九州大学学術情報リポジトリ Kyushu University Institutional Repository

On fixed point sets of differentiable involutions

鎌田, 正良 九州大学教養部数学教室

Tyan, Shian-Wu Department of Mathematics, College of General Education, Kyushu University

https://doi.org/10.15017/1449045

出版情報:九州大学教養部数学雑誌. 15 (1), pp.1-11, 1985-12. College of General Education, Kyushu University バージョン: 権利関係: Math. Rep. XV-1, 1985.

On fixed point sets of differentiable involutions

Masayoshi KAMATA and Shian-Wu TYAN (Received September 17, 1985)

1. Introduction

Let (M^n, T) be a closed smooth manifold dimension n with a differentiable involution, and let F^m be the union of the *m*-dimensional components of the fixed point with the normal bundle ν_m . The aim of this paper is to give some relations among the Whitney numbers of $([F^m, \nu_m])$, which are used to investigate involutions fixing a projective space and a point. Let $S^{\langle k \rangle}(\xi)$ be the characteristic class of an *n*-dimensional vector bundle ξ which is given by replacing the *i*-th elementary symmetric polynomial of α_i by the *i*-th Whitney class $W_i(\xi)$ in the symmetric polynomial

$$\sum_{i_1+i_2+\cdots+i_n=k} \alpha_1^{i_1} \alpha_2^{i_2} \cdots \alpha_n^{i_n}$$

The main theorem will be:

THEOREM 1.1. Let $[F^m] \in H_m(F^m; \mathbb{Z}_2)$ be the fundamental class of F^n . Then (1) $\sum_{0 \le m \le n} \langle S^{<m>}(\nu_m), [F^m] \rangle = 0$ (2) $\sum_{0 \le m \le n} \langle m S^{<m>}(\nu_m) + \sum_{1 \le j \le \beta} {\beta \choose i} S^{<m-j>}(\nu_m) S_j(\nu_m) + S^{<m-\beta>}(\nu_m) S_\beta(\tau(F_m)), [F_m] \rangle = 0$

where $S_i()$ indicates the characteristic class corresponding to the symmetric polynomial $\sum \alpha_{i,j}^{j}$ and $\beta \leq n-1$.

The paper is organized as follows. In § 2 we get some relations among the characteristic classes which will be used to calculate the Wu classes of the real projective space bundle $P(\xi)$ associated with a smooth vector bundle ξ in §3, and to calculate the Gysin homomorphism of the classifying map $f: P(\xi) \rightarrow RP^{N}$ for the canonical line bundle over $P(\xi)$ in § 4. Making use of the results obtained in § 2, the Boardman homomorphism and the Quillen theorem instead of the results of Kosniowski and Stong [8], we prove Theorem 1.1 in § 4. In § 5 we show that an involution fixing a (2m+1)-dimensional real projective space RP^{2m+1} and a point is bordant to the Z_2 -manifold (RP^{2m+2}, T) with

$$T[x_0, x_1, \ldots, x_{2m+2}] = [-x_0, x_1, \ldots, x_{2m+2}]$$

and we investigate the dimension of a Z_2 -manifold fixing $\mathbb{R}P^{2m}$ and a point.

2. The structure of the cohomology ring of a projective space bundle

Let ξ be a differentiable vector bundle of dimension k+1 over an *n*-dimensional smooth manifold M^n . Denote by $P(\xi)$ the projective space bundle. The cohomology ring $H^*(P(\xi); \mathbb{Z}_2)$ is a $H^*(M^n; \mathbb{Z}_2)$ -mo dule with

$$ax = \pi^*(a) \cup x,$$

where $\pi: P(\xi) \to M^n$ is the projection. Let γ_{ξ} be the canonical line bundle over $P(\xi)$ and let c be the first Whitney class of γ_{ξ} . The Leray-Hirsch theorem implies that $H^*(P(\xi) ; Z_2)$ is a free $H^*(M^n ; Z_2)$ -module with a basis 1, c, c^2, \ldots, c^* , and

(2.1)
$$c^{k+1} = W_1(\xi)c^k + W_2(\xi)c^{k-1} + \dots + W_k(\xi)c + W_{k+1}(\xi)$$

where $W_i(\xi)$ denotes the *i*-th Whitney class of ξ .

