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Abstract

In this thesis, we analyze a variant of the slice spectral sequence of [HHR] (or SSS)
called the regular slice spectral sequence (or RSSS). This latter spectral sequence
is defined using only the regular slice cells. We show that the regular slice tower
of a spectrum is just the suspension of the slice tower of the desuspension of that
spectrum. Hence, many results for the RSSS are equivalent to corresponding results
for the SSS. However, the RSSS has many multiplicative properties that the SSS lacks.
Also, the slice towers that have been computed prior to this thesis happen to coincide
with the corresponding regular slice towers. Hence, we find the RSSS to be much
better behaved than the SSS. We give a comprehensive study of its basic properties,
including multiplicative structure, Toda brackets, interaction with the norm functor
of [HHR], vanishing lines and preservation of various kinds of extra structure. We
identify a large portion of the first page of the spectral sequence algebraically by
relating the RSSS to the homotopy orbit and homotopy fixed point spectral sequences,
and determine the edge homomorphisms. We also give formulas for the slice towers
of various families of spectra, and give several sample computations. The regular
slice tower for equivariant complex K-theory is used to prove a special case of the
Atiyah-Segal completion theorem. We also prove two conjectures of Hill from [Hil]
concerning the slice towers of Eilenberg MacLane spectra, as well as spectra that are
concentrated over a normal subgroup.
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Chapter 0

Introduction

The slice spectral sequence is a tool that originated in motivic homotopy theory

(see [Voe]). An analogous construction was later introduced into equivariant stable

homotopy theory for finite groups by Hill, Hopkins and Ravenel ([HHR]) in their

solution of the Kervaire invariant problem. The first example of an equivariant slice

spectral sequence, for the KR spectrum, was previously given by Dugger ([Dug]),

though it was not called a slice spectral sequence at the time. This spectral sequence

gives a simple proof of real Bott periodicity. Hence, the slice spectral sequence has

already proven itself to be a valuable tool for studying stable homotopy theory, but

has not been much studied in its own right.

In this thesis, we give a comprehensive study of the basic properties of a variant

of the slice spectral sequence (SSS) called the regular slice spectral sequence (RSSS).

The regular slice spectral sequence is defined using only the regular slice cells. We will

see in Section I.3 that the regular slice constructions are simply the slice constructions

conjugated by a suspension. Hence, results for the SSS can be deduced very easily

from corresponding results for the RSSS. Also, in favorable cases such as KR and

the various spectra constructed from MUR in the solution of the Kervaire invariant

problem, the two spectral sequences coincide. Furthermore, the RSSS is much better

behaved than the SSS. It has multiplicative structure which the SSS lacks, as well

as a form of duality which results in a certain symmetry about 0, while the SSS is

symmetric about −1. Hence we work almost exclusively with the RSSS.
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In Chapter I we obtain many basic and useful results on the RSSS. After re-

viewing localizing subcategories and introducing the RSSS, we discuss multiplicative

pairings, connecting homomorphisms, and the interaction of the slice filtration with

the norm functor of [HHR]. Section I.6 is devoted to proving a conjecture of Hill

(Conjecture 4.11 of [Hil]) on the slice towers of spectra that are concentrated over a

normal subgroup. The result is stated there as Corollary I.6.5. Next we show that

there is an equivariant version of Brown-Comenetz duality in the RSSS. This is used

in subsequent sections to obtain "dual" results of many statements. For example,

we give a determination of the spectra that are < n for nonpositive n in terms of

the vanishing of certain homotopy groups, which then immediately determines the

spectra that are > n for nonnegative n in similar terms. This is used in Section I.9

to show that a certain map from the RSSS to the homotopy fixed point spectral se-

quence (HFPSS) is an isomorphism in a large range on the E2 page, thus identifying

a large portion of the E2 page algebraically. Duality then implies that a certain map

from the homotopy orbit spectral sequence (HOSS) to the RSSS is an isomorphism

in a certain range. In this section we also identify the edge homomorphisms of the

RSSS, as well as the product structure on (most of) the t − s axis and the "mixed

products" of elements in the HOSS range with elements in the HFPSS range.

In Chapter II we give an alternative description of the slice filtration in terms of

families of subgroups of order less than a given integer (which we call order families).

This leads to a kind of formula for the slice tower of an arbitrary spectrum. The stages

are expressed in terms of a finite composite of functors, each of which is a cofiber of

a natural map given by an explicit formula. We also obtain explicit formulas for the

slice towers of Eilenberg MacLane spectra, as well as one half of the slice towers of free

and cofree spectra. All of this gives insight about how subgroups "resonate" within

the slice tower with frequencies equal to their orders. In Section II.5 we explain why

the behavior of the RSSS changes when one crosses lines of slope one less than the

order of a subgroup. We also give a partial, iterative description of the first page of

the RSSS which suggests that there can be no general, algebraic formula for all of the

entries.
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In Chapter III we show that various forms of extra structure are preserved by the

slice tower construction, under suitable assumptions. For example we show that the

stages of the tower for a ring spectrum can be constructed uniquely in the homo-

topy category of ring spectra, provided that the ring spectrum in question is (−1)-

connected. There are similar results for commutative rings and for modules. In

Section III.5 we analyze how the slice filtration interacts with homological localiza-

tion and acyclization, giving a criterion on homology theories which guarantees that

the slice tower of a local spectrum consists of local spectra.

Chapter IV is devoted to proving that Massey products in the RSSS for an A∞ ring

spectrum converge to Toda brackets. The approach is to use model theory to prove

that slice towers of rings can be constructed (essentially uniquely) as ring objects in

a symmetric monoidal category of towers. These slice towers must have various good,

point-set level properties. Hence, this chapter is the most technically demanding in

this thesis. Some useful material is given in the Appendix.

In Chapter V we give several computations to illustrate the results of the pre-

ceding chapters. In Section V.2 we give computations of the RSSS for Eilenberg

MacLane spectra in dimensions ±1 (the case of dimension 1 confirms a conjecture of

Hill from [Hil]), as well as the the slice towers for dimensions ±2. We also compute

the RSSS in all dimensions when the group is cyclic of prime order, and give a partial

computation when the group is cyclic of order p2 (p prime). Next, we give sample

computations for certain free and cofree spectra. These last two computations shed

some light on the behavior of the E2 page of the RSSS outside of the region where it

coincides with the HFPSS (or the HOSS). In Section V.4 we give an updated treat-

ment of the RSSS for KR, which leads to a simple and elegant proof of real Bott

periodicity. Then in Section V.5 we determine the slice tower for equivariant complex

K-theory when the group is cyclic. This leads to a very short proof of the Atiyah-

Segal completion theorem for cyclic groups of prime order.

One important, philosophical question that arises in studying the slice spectral

sequence is "What’s so special about regular representations?" In fact, many of the

most important results about the RSSS, no matter how technical, can be seen to

11



derive from the following list of properties.

(i) ρG contains precisely one copy of the trivial representation.

(ii) If f : G→ G′ is an isomorphism then f ∗ρG′ ∼= ρG.

(iii) If H ⊆ G then ResGHρG ∼= |G/H|ρH .

(iv) If H ⊆ G then IndGHρH ∼= ρG.

(v) If N E G then (ρG)N ∼= ρG/N .

(vi) If φ : G→ Σi is a homomorphism and (V ⊕i)φ denotes the direct sum of i copies

of V with diagonal action multiplied by the permutation action induced by φ,

then

(ρ⊕iG )φ ∼= iρG.

Property (i) excuses us from considering suspensions of slice cells (Lemma I.3.8).

Properties (ii) and (iii) ensure that the slice tower construction commutes with re-

striction to subgroups, and that it is multiplicative. Property (iv) is the reason that

the norm functor multiplies slice filtration by index (Corollary I.5.8), while property

(v) is the essence of the result on geometric fixed points (Theorem I.6.4). Property

(vi) allows the construction of commutative ring slice towers (see Lemma IV.3.7).

Thus, the answer to the above question is "quite a lot."
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Chapter I

Basic Results

1 Introduction

In this chapter we analyze the basic properties of a variant of the slice spectral se-

quence (SSS) of [HHR], which we call the regular slice spectral sequence (RSSS). The

definition of the RSSS is very similar to that of the SSS; the difference is that one only

uses regular slice cells. After reviewing localizing subcategories in Section 2, we define

the RSSS in Section 3 and state its precise relationship with the SSS. In fact, the

RSSS is simply the SSS conjugated by a suspension (see Corollary 3.2). Hence, many

of the results about the RSSS can be easily translated into results about the SSS.

However, the RSSS has multiplicative structure which the SSS lacks. Furthermore, in

favorable cases that have been computed, such as KR (see [Dug] or Section V.4) and

the various spectra constructed from MUR in the solution of the Kervaire invariant

problem (see [HHR]), the two spectral sequences coincide. Thus, we generally find

the RSSS to be much better behaved than the SSS.

In Section 4 we construct multiplicative pairings in the RSSS, including composi-

tion products. We also introduce a kind of connecting homomorphism associated to

cofiber sequences. In Section 5, we analyze the interaction of the regular slice filtra-

tion with the norm functor from [HHR]. In Section 6 we state and prove a conjecture

of Mike Hill on the slice tower of a spectrum which is concentrated over a normal

subgroup (Conjecture 4.11 of [Hil]) as Corollary 6.5.
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In Section 7 we show that there is a version of Brown-Comenetz duality in the

RSSS, which is seen in later sections to be a very potent tool for analyzing the RSSS.

One can use this duality to derive a statement about the behavior of the RSSS in one

half of the plane (t− s < 0 or t− s > 0) from a corresponding, dual statement in the

other half. This process is on display in Section 8, in which we analyze the relation-

ship between the connectivity of a spectrum and that of its slice tower, proving the

"efficiency" of the RSSS. In that section we also determine the E2 page on certain

vanishing lines and give a determination of the spectra that are > n for positive n in

terms of homotopy groups, generalizing Proposition 4.45 of [HHR].

In Section 9, we identify a large portion of the E2 page of the RSSS by relating it

to the homotopy orbit and homotopy fixed point spectral sequences. We then show

how to identify the structures from Section 4 in these regions. Thus, the RSSS is most

powerful when one has an understanding of the nonequivariant homotopy groups of

the spectrum. We also determine the edge homomorphisms of the RSSS.

14



2 Recollections About Localizing Subcategories

Recall that a full subcategory τ of SpG is called localizing if

• a spectrum isomorphic to an object of τ is in τ ,

• τ is closed under taking cofibers and extensions,

• τ is closed under wedge sums,

• τ is closed under retract, and

• τ is closed under well-ordered homotopy colimits.

We will further assume that τ is generated by a (nonempty) set T of spectra, and

note that τ contains the trivial spectrum and is closed under suspension. If τ satisfies

the first three conditions, we will call it weakly localizing ; if the generators are ω-small

then the last two conditions hold automatically (see [Far] for more). Also note that

a weakly localizing category is closed under homotopy colimits of ω-sequences.

Define τ ⊥ to be the full subcategory of spectra X such that [Y,X] = 0 for all

Y ∈ τ (or equivalently, for Y a suspension of a generator). We write τ ⊥ X in place

of X ∈ τ ⊥. Note that

• a spectrum isomorphic to an object of τ ⊥ is in τ ⊥,

• τ ⊥ is closed under desuspension and taking fibers and extensions,

• τ ⊥ is closed under products, and contains the trivial spectrum,

• τ ⊥ is closed under retract and well-ordered homotopy limits, and

• if τ has a set of compact generators then τ ⊥ is closed under wedge sums and

directed homotopy colimits.

Recall from [Far] that the inclusion τ ⊥⊆ SpG has a left adjoint P τ⊥. The con-

struction is the familiar one of iteratively attaching null-homotopies for maps from
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suspensions of generators. This must be iterated transfinitely in general, but may be

iterated only countably many times if the generators are ω-small. Letting

PτX := Fib(X → P τ⊥X),

we have a functorial fiber sequence

PτX → X → P τ⊥X

where the first map above is the terminal map to X from a member of τ and the

second is the initial map from X to a member of τ ⊥. From this it follows that

X ∈ τ if and only if [X, Y ] = 0 whenever τ ⊥ Y , so the two subcategories τ and τ ⊥

determine one another. The map PτX → X is also characterized by

• PτX ∈ τ , and

• [ΣkY, PτX] → [ΣkY,X] is surjective for all k ≥ 0 and injective for all k ≥ −1

and all generators Y ∈ T .

Thus we can construct PτX by starting with a wedge of suspensions of generators

and then iteratively killing the kernel on suspensions (by k ≥ −1) of generators. In

what follows, we will generally find the Pτ to be more useful than the P τ⊥.
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3 The Regular Slice Spectral Sequence

Just as in [HHR], we define the slice cells of dimension k to be the spectra G+∧HSnρH

for n|H| = k and G+ ∧H SnρH−1 for n|H| − 1 = k. Similarly, we define the regular

slice cells to be the slice cells of the first type listed above. Let τk (resp. τ ′k) be the

localizing category generated by the slice cells (resp. regular slice cells) of dimension

≥ k. We will write τGn , etc. if there is more than one group under consideration. The

following facts are elementary:

• τn and τ ′n are closed under induction and restriction, and thus under smashing

with (−1)-connected spectra,

• τn ⊆ τn−1, τ ′n ⊆ τ ′n−1,

• τ ′n ⊆ τn, τn ⊆ τ ′n−(|G|−1),

• SρG ∧ τn ∼= τn+|G|, S
ρG ∧ τ ′n ∼= τ ′n+|G|.

See [HHR] and [Hil] for the basic arguments and results on the slice filtration. Less

obvious is the following crucial fact.

Proposition 3.1. For all n we have Στn ∼= τ ′n+1.

Proof. Since Σ is an equivalence of triangulated categories, it suffices to show that

the suspension of a slice cell of dimension k is in τ ′k+1 and that the desuspension of

a regular slice cell of dimension k is in τk−1. The only nontrivial part is showing the

inclusion G+ ∧H SnρH+1 ∈ τ ′n|H|+1. We prove this by induction on |G|; the result is

trivial for the trivial group. Thus we may assume the result for all proper subgroups of

G. Since induction preserves the regular slice filtration, we may assume that H = G.

Now take the cofiber sequence

S(ρG − 1)+ → S0 → SρG−1

and smash with SnρG+1 to obtain a cofiber sequence as below.

S(ρG − 1)+ ∧ SnρG+1 → SnρG+1 → S(n+1)ρG

17



The spectrum on the left is built out of induced cells, and so the induction hypothesis

implies that it is in τ ′n|G|+1. The spectrum on the right is in τ ′(n+1)|G| ⊆ τ ′n|G|+1. Thus

the middle spectrum is in τ ′n|G|+1, as required.

Remark: Amusingly, this implies that τn is generated by the irregular slice cells

of dimension ≥ n.

Corollary 3.2. For all n we have natural isomorphisms

ΣPτn
∼= Pτ ′n+1

Σ.

Corollary 3.3. For all n we have inclusions

Στn ⊆ τn+1, Στ ′n ⊆ τ ′n+1.

The proofs are immediate. Next we note that under certain circumstances, the slice

and regular slice filtrations of a spectrum coincide.

Proposition 3.4. If PτnX ∈ τ ′n then PτnX = Pτ ′nX.

The proof is immediate, considering the universal property which characterizes Pτ ′nX.

We can also give a criterion in terms of the slices.

Proposition 3.5. If P k
kX ∈ τ ′k for all k then PτnX ∈ τ ′n for all n.

Proof. Since Pτn+|G|−1
X ∈ τ ′n, the spectrum PτnX has a finite filtration

∗ → Pτn+|G|−1
X → ...→ Pτn+1X → PτnX

such that the successive cofibers are in τ ′n.

This brings us to the following important point.

Remark: The regular slice spectral sequence (or RSSS) is easily seen to have

multiplicative pairings (see Section 4), and its cells are self-dual. Thus, we will observe

below a kind of duality or symmetry about 0 in the RSSS, while the slice spectral

18



sequence (or SSS) is symmetric about −1 (see Section 7). Furthermore, in favorable

cases such as KR (see [Dug] or Section V.4) and the various spectra constructed

from MUR in the solution of the Kervaire invariant problem (see [HHR]), the two

spectral sequences coincide. Thus, in many cases it may be more fruitful to work

with the RSSS than the SSS. Note however that in cases where the two coincide, we

are guaranteed different vanishing lines of slope (|G| − 1). For t − s < 0 the SSS

guarantees a stronger vanishing line, while for t− s > 0 the RSSS does.

We can use Proposition 3.1 to quickly derive a few more basic facts, using what

is known about the τn.

Proposition 3.6. The category τ ′k consists of the (k−1)-connected spectra for k = 0, 1.

The category τ ′2 consists of the connected spectra X such that πe1X = 0. For k ≥ 0

and all H ⊆ G we have G/H+ ∧ Sk ∈ τ ′k.

The last statement is proved by induction on k, using Corollary 3.3 above. Finally,

since we have τ0 = τ ′0 and SρG ∧ τn ∼= τn+|G|, S
ρG ∧ τ ′n ∼= τ ′n+|G|, we conclude:

Corollary 3.7. For all n the categories τn|G| and τ ′n|G| coincide.

From now on, we work with the RSSS instead of the SSS. To simplify things, we drop

the prime from our notation. Results for the SSS can be easily deduced from what

follows by applying Proposition 3.1.

If X ∈ τn we write X ≥ n or X > n − 1, and if τn ⊥ X we write X < n or

X ≤ n− 1. We write Pn in place of Pτn and P n−1 in place of P τn⊥, so that we have

functorial fiber sequences as below.

PnX → X → P n−1X

For convenience, we will henceforth use the terms slice cell, slice, and slice tower in

the sense of the RSSS (that is, we drop the qualifier "regular" from these expressions).

We use the notation E(X) for the RSSS of X, which can be thought of as a spectral

sequence of Mackey functors, or as a Mackey functor of spectral sequences, indexed

19



as below.

Es,t
2 := πt−s(P

t
tX)

Since we will usually be interested in the homotopy groups of the G-fixed points of

X (we obtain the H-fixed points by first restricting the action to H and then taking

fixed points), we use E(X) to denote E(X)(G/G). We note that, in moving from

the SSS to the RSSS, we have shifted the vanishing lines slightly: we now have no

nonzero groups strictly below the line s = (|G| − 1)(t − s) for (t − s) < 0 and no

nonzero groups strictly above this line for (t− s) > 0.

Finally, we note the following easy fact, whose proof is an induction on the order

of G as in the proof of Proposition 3.1.

Lemma 3.8. A spectrum X is < n if and only if [Ŝ, X] = 0 for all slice cells Ŝ of

dimension ≥ n.

In [HHR], the SSS is conceived of as the spectral sequence of a tower of fibrations

{P nX} whose inverse limit is X. However, we prefer to think of the RSSS as coming

from an increasing filtration {PnX} on X. We can identify the successive cofibers of

the Pn with the successive fibers of the P n as follows. Consider the composite map

shown below.

PnX → X → P nX

This factors uniquely through the map PnX → Cofib(Pn+1X → PnX). The map

Cofib(Pn+1X → PnX)→ P nX then factors uniquely through

Fib(P nX → P n−1X)→ P nX.

Hence we get a canonical isomorphism

Cofib(Pn+1X → PnX)
∼=−→ Fib(P nX → P n−1X). (3.9)

20



Of course, one gets equivalent spectral sequences from the two methods (see, for

example, Section 5 of [Bou]), though one must take care with signs to identify them

exactly. We define the slice filtration on the homotopy groups of X by

F sπtX := im(πtPs+tX → πtX) (3.10)

= ker(πtX → πtP
s+t−1X). (3.11)

Then the RSSS converges to

Es,t
∞X

∼= F sπt−sX/F
s+1πt−sX.

We denote the SSS by Ẽ(X) and note that we have a natural map from the regular

slice tower to the (irregular) slice tower, and thus a natural map of spectral sequences

E(X)→ Ẽ(X) (3.12)

which is an isomorphism in certain cases (see the remark after Proposition 3.5). It

is a nonequivariant isomorphism, and we shall see in Section 9 that it is actually

an isomorphism on a large portion of the E2 page. We also have by Corollary 3.3

a suspension map from the suspension of the slice tower to the slice tower of the

suspension (shifted by one), and hence a map of spectral sequences

Es,t(X)
Σ−→ Es,t+1(ΣX) (3.13)

which is also a nonequivariant isomorphism. (Actually, this map commutes with the

differentials up to a sign of (−1) when we suspend on the left.) A word on sign

conventions: if A → B is a map of spectra, we take the cofiber to be I ∧ A ∪A B,

where I = [0, 1] is the unit interval with basepoint 1, and we always take ΣX to mean

S1 ∧X, not X ∧ S1.
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4 Multiplicative Pairings and Connecting Homomor-

phisms

In this section we show that the RSSS has multiplicative pairings with familiar prop-

erties, as well as a kind of connecting homomorphism for cofiber sequences. We begin

with a basic observation.

Lemma 4.1. If Ŝ and T̂ are slice cells of dimension n and m, respectively, then Ŝ∧ T̂

is a wedge of slice cells of dimension n+m.

We then obtain the following (compare Proposition 4.25 of [HHR]).

Corollary 4.2. If X ≥ n and Y ≥ m then X ∧ Y ≥ n+m.

We omit the proofs, which are easy. Next, we recall how to obtain pairings of spectral

sequences. Let X and Y be two spectra. Choose explicit (cofibrant) models for the

PnX and the PmY , as well as for the maps PnX → Pn−1X and PmY → Pm−1Y .

Then we can choose maps as below,

θX : hocolim
n→−∞

PnX
∼=−→ X

θY : hocolim
m→−∞

PmY
∼=−→ Y

where we construct the homotopy colimits explicity as telescopes. The above maps

need not be unique up to homotopy; however, this will not matter. We now denote

by P nX the partial telescope up to PnX, and similarly for Y . Of course, P nX is

equivalent to PnX, and similarly for Y . Next we consider the spectrum

(hocolim
n→−∞

PnX) ∧ (hocolim
m→−∞

PmY ) (4.3)

with the smash product filtration, described as follows. Consider the grid-shaped
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diagram depicted below.

...

��

...

��

...

��
... Pi−1X ∧ Pj+1Yoo

��

PiX ∧ Pj+1Yoo

��

Pi+1X ∧ Pj+1Yoo

��

...oo

... Pi−1X ∧ PjYoo

��

PiX ∧ PjYoo

��

Pi+1X ∧ PjYoo

��

...oo

... Pi−1X ∧ Pj−1Yoo

��

PiX ∧ Pj−1Yoo

��

Pi+1X ∧ Pj−1Yoo

��

...oo

... ... ...

Let Kn denote the homotopy colimit of the part of this diagram which is on or above

the i + j = n diagonal. Then the smash product 4.3 is filtered by the Kn. We need

another simple observation.

Lemma 4.4. The spectrum Kn is ≥ n.

Proof. It is easy to see that Kn can be given a countable filtration {Zk} such that

Z0 = P nX ∧ P 0Y (for example) and each Zk+1 is of the form

Zk ∪P i+1X∧P jY (P iX ∧ P jY ) or Zk ∪P iX∧P j+1Y
(P iX ∧ P jY )

for some i and j with i+ j = n. The result now follows easily from Corollary 4.2.

It follows from this that the map

θX ∧ θY : (hocolim
n→−∞

PnX) ∧ (hocolim
m→−∞

PmY )→ X ∧ Y

induces a unique map of towers {Kn} → {Pn(X ∧ Y )}. We can then find maps to
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complete the diagrams below.

Kn+1

��

// Kn

��

// Kn/Kn+1

��

// ΣKn+1

��
Pn+1(X ∧ Y ) // Pn(X ∧ Y ) // P n

n (X ∧ Y ) // ΣPn+1(X ∧ Y )

These maps are unique, since [ΣKn+1, P
n
n (X ∧ Y )] = 0. Thus we have arrived at a

pairing of spectral sequences, as below.

E(X)⊗ E(Y )→ E(X ∧ Y ) (4.5)

Of course, we have an isomorphism

Kn/Kn+1
∼=
∨

i+j=n

(P i
iX ∧ P

j
j Y )

so we see that the map in question is determined by its restrictions to the spectra

(P iX ∧ P jY )/
(
(P iX ∧ P j+1Y ) ∪P i+1X∧P j+1Y

(P i+1X ∧ P jY )
)

for i+ j = n. Now since P n
n (X ∧ Y ) ≤ n and

(P iX ∧ P j+1Y ) ∪P i+1X∧P j+1Y
(P i+1X ∧ P jY ) > n,

these restrictions are determined by the maps indicated below.

P iX ∧ P jY → Pn(X ∧ Y )

However, these maps fit into a commutative diagram as below,

P iX ∧ P jY

��

// (hocolim
k→−∞

PkX) ∧ (hocolim
l→−∞

PlY )

θX∧θY
��

Pn(X ∧ Y ) // X ∧ Y
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and while the right vertical map may not be unique, the composite along the top and

right sides is. It then follows from the universal property of Pn that the pairing 4.5 is

uniquely determined. Similar techniques can be used to prove the other parts of the

following theorem.

Theorem 4.6. There is a natural, associative, and unital system of pairings

E(X)⊗ E(Y )→ E(X ∧ Y )

on the RSSS which converge to the smash product pairings on homotopy groups. The

differentials interact with the products as follows: for any r ≥ 2 and any u ∈ Es,t
r (X)

and v ∈ Es′,t′
r (Y ) we have

dr(u · v) = dru · v + (−1)t−su · drv.

These pairings are also commuative, in the sense that

v · u = (−1)(t−s)(t′−s′)τ∗(u · v)

where τ : X ∧ Y
∼=−→ Y ∧X is the twist map.

Remark: The unital property means that a certain element in E0,0
∗ (S0) acts as

a multiplicative unit when we make the identification S0 ∧ X ∼= X. Meanwhile,

multiplication by a certain element in E0,1
∗ (S1) induces the suspension map 3.13.

Using naturality of the RSSS, we obtain the following.

Corollary 4.7. The RSSS of a ring spectrum R is a spectral sequence of differential

graded algebras, which is (graded) commutative if R is, and converges to the associated

graded homotopy ring of R for the slice filtration.

We may map an arbitrary spectrum A into the slice tower for X, obtaining a spec-

tral sequence that we denote by E(A,X). Of course, we have E(S0, X) = E(X).

This spectral sequence may or may not converge to [A,X]∗; it clearly does converge

(conditionally) when A is compact or (more generally) bounded below. When using
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the pairings on these spectral sequences, the user must beware that additional factors

may arise in the commutativity formula, and these may not even be ±1.

Alternatively, the spectral sequence E(F (A,X)) does converge to [A,X]∗. Now,

we have composition and evaluation pairings as below,

F (Y, Z) ∧ F (X, Y )→ F (X,Z)

F (X, Y ) ∧X → Y

so we get composition product pairings on the RSSS

E(F (Y, Z))⊗ E(F (X, Y ))→ E(F (X,Z))

E(F (Y, Z))⊗ E(X, Y )→ E(X,Z)

that satisfy associative and unital properties.

Finally, we consider connecting homomorphisms. Let

A→ B → C → ΣA

be a cofiber sequence. Using Ẽ, etc. to refer to the SSS, we have by Corollary 3.2 a

map of spectral sequences

δ : Es,t(C)→ Es,t(ΣA) ∼= Ẽ
s,t−1

(A) (4.8)

which we call a connecting homomorphism (actually, it commutes with the differen-

tials up to a sign of (−1)). Now at first sight the composition product and connecting

homomorphism may appear much less useful and computable than the correspond-

ing structures in the Adams Spectral Sequence (see [Rav]). In fact, we don’t even

have an exact sequence of E2 pages in the above. However, in Section 9 we will give

an algebraic description of a large portion of the E2 page of the (R)SSS, and use

it to describe the smash and composition products. We will also give an algebraic

description of the connecting homomorphism in this range.
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5 The Norm Functor

In this section we determine how the norm functor of [HHR] interacts with the slice

filtration. Hence we work with the category of orthogonal G-spectra SpO
G. The result

reflects the following basic fact about slice cells, which is Proposition 4.7 of [HHR].

(To be more precise, by "slice cell" we mean the most obvious choice of model for a

slice cell in SpO
G.)

Proposition 5.1. If Ŝ is a wedge of H-slice cells of dimension d and H ⊆ G then

NG
H Ŝ is a wedge of G-slice cells of dimension d|G/H|.

The proof uses the simple fact that induction of representations maps regular repre-

sentations to regular representations.

We need some technical facts about the norm. We follow closely the proof of

Proposition B.36 of [HHR]. However, we can not simply quote the result there for

the following reason: induction from subgroups does not preserve cofibrations. To

get around this problem, we refer to [Sto], wherein the author constructs alternative

model structures such that cofibrations are preserved by induction. These are called

"S model structures." They are very simple to define: one simply enlarges the gener-

ating (acyclic) cofibrations by inducing up the classical (acyclic) cofibrations from all

subgroups (alternatively, one pulls back along the collection of restriction functors).

There are also positive versions of these model structures. For more, see Section A.4.

As in [HHR], we let J be a finite G-set, and denote by BJG its translation cate-

gory. We denote by SpBJG the diagram category in orthogonal spectra, which we call

the category of equivariant J-diagrams. Choosing points t from each orbit and letting

Ht denote their stabilizers, we have an equivalence of categories as below.

SpBJG ∼=
∏
t

SpO
Ht

We give the diagram category the model structure corresponding to the product of

the positive stable S model structures under this equivalence. We have an indexed
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smash product functor

NJ : SpBJG → SpO
G

which is the norm when J = G/H. We can now state the corrected version of

Proposition B.36 of [HHR].

Proposition 5.2. Let J be a finite G-set. If X → Y is a cofibration in SpBJG then

the indexed smash product

NJX → NJY

is an h-cofibration. It is a positive S-cofibration if X is cofibrant.

The proof in [HHR] works almost unaltered after making these corrections.

The S model structure is more convenient for our purposes, since the slice cells are

defined using induction. Hence, we pull the positive stable S model structure back to

get a model structure on commmutative ring spectra. Then for any subgroup H of

G, we have a Quillen pair as below.

commH

NG
H

11 commG

resqq

If one uses the classical model structures, one must use the model structure on commH

determined by the levels that are restrictions of G-representations (and not all H-

representations) in order to get a Quillen pair. It then follows as in Proposition B.42

of [HHR] that the norm functor preserves weak equivalences of positive S-cofibrant

spectra. We strengthen this slightly with the following.

Lemma 5.3. The norm functor preserves weak equivalences between S-cofibrant spec-

tra.

Proof. Let X → Y be a weak equivalence, with X and Y being S-cofibrant. Then
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consider the diagram below.

S−1 ∧ S1 ∧X

��

// S−1 ∧ S1 ∧ Y

��
X // Y

Now S1 and S−1 are cofibrant, hence flat by Proposition 7.3 of [MM], and so the

vertical maps above are weak equivalences by Lemma 4.5 of [MM]. Since the bottom

horizontal map is a weak equivalence by assumption, so is the top horizontal map.

Also, the spectra on the top line are positive S-cofibrant. We apply the norm functor

to obtain the diagram below.

S− IndGH R ∧ SIndGH R ∧NG
HX

��

// S− IndGH R ∧ SIndGH R ∧NG
HY

��
NG
HX

// NG
HY

The vertical maps are weak equivalences by the same reasoning as before, while the

top horizontal map is a weak equivalence because the norm functor preserves weak

equivalences of positive S-cofibrant objects. Thus, the bottom horizontal map is a

weak equivalence.

Corollary 5.4. The norm functor is left derivable, and its derived functor can be

computed by taking S-cofibrant replacements.

We now return to the notation from the beginning of this section, and note that

Proposition 5.2 is still true if we drop the qualifier "positive" from the statement and

our definitions.

Corollary 5.5. The norm functor on equivariant J-diagrams is left derivable, and

its derived functor can be computed by taking (nonpositive) cofibrant replacements.

Proof. Let X → Y be a weak equivalence of cofibrant equivariant J-diagrams, so

that Xt → Yt is a weak equivalence of S-cofibrant Ht-spectra for each t. Now NJX
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is isomorphic to

∧
t

NG
HtXt

and similarly for Y , so the result follows from Lemma 5.3 and the fact that the NG
Ht
Xt,

etc. are S-cofibrant, hence, flat.

Next we analyze the effect of the norm on cofibers.

Lemma 5.6. If A → X is a map of equivariant J-diagrams then the diagram

NJCofib(A → X) has a finite filtration by h-cofibrations which begins with NJX

such that the successive quotients are finite wedges of spectra of the form

G+ ∧L
(
N i∗LJ0X ∧N i∗LJ1(S1 ∧ A)

)
where L is the stabilizer of some sets J0 and J1 6= ∅ with J0

∐
J1 = J .

For the proof, we refer the reader to the proof of Proposition B.36 of [HHR].

We can now prove the main results in this section. For the statement, we will say

that an equivariant J-diagram X corresponding to the collection {Xt} of Ht-spectra

is ≥ n if Xt ≥ n for all t. This does not depend on the choice of t, as the slice

filtration is clearly preserved by the equivalences of categories of spectra induced by

isomorphisms of groups.

Theorem 5.7. If X is a cofibrant equivariant J-diagram and X ≥ n then

NJX ≥ n|J |.

Proof. We proceed by induction on the order of J ; the result is trivial if J has one

element. Hence we may assume that the result has been proven for all finite groups

and all sets smaller than J . We may then assume that J consists of one orbit,

choosing a single t ∈ J . Since Xt ≥ n, we may assume by Corollary 5.4 that Xt

is built from the trivial spectrum by attaching generating acyclic S-cofibrations and
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coning off suspensions (by k ≥ −1) of slice cells of dimension ≥ n. Now attaching

generating acyclic cofibrations does not affect the homotopy groups of the norm by

Lemma 5.3, so we are reduced to the following situation. Supposing Xt is S-cofibrant

and ≥ n, NG
Ht
Xt ≥ n|J |, Ŝ is a slice cell of dimension ≥ n and k ≥ −1 we must show

that any pushout

ΣkŜ

��

// C(ΣkŜ)

��
Xt

// Y

satisfies NG
Ht
Y ≥ n|J |. For this we apply Lemma 5.6 with A = ΣkŜ. Since restric-

tion of group action preserves the slice filtration and S-cofibrations, the induction

hypothesis on J implies that N i∗LJ0X is ≥ n|J0| and S-cofibrant. Also, the L spec-

trum N i∗LJ1(S1 ∧A) is S-cofibrant and is equivalent by Proposition 5.1 to a wedge of

L-slice cells of dimension dim(Ŝ)|J1| ≥ n|J1| smashed with a permutation represen-

tation sphere SW (W may be zero). It follows that the smash product of these two

is S-cofibrant and ≥ n|J0| + n|J1| = n|J |, and thus the quotients in Lemma 5.6 are

≥ n|J |.

Letting J = G/H we obtain the following. (From now on, we use NG
H to denote the

derived norm functor on the homotopy category of spectra in all of our statements.)

Corollary 5.8. If X is an H-spectrum, with H ⊆ G and X ≥ n, then

NG
HX ≥ n|G/H|.

We now apply this to cofiber sequences.

Theorem 5.9. Let H be a subgroup of G, and let

A→ X → C

be a cofiber sequence in the homotopy category of H-spectra. If A ≥ n and X ≥ m
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then

Cofib(NG
HX → NG

HC) ∈ Στmin(n,m)|G/H|+max(n−m,0).

