form

(2.5) Ep,q1 = Hq(N ‹H0(B∗K2n,M(w))p) = ‹Hq,w(K∧p2n ,Z/l)

which tries to converge to ‹Hp+q,w(K2n+1,Z/l). To keep track of the motivic

weight of our cohomology groups, we will use a third index Ep,q,wr for the terms

of this spectral sequence.

One can easily see that this spectral sequence coincides with the spectral

sequence defined by the skeletal filtration

(2.6) sk0(B•K2n) ⊂ sk1(B•K2n) ⊂ · · · ⊂ skp(B•K2n) ⊂ · · ·

on the simplicial sheaf B•K2n. Note that the first term of this filtration

sk1B•Kn is Σ1
sKn, and the morphism (2.3) is the natural inclusion

i : sk1B•Kn → B•Kn.

Lemma 2.7. The spectral sequence (2.5) converges to ‹Hp+q,w(K2n+1,Z/l).

Proof. Interpreting (2.5) as the spectral sequence associated with the fil-

tration (2.6), we see that to prove the convergence it is enough to show that

for a given w there exists N such that for all p > N one has‹H∗,w(skp(B•K2n)/skp−1(B•K2n),Z/l) = 0.

It is easy to see that we have

skp(B•K2n)/skp−1(B•K2n) = Σp
sK
∧p
2n ,

where Σs is the simplicial suspension. On the other hand, by [9, Cor. 3.4] we

know that K2n is n-fold T -connected, and therefore K∧p2n is np-fold T -connected

and its motivic cohomology of weight < np are zero. �

Let us consider now what the spectral sequence (2.5) says about the group

A = ‹H2nl+2,nl,1(K2n+1,Z/l). Note first that since the spectral sequence is

constructed out of a filtration which respects the action of Aut(Z/l), it splits

into a direct sum of spectral sequences Ep,q,w,sr for individual scalar weights

s = 0, . . . , l − 2. Hence the groups which contribute to A are of the form

(2.7) Ep,2nl+2−p,nl,1
1 = ‹H2nl+2−p,nl,1(K∧p2n ,Z/l).

Lemma 2.8. For any p > 1, q < nl, one has‹H∗,q,1(K∧p2n ,Z/l) = 0.
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Proof. By Lemma 2.3 it is sufficient to consider elements of the form

x = x1 ⊗ · · · ⊗ xp where xi are elements of ‹H∗,∗(K2n,Z/l) with a well-defined

scalar weight. Suppose that s(x) = 1. Since p > 1, there are two possibilities.

Either s(xi) = 0 for some i or

(2.8) s(x1) + · · ·+ s(xp) ≥ l.

In the first case we may assume without loss of generality that s(x1) = 0. Then

by Lemma 2.4, w(x1) ≥ (l − 1)n. Furthermore, since w(x2) ≥ n, we conclude

that w(x) ≥ nl. In the second case, Lemma 2.4 implies that w(x) =
∑
w(xi) ≥

(
∑
s(xi))n ≥ n. �

Lemma 2.9. For any p ≥ 3 one has‹H2nl+2−p,nl,1(K∧p,Z/l) = 0.

Proof. By Lemma 2.3 it is sufficient to consider elements of the form

a x1 ⊗ · · · ⊗ xp, where a ∈ Hd,v(Spec(k)), and

x = x1 ⊗ · · · ⊗ xp ∈ H2nl+2−p−d,nl−v,1(K∧p2n ,Z/l).

By Lemma 2.5 we may further assume that d(xi) ≥ 2w(xi). By Lemma 2.8 we

conclude that v = 0. Since Hd,0(Spec(k)) = 0 for d < 0 and p > 2, this shows

that x = 0. �

Lemma 2.9, together with (2.7), show that there is a short exact sequence

0→ E2,2nl,nl,1
∞ → ‹H2nl+2,nl,1(K2n+1,Z/l)→ E1,2nl+1,nl,1

∞ → 0.

For p = 1 the incoming differentials are zero starting with d1; hence E∞ is

contained in E1 and we have an exact sequence

0→ E2,2nl,nl,1
∞ → ‹H2nl+2,nl,1(K2n+1,Z/l)→ ‹H2nl+1,nl,1(K2n,Z/l),

where the last arrow is exactly (2.4). It remains to show that E2,2nl,nl,1
∞ is

generated by one element. Since this is a subgroup of the corresponding E2

term, it is sufficient to show that this E2 term is generated by one element.

The Ep,q,nl,s2 term is the cohomology of the complex‹Hq,nl,s(K
∧(p−1)
2n ,Z/l)→ ‹Hq,nl,s(K∧p2n ,Z/l)→ ‹Hq,nl,s(K

∧(p+1)
2n ,Z/l),

where the differential is defined by the differential in the normalized complex

corresponding to B•K2n.

Lemma 2.10. For p > 1 the group

Dp = ‹H2nl,nl,1(K∧p2n ,Z/l)

is a free Z/l module generated by monomials of the form

αi12n ⊗ · · · ⊗ α
ip
2n,

where ij > 0 and
∑
j ij = l.
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Proof. Note first that these monomials are linearly independent by Lem-

mas 2.3 and 2.2. It remains to show that they generate Dp as a Z/l-module.

By Lemmas 2.3 and 2.5 we conclude that it is sufficient to consider elements

of the form x = ax1 ⊗ · · · ⊗ xp, where a ∈ H∗,∗(Spec(k)) and∑
i

s(xi) ≡ 1 mod (l − 1),

d(xi) ≥ 2w(xi).

By Lemma 2.8 we conclude that a ∈ H∗,0(Spec(k)), and since H>0,0(Spec(k))

= 0 and H∗,∗(Spec(k)) = Z/l, we may assume that a = 1. Now a series of

elementary calculations based on Lemma 2.4 finish the proof. �

To proceed further we will use a technique which allows one to obtain

elements in the E2 term of the spectral sequence associated with the skeletal

filtration on B•G for any sheaf of groups G. Let v : G × G → G be the

morphism given by (g1, g2) 7→ g1g
−1
2 . Note that the face map

∂i : Gp+1 → Gp

in B•G is of the form

∂i(g0, . . . , gp) =

®
(g0, . . . , ĝi, . . . , gp) for i ≤ p
(g0g

−1
p , . . . , gp−1g

−1
p ) for i = p.

Let γ be an element in Hd,w(G,Z/l) such that

(2.9) v∗(γ) = γ ⊗ 1− 1⊗ γ.

Consider the pointed simplicial scheme B•Ga over Z/l, and let

C• = O(B•Ga)

be the corresponding (reduced) cosimplicial abelian group. Then C0 = 0 and

for p > 0 the terms of C• are polynomial rings

Cp = Z/l[x1, . . . , xp],

and the face maps are given by obvious explicit formulas. Note that the face

maps are homogeneous in xi of degree 1, and therefore we may consider C•

as a graded simplicial abelian group. We will write this grading by degrees in

xi’s as the second index.

Define homomorphisms

Cp,q → Hdq,wq(Gp,Z/l)

by the rule xi 7→ 1⊗ · · · ⊗ γ⊗ · · · ⊗ 1 where γ is on the i-th place. One verifies

immediately that our condition on v∗(γ) implies that these homomorphisms

define a homomorphism of complexes

(2.10) ‹C∗,q → E∗,dq,wq1 ,
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where ‹C∗ is the normalized complex defined by the cosimplicial abelian group

C• and E∗,dq,wq1 is the appropriate row of our spectral sequence for B•G with

d1 as the differential. The cohomology of ‹C∗ are the cohomology groups

H∗(BGa,Ga) over Z/l. Hence, any γ as above defines a homomorphism

(2.11) Hp,q(BGa,Ga)→ Ep,dq,wq2 ,

where the second grading on the left-hand side is defined by the polynomial

degree of the cocycles.

Let us return now to the case when G = K2n and γ = α2n. Note that the

condition (2.9) is satisfied since α2n is defined by the identity homomorphism

of the abelian group K2n, and hence its composition with v : K2n×K2n → K2n

is exactly α2n ⊗ 1− 1⊗ α2n. Since γ is homogeneous of degree 1 with respect

to the scalar weight, the homomorphism (2.10) in this case is of the form

(2.12) ‹C∗,q → E
∗,2nq,nq,qmod (l−1)
1 .

The part of this homomorphism we are interested in at the moment is

(2.13) ‹Cp,l → Ep,2nl,nl,11 .

Lemma 2.10 implies immediately that (2.13) is an isomorphism for p > 1.

Therefore, the corresponding map

(2.14) Hp,l(BGa,Ga)→ Ep,2nl,nl,12

is surjective for p = 2 and is an isomorphism for p > 2. It remains to show that

for p = 2 the left-hand side of (2.14) is generated by one element. This follows

immediately from the computation of H∗(BGa,Ga) given in [4, Th. 12.1,

p. 375].