Applying the splitting principle to a (k+1)-dimensional vector bundle ξ , we formally write

$$W(\xi) = \prod_{j=1}^{k+1} (1 + \alpha_j)$$

Denote by $S^{<i>}(\xi)$ the characteristic class corresponding to the symmetric polynomial

$$\sum_{i_1+i_2+\cdots+i_{k+1}=i}\alpha_1^{i_1}\alpha_2^{i_2}\cdots\alpha_{k+1}^{i_{k+1}}$$

Then we have the following

(2.3) $c^{k+t} = f_{t,1}c^k + f_{t,2}c^{k-1} + \dots + f_{t,k}c + f_{t,k+1}.$ Then (1) $f_{1,j} = W_j(\xi)$ (2) $f_{t,1} = S^{<t>}(\xi)$ (4) $f_{t,j} = S^{<t-1>}(\xi) W_j(\xi) + S^{<t-2>}(\xi) W_{j+1}(\xi) + \dots + S^{<t+j-k-2>}(\xi) W_{k+1}(\xi)$

PROOF. (1) is an immediate result of (2.1). It follows from (2.1) and (2.3) that

(2.4)
$$\begin{cases} f_{t+1,1} = f_{t,1} W_1(\xi) + f_{t,2} \\ f_{t+1} = f_{t,1} W_2(\xi) + f_{t,3} \\ \dots \\ f_{t+1,k} = f_{t,1} W_k(\xi) + f_{t,k+1} \\ f_{t+1,k+1} = f_{t,1} W_{k+1}(\xi). \end{cases}$$

Let $f_j = f_{j,1}$ for brevity. Then we have

 $(2.5) \quad f_{t+1} = f_t \ W_1(\xi) + f_{t-1} W_2(\xi) + \dots + f_{t-k+1} \ W_k(\xi) + f_{t-k} \ W_{k+1}(\xi)$

We comprehend $W_j(\xi)$ to be the *j*-th elementary symmetric polynomial $\mathfrak{S}_j(\alpha)$ of α_j , and so we have

$$(2.6) \quad f_{t+1} = f_t \mathfrak{S}_1(\alpha) + f_{t-1} \mathfrak{S}_2(\alpha) + \dots + f_{t-k+1} \mathfrak{S}_k(\alpha) + f_{t-k} \mathfrak{S}_{k+1}(\alpha)$$

Let $f_j^{(i)} = f_j^{(i-1)} + \alpha_i f_{j-1}^{(i-1)}$ where $f = f_j^{(1)} + \alpha_1 f_{j-1}$. Proceeding inductively to substitute $f_j^{(i)}$ for $f_j^{(i-1)}$ in (2.6), we finally obtain

 $f_{j+1}^{(k)} = f_j^{(k)} \alpha_{k+1}$

and

$$f_{j+1}^{(k)} = \alpha_{k+1}^{j+1}$$

We now suppose as the inductive hypothesis that

$$f_{j}^{(1)} = \sum_{i_{2} + \dots + i_{k+1} = j} \alpha_{2}^{i_{2}} \cdots \alpha_{k+1}^{i_{k+1}}$$

Since $f_{j}^{(1)} = f_{j} + \alpha_{1} f_{j-1}$, it follows that

$$f_{j} = f_{j}^{(1)} + \alpha_{1} f_{j-1}^{(1)} + \alpha_{1}^{2} f_{j-2}^{(1)} + \dots + \alpha_{1}^{j-2} f_{2}^{(1)} + \alpha_{1}^{j-1} f_{1}^{(1)} + \alpha_{1}^{j}$$

and we have $f_j = S^{<j>}(\xi)$. (3) is an immediate result of (2) and (2.4).