Proof. We can model A → B by a map of S-cofibrant spectra, and model C by

the usual cofiber. Then Lemma 5.6 implies that the map NG
HX → NG

HC is an h-

cofibration and gives filtration quotients for the corresponding derived cofiber. The

L-spectrum N i∗LJ0X is ≥ m|J0| and is S-cofibrant. The L-spectrum N i∗LJ1(S1 ∧ A) is

isomorphic to (N i∗LJ1A) ∧ SW for some nonzero permutation representation W , and

thus is S-cofibrant and contained in Στn|J1|. Thus the smash product is S-cofibrant

and contained in Στm|J0|+n|J1|. The result follows, since J1 is nonempty.

The following is immediate.

Corollary 5.10. If X is an H-spectrum, with H ⊆ G, then for each n ∈ Z there is

a unique map

NG
HPnX → Pn|G/H|(N

G
HX)

such that the following diagram commutes.

NG
HPnX

''

// Pn|G/H|(N
G
HX)

��
NG
HX

This map is natural in X.

We also obtain a corresponding map for slices.

Corollary 5.11. If X is an H-spectrum, with H ⊆ G, then for each n ∈ Z there is

a unique map

NG
HP

n
nX → P

n|G/H|
n|G/H| (N

G
HX)
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such that the following diagram commutes.

NG
HPnX

��

// Pn|G/H|(N
G
HX)

��

NG
HP

n
nX // P

n|G/H|
n|G/H| (N

G
HX)

This map is natural in X.

Proof. By applying Theorem 5.9 to the cofiber sequence below,

Pn+1X → PnX → P n
nX

we see that the cofiber of the map

NG
HPnX → NG

HP
n
nX

is in Στn|G/H|+1. Thus, the cofiber and fiber of this map are ≥ n|G/H|+ 1.

There is yet another natural map when the spectrum is bounded below.

Corollary 5.12. If X is an H-spectrum, with H ⊆ G, then if X ≥ m and n ≥ m

there is a unique map

NG
HP

nX → Pm|G/H|+n−m(NG
HX)

such that the following diagram commutes.

NG
HX

((

// NG
HP

nX

��
Pm|G/H|+n−m(NG

HX)

This map is natural in X.
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Proof. Apply Theorem 5.9 to the cofiber sequence below.

Pn+1X → X → P nX

These maps are related as follows.

Proposition 5.13. If X is an H-spectrum, with H ⊆ G, then if X ≥ n the following

diagram commutes.

NG
HP

n
nX

��

// NG
HP

nX

��
P
n|G/H|
n|G/H|N

G
HX

// P n|G/H|NG
HX

Proof. It suffices to prove that the two composites are the same after precomposing

with the map

NG
HPnX → NG

HP
n
nX.

Using the fact that the diagrams of the form below commute,

PjY

��

// Y

��
P j
j Y

// P jY

the rest is an easy exercise in diagram chasing.

An application to the slice filtration is given by the following.

Proposition 5.14. If a map f ∈ [A,X] of H-spectra is in the image of [A,PnX],

and H ⊆ G, then NG
Hf is in the image of [NG

HA,Pn|G/H|N
G
HX].

This follows directly from Corollary 5.10. Finally, we have some results about norming

elements of the RSSS using the map from Corollary 5.11.
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Proposition 5.15. If X is an H-spectrum, with H ⊆ G, then for each n ∈ Z and

r ≥ 2 there is a unique map filling in the diagram below.

NG
HPnX

��

// Pn|G/H|N
G
HX

��
NG
H (PnX/Pn+r−1X) // Pn|G/H|N

G
HX/Pn|G/H|+r−1N

G
HX

This map is natural in X, and makes the following diagram commute.

NG
H (PnX/Pn+r−1X)

��

// Pn|G/H|N
G
HX/Pn|G/H|+r−1N

G
HX

��

NG
HP

n
nX // P

n|G/H|
n|G/H|N

G
HX

Proof. Consider the following cofiber sequence.

Pn+r−1X → PnX → PnX/Pn+r−1X

By Theorem 5.9, the fiber and cofiber of the map

NG
HPnX → NG

H (PnX/Pn+r−1X)

are ≥ n|G/H|+ r − 1. The result now follows easily.

The following is immediate.

Corollary 5.16. Let A and X be H-spectra, with H ⊆ G. If f : A→ P n
nX represents

an element of Er(A,X), then NG
Hf : NG

HA → P
n|G/H|
n|G/H|N

G
HX represents an element of

Er(N
G
HA,N

G
HX).

Next we show that permanent boundaries norm to permanent boundaries.

Proposition 5.17. Let A and X be H-spectra, with H ⊆ G. If f : A → P n
nX

represents zero in Er+2(A,X), then NG
Hf represents zero in Er|G/H|+2(NG

HA,N
G
HX).
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Proof. Since f is hit by a dr+1 differential, we can fill in the commutative diagram

below.

A

##

0

��

f

))
PnX //

��

P n
nX

Pn−rX

It follows that we can fill in the commutative diagram below.

NG
HA

''

0

��

NG
Hf

++
Pn|G/H|N

G
HX

//

��

P
n|G/H|
n|G/H|N

G
HX

Pn|G/H|−r|G/H|N
G
HX

Next we recall how the norm functor interacts with sums. Let H and L be subgroups

of G, and X an H-spectrum. Letting Hc := cHc−1, we have

i∗LN
G
HX
∼=

∧
[cjH]∈L\G/H

NL
L∩Hcj (i

∗
L∩HcjX

cj)

where Xcj denotes the Hcj -spectrum obtained from X by conjugating the H action

by cj. We now recall how to compute the norm of a sum of maps. We omit the proof.

Lemma 5.18. Let h0 and h1 be maps of H-spectra from X to Y , with H ⊆ G. Let

{fi} be a set of orbit representatives for {0, 1}G/H , and let Li denote the stabilizer of

fi. Then we have the following.

NG
H (h0 + h1) =

∑
i

tGLi

( ∧
[cijH]∈Li\G/H

NLi
Li∩Hcij

(
rH

cij

Li∩Hcijh
cij
fi(cijH)

))
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Remark: To obtain the above sum formula for the norm map on the E2 page of the

RSSS, we need the commutativity of the following diagram, where the top horizontal

map is the restriction of the map from Corollary 5.11 and the bottom horizontal map

is the smash product of these maps.

i∗LN
G
HP

n
nX

∼=
��

// i∗LP
n|G/H|
n|G/H|N

G
HX

∼=
��∧

[cjH]∈L\G/H

NL
L∩Hcj i

∗
L∩Hcj (P

n
nX)cj

∼=
��

P
n|G/H|
n|G/H| i

∗
LN

G
HX

∼=

��∧
[cjH]∈L\G/H

NL
L∩Hcj i

∗
L∩HcjP

n
n (Xcj)

∼=
��

P
n|G/H|
n|G/H|

( ∧
[cjH]∈L\G/H

NL
L∩Hcj i

∗
L∩HcjX

cj

)

∧
[cjH]∈L\G/H

NL
L∩HcjP

n
n (i∗

L∩HcjX
cj) //

∧
[cjH]∈L\G/H

P
n|L/L∩Hcj |
n|L/L∩Hcj |N

L
L∩Hcj i

∗
L∩HcjX

cj

∧

OO

We leave the proof of commutativity to the interested reader.

From the above we obtain a norm map on the E∞ page.

Corollary 5.19. Let A and X be H-spectra, with H ⊆ G. The norm map

E2(A,X)→ E2(NG
HA,N

G
HX)

induces a well-defined map E∞(A,X)→ E∞(NG
HA,N

G
HX).

Proof. Let h0 be a permanent cycle, and let h1 be hit by a differential. Applying

Lemma 5.18 and Proposition 5.17, we see that NG
H (h0 +h1)−NG

Hh0 is a sum of terms,

each of which is hit by a boundary.

Of course, when E(A,X) converges this is the associated graded map of the norm

functor.
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To proceed any farther, we must consider towers of spectra. Let Z denote the set

of integers regarded as a category with one morphism from n to m when n ≥ m. We

now consider the category of towers of orthogonal G-spectra, (SpO
G)Z. We denote the

free tower on X in level n by X[n], and the constant tower in X by const(X). Note

that this category has a symmetric monoidal structure; for more we refer the reader

to Section IV.4.

It is a simple matter to pull back the (positive) S model structure from all levels of

the tower to obtain a monoidal model structure on (SpO
G)Z. Then, using Section A.4,

we obtain a model structure on commutative ring towers. This allows us to use the

techniques from the beginning of this section to prove that the norm functor on towers

of spectra preserves weak equivalences between S-cofibrant towers. It is also simple

to prove that cofibrant towers are flat, and that the analogue of Proposition 5.2 holds

for towers.

We define a tower X to be slice-like if Xn ≥ n for all n ∈ Z. We require two more

easy facts; we omit the proofs.

Lemma 5.20. If X and Y are slice-like and S-cofibrant, then so is X ∧ Y .

Lemma 5.21. Let H ⊆ G. For H-spectra X there are natural isomorphisms

NG
H (X[n]) ∼= (NG

HX)[n|G/H|]

for each n ∈ Z.

Using the above and the techniques from the beginning of this section, we obtain the

following result.

Corollary 5.22. Let X be a tower of H-spectra, with H ⊆ G. If X is S-cofibrant

and slice-like then so is NG
HX.

We now obtain a Leibniz formula for the norm in the RSSS. For the statement, note

that, letting T (G : H) = G/H − {H}, we have

i∗HN
G
HX
∼= X ∧

( ∧
[cjH]∈T (G:H)/H

NH
H∩Hcj i

∗
H∩HcjX

cj
)
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since the identity coset is fixed by H.

Theorem 5.23. Let A and X be H-spectra, with H ⊆ G. If f : A→ P n
nX survives

to the Er page then, by slight abuse of notation, we have

dr(N
G
Hf) = tGH

(
drf ∧

( ∧
[cjH]∈T (G:H)/H

NH
H∩Hcj r

Hcj

H∩Hcj f
cj
))
.

Proof. Let X be a cofibrant and fibrant spectrum, and let s(X) be a cofibrant and

fibrant model for the slice tower of X, with a map s(X) → const(X). Let A = ΣB,

with B cofibrant. We may regard this as I ∧ B/B, where I = [0, 1] is given the

basepoint 0. The data f and drf are then given by a diagram of the following form.

B

��

h
%%

drf

**
Pn+r−1X //

��

P n+r−1
n+r−1X

I ∧B

��

f̄ // PnX // P n
nX

ΣB
f

33

Here, we use PmX to denote s(X)m; since s(X) is a cofibrant tower, all of its structure

maps are cofibrations, so we may define Pm
mX := PmX/Pm+1X for all m. Now

consider the norm of f̄ . The restriction to ∂(NG
HI)∧NG

HB lifts to (NG
Hs(X))n|G/H|+r−1,

while the restriction to ∂2(NG
HI)∧NG

HB lifts to (NG
Hs(X))n|G/H|+2(r−1). Thus the map

∂(NG
HI) ∧NG

HB → (NG
Hs(X))n|G/H|+r−1

factors through the map

∂(NG
HI) ∧NG

HB → (∂(NG
HI)/∂2(NG

HI)) ∧NG
HB,

which is a cotransfer map smashed with NG
HB. Thus we consider the face of ∂(NG

HI)
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corresponding to the identity coset. On this face, the H-map

∂(NG
HI) ∧NG

HB → (NG
Hs(X))n|G/H|+r−1

is clearly equal to

h ∧
( ∧

[cjH]∈T (G:H)/H

NH
H∩Hcj r

Hcj

H∩Hcj f̄
cj
)
.

This proves the formula in the spectral sequence for the tower NG
Hs(X). Since this

is a slicelike tower over NG
HX, there is a unique map over NG

HX to the slice tower

of NG
HX (in the category of towers in the homotopy category of spectra). The proof

is finished by noting the commutativity of the following two diagrams (the smash

products are indexed over T (G : H)/H).

NG
HPnX

��

// NG
HP

n
nX

��
(NG

Hs(X))n|G/H| // (NG
Hs(X))n|G/H|/(N

G
Hs(X))n|G/H|+1

i∗HN
G
Hs(X) //

∼=
��

i∗Hs(N
G
HX)

∼=

��
s(X) ∧

( ∧
[cjH]

NH
H∩Hcj i

∗
H∩Hcj s(X)cj

)
∼=
��

s(i∗HN
G
HX)

∼=

��

s(X) ∧
( ∧

[cjH]

NH
H∩Hcj i

∗
H∩Hcj s(X

cj)
)

∼=
��

s
(
X ∧

( ∧
[cjH]

NH
H∩Hcj i

∗
H∩HcjX

cj

))

s(X) ∧
( ∧

[cjH]

NH
H∩Hcj s(i

∗
H∩HcjX

cj)
)

// s(X) ∧
( ∧

[cjH]

s(NH
H∩Hcj i

∗
H∩HcjX

cj)
)∧

OO

In the bottom row of the second diagram above we have implicitly used the fact that,
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if Y → const(Z) is a map of towers with Y cofibrant and slice-like and Z fibrant,

then it can be factored through a cofibrant and fibrant model for the slice tower of

Z (much like any map from a CW complex to a space can be extended to a CW

approximation).

Remark: There is one representation-theoretic subtlety that we glossed over in

the proof above. Note that the G-fixed subspace of R[G/H] is one-dimensional;

let W denote its orthogonal complement. We have an explicit isomorphism of H-

representations R[T (G : H)]
∼=−→ i∗HW as below.

∑
cH∈T (G:H)

xcH [cH] 7→
∑

cH∈T (G:H)

xcH [cH]−
(
|G/H|−1

∑
cH∈T (G:H)

xcH

) ∑
cH∈G/H

1[cH]
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6 Geometric Fixed Points

Let F be a family of subgroups of G, and let F ′ denote its complement. As usual we

denote by EF the universal F -space and ẼF its unreduced suspension. Recall that

a spectrum X is called F ′-local if one of the following equivalent conditions hold:

• EF+ ∧X ∼= ∗,

• X ∼= ẼF ∧X,

• i∗HX
∼= ∗ for all H ∈ F ,

• πHn X = 0 for all n and all H ∈ F .

The inclusion of the full subcategory of F ′-local spectra, which we denote by SpF ′G ,

has a left adjoint, given by ẼF ∧ (− ). We call this F ′-localization. Now let τ denote

the localizing subcategory generated by a set T . We have the following general fact.

Theorem 6.1. If τ is closed under F ′-localization, then for any F ′-local spectrum

X, PτX and P τ⊥X are F ′-local.

Proof. The second statement follows from the first. Let τF ′ denote the localizing

subcategory generated by ẼF ∧T ; by hypothesis, this is contained in τ . Also, any el-

ement of τF ′ has a (possibly transfinite) filtration whose succesive cofibers are wedges

of suspensions of elements of ẼF ∧T , so τF ′ consists of F ′-local spectra. This implies

that τF ′ ⊆ ẼF ∧ τ . Conversely, suppose that X has a (possibly transfinite) filtration

whose succesive cofibers are wedges of suspensions of elements of T . Smashing this

filtration with ẼF , we obtain a filtration for ẼF ∧X with succesive cofibers that are

wedges of suspensions of elements of ẼF ∧ T . Thus we have ẼF ∧ τ ⊆ τF
′ as well,

so that τF ′ ∼= ẼF ∧ τ ∼= SpF
′

G ∩ τ .

Now let X be F ′-local, and consider the map PτF′X → X. The spectrum PτF′X

is in τ by the above. Furthermore, for any Y ∈ τ the map

[Y, PτF′X]→ [Y,X]
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is isomorphic to the map

[ẼF ∧ Y, PτF′X]→ [ẼF ∧ Y,X]

since both X and PτF′X are F ′-local. The above map is an isomorphism; thus,

PτF′X → X satisfies the required universal property. That is, PτX ∼= PτF′X, so it is

F ′-local.

Since the categories τn satisfy the above criterion, we immediately get the following:

Corollary 6.2. The RSSS for an F ′-local spectrum is F ′-local.

Remark: This Corollary can be proven much more simply by using the fact that

the RSSS construction commutes with restriction functors; in fact, if i∗HX = 0 then

i∗HPnX = 0 for all n. However, we will need the more precise arguments given above

in what follows.

Warning: The example of G = Z/2Z, F = {e}, X = KR shows that taking

slices does not commute with localization in general. In fact, ẼF ∧X = ∗, but the

localizations of the slices of X are not zero (see [Dug] or Section V.4).

Now suppose that N is a normal subgroup of G, and let F [N ] denote the family of

subgroups that do not contain N . Recall that SpF [N ]′

G is the category of spectra whose

homotopy groups are concentrated over N , and that this is equivalent to the category

of G/N -spectra (see [LMS]). The equivalence is given by the N -fixed point functor,

which is equal to the N -geometric fixed point functor ΦN on SpF [N ]′

G . Following Hill

([Hil]), we call the inverse equivalence pullback, and denote it by φ∗N . We recall the

following basic fact, which may be proved by noting that G ∧H (− ) and ΦN are left

adjoint functors whose right adjoints, i∗H and φ∗N , fit into a commutative square with

i∗H/N and φ∗N : SpH/N → SpH .

Lemma 6.3. There are natural isomorphisms as below.

ΦN(G+ ∧H X) ∼=

G/N+ ∧H/N ΦN(X) if H ⊇ N

0 if H 6⊇ N
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In particular, the homotopy groups of ΦNX are just the (possibly) nonzero homotopy

groups of X, when X is concentrated over N . We can now prove the following results.

Theorem 6.4. After saturating in isomorphism classes, we have

φ∗N(SpG/N) ∩ τGm = φ∗N(τ
G/N
dm/|N |e).

Proof. First, note that the above intersection is SpF [N ]′

G ∩ τm = τ
F [N ]′
m . Now let Tm

denote the set of slice cells of dimension ≥ m, and let Y ∈ τF [N ]′
m . Since Y ∈ τm, Y can

be given a countable filtration with successive quotients that are wedges of suspensions

of elements of Tm. Then Y ∼= ẼF [N ] ∧ Y can be given a countable filtration with

quotients that are wedges of suspensions of elements of ẼF [N ] ∧ Tm. Thus τF [N ]′
m

is actually equal to the weakly localizing category generated by ẼF [N ] ∧ Tm. Since

Sp
F [N ]′

G is a triangulated subcategory of SpG which is closed under wedge sums, we can

regard τF [N ]′
m as the weakly localizing subcategory of SpF [N ]′

G generated by ẼF [N ]∧Tm.

Now, the geometric fixed point functor is an equivalence of triangulated categories,

so we can immediately identify ΦN(τ
F [N ]′
m ) as the weakly localizing subcategory of

SpG/N generated by ΦN(Tm). To determine this category, we may begin by throwing

out the elements of ΦN(Tm) that are trivial. By Lemma 6.3, the nonzero elements

are

ΦN(G+ ∧H SkρH ) ∼= G/N+ ∧H/N SkρH/N

for H ⊇ N, k|H| ≥ m. These are all slice cells, and the above slice cell of dimension

d = k|H/N | is in this set when k|H| = d|N | ≥ m; that is, when d ≥ dm/|N |e. Thus

we have ΦN(τ
F [N ]
m ) = τdm/|N |e (actually localizing).

Corollary 6.5. Let X = φ∗N(Y ) be concentrated over N . Then PmX = φ∗N(Pdm/|N |eY ).

Thus the k|N |-slice of X is the pullback of the k-slice of Y , and all other slices of X

are trivial.

Proof. We know that PmX is concentrated over N . Thus PmX → X is terminal

among maps to X from spectra in φ∗N(SpG/N) ∩ τGm = φ∗N(τ
G/N
dm/|N |e). The second
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statement follows from the first.

Remark: The above result was originally conjectured by Mike Hill in [Hil]; it is

stated there (in terms of the irregular slice filtration) as Conjecture 4.11. Theorem 4.9

of that paper gives the correct upper bound for spectra that are pulled back from

a quotient group, while Theorem 4.12 gives a non-optimal lower bound; the above

corollary remedies this situation. Hill also gave proofs of the special cases where

N = G and where [G : N ] = 2; see Theorem 6.14 and Corollary 4.14 of [Hil],

respectively.

Corollary 6.6. If X is concentrated over a nontrivial normal subroup then the sus-

pension map 3.13 for X is zero.

Proof. If X is concentrated over N 6= e then so is ΣX. Hence by Corollary 6.5 the

maps

ΣP k
kX → P k+1

k+1 (ΣX)

are zero, since there do not exist consecutive multiples of |N |.

The following corollary will be useful for doing inductive proofs in later sections.

Corollary 6.7. If X is concentrated over G and (n− 1)-connected then X ≥ n|G|.

Proof. XG is (n− 1)-connected; hence, it is ≥ n, so its lowest possible nonzero slice

is the n-slice. By Theorem 6.4, the lowest possible nonzero slice of X is the n|G|-

slice.
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7 Brown-Comenetz Duality

In this section we show that the RSSS has a type of duality which will be very useful in

deducing statements about the spectral sequence in one half plane (left or right) from

corresponding statements in the other half plane. Following Brown and Comenetz

([BC]), though with different notation, we begin by defining

A∨ := Hom(A,Q/Z)

for an arbitrary abelian group A. Next, for a G-spectrum X, we consider the functor

B 7→ (πG0 (X ∧B))∨

sending G-spectra to abelian groups. Since Q/Z is injective, this is clearly the zeroth

functor of a cohomology theory; hence it is representable. That is, there is a spectrum

X̃ such that there is a natural isomorphism as below.

[B, X̃] ∼= (πG0 (X ∧B))∨ (7.1)

It is clear that X 7→ X̃ is a contravariant functor, which we refer to as dualization.

Letting X = S0 and using the isomorphism S0 ∧B ∼= B, we obtain

[B, S̃0] ∼= (πG0 (B))∨.

Substituting X ∧B for B in the above and using 7.1, we obtain

[B, X̃] ∼= (πG0 (X ∧B))∨

∼= [X ∧B, S̃0]

∼= [B,F (X, S̃0)]
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so that we have a natural isomorphism

X̃ ∼= F (X, S̃0)

by Yoneda’s Lemma. The following facts are then clear.

• Dualization is an additive functor.

• Dualization converts wedge sums into products.

• Dualization converts homotopy colimits into homotopy limits.

• Dualization preserves cofiber sequences.

We require the following basic lemma.

Lemma 7.2. For strongly dualizable spectra B and arbitrary spectra X there is a

natural isomorphism as below.

[B, X̃] ∼= [DB,X]∨

Proof. We have the following chain of isomorphisms.

[B, X̃] ∼= (πG0 (X ∧B))∨

= [S0, X ∧B]∨

∼= [S0 ∧DB,X]∨

∼= [DB,X]∨

We apply this to B of the form G/H+ ∧ Sn to obtain the following corollary.

Corollary 7.3. We have natural isomorphisms as below.

πnX̃ = (π−nX)∨
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Here, by the dual M∨ of a Mackey functor M we mean the functor (− )∨ ◦M ◦ D,

where D is the (Spanier-Whitehead) duality functor on the Burnside Category.

Hence, the effect of dualization on homotopy groups is to dualize them and "turn

them upside down." Next, we have an elementary, yet crucial observation.

Proposition 7.4. The Spanier-Whitehead duals of the slice cells are the slice cells:

D(G+ ∧H SnρH ) ∼= G+ ∧H S−nρH .

The proof is trivial. To obtain duality in the RSSS, we need a description of the

spectra that are ≥ n that is dual to the description of the spectra that are ≤ −n. We

begin with the following.

Lemma 7.5. If X ≥ n then

[Σ−iŜ, X] = 0

for all slice cells Ŝ of dimension < n and all i ≥ 0.

Proof. From the construction of PnX ∼= X we see that we can assume that X is built

out of slice cells of dimension ≥ n and their suspensions. Now Σ−iŜ is a compact

spectrum, so it suffices to show that

[Σ−iŜ,ΣjT̂ ] = 0

for any slice cell T̂ of dimension ≥ n and any j ≥ 0. The above group is isomorphic

to

[S0,Σi+j(T̂ ∧DŜ)].

Now by Lemma 4.1 and Proposition 7.4, T̂ ∧DŜ is a wedge of slice cells of dimension

dim(T̂ )− dim(Ŝ) > 0 so it is 0-connected. Hence, the above group is zero.

We now arrive at our dual description.
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Proposition 7.6. A spectrum X is ≥ n if and only if [Ŝ, X] = 0 for all slice cells Ŝ

of dimension < n.

Proof. One direction is given by Lemma 7.5. Hence, suppose that [Ŝ, X] = 0 for all

slice cells Ŝ of dimension < n, and consider the cofiber sequence shown below.

X → P n−1X → ΣPnX

Letting Ŝ be a slice cell of dimension < n, we consider the resulting exact sequence

shown below.

[Ŝ, X]→ [Ŝ, P n−1X]→ [Ŝ,ΣPnX]

The first group above is zero by assumption, and the last group is zero by Lemma 7.5,

so we have that [Ŝ, P n−1X] = 0 for all slice cells Ŝ. It then follows from Lemma 3.8

that P n−1X < k for all k ∈ Z. However, each spectrum G/H+ ∧ Sm is ≥ k for some

k, so all the homotopy groups of P n−1X must be zero; hence, P n−1X ∼= ∗.

By combining this with Lemma 7.2 and Proposition 7.4, and using the fact that an

abelian group A is zero if and only if its dual A∨ is zero, we arrive at the following.

Theorem 7.7. The following conclusions hold.

(i) X ≥ n⇔ X̃ ≤ −n

(ii) X ≤ n⇔ X̃ ≥ −n

Theorem 7.8. We have the following natural isomorphisms.

(i) PnX̃ ∼= P̃−nX

(ii) P nX̃ ∼= P̃−nX

(iii) P n
n X̃
∼= P̃−n−nX
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Proof. When we dualize the cofiber sequence

PnX → X → P n−1X

we obtain a cofiber sequence

P̃ n−1X → X̃ → P̃nX

where the spectrum on the left is > −n and the spectrum on the right is ≤ −n. For

the last part, we use 3.9.

All of this means that the dual of the tower {PnX} is the tower {P nX̃}, so that the

exact couple defining the RSSS dualizes in the following sense. Let there be an exact

couple, as shown below.

A
i // A

j��
E

k

__

We can dualize this by setting Ã := A∨, ĩ := i∨, j̃ := k∨, etc. When we dualize

the derived exact couple, what we get is not quite the derived exact couple of the

dual; the difference is in which of the two maps on the sides is composed with ĩ−1.

However, these last two exact couples have the same differential. Thus we see that

dual exact couples define dual spectral sequences, and the RSSS for X defined by

the PnX dualizes to the RSSS for X̃ defined using the P nX̃ (with appropriate sign

conventions). Thus, dualization has the effect of turning the RSSS upside down and

dualizing the groups and differentials. We sum all this up by writing the following.

Theorem 7.9. Taking the RSSS commutes with dualization:

E(X̃) ∼= E(X)∨.

50



Furthermore, the slice filtration dualizes, in the sense that the sequence

F 1−sπ−tX̃ → π−tX̃ → π−tX̃/F
1−sπ−tX̃

is canonically isomorphic to the dual of the sequence

F sπtX → πtX → πtX/F
sπtX

and there is a canonical isomorphism

F−sπ−tX̃/F
−s+1π−tX̃

∼= (F sπtX/F
s+1πtX)∨.

Finally, we point out the following consequence of Proposition 7.6.

Corollary 7.10. The categories τn are closed under taking arbitrary products and

directed homotopy colimits.
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8 Generators and Vanishing Lines; Efficiency of the

RSSS

In this section we give an alternative set of generators for the categories τn when

n ≤ 1. This leads to results on the relationship between connectivity and vanishing

lines in the RSSS. We begin with the following elementary result.

Proposition 8.1. If n ≥ 0 and X is (n − 1)-connected, then all of the spectra

PmX, PmX, and Pm
mX are (min(dn+1

|G| e, n)− 1)-connected, and the spectra PmX are

(min(dn+1
|G| e + 1, n) − 1)-connected. If n ≤ 0 and X is (n + 1)-coconnected, then

all of these spectra are (max(bn−1
|G| c, n) + 1)-coconnected, and the spectra PmX are

(max(bn−1
|G| c − 1, n) + 1)-coconnected.

Proof. For the first part, it suffices to prove the first statement for PmX. Now X ≥ n

by Corollary 3.3 and Proposition 3.6, so PmX ∼= X when m ≤ n; hence we may

assume that m > n. Now if Ŝ is a slice cell of positive dimension, it is clear that

its lowest possible nonzero homotopy group is in dimension ddim(Ŝ)/|G|e, so the

lowest possible nonzero homotopy group of PmX is in dimension d(n+ 1)/|G|e. The

statement about the PmX follows from this by considering the cofiber sequences

X → PmX → ΣPm+1X

and using the fact that PmX ∼= ∗ when m < n. We may immediately deduce the

second part from the first by using the results of Section 7 (though one can give a

more elementary proof).

We will derive further connectivity bounds from the following theorem.

Theorem 8.2. If n < 0 then τn is generated by the spectra listed below.

• G/H+ ∧ Sk, k ≥ 0, H ⊆ G

• G/H+ ∧ Sk, k < 0, |k||H| ≤ |n|
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Furthermore, τ0 is generated by the G/H+ ∧ Sk for k ≥ 0, while τ1 is generated by

the G/H+ ∧ Sk for k ≥ 1.

Proof. The last two statements follow from Proposition 3.6; hence, let n < 0. Let Ŝ

be a slice cell of dimension ≥ n. If dim(Ŝ) ≥ 0 then Ŝ can be built out of the first

type of spectra listed in the theorem. If not, let Ŝ = G+ ∧H S−mρH with m > 0. Now

SmρH can be decomposed into cells of dimension k and type H/J for

k ≤ dim((SmρH )J ∼= Sm|H/J |) = m|H/J |

(that is, k|J | ≤ m|H|), so G+ ∧H SmρH can be decomposed into cells of dimension k

and type G/J for k|J | ≤ m|H|. Taking the Spanier Whitehead dual cell structure for

Ŝ, we see that Ŝ can be built from cells of dimension k ≤ 0 and type G/J such that

|k||J | ≤ | dim(Ŝ)| ≤ |n|. It follows from all this that τn is contained in the localizing

subcategory generated by the spectra listed in the statement. It remains to show that

these spectra are actually contained in τn.

The spectra of the first type are contained in τ0 ⊆ τn by Proposition 3.6, so it

remains to show that

G/H+ ∧ S−k ≥ −k|H|

when k ≥ 0. For this we simply note thatG/H+∧S−k ∼= G+∧H (S−kρH∧Sk(ρH−1)).

Corollary 8.3. If n ≤ 1 and X is (n − 1)-connected then so are all of the spectra

PmX, PmX, and Pm
mX. If n ≥ −1 and X is (n + 1)-coconnected then so are all of

the spectra PmX, PmX, and Pm
mX.

Proof. The second statement follows from the first by the duality of Section 7. The

cases n = 0 and n = 1 are covered by Proposition 8.1; hence, let n < 0, and suppose

that X is (n − 1)-connected. It suffices to show that PmX is (n − 1)-connected for

all m. This is automatic for m ≥ 0, so suppose m < 0. We may construct PmX as

follows. Let Tm denote the set of generators for τm given in Theorem 8.2. Note that
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Tm is closed under suspension. Define

(PmX)(0) :=
∨

f :A→X
f 6=0

A

with a map (PmX)(0) p0−→ X given by p0 = ∨ff , where the wedge runs over all

nonzero maps to X from elements of Tm. Next, supposing we have constructed

(PmX)(k) pk−→ X, we fill in the diagram

∨
f :A→(PmX)(k)

f 6=0,pkf=0

A
∨ff // (PmX)(k)

pk

%%

// (PmX)(k+1)

��
X

to construct (PmX)(k+1) pk+1−−→ X, where the top row is a cofiber sequence and A runs

over all elements of Σ−1Tm. Then we let

PmX = lim−→
k→∞

(PmX)(k)

and prove that (PmX)(k) is (n − 1)-connected by induction on k. Firstly, if A ∈ Tm
then a map A → X can only be nonzero if dim(A) ≥ n, so we see that (PmX)(0) is

(n−1)-connected. For the inductive step, assume that (PmX)(k) is (n−1)-connected.

Then a map A→ (PmX)(k) can only be nonzero if dim(A) ≥ n, so the cofiber of the

map

(PmX)(k) → (PmX)(k+1)

is a wedge of spheres of dimension > n.

As an immediate corollary to the last sentence of the above proof, we see that the

map

πn(PmX)(0) → πnX
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is surjective. Furthermore, it is easy to see inductively that in forming (PmX)(k+1)

we only cone off spheres of dimension ≥ n+ k, so that the map

πn(PmX)(1) → πnPmX

is an isomorphism. Hence we introduce the following considerations. Denote the

Burnside category of G by B(G), and denote the subcategory of orbits G/H by OG.

Next, for any real number c we define subcategories

OG(c) := {G/H ∈ B(G) : |H| ≤ c}

and denote by ic : OG(c) → OG the inclusions. Recall that a Mackey functor is an

additive functor Oop
G → Ab. The restriction functor

i∗c : AbO
op
G → AbOG(c)op

has left and right adjoints given by additive left and right Kan extension, which we

denote by L(c) and R(c), respectively. Now define filtrations on Mackey functors by

the following:

F kM(G/H) = {x ∈M(G/H) : i∗Jx = 0 ∀J ⊆ H, |J | ≤ k}

and FkM equals the sub-Mackey functor generated by the M(G/H) for H ≤ k. We

have the following.

Proposition 8.4. If n < 0 and X is (n− 1)-connected then for any s ∈ Z we have

F sπnX = F(s+n)/nπnX

and for m ≤ n we have

πnPmX
∼= L

( |m|
|n| − 1

)
i∗|m|/(|n|−1)F|m|/|n|πnX
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with the map πnPmX → πnX being the counit of the adjunction (L( |m||n|−1
), i∗|m|/(|n|−1))

composed with the inclusion of F|m|/|n|. (In case n = −1, we take |m|/0 = +∞.)

Thus,

πnP
m
mX
∼= L

( |m|
|n| − 1

)
i∗|m|/(|n|−1)

Fm/nπnX

F(|m|−1)/|n|πnX

and so Es,s+n
2 (X) = 0 unless n divides s.

Proof. In the first part, if s > 0 then both sides are clearly zero, so we assume s ≤ 0.

We then have

F sπnX = im(πn(Ps+nX)(0) → πnX).

Now, only the wedge summands of dimension n in (Ps+nX)(0) contribute to πn, and

these are of the formG/H+∧Sn for |n||H| ≤ |s+n|. The first part follows immediately.

For the second part we must consider πn(PmX)(1). Here, only the spheres of dimension

n that we cone off have an effect on πn, so it is easy to see that we may describe this

group in the following way. Let T denote the set of spheres of dimension n in Tm (the

set of generators for τm given in Theorem 8.2), and let T ′ denote the set of spheres

of dimension n whose suspension is in Tm. We let

Y =
∨

f :A→X
f 6=0

A

where A runs over T , and denote by p : Y → X the map ∨ff . Then πnPmX is

isomorphic to πn of the cofiber of the map

∨
f :A′→Y
f 6=0,pf=0

A′ → Y
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where A′ runs over the elements of T ′. Taking πn, we get the following diagram,

⊕
x 6=0∈Y (G/H)

p∗x=0
|n+1||H|≤|m|

[− , G/H]
⊕xx // Y =

⊕
y 6=0∈πnX(G/H)
|n||H|≤|m|

[− , G/H]

p∗=⊕yy ''

// πnPmX

��
πnX

in which the top line is a cokernel. The rest is easy category theory. To prove the last

statement, we use this formula and the fact that the functors L(c) and i∗c are right

exact.

In order to dualize this result, we need an algebraic lemma.