Remark 2.11. Note that if (2.9) is satisfied for an element γ, then it is also

satisfied for u(γ) for any motivic Steenrod operation u. Hence we can extend

homomorphism (2.11) to a homomorphism

�(2.15) Aa,b ⊗Z/l H
p,q(BGa,Ga)→ Ep,a+dq,b+wq

2 .

3. Computations with symmetric powers

In this section we fix a prime l and consider the categories of motives with

coefficients in R, where R is a commutative ring such that all primes but l

are invertible in R. For our applications we will need the cases of R = Z(l)

and R = Z/l. Our goal is to prove several results about the structure of the

symmetric powers Si(M) for i < l when M is a Tate motives of the form

R(p)[2q]→M → R→ R(p)[2q + 1]

and to use these results to define a cohomological operation

φl−1 : H2q+1,p(−, R)→ H2ql+2,pl(−, R).
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Let us first consider an arbitrary tensor additive category C, which is R-linear

and Karoubian (has images of projectors). For any i < l and any M in C,

define the symmetric power Si(M) as follows: The symmetric group Si acts

by permutations on M⊗i. Since i! is invertible in our coefficients ring we may

consider the averaging projector p : M⊗i →M⊗i given by

p = (1/i!)
∑
σ∈Si

σ.

We set Si(M) := Im(p). We will use morphisms

a : Si(M)→ Si−1(M)⊗M

and

b : Si−1(M)⊗M → Si(M),

where a is defined as the quotient of the morphism ã : M⊗i →M⊗i given by

ã(m1 ⊗ · · · ⊗mi) =
i∑

j=1

(m1 ⊗ · · · ⊗ “mj ⊗ · · · ⊗mi)⊗mj

and b is the quotient of the identity morphism.

Let us consider now the case when C = DT (X , R) is the triangulated

category of relative Tate motives on a smooth simplicial scheme X (see [12])

and M is a motive which is given together with a distinguished triangle of the

form

R(p)[2q]
x→M

y→ R
α→ R(p)[2q + 1],

where p, q ≥ 0. Composing a with the morphism defined by y we get a mor-

phism

u : Si(M)→ Si−1(M),

and composing b with the morphism defined by x we get a morphism

v : Si−1(M)(p)[2q]→ Si(M).

Lemma 3.1. There exist unique morphisms

r : Si−1(M)→ R(ip)[2iq + 1]

and

s : R→ Si−1(M)(p)[2q + 1]

such that the sequences

(3.1) R(ip)[2iq]
xi→ Si(M)

u→ Si−1(M)
r→ R(ip)[2iq + 1]

and

(3.2) Si−1(M)(p)[2q]
v→ Si(M)

yi→ R
s→ Si−1(M)(p)[2q + 1]
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are distinguished triangles. If p > 0, then these triangles are isomorphic to the

triangles

Π≥ip(S
i(M))→ Si(M)→ Π<ip(S

i(M))→ Π≥ip(S
i(M))[1]

and

Π≥p(S
i(M))→ Si(M)→ Π<p(S

i(M))→ Π≥p(S
i(M))[1].

Proof. Assume first that p > 0. Since the category of Tate motives is

closed under tensor products and direct summands, the symmetric power of

a Tate motive is a Tate motive. Therefore, it is sufficient to verify that the

first three terms of the sequences (3.1) and (3.2) satisfy the conditions of [12,

Lemma 5.18] for n = ip and n = p respectively.

By [12, Lemma 5.15] one has

s∗(M
⊗i) = s∗(M)⊗i

which immediately implies that

s∗(S
i(M)) = Si(s∗(M))

and that these isomorphisms are compatible with the maps a, b. Since p > 0,

we have s∗(M) = R⊕R(p)[2q]. Therefore

s∗(S
i(M)) = ⊕ij=0R(pj)[2qj],

where the morphism R(pj)[2qj] → s∗(S
i(M)) is s∗(x

j). We denote this mor-

phism by tj . Computing the slices of the morphisms involved in (3.1) and

(3.2), one gets

s∗(u)(tj) = (i− j)tj(3.3)

and

s∗(v)(tj) = tj+1.(3.4)

The morphism xi is ti. Since i − j are invertible for all j = 0, . . . , i − 1, this

implies together with (3.3), that (3.1) satisfies the conditions of [12, Lemma

5.18]. The morphism yi takes tj to 0 for j 6= 0 and takes 1 to 1. This implies

together with (3.4) that (3.2) satisfies the conditions of [12, Lemma 5.18].

Consider now the case of p = 0. Using [12, Prop. 5.20] we can identify

DT0 with a full subcategory in DLC(X , R). If q > 0, consider the homology

of Si(M) with respect to the standard t-structure on DLC(X , R). One can

easily see that xi defines an isomorphism of R[2iq] with τ≥2iq(S
i(M)) and u

defines an isomorphism of Si−1(M) with τ<2iq(S
i(M)), where τ refers to the

canonical filtration with respect to our t-structure. The standard argument

shows now that there exists a unique r with the required property. A similar

argument shows the existence and uniqueness of s.
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Consider now the case p = q = 0. Then the original triangle comes from

an exact sequence of the form

(3.5) 0→ R→M → R→ 0

in LC(X ), and for all i < l we have Si(M) ∈ LC. To prove the existence and

uniqueness of r and s, it is sufficient to show that the sequences defined by xi

and u and by v and yi are exact. We can verify the exactness on each term of

X individually. On a smooth scheme the constant presheaf with transfers is a

projective object, and therefore the restrictions of (3.5) to each term of X are

split exact. The exactness of the sequences defined by xi and u and by v and

yi follows by an easy computation. �

Consider the composition

(r ⊗ IdR(p)[2q+1]) ◦ s : R→ R((i+ 1)p)[2(i+ 1)q + 2].

Since the morphism α : R→ R(p)[2q+1] determines M up to an isomorphism,

which commutes with x and y, and our construction is natural with respect to

such morphisms in M , this composition depends only on α. We denote it by

φi(α). Note that it is defined only for i < l. Since our construction is natural

in M and the inverse image functors commute with tensor product, we get the

following result.

Lemma 3.2. For any α ∈ H2q+1,p(X , R) and any morphism of simplicial

schemes f : Y → X one has

f∗(φi(α)) = φi(f
∗(α)).

Remark 3.3. One easily observes that φ1(α) = α2. One also can show

that φi(α) = 0 for i < l − 1. In Lemma 3.7 we will see that for R = Z/l and

any n ≥ 0 the operation φl−1 is not identically zero.

Proposition 3.4. Let γ be a morphism of the form R→ R(r)[2s] and σ

a morphism of the form R→ R(p)[2q + 1]. Then one has

φi(γσ) = γi+1φi(σ).

Proof. Set α = γσ. For simplicity of notation we will write {n} instead of

(r)[2s] and {m} instead of (p)[2q + 1]. For example, X{i(n+m)} is

X(i(r + p))[i(2s+ 2q + 1)].

Let Mγ and Mσ be objects defined (up to an isomorphism) by distin-

guished triangles

R{n}[−1]→Mγ → R
γ→ R{n},

R{m}[−1]→Mσ → R
σ→ R{m}.
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The octahedral axiom applied to the representation of α as compositions

R
γ→ R{n} σ{m}−→ R{n+m}

and

R
σ→ R{m} γ{n}−→ R{n+m}

shows that there are morphisms

f : Mσ →Mα,

g : Mα →Mσ{n},

which fit into morphisms of distinguished triangles of the form

(3.6)

R{m}[−1] −−−−→ Mσ −−−−→ R
σ−−−−→ R{m}

γ{m}[−1]

y f

y Id

y γ{m}
y

R{m+ n}[−1] −−−−→ Mα −−−−→ R
α−−−−→ R{m+ n}

and

(3.7)

R{m+ n}[−1] −−−−→ Mα −−−−→ R
α−−−−→ R{m+ n}

Id

y g

y γ

y Id

y
R{m+ n}[−1] −−−−→ Mσ{n} −−−−→ R{n} σ{n}−−−−→ R{m+ n}.

Applying May’s axiom [5, Axiom TC3] to these two triangles, we conclude that

morphisms f and g can be chosen in such a way that

(3.8) g ◦ f = Id⊗ γ.

Consider now the diagrams

Si(Mσ) −−−−→ R −−−−→ Si−1(Mσ){m} −−−−→ Si(Mσ)[1]

Si(f)

y Id

y Si−1(f)⊗γ{m}

y Si(f)[1]

y
Si(Mα) −−−−→ R −−−−→ Si−1(Mα){n+m} −−−−→ Si(Mα)[1]

and

Si(Mα) −−−−→ Si−1(Mα) −−−−→ R{i(m+ n)}[1− i] −−−−→ . . .

