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Introduction

This textbook is an introduction to the modern foundations of stable homotopy theory and ‘algebra’
over structured ring spectra, based on symmetric spectra. We begin with a quick historical review and
attempt at motivation.

A crucial prerequisite for spectral algebra is an associative and commutative smash product on a
good point-set level category of spectra, which lifts the well-known smash product pairing on the homotopy
category. The first construction of what is now called ‘the stable homotopy category’, including its symmetric
monoidal smash product, is due to Boardman [4] (unpublished); accounts of Boardman’s construction
appear in [65], [62] and [2, Part III] (Adams has to devote more than 30 pages to the construction and
formal properties of the smash product).

To illustrate the drastic simplification that occurred in the foundations in the mid-90s, let us draw
an analogy with the algebraic context. Let R be a commutative ring and imagine for a moment that the
notion of a chain complex (of R-modules) has not been discovered, but nevertheless various complicated
constructions of the unbounded derived category D(R) of the ring R exist. Moreover, constructions of
the derived tensor product on the derived category exist, but they are complicated and the proof that the
derived tensor product is associative and commutative occupies 30 pages. In this situation, you could talk
about objects A in the derived category together with morphisms A⊗LR A −→ A, in the derived category,
which are associative and unital, and possibly commutative, again in the derived category. This notion may
be useful for some purposes, but it suffers from many defects – as one example, the category of modules
(under derived tensor product in the derived category), does not in general form a triangulated category.

Now imagine that someone proposes the definition of a chain complex of R-modules and shows that
by formally inverting the quasi-isomorphisms, one can construct the derived category. She also defines
the tensor product of chain complexes and proves that tensoring with suitably nice (i.e., homotopically
projective) complexes preserves quasi-isomorphisms. It immediately follows that the tensor product descends
to an associative and commutative product on the derived category. What is even better, now one can
suddenly consider differential graded algebras, a ‘rigidified’ version of the crude multiplication ‘up-to-chain
homotopy’. We would quickly discover that this notion is much more powerful and that differential graded
algebras arise all over the place (while chain complexes with a multiplication which is merely associative
up to chain homotopy seldom come up in nature).

Fortunately, this is not the historical course of development in homological algebra, but the development
in stable homotopy theory was, in several aspects, as indicated above. In the stable homotopy category
people could consider ring spectra ‘up to homotopy’, which are closely related to multiplicative cohomology
theories. However, the need and usefulness of ring spectra with rigidified multiplications soon became
apparent, and topologists developed different ways of dealing with them. One line of approach uses operads
for the bookkeeping of the homotopies which encode all higher forms of associativity and commutativity,
and this led to the notions of A∞- respectively E∞-ring spectra. Various notions of point-set level ring
spectra had been used (which were only later recognized as the monoids in a symmetric monoidal model
category). For example, the orthogonal ring spectra had appeared as I∗-prefunctors in [42], the functors
with smash product were introduced in [6] and symmetric ring spectra appeared as strictly associative ring
spectra in [22, Def. 6.1] or as FSPs defined on spheres in [23, 2.7].

At this point it had become clear that many technicalities could be avoided if one had a smash product
on a good point-set category of spectra which was associative and unital before passage to the homotopy
category. For a long time no such category was known, and there was even evidence that it might not
exist [32]. In retrospect, the modern spectra categories could maybe have been found earlier if Quillen’s
formalism of model categories [46] had been taken more seriously; from the model category perspective, one
should not expect an intrinsically ‘left adjoint’ construction like a smash product to have a good homotopical
behavior in general, and along with the search for a smash product, one should look for a compatible notion
of cofibrations.

In the mid-90s, several categories of spectra with nice smash products were discovered, and simultane-
ously, model categories experienced a major renaissance. Around 1993, Elmendorf, Kriz, Mandell and May
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introduced the S-modules [19] and Jeff Smith gave the first talks about symmetric spectra; the details of
the model structure were later worked out and written up by Hovey, Shipley and Smith [25]. In 1995, Ly-
dakis [34] independently discovered and studied the smash product for Γ-spaces (in the sense of Segal [55]),
and a little later he developed model structures and smash product for simplicial functors [35]. Except for
the S-modules of Elmendorf, Kriz, Mandell and May, all other known models for spectra with nice smash
product have a very similar flavor; they all arise as categories of continuous (or simplicial), space-valued
functors from a symmetric monoidal indexing category, and the smash product is a convolution product
(defined as a left Kan extension), which had much earlier been studied by the category theorist Day [15].
This unifying context was made explicit by Mandell, May, Schwede and Shipley in [39], where another ex-
ample, the orthogonal spectra were first worked out in detail. The different approaches to spectra categories
with smash product have been generalized and adapted to equivariant homotopy theory [16, 37, 38] and
motivic homotopy theory [17, 26, 27].

Why symmetric spectra? The author is a big fan of symmetric spectra; two important reasons are
that symmetric spectra are easy to define and require the least amount of symmetry among the models of the
stable homotopy category with smash product. A consequence of the second point is that many interesting
homotopy types can be written down explicitly and in closed form. We give examples of this in Section I.2,
right after the basic definitions, among these are the sphere spectrum, suspension spectra, Eilenberg-Mac
Lane spectra, Thom spectra such as MO,MSO and MU , topological K-theory and algebraic K-theory
spectra.

Another consequence of the second point is that whenever someone writes down or constructs a model
for a homotopy type in one of the other worlds of spectra, then we immediately get a model as a symmetric
spectrum by applying one of the ‘forgetful’ functors from spectra with more symmetries which we recall
in Section I.2.3. In fact, symmetric spectra have a certain universal property (see Shipley’s paper [57]),
making them ‘initial’ among stable model categories with a compatible smash product.

There are already good sources available which explain the stable homotopy category, and there are
many research papers and at least one book devoted to structured ring spectra. However, my experience is
that for students learning the subject it is hard to reconcile the treatment of the stable homotopy category
as given, for example, in Adams’ notes [2], with the more recent model category approaches to, say, S-
modules or symmetric spectra. So one aim of this book is to provide a source where one can learn about
the triangulated stable homotopy category and about stable model categories and a good point-set level
smash product with just one notion of what a spectrum is.

The monograph [19] by Elmendorf, Kriz, Mandell and May develops the theory of one of the competing
frameworks, the S-modules, in detail. It has had a big impact and is widely used, for example because
many standard tools can simply be quoted from that book. The theory of symmetric spectra is by now
highly developed, but the results are spread over many research papers. The aim of this book is to collect
basic facts in one place, thus providing an alternative to [19].

Prerequisites. As a general principle, I assume knowledge of basic algebraic topology and unstable
homotopy theory. I will develop in parallel the theory of symmetric spectra based on topological spaces
(compactly generated and weak Hausdorff) and simplicial sets. Whenever simplicial sets are used, I assume
basic knowledge of simplicial homotopy theory, as found for example in [21] or [41]. However, the use
of simplicial sets is often convenient but hardly ever essential, so not much understanding is lost by just
thinking about topological spaces throughout.

On the other hand, no prior knowledge of stable homotopy theory is assumed. In particular, we define
the stable homotopy category using symmetric spectra and develop its basic properties from scratch.

From Chapter III on I will freely use the language of Quillen’s model categories and basic results of
homotopical algebra. The original source is [46], a good introduction is [18], and [24] is a thorough,
extensive treatment.

Organization. We organize the book into chapters, each chapter into sections and some sections into
subsections. The numbering scheme for referring to definitions, theorems, examples etc. is as follows. If
we refer to something in the same chapter, then the reference number consists only of the arabic section
number and then a running number for all kind of environments. If the reference is to another chapter,
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then we add the roman number of the chapter in front. So ‘Lemma 3.14’ refers to a Lemma in Section 3 of
the same chapter, with running number 14, while ‘Example I.2.21’ is an example from the second section
of the first chapter, with running number 21.

In the first chapter we introduce the basic concepts of a symmetric spectrum and symmetric ring
spectrum and then, before developing any extensive theory, discuss lots of examples. There is a section on
the smash product where we concentrate on its formal properties, leaving the homotopical properties of the
smash product to a later chapter. One of the few points where symmetric spectra are more complicated
than other frameworks is that the usual homotopy groups can be somewhat pathological. So we spend the
last section of the first chapter on the structure of homotopy groups and the notion of semistable symmetric
spectra.

The second chapter is devoted to the stable homotopy category. We define it as the homotopy category
of injective Ω-spectra, based on simplicial sets. Model categories will not be discussed explicitly until
Chapter III, but the justification behind this definition is that there is a stable model structure (the injective
stable model structure) in which every symmetric spectrum is cofibrant and where the fibrant objects are
precisely the injective Ω-spectra. We develop some basic theory around the stable homotopy category, such
as the triangulated structure, derived smash product, homotopy (co-)limits, Postnikov sections, localization
and completion, and discuss the relationship to the Spanier-Whitehead category and generalized cohomology
theories.

In Chapter III model structures enter the scene. We start by establishing the various level model
structures (projective, flat, injective, and their positive versions) for symmetric spectra, and then discuss
the associated, more important, stable model structures. We also develop the model structures for modules
over a fixed symmetric ring spectrum and for algebras over an operad of simplicial sets. The latter includes
the stable model structures for symmetric ring spectra and for commutative symmetric ring spectra.

Each chapter has a section containing exercises.
As a general rule, I do not attribute credit for definitions and theorems in the body of the text. Instead,

there is a section ‘History and credits’ at the end of each chapter, where I summarize, to the best of my
knowledge, who contributed what. Additions and corrections are welcome.

Two philosophical points. (i) We make isomorphisms explicit. Thus we avoid phrases like ‘the
canonical isomorphism’ unless the isomorphism we have in mind has previously been defined. The main
reason for this is the author’s experience that what seems canonical to the expert may often not be clear
to a newcomer. Another reason is that here and there, one can get sign trouble if one is not careful about
choices of isomorphisms. A disadvantage is that we have to introduce lots of symbols or numbers to refer
to the isomorphisms.

(ii) We sometimes give two (and occasionally even three) proofs or constructions when they are suf-
ficiently different and shed light on the theorem or notion under consideration. While this is logically
redundant, we think that to understand a mathematical phenomenon it is good to see it from as many
different angles as possible.