Lemma 8.5. If M is a Mackey functor then for any k the dual of the sequence

0→ FkM →M →M/FkM → 0

is canonically isomorphic to the sequence

0→ F kM∨ →M∨ →M∨/F kM∨ → 0

while the dual of the sequence

0→ F kM →M →M/F kM → 0

is canonically isomorphic to the sequence

0→ FkM
∨ →M∨ →M∨/FkM

∨ → 0.

That is, the filtrations Fk and F k are dual.

Proof. The first sequence is the unique sequence with M in the middle such that

the Mackey functor on the left is generated by the levels G/H for H ≤ k, while the

Mackey functor on the right is zero in these levels. Meanwhile, the second sequence

57



is the unique sequence with M∨ in the middle such that the Mackey functor on the

left is zero in these levels, while the Mackey functor on the right satisfies F k = 0.

Thus, we are reduced to proving the following implications.

FkM = M ⇒ F kM∨ = 0

F kM = 0 ⇒ FkM
∨ = M∨

This follows from the fact that FkM = M precisely when the maps

⊕
J⊆H
|J |≤k

M(G/J)
⊕J tHJ //M(G/H)

are surjective for all H ⊆ G, while F kM = 0 precisely when the dual maps

M(G/H)
×JrHJ //×

J⊆H
|J |≤k

M(G/J)

are injective for all H ⊆ G.

Corollary 8.6. If n > 0 and X is (n+ 1)-coconnected then for any s ∈ Z we have

F sπnX = F (s+n−1)/nπnX

and for m ≥ n we have

πnP
mX ∼= R

( m

n− 1

)
i∗m/(n−1)(πnX/F

m/nπnX)

with the map πnX → πnP
mX being the quotient by Fm/n composed with the unit of

the adjunction (i∗m/(n−1), R( m
n−1

)). (In case n = 1, we take m/0 = +∞.) Thus,

πnP
m
mX
∼= R

( m

n− 1

)
i∗m/(n−1)

F (m−1)/nπnX

Fm/nπnX

and so Es,s+n
2 (X) = 0 unless n divides s.
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Proof. By the duality of Section 7, Lemma 8.5 and Proposition 8.4, both of the

sequences

0→ F sπnX → πnX → πnX/F
sπnX → 0

and

0→ F (s+n−1)/nπnX → πnX → πnX/F
(s+n−1)/nπnX → 0

dualize to the sequence

0→ F 1−sπ−nX̃ → π−nX̃ → π−nX̃/F
1−sπ−nX̃ → 0.

Thus for each subgroup H of G, the maps πHn X → Q/Z that restrict to zero on each

of the two filtrations are the same. However, if A and B are different subgroups of

C, it is easy to show that there exists a map C → Q/Z which is zero on one of them

but not on the other.

For the second part, we dualize the corresponding part of Proposition 8.4. Here

the additive left Kan extension dualizes to the additive right Kan extension (and

vice versa) essentially because the relevant categories have finitely many objects and

finitely generated free Hom sets. We proceed as follows. Firstly, it follows from

the first part that Fm/nπnX is the kernel of the map πnX → πnP
mX. Next,

Proposition 8.4 implies that when X is (−n − 1)-connected, the truncated map

i∗m/(n−1)π−nP−mX → i∗m/(n−1)π−nX is injective (using that i∗cL(c) ∼= Id). It fol-

lows that, dually, the map i∗m/(n−1)πnX → i∗m/(n−1)πnP
mX is surjective under our

assumptions. Combining these facts, we obtain an isomorphism

i∗m/(n−1)

πnX

Fm/nπnX

∼=−→ i∗m/(n−1)πnP
mX.
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Now the unit map

πnP
mX → R

( m

n− 1

)
i∗m/(n−1)(πnP

mX)

is an isomorphism, since the dual counit map is by Proposition 8.4, so the result

follows immediately. For the last statement, we use the fact that the functors R(c)

and i∗c are left exact.

Next, we can obtain a special case of the above results without making any connec-

tivity assumptions on X, as follows. If n < 0 then τn consists of (n − 1)-connected

spectra, so by the universal property characterizing Pn we can compute PnX by

replacing X with PostnX. We immediately obtain the following.

Corollary 8.7. If n < 0 then for any G-spectrum X we have

F 0πnX = F1πnX

and

π−1P−1X ∼= π−1P
−1
−1X

∼= F1π−1X

π−2P−2X ∼= π−2P
−2
−2X

∼= L(2)i∗2F1π−2X

πnPnX
∼= πnP

n
nX
∼= L(1)i∗1πnX

for n < −2, with πnPnX → πnX the evident structure maps.

We again have a dual result.

Corollary 8.8. If n > 0 then for any G-spectrum X we have

F 1πnX = F 1πnX
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and

π1P
1X ∼= π1P

1
1X
∼= π1X/F

1π1X

π2P
2X ∼= π2P

2
2X
∼= R(2)i∗2π2X/F

1π2X

πnP
nX ∼= πnP

n
nX
∼= R(1)i∗1πnX

for n > 2, with πnX → πnP
nX the evident structure maps.

Corollary 8.9. For any G-spectrum X we have

P−1
−1X

∼= Σ−1HF1π−1X.

Thus, the (−1)-slices are the Eilenberg MacLane spectra Σ−1HM such that M is

generated by M(G/e). Dually, we have

P 1
1X
∼= ΣH(π1X/F

1π1X).

Thus, the 1-slices are the Eilenberg MacLane spectra ΣHM such that all the restriction

maps

M(G/H)
rHe−→M(G/e)

are injective (and hence all restrictions are injective). We also have

P 0
0X
∼= Hπ0X

so that the 0-slices are the Eilenberg MacLane spectra in dimension zero.

Remark: The above results on the 0 and 1 (regular) slices are Propositions 4.19

and 4.47 of [HHR] (alternatively, Corollaries 2.11 and 2.12 and Theorem 2.13 of [Hil]).

As immediate corollaries to Theorem 8.2 and the duality of Section 7, we obtain

the following, which will be used in the next section to identify part of the E2 page

of the RSSS algebraically.
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Theorem 8.10. The following conclusions hold.

• If n < 0 then X ≤ n if and only if X is 0-coconnected and

πH−kX = 0

for all k > 0 with k|H| < |n|.

• If n ≤ 0 then X < n if and only if X is 0-coconnected and

πH−kX = 0

for all k > 0 with k|H| ≤ |n|.

• If n > 0 then X ≥ n if and only if X is 0-connected and

πHk X = 0

for all k > 0 with k|H| < n.

• If n ≥ 0 then X > n if and only if X is 0-connected and

πHk X = 0

for all k > 0 with k|H| ≤ n.

Remark: The above characterization of being > 1 is equivalent to Proposition 4.45

of [HHR]. Of course, being ≤ 0 and being ≥ 0 also have simple characterizations in

terms of homotopy groups.

We now have the following collection of results:

• A spectrum is zero if and only if its (R)SSS is zero.

• A spectrum is n-connected (n ≤ 0) if and only if its RSSS is.

• A spectrum is n-coconnected (n ≥ 0) if and only if its RSSS is.
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• A spectrum restricts to zero in a subgroup of G if and only if its (R)SSS does.

Thus, for example, one will not be forced to compute any of the negative columns in

the SS past the first page if they are going to converge to zero anyway. We sum this

up by saying that "the (regular) slice spectral sequence is very efficient."
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9 Relation to Homotopy Orbit and Fixed Point Spec-

tral Sequences; Edge Homomorphisms

In this section we identify a large portion of the E2 page of the (R)SSS algebraically

and use this calculation to describe some of the structure defined in Section 4. First

we provide some motivation. Let n < −2; according to Corollary 8.7, we have

E0,n
2
∼= (L(1)i∗1πnX)(G/G)

∼= HomB(G)op(G/e,G/G)⊗HomB(G)op (G/e,G/e) πnX(G/e)

∼= Z⊗G πnX(G/e)

∼= (πnX(G/e))/G

which is the same thing as on the E2 page of the homotopy orbit spectral sequence

(HOSS). Similarly, we have for n > 2

E0,n
2
∼= (R(1)i∗1πnX)(G/G)

∼= HomHomB(G)op (G/e,G/e)-Mod(HomB(G)op(G/G,G/e), πnX(G/e))

∼= HomG(Z, πnX(G/e))

∼= (πnX(G/e))G

which is the same thing as on the E2 page of the homotopy fixed point spectral

sequence (HFPSS). We will show that there are such isomorphisms for many other

entries on the E2 page. In fact, we will obtain maps of spectral sequences

HOSS → (R)SSS → HFPSS

that induce the isomorphisms. For this we adopt the following notation. We use τRn
to refer to the localizing subcategories determined by the regular slice cells, τSn for

the irregular slice cells, τPn for sphere spectra (the ’P’ is for ’Postnikov’), and we note

64



the following inclusions.

τPn ⊆ τRn ⊆ τSn (n ≥ 0)

τRn ⊆ τSn ⊆ τPn (n ≤ 0)

We have equality of all three when n = 0. Next, for each n we denote by τminn the

smallest of the three subcategories. Denoting Pτminn
by P̂n, etc. (and PτSn by P̃n, etc.)

we have a mixed tower {P̂n} and natural maps of towers as below.

{P̂n}

��

// {Pn} // {P̃n}

{Postn}

The vertical and left horizontal maps above are multiplicative maps of towers, since

the filtrations τRn and τPn are multiplicative (see Section 4) and hence τminn is as well.

All of the maps are nonequivariant isomorphisms. It follows that when we apply the

functors (− )∧EG+ and F (EG+, − ), we obtain isomorphisms. Of course, there are

natural maps Y ∧ EG+ → Y and Y → F (EG+, Y ), so we obtain the following.

Theorem 9.1. There are natural maps of spectral sequences, as below.

HOSS

&&

// RSSS

��

// HFPSS

SSS

88

The maps in the top row are multiplicative.

We wish to know in what range of the E2 page these maps are isomorphisms. For

this we require some lemmas. Assuming G nontrivial, denote by m(G) the order of

the smallest nontrivial subgroup of G. Then we have the following.

Lemma 9.2. If n > 0 then Sn ∧ ẼG ≥ nm(G).

Proof. The spectrum Sn ∧ ẼG is nonequivariantly contractible, so the smallest pos-

sible values of k and |H| with H ⊆ G, k > 0 and πHk (Sn ∧ ẼG) 6= 0 are k = n and
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|H| = m(G). The result now follows from Theorem 8.10.

Next, since the dualization functor takes the form F (− , S̃0), we have the following

easy lemma.

Lemma 9.3. The Brown-Comenetz dual of the map X ∧ EG+ → X is isomorphic

to the map X̃ → F (EG+, X̃).

We can now identify a large portion of the E2 page of the (R)SSS.

Theorem 9.4. The following conclusions hold for any G-spectrum X.

(i) The map RSSS → HFPSS is an isomorphism on Es,t
2 for t − s > 1 and

t− s ≥ b t
m(G)
c+ 2. It is a monomorphism for t− s > 0 and t− s ≥ b t

m(G)
c+ 1.

The map on the SSS is an isomorphism for t − s > 0 and t − s ≥ b t+1
m(G)
c + 1.

It is a monomorphism for t− s ≥ 0 and t− s ≥ b t+1
m(G)
c.

(ii) The map HOSS → RSSS is an isomorphism on Es,t
2 for t − s < −1 and

t− s ≤ d t
m(G)
e − 2. It is an epimorphism for t− s < 0 and t− s ≤ d t

m(G)
e − 1.

The map to the SSS is an isomorphism for t− s < −2 and t− s ≤ d t+1
m(G)
e − 3.

It is an epimorphism for t− s < −1 and t− s ≤ d t+1
m(G)
e − 2.

Proof. Map the cofiber sequence

EG+ → S0 → ẼG

into P t
tX to obtain a cofiber sequence

F (ẼG, P t
tX)→ P t

tX → F (EG+, P
t
tX).

Now πGt−sF (ẼG, P t
tX) ∼= [St−s ∧ ẼG, P t

tX], so the first part for the RSSS follows

from the long exact sequence of homotopy groups of the above cofiber sequence and

Lemma 9.2. Using Lemma 9.3, we immediately obtain the second part for the RSSS by

dualizing the first. Here, we have used the fact that Q/Z is an injective cogenerator,

and thus a map of abelian groups is injective (surjective) if and only if its dual is
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surjective (injective). For the SSS, we simply use the fact that the SSS is the RSSS

conjugated by suspension.

If n > 0, then on the s+ (t− s) = n diagonal all lattice points except the first one

strictly below the line of slope (m(G)−1) satisfy the condition in the above theorem;

hence the E2 pages of the RSSS and HFPSS coincide roughly below this line in the

first quadrant. There is a symmetric statement about the RSSS and the HOSS above

this line in the third quadrant.

We remark that if G is a cyclic group of prime order, then m(G) = |G|, so the above

almost determines the entire E2 page of the RSSS; the other groups are concentrated

along the vanishing line and thus constitute 0% of the E2 page. We distill some of

the above information in the following corollary.

Corollary 9.5. For any G-spectrum X we have isomorphisms as shown below.

Es,t
2 (X) ∼= Hs(G; πtX(G/e)) (s ≥ 0, t− s > 0, t− s ≥ b t

m(G)
c+ 2)

Es,t
2 (X) ∼= H−s(G; πtX(G/e)) (s ≤ 0, t− s < 0, t− s ≤ d t

m(G)
e − 2)

In the first region the product of x1 ∈ Es1,t1
2 and x2 ∈ Es2,t2

2 is given by the usual

product in cohomology times (−1)s1t2. In the second region the product is zero except
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when s1 = s2 = 0 where it corresponds to the homology product shown below.

[x1] · [x2] =
∑
g∈G

[x1 · (g · x2)] =
∑
g∈G

[(g · x1) · x2]

Another consequence of Theorem 9.4 is that the map from the RSSS to the SSS is an

isomorphism in a certain range.

Corollary 9.6. The natural map from the RSSS to the SSS is an isomorphism on

Es,t
2 for t − s > 1 and t − s ≥ b t

m(G)
c + 2, and a monomorphism for t − s > 0 and

t− s ≥ b t
m(G)
c+ 1. It is also an isomorphism for t− s < −2 and t− s ≤ d t+1

m(G)
e − 3,

and an epimorphism for t− s < −1 and t− s ≤ d t+1
m(G)
e − 2.

Since the suspension maps for the HFPSS and HOSS are isomorphisms, we also obtain

the following.

Corollary 9.7. The suspension map

Es,t
2 (X)

Σ−→ Es,t+1
2 (ΣX)

is a monomorphism when t > 0, t− s ≥ b t
m(G)
c+ 1 and an isomorphism when t > 0,

t − s > b t
m(G)
c + 1. It is an epimorphism when t < 0, t − s ≤ d t

m(G)
e − 2 and an

isomorphism t < 0, t− s < d t
m(G)
e − 2.

We can now identify the connecting homomorphism 4.8 in this range.

Corollary 9.8. If s ≥ 0, t− s > 0 and t− s ≥ b t
m(G)
c+ 1 and

A→ B → C → ΣA

is a cofiber sequence then the connecting homomorphism

δ : Es,t
2 (C)→ Ẽ

s,t−1

2 (A)

coincides with the image under the functor Hs(G; − ) of the connecting homomor-

phism πetC → πet−1A in the long exact sequence of homotopy groups. If s ≤ 0,
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t− s < 0, and t− s ≤ d t
m(G)
e − 1 then it is the image under the functor H−s(G; − )

of this map.

Using Corollary 9.5 we can identify the composition product in this range.

Corollary 9.9. Under the line of slope (m(G) − 1) in the first quadrant of the E2

page, the composition product

E(F (Y, Z))⊗ E(F (X, Y ))→ E(F (X,Z))

coincides (up to the sign given in Corollary 9.5) with the product in H∗(G; − ) induced

by the composition product of nonequivariant spectra

[Y, Z]∗ ⊗ [X, Y ]∗ → [X,Z]∗.

Above this line in the third quadrant, the composition product on the E2 pages is zero,

except on the t−s axis where it is induced by the homology product as in Corollary 9.5.

Next, we describe "mixed products" on the t− s axis.

Proposition 9.10. Let u ∈ E0,n
2 (X1) be the image of the equivalence class of y ∈ πenX1

in the HOSS, and let v ∈ E0,m
2 (X2) map to z ∈ πemX2 in the HFPSS. Then uv is the

image of the equivalence class of yz in the HOSS, and maps to

(∑
g∈G

g · y
)
z

in the HFPSS (and similarly for vu). If instead v ∈ Es,m
2 (X2) with s 6= 0 then uv = 0

and vu = 0.

Proof. The second statement follows easily from the fact that the maps indicated by

HOSS → RSSS and RSSS → HFPSS are multiplicative. For the first statement,

let y be given by a map

G+ ∧ Sn → P n
nX1
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so that u is given by the composite

Sn → G+ ∧ P n
nX1 → P n

nX1

where the first map above is the adjoint of y. Next, let v be given by a map

Sm → Pm
mX2

so that the underlying nonequivariant map represents z. The product uv is then given

by the composite along the top and right sides of the diagram below.

Sn+m ∼= Sn ∧ Sm

**

y∧v // G+ ∧ P n
nX1 ∧ Pm

mX2

��

// P n
nX1 ∧ Pm

mX2

��
G+ ∧ P n+m

n+m (X1 ∧X2) // P n+m
n+m (X1 ∧X2)

The diagonal arrow is clearly adjoint to yz, so the result follows. For the last part,

we simply note that if s 6= 0 then v is nonequivariantly zero, and apply the above

argument.

We can also determine the "mixed products" with homology classes below the t− s

axis in terms of the product in Tate cohomology (see [GM]).

Proposition 9.11. Let x ∈ Es,t
2 (X1) and y ∈ Es′,t′

2 (X2) with s < 0. Suppose that

x is the image of u ∈ H−s(G; πetX1) ∼= Ĥs−1(G; πetX1) and that y maps to the class

v ∈ Ĥs′(G; πet′X2) in the Tate spectral sequence (or TSS). If s′ > |s| then xy = 0

and yx = 0. Otherwise, xy is the image under the map HOSS → RSSS of the Tate

cohomology product uv ∈ Ĥs+s′−1(G; πet+t′(X1 ∧ X2)) → H−s−s′(G; πet+t′(X1 ∧ X2))

times (−1)st
′, while yx is the image of the Tate product vu times (−1)s

′(t+1).

Proof. First let M0 be a G-module, and let M be a Mackey functor such that

M(G/e) = M0. We take the Tate cohomology of M0 to be

Ĥ i(G;M0) = πG−i(F (EG+, HM) ∧ ẼG)
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and the group homology as below.

Hj(G;M0) = πGj (HM ∧ EG+)

We define a map

ι : Ĥ i(G;M0)→ H−i−1(G;M0)

as follows: given the triangle

EG+ → S0 → ẼG
δ−→ ΣEG+

and a map f : S−i → F (EG+, HM) ∧ ẼG, we let ιf be the unique map such that

the composite

S−i ∼= S1 ∧ S−i−1 Σ(ιf)−−−→ S1 ∧HM ∧ EG+
∼= HM ∧ S1 ∧ EG+

is equal to the composite below.

S−i
f−→ F (EG+, HM) ∧ ẼG Id∧δ−−→ F (EG+, HM) ∧ S1 ∧ EG+

∼= HM ∧ S1 ∧ EG+

This map ι is an isomorphism when i ≤ −2, a monomorphism when i = −1, and zero

when i ≥ 0. We then identify the group πGi−j(F (EG+, P
i
iZ)∧ẼG) with Ĥj(G; πeiZ) by

identifying P i
iZ nonequivariantly with Si ∧HπiZ and desuspending on the left, and

similarly with πGi−j(P i
iZ∧EG+) and group homology. We now use right multiplication

by y and a map defined analagously to ι to obtain the commutative diagram below.

πGt−s+1(F (EG+, P
t
tX1) ∧ ẼG) //

·y
��

πGt−s(P
t
tX1 ∧ EG+)

·y
��

πGt+t′+1−s−s′(F (EG+, P
t+t′

t+t′ (X1 ∧X2)) ∧ ẼG) // πGt+t′−s−s′(P
t+t′

t+t′ (X1 ∧X2) ∧ EG+)

The left vertical map above is the Tate product times (−1)(s−1)t′ , while the top and
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bottom horizontal maps are (−1)tι and (−1)t+t
′
ι, respectively, under the identifica-

tions we have made. The calculation of xy follows. If instead we multiply by y on the

left, the left vertical map becomes the Tate product times (−1)s
′t, while the diagram

commutes up to the sign (−1)t
′−s′ .

Finally, we describe the edge homomorphisms of the RSSS. The proof uses the

simple fact that, if X is (n−1)-connected and EG is given its canonical cell structure

with one zero-cell, then given an element x of πenX = [G+ ∧ Sn, X], the element of

[Sn, X ∧EG+] corresponding to the equivalence class of x in (πenX)/G is given by the

composite below.

Sn
Dx−→ X ∧G+

∼= X ∧ EG[0]
+ → X ∧ EG+

Proposition 9.12. If n < −2 (n < −1 if m(G) > 2) then the composite map

(πenX)/G ∼= E0,n
2 (X)→ E0,n

∞ (X) ∼= F 0πGnX ⊆ πGnX

is induced by the transfer tGe : πenX → πGnX. Dually, if n > 2 (n > 1 if m(G) > 2)

then the composite

πGnX → πGnX/F
1πGnX

∼= E0,n
∞ (X) ⊆ E0,n

2 (X) ∼= (πenX)G

is induced by the restriction rGe : πGnX → πenX.

Proof. We may use a natural zig-zag to relate X to its n’th Postnikov section. Then

we use the fact that edge homomorphisms are natural for maps of spectral sequences.

The statement then reduces to identifying πG0 of the maps HM ∧ EG+ → HM and

HM → F (EG+, HM) for arbitrary Mackey functors M .

Remark: One can similarly describe the edge homomorphisms for n = ±1,±2

using the formulas given in Corollaries 8.7 and 8.8.

We will algebraically identify further structure on the RSSS in Chapter IV.
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Chapter II

Order Families and Formulas for the

Slice Tower

1 Introduction

In this chapter we give formulas for the slice towers of various classes of spectra. The

slice cells will move to the background, and we will see that the families of subgroups

of order less than a given integer (which we dub order families) play a fundamental

role. In Section 2 we express the slice tower of an arbitrary spectrum in terms of a

finite composite of maps, each of which is the cofiber of a map involving Postnikov

section functors and universal spaces for these families. This suggests that subgroups

"resonate" with different frequencies in the slice tower, according to their orders.

In Section 3 we give two exact formulas for the slice towers of Eilenberg MacLane

spectra, one for positive dimensions and one for negative dimensions. In Section 4

we give a formula for the positive part of the slice tower of a cofree spectrum, as

well as a dual formula for the negative part of the slice tower of a free spectrum. We

give simplifications of these formulas when the group is cyclic of prime power order.

In Chapter V we will apply these formulas to gain some intuition about the general

behavior of the RSSS outside of the region where it coincides with the HFPSS (or the

HOSS). In Section 5 we explain why the behavior of the E2 page changes when one

crosses lines of slope one less than the order of a subgroup. We also give a partial,
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iterative description of the E2 page when the group is cyclic of prime power order

which suggests that there can be no general algebraic formula for the entire E2 page.
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2 Formulas for Arbitrary Spectra

In this section we determine a kind of formula for the slice tower of an arbitrary

G-spectrum X, in terms of universal spaces, Postnikov section functors and cofibers.

We begin by defining our fundamental families of subgroups, which we call order

families, as below.

Fi := {H ⊆ G : |H| < i}

Firstly, note that since we always have

i∗HEF ∼= E(F ∩H)

for any family F and any subgroup H, we obtain

• i∗HEFi ∼= ∗ if |H| < i,

• i∗HEFi ∼= EPH if |H| = i,

• EF1 = ∅, and

• EF|G|+1
∼= ∗,

where we use P to denote the family of all proper subgroups. Of course, we also have

Fi ⊆ Fi+1 for all i. We begin by determining an alternative set of generators to the

slice cells.

Proposition 2.1. The localizing subcategory τn is generated by the spectra

G/H+ ∧ Sk ∧ ẼF|H|

for H ⊆ G and k|H| ≥ n.

Proof. First we prove that these spectra are in τn. We proceed by induction on |G|;
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the result is trivial for the trivial group. We have

G/H+ ∧ Sk ∧ ẼF|H| ∼= G+ ∧H (Sk ∧ ẼP)

∼= G+ ∧H (H/H+ ∧ Sk ∧ ẼF|H|)

so it suffices to do the case H = G. However, the spectrum Sk ∧ ẼP is isomorphic

to SkρG ∧ ẼP , so it is ≥ k|G| ≥ n. Next, we must show that τn is generated by these

spectra. We again proceed by induction on |G|; the result is again trivial for the

trivial group. Let τ denote the localizing subcategory generated by these spectra; we

must show that τn ⊆ τ . Hence let X ∈ τn, and consider the cofiber sequence below.

EP+ ∧X → X → ẼP ∧X

The spectrum on the left is built out of spectra of the form G+ ∧H (i∗HX) for H ( G,

so by the induction hypothesis it is in the localizing subcategory generated by spectra

of the form

G+ ∧H (H/J+ ∧ Sk ∧ ẼF|J |) ∼= G/J+ ∧ Sk ∧ ẼF|J |

for H ( G, J ⊆ H and k|J | ≥ n. Thus we have EP+ ∧X ∈ τ . Next, since X ≥ n,

X has a filtration with successive quotients that are wedges of suspensions of slice

cells of dimension ≥ n. Smashing this filtration with ẼP , we obtain a filtration for

ẼP ∧ X with successive quotients that are wedges of suspensions of spectra of the

form ẼP ∧ Ŝ, where Ŝ is a non-induced slice cell of dimension ≥ n (since ẼP ∧ Y is

contractible if Y is induced). These slice cells are of the form SkρG for k|G| ≥ n, so

to show that ẼP ∧X ∈ τ it suffices to observe again that

ẼP ∧ SkρG ∼= φ∗GΦGSkρG ∼= ẼP ∧ Sk.

Next we show that the map X → P n−1X can be factored into maps related to these
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families. Let τ (i)
n denote the localizing subcategory generated by the spectra

G/H+ ∧ Sk ∧ ẼF|H|

forH ⊆ G, |H| = i and k|H| ≥ n, and denote by P n−1,i the corresponding localization

functor. By Proposition 2.1, τ (i)
n ⊆ τn. We can now prove our factorization.

Proposition 2.2. There is a natural isomorphism of functors as below.

P n−1 ∼= P n−1,|G|P n−1,|G|−1...P n−1,2P n−1,1

Proof. Let X be a G-spectrum, and consider the composite indicated below.

X → P n−1,1X → P n−1,2P n−1,1X → ...→ P n−1,|G|P n−1,|G|−1...P n−1,2P n−1,1X

To show that this is a model for X → P n−1X, it suffices to show that the cofiber is

in Στn and that the target spectrum is < n. For the first part, the cofiber has a finite

filtration with successive cofibers of the form Cofib(Y → P n−1,jY ). These spectra

are in (resp.) Στ
(j)
n , and hence are in Στn. For the second part, by Proposition 2.1

it suffices to show that there are no nonzero maps from a spectrum of the form

G+∧H (Sk ∧ ẼP) to the target when H ⊆ G and k|H| ≥ n. This automatically holds

for the stage

P n−1,|H|P n−1,|H|−1...P n−1,2P n−1,1X

so we consider the successive cofibers of the sequence past this point. Each of these

cofibers is in Στ
(j)
n for some j > |H|. Since such spectra (and their desuspensions)

restrict to zero in subgroups of order < j, the result follows by induction on j.

We now identify the colocalization functors at the τ (i)
n . Denoting these colocalization

functors by Pn,i, we have the following.
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Proposition 2.3. The colocalization functors at the τ (i)
n are given by

Pn,iX ∼= (EFi+1)+ ∧ Postdn/ieF (ẼFi, X)

where the natural map Pn,iX → X is given by the composite of the evident natural

maps EF+ ∧ Y → Y , PostmY → Y and F (ẼF , Y )→ Y .

Proof. First we must show that this spectrum is in τ (i)
n . By using a cellular filtration

for EFi+1, this reduces to showing that spectra of the form

G/H+ ∧ Postdn/ieF (ẼFi, X)

for |H| ≤ i are in τ (i)
n . Now the above spectrum is zero if |H| < i, since i∗HẼFi ∼= ∗ in

this case, so we may assume that |H| = i. In this case the above spectrum is of the

form

G+ ∧H (Postdn/ieY )

where Y restricts to zero in all proper subgroups of H. It follows that Postdn/ieY can

be built out of spectra of the form Sk ∧ ẼPH for k ≥ dn/ie; that is, ki = k|H| ≥ n.

To finish the proof, we must show that the maps

[G+ ∧H (Sk ∧ ẼP), (EFi+1)+ ∧ Postdn/ieF (ẼFi, X)]→ [G+ ∧H (Sk ∧ ẼP), X]

are isomorphisms when |H| = i and k ≥ n/i, and monomorphisms when |H| = i and

k + 1 ≥ n/i. Since i∗HEFi+1
∼= ∗ for such H, the above maps are then isomorphic to

[Sk ∧ ẼP , Postdn/ieF (ẼP , i∗HX)]→ [Sk ∧ ẼP , i∗HX].

If k ≥ n/i then by the universal property of Post∗ the above map is isomorphic to

[Sk ∧ ẼP , F (ẼP , i∗HX)]→ [Sk ∧ ẼP , i∗HX]
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which is clearly an isomorphism since the map ẼP → ẼP ∧ ẼP is. If instead

k + 1 ≥ n/i but k < n/i, then we have

[Sk ∧ ẼP , Postdn/ieF (ẼP , i∗HX)] ∼= [Sk, Postdn/ieF (ẼP , i∗HX)]

= 0

since Postdn/ieF (ẼP , i∗HX) is concentrated over H.

Combining the above propositions, we arrive at the following theorem.

Theorem 2.4. The assignment to X of the cofiber of the natural map

(EFi+1)+ ∧ Postdn/ieF (ẼFi, X)→ X,

which we denote by P n−1,iX, extends to a functor, and this extension is unique such

that the maps

X → P n−1,iX

form a natural transformation Id→ P n−1,i. The composite functor

P n−1,|G| ◦ P n−1,|G|−1 ◦ ... ◦ P n−1,2 ◦ P n−1,1

with the composite natural transformation is uniquely isomorphic under Id to P n−1.

Remark: Cofibers of natural maps are not generally functorial.

Next note that, if there do not exist subgroups of order i, then the set of generators

of τ (i)
n is empty; hence, the localization map

X → P n−1,i

is an isomorphism, and we may omit P n−1,i from the composition. Hence, if we define
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s1, ..., sr to be the orders of the subgroups of G in increasing order, we have that

P n−1 ∼= P n−1,srP n−1,sr−1 ...P n−1,s2P n−1,s1 .

Next we have the following easy facts, which are apparent from the explicit form of

the colocalization functors.

Lemma 2.5. The functors P n−1,i commute with restriction to subgroups.

Lemma 2.6. If X restricts to zero in subgroups of order i then X ∼= P n−1,iX.

We now obtain a corollary that seems to generalize Corollary I.6.5.

Corollary 2.7. Let m be the smallest order of a subgroup K such that i∗KX is non-

trivial. Then the n-slice of X is zero unless n is divisible by the order of a subgroup

K such that i∗KX is nontrivial and |K| > m or n is divisible by m and πKn/mX 6= 0

for some subgroup K with |K| = m.

Proof. By Lemmas 2.5 and 2.6, we may compute P n−1X using only the P n−1,i such

that there is a subgroup K of order i with i∗KX nontrivial. Now the n-slice of X is

the fiber of the map P (n+1)−1X → P n−1X, so we see from the explicit form of the

colocalization functors P∗,j that the n-slice is zero unless dn+1
i
e 6= dn

i
e for one of these

values of i. This condition is equivalent to i dividing n. Now suppose that n is not

divisible by any of these orders except m. Since X restricts to zero in subgroups of

order less than m, X ∼= F (ẼFm, X) so that P∗,mX ∼= (EFm+1)+ ∧ Postd∗/meX. It

follows that P n−1,mX = P n,mX unless n is divisible by m and πKn/mX 6= 0 for some

subgroup K of order m.

As a sample application of this, we give the following.

Corollary 2.8. If G is a p-group and X is a G-spectrum which is nonequivariantly

contractible, then the n-slice of X is zero unless n is divisible by p.

Finally, we give an alternative proof of part of Corollary I.6.5.
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Corollary 2.9. If X is concentrated over a normal subgroup N then the n-slice of X

is zero unless n is divisible by |N |.

Proof. A subgroupK can only satisfy i∗KX nontrivial ifK ⊇ N and hence, |N | divides

|K|. The result now follows from Corollary 2.7.
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3 Formulas for Eilenberg MacLane Spectra

In this section we find formulas for the slice towers of arbitrary Eilenberg MacLane

spectra in dimensions other than 0 and ±1. We begin with positive dimensions;

let k ≥ 2, and let M be an arbitrary Mackey functor. We will give a formula for

P n−1(ΣkHM). Since

k ≤ ΣkHM ≤ k|G|

we may restrict ourselves to n such that k < n ≤ k|G|. Fix a value of n ∈ Z. Now,

for 2 ≤ j ≤ |G| we define a functor Dj by

DjX :=

Postdn/je+1F ((EFj)+, X) if dn/je+ 1 ≤ k

X if dn/je+ 1 > k

Note that, when X is min(dn/je, k − 1)-connected, we have a natural map

X → DjX

so that, when X is (k − 1)-connected, we can form a composite map

X → D|G|D|G|−1...D2X.

We can now determine the slice tower.

Theorem 3.1. If k ≥ 2 and M is an arbitrary Mackey functor, then we have a

natural isomorphism

P n−1(ΣkHM) ∼= D|G|D|G|−1...D2

(
ΣkH

(
R
(n− 1

k − 1

)
i∗(n−1)/(k−1)M/F (n−1)/kM

))
.

Proof. If n ≤ k or n > k|G| the result is true by inspection; hence, suppose that

k < n ≤ k|G|. Firstly, by Corollary I.8.3 we have that P n−1(ΣkHM) is (k + 1)-
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coconnected. Furthermore, we have by Corollary I.8.6 that

πkP
n−1(ΣkHM) ∼= R

(n− 1

k − 1

)
i∗(n−1)/(k−1)M/F (n−1)/kM.

Thus we have

ΣkH
(
R
(n− 1

k − 1

)
i∗(n−1)/(k−1)M/F (n−1)/kM

)
∼= PostkP

n−1(ΣkHM).

It is now easy to see that the map

ΣkHM → D|G|D|G|−1...D2

(
ΣkH

(
R
(n− 1

k − 1

)
i∗(n−1)/(k−1)M/F (n−1)/kM

))
restricts in any subgroup to the corresponding map for that subgroup. Hence we

proceed by induction on |G|; the result is trivial for the trivial group, so we assume

G nontrivial. Denoting the spectrum in the statement by Y and the cofiber of the

map ΣkHM → Y by C, we have by the induction hypothesis that

i∗HY < n and

i∗HΣ−1C ≥ n

for all proper subgroups H of G. Thus, to show that Y < n it suffices by Proposi-

tion 2.1 to show that

[Sm ∧ ẼF|G|, Y ] = 0

when m|G| ≥ n. For this, first suppose that d n|G|e + 1 ≤ k. Then Y is of the form

Postdn/|G|e+1F ((EF|G|)+, Z) for some spectrum Z. By mapping Sm ∧ ẼF|G| into the

cofiber sequence

Σ−1Postdn/|G|eF ((EF|G|)+, Z)→ Y → F ((EF|G|)+, Z)

we obtain an exact sequence where the first group is zero (since m + 1 > d n|G|e) and
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the third group is zero since ẼF|G|∧(EF|G|)+
∼= ∗. Hence, suppose that d n|G|e+1 > k.