Si(g)

y Si−1(g)⊗γ

y Id

y Si(g)[1]

y
Si(Mσ){in} −−−−→ Si−1(Mσ){in} −−−−→ R{i(m+ n)}[1− i] −−−−→ . . . ,

where:

(1) the upper row in the first diagram is (3.2) for Mσ,

(2) the lower row in the first diagram is (3.2) for Mα,

(3) the upper row in the second diagram is (3.1) for Mα,

(4) the lower row in the second diagram is (3.1) for Mσ twisted by {in}.
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Let us show that these diagrams commute. The commutativity of the right

square in the first diagram is an immediate corollary of the commutativity

of the left square in (3.6). Since both rows are distinguished triangles, we

conclude that there is a morphism

ψ : R→ R

which makes two other squares commute. Applying the slice functor, we con-

clude that the commutativity of the left square implies that ψ = 1.

The commutativity of the left square in the second diagram is an imme-

diatel corollary of the commutativity of the middle square in (3.7). Since both

rows are dsitinguished triangles, we conclude that there is a morphism

ψ : R{i(m+ n)}[−i]→ R{i(m+ n)}[−i]

which makes two other squares commute. Applying the slice functor, we con-

clude that the commutativity of the middle square implies that ψ = 1.

We see now that φi(α) is the composition

R
(1)−−−−→ Si−1(Mσ){m}ySi−1(f){m}

Si−1(Mα){n+m}ySi−1(g)⊗γ{m+n}

Si−1(Mσ){(i+ 1)n+m} (2){(i+1)n+m}−−−−−−−−−−→ R{(i+ 1)(m+ n)}[1− i].
We further have by definition

φi(σ) = (2) ◦ (1),

and by (3.8) we have

Si−1(g) ◦ Si−1(f) = Si−1(g ◦ f) = Id⊗ Si−1(γ) = Id⊗ γi−1.

Taking the composition we get

φi(α) = γi+1φi(σ). �

Corollary 3.5. For any α : R→ R(p)[2q + 1] and any c ∈ Z one has

φi(cα) = ci+1φi(α).

Since operations φi are natural in X , we can extend them to reduced mo-

tivic cohomology groups of pointed simplicial schemes in the usual way. We

can further extend then to the reduced motivic cohomology of pointed simpli-

cial sheaves using the fact that any simplicial sheaf has a weakly equivalent

replacement by a smooth simplicial scheme.
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Corollary 3.6. Let α be a class in ‹H2q,p(X ,Z/l). Then

φi(σsα) = 0.

Proof. The pull-back of σsα with respect to the projection

(S1
s ×X )+ → Σ1

sX

is the class σ ⊗ α where σ is the canonical class in H1,0(S1
s ,Z/l). Since

the restriction homomorphism is a monomorphism, it is enough to show that

φi(σ ⊗ α) = 0. By Proposition 3.4 we have

φi(σ ⊗ α) = φi(σ)⊗ αi+1.

The class φi(σ) lies in the group H2,0(S1
s ) = 0 which proves the corollary. �

Lemma 3.7. For any n ≥ 0 there exists X and α ∈ H2n+1,n(X ,Z/l) such

that φl−1(α) 6= 0.

Proof. To show that there exists α ∈ H2n+1,n such that φl−1(α) 6= 0, it is

sufficient in view of Proposition 3.4 to show that there exists α ∈ H1,0 such

that φl−1(α) 6= 0 and then consider αγ for an appropriate γ; i.e., we may

assume that n = 0. In this case one can take α to be a generator of

H1,0(K(Z/l, 1),Z/l) = Z/l;

this generator is represented by the canonical extension

0→ Z/l→M → Z/l→ 0,

which corresponds to the standard 2-dimensional representation of Z/l over

Z/l. The symmetric power Sl−1(M) is given by the regular representation

Z/l[Z/l] of Z/l over Z/l, and φl−1(α) is the second extension represented by

the exact sequence

(3.9) 0→ Z/l→ Z/l[Z/l]
g→ Z/l[Z/l]→ Z/l→ 0,

where the middle arrow is the multiplication by the generator of Z/l. Let K

be the complex given by the middle two terms of (3.9) with the last one placed

in degree 0. Then we have a distinguished triangle

(3.10) Z/l[1]→ K → Z/l
φl−1(α)→ Z/l[2].

Since Z/l[Z/l] is a projective Z/l-module, we have

Hom(K,Z/l[2]) = 0

where the morphisms are in the derived category. From the long exact sequence

associated with (3.10), we conclude that the map

(3.11) H0(Z/l,Z/l)→ H2(Z/l,Z/l)
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defined by φl−1(α) is surjective. Since the right-hand side of (3.11) is not zero,

we conclude that φl−1(α) 6= 0. �

Theorem 3.8. For any n ≥ 0 there exists c ∈ (Z/l)∗ such that for any

α ∈ ‹H2n+1,n(X ,Z/l) one has

(3.12) φl−1(α) = cβPn(α),

where β is the Bockstein homomorphism and Pn is the motivic reduced power

operation.

Proof. We see that the operation φl−1 satisfies the conditions of Theo-

rem 2.1 by Lemma 3.2 and Corollaries 3.5 and 3.6. The operation βPn satisfies

the first condition of Theorem 2.1 because the motivic Steenrod operations are

additive. It satisfies the second condition since for α ∈ H2n,n one has

βPn(σsα) = σsβP
n(α) = σsβα

l = 0,

where the first equality follows from [9, Lemma 9.2], the second equality from

[9, Lemma 9.8] and the third from [9, Eq. (8.1)]. We conclude that (3.12) holds

for c ∈ Z/l. Since βPn 6= 0 by [9, Cor. 11.5] and φl−1 6= 0 by Lemma 3.7, we

conclude that c 6= 0. �

4. Motivic degree theorem

In this section we fix a prime l and, unless the opposite is explicitly spec-

ified, we always assume that all other primes are invertible in the coefficient

ring. In particular, Z always means Z(l) — the localization of Z in l.

From [10], recall that we let sd(X) denote the d-th Milnor class of a smooth

variety X. This class lies in H2d,d(X,Z) and if dim(X) = d, then one may

consider the number deg(sd(X)). We say that a smooth projective variety X

is a νn-variety if dim(X) = ln − 1 and

deg(sln−1(X)) 6= 0(mod l2).

In [10] we constructed for any smooth projective variety X a stable normal

bundle V on X and a morphism

(4.1) τ : TN → ThX(V )

in the pointed A1-homotopy category which defines the degree map on the

motivic cohomology. Consider the cofibration sequence

(4.2) TN
τ→ ThX(V )

p→ ThX(V )/TN
∂→ Σ1

sT
N .

For d = dim(X) > 0, the Thom class

t ∈ ‹H2N−2d,N−d(ThX(V ),Z)
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restricts to zero on TN for the weight reasons, and there exists a unique class

t̃ ∈ ‹H2N−2d,N−d(ThX(V )/TN ,Z)

such that p∗(t̃) = t. On the other hand, the pull-back of the tautological class

in H2N+1,N (Σ1
sT

N ,Z) with respect to ∂ defines a class

v ∈ ‹H2N+1,N (ThX(V )/TN ,Z).

Lemma 4.1. Let X be a smooth projective variety of dimension d = ln−1

where n > 0. Then one has

(4.3) Qn(t̃) = (deg(sln−1(X))/l)v mod l.

Proof. Recall from [9] that Qn = βqn ± qnβ where β is the Bockstein

homomorphism. Since t̃ is the reduction of an integral class, we have β(t̃) = 0

and it is sufficient to show that

(4.4) βqn(t̃) = (deg(sln−1(X))/l)v mod l.

The image of (4.2) in DM is an appropriate twist of a sequence of the form

(4.5) Z(d)[2d]
τ ′→M(X)→ cone(τ ′)

v→ Z(d)[2d+ 1].

By [9, Cor. 14.3] we have qn(t) = sln−1(X)t, and therefore there is a commu-

tative square in the motivic category of the form

M(X) −−−−→ cone(τ ′)

sln−1(X)

y yqn(t̃)

Z/l2(d)[2d] −−−−→ Z/l(d)[2d].

This square extends to a morphism of distinguished triangles

Z(d)[2d]
τ ′−−−−→ M(X) −−−−→ cone(τ ′)

v−−−−→ Z(d)[2d+ 1]

u

y sln−1(X)

y yqn(t̃)

yu
Z/l(d)[2d] −−−−→ Z/l2(d)[2d] −−−−→ Z/l(d)[2d]

β−−−−→ Z/l(d)[2d+ 1]

for some morphism u. If u sends 1 to c, then the commutativity of the left

square means that we have

deg(sln−1(X)) = lc mod l2,

and the commutativity of the right square means that we have

cv = βqn(t̃) mod l.