M. Kamata and S-W. Tyan

3. On the Wu classes of the projective space bundle associated with a real vector bundle.

According to Adams [1], the KO-group $\widetilde{KO}(RP^n)$ of the *n*-dimensional projective space RP^n is the cyclic group $Z/2^{f_n}$ with a generator γ_n -1, where γ_n is the canonical line bundle over RP^n and f_n is a number of a set $\{s \mid 0 \le s \le n, s \equiv 1, 2, 4 \mod 8\}$. Let ξ be a real vector bundle of dimension k+1 over RP^n with $\xi \sim_s u \gamma_n$. It means that there exist trivial bundles θ and θ' such that $\xi \oplus \theta = u \gamma_n \oplus \theta'$. Applying the splitting principle, we have

$$S^{}(\xi) = \sum_{i_1+i_2+\cdots+i_{k+1}=i} \alpha_1^{i_1} \alpha_2^{i_2} \cdots \alpha_{k+1}^{i_{k+1}}$$

(3.1)

$$=\sum_{j_1+j_2+\cdots+j_u=l} x^{j_1+j_2+\cdots+j_u} = \binom{-u}{l} x^{j_1+j_2+\cdots+j_u}$$

where $x = W_1(\gamma_n)$ is a generator of $H^1(\mathbb{RP}^n; \mathbb{Z}_2)$. The *i*-th Whitney class $W_i(\xi)$ of ξ is $\binom{u}{i}x^i$. Using Propositon 2.2, we obtain

Proposition 3.2.

$$c^{k+i} = {\binom{-u}{t}} c^{k} x^{i} + \sum_{s=1}^{k} {\binom{-u}{t-s}} {\binom{u}{s+1}} c^{k-1} x^{i+1} + \sum_{s=1}^{k+1} {\binom{-u}{t-2}} {\binom{u}{s+2}} c^{k-2} x^{i+2}$$

+
$$\sum_{1 \le s \le k-j+2} {\binom{-u}{t-s}} {\binom{u}{j+s-1}} c^{k-j+1} x^{i+j-1} + \dots + {\binom{-u}{t-1}} {\binom{u}{k+1}} x^{i+k}$$

where c is the first Whitney class of the canonical line bundle η_{ε} of the projective space bundle associated with ξ .

The tangent bundle of the projective space bundle $P(\xi)$ associated with a vector bundle ξ over RP^{*} is stably equivalent to

$$\eta_{\varepsilon} \otimes \pi^{!} \xi \oplus (n+1) \eta_{n}$$

where $\pi: P(\xi) \rightarrow RP^n$ is the projection. The Wu class $v_t(M)$ of a manifold M of dimension m is defined by $\langle Sq^tx, [M] \rangle = \langle xv_t(M), [M] \rangle$, where [M] indicates the fundamental class of M. We use Proposition 3.2 to have the following (cf. [5]).

PROPOSITION 3.3. Let $v_t(P(\xi)) = \lambda_0 x^t + \lambda_1 x^{t-1}c + \lambda_2 x^{t-2} c^2 + \dots + \lambda_k x^{t-k} c^k.$

4

If $\xi \sim_s u \eta_n$ then

$$\lambda_{j} = \sum_{a+b-t} \binom{n-t+j}{a} \binom{k-j}{b} \binom{-u}{b-j}.$$

4. A proof of Theorem 1.1.

Let $\xi \rightarrow F$ be a smooth real vector bundle of dimension k+1 over an *m*-dimensional closed smooth manifold *F*, and let $f: P(\xi) \rightarrow RP^{N}$ be the classifying map for the canonical line bundle γ_{ξ} . We now investigate the Gysin homomorphism

 $f_1: H^i(P(\xi); Z_2) \stackrel{D}{\cong} H_{m+k-i}(P(\xi); Z_2) \stackrel{f_*}{\to} H_{m+k-i}(RP^N; Z_2) \stackrel{D^{-1}}{\cong} H^{N-m-k+i}(RP^N; Z_2)$ where D is the Poincare duality isomorphism.

PROPOSITION 4.1. Let $a \in H^{p}(F; Z_{2})$ and $c = W_{1}(\eta_{\varepsilon})$. Then $f_{1}(ac^{q}) = \langle S^{\langle m-p \rangle}(\xi)a, [F] \rangle \bar{x}^{N-m-k+p+q}$

where \tilde{x} indicates the generator of $H^1(\mathbb{R}P^N; \mathbb{Z}_2)$.