Then dn
j
e+ 1 > k for all j, so that we have

Y = ΣkH
(
R
(n− 1

k − 1

)
i∗(n−1)/(k−1)M/F (n−1)/kM

)
.

Now we have n > (k− 1)|G| by assumption, so n−1
k−1
≥ |G|. Thus, the above simplifies

to

Y = ΣkH(M/F (n−1)/kM).

We have k − 1 < n
|G| ≤ k, so that d n|G|e = k, and it suffices to show that

[Sm ∧ ẼP , Y ] = 0

for m ≥ k, which reduces to showing that

[ẼP , H(M/F (n−1)/kM)] = 0.

It is easily seen that, for any Mackey functor N , we have

[ẼP , HN ] ∼= {x ∈ N(G/G) : i∗Hx = 0 ∀H ( G}

= F |G|−1N,

so it follows that Y < n since n−1
k
< |G| ⇒ F |G|−1(M/F (n−1)/kM) = 0.

Finally, we must complete the proof that Σ−1C ≥ n. Since C is clearly 1-

connected, it suffices by Theorem I.8.10 and the inductive hypothesis to show that

[Sm,Σ−1C] = 0

when m|G| < n. That is, we must show that [Sm, C] = 0 when m ≤ d n|G|e. When

d n|G|e+1 ≤ k, this is clear since ΣkHM and Y are both (d n|G|e)-connected. Otherwise,
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we have as before that

Y = ΣkH(M/F (n−1)/kM)

and d n|G|e = k, so we are reduced to the case m = k. Then we have

[Sk, C] ∼= coker
(
M(G/G)→ (M/F (n−1)/kM)(G/G)

)
= 0.

Remark: It is unclear at present how this formula relates, if at all, to the general

one from Section 2. It seems not to follow directly from it.

We now quickly derive the dual result for k ≤ −2. Fix a value of n ∈ Z. For

2 ≤ j ≤ |G| we define a functor D̃j by

D̃jX :=

Post
bn/jc−1(EFj)+ ∧X if bn/jc − 1 ≥ k

X if bn/jc − 1 < k

When X is max(bn/jc, k + 1)-coconnected, we have a natural map

D̃jX → X

so that, when X is (k + 1)-coconnected, we can form a composite map

D̃|G|D̃|G|−1...D̃2X → X.

We can now state the dual result.

Theorem 3.2. If k ≤ −2 and M is an arbitrary Mackey functor, then we have a

natural isomorphism

Pn+1(ΣkHM) ∼= D̃|G|D̃|G|−1...D̃2

(
ΣkH

(
L
(n+ 1

k + 1

)
i∗(n+1)/(k+1)F(n+1)/kM

))
.
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Proof. Denote the spectrum in the statement by Y , and let X = ΣkHM . By Theo-

rem 3.1, the duality of Section I.7 and the results of Section I.8, we have

Ỹ ∼= P−n−1X̃

so that Ỹ < −n, and hence Y > n. It follow that there is a unique map Y → Pn+1X

such that the diagram below commutes.

Y

##

��

X

Pn+1X

;;

By Theorem 3.1, the dual of this map is an isomorphism; hence, it is as well.

We will give some example computations in Section V.2 using these results. We end

this section by drawing a consequence for the slices of Eilenberg MacLane spectra.

Corollary 3.3. If |k| ≥ 2 and n 6= k then the n-slice of any Eilenberg MacLane

spectrum in dimension k is zero unless n is divisible by the order of some nontrivial

subgroup of G. The k-slice is zero if the group πek is zero.

Proof. The statement for negative k follows by duality from the statement for positive

k; hence, let k ≥ 2. Then if n < k, the n-slice is automatically zero since Eilenberg

MacLane spectra in dimension k are ≥ k. Hence, suppose n > k. Denoting ΣkHM

by X, the n-slice of X is the fiber of the map P (n+1)−1X → P n−1X. Inspecting the

proof of Theorem 3.1, we see that the same inductive proof works assuming we use

the Fi’s for i ranging over any subset of the numbers 2, ..., |G| that includes the orders

of all the nontrivial subgroups of G; hence, we may use only the i′s which occur as the

orders of nontrivial subgroups of G. Then, inspecting the definitions of the functors

Di, we see that they do not change when n is replaced by n + 1 unless n is divisible
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by such an integer. Hence, it remains to consider the expression

R
(n− 1

k − 1

)
i∗(n−1)/(k−1)M/F (n−1)/kM.

First of all, F (n−1)/k = F b(n−1)/kc and bn−1
k
c = dn

k
e − 1, so we see that this doesn’t

change when n is replaced by n+ 1 unless n is divisible by k and there is a subgroup

of order n
k
> 1 (since F n/k−1 = F n/k otherwise). The same reasoning applied to

R(n−1
k−1

)i∗(n−1)/(k−1), but with k replaced by k − 1, shows that this part of the formula

also does not change when n is replaced by n+1 unless n is divisible by the order of a

nontrivial subgroup of G. For the second part, note that the k-slice equals P (k+1)−1,

so it is a functor of M/F 1M , which is given as follows.

G/H 7→ im
(
M(G/H)

rHe−→M(G/e)
)

This is clearly zero when M(G/e) is.

Remark: The first part of the above follows directly from Corollary 2.7; in fact,

that result gives a slightly stronger statement.

Corollary 3.4. If |k| ≥ 2, n 6= k and G is a p-group then the n-slice of any Eilenberg

MacLane spectrum in dimension k is zero unless n is divisible by p.
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4 Formulas for Free and Cofree Spectra

Recall that a G-spectrum X is called cofree if the map

X → F (EG+, X)

is an isomorphism. Similarly, X is called free if the map

EG+ ∧X → X

is an isomorphism (this is equivalent to having a cell structure with only free G-cells).

In this section we give a formula for the positive part of the slice tower of a cofree

spectrum. We also give a dual formula for the negative part of the slice tower of a

free spectrum. We begin with cofree spectra.

Theorem 4.1. For n > 0 and cofree spectra X there is a natural isomorphism

PnX ∼= Postdn/|G|eF ((EF|G|)+, ...Postdn/2eF ((EF2)+, PostnX)...).

Proof. Let Y denote the spectrum in the statement; we must first provide a map

Y → X. There is a natural zig-zag of maps relating Y to PostnX, and these maps

are all clearly nonequivariant isomorphisms. Hence we take our map Y → X to be

the composite indicated below.

Y → F (EG+, Y ) ∼= F (EG+, PostnX)→ F (EG+, X) ∼= X

It is easy to see that this map restricts in any subgroup of G to the corresponding

map for that subgroup. Hence, we proceed by induction on |G|; the result is trivial for

the trivial group. Letting C denote the cofiber of Y → X, we may therefore assume
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that

i∗HY ≥ n and

i∗HC < n

for any proper subgroup H of G. Then by Proposition 2.1, to show that C < n it

suffices to show that

[Sm ∧ ẼP , C] = 0

for m|G| ≥ n. For this we map Sm ∧ ẼP into the cofiber sequence

X → C → ΣY

to obtain an exact sequence

[Sm ∧ ẼP , X]→ [Sm ∧ ẼP , C]→ [Sm ∧ ẼP ,ΣY ]

where the first group is zero since X ∼= F (EG+, X) and EG+ ∧ ẼP ∼= ∗. Thus, it

suffices to show that the last group is zero. For this we note that Y is of the form

Postdn/|G|eF (EP+, Z) and map Sm ∧ ẼP into the cofiber sequence

Postdn/|G|e−1F (EP+, Z)→ ΣY → F (EP+,ΣZ)

to obtain an exact sequence where the first group is zero since m ≥ d n|G|e and the last

group is zero since EP+ ∧ ẼP ∼= ∗. To complete the proof that Y ≥ n, it suffices by

Theorem I.8.10 and the inductive hypothesis to show that

[Sm, Y ] = 0

for m < d n|G|e. This is trivial, since Y is clearly (d n|G|e − 1)-connected.
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To dualize this formula, we use the following easy fact.

Lemma 4.2. A G-spectrum is free if and only its Brown-Comenetz dual is cofree.

We now derive the dual result for free spectra.

Theorem 4.3. For n < 0 and free spectra X there is a natural isomorphism

P nX ∼= Postbn/|G|c((EF|G|)+ ∧ ...Postbn/2c((EF2)+ ∧ PostnX)...).

Proof. Let Y denote the spectrum in the statement. As in the proof of Theorem 4.1, Y

is related by a natural zig-zag of maps to PostnX, and these maps are nonequivariant

isomorphisms. Hence we obtain a map as below.

X ∼= EG+ ∧X → EG+ ∧ PostnX ∼= EG+ ∧ Y → Y

By Lemma 4.2 and Theorem 4.1, we have Ỹ ∼= P−nX̃. Thus we have Ỹ ≥ −n, so

that Y ≤ n. It follows that there is a unique map P nX → Y such that the diagram

Y

X

<<

""
P nX

OO

commutes. By Theorem 4.1, the dual of this map is an isomorphism; hence, it is as

well.

We now derive consequences for the positive slices of cofree spectra and the negative

slices of free spectra.

Corollary 4.4. If X is cofree and n > 0 then the n-slice of X is zero unless n is

divisible by the order of a nontrivial subgroup of G or πenX 6= 0. If X is free and

n < 0 then the n-slice of X is zero unless n is divisible by the order of a nontrivial

subgroup of G or πenX 6= 0.
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Proof. The second statement follows from the first by duality. Hence, let X be

cofree and n > 0. The result is trivial for the trivial group, so assume G nontrivial.

Inspecting the proof of Theorem 4.1, we see that the same inductive argument works

if we only use the Fi’s for i ranging over a subset of 2, ..., |G| that contains the

orders of all the nontrivial subgroups of G. Hence, we may use only the Fi’s for

i the order of a nontrivial subgroup of G. Now the n-slice of X is the cofiber of

the map Pn+1X → PnX, so we see from the explicit formulas for these spectra

that they can only be different when n is divisible by such a value of i or when

F ((EFj)+, Postn+1X) is not isomorphic to F ((EFj)+, PostnX), where j is the order

of the smallest nontrivial subgroup of G. Now we have

Fj = {H ⊆ G : |H| < j} = {e}

so that EFj = EG, and so the cofiber of the map

F ((EFj)+, Postn+1X)→ F ((EFj)+, PostnX)

is isomorphic to

F (EG+, Post
n
nX) ∼= F (EG+,Σ

nHπnX),

which is nontrivial if and only if πenX 6= 0.

Remark: The above also follows directly from Corollary 2.7.

We give a sample application of this below.

Corollary 4.5. Let G be a p-group. If X is cofree and n > 0 then the n-slice of X

is zero unless n is divisible by p or πenX is nonzero. If X is free and n < 0 then the

n-slice of X is zero unless n is divisible by p or πenX is nonzero.

We conclude this section by giving simplifications of the formulas for free and cofree
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spectra when G = Cpm for some prime p. Here we have

Fpk = {e, Cp, ..., Cpk−1} = Fpk−1+1.

We require some lemmas.

Lemma 4.6. The inclusion

(EFpk+1)Cpk → EFpk+1

is a homotopy equivalence of G-spaces, and for any j ≤ k, (EFpk+1)Cpk is homotopy

equivalent to EFpk−j+1 as a G/Cpj -space.

One proves this simply by checking fixed point sets. For the next lemma, we note

that, when N is a normal subgroup of G, both of the spectra XN and

XhN ∼= F (EG+, X)N

have the structure of G/N -spectra. We have the following simple fact.

Lemma 4.7. For any j ≥ k there is a natural isomorphism

F ((EFpk+1)+, X)Cpj ∼= (XC
pk )h(C

pj
/C

pk
)

of G/Cpj -spectra.

Proof. By Lemma 4.6 we may assume that EFpk+1 has trivial Cpk action. Let our

G-spectra be indexed on a complete G-universe U , and let

i : UCpk → U

be the inclusion of universes. We have the following.

F ((EFpk+1)+, X)Cpj ∼= (F ((EFpk+1)+, X)Cpk )Cpj /Cpk
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Abusing notation slightly, we then have

F ((EFpk+1)+, X)Cpk ∼= F ((EFpk+1)+, i
∗X)Cpk

∼= F ((EFpk+1)+, (i
∗X)Cpk )

= F (E(G/Cpk)+, X
C
pk )

as G/Cpk-spectra indexed on UCpk , where we have used the trivial action of Cpk on

EFpk+1 in the second line, and Lemma 4.6 on the third line. Combining the above

equations, the result is immediate.

Applying this iteratively to the expression in Theorem 4.1, the following is immediate.

Corollary 4.8. If G = Cpm, n > 0 and X is cofree then (PnX)G is naturally isomor-

phic to the spectrum below.

Postdn/pme(Postdn/pm−1e(...Postdn/pe(PostnX)hCp ...)h(Cpm−1/Cpm−2 ))h(Cpm/Cpm−1 )

To obtain the dual version of this, we require two more lemmas.

Lemma 4.9. If N is a normal subgroup of G, then for G-spectra X and G-spaces A

with trivial N action, there is a natural isomorphism

A ∧XN ∼= (A ∧X)N

of G/N-spectra (where the first A above is regarded as a G/N-space).

The proof is easy, using a cellular filtration for A to reduce to the case of orbits, and

then Spanier-Whitehead duality. Returning to G = Cpm , we obtain the following by

applying this to a model of EFpk+1 with trivial Cpk action.

Lemma 4.10. For any j ≥ k there is a natural isomorphism

((EFpk+1)+ ∧X)Cpj ∼= (XC
pk )h(C

pj
/C

pk
)

of G/Cpj -spectra.
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We now state the dual version of Corollary 4.8.

Corollary 4.11. If G = Cpm, n < 0 and X is free then (P nX)G is naturally isomor-

phic to the spectrum below.

Postbn/p
mc(Postbn/p

m−1c(...Postbn/pc(PostnX)hCp ...)h(Cpm−1/Cpm−2 ))h(Cpm/Cpm−1 )

We will apply this formula in Section V.3 to gain some intuition about the behavior

of the RSSS outside of the region where it coincides with the HFPSS (or the HOSS).
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5 Order Families and Phase Changes; Description of

the First Page

In Section I.9 we observed that, roughly between the s axis and the line of slope

m(G) − 1, the E2 page of the RSSS only depends upon the nonequivariant homo-

topy groups of the spectrum (with their G-actions). When one crosses this line, the

behaivor of the E2 page changes. In fact, one may observe such "phase transitions"

at each line of slope one less than the order of a subgroup of G. In this section, we

attempt to shed some light on these phase transitions. We begin with an easy fact.

Lemma 5.1. If k > 0 and 2 ≤ i ≤ |G| then

Sk ∧ EF̃i ≥ ki.

The proof is easy, using Theorem I.8.10. The following is immediate.

Corollary 5.2. If n > 0 and k > bn
i
c then the map

πGk P
n
nX → [Sk ∧ (EFi)+, X]

is a monomorphism; it is an isomorphism if k > bn
i
c+ 1. Duallly, if n < 0 then the

map

πGk ((EFi)+ ∧X)→ πGk X

is an epimorphism when k < dn
i
e and an isomorphism when k < dn

i
e − 1.

Corollary 5.3. If a map X → Y of G-spectra is an isomorphism when restricted to

subgroups of order < i, then when t− s > 0 the map

Es,t
2 (X)→ Es,t

2 (Y )

is an isomorphism when t− s ≥ b t
i
c+ 2 and a monomorphism when t− s ≥ b t

i
c+ 1.
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If t−s < 0 then it is an isomorphism when t−s ≤ d t
i
e−2 and an epimorphism when

t− s ≤ d t
i
e − 1.

By letting one the above spectra be trivial, we obtain the following.

Corollary 5.4. If X restricts to zero in subgroups of order < i then E2(X) is zero

under the line of slope i − 1 in the first quadrant and above this line in the third

quadrant.

We now give a partial, iterative description of the E2 page when G = Cpm . When

m = 1, we know most of the E2 page by the results of Section I.9, so we know most of

the (nonequivariant) homotopy groups of (P n
nX)Cp in terms of the homotopy groups

of X. Next, we have that

π
Cp2
t−sP

t
tX
∼= π

Cp2
t−s (F ((EFp+1)+, P

t
tX))

∼= πt−s((P
t
tX)Cp)h(Cp2/Cp)

roughly under the line of slope p2 − 1 in the first quadrant. These groups may be

computable using a homotopy fixed point spectral sequence. One can then continue

in this manner all the way up to the G-fixed point homotopy groups. Since there

are generally differentials and nontrivial extensions in homotopy fixed point spectral

sequences, it seems unlikely that one can determine a formula for the entire E2 page

of the RSSS; topology gets in the way. Similar considerations apply with homotopy

orbit spectral sequences in the third quadrant. We will see this process at work in

Section V.2, and we will see echoes in Section V.3.
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Chapter III

Preservation Properties of Slice

Towers

1 Introduction

In this chapter we show that the regular slice spectral sequence construction preserves

certain kinds of extra structure on spectra. In Section 2 we prove that the slice tower

of a module spectrum is a tower of module spectra, when the ring is (−1)-connected.

In Section 3 we prove that the P n’s of an algebra spectrum over a commutative

ring spectrum form a tower of algebra spectra, provided the spectrum itself (not

the coefficient ring) is (−1)-connected. In Section 4 we prove the same thing for

commutative algebras. These statements have up-to-homotopy versions which, for

the SSS, are stated as Corollary 4.31 of [HHR]. In Section 5 we analyze how the slice

filtration is related to homological localization and acyclization. We give a criterion

for the slice tower of a local spectrum to consist of local spectra (Theorem 5.7).
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2 Preservation of Module Structure

In this section we prove that, under a simple connectivity assumption, the slice tower

of a module spectrum over a ring spectrum is a tower of modules. We work throughout

with SG-modules, and let k denote a ring spectrum (in the strict sense). We denote by

k-Mod the model category of modules over k. Letting n ∈ Z we define Ho(k-Mod)<n

to be the full subcategory of k-modules whose underlying spectra are < n. Next we

recall a construction of P n−1; let X be an SG-module. Then we can construct P n−1X

as the colimit of a sequence

X = Y0 → Y1 → Y2 → ...

where for each j ≥ 0 we have a pushout diagram as below

∨αFS(Ŝα)

��

// ∨αC(FS(Ŝα))

��
Yj // Yj+1

where the Ŝα are slice cells of dimension ≥ n and there is at least one summand for

each homotopy class of maps from each slice cell to Yj. Finally we recall the standard

adjunction show below.

MG

k∧(− )
11 k-Mod

forget
ss

We are now ready to prove the following theorem.

Theorem 2.1. For any associative ring spectrum k and any n ∈ Z, the inclusion of

Ho(k-Mod)<n into Ho(k-Mod) has a left adjoint, which we denote by kP n−1. Denoting

the fiber of X → kP n−1X by kPnX, we have a functorial fiber sequence

kPnX → X → kP n−1X
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in Ho(k-Mod). If k is (−1)-connected, the above fiber sequence forgets to

PnX → X → P n−1X

in Ho(MG).

Proof. For the construction of kP n−1, one merely mimics the construction of P n−1

given above, replacing Ŝ with k∧ Ŝ etc. To see that kPn and the above fiber sequence

are functorial, we simply note that, for any X and Y ,

[kPnX,Σ
−1kP n−1Y ] ∼= [kPnX, kP

n−1Y ] ∼= 0

since kP n−1Y < n and kPnX is in the localizing subcategory generated by the free

k-modules on the slice cells of dimension ≥ n. Now suppose that k is (−1)-connected.

The fiber sequence in the statement forgets to a fiber sequence of SG-modules, so we

need only show that kPnX ≥ n, or equivalently that

Cofib(X → kP n−1X) ∈ Στn.

This cofiber has a filtration with successive quotients that are wedges of objects of the

form k ∧ΣFS(Ŝ), where Ŝ is a slice cell of dimension ≥ n. Since k is (−1)-connected

and this is a derived smash product (Lemma IV.3.3), this is in Στn.

Remark: The functor kPn is the right adjoint of the inclusion of the localizing

subcategory generated by the free k-modules on the slice cells of dimension ≥ n; this

may not be equal to the full subcategory of k-modules whose underlying spectra are

≥ n.

Remark: There is an up-to-homotopy version of the last statement of the theorem.

Assuming that k is a (−1)-connected homotopy ring spectrum, one can easily deduce

from (the RSSS version of) Lemma 4.29(i) of [HHR] and the fact that smashing with

k preserves the τn that the towers {PnX} and {P nX} are towers of k-module spectra

when X is a k-module spectrum.
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Corollary 2.2. If k′ → k is a map of (−1)-connected ring spectra and X is a k-

module and n ∈ Z, then restriction of scalars sends the map

X → kP n−1X

in Ho(k-Mod) to the map

X → k′P n−1X

in Ho(k′-Mod). Similarly for Pn.

Proof. Denote restriction of scalars by Rk
k′ . Then since Rk

k′kP
n−1X < n, we can find

a (unique) map in Ho(k′-Mod) to complete the diagram below.

X

%%

// k′P n−1X

��
Rk
k′kP

n−1X

By Theorem 2.1, the dotted arrow above forgets to the dotted arrow below

X

##

// P n−1X

��
P n−1X

in Ho(MG). Thus, it is an isomorphism.

Corollary 2.3. If k is a (−1)-connected ring spectrum and X is a k-module and

n ∈ Z, then for any subgroup H of G the map

X → kP n−1X

in Ho(k-Mod) restricts to the map

i∗HX → (i∗Hk)P n−1i∗HX
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in Ho((i∗Hk)-Mod). Similarly for Pn.

Proof. As above, using the fact that i∗H commutes with P n−1.
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3 Preservation of Algebra Structure

We now prove an analogous theorem for algebras over a commutative ring. Let k

denote a commutative ring spectrum, and denote by assock the model category of

associative k-algebras. Now this category is not pointed, since the initial and terminal

objects are not the same, so we can not form fibers or cofibers and thus we will not be

able to construct the Pn from the P n−1. Also note that, if R is a ring spectrum whose

underlying spectrum is < 0, then the unit map S0 → R will be null (at least on the

homotopy category), implying that R is trivial. Thus we can only hope to obtain the

positive part of the slice tower in the category of algebras. Similar considerations, as

well as an attempt to mimic the theorem proven below, imply that we can not hope

to construct any of the Pn in the category of algebras (except P0); thus, we are left

with constructing P n−1 for n > 0.

Let Ho(assock)<n denote the full subcategory of k-algebras whose underlying

spectra are < n. Before stating our theorem, we recall a description of (certain)

pushouts in assock. Let A→ B be a generating (acyclic) q-cofibration of SG-modules,

and denote by kA the free k- algebra functor. Then the pushout

kA(A)

��

// kA(B)

��
X // Y

in assock is the same as the pushout

A(A)

��

// A(B)

��
X // Y

in the category of rings. Thus Y can be written as a colimit of Yi such that Y0 = X
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and there are pushouts

X∧i+1 ∧ ∂AB∧i

��

// X∧i+1 ∧B∧i

��
Yi−1

// Yi

in the category of SG-modules for all i > 0 (see [SS]). We also require two technical

lemmas.

Lemma 3.1. If k is a flat commutative ring spectrum then cofibrant k-algebras are

flat.

Proof. Let X be a cofibrant k-algebra. We may assume that X is a kA(I)-cell. Then,

by the above, X has a transfinite filtration {Xα} such that X0 is k and Xα+1 is a

colimit of a sequence of h-cofibrations with successive quotients of the form

X∧i+1
α ∧ (B/A)∧i

where A→ B is a generating cofibration. Now k is flat by assumption, and (B/A)∧i

is flat by Lemma IV.3.3, so the result follows by transfinite induction.

Lemma 3.2. Cofibrant commutative ring spectra are flat.

Proof. Let X be a cofibrant commutative ring spectrum. Denoting the free commuta-

tive ring spectrum functor by C, we may assume that X is a C(I)-cell. Then X has a

transfinite filtration {Xα} such that X0 is the sphere spectrum and Xα+1 is a colimit

of a sequence of h-cofibrations with successive quotients of the form Xα∧(B/A)∧i/Σi,

where A→ B is a generating cofibration. Now the sphere spectrum is certainly flat,

and (B/A)∧i/Σi is flat by Lemma IV.3.3, so the result follows by transfinite induc-

tion.

Theorem 3.3. For any n ∈ Z the inclusion of Ho(assock)<n into Ho(assock) has a

left adjoint, which we denote by kAP n−1. If n ≤ 0 then this functor is zero, while if
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n > 0 and X is (−1)-connected the map

X → kAP n−1X

forgets to the map

X → P n−1X

in Ho(MG).

Proof. First we reduce to the case where k is a cofibrant commutative ring spectrum.

Let k′ → k be a cofibrant replacement of k in the category of commutative ring

spectra. Then the "restriction of scalars" functor from assock to assock′ induces an

equivalence of homotopy categories which is the identity on underlying spectra (for

proof, see Section A.3). Thus we may assume that k is cofibrant.

LetX be a cofibrant k-algebra; we now mimic the construction of P n−1 by applying

the free k-algebra functor to the slice cells and their cones. We obtain a cofibrant

k-algebra kAP n−1X which is easily seen to have the required universal property. Now

supposing that n > 0, we must prove the last statement. By coning off one slice cell

at a time, we obtain a transfinite filtration {Xα} of kAP n−1X by h-cofibrations such

that X0 = X and there are pushout diagrams

kA(FS(Ŝ))

��

// kA(FS(CŜ))

��
Xα

// Xα+1

in the category of k-algebras, where Ŝ is a slice cell of dimension ≥ n. Thus the map

X → kAP n−1X is an h-cofibration, so it suffices to show that

kAP n−1X/X ∈ Στn.

The above quotient inherits a transfinite filtration by h-cofibrations with successive
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quotients of the form

X∧i+1
α ∧ FS(ΣŜ)∧i

where Ŝ is a slice cell of dimension ≥ n and i > 0. Now Xα is flat by Lemmas 3.2

and 3.1, so we see by transfinite induction that Xα is (−1)-connected. Applying

transfinite induction again and using this connectivity, the result follows easily.

The following corollaries are proven in the same manner as Corollaries 2.2 and 2.3.

Corollary 3.4. If X is a (−1)-connected k-algebra and k′ → k is a map of commu-

tative ring spectra and n ∈ Z, then restriction of scalars sends the map

X → kAP n−1X

in Ho(assock) to the map

X → k′AP n−1X

in Ho(assock′).

Corollary 3.5. If X is a (−1)-connected k-algebra and n ∈ Z, then for any subgroup

H of G the map

X → kAP n−1X

in Ho(assock) restricts to the map

i∗HX → (i∗Hk)AP n−1i∗HX

in Ho(assoc(i∗Hk)).

Remark: There is an up-to-homotopy version of the last statement of the theorem.

If X is a (−1)-connected homotopy ring spectrum, Corollary 4.31 of [HHR] (adapted
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to the RSSS) says that {P nX} is a tower of homotopy ring spectra.

In the next section we prove an analogous theorem in the commutative case.
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4 Preservation of Commutative Algebra Structure

Again let k be a commutative ring spectrum, and let Ho(commk)
<n denote the full

subcategory of commutative k-algebras whose underlying spectra are < n. We denote

by kC the free commutative k-algebra functor. Similar remarks to the ones at the

beginning of the last section apply here. We recall a description of pushouts in the

category of commutative k-algebras. If A → B is a generating (acyclic) cofibration

of SG-modules and we have a pushout diagram

kC(A)

��

// kC(B)

��
X // Y

in the category of commutative k-algebras, then Y can be written as the colimit of

Yi such that Y0 = X and there are pushout diagrams

X ∧ (∂AB
∧i)/Σi

��

// X ∧ (B∧i)/Σi

��
Yi−1

// Yi

in the category of SG-modules for all i > 0. We require a modification of Lemma IV.3.7.

Lemma 4.1. If Ŝ is a slice cell of dimension n > 0 and i > 0 then

FS(ΣŜ)∧i/Σi ∈ Στn.

Proof. Examining the proof of Lemma IV.3.7, we see that the above object is homo-

topy equivalent to EGΣi+ ∧Σi FS(ΣŜ)∧i, and that this is built out of spectra of the

form

G+ ∧H (Ŵ ∧ SV )

where Ŵ is a wedge of slice cells of dimension ni and V is a permutation representa-
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tion of dimension i. Now induction preserves the slice filtration and commutes with

suspension, so we need only note that V contains a nonzero fixed vector, so that SV

is a suspension of another representation sphere.

Theorem 4.2. For any n ∈ Z the inclusion of Ho(commk)
<n into Ho(commk) has

a left adjoint, which we denote by kCP n−1. If n ≤ 0 then this functor is zero, while

if n > 0 and X is (−1)-connected the map

X → kCP n−1X

forgets to the map

X → P n−1X

in Ho(MG).

Proof. As in the proof of Theorem 3.3, for the most part. We again proceed to the

case where n > 0 and X is (−1)-connected. In this case our successive quotients are

of the form

Xα ∧ FS(ΣŜ)∧i/Σi

where Ŝ is a slice cell of dimension ≥ n and i > 0. By Lemma IV.3.3(iv), this is a

derived smash product. Then by Lemma 4.1 and transfinite induction, Xα is (−1)-

connected for all α. Applying Lemma 4.1 and transfinite induction again, we see that

the above object is in Στn.

The following corollaries are proven in the same manner as Corollaries 3.4 and 3.5.

Corollary 4.3. If X is a (−1)-connected commutative k-algebra and k′ → k is a map

of commutative ring spectra and n ∈ Z, then restriction of scalars sends the map

X → kCP n−1X

108



in Ho(commk) to the map

X → k′CP n−1X

in Ho(commk′).

Corollary 4.4. If X is a (−1)-connected commutative k-algebra and n ∈ Z, then for

any subgroup H of G the map

X → kCP n−1X

in Ho(commk) restricts to the map

i∗HX → (i∗Hk)CP n−1i∗HX

in Ho(comm(i∗Hk)).

Corollary 4.5. If X is a (−1)-connected commutative k-algebra and n ∈ Z, then the

map

X → kCP n−1X

in Ho(commk) forgets to the map

X → kAP n−1X

in Ho(assock).

Remark: In the solution of the Kervaire invariant problem ([HHR]), the authors

construct the slice tower of MUR as a tower of MUR-modules. This is consistent

with Section 2. However, the results in this section imply that the slice tower (that

is, the P n) can in fact be constructed as a tower of commutative MUR-algebras.

Remark: There is an up-to-homotopy version of the last statement of the theo-

rem. If X is a (−1)-connected homotopy commutative and associative ring spectrum,
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Corollary 4.31 of [HHR] (again adapted to the RSSS) says that {P nX} is a tower of

homotopy commutative and associative ring spectra.
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5 Homological Localization

In this section we study the interaction of the slice tower with homological localization.

Recall from [Bou] that if E is an ordinary spectrum, there is a functorial fiber sequence

EX → X → XE

where the first map above is the terminal map to X from a spectrum that is E-acyclic,

while the second map is the initial map from X to a spectrum that is E-local. The

spectrum EX is called the E-acyclization of X, while XE is called the E-localization

of X. The same general theory works in the equivariant case. We begin by giving

some special cases of localization at an equivariant spectrum.

Proposition 5.1. Let F be a family of subgroups of G. Then we have natural iso-

morphisms

XEF+
∼= F (EF+, X),

XẼF
∼= ẼF ∧X.

We omit the proof, which is easy. Next we examine localization at a non-equivariant

spectrum, by which we mean the following. Denote by

i∗ : Sp→ SpG

the functor which regards an ordinary spectrum as a naive G-spectrum with trivial

action and then pushes forward to the complete G-universe (see [LMS]). Recall that

i∗ is a symmetric monoidal functor, and that it (in a sense) preserves cell structures.

To examine localization at spectra of the form i∗E, we need the following lemma.

Lemma 5.2. For any subgroup H of G we have a natural isomorphism

(i∗E ∧X)H ∼= E ∧XH .
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We omit the proof.

Corollary 5.3. The map

X → Y

is an i∗E-localization if and only if the map

XH → Y H

is an E-localization for all subgroups H of G.

Proof. First suppose that X → Y is an i∗E localization. Then we have that the map

i∗E ∧ X → i∗E ∧ Y is an equivalence, which means it induces equivalences on all

the fixed point spectra, so by Lemma 5.2 the maps XH → Y H are all E-homology

equivalences. Thus we must prove that all the Y H are E-local; hence, let Z be

E-acyclic. Then we have

[Z, Y H ] ∼= [G+ ∧H i∗Z, Y ] = 0

since Y is i∗E-local and

i∗E ∧ (G+ ∧H i∗Z) ∼= G+ ∧H (i∗E ∧ i∗Z) ∼= G+ ∧H i∗(E ∧ Z)

∼= G+ ∧H i∗(∗) ∼= ∗.

Conversely, suppose that all the fixed point maps are E-localizations. Then all the

maps E ∧ XH → E ∧ Y H are isomorphisms, so by Lemma 5.2 the map X → Y is

an (i∗E)-homology equivalence. It follows that we can find a map to complete the

diagram below.

X //

""

Y

��
Xi∗E

112



Applying the fixed point functors, we get diagrams as below.

XH //

""

Y H

��
XH
i∗E

By assumption and by the first part of the corollary proven above, the two solid

arrows are E-localizations; hence, the dotted arrow is an isomorphism.

Corollary 5.4. If E is bounded below and X is (n−1)-connected then Xi∗E is (n−1)-

connected.

Proof. By Corollary 5.3, we have XH
i∗E
∼= (XH)E, so Theorem 3.1 of [Bou] implies

that XH
i∗E is either a localization or a completion of XH at a set of primes. It is a

standard fact that localization and completion at sets of primes preserve connectivity

(see Propositions 2.4 to 2.6 of [Bou]).

We now state our main results in this section.

Theorem 5.5. The following statements are equivalent.

(i) If X is (n− 1)-connected for any n ∈ Z then so is XE.

(ii) If X is (−1)-connected then so is XE.

(iii) If X ≥ n for any n ∈ Z then so is XE.

Proof. For the equivalence of (i) and (ii), we note that localization commutes with

(de-)suspension. For the equivalence of (ii) and (iii), we slighty reformulate Proposi-

tion I.7.6 as follows: X ≥ n⇔ X∧DŜ is 0-connected for all slice cells Ŝ of dimension

< n ⇔ X ∧DŜ ∧ S−1 is (−1)-connected for all slice cells Ŝ of dimension < n. The

result now follows from the basic fact that smashing with strongly dualizable spectra

commutes with localization.

Corollary 5.6. The classes τn are closed under (i∗E)-localization for any nonequiv-

ariant spectrum E that is bounded below, and are closed under ẼF-localization for

any family F of subgroups of G.
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Theorem 5.7. The following statements are equivalent.

(i) X is E-local ⇒ so are the PnX, P nX, and P n
nX.

(ii) E-localization preserves connectivity.

Proof. First assume (i) holds. We may take "connectivity" to mean (−1)-connectivity;

hence, suppose X is (−1)-connected. Then by assumption, the spectrum P0(XE),

which is the connective cover of XE, is E-local. Hence, it follows from the univer-

sal properties of localizations and connective covers that there are unique maps that

complete the successive diagrams below.

X //

##

P0(XE)

��
XE

X //

##

XE

��
P0(XE)

We then have the following commutative diagram.