Multiplying the second equality by l and combining with the first one we get

deg(sln−1(X))v = lβqn(t̃) mod l2

which is equivalent to (4.4). �
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Remark 4.2. The intermediate statement (4.4) of Lemma 4.1 actually

holds for any motivic Steenrod operation φ if one replaces sln−1 by an ap-

propriate characteristic class cφ as described in [9, Th. 14.2].

From this point until the end of the section we consider all our motives

with Z/l-coefficients. In particular, “an embedded simplicial scheme” means

a simplicial scheme embedded with respect to Z/l-coefficients.

Recall that the Milnor operationsQi have the property thatQ2
i = 0 and we

define for any pointed simplicial scheme X and any i ≥ 0 the motivic Margolis

homology flMH
∗,∗
i (X ,Z/l) of X as homology of the complex (‹H∗,∗(X ,Z/l), Qi).

Our first application of Lemma 4.1 is the following result, which is a slight

generalization of [10, Th. 3.2].

Lemma 4.3. Let X be an embedded (with respect to Z/l-coefficients) sim-

plicial scheme such that there exists a νn-variety X with M(X,Z/l) in DMX .

Let further ‹X = cone(X+ → S0)

be the unreduced suspension of X . ThenflMH
∗,∗
n ( ‹X ,Z/l) = 0.

Proof. Our proof is a version of the proof given in [10]. We will assume

that n > 0. The case n = 0 has a similar (easier) proof. We will use the

notation established in the proof of Lemma 4.1. Let cone(τ ′) be the motive

defined by (4.5). Consider the morphisms in DM with Z/l coefficients of the

form

M(‹X)(d)[2d+ 1]
Id⊗v←−−−M(‹X)⊗ cone(τ ′)

Id⊗t̃−−−→M(‹X).

Since M(X) is in DMX , [12, Lemma 6.8] shows that M(‹X) ⊗ M(X) = 0,

and therefore sequence (4.5) implies that the first arrow is an isomorphism.

Consider the homomorphism

φ : H∗,∗(‹X,Z/l)→ H∗−2d−1,∗−d(‹X,Z/l)
defined by (Id ⊗ t̃) ◦ (Id ⊗ v)−1. We claim that for any motivic cohomology

class x of ‹X one has

φQn(x)−Qnφ(x) = −(−1)deg(x)sln−1(X),

which clearly implies the statement of the lemma. Since Id ⊗ v is an isomor-

phism, it is sufficient to check that both sides become the same after multipli-

cation with v. Since v is the image of a morphism in the homotopy category,

it commutes with cohomological operations, and we have to check that

(4.6) Qn(x)⊗ t̃−Qn(x⊗ t̃) = −(−1)deg(x)sln−1(X)x⊗ v.
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For l > 2 we have

Qn(x⊗ t̃) = Qn(x)⊗ t̃+ (−1)deg(x)x⊗Qn(t̃)

by [9, Prop. 13.3], and the same holds for l = 2 by [9, Prop. 13.4] since

Qi(t̃) = 0 for i < n by weight reasons. Applying Lemma 4.1, we further get

Qn(x⊗ t̃) = Qn(x)⊗ t̃+ (−1)deg(x)x⊗ v,

which implies (4.6). �

Let X be an embedded simplicial scheme, n > 0 an integer and X be a

νn-variety such that M(X) = M(X,Z/l) lies in DMX (Z/l).

Let Z/lX (i)[j] denote the Tate motives over X which we identify with

M(X ,Z/l)(i)[j]. The image of (4.1) in DM(k,Z/l) is a morphism of the form

Z/l(d)[2d]→M(X),

and its composition with the morphism Z/lX (d)[2d] → Z/l(d)[2d] gives us

relative fundamental class

τX : Z/lX (d)[2d]→M(X).

On the other hand, [12, Lemma 6.10] implies that the structure morphism

π : M(X)→ Z/l is the composition of a unique morphism

πX : M(X)→ Z/lX

with the morphism Z/lX → Z/l.

Theorem 4.4. Consider a commutative diagram in DMX (Z/l) of the

form

M(X,Z/l)
s−−−−→ N

πX

y yr
Z/lX

Id−−−−→ Z/lX .

Assume that there exists a class α ∈ Hp,q(X ,Z/l) such that the following

conditions hold :

(1) p > q and α 6= 0,

(2) α ◦ r = 0,

(3) Qn(α) = 0.

Then s ◦ τX : Z/lX (d)[2d]→ N is not zero.

Proof. Let N ′ be the motive defined by the distinguished triangle

Z/lX (q)[p− 1]→ N ′ → Z/lX
α→ Z/lX (q)[p].
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Our assumption that α ◦ r = 0 is equivalent to the assumption that there is a

morphism N → N ′ which makes the diagram

N −−−−→ N ′

r

y y
Z/lX

Id−−−−→ Z/lX

commutative. Therefore to prove the proposition it is sufficient to show that

the composition

(4.7) g : ZX (d)[2d]→M(X)→ N → N ′

is nonzero. We may now forget about the original N and consider only N ′.

The composition πX τX is zero, and there exists a unique morphism

π̃X : cone(τX )→ Z/lX

which restricts to πX on M(X). If the composition (4.7) is zero, then

α ◦ π̃X : cone(τX )→ Z/lX (q)[p]

is zero. To finish the proof of the proposition it remains to show that it is

nonzero. Smashing the sequence (4.2) with X+, we get a cofibration sequence

TN ∧ X+ → ThX(V ) ∧ X+ → (ThX(V )/TN ) ∧ X+
∂X→ Σ1

sT
N ∧ X+.

Up to the shift of the bidegree by (2N − 2d,N − d), the motivic cohomology

of (ThX(V )/TN )∧X+ coincide as the module over the motivic cohomology of

X with the motivic cohomology of cone(τX ) such that π̃X corresponds to the

pull-back of t̃.

Hence all we need to show is that t̃α 6= 0. We are going to show that

Qn(t̃α) 6= 0. For l > 2, by [9, Prop. 13.3] one has

(4.8) Qn(u⊗ v) = Qn(u)⊗ v ± u⊗Qn(v),

and since Qn(α) = 0, we get that

(4.9) Qn(t̃α) = Qn(t̃)α.

For l = 2 we have additional terms in (4.8) which depend on Qi(t̃) for i < n.

It follows from the simple weight considerations that Qi(t̃) = 0 for i < n, and

therefore (4.9) holds for l = 2 as well.

Lemma 4.1 shows that the right-hand side of (4.9) equals cvα where c =

sln−1(X)/l. Since X is a νn-variety, c is an invertible element of Z/l. Hence it

remains to check that vα 6= 0. Since v = ∂∗(u), where u is the generator of

Z/l = H2N+1,N (Σ1
sT

N ,Z/l),
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we have vα = ∂∗X (uα). The element uα lies in the bidegree (p+2N+1, q+N).

The kernel of ∂∗X in this bidegree is covered by the group

(4.10) Hp+2N+1,q+N (Σ1
sThX(V )∧X+,Z/l) = Hp+2N,q+N (ThX(V )∧X+,Z/l).

The image of the projection pr : ThX(V ) ∧ X+ → ThX(V ) in DM is an

appropriate twist of the morphism

M(X)⊗ ZX →M(X)

which is an isomorphism by [12, Lemma 6.8]. Therefore, pr defines an isomor-

phism on the motivic cohomology with Z/l-coefficients, and we conclude that

(4.10) is isomorphic to the group

Hp+2N,q+N (ThX(V ),Z/l) = Hp+2d,q+d(X,Z/l)

which is zero for p > q by the cohomological dimension theorem. �

Remark 4.5. The end of the proof of Theorem 4.4 shows that the first

condition of the theorem can be replaced by the condition that α does not

belong to the image of the homomorphism

H−p,−q(X,Z/l)→ Hp,q(X ,Z/l).

5. Generalized Rost motives

In this section we work over fields of characteristic zero to be able to

use the results of Section 2 and the motivic duality theorems of [8, §4.3]. All

motives are with Z(l)-coefficients. We consider n > 0 and an embedded smooth

simplicial scheme X which satisfies the following conditions:

(1) There exists a νn-variety X such that M(X) lies in DMX .

(2) There exists an element δ in Hn+1,n(X ,Z/l) such that

(5.1) Q0Q1 . . . Qn(δ) 6= 0,

where Qi are the Milnor operations introduced in [9, §13].

Under these conditions we will show that there exists a Tate motive Ml−1 in

DMX which is a direct summand of M(X). Using the construction of Ml−1

we will show among other things that

M(X ) = M(Č(X)).

Remark 5.1. Note that our assumptions imply, in particular, that X has

no zero cycles of degree prime to l.