Some conventions. Let us fix some terminology and enact several useful conventions. We think that
some slight abuse of language and notation can often make statements more transparent, but when we allow
ourselves such imprecision we feel obliged to state them clearly here, at the risk of being picky.

We denote by T the category of pointed, compactly generated, weak Hausdorff topological spaces.
A map between topological spaces always refers to a continuous map, unless explicitly stated otherwise.
Similarly, an action of a group on a space refers to a continuous action.

It will be convenient to define the n-sphere Sn as the one-point compactification of n-dimensional
euclidian space Rn, with the point at infinity as the basepoint.

For n ≥ 0, the symmetric group Σn is the group of bijections of the set {1, 2, . . . , n}; in particular,
Σ0 consists only of the identity of the empty set. It will often be convenient to identify the product
group Σn × Σm with the subgroup of Σn+m of those permutations which take the sets {1, . . . , n} and
{n+ 1, . . . , n+m} to themselves. Whenever we do so, we implicitly use the monomorphism

Σn × Σm −→ Σn+m , (τ, κ) 7→ τ × κ
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given by

(τ × κ)(i) =

{
τ(i) for 1 ≤ i ≤ n,

κ(i− n) + n for n+ 1 ≤ i ≤ n+m.
We let the symmetric group Σn act from the left on Rn by permuting the coordinates, i.e.,

γ(x1, . . . , xn) = (xγ−1(1), . . . , xγ−1(n)). This action compactifies to an action on Sn which fixes the base-
point. The canonical linear isomorphism

Rn × Rm −→ Rn+m , ((x1, . . . , xn), (y1, . . . , xm)) 7→ (x1, . . . , xn, y1, . . . , xm)

induces a homeomorphism Sn ∧ Sm −→ Sn+m which is equivariant with respect to the action of the group
Σn × Σm, acting on the target by restriction from Σn+m.

The topological spaces we consider are usually pointed, and we use the notation πnX for the n-th
homotopy group with respect to the distinguished basepoint, which we do not record in the notation.

Limits and colimits. Limits and colimits in a category are hardly ever unique, but the universal
property which they enjoy makes then ‘unique up to canonical isomorphism’. We want to fix our language
for talking about this unambiguously. We recall that a colimit of a functor F : I −→ C is a pair (F̄ , ϕ)
consisting of an object F̄ of C and a natural transformation ϕ : F −→ cF̄ from F to the constant functor
with value F̄ which is initial among all natural transformations from F to constant functors. We often
follow the standard abuse of language and call the object F̄ a colimit, or even the colimit, of the functor F
and denote it by colimI F . When we need to refer to the natural transformation ϕ which is part of the data
of a colimit, we refer to the component ϕi : F (i) −→ colimI F at an object i ∈ I as the canonical morphism
from the object F (i) to the colimit. Dually for limits.

Acknowledgments. A substantial part of this book was written during a sabbatical semester taken
by the author at the Massachusetts Institute of Technology in the fall 2006, where I could also try out
some of the contents of this book in a graduate course. I am grateful to Haynes Miller for the invitation
that made this possible. I would like to thank the following people for helpful comments, corrections and
improvements: Daniel Davis, Moritz Groth, Lars Hesselholt, Jens Hornbostel, Katja Hutschenreuter, Tyler
Lawson, Steffen Sagave and Brooke Shipley.





CHAPTER I

Basic definitions and examples

1. Symmetric spectra

Definition 1.1. A symmetric spectrum consists of the following data:
• a sequence of pointed spaces Xn for n ≥ 0
• a basepoint preserving continuous left action of the symmetric group Σn on Xn for each n ≥ 0
• based maps σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0.

This data is subject to the following condition: for all n,m ≥ 0, the composite

(1.2) Xn ∧ Sm
σn ∧ Id // Xn+1 ∧ Sm−1

σn+1∧Id // · · ·
σn+m−2∧Id // Xn+m−1 ∧ S1

σn+m−1 // Xn+m

is Σn × Σm-equivariant. We often denote this composite map by σm. Here the symmetric group Σm acts
by permuting the coordinates of Sm, and Σn × Σm acts on the target by restriction of the Σn+m-action.
We refer to the space Xn as the nth level of the symmetric spectrum X.

A morphism f : X −→ Y of symmetric spectra consists of Σn-equivariant based maps fn : Xn −→ Yn
for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ IdS1) for
all n ≥ 0. The category of symmetric spectra is denoted by SpΣ.

Definition 1.3. A symmetric ring spectrum R consists of the following data:
• a sequence of pointed spaces Rn for n ≥ 0
• a basepoint preserving continuous left action of the symmetric group Σn on Rn for each n ≥ 0
• Σn × Σm-equivariant multiplication maps

µn,m : Rn ∧Rm −→ Rn+m

for n,m ≥ 0, and
• two unit maps

ι0 : S0 −→ R0 and ι1 : S1 −→ R1 .

This data is subject to the following conditions:
(Associativity) The square

Rn ∧Rm ∧Rp
Id∧µm,p //

µn,m∧Id

��

Rn ∧Rm+p

µn,m+p

��
Rn+m ∧Rp µn+m,p

// Rn+m+p

commutes for all n,m, p ≥ 0.
(Unit) The two composites

Rn ∼= Rn ∧ S0
Id∧ι0 // Rn ∧R0

µn,0 // Rn

Rn ∼= S0 ∧Rn
ι0∧Id // R0 ∧Rn

µ0,n // Rn

are the identity for all n ≥ 0.

7
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(Centrality) The diagram

Rn ∧ S1
Id∧ι1 //

τ

��

Rn ∧R1

µn,1 // Rn+1

χn,1

��
S1 ∧Rn ι1∧Id

// R1 ∧Rn µ1,n
// R1+n

commutes for all n ≥ 0. Here χn,m ∈ Σn+m denotes the shuffle permutation which moves the first n
elements past the last m elements, keeping each of the two blocks in order; in formulas,

χn,m(i) =

{
i+m for 1 ≤ i ≤ n,
i− n for n+ 1 ≤ i ≤ n+m.

A symmetric ring spectrum R is commutative if the square

Rn ∧Rm
µn,m

��

twist // Rm ∧Rn
µm,n

��
Rn+m χn,m

// Rm+n

commutes for all n,m ≥ 0.
A morphism f : R −→ S of symmetric ring spectra consists of Σn-equivariant based maps fn : Rn −→

Sn for n ≥ 0, which are compatible with the multiplication and unit maps in the sense that fn+m ◦ µn,m =
µn,m ◦ (fn ∧ fm) for all n,m ≥ 0, and f0 ◦ ι0 = ι0 and f1 ◦ ι1 = ι1.

Definition 1.4. A right module M over a symmetric ring spectrum R consists of the following data:
• a sequence of pointed spaces Mn for n ≥ 0
• a basepoint preserving continuous left action of the symmetric group Σn on Mn for each n ≥ 0,

and
• Σn × Σm-equivariant action maps αn,m : Mn ∧Rm −→Mn+m for n,m ≥ 0.

The action maps have to be associative and unital in the sense that the following diagrams commute

Mn ∧Rm ∧Rp
Id∧µm,p //

αn,m∧Id

��

Mn ∧Rm+p

αn,m+p

��

Mn
∼= Mn ∧ S0

Id∧ι0 //

TTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTT
Mn ∧R0

αn,0

��
Mn+m ∧Rp αn+m,p

// Mn+m+p Mn

for all n,m, p ≥ 0. A morphism f : M −→ N of right R-modules consists of Σn-equivariant based maps
fn : Mn −→ Nn for n ≥ 0, which are compatible with the action maps in the sense that fn+m ◦ αn,m =
αn,m ◦ (fn ∧ Id) for all n,m ≥ 0. We denote the category of right R-modules by mod-R.

The k-th homotopy group of a symmetric spectrum X is defined as the colimit

πkX = colimn πk+nXn

taken over the maps

(1.5) πk+nXn
−∧S1

−−−−−→ πk+n+1

(
Xn ∧ S1

) (σn)∗−−−−−→ πk+n+1Xn+1 .

Homotopy groups of symmetric spectra are abelian groups, and for symmetric ring spectra they often
form graded rings. More precisely, the underlying symmetric spectrum of R has to be ‘semistable’ (see
Theorem 4.44) for π∗R to form a graded ring, see Theorem 4.54. In general the homotopy groups support
a more sophisticated algebraic structure, namely an algebra over the ‘injection operad’.
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Remark 1.6. We have stated the axioms for symmetric ring spectra in terms of a minimal amount of
data and conditions. Now we put these conditions into perspective. We consider a symmetric ring spectrum
R.

(i) It will be useful to have the following notation for iterated multiplication maps. For natural
numbers n1, . . . , ni ≥ 0 we denote by

µn1,...,ni : Rn1 ∧ . . . ∧Rni −→ Rn1+···+ni

the map obtained by composing multiplication maps smashed with suitable identity maps; by
associativity, the parentheses in the multiplications don’t matter. More formally we can define
the iterated multiplication maps inductively, setting

µn1,...,ni = µn1,n2+···+ni ◦ (IdRn1
∧µn2,...,ni) .

(ii) We can define higher-dimensional unit maps ιm : Sm −→ Rm for m ≥ 2 as the composite

Sm = S1 ∧ . . . ∧ S1 ι1∧...∧ι1−−−−−−→ R1 ∧ . . . ∧R1
µ1,...,1−−−−→ Rm .

Centrality then implies that ιm is Σm-equivariant, and it implies that the diagram

Rn ∧ Sm
Id∧ιm //

twist

��

Rn ∧Rm
µn,m // Rn+m

χn,m

��
Sm ∧Rn

ιm∧Id
// Rm ∧Rn µm,n

// Rm+n

commutes for all n,m ≥ 0, generalizing the original centrality condition.
(iii) As the terminology suggests, the symmetric ring spectrum R has an underlying symmetric

spectrum. In fact, the multiplication maps µn,m make R into a right module over itself, and
more generally, every right R-module M has an underlying symmetric spectrum as follows.
We keep the spaces Mn and symmetric group actions and define the missing structure maps
σn : Mn∧S1 −→Mn+1 as the composite αn,1 ◦ (IdMn

∧ι1). Associativity implies that the iterated
structure map σm : Mn ∧ Sm −→Mn+m equals the composite

Mn ∧ Sm
Id∧ιm−−−−→ Mn ∧Rm

αn,m−−−→ Mn+m .