XE

��
X

;;

//

##

P0(XE)

��
XE

Since the outer triangle commutes, the vertical composite must be the identity; hence,

XE is a retract of P0(XE) so it is (−1)-connected. Conversely, suppose that (ii) holds,

and let X be E-local. It suffices to show that the PnX are E-local. Fix n ∈ Z. Since
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X is E-local, we can find a unique map to complete the diagram below.

PnX //

��

X

(PnX)E

;;

Next, by Theorem 5.5 the spectrum (PnX)E is ≥ n, so there is a unique map that

completes the diagram below.

(PnX)E //

��

X

PnX

;;

We then have the following commutative diagram.

PnX

�� ##
(PnX)E

��

// X

PnX

;;

Since the outer triangle commutes, the vertical composite must be the identity; hence,

PnX is a retract of (PnX)E so it is E-local.

The following corollary follows directly from the above results.

Corollary 5.8. If X is local or complete at a set of primes, then so are the PnX,

P nX, and P n
nX.

There are "dual" results to the above theorems and corollaries, where one replaces

localization with acyclization, connectivity with coconnectivity, and Pn with P n. The

proofs are then identical after making these replacements and reversing the directions

of the arrows, so we will not record them. We state the results below.

Theorem 5.9. The following statements are equivalent.
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(i) If X is (n+ 1)-coconnected for any n ∈ Z then so is EX.

(ii) If X is (+1)-coconnected then so is EX.

(iii) If X ≤ n for any n ∈ Z then so is EX.

Corollary 5.10. The classes τn ⊥ are closed under the acyclizations corresponding to

localization and completion at sets of primes, and are closed under EF+- acyclization

for any family F of subgroups of G.

Remark: It is clearly also true that τn ⊥ is closed under EF+-localization.

Theorem 5.11. The following statements are equivalent.

(i) X is E-acyclic ⇒ so are the PnX, P nX, and P n
nX.

(ii) E-acyclization preserves coconnectivity.

Corollary 5.12. If the completion of X at a set of primes is zero, then the same

holds for the PnX, P nX, and P n
nX.

Finally, we consider localization at a set of primes K. This can be constructed as a

homotopy colimit of a sequence, wherein each map is multiplication by an element of

K and each element of K occurs infinitely many times. Hence, it is elementary that

both τn and τn ⊥ are closed under localization at K for any n ∈ Z. Now localization

at K preserves cofiber sequences as well, so the following result is immediate.

Proposition 5.13. The functors Pn, P n, and P n
n commute with localization at K for

every n ∈ Z.

We caution the reader that localization usually does not preserve the slice tower. In

fact, at present, we know of no other cases where it does; it may be that there are

none.
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Chapter IV

Model Categories for Slice Towers

1 Introduction

In this chapter we prove that Massey products in the RSSS for a ring spectrum con-

verge, under certain assumptions, to Toda brackets in the homotopy ring. There

are also Toda brackets on the first page of the spectral sequence that, while more

mysterious in general, can be computed in a certain range as Massey products for

a fictional E1 page. These results are very similar to corresponding results for the

Adams Spectral Sequence in ordinary homotopy theory. However, not having a con-

venient, canonical model for slice towers, it is necessary to develop some theoretical

machinery in order to achieve this.

In Section 2, we begin this development by constructing model structures such

that cofibrant replacements give the necessary colocalization functors. For this, it is

necessary to have a model category where objects are fibrant. Since we also require a

point-set level smash product, we work with equivariant S-modules. In Section 3 we

prove several technical lemmas which we need in later sections to obtain slice towers

with good point-set level properties. A discussion of towers of spectra is contained in

Section 4. In Section 5 we prove that the slice tower of a ring spectrum can be con-

structed as a point-set level ring tower; similar results for commutative ring spectra

and module spectra are obtained in Sections 6 and 7. These results may be of inde-

pendent interest, though the proofs use model theory and are thus not constructive.
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In Section 8 we discuss pairings of slice towers and generalize the theory to arbitrary

associative systems of pairings of spectra. Finally, the results on Toda brackets are

derived in Section 9 from this theoretical apparatus.

The reader is strongly encouraged to refer to the Appendix while reading technical

proofs in this chapter.

A quick word on notation: if G is a compact Lie group and i > 0 we will denote

by FG[i] the family of subgroups of G×Σi that have trivial intersection with Σi, and

by EGΣi the universal FG[i]-space.
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2 Bousfield Colocalizations of the q Model Structure

Fix n ∈ Z. We seek a model structure on G-spectra such that the maps

PnX → X

are cofibrant replacements. We begin with Lewis-May spectra, defining three classes

of maps as below:

• W = Pn-equivalences,

• F = q-fibrations,

• C = maps that have the LLP with respect to W ∩F .

The following facts are immediately apparent:

• the class of weak equivalences is contained in W ,

• the acyclic q-cofibrations are contained in C, and

• C is contained in the class of q-cofibrations, which is contained in the class of

h-cofibrations.

Thus, we are attempting to colocalize the q model structure (see [Hir]). Standard

model theoretic arguments give the following lemma.

Lemma 2.1. C ∩W is the class of ayclic q-cofibrations.

All of the model axioms are now clear except the existence of factorizations into

cofibrations followed by acyclic fibrations. Thus we must characterize the class F∩W .

We begin with the following.

Lemma 2.2. If i : A→ B is a q-cofibration, with A and B q-cofibrant and ≥ n, then

i ∈ C.
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Proof. Let p : X → Y be a map in F ∩ W . We must show that we can solve any

lifting problem of the form show below.

A

i
��

// X

p
��

B //

>>

Y

Since p is a Pn-equivalence, and A and B are q-cofibrant and ≥ n (and all spectra are

q-fibrant), it is immediate that we can find a lifting which makes the two triangles

commute up to homotopy. Then using the fact that B is q-cofibrant and p is a q-

fibration, we may deform the initial choice of lift so that the bottom triangle commutes

strictly. We must now apply another homotopy to make the upper triangle commute

strictly without destroying the commutativity of the lower triangle. We could obtain

such a homotopy by solving a lifting problem of the form

B ∪A A ∧ I+

��

// X

p

��
B ∧ I+

//

99

Y

where the bottom horizontal map is a constant homotopy and the left vertical map is

the inclusion of the mapping cylinder of i, if we had a homotopy from the composite

A→ B → X to the original map A→ X such that the homotopy becomes constant

after composing with p. Now the left vertical map in the above diagram is an acyclic

q-cofibration, while the right vertical map is a q-fibration, so the above lifting problem

can be solved. Thus, we are reduced to showing that there is a homotopy A∧I+ → X

from A→ B → X to A→ X such that the composite A∧I+ → X → Y is a constant

homotopy. Now these two maps from A to X project to the same map into Y , so this

reduces to showing that two points in a common fiber of

XA → Y A

can be connected by a path in that fiber. It is easy to see that the above map is
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a Serre fibration and a weak equivalence (since A is q-cofibrant and ≥ n and p is a

Pn-equivalence), so every fiber is path connected.

Remark: The above proof does not work in the category of equivariant orthogonal

spectra, since not all objects are fibrant.

We now make the necessary definitions to form our set of generating cofibrations.

Definition 2.3. A slicen complex is a spectrum X with a complete filtration

X−1 = ∗ ⊆ X0 ⊆ X1 ⊆ X2 ⊆ ...

and pushout diagrams

∨αΣiαŜα

��

// ∨αC(ΣiαŜα)

��
Xj

// Xj+1

for each j ≥ −1, where each Ŝα is a slice cell of dimension ≥ n and each iα is ≥ −1.

We say that X is finite if it is built from finitely many (suspensions of) slice cells.

A slicen pair is a pair of spectra (B,A), where B is a slicen complex and A is a

subcomplex (in the obvious sense).

Observe that slicen complexes are q-cofibrant and ≥ n. In fact, the construction of Pn

produces slicen complexes, so every homotopy type which is ≥ n has a representative

which is a slicen complex. By Lemma 2.2, inclusions of subcomplexes are in C. Now

let J be the usual set of generating acyclic q-cofibrations, and let

In := J ∪ {A→ B : (B,A) is a finite slicen pair}. (2.4)

It is clear that the isomorphism classes of finite slicen pairs fit into a set, so we can

take In to be a set. We can now characterize our acyclic fibrations.

Lemma 2.5. A map p : X → Y is in F ∩ W if and only if it has the RLP with

respect to In.
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Proof. We already have that p has the RLP with respect to In if it is in F ∩W , so

suppose that p has the RLP with respect to In. Since In contains J , p must be a

q-fibration. Thus we must show that p is a Pn-equivalence. This is equivalent to the

statement that

p∗ : [Z,X]→ [Z, Y ]

is an isomorphism for all slicen complexes Z. Hence, let Z be a slicen complex. To

show that p∗ is surjective, it suffices to show that we can solve any lifting problem of

the form show below.

∗

��

// X

p
��

Z

>>

// Y

Using Zorn’s Lemma, we may choose a maximal lifting defined on a subcomplex Z ′

of Z. If Z ′ 6= Z, then there is some finite subcomplex B of Z not contained in Z ′.

Letting A = B ∩ Z ′, we see by maximality that the lifting problem

A

��

// X

p
��

B

>>

// Y

has no solution. This is a contradiction, since (A → B) ∈ In. For injectivity, let F

be the fiber of p; it suffices to show that [Z, F ] = 0 for all Z ≥ n. However, this is

equivalent to the statement that F < n, so it suffices to solve the lifting problems

Ŝ

��

// F

��
C(Ŝ)

==

// ∗

where Ŝ is a slice cell of dimension ≥ n. This is immediate, since the left vertical

map is in In and the right vertical map is a pullback of p.
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The small object argument now applies to obtain the model structure.

Theorem 2.6. The category of Lewis-May G-spectra with C, F , and W is a com-

pactly generated, G-topological closed model structure, which we call the slicen model

structure. The cofibrations are generated by In and the acyclic cofibrations are gen-

erated by J (In and J as above). Every object is fibrant, so this model structure is

right proper. The cofibrant objects are the q-cofibrant spectra that are ≥ n.

Proof. We need to show that this model structure is G-topological and prove the

last statement. Hence let i be a generating (acyclic) cofibration and i′ a generating

(acyclic) q-cofibration of G-spaces. Since the usual model structure is G-topological,

the pushout product map i�i′ is a q-cofibration of q-cofibrant spectra which is acyclic

if i or i′ is. In the case that neither i nor i′ is acyclic, the domain and codomain are

easily seen to be ≥ n, so the pushout product is in C by Lemma 2.2.

For the last statement, let X be q-cofibrant and ≥ n. We must show that we can

solve the lifting problems

∗

��

// Y

��
X

>>

// Z

where Y → Z is a fibration and Pn-equivalence. Since X is q-cofibrant and ≥ n, we

can find a lift up to homotopy, which can then be deformed to a precise lift since

Y → Z is a fibration. Conversely, suppose that X is cofibrant in the slicen model

structure. Since slicen-cofibrations are q-cofibrations, X is q-cofibrant. Now suppose

Y < n; it suffices to show that [X, Y ] = 0. Letting the interval [0, 1] have basepoint

0, the evaluation map ev1 : Y [0,1] → Y is a fibration and Pn-equivalence, so we can

solve the lifting problem below.

∗

��

// Y [0,1]

ev1
��

X

<<

// Y
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Corollary 2.7. The identity functor is a left Quillen functor from the slicen model

structure to the usual model structure, and the functor Pn together with the natural

transformation Pn → Id is the data of its left derived functor. All of these model

structures have the same fibrations and acyclic cofibrations, and the slicen-cofibrations

are contained in the slicen−1-cofibrations for all n.

Remark: The slicen model structure is NOT stable. To see this, note that the

suspension functor is ΣPn, while the loop functor is again Ω. The composite ΩΣPn is

actually naturally Pn-equivalent to the identity. However, consider the other compos-

ite ΣPnΩ. This produces spectra that are ≥ n, so if it were naturally Pn-equivalent to

the identity we would have ΣPnΣ−1 ∼= Pn. This would imply that τn was closed under

inverse suspension. One can easily disprove this by considering Eilenberg MacLane

spectra of sufficiently high dimension and desuspending them sufficiently many times,

using the elementary connectivity bounds on τn.

Remark: The "periodicity" of the τn can be reformulated in terms of the slicen

model structures. One can easily show that the suspension and loop functors by the

regular representation form a Quillen equivalence relating slicen to slicen+|G|.

We next pull back these model structures to the category of SG-modules. Let FS

denote the free SG-module functor, and U its right adjoint. Recall that U is naturally

weakly equivalent to the forgetful functor.

Theorem 2.8. The category of SG-modules with Pn-equivalences, q-fibrations, and

cofibrations determined by the LLP is a compactly generated, G-topological closed

model structure, which we call the slicen model structure and denote by slicen(MG).

The cofibrations are generated by FS(In) and the acyclic cofibrations are generated by

FS(J) (In and J as above). Every object is fibrant, so this model structure is right

proper. The cofibrant objects are the q-cofibrant SG-modules that are ≥ n. Every

q-cofibration of q-cofibrant SG-modules that are ≥ n is a cofibration.

Proof. Much of this is immediate. The rest is proven by identical arguments to the

case of Lewis-May spectra, so we will not repeat them. In fact, all of the statements

about the classes of cofibrations, fibrations, and weak equivalences in this section are
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true verbatim for SG-modules, and the above corollary and remarks apply as well. Of

course, the functors FS and U form a Quillen equivalence relating the two versions of

the slicen model structure.

From now on we work with SG-modules, so that we have a precise, point-set level

smash product. In the next section, we obtain some key technical lemmas which will

be used in later sections to obtain slice towers with good point-set level properties.
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3 Some Technical Lemmas

First we require some "mixed pushout product axioms."

Lemma 3.1. If i is a slicen cofibration and i′ is a slicem cofibration then the pushout

product i�i′ is a slicen+m cofibration which is trivial if i or i′ is.

Proof. Standard arguments reduce us to the case where i and i′ are generating cofi-

brations which are not acyclic, and then the SG-module version of Lemma 2.2 applies

(recalling that a smash product of spectra that are ≥ n and ≥ m, respectively, is

≥ n+m).

Lemma 3.2. If i is a q-cofibration (of G-spaces or SG-modules) and i′ is an h-

cofibration of SG-modules then the pushout product i�i′ is an h-cofibration of SG-

modules.

Proof. Denote the inclusion 0+ → [0, 1]+ by j, and let i : A→ B, i′ : X → Y . We first

assume that A and B are SG-modules. The statement that i�i′ is an h-cofibration is

equivalent to the statement that i�i′�j is a coretraction. This is equivalent to the

statement that any map on the domain of i�i′�j can be extended to a map on the

codomain, i.e. that i�i′�j has the LLP with respect to all maps Z → ∗. By a formal

manipulation, this is equivalent to solving a lifting problem of the form shown below.

B ∪A A ∧ [0, 1]+

i�j
��

// F (Y, Z)

F (i′,Z)
��

B ∧ [0, 1]+

66

// F (X,Z)

The left vertical map is an acyclic q-cofibration, while the right vertical map is an h-

fibration. Applying the functor U , we obtain an h-fibration of Lewis-May G-spectra.

This is levelwise a pointed h-fibration of G-spaces, which is an unpointed h-fibration,

which is a Serre fibration. Thus the right vertical map above is a q-fibration, so a

lifting exists. For the case where A and B are G-spaces, we proceed as above, but

replace the internal hom functor with the mapping space functor.
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Lemma 3.3. The following conclusions hold for any compact Lie group G and SG-

modules indexed on a complete G-universe.

(i) Cofibrant SG-modules are flat.

(ii) Smashing with cofibrant G-spaces preserves weak equivalences.

(iii) If B is cofibrant then the quotient map EGΣi+∧ΣiB
∧i → (B∧i)/Σi is a homotopy

equivalence of SG-modules.

(iv) Symmetric powers of cofibrant SG-modules are flat.

Proof. For (i), the equivariant versions of the arguments in [EKMM] reduce us to

showing that FS(Σ∞G/H+) ∼= G/H+ ∧FS(S) is flat for any closed subgroup H of G.

Let X → Y be a weak equivalence, so that [A,X] → [A, Y ] is an isomorphism for

any cofibrant A; we must show that

[A,FS(Σ∞G/H+) ∧X]→ [A,FS(Σ∞G/H+) ∧ Y ]

is an isomorphism, where we take "[, ]" to mean homotopy classes of maps in the

naive sense. Using Spanier-Whitehead duality (see [LMS] and [May1]) to move

FS(Σ∞G/H+) over to the other side, and using the facts that smash products of

cofibrant SG-modules are cofibrant and that the map FS(S) ∧ Z → S ∧ Z ∼= Z is a

weak equivalence for any Z, we see that the above map is isomorphic to

[A ∧D(FS(Σ∞G/H+)), X]→ [A ∧D(FS(Σ∞G/H+)), Y ],

which is an isomorphism. For (ii), we have that smashing with a cofibrantG-spaceB is

weakly equivalent to smashing with FS(S)∧B, which is cofibrant, so this case reduces

to part (i). For (iii), let B be a cofibrant SG-module and i ≥ 2. We may assume

that B = FS(Z) for some cofibrant spectrum Z, since B is homotopy equivalent to

an SG-module of this type. The map in question is

S ∧L

(
(EGΣi ×L (i)) nΣi Z

∧i)→ S ∧L (L (i) nΣi Z
∧i)
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where the map EGΣi × L (i) → L (i) relevant to the half-smash product is the

projection map. Now L (i) is a universal FG[i]-space and has the homotopy type of

a (G× Σi)-CW complex (by Lemma XI.1.6 of [EKMM]), so this map is a homotopy

equivalence. However, we can take a homotopy inverse to be the identity in the L (i)

factor, so it is not just a homotopy equivalence of (G × Σi)-spaces, but a homotopy

equivalence of (L (1) o (G × Σi))-spaces over L (i). For part (iv), we utilize the

Quillen equivalence

SpO
G

N
33MG

N#
ss

from [MM], where SpO
G denotes the category of orthogonal G-spectra. Again let B

be cofibrant; by part (iii) it suffices to show that EGΣi+ ∧Σi B
∧i is flat. We may

assume that B = N(Z) for some positive cofibrant orthogonal G-spectrum Z, since

B is homotopy equivalent to an object of this type. Then we have

EGΣi+ ∧Σi B
∧i ∼= N(EGΣi+ ∧Σi Z

∧i),

so it suffices to show that N(EGΣi+ ∧Σi Z
∧i) is cofibrant by part (i). In [Sto], the

author constructs model structures on equivariant orthogonal spectra, called "Smodel

structures," such that induction from subgroups preserves cofibrations. It is not

difficult to show that EGΣi+∧Σi Z
∧i is positive S-cofibrant, and that the pair (N,N#)

is also a Quillen pair when the classical (positive) stable model structure is replaced

with the positive stable S model structure. The result follows immediately.

We will need the following facts in the section on commutative ring slice towers.

For the statement of the next lemma in this section, we need a simple definition. For

a map A → B and i > 0, denote by ∂AB∧i → B∧i the "inclusion" of the "union of

the images" of the maps B∧j ∧ A ∧ B∧i−j−1 → B∧i. This map, in fact, is simply the

iterated pushout product (A→ B)�i.

We can now state our next "mixed pushout product axiom."
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Lemma 3.4. If A → B is a q-cofibration and Y → Z is an h-cofibration and i > 0

then the pushout product

(∂AB
∧i → B∧i)/Σi � (Y → Z)

is an h-cofibration of SG-modules.

Proof. First, the map in question is isomorphic to

(
(∂AB

∧i → B∧i)�(Y → Z)
)
/Σi,

so it suffices to show that the map

(∂AB
∧i → B∧i)�(Y → Z)

is a Σi-h-cofibration. Next, by the model axioms B is a retract under A of a cell

in the generating q-cofibrations, so we may assume that B is of this form. We may

take a transfinite filtration of B such that one cell is attached at a time. One then

obtains a transfinite factorization of the above map such that each individual map is

a pushout of a map obtained by applying an induction functor of the form

Σi+ ∧Σi1×...×Σik

(
−
)

to a map of the form

(Y → Z)�(∂A1B
∧i1
1 → B∧i11 )�...�(∂AkB

∧ik
k → B∧ikk )

where each Aj → Bj is a generating q-cofibration and i1 + ...+ ik = i. Now induction

and pushout preserve h-cofibrations, so we need only show that the above map is an

h-cofibration. We let

(Aj → Bj) = FS
(
Σ∞Vj

(
G/Hj × Sdj−1 → G/Hj ×Ddj

)
+

)
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for each j, where the Vj are G-representations, the Hj are closed subgroups of G, and

the dj are non-negative integers. It is then easy to see that there is an SG-module C

(with Σi1 × ...×Σik-action) and a (G×Σi1 × ...×Σik)-representation W (with trivial

G-action) such that the map in question is of the form

C ∧
(
(Y → Z)�(S(W )+ → D(W )+)

)
.

The map S(W )→ D(W ) is a q-cofibration of (G× Σi1 × ...× Σik)-spaces (see [Ill]),

so the above map is an h-cofibration by Lemma 3.2 (it is immaterial that we are not

indexing on a complete (G× Σi1 × ...× Σik)-universe).

Lemma 3.5. Let H be a finite group and φ : H → Σi a homomorphism. For a real

H-representation V , denote by (V ⊕i)φ the direct sum of i copies of V , with H-action

multiplied by the pullback of the permutation action along φ. Then for any m > 0 we

have

((mρH)⊕i)φ ∼= imρH .

Proof. For the above vector space, we choose a basis consisting of the usual basis

vectors for ρH (corresponding to elements of H) in each copy. Then it is easy to

see that ((mρH)⊕i)φ is a permutation representation such that each basis vector has

trivial stabilizer. Thus, it must be a multiple of the regular representation. We obtain

the result by a dimension count.

Lemma 3.6. Let Λ be a subgroup of G × Σi such that Λ ∩ (1 × Σi) = 1, and let X

be a pointed (G× Σi)-space. Then there is a subgroup H of G and a homomorphism

φ : H → Σi such that Λ = {(h, φ(h)) : h ∈ H} and

(G× Σi)/Λ+ ∧Σi X
∼= G+ ∧H Xφ

where Xφ is X with H-action multiplied by the pullback of the Σi-action along φ.

130



Proof. The above space is

((G× Σi)/Λ+ ∧X)/Σi
∼= ((G× Σi)+ ∧Λ X)/Σi

∼= (Σi\G× Σi)+ ∧Λ X ∼= G+ ∧Λ X

where Λ acts on G via its projection onto H. The last space above can be described

equivalently as G+ ∧H Xφ.

Lemma 3.7. If B is a q-cofibrant SG-module, B ≥ n and i ≥ 1 then

(B∧i)/Σi ≥ ni.

Proof. Firstly, B is homotopy equivalent to an SG-module of the form FS(Z), where

Z is a slicen complex, so we may assume that B is of this form. By attaching one slice

cell at a time to form Z and using the proof of Lemma 3.4, we obtain a (transfinite)

filtration of (B∧i)/Σi by h-cofibrations with successive quotients of the form

k∧
j=1

(FS(Σmj Ŝj)
∧ij)/Σij

where each mj is at least 0, Ŝj is a slice cell of dimension ≥ n and i1 + ... + ik = i.

By Lemma 3.3 this is a derived smash product, so it suffices to prove that

(FS(ΣmŜ)∧i)/Σi ≥ ni

when Ŝ is a slice cell of dimension n. Next, Lemma 3.3(iii) implies that the above is

weakly equivalent to EGΣi+ ∧Σi FS(ΣmŜ)∧i, so by using a cellular filtration of EGΣi

we are reduced to showing that

(G× Σi)/Λ+ ∧Σi FS(ΣmŜ)∧i ≥ ni

where Λ is a subgroup of G×Σi such that Λ∩ (1×Σi) = 1. Then for some subgroup

H of G and some homomorphism φ : H → Σi we have Λ = {(h, φ(h)) : h ∈ H}. Next
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we reduce to the case that n ≥ 0; suppose that n < 0. Choosing k large enough that

n+ k|G| ≥ 0 and smashing the above spectrum with SikρG , we see that it suffices to

show that

(G× Σi)/Λ+ ∧Σi FS(ΣmŜ)∧i ∧ SikρG ≥ (n+ k|G|)i.

The above spectrum is isomorphic to

(SikρG ∧ (G× Σi)/Λ+) ∧Σi FS(ΣmŜ)∧i

with Σi acting trivially on SikρG . By Lemma 3.5 we have

SikρG ∧ (G× Σi)/Λ+
∼= (G× Σi)+ ∧Λ (Sik|G/H|ρH )

∼= (G× Σi)+ ∧Λ (S(k|G/H|ρ⊕iH )φ)

∼= (G× Σi)+ ∧Λ ((Sk|G/H|ρH )∧i)φ

∼= (G× Σi)/Λ+ ∧ (SkρG)∧i

where Σi permutes the smash factors in the final line above. Our spectrum can now

be rewritten as

(G× Σi)/Λ+ ∧Σi FS(ΣmŜ ∧ SkρG)∧i.

Since Ŝ ∧ SkρG is a slice cell of dimension n + k|G| ≥ 0, we are reduced to the case

where n ≥ 0, so that

Ŝ = Σ∞(G+ ∧J StρJ )

for some t ≥ 0 and some subgroup J of G such that t|J | = n. Our spectrum is then

isomorphic to

(G× Σi)/Λ+ ∧Σi

(
S ∧L Σ∞

(
L (i)+ ∧ (Sm)∧i ∧ (G+ ∧J StρJ )∧i

))
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which is weakly equivalent to the (Lewis-May) spectrum

Σ∞
(

(G× Σi)/Λ+ ∧Σi

(
L (i)+ ∧ (Sm)∧i ∧ (G+ ∧J StρJ )∧i

) )
∼= Σ∞

(
G+ ∧H

(
L (i)φ+ ∧ Smφ ∧ ((i∗H(G+ ∧J StρJ ))∧i)φ

))
where on the second line we have used Lemma 3.6. Now since a complete G-universe

U is a complete H-universe, the H-space L (i)φ = Isom((U⊕i)φ,U) is contractible.

Hence, the above spectrum is homotopy equivalent to

G+ ∧H
(
Smφ ∧ Σ∞

(
((i∗H(G+ ∧J StρJ ))∧i)φ

))
.

The spectrum Σ∞(((i∗H(G+ ∧J StρJ ))∧i)φ) is easily seen to be a wedge of slice cells of

dimension it|J | = ni, by the same reasoning as in the proof of Lemma 3.5, so the

above spectrum is ≥ ni, as required.
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4 The Category of Towers

We seek a model structure on towers of SG-modules such that cofibrant replacements

of constant towers are slice towers. First we discuss the category of towers of SG-

modules.

Definition 4.1. Denote by Z the set of integers, regarded as a category with one

morphism from n to m when n ≥ m, as shown below.

...← (n− 1)← n← (n+ 1)← ...

We define the category of towers to be the diagram category M Z
G and the constant

tower functor

const : MG →M Z
G

to be the functor which assigns to each SG-module X the constant diagram at X. If

X is an SG-module and n ∈ Z, we denote by X[n] the free diagram in level n. That

is,

X[n]m =

X if m ≤ n

∗ if m > n

with the structure maps being the identity of X when both objects are X. We denote

by

evn : M Z
G →MG

the evaluation at n functor; this is right adjoint to the functor (− )[n].

Since the category Z is symmetric monoidal, we obtain a closed symmetric monoidal

structure on the category of towers, which we denote simply by ∧. This smash

product is not difficult to describe. The unit is S[0]. For any two towers X and Y ,
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the SG-module (X ∧ Y )n is the colimit of the staircase-shaped diagram

...

��
Xi−1 ∧ Yj+1 Xi ∧ Yj+1

oo

��
Xi ∧ Yj Xi+1 ∧ Yjoo

��
Xi+1 ∧ Yj−1 ...oo

where i+ j = n. Inspection yields the formula

(X ∧ A[n])m ∼= Xm−n ∧ A,

i.e. the effect of smashing with A[n] is to shift by n and smash levelwise with A. It

follows that

A[n] ∧B[m] ∼= (A ∧B)[n+m].

Next we turn to model-theoretic considerations. We use the collection of ad-

joint pairs {((− )[n], evn)}n∈Z to pull back our cofibrantly generated model structures

to M Z
G . Let I and J be the usual sets of generating q-cofibrations and acyclic q-

cofibrations of SG-modules. Most of the following theorem is now obvious.

Theorem 4.2. The category of towers of SG-modules with levelwise q-fibrations, level-

wise weak equivalences and determined cofibrations is a compactly generated, closed,

G-topological and monoidal model structure, which we call the q model structure.

The cofibrations are generated by ∪n∈ZI[n] and the acyclic cofibrations are gener-

ated by ∪n∈ZJ [n]. (Acyclic) cofibrations are levelwise (acyclic) q-cofibrations and

h-cofibrations. Every object is fibrant, so this structure is right proper. It is also

stable.

Proof. Most of this is standard; we must prove that this model structure is monoidal.
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For the unit axiom, note that FS(S)[0]→ S[0] is a cofibrant replacement of the unit,

and for any tower X, the level n component of X ∧ (FS(S)[0]→ S[0]) is the map

Xn ∧ FS(S)→ Xn ∧ S ∼= Xn,

which is a weak equivalence by Proposition I.6.2 in [EKMM]. Finally, we must prove

the pushout product axiom. Standard arguments reduce us to considering pushout

products of the form i[n]�j[m], where i and j are generating (acyclic) q-cofibrations.

But this map is simply (i�j)[n+m], so the result is trivial.

We obtain a different model structure by pulling back the collection of slicen model

structures. Denote by In the set of generating slicen-cofibrations given by 2.4, and

define a map of towers X → Y to be a P∗-equivalence if Xn → Yn is a Pn-equivalence

for all n.

Theorem 4.3. The category of towers of SG-modules with levelwise q-fibrations, P∗-

equivalences and determined cofibrations is a compactly generated, closed, G-topological

and monoidal model structure, which we call the slice model structure and denote by

slice(M Z
G). The cofibrations are generated by ∪n∈ZIn[n] and the acyclic cofibrations

are generated by ∪n∈ZJ [n]. If X → Y is a cofibration then Xn → Yn is a slicen-

cofibration for all n. Hence, if X is cofibrant, then Xn is q-cofibrant and ≥ n for all

n. Every object is fibrant, so this structure is right proper.

Proof. As above, for the most part. Note that, if A→ B is a slicen-cofibration, then

it is a slicem-cofibration for all m ≤ n. The unit axiom is proved as before, noting

that FS(S) ≥ 0, while the pushout product axiom follows from Lemma 3.1.

Remark: Of course, the identity functor is a left Quillen functor from the slice

model structure to the q model structure.

Corollary 4.4. If X is an SG-module and T is a cofibrant replacement for const(X)

in the slice model structure then T is a model for the slice tower of X.

Next we define some conditions on towers that will be relevant in later sections.
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Definition 4.5. Let X be a tower. We say that X is

• slice-like if Xn ≥ n for all n,

• flat if the functor X ∧ (− ) preserves levelwise weak equivalences,

• h-flat if the functor X ∧ (− ) preserves levelwise h-cofibrations,

• h-cofibrant if Xn+1 → Xn is an h-cofibration for all n, and

• nice if it is slice-like, flat, and h-flat.

Observe that if a tower satisfies one of these conditions then so does any retract of

it. Also, a P∗-equivalence of slice-like towers is a weak equivalence. We sum up the

other basic properties of these conditions in the following propositions.

Proposition 4.6. The following conclusions hold.

(i) If A → B → C is a cofiber sequence and two of the towers A, B, and C are

flat, then so is the third.

(ii) Flat objects are closed under smashing levelwise with q-cofibrant SG-modules (or

G-spaces).

(iii) A well-ordered colimit of h-cofibrations of flat objects is flat.

(iv) A smash product of flat objects is flat.

(v) A flat tower is levelwise flat.

(vi) Q-cofibrant towers are flat.

Proof. Most of this is obvious. For (i), we use the stability of the q model structure

and the fact that naive cofiber sequences of SG-modules are derived cofiber sequences.

For (v), we smash with a map of the form A[0] → B[0], where A → B is a weak

equivalence. For (vi), the previous parts reduce us to showing that B[n] is flat when

B is a q-cofibrant SG-module, but smashing with this object simply shifts and smashes

levelwise with B.
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Proposition 4.7. The following conclusions hold.

(i) A smash product of h-flat towers is h-flat.

(ii) If a tower is h-flat then it is h-cofibrant.

(iii) Q-cofibrant towers are h-flat.

Proof. The first part is immediate. For (ii), let S[−1] → S[0] be the map which is

the identity in all negative levels; this is a levelwise h-cofibration. Smashing with an

h-flat tower X, we may identify the resulting map in level n with Xn+1 → Xn. For

the last part, let X be q-cofibrant; we may assume that X is a ∪nI[n]-cell. Thus we

may assume that X is the colimit of a transfinite sequence {Xα} such that

• X0 = ∗,

• Xα → Xα+1 is a pushout of an element of ∪nI[n], and

• if α is a limit element then Xα = lim−→
β<α

Xβ.

Now let Y → Z be a levelwise h-cofibration. To show that X∧(Y → Z) is a levelwise

h-cofibration, it suffices to show that

• X0 ∧ (Y → Z) is a levelwise h-cofibration, and

• the pushout product maps (Xα → Xα+1)�(Y → Z) are levelwise h-cofibrations.

The first part above is trivial, since X0 = ∗. For the second part, suppose that

Xα → Xα+1 is a pushout of (A→ B)[n]. Then (Xα → Xα+1)�(Y → Z) is a pushout

of (A→ B)[n]�(Y → Z). This map in level m is simply (A→ B)�(Ym−n → Zm−n),

which is an h-cofibration by Lemma 3.2.

Since we have already observed that slice-cofibrant towers are slice-like, we obtain the

following.

Corollary 4.8. Slice-cofibrant towers are nice.
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Proposition 4.9. The following conclusions hold.

(i) Slice-like towers are closed under taking cofibers and extensions.

(ii) Slice-like towers are closed under suspension and smashing levelwise with (−1)-

connected flat SG-modules.

(iii) Wedge sums of slice-like towers are slice-like.

(iv) A well-ordered colimit of h-cofibrations of slice-like towers is slice-like.

The proof is trivial.

Proposition 4.10. If X and Y are levelwise flat and h-cofibrant, the smash product

X ∧ Y is weakly equivalent to the derived smash product. Hence, if X and Y are also

slice-like, so is X ∧ Y .

Proof. For each n, recall that (X ∧ Y )n can be described as the colimit of a certain

staircase-shaped diagram. By considering partial staircases, we see that we can obtain

(X ∧ Y )n (naturally) as the colimit of a sequence of maps, where the first object is

Xn ∧ Y0 (for example) and each map is either a pushout of Xi ∧ (Yj+1 → Yj) or a

pushout of (Xi+1 → Xi) ∧ Yj for some i and j with i + j = n. If X and Y are

h-cofibrant, then all of these maps are h-cofibrations. Applying this to q-cofibrant

replacements of X and Y as well, the conclusion follows easily. For the second part,

since X and Y are slice-like we may take their cofibrant replacements to be slice-

cofibrant.

Corollary 4.11. Smash products of nice towers are nice.
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5 Ring Slice Towers

We now turn to the construction of ring slice towers.

Definition 5.1. The category of ring towers is the category of monoids in (M Z
G ,∧),

and we denote it by assoc(M Z
G). We denote by A the free ring tower functor, which

is given by

A(X) = S[0] ∨X ∨ (X ∧X) ∨ (X ∧X ∧X) ∨ ...