Remark 5.2. Modulo the Bloch-Kato conjecture in weight ≤ n and Con-

jecture 1 (or assuming that for all i ≤ n there exist a νi-variety Xi such that

M(Xi) is in DMX ), the condition (5.1) is equivalent to the condition δ 6= 0

(see the proof of Lemma 6.7).
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Remark 5.3. Let X0 be the zero term of X . Then, modulo the Bloch-Kato

conjecture in weight ≤ n, one has

Hn+1,n(X ,Z/l) =
⋂
α

ker
(
Hn+1

et (k, µ⊗nl )→ Hn+1
et (k(Xα), µ⊗nl )

)
,

where Xα are the connected components of X0 (see the proof of Lemma 6.5).

Therefore, our conditions on X can be reformulated by saying that there exist

νi-varieties in DMX for all i ≤ n and

ker
(
Hn+1

et (k, µ⊗nl )→ Hn+1
et (k(Xα), µ⊗nl )

)
6= 0;

i.e., X0 splits a nonzero element in Hn+1
et (k, µ⊗nl ).

Remark 5.4. Extending the previous remark, we see that if k contains

a primitive l-th root of unity (such that µl ∼= Z/l), then the results of this

section are applicable to all nonzero elements in Hn+1,n+1(k,Z/l) which can

be split by a νn-variety. Theorem 6.3 shows that any pure symbol (i.e. the

product of n + 1 elements from H1,1) is such an element. It seems natural

to conjecture that the inverse implication also holds, i.e., that an element in

Hn+1,n+1(k,Z/l) which can be split by a νn-variety is a pure symbol.

Set

(5.2) µ = ›Q0Q1 · · ·Qn−1(δ),

where ›Q0 is the integral-valued Bockstein homomorphism

H∗,∗(−,Z/l)→ H∗+1,∗(−,Z).

Then

µ ∈ H2b+1,b(X ,Z),

where b = (ln − 1)/(l − 1).

Consider µ as a morphism in the category of Tate motives over X , and

define M = Mµ by the distinguished triangle in DMX of the form

(5.3) ZX (b)[2b]
x→M

y→ ZX
µ→ ZX (b)[2b+ 1].

For any i < l, let

(5.4) Mi = SiM

be the i-th symmetric power of M . The motive Ml−1 is called the generalized

Rost motive defined by X and δ. Note that µ is an l-torsion element, and

therefore we have

Mi ⊗Q = ⊕ij=0Q(jb)[2jb].

With integral coefficients, Mi does not split into a direct sum. Instead the

distinguished triangles of the form (3.1) and (3.2) give us distingished triangles

(5.5) Mi−1(b)[2b]→Mi → ZX →Mi−1(b)[2b+ 1]
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and

(5.6) ZX (bi)[2bi]→Mi →Mi−1 → ZX (bi)[2bi+ 1],

which describe Mi in terms of Tate motives

ZX (jb)[2jb] = M(X )(jb)[2jb]

over X . The main goal of this section is to show that Ml−1 is a pure motive

which is essentially self-dual and which splits as a direct summand from M(X).

It can be shown that this property is special to Ml−1 and does not hold for Mi

where i < l − 1.

Example 5.5. For l = 2, the Pfister quadric Qa defined by a sequence

of invertible elements (a1, . . . , an+1) of k is a νn-variety. There is a unique

nonzero class δ in Hn+1,n(Č(Qa),Z/2) and it satisfies the condition (5.1). The

corresponding motive M1 = M is the standard Rost motive considered in [10].

Example 5.6. Everywhere below we consider the case n > 0. The case

n = 0 gives a good motivating example, but the construction of M has to be

modified slightly since (5.2) clearly makes no sense in this case. A ν0-variety

is a variety of dimension zero and degree nondivisble by l2. The simplest

interesting example is X = Spec(E), where E is an extension of degree l. In

order to have H1,0(Č(X),Z/l) 6= 0, k must contain a primitive l-th root of

unity. In that case we may set µ = δ and define M as a motive with Z/l-

coefficients given by

Z/l→M → Z/l
δ→ Z/l[1]

over Č(X). Then Ml−1 is the motive of Spec(E) with Z/l-coefficients.

We start with several results about the motives Mi which do not depend

on any subtle properties of X or µ. For the proof of these results it will be

convenient to consider our motives as relative Tate motives over X .

Lemma 5.7. For any i = 1, . . . , l − 1, there exists a morphism

ei : Mi ⊗Mi → ZX (bi)[2bi]

such that (Mi, ei) is an internal Hom-object from Mi to ZX (bi)[2bi] in DMX .

Proof. Consider first the case i = 1. Since the Tate objects are quasi-

invertible, there exist internal Hom-objects (ZX , u) (resp. (ZX (b)[2b], v)) from

ZX (b)[2b] (resp. ZX ) to ZX (b)[2b]. The dual Dµ is again µ, and applying [12,

Th. 8.3] to the distinguished triangle defining M , we conclude that there exists

e1 with the required property.

We can now define ei for i > 1 as the morphism

ei : Mi ⊗Mi
∼= Si(M ⊗M)

Sie1→ Si(ZX (b)[2b]) = ZX (bi)[2bi].
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[12, Lemma 5.17] implies immediately that (Mi, ei) is an internal Hom-object

from Mi to ZX (bi)[2bi]. �

Consider the homomorphism

(5.7) End(Mi)→ ⊕ij=0Z

defined by the slice functor over X and the identifications

End(sbj(Mi)) = End(Z) = Z, j = 0, . . . , i.

Lemma 5.8. The image of (5.7) is contained in the subgroup of elements

(c0, . . . , ci) such that ck = cj mod l for all k, j.

Proof. Let w be an endomorphism of Mi, cj be the j-th slice of w and

cj+1 the (j + 1)-st slice of w. We need to show that cj = cj+1 mod l. Consider

the object Π≥ jbΠ<jb+2(Mi). By Lemma 3.1, we have

Π≥jb(Mi) = Mj(jb)[2jb],

Π<jb+2(Mj(jb)[2jb]) = (Π<2(Mj))(jb)[2jb] = M(jb)[2jb].

This reduces the problem to the case j = 0 and i = 1, i.e., to an endomorphism

M →M.

Since the defining triangle for M coincides with one of the triangles of the slice

tower of M , it is natural in M . This fact, together with the fact that µ is

nonzero modulo l, implies the result we need. �

Remark 5.9. It is easy to see that the image of (5.7) in fact coincides with

the subgroup of Lemma 5.8.

Corollary 5.10. Let w : Mi →Mi be a morphism such that the square

Mi
w−−−−→ Miy y

ZX
c−−−−→ ZX

commutes for an integer c prime to l. Then w is an isomorphism.

Proof. Since the slice functor is conservative on Tate motives, it is suffi-

cient to show that w is an isomorphism on each slice. Our assumption implies

that w is c on the zero slice, and since c is prime to l, it is an isomorphism

there. We conclude that w is also prime to l and hence an isomorphism on the

other slices by Lemma 5.8. �

Let

πX : M(X)→ ZX
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be the unique morphism such that the composition

M(X)→ ZX → Z

is the structure morphism π : M(X)→ Z.

Lemma 5.11. For any smooth X such that M(X) is in DMX , there exists

λ which makes the diagram

(5.8)

M(X)
λ−−−−→ Mi

πX

y ySi(y)

ZX
Id−−−−→ ZX

commutative.

Proof. The distinguished triangle of the form (5.5) for Mi shows that the

obstruction to the existence of λ lies in the group of morphisms

Hom(M(X),Mi−1(b)[2b+ 1]).

Using induction on i and the sequences (5.6) to compute these groups we see

that it is built out of the groups

Hom(M(X),ZX (bj)[2bj + 1]) = H2bj+1,bj(X,Z),

where the equality holds by [12, Lemma 6.10]. Since X is smooth these groups

are zero. �

Let us now consider the motive Mi for i = l− 1. To simplify the notation

we set d = b(l − 1) = ln − 1.

Proposition 5.12. For any λ which makes the square (5.8) commutative

(for i = l − 1), the composition

λτX : ZX (d)[2d]→Ml−1

is not divisible by l.

Proof. In view of Theorem 4.4 it is enough to construct a nonzero motivic

cohomology class α in Hp,q(X ,Z/l) for some p > q such that α vanishes on

Ml−1 and such that Qn(α) = 0. We set α = Qn(µmod l). Let us verify that all

the required conditions hold. The bidegree of α is (2b+2d+2, b+d) = (lb+2, lb).

In particular, the dimension is greater than weight. By Lemma 4.3 the n-th

motivic Margolis homology of the unreduced suspension ‹X of X is zero. Hence

if Qn(µ) = 0, then µ = Qn(γ), where

γ ∈ H2b−2d+1,b−d( ‹X ,Z/l).
For l > 2 and n > 0 we have b − d < 0, and this group is zero. For l = 2 we

have b = d, and the group H1,0( ‹X ,Z/2) is zero from the long exact sequence
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relating the motivic cohomology of ‹X and the motivic cohomology of X . Since

µ 6= 0, by our assumption (5.1) we conclude that α 6= 0.