So the iterated structure map is Σn×Σm-equivariant by part (ii) and the equivariance hypothesis
on αn,m, and we have in fact obtained a symmetric spectrum.

The forgetful functors which associates to a symmetric ring spectrum or module spectrum
its underlying symmetric spectrum have left adjoints. We will construct the left adjoints in Ex-
ample 3.10 below after introducing the smash product of symmetric spectra. The left adjoints
associate to a symmetric spectrum X the ‘free R-module’ X ∧R respectively the ‘free symmetric
ring spectrum’ TX generated by X, which we will refer to it as the tensor algebra.

(iv) If the symmetric ring spectrum R is commutative, then centrality is automatic.
(v) Using the internal smash product of symmetric spectra introduced in Section 3, we can identify

the ‘explicit’ definition of a symmetric ring spectrum which we just gave with a more ‘implicit’
definition of a symmetric spectrum R together with morphisms µ : R ∧ R −→ R and ι : S −→ R
(where S is the sphere spectrum, see Example 2.1) which are suitably associative and unital. The
‘explicit’ and ‘implicit’ definitions of symmetric ring spectra coincide in the sense that they define
isomorphic categories, see Theorem 3.8.

We will often use a variation on the notions of symmetric spectrum and symmetric ring spectrum where
topological spaces are replaced by simplicial sets. We can go back and forth between the two concepts using
the adjoint functors of geometric realization and singular complex, as we explain below.

Definition 1.7 (Symmetric spectra of simplicial sets). A symmetric spectrum of simplicial sets consists
of the following data:
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• a sequence of pointed simplicial sets Xn for n ≥ 0
• a basepoint preserving simplicial left action of the symmetric group Σn on Xn for each n ≥ 0
• pointed morphisms σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0,

such that for all n,m ≥ 0, the composite

Xn ∧ Sm
σn ∧ Id // Xn+1 ∧ Sm−1

σn+1∧Id // · · ·
σn+m−2∧Id // Xn+m−1 ∧ S1

σn+m−1 // Xn+m

is Σn×Σm-equivariant. Here S1 denotes the ‘small simplicial circle’ S1 = ∆[1]/∂∆[1] and Sm = S1∧. . .∧S1

is the mth smash power, with Σm permuting the factors.

We similarly define a symmetric ring spectrum of simplicial sets by replacing ‘space’ by ‘simplicial set’
in Definition 1.3, while also replacing the topological circle S1 by the simplicial circle S1 = ∆[1]/∂∆[1] and
replacing Sm by the m-fold smash power Sm = S1 ∧ . . . ∧ S1.

As we already mentioned we can apply the adjoint functors ‘geometric realization’, denoted | − |, and
‘singular complex’, denoted S, levelwise to go back and forth between topological and simplicial symmetric
spectra. We use that geometric realization is a ‘strong symmetric monoidal’ functor, i.e., there is natural,
unital, associative and commutative homeomorphism

(1.8) rA,B : |A| ∧ |B| ∼= |A ∧B|
for pointed simplicial sets A and B. Indeed, the canonical continuous map |A × B| −→ |A| × |B| is
a homeomorphism (since we work in the category of compactly generated topological spaces) and the
homeomorphism rA,B is gotten from there by passing to quotients.

We already allowed ourselves the freedom to use the same symbols for the topological and simplicial
spheres. The justification is that the geometric realization of the simplicial Sm is homeomorphic to the
topological Sm. To be completely explicit, we choose a homeomorphism h : S1 −→ |S1| [choose one...] and
then obtain a Σm-equivariant homeomorphism as the composite

Sm ∼= S1 ∧ · · · ∧ S1 h(m)

−−−→ |S1| ∧ · · · ∧ |S1|
rS1,...,S1
−−−−−−→ |S1 ∧ · · · ∧ S1| = |Sm| .

Now we can finally define the adjoint functors ‘geometric realization’ and ‘singular complex’ for symmetric
spectra.

If Y is a symmetric spectrum of simplicial sets we define a symmetric spectrum |Y | of topological spaces
by |Y |n = |Yn| with structure maps

|Yn| ∧ S1 Id∧h−−−→ |Yn| ∧ |S1|
rYn,S1
−−−−→ |Yn ∧ S1| |σn|−−→ |Yn+1| .

Commutativity of the isomorphism (1.8) guarantees that the equivariance condition for the iterated struc-
ture map σm is inherited by the realization |Y |.

Adjoint to the homeomorphism (1.8) is a ‘lax symmetric monoidal’ transformation of pointed simplicial
sets, i.e., a natural, unital, associative and commutative morphism S(X)∧ S(Y ) −→ S(X ∧ Y ) for pointed
spaces X and Y . So if X is a symmetric spectrum of topological spaces, then we get a symmetric spectrum
S(X) of simplicial sets by S(X)n = S(Xn) with structure map

S(Xn) ∧ S1 Id∧ĥ−−−→ S(Xn) ∧ S(S1) −→ S(Xn ∧ S1)
S(σn)−−−−→ S(Xn+1) .

Here ĥ : S1 −→ S(S1) is the morphism of pointed simplicial sets which is adjoint to the inverse home-
omorphism h−1 : |S1| −→ S1. We use the adjunction unit and counit between | − | and S levelwise to
make geometric realization and singular complex into adjoint functors between topological and simplicial
symmetric spectra.

Geometric realization and singular complex are lax symmetric monoid functors with respect to the
smash products of pointed spaces and pointed simplicial sets (geometric realization is even strong symmetric
monoidal, i.e., commutes with the smash product up to homeomorphism). So both constructions preserve
multiplications, so they take ring spectra to ring spectra and preserve commutativity.

The homotopy groups of a symmetric spectrum based on simplicial sets Y are defined as the homotopy
groups of the geometric realization |Y |.
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Now we introduce an important class of symmetric spectra.

Definition 1.9. A symmetric spectrum of topological spaces X is an Ω-spectrum if for all n ≥ 0 the
map σ̃n : Xn −→ ΩXn+1 which is adjoint to the structure map σn : Xn ∧ S1 → Xn+1 is a weak homotopy
equivalence. The symmetric spectrum X is a positive Ω-spectrum if the map σ̃n : Xn −→ ΩXn+1 is a weak
equivalence for all positive values of n (but not necessarily for n = 0).

A symmetric spectrum of simplicial sets Y is an Ω-spectrum respectively positive Ω-spectrum if the
geometric realization |Y | is an Ω-spectrum, respectively positive Ω-spectrum, of topological spaces.

A symmetric spectrum of simplicial sets Y is thus an Ω-spectrum if and only if for all n ≥ 0 the map
|Yn| −→ Ω|Yn+1| which is adjoint to the composite

|Yn| ∧ S1 ∼=−−→ |Yn ∧ S1| |σn|−−→ |Yn+1|

is a weak homotopy equivalence. Our definition of ‘Ω-spectrum’ differs slightly from other sources in that
we do not require that each simplicial set Yn has to be a Kan complex. If Y is a symmetric spectrum of
simplicial sets in which all the Yn’s are Kan, then the natural maps |ΩYn| −→ Ω|Yn| adjoint to

|ΩYn| ∧ S1 −→ |(ΩYn) ∧ S1| |evaluate|−−−−−−→ |Yn|

are weak equivalences, and so Y is an Ω-spectrum in our sense if and only if the morphisms of simplicial
sets σ̃n : Yn −→ ΩYn+1 adjoint to the structure maps are weak equivalences.

For every Ω-spectrum X and all k, n ≥ 0, the canonical map πkXn −→ πk−nX is a bijection. Indeed,
the homotopy groups of ΩXn+1 are isomorphic to the homotopy groups of Xn+1, shifted by one dimension.
So the colimit system which defines πk−nX is isomorphic to the colimit system

(1.10) πkXn −→ πk (ΩXn+1) −→ πk (Ω2Xn+2) −→ · · · ,

where the maps in the system are induced by the maps σ̃n adjoint to the structure maps. In an Ω-spectrum,
the maps σ̃n are weak equivalences, so all maps in the sequence (1.10) are bijective, hence so is the map
from each term to the colimit πk−nX.

Several examples of Ω-spectra will come up in the next section, for example Eilenberg-Mac Lane spectra
(Example 2.7) and spectra arising from very special Γ-spaces by evaluation on spheres (Example 2.39).
Examples which arise naturally as positive Ω-spectra are the spectra of topological K-theory (Example 2.10)
and algebraic K-theory K(C) (Example 2.11) and spectra arising from special (but not necessarily very
special) Γ-spaces by evaluation on spheres. The Ω-spectra with the additional property of being ‘injective’
form the objects of the stable homotopy category (see Chapter II).

Remark 1.11 (Coordinate free symmetric spectra). There is an equivalent definition of symmetric
spectra which is, in a certain sense, ‘coordinate free’; the reason for calling this ‘coordinate free’ will
hopefully become clear after our discussion of orthogonal spectra in Example 2.40.

If A is a finite set we denote by RA the set of functions from A to R with pointwise structure as a
R-vector space. We let SA denote the one-point compactification of RA, a sphere of dimension equal to the
cardinality of A. A coordinate free symmetric spectrum consists of the following data:

• a pointed space XA for every finite set A
• a based continuous map α∗ : XA ∧ SB−α(A) −→ XB for every injective map α : A −→ B of finite

sets, where B − α(A) is the complement of the image of α.

This data is subject to the following conditions:

• (Unitality) For every finite set A, the composite

XA
∼= XA ∧ S∅

(IdA)∗−−−−→ XA

is the identity.
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• (Associativity) For every pair of composable injections α : A −→ B and β : B −→ C the diagram

XA ∧ SB−α(A) ∧ SC−β(B)
Id∧β!