To do inductive proofs, we require the combinatorial description of pushouts (in the

category of rings) of the form

A(A)

��

// A(B)

��
X // Y

given in [SS]. For i > 0 denote by ∂AB
∧i → B∧i the inclusion of the "union of

the images" of the maps B∧j ∧ A ∧ B∧i−j−1 → B∧i. This map is, in fact, simply

(A→ B)�i. Then Y can be written as a colimit of objects Yi, where Y0 = X and for

each i > 0 we have a pushout diagram

X∧i+1 ∧ ∂AB∧i

��

// X∧i+1 ∧B∧i

��
Yi−1

// Yi

in the original category (to be precise, we have permuted the smash factors along the

top row from what is given in [SS], but this makes no difference to the underlying

objects). Note that the above horizontal maps are h-cofibrations when A → B is

a q-cofibration, and are strong deformation retracts when A → B is a generating

acyclic q-cofibration. We now obtain model structures on the category of ring towers.

Theorem 5.2. The category of ring towers with levelwise weak equivalences, lev-

elwise q-fibrations and determined cofibrations is a compactly generated, closed and
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G-topological model structure, which we call the q model structure. The cofibrations

and acyclic cofibrations are generated by ∪n∈ZA(I[n]) and ∪n∈ZA(J [n]), respectively.

The cofibrations are h-cofibrations. Every object is fibrant, so this model structure is

right proper.

Theorem 5.3. The category of ring towers with P∗-equivalences, levelwise q-fibrations

and determined cofibrations is a compactly generated, closed and G-topological model

structure, which we call the slice model structure and denote by slice(assoc(M Z
G)).

The cofibrations and acyclic cofibrations for this model structure are generated by

∪n∈ZA(In[n]) and ∪n∈ZA(J [n]), respectively. The cofibrations are h-cofibrations. Ev-

ery object is fibrant, so this model structure is right proper.

Proof. As above; we need only observe that a ∪nA(J [n])-cell is a levelwise weak

equivalence, hence a P∗-equivalence.

Since the sphere SG-module is not cofibrant, cofibrant ring towers are not cofibrant

towers. However, we have the following.

Proposition 5.4. Cofibrant ring towers are flat and h-flat. Slice-cofibrant ring towers

are also slice-like. Hence, slice-cofibrant ring towers are nice.

Proof. Let X be a cofibrant ring tower; we may assume that X is a ∪nA(I[n])-

cell. Let X have the transfinite filtration {Xα} such that one cell is attached at

a time. We show flatness by transfinite induction; the initial stage (the unit S[0])

is obviously flat, so we proceed to the inductive step. By Proposition 4.6 and the

combinatorial description of pushouts given above, it suffices to show that, for A→ B

a generating q-cofibration of SG-modules and any n ∈ Z and i > 0, the successive

cofiberX∧i+1
α ∧(B/A)∧i[ni] is flat. This follows from Proposition 4.6 and the inductive

hypothesis.

Next we prove h-flatness. Hence, let Y → Z be a levelwise h-cofibration. We

proceed as in the proof of Proposition 4.7(iii). The initial stage (the unit S[0]) is
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clearly h-flat. For the inductive step, we must show that the pushout product map

(
X∧i+1
α ∧ (∂AB

∧i)[ni]→ X∧i+1
α ∧B∧i[ni]

)
�(Y → Z)

∼= X∧i+1
α ∧

((
(∂AB

∧i)[ni]→ B∧i[ni]
)
�(Y → Z)

)
is a levelwise h-cofibration. By the inductive hypothesis, Xα is h-flat so this reduces

to showing that

(
(∂AB

∧i)[ni]→ B∧i[ni]
)
�(Y → Z)

is a levelwise h-cofibration, which follows from Lemma 3.2. Finally, suppose that

X is slice-cofibrant. Then in the above setup we may take A → B to be either a

strong deformation retract or the inclusion of a finite slicen pair. The initial stage

(the unit S[0]) is clearly slice-like, since S ≥ 0. For the inductive step, we must show

that the successive cofibers X∧i+1
α ∧ (B/A)∧i[ni] are slice-like. If A → B is acyclic

then this tower is contractible. Otherwise the conclusion follows from the flatness and

h-flatness of Xα, the induction hypothesis (Xα is slice-like), and Proposition 4.10.

Now note that

const(X) ∧ const(Y ) ∼= const(X ∧ Y ),

so the constant tower functor is a symmetric monoidal functor. As a corollary to the

above, we obtain ring tower models for slice towers of rings.

Theorem 5.5. If X is an associative ring spectrum then a cofibrant replacement of

const(X) in slice(assoc(M Z
G)) is a model for the slice tower of X, and is unique up

to an (essentially) unique homotopy equivalence in the category of ring towers. Since

slice(assoc(M Z
G)) is cofibrantly generated, we can take cofibrant replacement to be

functorial.
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Remark: On homotopy categories we may view this process as below.

Ho(assoc(MG)) const // Ho(slice(assoc(M Z
G)))

LId // Ho(assoc(M Z
G))

For completeness, we note how to obtain analogous results for non-unital rings.

If C is a pointed, closed symmetric monoidal category we denote by assoc0(C) the

category of non-unital rings in C. Then the forgetful functor assoc(C) → assoc0(C)

has a left adjoint, given by X 7→ 1
∐
X. Note then that X is naturally a retract of

1
∐
X in C. From this it is trivial to deduce that, in our case, pushouts of generating

(acyclic) cofibrations are h-cofibrations, which implies smallness. It is also trivial that

pushouts of generating acyclic cofibrations are strong deformation retracts. Thus we

get classical and slice model structures on assoc0(M Z
G), and this is related by a

Quillen pair to assoc(M Z
G). The non-unital version of Proposition 5.4 follows, since

(slice-)cofibrant elements of assoc0(M Z
G) are retracts of (slice-)cofibrant elements of

assoc(M Z
G).
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6 Commutative Ring Slice Towers

In this section we construct commutative ring slice towers. The development is similar

to the case of associative rings, but is slightly more technical and difficult. Most of

the work, however, is hidden in Section 3.

Definition 6.1. The category of commutative ring towers is the category of commu-

tative monoids in (M Z
G ,∧), and we denote it by comm(M Z

G). We denote by C the

free commutative ring tower functor, which is given by

C(X) = S[0] ∨X ∨ (X ∧X)/Σ2 ∨ (X ∧X ∧X)/Σ3 ∨ ...

To do inductive proofs, we require a combinatorial description of pushouts (in the

category of commutative rings) of the form

C(A[n])

��

// C(B[n])

��
X // Y

where A→ B is a generating (acyclic) q- or slicen-cofibration. In this case Y can be

written as a colimit of a sequence of towers Yi with Y0 = X such that for each i > 0

we have a pushout diagram

X ∧ (∂AB
∧i)/Σi[ni]

��

// X ∧ (B∧i)/Σi[ni]

��
Yi−1

// Yi

in the category of towers. By Lemma 3.4 the top horizontal map is an h-cofibration,

so the bottom horizontal map is an h-cofibration with quotient X ∧ ((B/A)∧i)/Σi[ni].

We can now obtain our model structures.

Theorem 6.2. The category of commutative ring towers with levelwise weak equiv-

alences, levelwise q-fibrations and determined cofibrations is a compactly generated,

closed and G-topological model structure, which we call the q model structure. The
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cofibrations are generated by ∪n∈ZC(I[n]) and the acyclic cofibrations are generated

by ∪n∈ZC(J [n]). Cofibrations are h-cofibrations. Every object is fibrant, so this model

structure is right proper.

For the proof, we need only remark that when A → B is a generating acyclic q-

cofibration, B/A is contractible. Next we pull back the slice model structure to

commutative rings.

Theorem 6.3. The category of commutative ring towers with P∗-equivalences, lev-

elwise q-fibrations and determined cofibrations is a compactly generated, closed and

G-topological model structure, which we call the slice model structure and denote by

slice(comm(M Z
G)). The cofibrations are generated by ∪n∈ZC(In[n]) and the acyclic

cofibrations are generated by ∪n∈ZC(J [n]). Cofibrations are h-cofibrations. Every

object is fibrant, so this model structure is right proper.

For the proof, we note that ∪nC(J [n])-cells are in fact levelwise weak equivalences,

so they are P∗-equivalences. As with associative ring towers, cofibrant commutative

ring towers are not cofibrant towers, but we have the following.

Proposition 6.4. Cofibrant commutative ring towers are flat and h-flat. Slice-

cofibrant commutative ring towers are also slice-like. Hence, slice-cofibrant commu-

tative ring towers are nice.

Proof. Let X be a q- or slice-cofibrant commutative ring tower. We may assume that

X is a ∪nC(I[n])-cell. We first prove flatness. Since the initial object (the unit S[0])

is flat, transfinite induction and Proposition 4.6 reduce us to showing that, if Xα is

flat and A → B is a generating q-cofibration of SG-modules, then for any n ∈ Z

and i > 0 the tower Xα ∧ ((B/A)∧i)/Σi[ni] is flat. But Lemma 3.3(iv) implies that

((B/A)∧i)/Σi[ni] is flat, and smash products of flat towers are flat.

To prove that X is h-flat, let Y → Z be a levelwise h-cofibration. We prove that

X∧(Y → Z) is a levelwise h-cofibration by transfinite induction, proceeding as in the

proof of Proposition 4.7(iii). The initial stage (the unit S[0]) is obviously h-flat, so

we proceed to the inductive step. Thus we must show that, if Xα is h-flat and A→ B
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is a generating q-cofibration, then for any n ∈ Z and i > 0 the pushout product map

Xα ∧
(
(Y → Z)�

(
(∂AB

∧i)/Σi[ni]→ (B∧i)/Σi[ni]
))

is a levelwise h-cofibration. Since Xα is h-flat, this reduces to showing that the map

(Y → Z)�
(
(∂AB

∧i)/Σi[ni]→ (B∧i)/Σi[ni]
)

is a levelwise h-cofibration, which follows from Lemma 3.4.

Now let X be slice-cofibrant; it remains to show that X is slice-like. We again

proceed by transfinite induction. The initial stage (the unit S[0]) is slice-like. Trans-

finite induction and Proposition 4.9 reduce us to showing that, if Xα is slice-like and

A → B is a generating slicen-cofibration for some n ∈ Z and i > 0 then the tower

Xα∧((B/A)∧i)/Σi[ni] is slice-like. This is contractible if A→ B is acyclic, so we may

assume that A → B is the inclusion of a finite slicen pair, so that B/A ≥ n. Then

since ((B/A)∧i)/Σi[ni] is h-cofibrant, flat, and slice-like by Lemmas 3.3 and 3.7, the

result follows from Proposition 4.10.

As a corollary to the above, we obtain commutative ring tower models for slice towers

of commutative rings.

Theorem 6.5. If X is a commutative ring spectrum then a cofibrant replacement of

const(X) in slice(comm(M Z
G)) is a model for the slice tower of X, and is unique

up to an (essentially) unique homotopy equivalence in the category of commutative

ring towers. Since slice(comm(M Z
G)) is cofibrantly generated, we can take cofibrant

replacement to be functorial.

Remark: On homotopy categories we may view this process as below.

Ho(comm(MG)) const // Ho(slice(comm(M Z
G)))

LId // Ho(comm(M Z
G))

The analogues of the above results for non-unital commutative rings also hold,

the argument proceeding as in the remarks at then end of Section 5.
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7 Module Slice Towers

Next we construct module slice towers over ring slice towers. If R is a ring tower,

we denote by R-Mod the category of module towers over R. We pull back the model

structures on towers to get model structures on R-Mod. As always with module

categories we have an adjunction

M Z
G
R∧(− )

11 R-Mod
forget
ss

.

We refer to the left adjoint above as the free R-module functor. The following theorems

are now obvious.

Theorem 7.1. The category of R-modules with levelwise weak equivalences, level-

wise q-fibrations and determined cofibrations is a compactly generated, closed and G-

topological model structure, which we call the q model structure. The cofibrations are

generated by ∪n∈ZR∧ I[n] and the acyclic cofibrations are generated by ∪n∈ZR∧J [n].

Cofibrations are h-cofibrations. Every object is fibrant, so this model structure is right

proper.

Theorem 7.2. The category of R-modules with P∗-equivalences, levelwise q-fibrations

and determined cofibrations is a compactly generated, closed and G-topological model

structure, which we call the slice model structure and denote by slice(R-Mod). The

cofibrations are generated by ∪n∈ZR∧ In[n] and the acyclic cofibrations are generated

by ∪n∈ZR∧J [n]. Cofibrations are h-cofibrations. Every object is fibrant, so this model

structure is right proper.

As before, a ∪nR ∧ J [n]-cell is a weak equivalence, so it is a P∗-equivalence. We now

examine how good properties of the ring R result in good properties of R-modules.

Proposition 7.3. If R is flat, then cofibrant R-modules are flat.

Proof. As in the proof of Proposition 4.6(vi), this reduces to showing that for any

cofibrant SG-module B and n ∈ Z the tower R ∧ B[n] is flat, but smash products of

flat towers are flat, so this is immediate.
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Proposition 7.4. If R is h-flat, then cofibrant R-modules are h-flat.

Proof. As in the proof of Proposition 4.7(iii), this reduces to showing that, for any

levelwise h-cofibration Y → Z and any generating cofibration (A→ B)[n] the map

R ∧ ((Y → Z)�(A→ B)[n])

is a levelwise h-cofibration. Since R is h-flat, this follows from Lemma 3.2.

Proposition 7.5. If R is slice-like, then slice-cofibrant R-modules are slice-like.

Proof. By Proposition 4.9, this easily reduces to the statement that, if A → B is a

generating slicen-cofibration then R ∧ (B/A)[n] is slice-like. In any case, (B/A)[n] is

a slice-cofibrant tower. Now let R′ → R be a slice-cofibrant replacement of R in the

category of towers; this map is a weak equivalence since R and R′ are both slice-like.

Then since (B/A)[n] is flat, R∧ (B/A)[n] is weakly equivalent to R′∧ (B/A)[n]. This

last tower is slice-cofibrant; hence, it is slice-like.

Corollary 7.6. If R is nice, then slice-cofibrant R-modules are nice.

Corollary 7.7. Let R be a ring SG-module, and M an R-module. Suppose that

slice(R) → const(R) is a slice-trivial fibration of ring towers with slice(R) nice.

Then a slice(slice(R)-Mod)-cofibrant replacement of const(M) (which we denote by

slice(M)) is a model for the slice tower of M , and is unique up to an (essentially)

unique homotopy equivalence in the category of slice(R)-modules. Since the model cat-

egory slice(slice(R)-Mod) is cofibrantly generated, we can take cofibrant replacement

to be functorial. We have commutative diagrams

slice(R) ∧ slice(M)

��

// slice(M)

��
const(R) ∧ const(M) // const(M)

where the horizontal maps are the module action maps.
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Remark: On homotopy categories we may view this process as below

Ho(R-Mod) const // Ho(slice(const(R)-Mod)) // Ho(slice(slice(R)-Mod))

LId // Ho(slice(R)-Mod)

where the second map is induced by "restriction of scalars" from const(R) to slice(R).

We remark that analogous results can be obtained for modules over non-unital

rings. In fact, in any pointed, closed symmetric monoidal category C, if R is a

non-unital ring then the category of R-modules is isomorphic to the category of

1
∐
R modules. Thus the free R-module functor in the non-unital case is given by

X 7→ X
∐
R ⊗X. It is now a simple matter to adjust the proofs in this section for

the non-unital case.
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8 Pairings of Slice Towers and Associators

In the next section we will obtain Toda brackets in the regular slice spectral sequences

of ring and module spectra. We will see that Toda brackets in the Er page for r > 2

are computed algebraically, as Massey products. Hence the uniqueness issues involve

only the E2 Toda brackets, which are rather more mysterious in general. We will

establish uniqueness by using model theory.

We now explain the significance of the condition of being "nice," with a view

toward Toda brackets. Let R be an associative ring SG-module, and suppose that

slice(R)→ const(R) is a slice-trivial fibration of ring towers with slice(R) nice. Since

slice(R) and all of its smash powers are nice, we can construct the slices of R as the

quotients slice(R)n/slice(R)n+1, and similarly for the smash powers of the slice tower.

Hence we get a map of cofiber sequences

(slice(R) ∧ slice(R))n+1

��

// (slice(R) ∧ slice(R))n

��

//
∨

i+j=n

slice(R)i
slice(R)i+1

∧ slice(R)j
slice(R)j+1

��

slice(R)n+1
// slice(R)n // slice(R)n

slice(R)n+1

for each n ∈ Z, where the vertical maps are the multiplication maps and the right

horizontal maps are quotient maps. It follows that we have an associative system of

pairings

slice(R)i
slice(R)i+1

∧ slice(R)j
slice(R)j+1

→ slice(R)i+j
slice(R)i+j+1

(8.1)

on the slices of R which induce the multiplicative structure. If R is commutative,

we may assume that slice(R) is commutative, and hence that the above pairings are

commutative. (There is also a unital property, but we have no use for it.)

Now suppose that R′ → const(R) is a slice-trivial fibration with R′ slice-cofibrant,

so that R′ is also a model for the slice tower of R. By the model axioms we may find
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a map R′ → slice(R) to complete the diagram below.

slice(R)

��
R′

::

// const(R)

This map is unique up to homotopies that are constant when projected to const(R).

It is a weak equivalence and induces weak equivalences

R′n
R′n+1

→ slice(R)n
slice(R)n+1

for all n ∈ Z. These associative pairings allow us to define the E2 Toda brackets,

and simple arguments of the above sort will prove uniqueness and naturality. In

the commutative case, the commutativity of the pairings on the slices will result in

juggling formulas.

There are many other situations where we would hope to find Toda brackets. For

example, if α and β are in the homotopy of a ring, and γ is in the homotopy of a

module over that ring, we can form 〈α, β, γ〉. There are many other cases, some of

which we indicate schematically below.

• (right module, ring, ring)

• (ring1, bimodule, ring2)

• (ring1, ring2, module) with a map from ring1 to ring2

• (ring1, ring2, module over ring1) with a map from ring2 to ring1

All of these cases can be dealt with separately using basic model category arguments

as before. (For example, in the bimodule case we can use the fact that an (R1, R2)-

bimodule is the same as a left module over R1 ∧Rop
2 .) This case-by-case approach is

important, as it imparts a sense of inevitability to the definitions of the Toda brack-

ets. However, there is an elegant way to treat all cases simultaneously within a single

framework. For this purpose we introduce the category of "associators."
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In what follows,m will be a positive integer; denote by Int(m) the set of (nonempty)

intervals in {1, ...,m}. That is, Int(m) consists of the sets [i, j] for 1 ≤ i ≤ j ≤ m,

where

[i, j] := {i, i+ 1, ..., j}.

If K1 and K2 are adjacent intervals (with the elements of K1 less than the elements

of K2), we denote by K1 ∪ K2 their union; this is again an element of Int(m). We

can now make our fundamental definition.

Definition 8.2. Let (C,⊗) be a (possibly non-unital) monoidal category and suppose

m ≥ 3. An (m-fold) associator in C is a collection of objects of C

{XK}K∈Int(m)

together with an associative system of maps for adjacent intervals

XK1 ⊗XK2 → XK1∪K2 .

We denote the category of (m-fold) associators by ASSOCm(C).

Remark: One can also make the above definition for m = 1, 2 and for m = ∞,

but these are not needed for our purposes.

Remark: Associators are used (although not by that name) as the framework to

define matric Massey products in [May2].

Observe that, in all the cases where we desire Toda brackets, we actually have

associators. For example, to define Toda brackets on the homotopy of a ring R, we

use the obvious constant associator, as shown below.

K ∈ Int(m) 7→ R

To define Toda brackets for the case (ring, ring, module), with ring R and module
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M , we use the associator indicated below.

K 7→

R if 3 /∈ K

M if 3 ∈ K

Hence, we seek a model structure on associators of towers such that cofibrant replace-

ments of constant (in the tower variable) associators are objectwise slice towers. We

continue to work with an arbitrary (possibly non-unital) monoidal category, which we

further assume to be a cofibrantly generated monoidal model category that is closed

in the monoidal sense. In this case it is clear that ASSOCm(C) has all small limits,

directed colimits and reflexive coequalizers, and that these are formed objectwise. We

require the following fact.

Proposition 8.3. Under the above assumptions, the category of associators is co-

complete.

Proof. We show that the category of associators is actually a category of algebras over

a certain monad on CInt(m). Since this monad will preserve reflexive coequalizers, it

will be a purely formal fact that ASSOCm(C) has all small colimits (see for example

Proposition II.7.4 of [EKMM]). Our monad, which we denote by

P : CInt(m) → CInt(m)

is given simply by

P(X)(K) =
∐

K1∪...∪Kr=K

X(K1)⊗ ...⊗X(Kr)

with obvious structure maps. The verification of the necessary details is straightfor-

ward.

We wish to pull back the product model structure on (M Z
G)Int(m) to obtain a model

structure on associators of towers. For this, we require "free associator functors" and

a description of pushouts. For the following definition, we let 0 denote the initial
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object of C, and note that Y ⊗ 0 ∼= 0 for any Y ∈ C since the monoidal structure is

closed.

Definition 8.4. For any X ∈ C and K ∈ Int(m) we denote by FK(X) the associator

such that

FK(X)(K ′) =

X if K ′ = K

0 if K ′ 6= K

and call it the free associator on X in level K. We call the functor

X 7→ FK(X)

the free associator functor in level K, and denote it by FK . This functor is left adjoint

to the evaluation at K functor

evK : ASSOCm(C)→ C

which is defined by

Y → Y (K).

We must give a description of pushouts (in the category of associators) of the form

FK(A)

��

// FK(B)

��
X // Y

(8.5)

where K ∈ Int(m) and A → B is a generating (acyclic) cofibration. We offer the

following lemma without proof; it is an easy exercise.
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Lemma 8.6. Let K = [i, j] and K ′ = [k, l]. The pushout of 8.5 is given by

(i) Y (K ′) = X(K ′) if K ′ + K, and

(ii) if K ′ ⊇ K then Y (K ′) is the pushout shown below.

X([k, i− 1])⊗ A⊗X([j + 1, l])

��

// X([k, i− 1])⊗B ⊗X([j + 1, l])

��
X(K ′) // Y (K ′)

(The intervals [k, i − 1] and [j + 1, l] might be empty; in this case we delete the

corresponding factor from the expression.) The following theorem is now apparent.

Theorem 8.7. The category of (m-fold) associators in M Z
G with objectwise weak

equivalences, objectwise q-fibrations and determined cofibrations is a compactly gen-

erated, closed and G-topological model structure which we call the q model structure.

The cofibrations are generated by ∪K∈Int(m),n∈ZFK(I[n]) and the acyclic cofibrations

are generated by ∪K∈Int(m),n∈ZFK(J [n]). Cofibrations are objectwise h-cofibrations,

and cofibrant associators are objectwise cofibrant. Every object is fibrant, so this

model structure is right proper.

For the proof, we note that a generating acyclic cofibration of SG-modules is a strong

deformation retract. Next we pull back the slice model structure.

Theorem 8.8. The category of (m-fold) associators in M Z
G with objectwise P∗-

equivalences, objectwise q-fibrations and determined cofibrations is a compactly gen-

erated, closed and G-topological model structure which we call the slice model struc-

ture and denote by slice(ASSOCm(M Z
G)). The cofibrations for this model structure

are generated by ∪K∈Int(m),n∈ZFK(In[n]) and the acyclic cofibrations are generated by

∪K∈Int(m),n∈ZFK(J [n]). Cofibrations are objectwise h-cofibrations, and cofibrant asso-

ciators are objectwise slice-cofibrant. Every object is fibrant, so this model structure

is right proper.

Of course, a ∪K,nFK(J [n])-cell is an objectwise weak equivalence, so it is an objectwise

P∗-equivalence.
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Theorem 8.9. If {X(K)} is an (m-fold) associator of SG-modules, then a

slice(ASSOCm(M Z
G))-cofibrant replacement of {const(X(K))} (which we denote by

{slice(X(K))}) is objectwise a model for the slice towers of the X(K), and is unique

up to an (essentially) unique homotopy equivalence in the category of associators of

towers. Since slice(ASSOCm(M Z
G)) is cofibrantly generated, we may take cofibrant

replacement to be functorial. We have commutative diagrams

slice(X(K1)) ∧ slice(X(K2))

��

// slice(X(K1 ∪K2))

��
const(X(K1)) ∧ const(X(K2)) // const(X(K1 ∪K2))

where the horizontal maps are the structure maps of the associators. We also obtain

associative systems of pairings on the slices of the X(K), as in 8.1.

Remark: On homotopy categories we can view this process as below.

Ho(ASSOCm(MG)) const // Ho(slice(ASSOCm(M Z
G)))

LId // Ho(ASSOCm(M Z
G))

Remark: If one applies this to the constant associator of a ring, one will (most

likely) not obtain a constant associator of slice towers, so this approach would seem

less compelling from a conceptual standpoint. However, the model axioms for the

category of associators will imply that this approach yields the same Toda brackets.
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9 Toda Brackets in the RSSS

In this section we prove that Massey products in the RSSS for an A∞ ring spectrum

converge to Toda brackets, under suitable hypotheses. On the E2 page these "Massey

products" come from a fictional E1 page, so they are inherently more mysterious.

However, we will show that they are given by the usual Massey products in group

cohomology (up to a sign) in the region where the RSSS coincides with the HFPSS,

and the model theory of the previous sections will give a compelling argument for the

correctness of the definition. In the region where the RSSS coincides with the HOSS,

the E2 "Massey products" are in fact Massey products in group homology (up to a

sign). These operations seem to be new, so we give an algebraic description and some

preliminary results, including nontriviality.

Setting aside sign conventions for the moment, suppose that R is an A∞ ring

spectrum (an SG-algebra). We begin with the following definition.

Definition 9.1. A nice cover of R is a nice ring tower slice(R) together with a map

slice(R)→ const(R)

of ring towers which is a P∗-equivalence.

Hence, a nice cover of R gives a model for the slice tower of R. As remarked in

the previous section, we obtain an associative system of pairings on the slices of R.

Hence, still ignoring sign conventions, we may define the "Massey products" on the

E2 page of the RSSS for R as Toda brackets with respect to these pairings. It is easy

to see that the resulting operations do not depend on the choice of nice cover. In fact,

if we choose a particular slice-trivial fibration

R′ → const(R)

with R′ slice-cofibrant, and similarly let

R′′ → slice(R)
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be a slice-cofibrant replacement, we can fill in the diagram below.

R′′

��

// R′

��
slice(R) // const(R)

Of course, a weak equivalence of associators results in bijections on Toda brackets.

This seems to be a very compelling way of defining the E2 "Massey products." One

can make similar definitions for the case of (ring, ring, module), as well as for the other

examples given in the previous section, but this quickly becomes tiresome. Hence, we

generalize to associators. For the following definition, let {XJ} be an associator of

SG-modules.

Definition 9.2. A nice cover of {XJ} is an associator of nice towers {slice(XJ)}

together with a map

{slice(XJ)} → {const(XJ)}

of associators which is an objectwise P∗-equivalence.

We can then define the E2 "Massey products" as Toda brackets associated to the

resulting pairings on the slices. Using the same argument as above, this time in

the category of associators with the slice model structure, it is easy to show that the

choice of nice cover is irrelevant. Also, this approach yields the same Massey products

as in the case of a ring spectrum, and in all other special cases. Massey products on

the Er page for r > 2 are defined algebraically, as usual. Requiring that these Massey

products converge to Toda brackets necessitates certain sign conventions, which we

now turn to.

Let I denote the unit interval [0, 1] with basepoint at 1. Let {XJ} be an m-fold

associator of SG-modules, and let xi ∈ πGkiX[i,i] for i = 1, ...,m. Recall that we have a
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canonical associative and anti-commutative system of isomorphisms

Sp ∧ Sq ∼= Sp+q

in the homotopy category. For each n ∈ Z let Snc be a cofibrant model for the n-sphere;

we can then represent xi by a map

Skic
xi−→ X[i,i].

Now supposing that the Toda bracket 〈x1, ..., xm〉 can be defined, we may construct

maps of the form

∂(Sk1c ∧ I ∧ Sk2c ∧ ... ∧ Skm−1
c ∧ I ∧ Skmc )→ X[1,m]

satisfying certain properties, including that the restriction to

Sk1c ∧ S0 ∧ ... ∧ S0 ∧ Skmc ∼= Sk1c ∧ ... ∧ Skmc

coincides with x1 · ... · xm. To identify

∂(Sk1c ∧ I ∧ Sk2c ∧ ... ∧ Skm−1
c ∧ I ∧ Skmc )

as a sphere, we use the orientation induced from the smash product orientation.

Denote any such map by Ã[1,m]. We define the Toda bracket

〈x1, ..., xm〉

to be the set of homotopy classes represented by the maps Ã[1,m].

Letting x denote (−1)|x|+1x, it is easy to see that 〈x1, x2〉 = x1x2, just as with Massey
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products. Next we examine the differentials in the RSSS. We describe the maps

πGj P
n
n Y

δ−→ πGj−1Pn+1Y

in the exact couple as follows. Let

Pn+1Y
θn+1
n−−→ PnY

pn−→ P n
n Y

δn−→ S1 ∧ Pn+1Y

be the defining triangles and denote by

θn+r
n : Pn+rY → PnY

θn : PnY → Y

the natural maps for any r > 0 and any n. If x ∈ πGj P n
n Y then we let δ(x) be the

unique map

Sj−1 → Pn+1Y

such that the composite

Sj ∼= S1 ∧ Sj−1 Σ(δ(x))−−−−→ S1 ∧ Pn+1Y

is equal to δnx. With this sign convention, the pairings in the RSSS satisfy

dr(yz) = dr(y)z + (−1)|y|ydr(z).

We must give one more definition before stating the convergence theorem. If

dr : Es,t
r → Es+r,t+r−1

r

160



is a differential in the RSSS, a crossing differential is a nonzero differential

dr′ : Es′,t′

r′ → Es′+r′,t′+r′−1
r′

where s′ < s, t′ − s′ = t − s and s′ + r′ > s + r. This situation is depicted below

(the crossing differential is the longer one). If all these conditions hold except that

s′ + r′ = s+ r instead, we shall call the differential coterminal.

We can now state and prove our convergence theorem. In order to simplify the

statement, we treat the E2 case along with the rest by invoking a fictional E1 page.

Theorem 9.3. Let m ≥ 3 and let {XJ} be an m-fold associator of SG-modules.

Let r ≥ 1, and suppose that y1, ..., ym are permanent cycles on the Er+1 pages of

the RSSS’s for the X[i,i] which converge to x1, ..., xm. Suppose further that the Toda

bracket 〈x1, ..., xm〉 is strictly defined, and that there are no crossing differentials for

the differentials which occur in the formation of defining systems for 〈y1, ..., ym〉. Then

the following conclusions hold.

(i) If 〈y1, ..., ym〉 is strictly defined, then it contains a permanent cycle which con-

verges to an element of 〈x1, ..., xm〉.

(ii) If 〈y1, ..., ym〉 is defined, and Es,t
r+1(XJ) consists of permanent cycles for all values

of s, t and J such that Es,t
r (XJ) is the source of a differential occuring in the

formation of defining systems for this Massey product, then every element of it

is a permanent cycle which converges to an element of 〈x1, ..., xm〉.

(iii) Suppose that the assumptions in (ii) hold, except that 〈y1, ..., ym〉 is not known

to be defined. If the relevant differentials also have no coterminal differentials,

then 〈y1, ..., ym〉 is strictly defined, so the conclusion of (ii) holds.
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Proof. We begin by choosing a slice-trivial fibration of associators

{slice(XJ)} → {const(XJ)}

with {slice(XJ)} slice-cofibrant. First we prove (i) and (ii) for r = 1, so that the

"Massey products" in question are in fact Toda brackets and the differentials in

question are fictional d1 differentials. Let the yi be given by homotopy classes of

maps

Skic → P ni
ni
X[i,i] = PniX[i,i]/Pni+1X[i,i]

and choose maps

Skic
x′i−→ PniX[i,i]

such that pnix′i represents yi and θnix′i represents xi. We now prove (i) by constructing

a choice of Ã for x′1, ..., x′m which maps to one for x1, ..., xm under θn1+...+nm and to

one for y1, ..., ym under pn1+...+nm . This can be done by the following argument. While

making the construction we will obtain homotopy classes of maps

Sa
f−→ PbXJ

representing Toda brackets of the x′is for i in some proper subinterval J of [1, ...,m];

we must show that this is zero so that we can choose a null-homotopy. Firstly, since

the Toda bracket 〈x1, ..., xm〉 is strictly defined we have that θbf = 0. Hence we may

let w be the smallest nonnegative integer such that θbb−wf = 0; we must show that

w = 0. Hence, suppose w > 0. Then we may choose g such that δg = θbb−w+1f . Next,

by assumption the "Massey product" 〈y1, ..., ym〉 is strictly defined, so we must have

that pbf = 0 and therefore we can choose h such that θb+1
b h = f . Thus, δg = θb+1

b−w+1h.

Now since δg 6= 0 by assumption, g is not a permanent cycle, so there must be a value

of r ≥ w+2 such that dr(g) 6= 0. This is a crossing differential for one of our fictional
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d1 differentials, so we have a contradiction, establishing (i). To prove (ii) we suppose

given a choice of Ã for y1, ..., ym and construct a choice for x′1, ..., x′m which maps to it

up to homotopy. We begin with a choice of maps representing the x′is and homotopies

from the pnix′i to the yi. Suppose inductively that we have constructed a choice of ÃJ

for the x′is with i in some proper subinterval J of [1, ...,m], as well as a homotopy from

pnÃJ (for appropriate n) to the given value of ÃJ for the yi’s. By the same argument

as in case (i), this map is null homotopic, so we may choose a null-homotopy. The

image of this null-homotopy under pn may not coincide with the given null-homotopy

for the yi’s, but our hypothesis guarantees that pn induces a surjection on the relevant

homotopy group, so that we can adjust our initial choice to account for the difference.

Continuing in this way, we arrive at a choice of Ã[1,...,m] for the x′is and a homotopy

from its composite with pn (for appropriate n) to the given choice of Ã[1,...,m] for the

yi’s. Thus the case r = 1 is proven, so we may let r ≥ 2. Now our differentials

are no longer fictional, and the Massey products are defined purely algebraically, as

in [May2]. We begin with (i), where we inductively construct the ÃJ for the x′is by

dropping down the tower r − 1 places each time we find a null-homotopy. Letting

J = [j0, ..., j1] denote an arbitrary subinterval of [1, ...,m], suppose inductively that

we have constructed the ÃK for the x′is for #K ≤ #J and that

p∗ÃK

represents an element of the appropriate Massey product of the yis for all such K.

If J ′ is an interval containing J with #J ′ = #J + 1, and ÃJ is represented by a

homotopy class of maps

Sa
f−→ PbXJ

then we must first show that θbb−r+1f is null. First, by hypothesis pbf represents an

element of a Massey product of the yis which is zero, and is thus zero on the Er+1
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page. This implies that there exists a map

Sa
g−→ Pb+1XJ

such that θbb−r+1(f + θb+1
b g) = 0. This implies that

θb+1
w g = −θbwf

for all w ≤ b − r + 1. Thus, if θbb−r+1f is not null, there is a crossing differential

which violates our hypotheses, since θbwf must be zero for sufficiently small w. This

allows us to construct ÃJ ′ ; we must show that p∗ÃJ ′ represents an element of the

appropriate Massey product of the yis. Letting J ′ = [j0, j1] and ÃJ ′ be represented

by a map

Sa ∼= ∂(S
kj0
c ∧ I ∧ ... ∧ I ∧ S

kj1
c )

f−→ PbXJ ′

we have by construction that pbf is precisely null on the (j1 − j0 − 2)-skeleton of

I∧j1−j0 , and thus is equal to a sum of maps, one for each face of I∧j1−j0 . By the

inductive hypothesis, one sees that this element can be expressed as follows.