The condition Qn(α) = 0 follows immediately from the fact that Q2
n = 0

(see [9, Prop. 13.3, 13.4]). It remains to check that α vanishes on Ml−1. In

view of Theorem 3.8 and the definition of the operation φl−1, the class βP b(µ)

vanishes on Ml−1. Since Qi(µ) = 0 for i < n, we conclude by Lemma 5.13 that

Qn(µ) = βP b(µ),

which proves the proposition for l > 2. To finish the proof for l = 2 one needs

an analog of Lemma 5.13 for Z/2-coefficients. Such an analog can be obtained

by the methods used in [10, §13]. �

Lemma 5.13. One has the following equality in the motivic Steenrod al-

gebra for l > 2:

(5.9) Q0P
b = P bQ0 + P b−1Q1 + P b−l−1Q2 + · · ·+ P 0Qn.

Proof. Since l > 2 the subalgebra of the motivic Steenrod algebra gen-

erated by operations β, P i is isomorphic to the usual topological Steenrod

algebra. In the topological Steenrod algebra, the equation follows by easy

induction on n from the commutation relation for the Milnor basis given in

[6, Th. 4a]. �

Let ∆∗ : M(X) ⊗ M(X) → Z(d)[2d] be the morphism defined by the

diagonal, and let

eX = ∆∗X : M(X)⊗M(X)→ ZX (d)[2d]

be the morphism which corresponds to ∆∗ by [12, Lemma 6.10].

Proposition 5.14. The pair (M(X), eX) is an internal Hom-object from

M(X) to ZX (d)[2d] in DMX .

Proof. It follows from [12, Lemmas 6.11 and 6.13]. �

Define Dλ as the dual of λ with respect to eX and eM .

Lemma 5.15. There exists c prime to l such that the diagram

Ml−1
λDλ−−−−→ Ml−1y y

ZX
c−−−−→ ZX

commutes. In particular, λ is a split epimorphism.
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Proof. We will show that there is c such that the diagram

(5.10)

Ml−1
Dλ−−−−→ M(X)

λ−−−−→ Ml−1ySl−1(y)

yπX ySl−1(y)

ZX
c−−−−→ ZX

Id−−−−→ ZX

commutes. Since the right-hand side square commutes by definition of λ, we

only have to consider the left-hand side square. Observe first that

πX = DτX .

On the other hand,

Sl−1(y) = DSl−1(x).

Using the fact that D(gf) = D(f)D(g), we see that to show that the left-hand

side square commutes it is enough to show that there is c prime to l such that

the square

ZX (d)[2d]
c−−−−→ ZX (d)[2d]

τX

y ySl−1(x)

M(X)
λ−−−−→ Ml−1

commutes. The fact that there exists c ∈ Z, which makes this diagram com-

mutative, follows immediately from the distinguished triangles (3.1) and the

fact that Tate objects of higher weight admit no nontrivial morphisms to Tate

objects of lower weight. The fact that c must be prime to l follows from

Proposition 5.12. �

Combining Lemma 5.15 with Corollary 5.10, we conclude that λDλ is an

isomorphism. Let φ be its inverse. Then the composition

p : Dλ ◦ φ ◦ λ : M(X)→M(X)

is a projector, i.e., p2 = p and its image is Ml−1. We conclude that Ml−1 is

a direct summand of M(X). Together with [12, Lemma 6.14] this implies the

following important result.

Theorem 5.16. The motive Ml−1 is restricted.

Combining Theorem 5.16 with Lemmas 5.7 and [12, Lemma 6.11], we get

the following duality theorem for Ml−1.

Corollary 5.17. Let e′M be the composition

Ml−1 ⊗Ml−1
eM→ ZX (d)[2d]→ Z(d)[2d].

Then (Ml−1, e
′
M ) is an internal Hom-object from Ml−1 to Z(d)[2d] in the cat-

egory DM eff
− (k).



ON MOTIVIC COHOMOLOGY WITH Z/l-COEFFICIENTS 429

Proposition 5.18. Under the assumptions of this section, one has

M(X ) ∼= M(Č(X)),

where the motives are considered with Z(l)-coefficients.

Proof. By [12, Lemma 6.21] it is sufficient to show that for any smooth

Y in DMX there exists a morphism M(Y ) → M(X) over Z. Diagram (5.10)

shows that c−1Dλ is a morphism Ml−1 → M(X) over Z. On the other hand,

Lemma 5.11 shows that there is a morphism M(Y ) → Ml−1 over Z. The

statement of the proposition follows. �

6. The Bloch-Kato conjecture

In this section we use the techniques developed above to prove the follow-

ing theorem.

Theorem 6.1. Let k be a field of characteristic zero which contains a

primitive l-th root of unity. Then the norm residue homomorphisms

KM
n (k)/l→ Hn

et(k, µ
⊗n
l )

are isomorphisms for all n.

In the next section we will extend this theorem to all fields of characteristic

not equal to l. The statement of Theorem 6.1 is known as the Bloch-Kato

conjecture (see [10]).

As was shown in [10, pp. 96–97], in order to prove Theorem 6.1 it is

sufficient to construct for any k of characteristic zero and any sequence of

invertible elements a = (a1, . . . , an) of k, a field extension Ka of k such that

the following two conditions hold:

(1) The image of a in KM
n (Ka) is divisible by l.

(2) The homomorphism of the Lichtenbaum (étale) motivic cohomology

groups

Hn+1,n
et (K,Z(l))→ Hn+1,n

et (Ka,Z(l))

is a monomorphism.

We say that a smooth connected scheme X splits a modulo l if a becomes zero

in KM
n (k(X))/l, where k(X) is the function field of X. We use the notation

H−1,−1(X,Z) for the motivic homology group

H−1,−1(X,Z) = HomDM (Z,M(X)(1)[1]).

For X = Spec(k) this group is k∗, and for a general X it has a description in

terms of cycles with coefficients in KM
∗ . If X is smooth projective of dimension

d over a field of characteristic zero, then the motivic duality theorem implies

that

H−1,−1(X,Z) = H2d+1,d+1(X,Z).
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Definition 6.2. A smooth projective variety X over k is called a ν≤n-

variety if X is a νn-variety, and for all i < n there exists a νi-variety Xi and a

morphism Xi → X.

It seems likely that the following conjecture holds.

Conjecture 1. Any νn-variety is a ν≤n-variety.

A key point in our proof of Theorem 6.1 is the following result announced

by Markus Rost and proved in [7].

Theorem 6.3. For any a = (a1, . . . , an) there exists a ν≤(n−1)-variety X

such that :

(1) X splits a.

(2) The sequence

H−1,−1(X ×X,Z)
pr1−pr2−→ H−1,−1(X,Z)→ k∗

is exact.

In order to prove Theorem 6.1 we will show that for any X satisfying the

conditions of Theorem 6.3, the homomorphism

Hn+1,n
et (k,Z(l))→ Hn+1,n

et (k(X),Z(l))

is injective. We will have to assume during the proof that Theorem 6.1 holds

in degrees ≤ (n− 1).

Lemma 6.4. Assume that Theorem 6.1 holds in degrees ≤ n − 1 and the

a = (a1, . . . , an) is a symbol which is not zero in KM
n (k)/l. Then the image of

a in Hn
et(k, µ

⊗n
l ) is not zero.

Proof. By the standard transfer argument it is enough to prove the lemma

for fields k which have no extensions of degree prime to l. In particular µl ∼=
Z/l. We proceed by induction on n. We know the statement for n = 1. Let

E = k[t]/(tl = an)

be the cyclic extension of degree l corresponding to an and α the class in

H1
et corresponding to an. Let γ be the image of (a1, . . . , an−1) in Hn−1

et . By

induction we may assume that γ 6= 0. By [10, Proposition 5.2] we have an

exact sequence

Hn−1
et (E,Z/l)

NE/k→ Hn−1
et (k,Z/l)

α→ Hn
et(k,Z/l)→ Hn

et(E,Z/l),

and therefore if γα = 0, then γ = NE/k(γ
′). In the weight n − 1, étale coho-

mology are isomorphic to the Milnor K-theory by our assumption. Therefore

(a1, . . . , an−1) is the norm of an element in KM
n−1(E) and we conclude that

(a1, . . . , an−1, an) = (a1, . . . , an−1)⊗ (an) = 0. �
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Lemma 6.5. Assume that Theorem 6.1 holds in degrees ≤ (n − 1), a

is not zero in KM
n (k)/l and X is a disjoint union of smooth schemes such

that each component of X splits a. Then there exists a nonzero element δ in

Hn,n−1(Č(X),Z/l).