//

α∗∧Id

��

XA ∧ SC−β(α(A))

(βα)∗

��
XB ∧ SC−β(B)

β∗

// XC

commutes. In the top vertical map we use the homeomorphism β! : SB−α(A) ∧ SC−β(B) ∼=
SC−β(α(A)) which is one-point compactified from the linear isomorphism RB−α(A) × RC−β(B) ∼=
RC−β(α(A)) which uses β on the basis elements indexed by B−α(A) and the identity on the basis
elements indexed by C − β(B).

A coordinate free symmetric spectrumX gives rise to a symmetric spectrum in the sense of Definition 1.1
as follows. For this we let n = {1, . . . , n} denote the ‘standard’ set with n elements and identify Rn with
Rn and Sn with Sn.

We set Xn = Xn. A permutation γ ∈ Σn acts on Xn as the composite

Xn
∼= Xn ∧ S∅

γ∗−→ Xn .

The associativity condition in particular shows that this is in fact an associative action. We define the
structure map σn : Xn ∧ S1 −→ Xn+1 as the map

ι∗ : Xn ∧ S1 ∼= Xn ∧ S{n+1} −→ Xn+1

where ι : n −→ n + 1 is the inclusion, and the homeomorphism S{n+1} ∼= S1 arises from the linear
isomorphism R{n+1} ∼= R1 respecting the preferred bases.

The associativity condition implies that the iterated structure map σm : Xn ∧ Sm −→ Xn+m equals
the composite

Xn ∧ Sm ∼= Xn ∧ S{n+1,...,n+m} ιm∗−−→ Xn+m

where ιm : n −→ n + m is the inclusion. The equivariance property is seen as follows: for γ ∈ Σn we have
ιm ◦ γ = (γ × 1) ◦ ιm, and associativity for this injection n −→ n + m amounts to Σn× 1-equivariance. For
τ ∈ Σm we have ιm = (1 × τ) ◦ ιm, and associativity for this injection n −→ n + m amounts to 1 × Σm-
equivariance. Exercise 5.1 shows that this ‘forgetful’ functor from coordinate free symmetric spectra to
symmetric spectra is an equivalence of categories. [Say how ring spectra are formulated in this language]

Remark 1.12 (Manipulations rules for coordinates). Natural numbers occurring as levels of a symmetric
spectrum or as dimensions of homotopy groups are really placeholders for sphere coordinates. The role of
the symmetric group actions on the spaces of a symmetric spectrum is to keep track of how such coordinates
are shuffled. Permutations will come up over and over again in constructions and results about symmetric
spectra, and there is a very useful small set of rules which predict when to expect permutations. I recommend
being very picky about the order in which dimensions or levels occur when performing constructions with
symmetric spectra, as this predicts necessary permutations and helps to prevent mistakes. Sometimes
missing a permutation just means missing a sign; in particular missing an even permutation may not have
any visible effect. But in general the issue is more serious; for symmetric spectra which are not semistable,
missing a permutation typically misses a nontrivial operation.

A first example of this are the centrality and commutativity conditions for symmetric ring spectra,
which use shuffle permutations χn,1 and χn,m. A good way of remembering when to expect a shuffle is to
carefully distinguish between indices such as n + m and m + n. Of course these two numbers are equal,
but the fact that one arises naturally instead of the other reminds us that a shuffle permutation should be
inserted. A shuffle required whenever identifying n + m with m + n is just one rule, and here are some
more.

Main rule: When manipulating expressions which occur as levels of symmetric spectra or dimensions
of spheres, be very attentive for how these expressions arise naturally and when you use the basic rules
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of arithmetic of natural numbers. When using the basic laws of addition and multiplication of natural
numbers in such a context, add permutations according to the following rules (i)-(v).

(i) Do not worry about associativity of addition or multiplication, or the fact that 0 respectively 1
are units for those operations. No permutations are required.

(ii) Whenever using commutativity of addition as in n + m = m + n, add a shuffle permutation
χn,m ∈ Σn+m.

(iii) Whenever using commutativity of multiplication as in nm = mn, add a multiplicative shuffle
χ×n,m ∈ Σnm defined by

χ×n,m(j + (i− 1)n) = i+ (j − 1)m

for 1 ≤ j ≤ n and 1 ≤ i ≤ m.
(iv) Do not worry about left distributivity as in p(n+m) = pn+ pm. No permutation is required.
(v) Whenever using right distributivity as in (n+m)q = nq +mq, add the permutation

(χ×q,n × χ×q,m) ◦ χ×n+m,q ∈ Σ(n+m)q .

Rule (v) also requires us to throw in permutations whenever we identify a product nq with an iterated sum
q+ · · ·+ q (n copies) since we use right distributivity in the process. However, no permutations are needed
when instead identifying nq with a sum of q copies of n, since that only uses left distributivity.

The heuristic rules (i) through (v) above are a great help in guessing when to expect coordinate or
level permutations when working with symmetric spectra. But the rules are more than heuristics, and are
based on the following rigorous mathematics. Typically, there are ‘coordinate free’ constructions in the
background (compare Remark 1.11) which are indexed by finite sets A which are not identified with any
of the standard finite sets n = {1, . . . , n}. The outcome of such constructions may naturally be indexed
by sets which are built by forming disjoint unions or products. The permutations arise because in contrast
to the arithmetic rules for + and ·, their analogues for disjoint union and cartesian product of sets only
holds up to isomorphism, and one can arrange to make some, but not all, of the required isomorphisms be
identity maps.

In more detail, when we want to restrict a ‘coordinate free’ construction to symmetric spectra, we
specialize to standard finite sets n; however, if the coordinate free construction involves disjoint union or
cartesian product, we need to identify the unions or products of standard finite sets in a consistent way
with the standard finite set of the same cardinality. A consistent way to do that amounts to what is called
a structure of bipermutative category on the category of standard finite sets. So we define binary functors
+ and · on standard finite sets resembling addition and multiplication of natural numbers as closely as
possible.

We let Fin denote the category of standard finite sets whose objects are the sets n for n ≥ 0 and whose
morphisms are all set maps. We define the sum functor + : Fin×Fin −→ Fin by addition on objects and
by ‘disjoint union’ on morphisms. More precisely, for morphisms f : n −→ n′ and g : m −→ m′ we define
f + g : n + m −→ n′ + m′ by

(f + g)(i) =

{
f(i) if 1 ≤ i ≤ n, and

g(i− n) + n′ if n+ 1 ≤ i ≤ n+m.

This operation is strictly associative and the empty set 0 is a strict unit. The symmetry isomorphism is
the shuffle map χn,m : n + m −→m + n.

We define the product functor · : Fin × Fin −→ Fin by multiplication on objects and by ‘cartesian
product’ on morphisms. To make sense of this we have to linearly order the product of the sets n and m.
There are two choices which are more obvious than others, namely lexicographically with either the first or
the second coordinate defined as the more important one. Both choices work fine, and we will prefer the first
coordinate. More precisely, for morphisms f : n −→ n′ and g : m −→m′ we define f · g : n ·m −→ n′ ·m′

by
(f · g)(j + (i− 1)n) = f(j) + (g(i)− 1)n′
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for 1 ≤ j ≤ n and 1 ≤ i ≤ m. The product · is also strictly associative and the set 1 is a strict unit. The
commutativity isomorphism is the multiplicative shuffle χ×nm : n ·m −→m · n.

This choice of ordering the product of n and m has the effect of making n ·m ‘naturally’ the same as
n + · · ·+ n (m copies), because we have

f · Idm = f + · · ·+ f (m copies).

Since p·k ‘is’ p+· · ·+p (k times), we can take the left distributivity isomorphism p·(n+m) = (p·n)+(p·m)
as the identity (compare rule (iv)).

In contrast, Idn ·g is in general not equal to g + · · ·+ g (n copies), but rather we have

Idn ·g = χ×m′,n(g + · · ·+ g)χ×n,m

for a morphism g : m −→ m′. However, then right distributivity isomorphism cannot be taken as the
identity; since the coherence diagram

q · (n + m)
χ×q,n+m //

left dist.

(n + m) · q

right dist.

��
q · n + q ·m

χ×q,n+χ×q,m

// n · q + m · q

is supposed to commute, we are forced to define the right distributivity isomorphism (n+m) ·q ∼= (n ·q)+
(m · q) as (χ×q,n × χ×q,m) ◦ χ×n+m,q, which explains rule (v) above.

2. Examples

In this section we give examples of symmetric spectra and symmetric ring spectra, which we have
grouped into three subsections. Section 2.1 contains basic examples of important stable homotopy types
which one can write down in closed form as a symmetric spectrum. We discuss in particular the sphere spec-
trum (2.1), suspension spectra (2.6), Eilenberg-Mac Lane spectra (2.7), Thom spectra (2.8, 2.9 and 2.42),
topological K-theory (2.10) and algebraic K-theory spectra (2.11).

In Section 2.2 we discuss constructions which produce new symmetric spectra and ring spectra from
old ones, or from a symmetric spectrum and a space. We define free (2.12) and semifree symmetric spec-
tra (2.13), limits and colimits (2.14), smash product with a space (2.15), suspension (2.16), shift (2.18),
twisted smash product with a Σm-space (2.20), function spectra (2.22), loop spectra (2.23), mapping
spaces (2.24), internal Hom spectra (2.25), endomorphism ring spectra (2.26), mapping telescope and diag-
onal of a sequence (2.27), smash product with an I-space (2.31), monoid ring spectra (2.32), ring spectra
from multiplicative I-spaces (2.33), matrix ring spectra (2.34), inverting an integer (2.35) or an element in
π0 (2.36) of a symmetric ring spectrum and adjoining roots of unity to a symmetric ring spectrum (2.37).

In Section 2.3 we review other kinds of spectra and various forgetful functors between them. We
discuss continuous functors (2.38), Γ-spaces (2.39), orthogonal spectra (2.40), unitary spectra (2.41) and
S-modules (2.43). The main point here is that an object in any of these other categories also gives rise to
a symmetric spectrum.