(−1)kj0+1yj0d
−1
r (p∗Ã[j0+1,j1]) +

j1−2∑
l=j0+1

(−1)l−j0+1+kj0+...+kld−1
r (p∗Ã[j0,l])d

−1
r (p∗Ã[l+1,j1])

+ (−1)j1−j0+kj0+...+kj1−1d−1
r (p∗Ã[j0,j1−1])yj1

∈ yj0d
−1
r (〈yj0+1, ..., yj1〉) +

j1−2∑
l=j0+1

d−1
r (〈yj0 , ..., yl〉)d−1

r (〈yl+1, ..., yj1〉)

+ d−1
r (〈yj0 , ..., yj1−1〉)yj1

Thus (i) is proved. To prove (ii) we must show that we can choose our null-homotopies

such that we obtain an arbitrary element of d−1
r (p∗ÃJ). Letting the element of d−1

r (ÃJ)

induced by our null-homotopy be represented by a homotopy class Sa → P b
bXJ ,

this follows easily from the hypothesis that any element of ker(dr) in πGa P
b
bXJ is a
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permanent cycle, and hence is in the image of

(pb)∗ : πGa PbXJ → πGa P
b
bXJ .

For (iii), the argument is mostly the same as above. While building defining systems

one must show that p∗ÃJ is zero on the Er+1 page for proper subintervals J . Since

the Toda bracket 〈x1, ..., xm〉 is strictly defined, we know that p∗ÃJ is a permanent

cycle converging to zero, so if it is not zero on the Er+1 page then it must be hit by a

ds differential for some s ≥ r + 1. This would be a coterminal differential; the result

follows.

Remark: The theorem holds also for m = 2; it is merely the convergence theorem

for products (up to a sign).

Remark: This theorem is similar to the Moss convergence theorem for the Adams

spectral sequence (Theorem 1.2 of [Mos]).

Of course, these Massey products on the Er pages for r > 2 satisfy all the usual

algebraic properties of Massey products (see [May2]). This also holds for the E2

"Massey products."

Proposition 9.4. The E2 "Massey products" in the RSSS satisfy all the associativity

and commutativity properties ("juggling theorems") that Toda brackets do.

Proof. We need only address the commutativity properties. If {YJ} is an associator

in a symmetric monoidal category C, define the opposite associator {YJ}op = {Y op
J }

by Y op
[i,j] = Y[n+1−j,n+1−i], with the pairings as below.

Y op
[i,j] ∧ Y

op
[j+1,k] = Y[n+1−j,n+1−i] ∧ Y[n+1−k,n−j]

τ−→∼= Y[n+1−k,n−j] ∧ Y[n+1−j,n+1−i]

→ Y[n+1−k,n+1−i] = Y op
[i,k]

First we observe that if {slice(XJ)} is a nice cover of {XJ} then {slice(XJ)}op is a

nice cover of {XJ}op. This proves the analogue of Corollary 3.7 of [May2]. For the

165



analogues of Propositions 3.8 and 3.9 of [May2], we use a cofibrant replacement in

the slice model structure on non-unital commutative ring towers.

Next, we wish to identify the E2 "Massey products" in the region where the RSSS

coincides with the HFPSS.

Proposition 9.5. Let {XJ} be an m-fold associator of SG-modules, and suppose

that yi ∈ Esi,ti
2 (X[i,i]) with ti − si > 0 and si < (m(G) − 1)(ti − si). Then the

E2 "Massey product" 〈y1, ..., ym〉 is (strictly) defined if and only if the corresponding

Massey product in group cohomology is, in which case the two coincide up to the sign

(−1)
∑m
i=1 iti+

∑
i<j sitj .

Proof. As before we begin with an associator of nice slice towers {slice(XJ)}. Choos-

ing a model for EG, and denoting the slices of the XJ by

slicenn(XJ) := slice(XJ)n/slice(XJ)n+1,

we then obtain maps of associators

{slice∗∗(XJ)} → {F (EG#J
+ , slice∗∗(XJ))}

that induce monomorphisms on all relevant homotopy groups, and isomorphisms on

all relevant homotopy groups which parametrize null-homotopies. The first statement

follows immediately. For the second part, we consider the associators of towers

{F (EG#J
+ /(EG#J)

[k−1]
+ , slice∗∗(XJ))}

and the triangles

F (EG#J
+ /(EG#J)

[k]
+ , slice

∗
∗(XJ))→ F (EG#J

+ /(EG#J)
[k−1]
+ , slice∗∗(XJ))

→ F ((EG#J)
[k]
+ /(EG

#J)
[k−1]
+ , slice∗∗(XJ))
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and proceed as in the proof of Theorem 9.3. We leave the details, which are tedious,

to the interested reader.

Remark: The requirement that si < (m(G) − 1)(ti − si) is only to ensure that

the map from the RSSS to the HFPSS is a monomorphism or isomorphism at the

relevant entries; this may be the case even if this inequality fails.

In order to describe the E2 "Massey products" in the region where the RSSS coin-

cides with the HOSS, we first define Massey products in group homology algebraically.

First let Y and Z be G-modules, and let EG → Z denote a free Z[G]-modules reso-

lution of Z (with trivial action). We define a pairing of chain complexes as below.

(Y ⊗ EG)/G⊗ (Z ⊗ EG)/G→ ((Y ⊗ Z)⊗ EG⊗2)/G

[a⊗ y]⊗ [b⊗ z] 7→ [
∑
g∈G

a⊗ gb⊗ y ⊗ gz] = [
∑
g∈G

ga⊗ b⊗ gy ⊗ z]

This induces products in group homology. However, if x and y are homology classes

that are not both of degree zero, we have xy = 0 since one can project off either of

the two copies of EG. The product in degree zero is easily seen to be given by

[x][y] = [
∑
g∈G

x(gy)] = [
∑
g∈G

(gx)y].

Thus, the homology product is not very interesting. Note that it is the same product

one finds in the RSSS (see Corollary I.9.5). Now let {XJ} be an m-fold associator of

G-modules. Since the above construction is clearly associative, we may apply it to

obtain an associator of chain complexes as below.

{(XJ ⊗ EG⊗#J)/G}

Using these we define Massey products in group homology. We can now identify the

E2 "Massey products" in the RSSS in the region where it coincides with the HOSS.
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Proposition 9.6. Let {XJ} be an m-fold associator of SG-modules, and suppose that

yi ∈ Esi,ti
2 (X[i,i]). Suppose that all entries of the RSSS’s involved in the formation

of "defining systems" for 〈y1, ..., ym〉 coincide with the corresponding entries of the

HOSS’s. Then the E2 "Massey product" 〈y1, ..., ym〉 is (strictly) defined if and only if

the corresponding Massey product in group homology is, in which case the two coincide

up to the sign

(−1)
∑m
i=1 iti+

∑
i<j sitj .

Proof. As in the proof of Proposition 9.5, this time using the associators of towers

{slice∗∗(XJ) ∧ (EG×#J)
[k]
+ }

and the triangles below.

slice∗∗(XJ) ∧ (EG×#J)
[k−1]
+ → slice∗∗(XJ) ∧ (EG×#J)

[k]
+

→ slice∗∗(XJ) ∧ (EG×#J)[k]/(EG×#J)[k−1]

We again leave the details (including the sign difference) to the reader.

Remark: It is possible to give a slightly more refined statement: it is only necessary

that the maps HOSS → RSSS be surjective on the entries which are sources of

(fictional d1) differentials occuring in the formation of "defining systems."

Next, we give some preliminary results on these homology Massey products.

Proposition 9.7. Let x, y and z be homology classes such that xy = 0 and yz = 0.

Then the following conclusions hold.

(i) 〈x, y, z〉 = 0 unless deg(x) = deg(y) = deg(z) = 0.

(ii) 〈x, y, z〉 consists of a single element.

(iii) If x = [x0], y = [y0] and z = [z0] are of degree zero and
∑

g∈G g acts as zero on

any of x0, y0 or z0, then 〈x, y, z〉 = 0.
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Proof. For (i), suppose we are given cycles x, y and z representing homology classes.

After forming a representative of 〈x, y, z〉 we may project off the first two factors of

EG to Z, so that 〈x, y, z〉 is represented by

x′d−1(y′z),

where x′ and y′ denote the images of x and y, respectively, under the projection. If

deg(x) > 0 then x′ = 0. If deg(y) > 0 then y′ = 0, so that the above is actually a

homology product where not both elements are of degree zero; it is thus a boundary.

Thus we must have deg(x) = deg(y) = 0 if we are to obtain a nonzero Massey product;

a similar argument obtains deg(y) = deg(z) = 0 by projecting off the last two factors

of EG instead. For (ii), we simply note that any two elements of d−1(y′z) differ by a

cycle, and thus the resulting elements of 〈x, y, z〉 differ by a homology product where

one element is of positive degree. For (iii), the above simplifies to

[x0]d−1([y0](z0 ⊗ 1))

where we have taken EG0 = Z[G]. If
∑

g∈G g acts as zero on y0, we again have a

homology product which must be a boundary, while if it acts as zero on x0 we get

the zero chain. A similar argument applies to z0 if we instead project off the last two

factors of EG instead of the first two.

The above proposition implies that, if we are to obtain a nonzero homology triple

product, we may not use such simple G-modules as sign representations or the trivial

action of Cp on Z/pZ. Thus the homology triple product will be zero in many familiar

cases. We now give a constructive proof that the homology triple product is not

identically zero.

Proposition 9.8. There exist nonzero homology triple products when G = C2.

Proof. Let G = C2 = {1, g} and let EG→ Z be as below.

Z aug←−− Z[G]
1−g←−− Z[G]

1+g←−− Z[G]
1−g←−− ...
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Thus, for any G-module M the chain complex (M ⊗ EG)/G is as below.

M
1−g←−−M

1+g←−−M
1−g←−− ...

Letting our homology classes in degree zero be represented by x, y and z, we have

the following.

[x][y] = 0 ⇒ ∃s : x(y + gy) = (1− g)s

[y][z] = 0 ⇒ ∃t : (y + gy)z = (1− g)t

The homology triple product 〈[x], [y], [z]〉 is then represented by (x + gx)t. Thus we

define a universal commutative G-ring R in which we can form a homology triple

product, as below.

R := Z[x, gx, y, gy, z, gz, t, gt, s, gs]/(x(y + gy) = (1− g)s, (y + gy)z = (1− g)t,

(x+ gx)(y + gy) = 0, (y + gy)(z + gz) = 0)

Note that these four relations are equivalent to the first two plus g times the first two.

We can simplify this by using the first two relations to express gs and gt in terms of

other variables, as well as changing basis as below.

u := x+ gx, x := gx

v := y + gy, y := gy

w := z + gz, z := gz

We then obtain the following isomorphism, with given G-action.

R ∼= Z[u, x, v, y, w, z, s, t]/(uv = 0 = vw)

gu = u, gx = u− x, gv = v, gy = v − y, gw = w, gz = w − z,

gs = s+ vx, gt = t+ vz
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We now show that ut is not in the image of (1 + g); suppose that it is. We set

(1 + g)f = ut and deduce what we can about the coefficients of f in the obvious

monomial basis for R. This task is made easier by the fact that g times a monomial

is a sum of monomials of the same and higher degrees (times integers). Though it

is tedious, the reader may check the following claims. First, the only monomials

whose images have a ut term are xt and ut. We have (1 + g)(xt) = ut − vxz and

(1+g)(ut) = 2ut. Thus the coefficient of xt in f must be odd. This introduces an odd

coefficient times vxz, which must be eliminated somehow. The only possible sources

of such a term are as follows.

(1 + g)(sz) = sw − vxz

(1 + g)(vxz) = 2vxz

(1 + g)(xyz) = vxz + wxy + uyz − uwy

Now, the only other source of an sw term is (1 + g)(sw) = 2sw, so sz must have an

even coefficient in f . Thus, xyz must have an odd coefficient in f . However, this

contributes odd coefficients times wxy and uyz to (1 + g)f . The only other sources

for these terms are as below.

(1 + g)(wxy) = 2wxy − uwy

(1 + g)(uyz) = 2uyz − uwy

Thus we have a contradiction, and therefore a nonzero homology triple product.

Remark: At present, nothing more is known about these homology Massey prod-

ucts. It may be the case that one always needs all the elements to be of degree zero in

order to obtain a nonzero Massey product, but this is not known. It is also unknown

whether or not the indeterminacy of higher order Massey products is always zero.

It would also be desirable to have more straightforward examples of nonzero Massey

products than the one given above.

Next, we turn to the Leibniz formula for these Massey products.
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Theorem 9.9. Let {XJ} be anm-fold associator of SG-modules, with xi ∈ Er+1(X[i,i])

such that 〈x1, ..., xm〉 is defined and each xi survives to the Es page. Suppose that, for

each entry Ep,q
r (XJ) which is the source of a differential occuring in the formation of

defining systems for 〈x1, ..., xm〉 and each t satisfying r < t < s we have that

(i) Ep+t,q+t−1
r+s−t (XJ) consists of permanent cycles,

(ii) there are no nonzero differentials hitting Ep+t,q+t−1
k (XJ) for k ≥ t, and

(iii) Ep+t,q+t−1
∞ (XJ) = 0.

Choose classes yi ∈ Er+1(X[i,i]) surviving to the dsxi. Then for any α ∈ 〈x1, ..., xm〉,

α survives to the Es page and there is an element of

〈(
y1 x̄1

)
,

(
x2 0

y2 x̄2

)
, ...,

(
xm−1 0

ym−1 x̄m−1

)
,

(
xm

ym

)〉

which survives to −ds(α).

Proof. First let r > 1. We alter the lifting procedure used in the proof of Theorem 9.3,

as follows. Suppose a class f : Skc → P n
nZ survives to the Es page and that dsf is

represented by g : Sk−1
c → P n+s−1

n+s−1Z. Letting I0 denote the unit interval [0, 1] with

basepoint 0, we can find a map

f ′ : (I0 ∧ Sk−1
c , Sk−1

c )→ (PnZ, Pn+s−1Z)

such that the composite of f ′|Sk−1
c

with pn+s−1 is homotopic to g and the induced map

Skc
∼= I0 ∧ Sk−1

c /Sk−1
c → PnZ/Pn+s−1Z → PnZ/Pn+1Z = P n

nZ

is homotopic to f . Applying this to representatives for the xi in πGkiP
ni
ni
X[i,i] and

chosen representatives for the yi we obtain maps

x′i : (I0 ∧ Ski−1
c , Ski−1

c )→ (PniX[i,i], Pni+s−1X[i,i])
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which keep track of both the xi and the yi. We use such maps as our "lifts" for

any given defining system for α. Recall that, each time we find a null-homotopy, we

must drop down the tower by (r− 1) places. In our relative case, this corresponds to

composing with the map of pairs below.

(PnXJ , Pn+s−1XJ)
(θn
n−(r−1)

,θn+s−1
n+s−r)

−−−−−−−−−−→ (Pn−(r−1)XJ , Pn+s−rXJ)

Note that n − (r − 1) < n < n + s − r < n + s − 1. Let a defining system for α be

given by classes aJ , ãJ on the Er page, beginning with the representatives for the xi

determined by the x′i. We will lift these maps to maps from subspectra of spectra of

the form

(I0 ∧ S
kj0−1
c ) ∧ I1 ∧ ... ∧ I1 ∧ (I0 ∧ S

kj1−1
c )

to the relevant slice towers, where J = [j0, j1] is a subinterval of [1,m] and I1 denotes

the unit interval [0, 1] with the basepoint 1. We will use the symbol ∂s to denote the

subspectrum where at least one of the I0 coordinates is equal to 1, and ∂r to denote

the subspectrum where at least one of the I1 coordinates is equal to 0. We will also

use these symbols to denote restrictions of maps to these subspectra. We will denote

our lifts of the ãJ by ÃJ . We begin with Ã[i,i+1] for i ∈ [1,m− 1]; we simply take the

maps corresponding to x′i ∧ x′i+1 under the isomorphisms below.

∂r((I0 ∧ Ski−1
c ) ∧ I1 ∧ (I0 ∧ Ski+1−1

c )) ∼= (I0 ∧ Ski−1
c ) ∧ (I0 ∧ Ski+1−1

c )

Clearly this lifts ã[i,i+1] = x̄ixi+1 = (−1)ki+1xixi+1 so that ∂sÃ[i,i+1] induces the fol-

lowing map.

(−1)ki+1yixi+1 − xiyi+1 = −
(
yi x̄i

)( xi+1

yi+1

)

Suppose inductively that we have constructed lifts ÃJ of the ãJ for #J ≤ i and lifts

AJ of the aJ for #J < i. For each interval J of size i we must drop ÃJ down the
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tower (r − 1) places and find a null homotopy which lifts aJ . Suppose then that we

are given a map of pairs as below.

(ÃJ , ∂sÃJ) : (I0 ∧ Sk−1
c , Sk−1

c )→ (PnXJ , Pn+s−1XJ)

First we claim that θn+s−1
n+s−r∂sÃJ is null-homotopic. For this, we first note that ãJ is a

permanent cycle; this immediately implies that θn+s−1
n+1 ∂sÃJ ' Σ−1δnãJ ' 0. Suppose

inductively that θn+s−1
n+l ∂sÃJ is null-homotopic for some l with 0 < l < s− r. Then a

null homotopy can be given by a map of pairs

(I0 ∧ Sk−1
c , Sk−1

c )→ (Pn+lXJ , Pn+s−1XJ)

representing an element of En+l,n+l+k
s−l (XJ); hypothesis (i) then implies that it is a

permanent cycle, so that θn+s−1
n+l+1 ∂sÃJ is null-homotopic, as in the base case. Now

choose a null-homotopy h of θn+s−1
n+s−r∂sÃJ and consider the map below.

ÃJ ∪ −h : ∂(I0 ∧ I0) ∧ Sk−1
c → Pn(XJ)

Since draJ = ãJ , we can also choose a map of pairs

H : ((I0 ∧ S1) ∧ Sk−1
c , ∂(I0 ∧ S1) ∧ Sk−1

c )→ (Pn−(r−1)XJ , PnXJ)

which lifts aJ such that (∂H ∪ 0) and (ÃJ ∪ −h) induce homotopic maps to P n
nXJ .

It then follows that (ÃJ ∪ −h) − (∂H ∪ 0) is equal to θn+1
n f for some homotopy

class f : Sk → Pn+1XJ . Hypotheses (ii) and (iii) of the statement can now be used

inductively to show that

f ∈ im
(
θn+s−r
n+1

)
+ ker

(
θn+1
n−(r−1)+1

)
,
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so we can correct our initial choice of h so that

θnn−(r−1)+1(ÃJ ∪ −h) ' θnn−(r−1)+1(∂H ∪ 0).

We can use a homotopy connecting these two maps and H to finally obtain a map

AJ : (I0 ∧ I0) ∧ Sk−1
c → Pn−(r−1)XJ

lifting aJ . Using these maps to construct ÃL for intervals L of size i + 1, we find

that ÃL lifts ãL by a similar calculation as in the proof of Theorem 9.3. We also see

that ∂sAJ = −h, which is an element of −d−1
r (∂sÃJ) (abusing notation slightly by

identifying a map with the element of the appropriate entry on the Er page that it

lifts). Again abusing notation in this fashion, we find on the Er page that, for the

interval J = [j0, j1], we have the following.

∂sÃJ =

j1−1∑
l=j0

(−1)1+|a[j0,l]|(∂sA[j0,l]a[l+1,j1] + (−1)|a[j0,l]|a[j0,l]∂sA[l+1,j1])

Here we have taken A[i,i] := x′i so that ∂sA[i,i] = yi. It is then an easy calculation that

the matrices

(
ãJ 0

−∂sÃJ −ÃJ

)
and

(
aJ 0

∂sAJ āJ

)

form a defining system for the matric Massey product in the statement (with first row

omitted if 1 ∈ J and second column omitted ifm ∈ J). This proves the theorem when

r > 1. In the case r = 1 we can use a similar procedure to show that α survives to the

Es page and give a combinatorial description of −ds(α). We believe that this can be

identified as a member of the appropriate matric Toda bracket, but these arguments

don’t really belong in this thesis; note that the case m = 2 holds trivially.

Remark: The above theorem is analogous to Theorem 4.3 of [May2], though the

hypotheses are slightly weaker and the conclusion slightly stronger.
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The following, which is analogous to Corollary 4.4 of [May2], follows directly from

the theorem and Proposition 2.10 of [May2].

Corollary 9.10. Assume in addition to the hypotheses of Theorem 9.9 that each

〈x̄1, ..., x̄k−1, yk, xk+1, ..., xm〉

is strictly defined. Assume further that these Massey products and the matric Massey

product in the statement of Theorem 9.9 all have zero indeterminacy. Then

ds〈x1, ..., xm〉 = −
m∑
k=1

〈x̄1, ..., x̄k−1, yk, xk+1, ..., xm〉.

Finally, we have a sort of combination of Theorems 9.3 and 9.9.

Theorem 9.11. Let {XJ} be anm-fold associator of SG-modules, with xi ∈ Er+1(X[i,i])

such that 〈x1, ..., xm〉 is defined and the xi’s are permanent cycles converging to zi.

Let n be given such that 1 ≤ n ≤ m− 2 and the

〈zk, ..., zk+n〉

are strictly defined. Further assume that the conditions of Theorem 9.3(ii) hold for

these subproducts, and that the conditions of Theorem 9.9 hold for subintervals J such

that #J ≥ n + 1 and some s > r. Let α ∈ 〈x1, ..., xm〉. Then α survives to the Es

page and there exist yk ∈ Er+1(X[k,k+n]) converging to elements of 〈zk, ..., zk+n〉 such

that there is an element of

〈(
y1 x̄1

)
,

(
x2+n 0

y2 x̄2

)
, ...,

(
xm−1 0

ym−n−1 x̄m−n−1

)
,

(
xm

ym−n

)〉

which survives to ds(α). Here the bidegree of yk is (p+ s− r, q+ s− r) when (p, q) is

the bidegree of 〈xk, ..., xk+n〉.

Proof. Suppose r > 1. Let aJ , ãJ be a defining system for α. We begin with the lifting

procedure from the proof of Theorem 9.3, proceeding until we have defined lifts ÃJ
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of ãJ for intervals J with #J ≤ n+ 1 and lifts AJ of aJ when #J < n+ 1. We then

switch to the relative case as in the proof of Theorem 9.9, regarding what we have so

far as being maps of pairs with ∂s 7→ ∗. It is now obvious that ∂sAJ is the zero map

unless #J ≥ n+ 1. Thus, using the notation from the proof of Theorem 9.9, we have

the following in the Er page for J = [j0, j1] with #J ≥ n+ 2.

∂sÃJ =

j1−1∑
l=j0+n

(−1)1+|a[j0,l]|∂sA[j0,l]a[l+1,j1]

+

j1−n−1∑
l=j0

(−1)1+|a[j0,l]|(−1)|a[j0,l]|a[j0,l]∂sA[l+1,j1]

Now, given an interval J = [j0, j1] with #J ≥ n + 1, let J ′ := [j0, j1 − n] and

J ′′ := [j0 + n, j1] and note that J 7→ J ′ is a bijection from such intervals onto

Int(m− n). It is now an easy exercise to show that

J ′ 7→

(
aJ ′′ 0

−∂sAJ āJ ′

)
,

(
ãJ ′′ 0

∂sÃJ −ãJ ′

)

is a defining system for the matric Massey product in the statement (with first row

omitted if 1 ∈ J ′ and second column omitted if m− n ∈ J ′), as long as we set

yk = −∂sA[k,k+n].

Recall from the proof of Theorem 9.9 that dr(yk) is in the same bidegree as ds(ã[k,k+n]),

so the bidegree is as stated; it remains to show that yk converges to an element of

〈zk, ..., zk+n〉. Regarding A[k,k+n] as a map

(I0 ∧ I0) ∧ Sdc → PeX[k,k+n]

we note that taking−∂s corresponds to setting the second coordinate equal to 1. Since

A[k,k+n] is trivial on ∂2(I0∧I0)∧Sdc , we see that θe+s−1
e (−∂sA[k,k+n]) ' θe+r−1

e (Ã[k,k+n])

(wherein we regard these maps as non-relative since they are trivial on the boundaries
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of their domains). The result follows. Now suppose that r = 1. A similar argument

again shows that α survives to the Es page, and we can give a combinatorial descrip-

tion of ds(α). Identifying this as an element of the appropriate matric Toda bracket

again doesn’t belong in this thesis. We note, however, that it is easy to identify it as

the appropriate matrix product when n = m− 2.

Remark: The above theorem is analogous to Theorem 4.5 of [May2], though the

hypotheses are slightly weaker.

The following, which is analogous to Corollary 4.6 of [May2], follows directly from

the theorem and Proposition 2.10 of [May2].

Corollary 9.12. Assume in addition to the hypotheses of Theorem 9.11 that for

each k there is just one yk in the appropriate bidegree converging to an element of

〈zk, ..., zk+n〉 and that each

〈x̄1, ..., x̄k−1, yk, xk+n+1, ..., xm〉

is strictly defined. Assume further that these Massey products and the matric Massey

product in the statement of Theorem 9.11 all have zero indeterminacy. Then

ds〈x1, ..., xm〉 =
m−n∑
k=1

〈x̄1, ..., x̄k−1, yk, xk+n+1, ..., xm〉.

Remark: The r = 1 cases of the above two theorems and corollaries require the

definition of matric Toda brackets with respect to the smash product. A definition

can be given, but is beyond the scope of this thesis. With such a definition, one could

formulate and prove generalizations of all of the theorems in this section. In the case

of the results identifying the E2 "Massey products" in the HOSS and HFPSS, one

might have to use shifted chain complexes to encode the sign difference, rather than

having an overall sign difference.
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Chapter V

Computations

1 Introduction

In this chapter we apply the theory of the preceding chapters to make some calcula-

tions of the RSSS for various types of spectra. In Section 2 we completely compute

the RSSS for Eilenberg MacLane spectra in dimensions ±1, and in arbitrary dimen-

sion when the group is cyclic of prime order. We also give a general formula for the

slice tower in dimensions ±2. The case of dimension 1 verifies a conjecture of Hill

from [Hil]. In Section 3 we give a sample calculation for a cofree spectrum, where

the group is cyclic of prime power order, as well as a dual calculation for a free spec-

trum. These calculations give a hint as to the general behavior of the RSSS outside

the region where it coincides with the HFPSS (or the HOSS). Next, in Section 4

we give an updated treatment of Dugger’s spectral sequence for the KR spectrum

(see [Dug]), including the derivation of real Bott periodicity and the computation of

some Toda brackets in KO∗. In Section 5 we determine the slice tower for equivariant

complex K-theory when the group is cyclic. This is used to give a simple proof of

the Atiyah-Segal completion theorem for cyclic groups of prime order.
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2 Computations for Eilenberg MacLane Spectra

We begin with Eilenberg MacLane spectra in dimensions ±1.

Theorem 2.1. If M is a Mackey functor then we have

Pn(ΣHM) ∼= ΣHF n−1M

so that the only nonzero entries in the RSSS for ΣHM are

Es,s+1
2

∼= F sM/F s+1M

and all the differentials are zero. Similarly, we have

Pn(Σ−1HM) ∼= Σ−1HF−nM

so that the only nonzero entries in the RSSS for Σ−1HM are

Es,s−1
2

∼= F−s+1M/F−sM

and all the differentials are zero.

Proof. By Corollary I.8.3, for an Eilenberg MacLane spectrum X in dimension ±1,

all the spectra PnX, P nX, P n
nX are Eilenberg MacLane spectra in dimension ±1.

Then the long exact sequences of homotopy groups for the cofiber sequences

PnX → X → P n−1X

imply that the maps

π±1PnX → π±1X

are injective. The result then follows from Proposition I.8.4 and Corollary I.8.6.

Remark: The result for dimension 1 was originally conjectured by Mike Hill. The
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result for cyclic groups of prime power order (dimension 1) is Theorem 5.8 of [Hil].

We now give the slice tower for dimensions ±2.

Theorem 2.2. If M is a Mackey functor then we have

P n(Σ2HM) ∼= Σ2H
(
R(n)i∗n

(
M/F n/2M

))
,

Pn(Σ−2HM) ∼= Σ−2H
(
L(−n)i∗−n

(
F−n/2M

))
.

Proof. For dimension 2, Proposition I.8.1 and Corollary I.8.3 imply that the Pm’s

are Eilenberg MacLane spectra in dimension 2. The first statement then follows from

Corollary I.8.6. The proof of the other statement is similar.

Now suppose G = Cp, with p an odd prime. We have the following.

π2P
n(Σ2HM) ∼=



0 if n < 2

R(1)i∗1M if 2 ≤ n ≤ p− 1

M/F 1M if p ≤ n ≤ 2p− 1

M if n ≥ 2p

It follows that the only nonzero slices (2, p and 2p) satisfy

(P 2
2 (Σ2HM))G ∼= Σ2H

(
M(G/e)G

)
(P p

p (Σ2HM))G ∼= ΣH
(
M(G/e)G/rGe M(G/G)

)
(P 2p

2p (Σ2HM))G ∼= Σ2H
(
ker
(
M(G/G)

rGe−→M(G/e)
))

so that the RSSS for the fixed points is as below
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and the slice filtration for M(G/G) reduces to

0→ ker(rGe )→M(G/G)→ im(rGe )→ 0.

For Σ−2HM a similar calculation yields the picture below,

with the slice filtration for M(G/G) reducing to

0→ im(tGe )→M(G/G)→M(G/G)/im(tGe )→ 0.

For p = 2, the situation is even simpler. We have

π2P
n(Σ2HM) ∼=


0 if n < 2

M/F 1M if 2 ≤ n ≤ 3

M if n ≥ 4
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so that the only nonzero slices are

P 2
2 (Σ2HM) ∼= Σ2H(M/F 1M)

P 4
4 (Σ2HM) ∼= Σ2HF 1M

and there are no differentials. Dually, we have

P−2
−2 (Σ−2HM) ∼= Σ−2HF1M

P−4
−4 (Σ−2HM) ∼= Σ−2H(M/F1M)

with no differentials for dimension −2. Next we describe the RSSS for an Eilenberg

MacLane spectrum in dimension > 2, again with G a cyclic group of prime order.

This is relatively simple to do using the formulas given in Section II.3. However, it is

much faster to use Corollary I.9.5. The RSSS for the fixed points is as below.

To verify this, we argue as follows. Theorem I.9.4 implies that the only groups on the

E2 page below the vanishing line are on the line s + (t − s) = k, and are as shown,
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except possibly the group in the t − s = bk
p
c + 1 column. For each of these groups,

there is a unique differential hitting the vanishing line, so all (but one) of the groups

in the columns t − s < k must annihilate in pairs, as shown. The unknown group

at t − s = bk
p
c + 1, t = k must be zero, since it annihilates with a group in column

t− s = bk
p
c, which must be zero by a basic connectivity estimate (Proposition I.8.1).

The differential emanating from t− s = k, s = 0 must be surjective. The rest follows

from Corollary I.8.6. Of course, there is a dual description for k < −2, involving

group homology, which we leave as an exercise for the reader.

We can now use the results of Section II.5 to compute most of the groups in the E2

page when G = Cp2 . Again let k > 2, and let M be an arbitrary Mackey functor. By

Corollary II.3.3 and basic connectivity estimates, the only nonzero slices of ΣkHM

other than the k-slice are the jp-slices for k < jp ≤ kp2. In fact, under the line of

slope p2− 1 the homotopy groups of the fixed points of the slices are contained in the

homotopy groups of

((
P jp
jp (ΣkHM)

)Cp)h(G/Cp)

,

which are zero unless jp ≤ kp. Hence suppose that bk
p
c+ 1 ≤ j ≤ k. The homotopy

fixed point spectral sequence for the above spectrum is then trivial, and so when

i ≥ b j
p
c+ 2 we obtain the following.

πGi P
jp
jp (ΣkHM) ∼=


Hj−i (G/Cp;Hk−j−1(Cp;M(G/e))

)
if j < k − 1

Hj−i(G/Cp;M(G/e)Cp/im
(
r
Cp
e

))
if j = k − 1

Hj−i(G/Cp; ker(rCpe )) if j = k

Of course, similar formulas involving group homology can be given when k < −2.

We will also see very similar formulas for certain free and cofree spectra in the next

section, which will be derived in a very different way.
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3 Example Computations for Free and Cofree Spec-

tra

The goal of this section is to shed some light on the behavior of the RSSS outside of

the region where it coincides with the HFPSS (or the HOSS). We do this by way of

example computations for two types of spectra. Let G = Cp2 (with p prime), and let

M be a Mackey functor. First we let k > 0, and consider the spectrum

X := F (EG+,Σ
kHM).

By Corollary II.4.8, for n > 0 we have

(P n
nX)G ∼= Cofib

(
Postd(n+1)/p2e(Postd(n+1)/pe(Postn+1X)hCp)h(G/Cp) →

Postdn/p2e(Postdn/pe(PostnX)hCp)h(G/Cp)
)
.

Now the map ΣkHM → X is a nonequivariant isomorphism, so we can replace X

with ΣkHM in the above formula. It follows from this formula that (P n
nX)G ∼= ∗

when n > k; suppose that 0 < n < k. Then

Postn+1(ΣkHM) ∼= Postn(ΣkHM) ∼= ΣkHM.

Also, the outermost Postnikov functors do not affect the homotopy groups in degrees

≥ b n
p2
c+ 2, so we see that in this range,

πGmP
n
nX
∼= πmCofib

(
(Postd(n+1)/pe(Σ

kHM)hCp)h(G/Cp) →

(Postdn/pe(Σ
kHM)hCp)h(G/Cp)

)
.

This is clearly zero unless n is divisible by p; hence suppose that 0 < n = pj < k.

Then the above reduces to

πGmP
n
nX
∼= πm

(
Postjj(Σ

kHM)hCp
)h(G/Cp)
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so that

πGmP
n
nX
∼= Hj−m(G/Cp;Hk−j(Cp;M(G/e)

))
(3.1)

for m ≥ b n
p2
c+ 2 and 0 < n = pj < k. Of course, we also have

πGmP
k
kX
∼= Hk−m(G;M(G/e))

for m ≥ bn
p
c + 2 by Corollary I.9.5. Note that the newly calculated groups 3.1 are

all in the region of the E2 page between the lines of slope p− 1 and p2 − 1. We give

a rough picture of our E2 page below, along with the corresponding dual picture for

EG+ ∧ Σ−kHM , which we derive from Corollary II.4.11.

As one moves from the region below the line of slope p − 1 to the region between

this line and the line of slope p2 − 1, one can observe the "phase transition" in the

behavior of the groups on the E2 page mentioned in Section II.5.
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4 Dugger’s Spectral Sequence for KR-Theory

In this section we give a treatment of the KR spectrum with its (regular) slice spec-

tral sequence that updates the one given in [Dug]. We begin by quickly reviewing the

construction of KR. Throughout this section our group is G = C2. First recall that,

for a G space X, KR(X) is defined to be the Grothendieck group of "Real" vector

bundles over X (see [Ati]). It is then easy to see that reduced KR-theory is repre-

sented by the space Z × BU , where BU is constructed as usual from Grassmanians

and has a G action coming from complex conjugation. Equivariantly, the usual cell

structure becomes a G-CW(V ) structure, with V = C ∼= R[G]. Next, as is pointed

out in Section 2 of [Ati], the Fourier series approach to complex Bott periodicity

works essentially verbatim in the "Real" context. Thus we obtain a Bott element

SC β−→ Z×BU

and an associated Bott map

Z×BU β−→ ΩC(Z×BU)

which is a weak equivalence. A priori, this map is only unique up to homotopy on

finite subcomplexes. To show that it is unique up to homotopy, we proceed as follows.