Proof. Since we assumed the Bloch-Kato conjecture in weight ≤ (n− 1),

we know by [10] that

H∗,n−1(−,Z/l) = H∗Nis(−, B/l(n− 1)),

where B/l(n − 1) is the truncation τ≤(n−1) of the total direct image of the

sheaf µ
⊗(n−1)
l from the étale to the Nisnevich topology. In particular, for any

X one has

Hn,n−1(X ,Z/l) = ker
(
Hn

et

Ä
X , µ⊗(n−1)

l

ä
→ H0

Ä
X , Hn

et

Ä
X , µ⊗(n−1)

l

ää)
,

where Hn
et is the Nisnevich sheaf associated with the presheaf Hn

et. For a

simplicial scheme X and any sheaf F , we have H0(X , F ) ⊂ H0(X0, F ) where

X0 is the zero term of X . If X0 is a disjoint union of smooth schemes and F is

a homotopy invariant Nisnevich sheaf with transfers, we further have

H0(X0, F ) ⊂
∏
α

H0(Spec(k(Xα)), F ),

where Xα are the connected components of X0. Therefore, for X = Č(X) we

get

Hn,n−1(X ,Z/l) = ker
(
Hn

et

Ä
X , µ⊗(n−1)

l

ä
→
∏
α

Hn
et

Ä
Spec(k(Xα)), µ

⊗(n−1)
l

ä)
,

where Xα are the connected components of X. If X 6= ∅ and F is an étale

sheaf, we have (cf. the proof of [10, Lemma 7.3])

Hn
et(Č, F ) = Hn

et(Spec(k), F );

therefore,

Hn,n−1(X ,Z/l)

= ker
(
Hn

et

Ä
Spec(k), µ

⊗(n−1)
l

ä
→
∏
α

Hn
et

Ä
Spec(k(Xα)), µ

⊗(n−1)
l

ä)
.

Recall now that we assumed that k contains a primitive l-th root of unity.

Therefore we can replace µ
⊗(n−1)
l by µ⊗nl , and we conclude that Hn,n−1(X ,Z/l)

contains

ker
(
Hn

et

Ä
Spec(k), µ⊗nl

ä
→
∏
α

Hn
et

Ä
Spec(k(Xα)), µ⊗nl

ä)
,

which is nonzero by our condition that each Xα splits a and Lemma 6.4. �
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Set X = Č(Y ) where Y is the disjoint union of all (up to an isomorphism)

smooth schemes which split a, and let ‹X be the unreduced suspension of X .

Note that for a smooth connected variety X one has M(X) ∈ DMX if and

only if X splits a.

Lemma 6.6. Under the assumption that Theorem 6.1 holds in weights

< n, one has ‹Hp,q( ‹X ,Z/l) = 0

for all q ≤ n− 1 and p ≤ q + 1.

Proof. By [10, Cor. 6.9] and our assumption that Theorem 6.1 holds in

weights < n, we conclude that for q ≤ n− 1 and p ≤ q + 1 we have

Hp,q( ‹X ,Z/l) ⊂ Hp,q
et ( ‹X ,Z/l).

The right-hand side group is zero for all p and q by [10, Lemma 7.3]. �

Lemma 6.7. Let δ be as in Lemma 6.5. Then

Qn−1 · · ·Q0(δ) 6= 0.

Proof. The cofibration sequence which defines ‹X gives us a homomorphism

Hp,q(X )→ Hp+1,q( ‹X ), which is a monomorphism for p > q. Let δ̃ be the image

of δ in Hn+1,n−1( ‹X ). Since δ 6= 0, we have δ̃ 6= 0. Let us show that

Qi · · ·Q0(δ̃) 6= 0

for all i < n. Assume by induction that

Qi−1 · · ·Q0(δ̃) 6= 0.

By Theorem 6.3 there exists a ν≤(n−1)-variety X which splits a. By our con-

struction we have M(X) ∈ DMX . Therefore by Lemma 4.3 the motivic Mar-

golis homology flMH
∗,∗
i of ‹X are zero for all i < n. Hence Qi · · ·Q0(δ̃) = 0 if

and only if there exists u such that

(6.1) Qi(u) = Qi−1 . . . Q0(δ̃).

Let us make some degree computations which will also be useful below. The

composition Qi−1 . . . Q0 shifts dimension by

1 + 2l − 1 + · · ·+ 2li−1 − 1 = −i+ 2l(li−1 − 1)/(l − 1) + 2

and weight by

0 + l − 1 + · · ·+ li − 1 = −i+ l(li−1 − 1)/(l − 1) + 1.

Therefore the kernel of Qi on Qi−1 . . . Q0(‹Hp,q(−,−)) is covered by the group

of dimension

−i+ 2l(li−1 − 1)/(l − 1) + 2− 2li + 1 = −i+ 2lw + 3
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and weight

−i+ l(li−1 − 1)/(l − 1) + 1− li + 1 = −i+ lw + 2,

where w = (li−1 − 1)/(l − 1)− li. Note that w ≤ −1 and lw ≤ −2. Therefore

the bidegree of u in (6.1) is (n+1− i+2lw+3, n−1− i+ lw+2). We conclude

that the weight of u is ≤ n− 1 and the difference between the dimension and

the weight is

n+ 1− i+ 2lw + 3− (n− 1− i+ lw + 2) = 3 + lw ≤ 1.

By Lemma 6.6 we conclude that u = 0 which contradicts our inductive as-

sumption that Qi−1 . . . Q0(δ̃) 6= 0. �

Define µ as in (5.2) starting with δ, and let Mi be the motive defined by

(5.4). In view of Lemma 6.7 the results of the previous section are applicable.

In particular, Proposition 5.18 implies the following.

Lemma 6.8. Let X be a νn−1-variety which splits a. Then

M(X ) = M(Č(X)).

Lemma 6.9. Let X be a νn−1-variety which splits a. Then there is an

exact sequence

Hn+1,n(X ,Z(l))→ Hn+1,n
et (k,Z(l))→ Hn+1,n

et (k(X),Z(l)).

Proof. The morphism Spec(k(X))→ Spec(k) admits a decomposition

Spec(k(X))→ X → X → Spec(k),

where the middle arrow is the natural morphism from X to X . By [10, Lemma

7.3] the last arrow defines an isomorphism on Hn+1,n
et (−,Z(l)). Therefore it is

sufficient to show that the sequence

Hn+1,n(X ,Z(l))→ Hn+1,n
et (X ,Z(l))→ Hn+1,n

et (k(X),Z(l))

is exact. The composition of two morphisms is zero because it factors through

Hn+1,n(k(X),Z(l)) = 0.

Let Zet(l)(n) be the object in DM eff
− (k) which represents the étale motivic coho-

mology of weight n, and let L(n) be its canonical truncation at the level n+ 1

(see [10, p. 90]). Consider a distinguished triangle of the form

Z(l)(n)→ L(n)→ K(n)→ Z(l)(n)[1],

where the first arrow corresponds to the natural morphism

Z(l)(n)→ Zet(l)(n).

Let x be an element in

Hn+1,n
et (X ,Z(l)) = Hn+1(X , L(n))
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which goes to zero in

Hn+1,n
et (k(X),Z(l)) = Hn+1(k(X), L(n)).

We have to show that the image x′ of x in Hn+1(X ,K(n)) is zero. By [10,

Lemma 6.13], x′ maps to zero in Hn+1(X,K(n)). By Lemma 5.11 we know

that the morphism from M(X) to M(X ) factors as

(6.2) M(Xa)
λ→Ml−1 →M(X ),

where the first arrow is a split epimorphism by Lemma 5.15. By [10, Lemma

6.7], L(n) and K(n) are complexes of sheaves with transfers with homotopy

invariant cohomology sheaves. Therefore HomDM (Ml−1,K(n)[n+1]) is defined

and (6.2) shows that the image of x′ in HomDM (Ml−1,K(n)[n + 1]) is zero.

We conclude that x′ = 0 from (5.5) and the following lemma:

Lemma 6.10. HomDM (Ml−2(b)[2b],K(n)[n+ 1]) = 0.

Proof. Using the distinguished triangles for Mi it is sufficient to show that

HomDM (M(X )(q)[2q],K(n)[n+ 1]) = 0

for all q > 0. This is an immediate corollary of [10, Lemma 6.13], and our

assumption that Theorem 6.1 holds in weights < n. �

In view of Lemma 6.9, in order to finish the proof of Theorem 6.1, it

remains to prove the following result.

Proposition 6.11. Hn+1,n(X ,Z(l)) = 0.

The proof is given in Lemmas 6.12–6.15 below.

Lemma 6.12. There is a monomorphism

(6.3) Hn+1,n(X ,Z(l))→ H2lb+2,lb+1(X ,Z(l)).

Proof. The cofibration sequence which defines ‹X implies that it is enough

to show that there is a monomorphism

Hn+2,n( ‹X ,Z(l))→ H2lb+3,lb+1(X ,Z(l)).