2.1. Basic examples.

Example 2.1 (Sphere spectrum). The symmetric sphere spectrum S is given by Sn = Sn, where the
symmetric group permutes the coordinates and σn : Sn ∧ S1 −→ Sn+1 is the canonical isomorphism.
This is a commutative symmetric ring spectrum with identity as unit map and the canonical isomorphism
Sn∧Sm −→ Sn+m as multiplication map. The sphere spectrum is the initial symmetric ring spectrum: if R
is any symmetric ring spectrum, then a unique morphism of symmetric ring spectra S −→ R is given by the
collection of unit maps ιn : Sn −→ Rn (compare 1.6 (ii)). Being initial, the sphere spectrum plays the same
formal role for symmetric ring spectra as the integers Z play for rings. This motivates the notation ‘S’ using
the \mathbb font. The category of right S-modules is isomorphic to the category of symmetric spectra, via
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the forgetful functor mod- S −→ SpΣ (see Remark 1.6 (ii)). Indeed, if X is a symmetric spectrum then the
associativity condition shows that there is at most one way to define action maps

αn,m : Xn ∧ Sm −→ Xn+m ,

namely as the iterated structure map σm, and these do define the structure of right S-module on X.
The homotopy group πkS = colimn πk+nS

n is called the k-th stable homotopy group of spheres, or the
k-th stable stem. Since Sn is (n − 1)-connected, the group πkS is trivial for negative values of k. The
degree of a self-map of a sphere provides an isomorphism π0S ∼= Z.

For k ≥ 1, the homotopy group πkS is finite. This is a direct consequence of Serre’s calculation of
the homotopy groups of spheres modulo torsion, which we recall without giving a proof, and Freudenthal’s
suspension theorem.

Theorem 2.2 (Serre). Let m > n ≥ 1. Then

πmS
n =

{
(finite group)⊕ Z if n is even and m = 2n− 1
(finite group) else.

Thus for k ≥ 1, the stable stem πsk = πkS is finite.

As a concrete example, we inspect the colimit system defining π1S, the first stable homotopy group of
spheres. Since the universal cover of S1 is the real line, which is contractible, the theory of covering spaces
shows that the groups πnS1 are trivial for n ≥ 2. The Hopf map

η : S3 ⊆ C2 − {0} proj.−−−→ CP 1 ∼= S2

is a locally trivial fibre bundle with fibre S1, so it gives rise to long exact sequence of homotopy groups. Since
the fibre S1 has no homotopy above dimension one, the group π3S

2 is free abelian of rank one, generated by
the class of η. By Freudenthal’s suspension theorem the suspension homomorphism −∧S1 : π3S

2 −→ π4S
3

is surjective and from π4S
3 on the suspension homomorphism is an isomorphism. So the first stable stem

πs1 is cyclic, generated by the image of η, and its order equals the order of the suspension of η. On the
one hand, η itself is stably essential, since the Steenrod operation Sq2 acts non-trivially on the mod-2
cohomology of the mapping cone of η, which is homeomorphic to CP 2.

On the other hand, twice the suspension of η is null-homotopic. To see this we consider the commutative
square

(x, y)
_

��

S3
η //

��

CP 1

��

[x : y]
_

��
(x̄, ȳ) S3

η
// CP 1 [x̄ : ȳ]

in which the vertical maps are induced by complex conjugation in both coordinates of C2. The left vertical
map has degree 1, so it is homotopic to the identity, whereas complex conjugation on CP 1 ∼= S2 has degree
−1. So (−1) ◦ η is homotopic to η. Thus the suspension of η is homotopic to the suspension of (−1) ◦ η,
which by the following lemma is homotopic to the negative of η ∧ S1.

Lemma 2.3. Let Y be a pointed space, m ≥ 0 and f : Sm −→ Sm a based map of degree k. Then for
every homotopy class x ∈ πn(Y ∧ Sm) the classes (IdY ∧f)∗(x) and k · x become equal in πn+1(Y ∧ Sm+1)
after one suspension.

Proof. Let dk : S1 −→ S1 be any pointed map of degree k. Then the maps f ∧ S1, Sm ∧ dk :
Sm+1 −→ Sm+1 have the same degree k, hence they are based homotopic. Suppose x is represented by
ϕ : Sn −→ Y ∧ Sm. Then the suspensions of (Y ∧ f)∗(x) is represented by (Y ∧ f ∧ S1) ◦ (ϕ ∧ S1) which
is homotopic to (Y ∧ Sm ∧ dk) ◦ (ϕ ∧ S1) = (ϕ ∧ S1) ◦ (Sn ∧ dk). Precomposition with the degree k map
Sn ∧ dk of Sn+1 induces multiplication by k, so the last map represents the suspension of k · x. �
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The conclusion of Lemma 2.3 does not in general hold without the extra suspension, i.e., (Y ∧ f)∗(x)
need not equal (−1)kx in πn(Y ∧ Sm): as we showed above, (−1) ◦ η is homotopic to η, which is not
homotopic to −η since η generates the infinite cyclic group π3S

2.
As far as we know, the stable homotopy groups of spheres don’t follow any simple pattern. Much

machinery of algebraic topology has been developed to calculate homotopy groups of spheres, both unstable
and stable, but no one expects to ever get explicit formulae for all stable homotopy groups of spheres. The
Adams spectral sequence based on mod-p cohomology and the Adams-Novikov spectral sequence based on
MU (complex cobordism) or BP (the Brown-Peterson spectrum at a fixed prime p) are the most effective
tools for explicit calculations as well as for discovering systematic phenomena.

Example 2.4 (Multiplication in stable stems). The stable stems πs∗ = π∗S form a graded commutative
ring which acts on the homotopy groups of every other symmetric spectrum X. We denote the action
simply by a ‘dot’

· : πkX × πlS −→ πk+lX;
the definition is essentially straightforward, but there is one subtlety in showing that the product is well-
defined. I repeat an earlier warning. It is tempting to try to define a product on the homotopy groups
of a symmetric ring spectrum R in a similar fashion, by smashing representatives and shuffling sphere
coordinates into their natural order. This will indeed give an associative product in many natural cases,
namely whenever the underlying symmetric spectrum of R is ‘semistable’, see Theorem 4.54. However, if
R is not semistable, then smashing of representatives does not descend to a well-defined product on stable
homotopy groups! In that case the algebraic structure that the homotopy groups of R enjoy is more subtle.

Suppose f : Sk+n −→ Xn and g : Sl+m −→ Sm represent classes in πkX respectively πlS. Then we
agree that the composite

(2.5) Sk+l+n+m Id∧χl,n∧Id−−−−−−−→ Sk+n+l+m f∧g−−−−→ Xn ∧ Sm
σm−−−→ Xn+m

represents the product of [f ] and [g]. The shuffle permutation χl,n is predicted by the principle that all
natural number must occur in the ‘natural order’ compare Remark 1.12. If we simply smash f and g the
dimension of the sphere of origin is naturally (k + n) + (l + m), but in order to represent an element of
πk+lX they should occur in the order (k+ l)+ (n+m), whence the shuffle permutation (which here simply
introduces the sign (−1)ln).

We check that the multiplication is well-defined. If we replace g : Sl+m −→ Sm by its suspension
g ∧ S1, then the composite (2.5) changes to its suspension, composed with the structure map σn+m :
Xn+m ∧ S1 −→ Xn+m+1. So the resulting stable class is independent of the representative g of the
stable class in πlS. Independence of the representative for πkX is slightly more subtle. If we replace
f : Sk+n −→ Xn by the representative σn ◦ (f ∧ S1) : Sk+n+1 −→ Xn+1, then the composite (2.5) changes
to σ1+m(f ∧ Id∧g)(Id∧χl,n+1 ∧ Id), which is the lower left composite in the commutative diagram

Sk+l+n+1+m
Id∧χl,n∧χ1,m //

Id∧χl,n+1∧Id **TTTTTTTTTTTTTTTT Sk+n+l+m+1
f∧g∧Id //

Id∧χl+m,1
��

Xn ∧ Sm+1

Id∧χm,1
��

Sk+n+1+l+m
f∧Id∧g

// Xn ∧ S1+m

σ1+m
// Xn+1+m

By Lemma 2.3 the map Id∧χm,1 induces multiplication by (−1)m on homotopy groups after one suspension.
This cancels the sign coming from the shuffle factor χ1,m in the initial horizontal map. So the composite
is homotopic, after one suspension, to the composite σ1+m(f ∧ g ∧ Id)(Id∧χl,n ∧ Id), which represents the
same stable class as (2.5).

Now we verify that the dot product is biadditive. We only show the relation (x+ x′) · y = x · y+ x′ · y,
and additivity in y is similar. Suppose as before that f, f ′ : Sk+n −→ Xn and g : Sl+m −→ Sm represent
classes in πkX respectively πlS. Then the sum of f and f ′ in πk+nXn is represented by the composite

Sk+n
pinch−−−→ Sk+n∨Sk+n

f∨f ′−−−→ Xn .
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In the square

Sk+l+n+m

pinch

��

1∧χl,n∧1 // Sk+n+l+m

(f+f ′)∧g

++WWWWWWWWWWWWWWWWWWWWWWWW

pinch∧Id

��
(Sk+n∨Sk+n) ∧ Sl+m

(f∨f ′)∧g
// Xn ∧ Sm

Sk+l+n+m∨Sk+l+n+m
(1∧χl,n∧1)∨(1∧χl,n∧1)

// Sk+n+l+m∨Sk+n+l+m

(f∧g)∨(f ′∧g)

33gggggggggggggggggggggggg
∼=

OO

the right part commutes on the nose and the left square commutes up to homotopy. After composing with
the iterated structure map σm : Xn∧Sm −→ Xn+m, the composite around the top of the diagram becomes
(f + f ′) · g, whereas the composite around the bottom represents fg + f ′g. This proves additivity of the
dot product in the left variable.