PROOF. Take the dual class $(\tilde{x}^{N-m-k+p+q})_* \in H_{N-k-m+p+q}(\mathbb{R}P^N)$ which equals to $\tilde{x}^{m+k-p-q} \cap [\mathbb{R}P^N]$. Let $f_1(ac^q) = \lambda \tilde{x}^{N-m-k+p+q}$. Since $f^*(\tilde{x}) = c$, Proposition 2.2 implies that

$$\lambda = \langle \tilde{x}^{m+k-p-q}, f_*(ac^q \cap [P(\xi)]) \rangle$$

$$= \langle ac^{m+k-p}, [P(\xi)] \rangle$$

$$= \langle aS^{\langle m-p \rangle}(\xi) \ c^k, [P(\xi)] \rangle$$

$$= \langle aS^{\langle m-p \rangle}(\xi), [F] \rangle$$

Q. E. D.

We now recall the Boardman map (cf. [6])

 $\beta: \mathfrak{N}^*(X) \to H^*(X; \mathbb{Z}_2)[[t_1, t_2, \ldots]]$

which is a multiplicative natural transformation satisfying

(1) for the cobordism first characteristic class $W_i^{N}(\gamma)$ of a line bundle γ

$$\beta(W_1(\eta)) = W_1(\eta) + \{W_1(\eta)\}^2 t_1 + \dots + \{W_1(\eta)\}^{i+1} t_i + \dots$$

(2) for finite CW complex X, β is injective.

We next recall the Conner-Floyd characteristic class (cf. [2], [6])

 $c_i: Vect(X) \rightarrow H^*(X; Z_2)[[t_1, t_2,...]]$

which is a map assigning a real vector bundle over X to a formal power series of t_i with the coefficient in $H^*(X; Z_2)$ such that

- (1) $c_t(f_1\xi) = f^*c_t(\xi)$
- (2) $c_t(\xi \oplus \eta) = c_t(\xi)c_t(\eta)$
- (3) for a line bundle γ $c_t(\gamma) = 1 + W_1(\gamma) t_1 + \{W_1(\gamma)\}^2 t_2 + \cdots$

Denoting by $D_N: \mathfrak{N}^*(N) \to \mathfrak{N}_*(N)$ the Atiyah Thom Poincare duality isomorphism. Then we have the Umkehrung homomorphism $f_!$ for a map $f: M \to N$ between closed manifolds M and N:

$$f: \mathfrak{N}^*(M) \xrightarrow{D_M} \mathfrak{N}_*(M) \xrightarrow{f_*} \mathfrak{N}_*(N) \xrightarrow{f_*} \mathfrak{N}^*(N)$$

which satisfies $D_N f_1(1) = [M \rightarrow N] \in \mathfrak{N}_*(N)$. For the bordism group $\mathfrak{N}_n^{2_2}$ of Z_2 -manifolds of dimension *n*, the bordism group $\sum_{s+t=n} \mathfrak{N}_s(BO(t))$ of vector bundles and the bordism group $\mathfrak{N}_{n-1}(BO(1))$ of free Z_2 -maifolds, there exists an exact sequence (cf. [7])

$$(4.2) \quad 0 \to \mathfrak{N}_n^{\mathbb{Z}_2} \xrightarrow{f_*} \sum_{s \neq t \text{ for } n} \mathfrak{N}_s(BO(t)) \xrightarrow{\theta} \mathfrak{N}_{n-1}(BO(1)) \to 0$$

where $j^*[M, T] = \sum_i [F_i, \nu_i]$, F_i the fixed point component of (M, T)and ν_i the normal bundle of F_i , and $\partial [M, \xi] = [P(\xi) \xrightarrow{f} RP^N \subset BO(1)]$, fthe classifying map for the canonical line bundle. We now remark that

(4.3) $\beta(f_1(1)) = f_1 c_t(\nu_f)$,

where ν_f is the virtual normal bundle of $f: M \rightarrow N$ (cf. [9]).

A PROOF OF THEOREM 1.1. The exact sequence (4.2) implies that $\sum \partial [F^m, \nu_m] = 0$. Let $f_m : P(\nu_m) \to RP^N$ be the classifying map for the canonical line bundle γ_{ε} . (4.3) implies $\sum f_m!(c_t(\nu_{f_m})) = 0$. We now compute

$$f_{m1}c_{t}(\nu_{f_{m}}) = f_{m1}\left\{\frac{f_{m}^{*}(c_{t}(\gamma_{N}))^{N+1}}{c_{t}(\gamma_{\nu_{m}}\otimes\pi^{1}\nu_{m})c_{t}(\pi^{1}\tau(F^{m}))}\right\}$$
$$= c_{t}(\gamma_{N})^{N+1}f_{m1}\left\{\frac{1}{c_{t}(\gamma_{\nu_{m}}\otimes\pi^{1}\gamma_{m})c_{t}(\pi^{1}\tau(F^{m}))}\right\}$$