Let X be a ν≤(n−1) variety which splits a. Since X is a ν≤0-variety, it has

a point over a finite field extension of degree not divisible by l2. Therefore,

the motivic cohomology of ‹X are of exponent l by [10, Lemma 9.3], and the

projection from the motivic cohomology with the Z(l) coefficients to the motivic

cohomology with the Z/l coefficients is injective. Therefore, it is sufficient to

show that there is a monomorphism

(6.4) Hn+2,n( ‹X ,Z/l)→ H2lb+3,lb+1(X ,Z/l)
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which takes the images of the integral classes to the images of the integral

classes. Consider the composition of cohomological operations

(6.5)

Qi · · ·Q1 : Hn+2,n( ‹Xa,Z/l)→ H2l(li−1)/(l−1)+n+2−i,l(li−1)/(l−1)+n−i( ‹Xa,Z/l).
For i = n − 1 it is of the form (6.4), and we know by [10, Lemma 7.2] that

Qi take the images of integral classes to the images of integral classes. Let us

show that it is a mono for all i ≤ n − 1. By Lemma 4.3 we know that the

motivic Margolis homology of ‹X are zero. The computations made in the proof

of Lemma 6.7 show that the kernel of Qi on Qi−1 · · ·Q1(Hn+2,n) is covered by

the group of bidegree (p, q) where

p = 4 + 2lw + n− i,
q = 2 + lw + n− i,

w = (li−1 − 1)/(l − 1)− li−1.

We have w ≤ −1, and therefore q ≤ n − i and p ≤ q. We conclude that the

covering group is zero by Lemma 6.6. �

Lemma 6.13. There is an epimorphism

ker(H2b(l−1)+1,b(l−1)+1(Ml−1,Z(l))→ H1,1(X ,Z(l)))→ H2lb+2,lb+1(X ,Z(l)).

Proof. Let X be a νn−1-variety which splits a. Consider the sequences

(5.5) and (5.6) for i = l− 1. By Lemma 5.15, the motivic cohomology of Ml−1

embed into the motivic cohomology of X and in particular vanish where the

motivic cohomology of X vanish.

From the first sequence and the fact that lb+ 1 > (l − 1)b = dim(X), we

conclude that there is an epimorphism

(6.6) H2b(l−1)+1,b(l−1)+1(Ml−2,Z(l))→ H2lb+2,lb+1(X ,Z(l)).

From the second sequence and the fact that H0,1(X ,Z(l)) = 0, we conclude

that the left-hand side of (6.6) is the kernel of the homomorphism

H2b(l−1)+1,b(l−1)+1(Ml−1,Z(l))→ H1,1(X ,Z(l)). �

Lemma 6.14. One has

ker(H2b(l−1)+1,b(l−1)+1(Ml−1,Z(l))→ H1,1(X ,Z(l)))

= ker(Hom(Z(l),Ml−1(1)[1])→ Hom(Z(l),Z(l)(1)[1])).

Proof. Since the motivic cohomology in the bidegree (1, 1) in the Zariski

and the étale topologies coincide and the étale motivic cohomology of X coin-

cide with the étale motivic cohomology of the point, we have

H1,1(X ,Z(l)) = H1,1(Spec(k),Z(l)).
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By duality established in Corollary 5.17, we have

H2b(l−1)+1,b(l−1)+1(Ml−1,Z(l)) = Hom(Z(l),Ml−1(1)[1]),

and one verifies easily that the dual of the morphism

τM : Z(d)[2d]→Ml−1

is the morphism πM : Ml−1 → Z. The statement of the lemma follows. �

Lemma 6.15. The homomorphism

Hom(Z(l),Ml−1(1)[1])→ Hom(Z(l),Z(l)(1)[1])

is a monomorphism.

Proof. The distinguished triangle (5.5), together with the obvious fact

that

Hom(Z,M(X (bj)[2bj])) = 0

for j > 0, implies that the homomorphism

Hom(Z(l),Ml−1(1)[1])→ Hom(Z(l),M(X )(1)[1])

is a monomorphism. It remains to see that

(6.7) Hom(Z(l),M(X )(1)[1])→ Hom(Z,Z(1)[1]) = k∗

is a monomorphism. By Lemma 6.8 we may assume that X = Č(X) where

X is a smooth variety satisfying the conditions of Theorem 6.3. The spectral

sequence which starts from motivic homology ofX and converges to the motivic

homology of X shows that

Hom(Z(l),M(X )(1)[1]) = coker(H−1,−1(X2,Z)
pr1−pr2→ H−1,−1(X,Z)).

We conclude that (6.7) is a mono by Theorem 6.3. �

The deduction of the following three results from Theorem 6.1 can be

found in [10, §6] (see also [2], [1]).

Theorem 6.16. Let k be a field of characteristic 6= l. Then the norm

residue homomorphisms

KM
n (k)/l→ Hn

et(k, µ
⊗n
l )

are isomorphisms for all n.

Recall ([10, p. 88]) that we let H∗,qL (−, A) denote the étale hypercoho-

mology with coefficients in the motivic complex A(q). When char(k) = 0 or

char(k) is invertible in A, then these groups coincide with the corresponding

groups of morphisms in the étale version of DM , but in general they carry

more information.
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Theorem 6.17. Let k be a field, n > 0 an integer and X a pointed smooth

simplicial scheme over k. Then the homomorphisms‹Hp,q(X ,Z/n)→ ‹Hp,q
L (X ,Z/n)

are isomorphisms for p ≤ q and monomorphisms for p = q + 1.

Theorem 6.18. For any pointed smooth simplicial scheme X over k the

homomorphisms ‹Hp,q(X ,Z)→ ‹Hp,q
L (X ,Z)

are isomorphisms for p ≤ q + 1 and monomorphisms for p = q + 2

Let X be a splitting variety for a symbol a. Recall that X is called a

generic splitting variety if for any field E over k such that a = 0 in KM
n (E)/l

there exists a zero cycle on X of degree prime to l.

Theorem 6.19. Let l be a prime and k be a field of characteristic zero.

Let further a = (a1, . . . , an) be a sequence of invertible elements of k and X be

νn−1-variety which splits a. Then X is a generic splitting variety for a.

Proof. It is a reformulation of Lemma 6.8. �
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(1955), 299–400. MR 0077542. Zbl 0068.02702. Available at http://www.

numdam.org/item?id=ASENS 1955 3 72 4 299 0.

[5] J. P. May, The additivity of traces in triangulated categories, Adv. Math. 163

(2001), 34–73. MR 1867203. Zbl 1007.18012. doi: 10.1006/aima.2001.1995.

[6] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150–171.

MR 0099653. Zbl 0080.38003. doi: 10.2307/1969932.

[7] A. Suslin and S. Joukhovitski, Norm varieties, J. Pure Appl. Algebra 206

(2006), 245–276. MR 2220090. Zbl 1091.19002. doi: 10.1016/j.jpaa.2005.

12.012.

[8] V. Voevodsky, Triangulated categories of motives over a field, in Cycles, Trans-

fers, and Motivic Homology Theories, Ann. of Math. Stud. 143, Princeton Univ.

Press, Princeton, NJ, 2000, pp. 188–238. MR 1764202. Zbl 1019.14009.

http://www.ams.org/mathscinet-getitem?mr=1738056
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0957.19003
http://dx.doi.org/10.1007/s002220050014
http://dx.doi.org/10.1007/s002220050014
http://www.ams.org/mathscinet-getitem?mr=1807268
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1023.14003
http://dx.doi.org/10.1515/crll.2001.006
http://dx.doi.org/10.1515/crll.2001.006
http://www.ams.org/mathscinet-getitem?mr=0202136
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0146.19201
http://dx.doi.org/10.2307/1994385
http://www.ams.org/mathscinet-getitem?mr=0077542
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0068.02702
http://www.numdam.org/item?id=ASENS_1955_3_72_4_299_0
http://www.numdam.org/item?id=ASENS_1955_3_72_4_299_0
http://www.ams.org/mathscinet-getitem?mr=1867203
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1007.18012
http://dx.doi.org/10.1006/aima.2001.1995
http://www.ams.org/mathscinet-getitem?mr=0099653
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0080.38003
http://dx.doi.org/10.2307/1969932
http://www.ams.org/mathscinet-getitem?mr=2220090
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1091.19002
http://dx.doi.org/10.1016/j.jpaa.2005.12.012
http://dx.doi.org/10.1016/j.jpaa.2005.12.012
http://www.ams.org/mathscinet-getitem?mr=1764202
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1019.14009


438 VLADIMIR VOEVODSKY

[9] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math.

Inst. Hautes Études Sci. 98 (2003), 1–57. MR 2031198. Zbl 1057.14027. doi:

10.1007/s10240-003-0009-z.

[10] , Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes
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