With a given choice of Bott map, we may construct an Ω-spectrum which is Z×BU

in each level that is a multiple of the regular representation. We call this spectrum

KR. We now filter Z × BU by finite G-CW(C) complexes Xi, and examine the

corresponding Milnor sequence, as below.

0→ lim←−
i

1K̃R(ΣXi)→ [Z×BU,Z×BU ]→ lim←−
i

[Xi,Z×BU ]→ 0

Thus to show uniqueness, it suffices to show that the first group above is zero. Now

we may build up the Xi’s by adding one cell at a time, and by Bott periodicity we
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have

K̃R(ΣSnC) ∼= π1(BO) ∼= Z/2Z,

so it is easy to see that the groups K̃R(ΣXi) are finite 2-groups. Thus the lim←−
1 term

vanishes, since inverse systems of finite groups automatically satisfy the Mittag-Leffler

condition. It follows that the Bott map, and therefore the spectrum KR, is essentially

unique. Very similar arguments can be used to give KR a canonical multiplication,

making it a commutative ring spectrum. Then Bott periodicity can be restated as

the existence of a unit β in πCKR.

We now apply the (regular) slice spectral sequence to KR. First we determine

the slices. It is easy to determine that

π0KR ∼= Z,

since the groups and restrictions are obvious and the transfer is then determined

by the relations that all Mackey functors satisfy. Next, by both nonequivariant and

"Real" Bott periodicity we have

πe−1KR = 0

πG−1KR ∼= [Sσ, BU ]

∼= π1(BU,BO) = 0

where σ denotes the sign representation of G, and the equality on the third line follows

by considering the structure of Sσ and the fact that BUG = BO. We now obtain the

slices (both regular and irregular)

P−1
−1KR ∼= ∗

P 0
0KR ∼= HZ

from Corollary I.8.9 and Proposition I.3.1. By Bott periodicity and the periodicity
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of the slice filtration we then have

P 2n−1
2n−1KR ∼= ∗

P 2n
2nKR ∼= SnC ∧HZ

for all n ∈ Z (and similarly for the irregular slices). It follows that the maps

P2nKR→ P2n−1KR

are isomorphisms in both the regular and irregular contexts. Then Corollary I.3.7

implies that the regular and irregular slice constructions give the same result on

KR. We could immediately compute the groups in the E2 page of the RSSS at this

point, but we first determine the slice tower in order to understand the multiplicative

structure. Since P0 always yields the (−1)-connected cover, we let kr denote the

connective cover of KR, so that

P0KR = kr.

Letting n ∈ Z and smashing with SnC, we obtain

SnC ∧ kr→ SnC ∧KR β−→∼= KR

as a model for P2nKR. Then, regarding the Bott element as a map

SC → kr

we can complete the diagrams

SnC ∧ kr

��

// KR
=

��
S(n−1)C ∧ kr // KR
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with the maps

SnC ∧ kr ∼= S(n−1)C ∧ SC ∧ kr Σ(n−1)Cβ−−−−−→ S(n−1)C ∧ kr.

The multiplication in the tower is then given by the maps

(SnC ∧ kr) ∧ (SmC ∧ kr)
1∧τ∧1−−−→∼= (SnC ∧ SmC) ∧ (kr ∧ kr)

−→ S(n+m)C ∧ kr

where we have used the twist map and the multiplication map of kr above. It is

now clear that the pairings on the slices are suspensions of the pairing on the 0-slice,

which in turn is determined by the commutative diagram below.

kr ∧ kr

��

// kr

��
HZ ∧HZ // HZ

That is, the multiplication on the 0-slice is the obvious one, and it determines the

pairings on all the other slices. Next we compute the groups on the E2 page of the

spectral sequence. We have

Es,t
2
∼= [St−s, S(t/2)C ∧HZ]

so that

Es,t
2
∼=

H̃t/2−s(S
(t/2)σ;Z) if s ≥ 0, t− s ≥ 0

H̃s−t/2(S(|t|/2)σ;Z) if s ≤ 0, t− s ≤ 0

when t is even, all other groups being zero. To compute these groups, we filter Snσ by

the subspaces Skσ. It is easy to see that S(k+1)σ is obtained from Skσ by attaching a

single free G-cell, and we obtain the (reduced) equivariant cell structure shown below

190



(with attaching maps correct up to a sign).

∗ ← G
1−g←−− G

1+g←−− G
1−g←−− ...

1−(−1)ng←−−−−− G

Here we use g to denote the nontrivial element in G. We obtain the following picture,

which is taken from [Dug].

We have added labels for the generators of certain groups. The open circles represent

copies of Z, while the dots represent copies of Z/2Z. We will eventually deduce

the pattern of differentials shown in the picture. We begin by noting that, since

this spectral sequence is equal to the irregular slice spectral sequence, the map to

the HFPSS in the first quadrant is an isomorphism on all the groups shown, except

perhaps on the line of slope 1. Here it is a monomorphism (except possibly at (0, 0)).

We require an easy lemma, which we state without proof.

Lemma 4.1. The nonequivariant homotopy groups of KR are isomorphic to Z in

even degrees and are zero in odd degrees. The action is trivial in degrees divisible by

4, and is the sign action is degrees that are 2 mod 4.

Now it is easy to see that the HFPSS has copies of Z/2Z in these same places above

the t− s axis, so the map must be an isomorphism on the nonzero groups in the first

quadrant (this is easily verified for (0, 0) as well). It follows that the first quadrant is
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isomorphic to the ring

Z[x, η]/(2η).

The product on the t− s axis in the third quadrant is given by the product in group

homology. This is just the usual product on Z multiplied by 2, e.g. y2 = 2z. Next,

the map from the HOSS to the HFPSS induces the map

Z ∼= (Z)/G
1+g−−→ (Z)G = Z

at t = −4n on the t− s axis, which is multiplication by 2, so we have xy = 2. Also,

Proposition I.9.10 implies that multiplication by x sends generators to generators on

the negative t−s axis. Next, to deduce the differentials, we consider the third column.

It is easy to see that we have

πG3 KR ∼= π3BO ∼= π2O = 0

so the element η3 must be hit by a d3 differential as shown in the figure. The multi-

plicative structure then forces all of the other differentials shown in the first quadrant

to exist. At this point we have already proven the space level version of real Bott

periodicity (to do so, we need not have considered the third quadrant at all). To

continue, we require another easy algebraic lemma, whose proof we omit.

Lemma 4.2. The Tate cohomology of G with coefficients in Z (with trivial action) is

Z/2Z in even degrees and zero in odd degrees. With coefficients in Z with sign action

it is Z/2Z in odd degrees and zero in even degrees. The evident pairings between these

(nonzero) groups are all nonzero.

Now since we have multiplicative maps of spectral sequences

RSSS → HFPSS → TSS

where TSS denotes the Tate spectral sequence (see [GM]), we can completely deduce
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the structures of the HFPSS and the TSS. They are as shown below.

Next, since we have a shifted map of spectral sequences TSS → HOSS (commuting

with the differentials up to a sign of (−1)) which is an isomorphism on the E2 page

below s = −1 and a monomorphism on s = −1, we immediately obtain all of the

other differentials shown in the figure. We can also finish the determination of the

product structure on the E2 page, as follows. The solid lines in the figure for the

TSS are η-towers, and multiplication by the image of x is an isomorphism on the E2

page, so multiplication by either x or η is an isomorphism when it maps one copy

of Z/2Z to another in the third quadrant of the RSSS, by Proposition I.9.11. The

multiplicative structure is now completely determined. To finish the computation of

KR∗ it remains to resolve the extensions in degrees −8n. For these groups there are

two possibilities: the extension is nontrivial and the group is isomorphic to Z, or the

group is isomorphic to Z⊕ Z/2Z. To prove that the former holds, it suffices to show

that these groups are infinite cyclic. For this we argue as follows. Let λ denote the
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element of πG8 KR represented by x2 (nonequivariantly, this is β4), and consider the

diagram shown below.

kr

��

// KR

kr[λ−1]

Since multiplication by λ induces isomorphisms

λ· : πnKR
∼=−→ πn+8KR

when n ≥ 0, it is clear that both maps are connective covers. It follows that there is

a natural isomorphism

[X,KR] ∼= [X, kr[λ−1]]

for X connective. Then for n > 0 we have isomorphisms

[S−8n, KR] ∼= [S8nσ, KR]

∼= [S8nσ, kr[λ−1]]

∼= [S8n+8nσ, kr[λ−1]]

∼= [S8nC, KR]

∼= [S0, KR] ∼= Z,

where we have used "Real" Bott periodicity and the fact that kr[λ−1] is 8-periodic. It

follows that the extensions on the E∞ page are nontrivial. In particular, there exists

an element w ∈ πG−8KR such that 2w is represented by z. Then since x2z = xy = 2 we

have λw = 1; that is, λ is a unit. Letting ν denote the element of πG4 KR represented

by 2x, we have the following isomorphism,

πG∗ KR ∼= Z[η, ν, λ, λ−1]/(2η, η3, ην, ν2 − 4λ)
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with the restriction map rGe : πG∗ KR→ πe∗KR given by the following.

λ 7→ β4

η 7→ 0

ν 7→ 2β2

Now the homotopy ring of (KR)hG has the same description, with the generators of

πG∗ KR mapping to the corresponding generators of π∗(KR)hG, and the Tate spectrum

of KR is trivial, so we have isomorphisms

(KR)hG ∼= (KR)G ∼= (KR)hG.

Hence, KR is both free and cofree, and its G-fixed point spectrum is equivalent to

the homotopy fixed point spectrum of complex K theory with conjugation action (i.e.

the real K theory spectrum).

We conclude this section by using the results of Chapter IV to compute some

Toda brackets in πG∗ KR ∼= KO∗. On the E3 page of the RSSS, for any m ∈ Z we

have 2m · η = 0 and η · η2 = dx. There are no crossing differentials, and the E4 page

is the E∞ page, so we see that all elements of the set

2mx+ 2m · 2xZ

are permanent cycles and converge to representatives of 〈2m, η, η2〉. However, the

indeterminacy of this Toda bracket is precisely 2mνZ, so in KO∗ we have

〈2m, η, η2〉 = (1 + 2Z)mν.

Next, consider the Massey product 〈2, η, 2, η〉. It is easy to compute that this Massey

product is (1 + 2Z)x in the HFPSS, and hence in the RSSS by Proposition IV.9.5.

Then by Theorem IV.9.11 there is an element y ∈ E2,4
2 (KR) such that y converges to
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an element of 〈2, η, 2〉 and

d3x = ηy.

Thus we have 〈2, η, 2〉 = {η2}. Finally, we show how to use Massey products to

resolve the extension in πG−8KR. Suppose the extension is trivial, and let w denote

the nonzero element in E−2,−10
2 . By our assumption, w converges to multiples of z

plus an element of order 2. It follows that if w converges to u, then η2uλ = 0. Hence,

if we let t denote the nonzero element in E0,−6
2 (KR), it suffices to show that tx2 = 0

does not hold in KR∗, even though it holds in the RSSS. For this we argue as follows.

Abusing notation slightly, we have by Theorem IV.9.11 that

d3〈η, t, x2〉 = η(tx2).

Since the indeterminacy of the above Massey product is precisely 2Zx, it then suffices

to show that 〈η, t, x2〉 maps to the nonzero element in that degree of the TSS. For this,

we claim that the image of 〈η, t, x2〉 in the TSS is actually just the product of η, x2

and the Tate class corresponding to t. We regard the Tate construction as the cofiber

EG+ ∧ (− ) → F (EG+, − ). We can regard the class t as coming from a homology

class t′ : S−6
c → EG+ ∧ P−6

−6KR. Then since ηt′ ' 0, we may choose a null-homotopy

of ηt coming from a null homotopy of ηt′. If we use such a null-homotopy to construct

an element of 〈η, t, x2〉, then after coning off EG+ ∧ P 4
4KR we may replace it by the

null-homotopy that simply travels up the cone at constant speed. We then obtain a

map which is η times the Tate class corresponding to the product of t and x2 induced

by the pairing of the HOSS with the RSSS, which is the Tate product η−1x.
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5 Computations for Equivariant K-Theory

In this section we determine the slice tower for the equivariant complex K-theory

spectrum KUG, when G = Cn is cyclic. First we consider the real and complex repre-

sentations of G. Since G is abelian, the complex irreducibles are all one-dimensional.

In fact, we can describe them as follows. Fix a generator g of G, and let σ denote the

representation such that

g 7→ e2πi/n.

Then the irreducible complex representations of G form a cyclic group of order n

generated by σ. Thus we have

C[G] ∼= C + σ + σ2 + ...+ σn−1.

As real representations we have σj ∼= σ−j, while if n is even then σn/2 is the com-

plexification of a real representation. Denote this real representation (the "sign"

representation) by s. It follows easily that the real regular representation is as below.

R[G] ∼=

R + σ + ...+ σ(n−1)/2 if n is odd

R + σ + ...+ σn/2−1 + s if n is even

The homotopy groups of KUG are easily determined. We have π0KUG
∼= RU , the

complex representation ring Mackey functor. That is, RU(G/H) = RU(H) is the

Grothendieck ring of finite dimensional complex H-representations. Of course, we

have

RU(H) ∼= Z[σH ]/(σ
|H|
H − 1).

The restrictions are induced by restriction of representations, while the transfer maps

are induced by induction. If H = Cm and we choose gn/m as our generator for H,

then we have i∗HσG = σH . Now KUG has Bott elements (units) for each irreducible
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complex representation. Denote by βj the Bott element

Sσ
j → KUG

for σj, so that the composite

S0 → Sσ
j → KUG

represents the element 1 − σj ∈ RU(G). Now it is easy to see that π1KUG = 0, so

since we have a Bott isomorphism SC ∧KUG ∼= KUG it follows that KUG satisfies

π2mKUG
∼= RU

π2m+1KUG = 0

for all m ∈ Z. Letting kuG denote the connective cover of KUG, we have the following

theorem, which essentially says that the slice tower expresses KUG as the localization

of kuG at the collection of Bott elements.

Theorem 5.1. For G = Cn and all j ∈ Z we have

P2jKUG ∼= P2j−1KUG ∼= SC+σ+...+σj−1 ∧ kuG

with the maps P2jKUG → KUG given by multiplication by the appropriate Bott ele-

ments, and the maps P2jKUG → P2j−2KUG given by

SC+σ+...+σj−1 ∧ kuG ∼= SC+σ+...+σ(j−1)−1 ∧ Sσj−1 ∧ kuG
ΣC+σ+...+σ(j−1)−1

(βj−1·)−−−−−−−−−−−−−−−→ SC+σ+...+σ(j−1)−1 ∧ kuG

Proof. We proceed by induction on the order of G; the result is trivial for the trivial

group. Now multiplication by all the Bott elements gives an isomorphism

SC[G] ∧KUG
∼=−→ KUG,
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so by the periodicity of the slice filtration it suffices to determine PlKUG for l such

that 0 ≤ l ≤ 2n − 1. Of course, we have P0KUG = kuG. Hence, choose j such that

1 ≤ j ≤ n. First we prove that

SC+σ+...+σj−1 ∧ kuG ≥ 2j.

Since the above spectrum is clearly 0-connected, and is ≥ 2j when restricted to any

proper subgroup by the induction hypothesis, it suffices by Theorem I.8.10 to show

that πGk of this spectrum is zero when 0 < k < 2j/|G|. However, we have 2j/|G| ≤ 2

so this condition is either vacuous or reduces to the case k = 1. Since the spectrum

in question is clearly 1-connected, it follows that it is ≥ 2j. Of course, it is then also

≥ 2j − 1. We will be done if we can show that the cofiber of the map

SC+σ+...+σj−1 ∧ kuG → KUG

is < 2j − 1, since it is then also < 2j, so consider the cofiber sequence below.

SC+σ+...+σj−1 ∧ kuG → KUG → C → Σ(SC+σ+...+σj−1 ∧ kuG)→ ΣKUG

We have that the restriction of C to any proper subgroup is < 2j−1 by the inductive

hypothesis, so it suffices to show that

[SmρG , C] = 0

when m|G| ≥ 2j − 1. By the above cofiber sequence it suffices to show that

[SmρG , SC+σ+...+σj−1 ∧ kuG]→ [SmρG , KUG]

is surjective and that

[SmρG−1, SC+σ+...+σj−1 ∧ kuG]→ [SmρG−1, KUG]
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is injective. First we suppose that m ≥ 2. Then mρG ⊇ C[G], so there is a represen-

tation V such that the above maps are isomorphic to the maps

[SV , kuG]→ [SV , KUG]

[SV−1, kuG]→ [SV−1, KUG]

which are isomorphisms since kuG is the (−2)-connected cover of KUG. Finally,

suppose that m = 1. Then we have by assumption |G| ≥ 2j − 1, which implies that

j− 1 ≤ (|G| − 1)/2 and hence ρG ⊇ R+ σ+ ...+ σj−1. Thus there is a representation

V such that the maps in question are isomorphic to the maps shown below.

[SV−1, kuG]→ [SV−1, KUG]

[SV−2, kuG]→ [SV−2, KUG]

The first map above is an isomorphism since kuG is the (−2)-connected cover of KUG,

while the second map is injective for the same reason.

Remark: Since the restriction maps of RU are not injective, the irregular and

regular 0-slices are not equal. Thus the SSS is NOT the same as the RSSS for KUG.

We next obtain the slices.

Corollary 5.2. If G = Cn then the odd slices of KUG are zero. Also, for any j ∈ Z

we have the following.

P 2j
2jKUG

∼= SC+σ+...+σj−1 ∧H(RU/(1− σj))

Proof. The first statement is immediate, since P2nKUG
∼=−→ P2n−1KUG. For the second

statement, by the periodicity of the slice tower, we may assume that 0 ≤ j < |G|.

Then Theorem 5.1 gives the 2j-slice as

SC+σ+...+σj−1 ∧ Cofib(Sσj ∧ kuG → kuG),
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so we must show that

Cofib(Sσ
j ∧ kuG → kuG) ∼= H(RU/(1− σj)).

For this we utilize the long exact sequence of homotopy groups and the commutative

diagram below.

Sσ
j ∧ kuG

��

// kuG

��
Sσ

j ∧KUG
∼= // KUG

Since kuG is the (−2)-connected cover of KUG, we obtain an isomorphism on the

left and right sides of the above square after applying the functor [X, − ] when X is

0-connected. If X is (−1)-connected we obtain an isomorphism on the right side and

a monomorphism on the left side. Applying this to sphere spectra, we see that the

map Sσj ∧ kuG → kuG is an isomorphism on πk for k > 0 and a monomorphism on

π0. It follows that

Cofib(Sσ
j ∧ kuG → kuG) ∼= H

(
coker

(
π0(Sσ

j ∧ kuG)→ π0(kuG)
))
.

Now the map S0 ∧ kuG → Sσ
j ∧ kuG is surjective on π0, and the composite

kuG ∼= S0 ∧ kuG → Sσ
j ∧ kuG → kuG

is multiplication by the composite

S0 → Sσ
j βj−→ kuG.

This element of RU(G) is 1− σj, so the result follows.

Next we let G = Cp with p prime, and describe the first quadrant in the RSSS.

Most of these groups coincide with the corresponding groups in the HFPSS. Hence

we must compute only the groups near the vanishing line. First we consider odd p.
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The only groups that can be on the vanishing line occur when the number of the slice

is divisible by |G| = p. Since the odd slices are zero, we consider even multiples of p.

Then the group on the vanishing line coming from the 2jp-slice is

πG2j(S
jC[G] ∧HRU) ∼= πG0 (Sj(C[G]−C) ∧HRU)

for all j > 0. Since C[G] − C ∼= σ + ... + σp−1 has zero fixed points, it is easy to see

that this is isomorphic to

coker
(
tGe : RU(e)→ RU(G)

) ∼= coker
(
Z 1+σ+...+σp−1

−−−−−−−−→ Z[σ]/(1− σp)
)

∼= Zp−1.

We also know that πG2j+1 is zero, since it is contained in an odd-degree cohomology

group of G with coefficients in Z. If the number of the slice is 2j with j not divisible

by p, then σj generates the character group so we have

RU/(1− σj) ∼= Z

and the first nonzero homotopy group reduces as before to the cokernel of the transfer,

which is the cokernel of

Z p−→ Z,

and hence is isomorphic to Z/pZ, when j > 1. When j = 1 we have

πG2 (SC ∧HZ) ∼= Z.

The first quadrant of the RSSS and the entire HFPSS for p = 3 are illustrated below.

(In the figure, ’3’ represents a copy of Z/3Z.)
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There can be no nonzero differentials in either spectral sequence (at least in the first

quadrant, in the case of the RSSS) because of the way the groups are spaced. The

result for p = 2 is the same, though the argument is slightly different. When p = 2

we have the following,

P 4j
4jKUG

∼= SjC[G] ∧HRU

P 4j+2
4j+2KUG

∼= SjC[G]+C ∧HZ

so that πG2j+1(P 4j+2
4j+2KUG) = 0. The other calculations are the same as in the odd

case. Finally, we give the slice filtration for the positive homotopy groups of KUG

when G = Cp.

Proposition 5.3. If G = Cp and m > 0 then for 0 < s ≤ m(p− 1) we have

F 2sπG2mKUG = F 2s−1πG2mKUG = βmIs,

where I ⊆ RU(G) is the augmentation ideal.

Proof. For s = m(p − 1) this is easy to deduce from the explicit form of the slice

tower and the fact that, if j is not divisible by p, then 1 − σj generates I. Now

by Corollary I.8.8 we know that F 1πG2mKUG is the kernel of the restriction map

rGe : RU(G) → Z, which is I. We also know from the form of the slice tower that

F 2sπG2mKUG = F 2s−1πG2mKUG for any s. Next, there is a Bott element β ∈ E0,2
2 such
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that multiplication by β induces an isomorphism

β· : Ea,b
2

∼=−→ Ea,b+2
2

when b > a and a < (p− 1)(b− a). It follows that, if q > 0 and a ≤ 2q(p− 1) then

βr(F aπG2qKUG) = F aπG2(q+r)KUG

for any r > 0. Now we have F 2πG2 KUG = βI, so we obtain

βsIs ⊆ F 2sπ2sKUG.

Choosing N ≥ s,m and combining the above facts we have

βNIs ⊆ βN−sF 2sπG2sKUG = F 2sπG2NKUG = βN−mF 2sπG2mKUG,

which immediately implies that

βmIs ⊆ F 2sπG2mKUG.

Now we have equality when s = 1, so the result follows by induction on s since we

have I2 = pI and thus the filtration quotients at positive s are isomorphic to Z/pZ

for both filtrations.

The deduction of the Atiyah-Segal completion theorem for Cp is now quite simple.

Since KUG is split (see [May1]), we have the following isomorphism.

KU∗(BG) ∼= π−∗(KUG)hG

Now there are no differentials in the homotopy fixed point spectral sequence for KUG,

so it converges strongly to these groups. Since we have a Bott element in E0,2
2 we can

identify all of the even homotopy groups of (KUG)hG, together with their filtrations
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coming from the HFPSS, which we denote by F s. We have the following.

KU2m+1(BG) = 0

KU2m(BG) ∼= lim←−
s

π−2m(KUG)hG/F sπ−2m(KUG)hG

Now we know by the results of this section that the maps

πG2mKUG/F
2m(p−1)πG2mKUG → π2m(KUG)hG/F 2m(p−1)π2m(KUG)hG

are isomorphisms when m > 0. Thus we have commutative diagrams

βm+1RU(G)/βm+1I(m+1)(p−1)

β−1·
��

∼= // π2(m+1)(KUG)hG/F 2(m+1)(p−1)π2(m+1)(KUG)hG

β−1·
��

βmRU(G)/βmIm(p−1)
∼= // π2m(KUG)hG/F 2m(p−1)π2m(KUG)hG

and hence an isomorphism as below.

lim←−
s

RU(G)/Is
∼=−→ π0(KUG)hG
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Appendix A

Miscellany

1 Transfinite Filtrations

In many places in the present work we consider transfinite sequences of maps. We

always assume that a transfinite sequence {Xα} satisfies the condition

Xα = lim−→
β<α

Xβ

when α is a limit element. We prefer to think of arbitrary well-ordered indexing sets,

instead of just ordinals, since one can then freely expand a single map into another

well-ordered sequence, as in the following. There are many situations where one has

pushout diagrams of the form shown below.

∐
γ Aγ

��

∐
γ iγ //
∐

γ Bγ

��
Xα

// Xα+1

This pushout may be hopelessly complicated to analyze, so we perform the following,

purely categorical trick. Well-order the indexing set of the coproduct (the γ’s). Then

the pushout Xα+1 can be expressed as a well-ordered colimit of a sequence of pushouts

of the individual maps iγ. This trick is alluded to in the proof of Proposition IV.4.7

and used implicity thereafter.
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2 A Cube Lemma

There are several places in Chapter IV where we show that a certain map, obtained

as a colimit of a map of transfinite sequences, is an h-cofibration. Our method is as

follows. Suppose we are given a map of transfinite sequences, as below.

... // Xα

��

// Xα+1

��

// ...

... // Yα // Yα+1
// ...

Now being an h-cofibration is equivalent to having the LLP with respect to certain

maps, so to show that the colimit map is an h-cofibration it suffices to show that

• X0 → Y0 is an h-cofibration, and

• the pushout product maps Xα+1 ∪Xα Yα → Yα+1 are h-cofibrations.

Now the maps Xα → Xα+1 and Yα → Yα+1 are often pushouts themselves, so we

utilize the following lemma, which is valid in all cocomplete categories.

Lemma 2.1. Suppose given a commutative diagram as below.

A

��

j   

i // B

��

  
A′

��

// B′

��

C
k //

l   

D

  
C ′ // D′

If the front and back faces are pushouts, then so is the diagram below.

A′ ∪A B

��

i�j // B′

��
C ′ ∪C D k�l // D′
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3 Change of Ring Functors

In this section we prove the change of ring isomorphism cited in Section III.3. Let

f : k → k′ be a weak equivalence of commutative ring SG-modules. We have a pair

of adjoint functors, called restriction and extension of scalars, as shown below.

assock
k′∧k(− )

11 assock′
forget
qq

(3.1)

Theorem 3.2. The change of ring functors in 3.1 form a Quillen equivalence.

Proof. It is trivial that these functors form a Quillen pair, and that the right adjoint

creates the weak equivalences on assock′ . Thus, let X be a cofibrant object of assock;

it suffices to prove that the unit of the adjunction

X → k′ ∧k X

is a weak equivalence (see, for example, the Appendix of [MMSS]). Now the initial

k-algebra (that is, k) is not a cofibrant k-module, but it clearly suffices to prove that

the map k → X is a q-cofibration of k-modules. For this we may assume that X is a

kA(I)-cell. Thus, X can be given a transfinite filtration {Xα} such that X0 = k and

each Xα+1 can be written as the colimit of a sequence of k-modules Yi, with Y0 = Xα

and pushout diagrams as below,

X∧i+1
α ∧ (∂AB

∧i)

��

// X∧i+1
α ∧B∧i

��
Yi−1

// Yi

where A→ B is some generating q-cofibration of k-modules (and the smash products

are taken over k). It is now easy to prove by transfinite induction, using Lemma 2.1,

that smashing with Xα preserves q-cofibrations of k-modules. Applying transfinite

induction again, we see that all of the above pushouts are q-cofibrations of k-modules.
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Remark: The fact that the unit map is a cofibration of k modules is a slight

strengthening of Theorem 4.1(3) of [SS].

Remark: Similar theorems for modules and commutative algebras also hold. Using

Lemma IV.3.3, they are actually easier to prove than the above theorem; however,

we do not need them in the present work.

4 The S Model Structures

At some key points in Chapters I and IV we require some facts about an alterna-

tive model structure on equivariant orthogonal spectra introduced in [Sto]. These

are called S model structures. They are defined by pulling back the classical model

structures from all subgroups. Hence, if we let I(G) and J(G) denote the classical

generating cofibrations and acyclic cofibrations, respectively (and I(G)+, J(G)+ the

positive generators), then the sets

{G+ ∧H I(H) : H ⊆ G}

{G+ ∧H J(H) : H ⊆ G}

are the generating cofibrations and acyclic cofibrations, respectively, for the S model

structure for G (similarly for the positive versions). In this section we record some

of the basic facts about these model structures that are not apparent to the author

from [Sto] or [MM].

First of all, we must prove that these model structures actually exist. This is

taken care of by the following two lemmas.

Lemma 4.1. If X is a retract of a {G+ ∧H I(H) : H ⊆ G}-cell, then the underlying

prespectrum of X is cofibrant. That is, X(V ) is G-cofibrant for each representation

V and the structure maps of X are G-cofibrations.

We omit the proof, which easily reduces by Lemma 2.1 to the case X = S−V .
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Lemma 4.2. If X → Y is a weak equivalence of H-spectra, with H ⊆ G and X and

Y retracts of {H+ ∧K I(K) : K ⊆ H}-cells, then the induced map

G+ ∧H X → G+ ∧H Y

is a weak equivalence.

Proof. Take cofibrant replacements X ′ → X and Y ′ → Y in the classical level model

structure corresponding to the levels that are restrictions of G-representations, and

complete the diagram below.

X ′

��

// Y ′

��
X // Y

Since the vertical maps are weak equivalences in each level which is a restriction of

a G-representation, and all of these spectra are levelwise cofibrant by Lemma 4.1,

the vertical maps are homotopy equivalences in these levels. Hence, after applying

induction they are level homotopy equivalences. Furthermore, after applying induc-

tion the top horizontal map is a weak equivalence since induction is a left Quillen

functor on the model structure corresponding to the levels that are restrictions of

G-representations. Hence, after induction the bottom horizontal map is also a weak

equivalence.

Of course, once the existence of the model structures is established, it follows im-

mediately that induction and restriction functors form Quillen pairs, and it is also

clear that restriction preserves (acyclic) cofibrations. There is no longer any need to

be careful about which representations one is indexing on. Of course, the identity

functor (with itself) forms a Quillen equivalence relating the classical model structure

to the S model structure. Similar remarks apply for the positive version.

To prove that the S model structure is monoidal, and pull it back to a model

structure on k-algebras (k a commutative ring spectrum), we require the following

lemma.
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Lemma 4.3. If X is S-cofibrant then X is flat.

Proof. This is Proposition 2.3.29 of [Sto]; however, the author had difficulty following

the argument there. We proceed as in the proof of Lemma IV.3.3(i), using Spanier

Whitehead duality. First let Y be an arbitrary orthogonal G-spectrum, and let U be

a complete G-universe. Then since U is also a complete H-universe for any subgroup

H of G, it is clear that the map

Y → hocolim
V ∈U

F (S−V ∧ SV , Y )

is a fibrant replacement in the S model structure. Thus, if X is compact and S-

cofibrant, then maps from X to Y in the homotopy category can be computed as

lim−→
V

[S−V ∧ SV ∧X, Y ].

With this complication, the rest of the proof follows the pattern of the proof of

Lemma IV.3.3(i).

Next, recall the Quillen pair from [MM], shown below.

SpO
G

N
33MG

N#
ss

It is easy to see that the right adjoint N# commutes with restriction; hence, the left

adjoint N commutes with induction. Since induction preserves cofibrations of SG-

modules, and a weak equivalence of cofibrant SG-modules is a homotopy equivalence,

we obtain the following.

Lemma 4.4. The pair of functors

SpO
G

N
33MG

N#
ss

is a Quillen equivalence relating the positive S model structure to the q model structure

on SG-modules.
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Corollary 4.5. If X is positive S-cofibrant then the unit map X → N#NX is a weak

equivalence.

Finally, we seek to pull back the positive S model structure to commutative algebra

categories. For this we introduce the following considerations. First note that in fact,

evaluating an orthogonal G-spectrum X in level V defines a functor

SpO
G → (O(V ) oG)Top∗

with a left adjoint that we denote by GV ; a spectrum of the form GVX is called

semifree. In [Sto], the author shows that the S-cofibrations can also be generated by

maps of the form

GRn
(
(O(Rn) oG)/H × (Sd−1 → Dd)

)
+

(4.6)

for subgroups H of O(Rn)oG such that H ∩O(Rn) = {1}. Now let FG[i] denote the

family of subgroups of G×Σi that have trivial intersection with Σi, and let EGΣi be

the universal space for this family. We have the following.

Lemma 4.7. [Lemma 2.3.34 of [Sto]] Let Y be an orthogonal G-spectrum and let

X = GRn
(
(O(Rn) o G/H)+ ∧ K

)
for some based CW complex K, n > 0 and some

subgroup H of O(Rn) o G such that H ∩ O(Rn) = {1} and the H-representation

defined by the projection H → O(Rn) has a nonzero fixed vector. Then the quotient

map

(EGΣi+ ∧Σi X
i) ∧ Y → (X i/Σi) ∧ Y

is a weak equivalence.

Corollary 4.8. If X is positive S-cofibrant, then the quotient map

EGΣi+ ∧Σi X
i → X i/Σi

is a weak equivalence.
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Proof. By using the generating cofibrations 4.6, and using the fact that the restriction

of EGΣi to G × Σi1 × ... × Σik is homotopy equivalent to EGΣi1 × ... × EGΣik , this

easily reduces to proving that a smash product of these maps is a weak equivalence

when the X’s are of the form GRn
(
(O(Rn)oG/H)+∧K

)
as in Lemma 4.7. The result

follows by writing such a smash product as a composite of maps involving one smash

factor at a time and applying Lemma 4.7 to each.

Corollary 4.9. If X is positive S-cofibrant and weakly contractible then any symmet-

ric power of X is weakly contractible.

Proof. By Corollary 4.8 it suffices to show that EGΣi+∧ΣiX
i is weakly contractible. It

is not hard to see that this spectrum is positive S-cofibrant, and thus by Corollary 4.5

it suffices to show that

N(EGΣi+ ∧Σi X
i) ∼= EGΣi+ ∧Σi N(X)i

is contractible. This is immediate, since N(X) is contractible by Corollary 4.5.

The remaining fact one needs to prove the model structures on commutative algebras

is the following.

Corollary 4.10. If B is positive S-cofibrant then symmetric powers of B are flat.

Proof. As before, by using the generators 4.6 this reduces to the case where B is of

the form GRn
(
(O(Rn) o G/H)+ ∧K

)
as in Lemma 4.7, which further reduces us to

showing that EGΣi+∧ΣiB
i is flat in this case. However, this last spectrum is positive

S-cofibrant, so the result follows by Lemma 4.3.

Of course, once the model structures on commutative algebras have been constructed,

one can show that they are related by Quillen equivalences to the classical model

structures (which can be proven to exist as a corollary of the above). Furthermore,

it is immediate that the pair of functors

commH

NG
H

11 commG

resqq
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is a Quillen pair relating these S model structures, where NG
H is the norm functor

of [HHR]. Classically, this pair is only a Quillen pair when one uses the model struc-

ture on commH derived from the levels which are restrictions of G-representations.

Finally, we remark that the above results can be used to prove all of the standard

change of ring isomorphisms relative to the S model structures, and that (N,N#) is a

Quillen equivalence relating the S model structure on commutative rings to the model

category of commutative ring SG-modules.
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