If we specialize to X = S then the product provides a biadditive graded pairing · : πkS×πlS −→ πk+lS
of the stable homotopy groups of spheres. We claim that for every symmetric spectrum X the diagram

πkX × πlS× πjS
·×Id //

Id×·
��

πk+lX × πjS

·
��

πkX × πl+jS ·
// πk+l+jX

commutes, so the product on the stable stems and the action on the homotopy groups of a symmetric
spectrum are associative. After choosing representing maps Sk+n −→ Xn, Sl+m −→ Sm and Sj+q −→ Sq

and unraveling all the definitions, this associativity ultimately boils down to the equality

(k × χl,n ×m× j × q) ◦ (k × l × χj,n+m × q) = (k × n× l × χj,m × q) ◦ (k × χl+j,n ×m× q)
in the symmetric group Σk+l+j+q+n+m and commutativity of the square

Xn ∧ Sm ∧ Sq

Id∧∼=
��

σm∧Id // Xn+m ∧ Sq

σq

��
Xn ∧ Sm+q

σm+q
// Xn+m+q

Finally, the multiplication in the homotopy groups of spheres is commutative in the graded sense, i.e.,
we have xy = (−1)klyx for x ∈ πkS and y ∈ πlS. Indeed, for representing maps f : Sk+n −→ Sn and
g : Sl+m −→ Sm the square

Sk+l+n+m
Id∧χl,n∧Id //

χk,l×χn,m
��

Sk+n+l+m
f∧g // Sn+m

χn,m

��
Sl+k+m+n

Id∧χk,m∧Id
// Sl+m+k+n

g∧f
// Sm+n

commutes. The two vertical coordinate permutations induce the signs (−1)kl+nm respectively (after one
suspension) (−1)nm on homotopy groups. Since the upper horizontal composite represents xy and the lower
composite represents yx, this proves the relation xy = (−1)klyx.

The following table gives the stable homotopy groups of spheres through dimension 8:

n 0 1 2 3 4 5 6 7 8
πnS Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 (Z/2)2

generator ι η η2 ν ν2 σ ησ, ε
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Here ν and σ are the Hopf maps which arises unstably as fibre bundles S7 −→ S4 respectively S15 −→ S8.
The element ε in the 8-stem can be defined using Toda brackets (see Construction 4.71) as ε = ησ+〈ν, η, ν〉.
The table records all multiplicative relations in this range except for η3 = 12ν. A theorem of Nishida’s says
that every homotopy element of positive dimension is nilpotent.

Example 2.6 (Suspension spectra). Every pointed space K gives rise to a suspension spectrum Σ∞K
via

(Σ∞K)n = K ∧ Sn

with structure maps given by the canonical isomorphism (K ∧ Sn) ∧ S1
∼=−→ K ∧ Sn+1; we then have

S ∼= Σ∞S0. The homotopy group

πskK = πk (Σ∞K) = colimn πk+n(K ∧ Sn)
is called the kth stable homotopy group of K.

Since K ∧ Sn is (n − 1)-connected, the suspension spectrum Σ∞K is connective. The Freudenthal
suspension theorem implies that for every suspension spectrum, the colimit system for a specific homotopy
group always stabilizes. A symmetric spectrum X is isomorphic to a suspension spectrum (necessarily that
of its zeroth space X0) if and only if every structure map σn : Xn ∧ S1 −→ Xn+1 is a homeomorphism.

Example 2.7 (Eilenberg-Mac Lane spectra). For an abelian group A, the Eilenberg-Mac Lane spectrum
HA, based on simplicial sets, is defined by

(HA)n = A⊗ Z̃[Sn] ,

i.e., the underlying simplicial set of the dimensionwise tensor product of A with the reduced free simplicial
abelian group generated by the simplicial n-sphere. The symmetric group acts by permuting the smash
factors of Sn. The geometric realization of (HA)n is an Eilenberg-Mac Lane space of type (A,n), i.e.,
it has only one non-trivial homotopy group in dimensions n, which is isomorphic to A. The loop space
of the next space (HA)n+1 is also an Eilenberg-Mac Lane space of type (A,n), and in fact the map
σ̃n : (HA)n −→ Ω(HA)n+1 adjoint to the structure map is a weak equivalence for all n ≥ 0. In other
words, HA is an Ω-spectrum.

It follows that the homotopy groups of the symmetric spectrum HA are concentrated in dimension
zero, where we have a natural isomorphism A = π0(HA)0 ∼= π0HA. If A is not just an abelian group but
also has a ring structure, then HA becomes a symmetric ring spectrum via the multiplication map

(HA)n ∧ (HA)m = (A⊗ Z[Sn]) ∧ (A⊗ Z[Sm])

−→ A⊗Z[Sn+m] = (HA)n+m

given by (∑
i

ai · xi

)
∧

∑
j

bj · yj

 7−→
∑
i,j

(ai · bj) · (xi ∧ yj) .

The unit maps Sm −→ (HA)m are given by the inclusion of generators.
We shall see in Example 3.11 below that the Eilenberg-Mac Lane functor H can be made into a lax

symmetric monoidal functor with respect to the tensor product of abelian groups and the smash product of
symmetric spectra; this also explains why H takes rings (monoids in the category of abelian with respect
to tensor product) to ring spectra (monoids in the category of symmetric spectra with respect to smash
product).

Example 2.8 (Real cobordism spectra). We define a commutative symmetric ring spectrum MO whose
stable homotopy groups are isomorphic to the ring of cobordism classes of closed smooth manifolds. We set

MOn = EO(n)+ ∧O(n) S
n ,

the Thom space of the tautological vector bundle EO(n) ×O(n) Rn over BO(n) = EO(n)/O(n). Here
O(n) is the n-th orthogonal group consisting of Euclidean automorphisms of Rn. The space EO(n) is the
geometric realization of the simplicial space which in dimension k is the (k + 1)-fold product of copies of
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O(n), and where face maps are projections. Thus EO(n) is contractible and has a right action by O(n).
The right O(n)-action is used to form the orbit space MOn, where we remember that Sn is the one-point
compactification of Rn, so it comes with a left O(n)-action.

The symmetric group Σn acts on O(n) by conjugation with the permutation matrices. Since the ‘E’-
construction is natural in topological groups, this induces an action of Σn on EO(n). If we let Σn act on
the sphere Sn by coordinate permutations and diagonally on EO(n)+∧Sn, then the action descends to the
quotient space MOn.

The unit of the ring spectrum MO is given by the maps

Sn ∼= O(n)+ ∧O(n) S
n −→ EO(n)+ ∧O(n) S

n = MOn

using the ‘vertex map’ O(n) −→ EO(n). There are multiplication maps

MOn ∧MOm −→ MOn+m

which are induced from the identification Sn ∧ Sm ∼= Sn+m which is equivariant with respect to the group
O(n)×O(m), viewed as a subgroup of O(n+m) by block sum of matrices. The fact that these multiplication
maps are associative and commutative uses that

• for topological groups G and H, the simplicial model of EG comes with a natural, associative and
commutative isomorphism E(G×H) ∼= EG× EH;

• the group monomorphisms O(n) × O(m) −→ O(n + m) by orthogonal direct sum are strictly
associative, and the following diagram commutes

O(n)×O(m) //

twist

��

O(n+m)

conj. by χn,m

��
O(m)×O(n) // O(m+ n)

where the right vertical map is conjugation by the permutation matrix of the shuffle permuta-
tion χn,m.

Essentially the same construction gives commutative symmetric ring spectra MSO representing oriented
bordism and MSpin representing spin bordism. For MSO this uses that conjugation of O(n) by a per-
mutation matrix restricts to an automorphism of SO(n) and the block sum of two special orthogonal
transformations is again special. For MSpin it uses that the block sum pairing and the Σn-action uniquely
lift from the groups SO(n) to their universal covers Spin(n).

We intend to discuss these and other examples of Thom spectra in more detail in a later chapter.

Example 2.9 (Complex cobordism spectra). The cobordism ring spectra MU and MSU representing
complex bordism, or symplectic bordism MSp have to be handled slightly differently from real Thom
spectra such as MO in the previous example. The point is that MU and MSU are most naturally indexed
on ‘even spheres’, i.e., one-point compactifications of complex vector spaces, and MSp is most naturally
indexed on spheres of dimensions divisible by 4. However, a small variation gives MU , MSU and MSp as
commutative symmetric ring spectra, as we shall now explain. The complex cobordism spectrum MU plays
an important role in stable homotopy theory because of its relationship to the theory of formal groups laws.
Thus module and algebra spectra over MU are important, and we plan to study these in some detail later.

We first consider the collection of pointed spaces MU with

(MU)n = EU(n)+ ∧U(n) S
2n ,

the Thom space of the tautological complex vector bundle EU(n) ×U(n) Cn over BU(n) = EU(n)/U(n).
Here U(n) is the n-th unitary group consisting of Euclidean automorphisms of Cn. The Σn-action arises
from conjugation by permutation matrices and the permutation of complex coordinates, similarly as in the
case of MO above.

There are multiplication maps

(MU)p ∧ (MU)q −→ (MU)p+q
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which are induced from the identification Cp ⊕ Cq ∼= Cp+q which is equivariant with respect to the group
U(p)×U(q), viewed as a subgroup of U(p+q) by direct sum of linear maps. There is a unit map ι0 : S0 −→
(MU)0, but instead of a unit map from the circle S1, we only have a unit map S2 −→ (MU)1. Thus we
do not end up with a symmetric spectrum since we only get structure maps (MU)n ∧ S2 −→ (MU)n+1

involving the 2-sphere. In other words, MU has the structure of what could be called an ‘even symmetric
ring spectrum’ (MU is really a unitary ring spectrum, as we shall define in Example 2.41 below).

In order to get an honest symmetric ring spectrum we now use a general construction which turns a
commutative monoid ΦR in the category of symmetric sequences into a new such monoid by appropriately
looping all the spaces involved. We set

Φ(R)n = map(Sn, Rn)

an let the symmetric group act by conjugation. Then the product of R combined with smashing maps gives
Σn × Σm-equivariant maps

Φ(R)n ∧ Φ(R)m = map(Sn, Rn) ∧map(Sm, Rm) −→ map(Sn+m, Rn+m) = Φ(R)n+m

f ∧ g 7−→ f · g = µn,m ◦ (f ∧ g) .