Denote by \mathfrak{D} an ideal genereated by $\{t_1, t_2, \ldots, t_{\beta-1}, t_{\beta}^2, t_{\beta+1}, \ldots\}$. By virtue of the splitting principle, we have

$$c_{\iota}(\gamma_{\nu_{m}} \otimes \pi^{!} \nu_{m}) = 1 + \{(n-m) c^{\beta} + \sum_{1 \leq j \leq m} {\beta \choose j} S_{j}(\pi^{!} \nu_{m}) c^{\beta-j} \} t_{\beta} \mod \mathfrak{D}$$

and

$$c_t(\pi!\tau(F)) = 1 + s_\beta(\pi!\tau(F))t_\beta \mod \mathfrak{D}$$
.

Since $c_t(\gamma_N)$ is an invertible element, by making use of Proposition 4. 1 we complete the proof.

5. Involutions fixing real projective spaces

Suppose that RP^{π} is embedding in M^{n} with the normal bundle ν which is stably equivalent to $u\gamma_{\pi}$. Then

Lemma 5.1.

(1) $S_{i}(\nu) = ux^{i}$ in $H^{*}(RP^{m}; Z_{2})$

(2) $S_{j}(\tau(P(\nu)) = u(c+x)^{j} + (n+m+u)c^{j} + (m+1)x^{j}$ in $H^{*}(P(\nu); Z_{2})$ where x is the generator of $H^{1}(RP^{\pi}; Z_{2})$, and $c = W_{1}(\eta_{\nu})$.

PROOF. $\xi \sim_s \xi'$ implies that $S_j(\xi) = S_j(\xi')$ and (1) follows. $\tau(P(\nu)) \sim_s \eta \otimes \pi^{!}\nu \oplus (m+1) \pi^{!}\eta_m$ and

$$S_i(\tau(P(\nu)) = S_i(\eta_{\nu} \otimes \pi! \nu) + (m+1)x^i.$$

Let $\nu \oplus \theta = u \eta_m \oplus \theta'$, with trivial bundles θ and θ' . Then

$$S_{i}(\gamma_{\nu} \otimes \pi^{!} \nu) + \dim S_{i}(\gamma_{\nu}) = u S_{i}(\gamma_{\nu} \otimes \pi^{!} \gamma_{m}) + \dim \theta' S_{i}(\gamma_{\nu})$$
$$S_{i}(\gamma_{\nu} \otimes \pi^{!} \nu) = u(c+x)^{i} + (n+m+u) c^{i}. \qquad Q. E. D.$$

and

Let (M, T) be a closed Z_2 -manifold of dimension n fixing the disjoint union $\sum_{1 \le i \le s} RP^{m_i}$ of real projective spaces, and let ν_i be the normal bundle of RP^{m_i} which is stably equivalent to $u_i \eta_{m_i}$, where u_i is a nonnegative integer. Then it follows from Theorem 1.1 and Lemma 5.1 that

Proposition 5.2.

(1)
$$\sum_{1 \le i \le s} \binom{-u_i}{m_i} = 0 \mod 2$$

(2)
$$\sum_{1 \le i \le s} (m_i \binom{-u_i}{m_i} + \sum_{1 \le i \le s} \binom{\beta}{j} \binom{-u_i}{m_i - j} u_i + \binom{-u_i}{m_i - \beta} (m_i + 1)) = 0 \mod 2$$

(3) if $\beta = 2^i$ then

$$\sum_{1 \le i \le s} (m_i \binom{-u_i}{m_i} + (u_i + m_i + 1) \binom{-u_i}{m_i - \beta}) = 0 \mod 2$$

We then have the following

COROLLARY 5.3. Suppose that a close Z_2 -manifold (M, T) fixing $\mathbb{RP}^m + \{a \text{ point}\}$ has the normal bundle ν of \mathbb{RP}^m with $\nu \sim_s u \eta_m$. Then

- (1) if m is odd, then u is odd.
- (2) if $m=2^{t}$, then u is odd.