Now we apply this construction to MU and obtain a commutative monoid MU = Φ(MU) in the
category of symmetric sequences. We make MU into a symmetric ring spectrum via the unit map S1 −→
(MU)1 = map(S1, (MU)1) which is adjoint to

ι : S2 ∼= U(1)+ ∧U(1) S
2 −→ EU(1)+ ∧U(1) S

2 = (MU)1

using the ‘vertex map’ U(1) −→ EU(1). More precisely, we use the decomposition C = R · 1⊕R · i to view
S2 as the smash product of a ‘real’ and ‘imaginary’ circle, and then we view the source of the unit map
S1 −→ (MU)1 = map(S1, (MU)1) as the real circle, and we think of the imaginary circle as parameterizing
the loop coordinate in the target (MU)1. Since the multiplication of MU is commutative, the centrality
condition is automatically satisfied. Then the iterated unit map

Sn −→ (MU)n = Ωn(MU)n

is given by
(x1, . . . , xn) 7−→ ((y1, . . . , yn) 7→ µ(ι(x1, y1), . . . , ι(xn, yn)))

where µ : (MU)∧n1 −→ (MU)n is the iterated multiplication map.
The homotopy groups of MU are given by

πkMU = colimn πk+n map(Sn, (MUn)) ∼= colimn πk+2n(EU(n)+ ∧U(n) S
2n) ;

so by Thom’s theorem they are isomorphic to the ring of cobordism classes of stably almost complex k-
manifolds. So even though the individual spaces MUn = map(Sn, EU(n)+∧U(n)S

2n) are not Thom spaces,
the symmetric spectrum which they form altogether has the ‘correct’ homotopy groups (and in fact, the
correct stable homotopy type).

Essentially the same construction gives a commutative symmetric ring spectrum MSU . The symplectic
bordism and MSp can also be handled similarly: it first arises as a commutative monoid MSp in symmetric
sequences with structure maps (MSp)n ∧ S4 −→ (MSp)n+1 and a unit map S4 −→ (MSp)1. If we apply
the construction Φ three times, we obtain a commutative symmetric ring spectrum MSp = Φ3(MSp)
representing symplectic bordism.

Example 2.10 (Topological K-theory). We define the commutative symmetric ring spectrum KU of
complex topological K-theory. We set

KUn = hom(qn(C0(Rn)),K(n))

where:
• C0(Rn) is the C∗-algebra of continuous complex valued functions on Rn which vanish at infinity;



2. EXAMPLES 21

• qn is the n-th iterate of a functor q which associates to a C∗-algebra its Cuntz algebra; qA is the
kernel of the fold morphism A∗A −→ A, where the star is the categorical coproduct of C∗-algebras
(a certain completion of the algebraic coproduct);
• K is the C∗-algebra of compact operators on a fixed separable Hilbert space, and K(n) is the spatial

tensor product of n copies of K;
• hom is the space of ∗-homomorphisms between two C∗-algebras with the subspace topology of the

compact open topology on the space of all continuous maps; the basepoint is the zero map.
Here C∗-algebras are not necessarily unital, and homomorphisms need not preserve units, if they exist.

There is an adjunction as follows: if K is a locally compact space and A and B are C∗-algebras, then

T (K̄,hom(A,B)) ∼= hom(A,C0K ⊗B)

where K̄ is the one-point compactification.
There is an action of the symmetric group on qnA, but it is not obvious from what we have said

so far [define it]. The symmetric group also acts on C0(Rn) by permutation of coordinates, on K(n) by
permutation of tensor factors, and on the mapping space KUn by conjugation.

In level 0 we have q0A = A, so q0(C0(Rn)) = C, and K(0) = C. Thus we have KU0 = hom(C,C)
which consists of two elements, the zero and the identity homomorphism. So we define ι0 : S0 :−→ KU0

as the homeomorphism which sends the basepoint to the zero homomorphism and the non-basepoint to
the identity of C. We have KU1 = hom(q(C0(R)),K) [identify with infinite unitary group] and via the
adjunction, the unit map ι1 : S1 −→ KU1 corresponds to a C∗-homomorphism ι̂1 : q(C0(R)) −→ C0(R)⊗K
which is defined as the composite

q(C0(R)) −→ C0(R) −→ C0(R)⊗K

where the first map is the restriction of the morphism 1 ∗ 0 : C0(R) ∗ C0(R) −→ C0(R) to the kernel of the
fold map and the second map sends f to f ⊗ e where e ∈ K is a fixed rank 1 projection. [this should be a
positive Ω-spectrum. Necessary modifications to yield KO and KT . How about KSp ? C2-action on KU?]

The Bott periodicity theorem says that there is a homotopy equivalence Ω2BU ' Z×BU . It implies
that the homotopy ring of KU contains a unit in dimension 2, the Bott class u ∈ π2KU . There is an
isomorphism of graded rings π∗KU ∼= Z[u, u−1].

There is a variant, the symmetric spectrum of real topological K-theory KO. The real version has a
Bott-periodicity of order 8, i.e., there is a homotopy equivalence

Ω8BO ' Z×BO ,

which gives a unit β ∈ π8KO.
The following table (and Bott periodicity) gives the homotopy groups of the spectrum KO:

n 0 1 2 3 4 5 6 7 8
πnKO Z Z/2 Z/2 0 Z 0 0 0 Z

generator ι η η2 ξ β

Here η is the Hurewicz image of the Hopf map, i.e., the image of the class η ∈ π1S under the unique
homomorphism of ring spectra S −→ KO. There is a homomorphism of ring spectra KO −→ KU , the
‘complexification map’, which is injective on homotopy groups in dimensions divisible by 4, and bijective in
dimensions divisible by 8. The elements ξ and β can be defined by the property that they hit 2u2 ∈ π4KU
respectively u4 ∈ π8KU under this complexification map. Thus there is the multiplicative relation ξ2 = 4β.

Example 2.11 (Algebraic K-theory). There are various formalisms which associate to a category with
suitable extra structure an algebraic K-theory space. These spaces are typically infinite loop spaces in
a natural way, i.e., they arise from an Ω-spectrum. One very general framework is Waldhausen’s S·-
construction which accepts categories with cofibrations and weak equivalences as input and which produces
symmetric spectra which are positive Ω-spectra.
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We consider a category C with cofibrations and weak equivalences in the sense of Waldhausen [66]. For
any finite set Q we denote by P(Q) the power set of Q viewed as a poset under inclusions, and thus as
a category. A Q-cube in C is a functor X : P(Q) −→ C. Such a Q-cube X is a cofibration cube if for all
S ⊂ T ⊂ Q the canonical map

colim
S⊂U

⊂
6=T

X(U) −→ X(T )

is a cofibration in C. (The colimit on the left can be formed by iterated pushouts along cofibrations, so it
exists in C.)

We view the ordered set [n] = {0 < 1 < · · · < n} as a category. If n = {ns}s∈Q is a Q-tuple of
non-negative integers, we denote by [n] the product category of the categories [ns], s ∈ Q. For a morphism
i → j in [n] and a subset U ⊂ Q we let (i → j)U be the new morphisms in [n] whose sth component is
is → js if s ∈ U and the identity is → is if s 6∈ U . Then for each morphism i→ j in [n], the assignment

U 7→ (i→ j)U

defines a Q-cube in the arrow category Ar[n].
For a finite set Q and a Q-indexed tuple n = {ns}s∈Q we define a category SQn C as the full subcategory

of the category of functors from Ar[n] to C consisting of the functors

A : Ar[n] −→ C , (i→ j) 7→ Ai→j

with the following properties:
(i) if some component is → js of i→ j is an identity (i.e., if is = js for some s ∈ Q), then Ai→j = ∗ is

the distinguished zero object of C;
(ii) for every pair of composable morphisms i→ j → k the cube

U 7→ A(j→k)U◦(i→j)

is a cofibration cube
(iii) for every pair of composable morphisms i→ j → k the square

colim
U
⊂
6=Q

A(j→k)U◦(i→j) //

��

Ai→k

��
∗ // Aj→k

is a pushout in C.
The category SQn C depends contravariantly on [n], so that as [n] varies, we get a Q-simplicial category

SQ· C. We can make SQ· C into a Q-simplicial object of categories with cofibrations and weak equivalences
as follows. A morphism f : A −→ A′ is a cofibration in SQn C if for every pair of composable morphisms
i→ j → k the induced map of Q-cubes(

U 7→ A(j→k)U◦(i→j)

)
−→

(
U 7→ A′(j→k)U◦(i→j)

)
is a cofibration cube when viewed as a (|Q|+ 1)-cube in C. A morphism f : A −→ A′ is a weak equivalence
in SQn C if for every morphism i −→ j in [n] the morphism fi−→j is a weak equivalence in C. If Q has one
element, the SQ· C is isomorphic to S·C as defined by Waldhausen [66]. If P ⊂ Q there is an isomorphism
of Q-simplicial categories with cofibrations and weak equivalences

SQ· C ∼= SQ−P· (SP· C)

[define]. So a choice of linear ordering of the set Q specifies an isomorphism of categories

SQ· C ∼= S· · · ·S·C

to the |Q|-fold iterate of the S·-construction. Note that the permutation group of the set Q acts on SQ· C
by permuting the indices.
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Now we are ready to define the algebraic K-theory spectrum K(C) of the category with cofibrations
and weak equivalences C. (This is really naturally a coordinate free symmetric spectrum in the sense of
Remark 1.11.) It is the symmetric spectrum of simplicial sets with nth level given by

K(C)n = N·

(
wS

{1,...,n}
· C

)
,

i.e., the nerve of the subcategory of weak equivalences in SQ· C for the special case Q = {1, . . . , n}. The
basepoint is the object of S{1,...,n}· C given by the constant functor with values the distinguished zero object.
The group Σn of permutations of the set {1, . . . , n}, acts on S

{1,...,n}
· C preserving weak equivalences, so it

acts on the simplicial set K(C)n. Note that K(C)0 is the nerve of the category wC of weak equivalences in
C.

We still have to define the Σn × Σm-equivariant structure maps

K(C)n ∧ Sm −→ K(C)n+m .

Consider a biexact functor ∧ : C×D −→ E between categories with cofibrations and weak equivalences. For
disjoint finite subsets Q and Q′ we obtain a biexact functor of (Q∪Q′)-simplicial categories with cofibrations
and weak equivalences

∧ : SQ· C × SQ
′

· D −→ SQ∪Q
′

· E
by assigning

(A ∧A′)i∪i′→j∪j′ = Ai→j ∧A′i′→j .