PROOF. (1) is the immediate result of Proposition 5.2 (1). Applying Proposition 5.2 (3) to $\beta = 2^t$, we have

$$m\binom{-u}{m}+\binom{-u}{0}(u+m+1)\equiv 0 \mod 2.$$

and $u+1\equiv 0$.

Q. E. D.

We also obtain

COROLLARY 5.4. There is no involution fixing 2k copies of RP^m and a point such that the normal bundles of the projective spaces are stably equivalent each other.

THEOREM 5.5. A Z_2 -manifold fixing a projective space RP^{2n+1} of dimension 2n+1 and a point is bordant to a Z_2 -manifold RP^{2n+2} with the action $\tilde{T}[x_0, x_1, ..., x_{2+2}] = [-x_0, x_1, ..., x_{2n+2}].$

PROOF. Suppose that (M, T) is a Z_2 -manifold whose fixed point set is $RP^{2n+1} + \{a \text{ point}\}$ and the normal bundle ν of RP^{2n+1} is stably equivalent to $u\gamma_{2n+1}$, where ν is of dimension k+1. By Corollary 5.3 (1) u is odd. Conner and Floyd proved that Euler characteristic numbers modulo 2 of M and the fixed point set coincide. We use this fact to prove that $\chi(M)=1$, where $\chi(\)$ denotes the Euler characteristic modulo 2. Suppose that k is odd, then the dimension of M is odd and $\chi(M)=0$. This is a contradiction. Therefore k is even. Generalized Whitney numbers $\langle W_u(N)g^*(y), [N] \rangle$ for a singular manifold $(N \to Y)$ determines the bordism class $[N \to Y]$ in $\mathfrak{N}_*(Y)$ (cf. [7]). Since k is even and u is odd, the first Whitney class of $P(\nu)$ is c+x. Let us compare the following characteristic numbers of $[P(\nu) \xrightarrow{f} RP^N]$ and $[RP^{2n+1} \subset RP^N]$, where f is the classifying map for the line bundle γ_{ν} :

 $\langle \{W_1(P) - f^*(\tilde{x})\}^{2n+k+1}, [P(\nu)] \rangle = 0$ if k > 0and

 $\langle \{W_1(RP^{n+k}) - i^*(\tilde{x})\}^{2n+k+1}, [RP^{2n+k+1}] \rangle = 1.$

Therefore k=0 and ν is equivalent to γ_{2n+1} . Then we have

$$j^*([M, T]) = [RP^{2n+1}, \gamma_{2n+1}] + [\{a \text{ point}\}, \theta],$$

where θ is the trivial bundle. Let $(\mathbb{R}P^{2n+2}, \tilde{T})$ be a \mathbb{Z}_2 -manifold with a \mathbb{Z}_2 -action

$$T[x_0, x_1, \ldots, x_{2n+2}] = [-x_0, x_1, \ldots, x_{2n+2}]$$

Then

$$j^*([RP^{2n+2}, \tilde{T}] = j^*([M, T]))$$

and the exact sequence (4.2) deduces that (M, T) is bordant to (RP^{2n+2}, \tilde{T}) .

Q. E. D.

THEOREM 5.6. Suppose that an involution (M^n, T) fixes $RP^{2m} + \{a \text{ point}\}, m>0$. Let ν be the normal bundle of RP^{2m} with $\nu \sim_s u\eta_{2m}$. Then u is odd and $n\leq 4m+1$.

PROOF. We firstly assume that u is even. Then Lemma 5.1 implies that $S_i(\tau(P(\nu)) = n \ c^i + x^i)$. We compare generalized Whitney numbers of $[P(\nu) \xrightarrow{f} RP^N]$, f the classifying map of η_{ν} , and $[RP^{n-1} \stackrel{i}{\subset} RP^N]$. If n > 2m, then

$$< c^{n-2m-1} \{S_{2m}(\tau(P(\nu))) - nf^*(\tilde{x}^{2m})\}, [P(\nu)] > = 1$$

and

$$< x^{n-2m-1} \{S_{2m}(\tau(RP^{n-1})) - ni^*(\tilde{x}^{2m})\}, [RP^{n-1}] >= 0$$

where $x = W_1(\gamma_{n-1})$, $\bar{x} = W_1(\gamma_N)$ and $c = W_1(\gamma_\nu)$. This is a contradiction. Then if u is even, dim M=2m. This means that some component of M with the involution has a fixed point set consisting of a point. Since there is no involution fixing a point except the involution on a zero dimensional manifold, if m is positive, then u is odd. We next assume that u is odd. Then Lemma 5.1 implies that

$$S_{i}(\tau(P(\nu)) = (c+x)^{i} + (n+1)c^{i} + x^{i}.$$

If n > 4m+1, then

$$A = c^{n-4m-2} \{S_{4m+1}(\tau(P(\nu))) + (n+1)f^*(\tilde{x})^{4m+1} + [S_{2m+1}(\tau(P(\nu))) + (n+1)f^*(\tilde{x})^{2m+1}] \{S_{2m}(\tau(P(\nu))) + (n+1)f^*(\tilde{x})^{2m}]\}$$

= $c^{n-4m-2} (c+x)^{2m+1} x^{2m} = c^{n-2m-1} x^{2m}$

and

M. Kamata and S-W. Tyan

$$B = x^{n-4m-2} (S_{4m+1}(\tau(RP^{n-1})) + (n+1)i^*(\bar{x})^{4m+1} + [S_{2m+1}(\tau(RP^{n-1})) + (n+1)i^*(\bar{x})^{2m+1}] [S_{2m}(\tau(RP^{n-1})) + (n+1)i^*(\bar{x})^{2m}] = 0$$

Therefore $\langle A, [P(\nu)] \rangle = 1$ and $\langle B, [RP^{n-1}] \rangle = 0$. This is a contradiction. Then the theorem follows.

The homogenuous space SU(n)/SO(n) is diffeomorphic to a manifold $X_n = \{P \in SU(n) \mid P = P\}$. Let Z_2 act on X_n by $P \to P^{-1}$. Denote by $F(X_n, Z_2)$ the fixed point set. Then we have

PROPOSITION 5.7. $F(X_n, Z_2)$ is a disjoint union of the Grassmann manifolds $\{G_{2k}(\mathbb{R}^n); k=0, 1, 2, ...\}$.

PROOF. Each element P of $F(X_n, Z_2)$ belongs to SO(n) and ${}^{t}P=P$. Let $F_{2k}(X_n, Z_2)$ consist of elements of $F(X_n, Z_2)$ whose trace is n-4k. Letting each P of $F_{2k}(X_n, Z_2)$ correspond to the subspace $\{x | Px = -x\}$ in \mathbb{R}^n , we see that $F_{2k}(X_n, Z_2)$ is diffeomorphic to the Grassmann manifold $G_{2k}(\mathbb{R}^{t})$.

Q. E. D.

Hence we obtain the 3-dimensional projective space RP^3 with the involution $[x_0, x_1, x_2, x_3] \rightarrow [-x_0, x_1, x_2, x_3]$ whose fixed point set is $RP^2 + \{a \text{ point}\}$ and the 5-dimensional manifold X_3 with the involution $P \rightarrow P^{-1}$ whose fixed point set is $RP^2 + \{a \text{ point}\}$.

References

- [1] F. ADAMS: Vector fields on spheres, Ann. Math. 75 (1962), 603-632.
- [2] F. ADAMS: Stable Homotopy and Generalized Homology, Univ. of Chicago Press, Chicago (1974).
- [3] J. M. BOARDMAN: On manifolds with involution, Bull. Amer. Math. Soc. 73 (1967), 136-138.
- [4] G. E. BREDON: Introduction to Compact Transformation groups, Academic Press, (1972).
- [5] E. H. BROWN and F. PETERSON: Relations among characteristic classes I, Topology vol. 3 (1964), 39-52.
- [6] T. BRÖCKER and TAMMO TOM DIECK: Kobordismentheorie, Lecture Notes in Math. 178, Springer Verlag (1970).
- [7] P. E. CONNER and E. E. FLOYD: Differentiable Periodic Maps, Springer Verlag (1964).
- [8] C. KOSNIOWSKI and R. E. STONG: Involutions and characteristic numbers, Topology, vol. 17 (1978), 309-330.
- [9] D. QUILLEN: Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. in Math. 7 (1971), 29-56.

10

Masayoshi Kamata

Department of Mathematics, College of General Education, Kyushu University, Fukuoka 810, Japan

Shian-Wu Tyan

Szehai Junior College of Technology, Taipei, Taiwan, Republic of China