We specialize to Q = {1, . . . , n} and Q′ = {n+1, . . . , n+m}, restrict to weak equivalences and take nerves.
This yields a Σn × Σm-equivariant map K(C)n ×K(D)m −→ K(E)n+m which factors as

K(C)n ∧K(D)m −→ K(E)n+m .

These maps are associative for strictly associative pairings [explain].
The universal example of a category with cofibrations and weak equivalences which acts on any other

such category is the category Γ of finite pointed sets n+ = {0, 1, . . . , n} with 0 as basepoint, and pointed
set maps. Here the cofibrations are the injective maps and the weak equivalences are the bijections. The
‘smash product’ functor

∧ : Γ× Γ −→ Γ , (n+,m+) 7→ (nm)+

is biexact and strictly associative so it makes the symmetric sequence {K(Γ)n}n≥0 into a strict monoid of
symmetric sequences. Here we identify n+ ∧m+ with (nm)+ using the lexicographic ordering. We define
a map of simplicial sets

ι0 : S0 −→ K(Γ)0 = N·iΓ

by sending the basepoint to the identity map of the set 0+ and the non-basepoint to the identity map of
the set 1+. The unit map

ι1 : S1 −→ K(Γ)1 = N·iS
1
· Γ

sends the non-degenerate 1-simplex of S1 to the identity map of the set 1+, which is a 1-simplex of the
nerve of the category iS1

· Γ [check; remark that S −→ K(Γ) is a π∗-isomorphism].
A biexact action

∧ : C × Γ −→ C
is given by sending (A,n+) to a choice of n-fold coproduct of the object A. This makes K(C) into a module
over the symmetric ring spectrum K(Γ); in particular, the structure maps

K(C)n ∧ S1 Id∧ι1−−−−→ K(C)n ∧K(Γ)1 −→ K(C)n+1

make K(C) into a symmetric spectrum.
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2.2. Constructions.

Example 2.12 (Free symmetric spectra). Given a pointed space K and m ≥ 0, we define a symmetric
spectrum FmK which is ‘freely generated by K in level m’. So technically we construct a left adjoint
Fm : T −→ SpΣ to the forgetful functor which takes a symmetric spectrum X to the pointed space Xm.
The nth level of FmK is given, as a pointed Σn-space by

(FmK)n = Σ+
n ∧1×Σn−m K ∧ Sn−m .

Here 1 × Σn−m is the subgroup of Σn of permutations which fix the first m elements. The structure map
σn : (FmK)n ∧ S1 −→ (FmK)n+1 is given by(

Σ+
n ∧1×Σn−m K ∧ Sn−m

)
∧ S1 −→ Σ+

n+1 ∧1×Σn+1−m K ∧ Sn−m+1

[τ, k ∧ x1 ∧ · · · ∧ xn−m] ∧ xn−m+1 7−→ [τ, k ∧ x1 ∧ · · · ∧ xn−m ∧ xn−m+1]

Free symmetric spectra generated in level zero are just suspension spectra, i.e., there is a natural isomor-
phism F0K ∼= Σ∞K.

We calculate the 0th stable homotopy group of the symmetric spectrum F1S
1. Explicitly, F1S

1 is given
by

(F1S
1)n = Σ+

n ∧1×Σn−1 S
1 ∧ Sn−1 .

So (F1S
1)n is a wedge of n copies of Sn and in the stable range, i.e., up to roughly dimensions 2n, the

homotopy groups of (F1S
1)n are a direct sum of n copies of the homotopy groups of Sn. Moreover, in

the stable range, the map in the colimit system (1.5) is a direct summand inclusion into (n + 1) copies of
the homotopy groups of Sn. Thus in the colimit, the stable homotopy groups of the symmetric spectrum
F1S

1 are a countably infinite direct sum of copies of the stable homotopy groups of spheres. In particular,
F1S

1 is not π∗-isomorphic to the sphere spectrum S, whose zeroth homotopy group is a single copy of the
integers. Still, as we shall explain in Example 4.2 of Chapter II, F1S

1 represents the same stable homotopy
type as the sphere spectrum S. More generally, the free symmetric spectrum FnK is stably equivalent to
an n-fold desuspension of the suspension spectrum of K.

Example 2.13 (Semifree symmetric spectra). There are somewhat ‘less free’ symmetric spectra starting
from a pointed Σm-space L which we want to install in level m, and then fill in the remaining data of a
symmetric spectrum in the freest possible way. In other words, we claim that the forgetful functor

Sp −→ Σm-T , X 7−→ Xm

has a left adjoint which we denote Gm; we refer to GmL as the semifree symmetric spectrum generated by
L in level m. In level n we have

(GmL)n = Σ+
n ∧Σm×Σn−m L ∧ Sn−m .

The structure map σn : (GmK)n ∧ S1 −→ (GmK)n+1 is defined by the same tautological formula as in the
previous example. In fact every free symmetric spectrum is semifree, i.e., there is a natural isomorphism
FmK ∼= Gm(Σ+

m ∧K).

Example 2.14 (Limits and colimits). The category of symmetric spectra has all limits and colimits,
and they are defined levelwise. Let us be a bit more precise and consider a functor F : J −→ SpΣ from a
small category J to the category of symmetric spectra. Then we define a symmetric spectrum colimJ F in
level n by

(colimJ F )n = colimj∈J F (j)n ,

the colimit being taken in the category of pointed Σn-spaces. The structure map is the composite

(colimj∈J F (j)n) ∧ S1 ∼= colimj∈J(F (j)n ∧ S1) colimJ σn−−−−−−→ colimj∈J F (j)n+1 ;

here we exploit that smashing with S1 is a left adjoint, and thus the natural map colimj∈J(F (j)n∧S1) −→
(colimj∈J F (j)n) ∧ S1 is a homeomorphism, whose inverse is the first map above.
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The argument for inverse limits is similar, but we have to use that structure maps can also be defined
in the adjoint form. We can take

(limJF )n = limj∈JF (j)n ,

and the structure map is adjoint to the composite

limj∈JF (j)n
limJ σ̂n−−−−−→ limj∈JΩ(F (j)n+1) ∼= Ω (limj∈JF (j)n+1) .

[Same for modules]
The inverse limit, calculated levelwise, of a diagram of symmetric ring spectra and homomorphisms

is again a symmetric ring spectrum. In other words, symmetric ring spectra have limits and the forgetful
functor to symmetric spectra preserves them. Symmetric ring spectra also have co-limits, but they are not
preserved by the forgetful functor.

Example 2.15 (Smash products with spaces). If K is pointed space and X a symmetric spectrum, we
define a new symmetric spectrum K ∧X by smashing K levelwise with the terms of X, i.e., (K ∧X)n =
K ∧Xn. The structure map does not interact with the space K, i.e., it is given by the composite

(K ∧X)n ∧ S1 = K ∧Xn ∧ S1 Id∧σn−−−−−→ K ∧Xn+1 = (K ∧X)n+1 .

For example, the spectrum K ∧ S is equal to the suspension spectrum Σ∞K. [Same for modules]

Example 2.16 (Suspension). A special case of the previous construction is the suspension S1 ∧X of a
symmetric spectrum X. So S1 ∧X is defined by applying the functor S1 ∧− levelwise, where the structure
maps do not interact with the new suspension coordinate.

We claim that suspension simply shifts the homotopy groups of a symmetric spectrum X. The maps
S1 ∧ − : πk+nXn −→ π1+k+n(S1 ∧Xn) for varying n form part of a diagram

(2.17) πk+nXn
S1∧− //

−∧S1

��

π1+k+n (S1 ∧Xn)

−∧S1

��(−1)k+n τ∗rr
πk+n+1 (Xn ∧ S1)

(σn)∗

��

π1+k+n+1 (S1 ∧Xn ∧ S1)

(S1∧σn)∗

��
πk+n+1Xn+1

S1∧−
// π1+k+n+1 (S1 ∧Xn+1)

whose outer rectangle commutes. This shows first of all that the maps S1 ∧ − are compatible with the
stabilization process for the homotopy groups of X respectively S1 ∧X, and thus induce a natural map

S1 ∧ − : πkX −→ π1+k(S1 ∧X) .

We claim that this map is an isomorphism.
For this purpose we consider the diagonal dotted morphism which involves the twist isomorphism

τ : Xn ∧ S1 −→ S1 ∧ Xn which interchanges the two factors in a smash product. This dotted morphism
makes the upper left triangle in diagram (2.17) commute, which implies that the map S1 ∧ − : πkX −→
π1+k(S1 ∧X) is injective.

However, the dotted morphism does not in general make the lower right portion of diagram (2.17)
commute as it stands, but it does after another suspension. Indeed, if we ignore the signs for a moment, then
the two ways from π1+k+n(S1∧Xn) to π1+k+n+1(S1∧Xn+1) send the class of a map α : S1+k+n −→ S1∧Xn
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to the respective composites in the square

S1+k+n+1
α∧S1

//

S1∧χk+n,1
��

S1 ∧Xn ∧ S1

S1∧σn

��~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~

S1+1+k+n

S1∧α
��

	�

S1 ∧ S1 ∧Xn

S1∧τ
��

S1 ∧Xn ∧ S1

S1∧σn
// S1 ∧Xn+1.

The upper left part of this diagram does not commute ! The two composites from S1+k+n+1 to S1∧Xn∧S1

differ by the automorphisms of S1+k+n+1 and S1 ∧ Xn ∧ S1 which interchanges the outer two sphere
coordinates in each case. This coordinate change in the source induces multiplication by −1; the coordinate
change in the target is a map of degree −1, so after a single suspension it also induces multiplication by −1
on homotopy groups (see Lemma 2.3).

Example 2.18 (Shift). There is another construction for symmetric spectra which, like the suspension,
reindexes the homotopy groups. The shift of a symmetric spectrum X is given by

(shX)n = X1+n

with action of Σn via the monomorphism (1×−) : Σn −→ Σ1+n which is explicitly given by (1× γ)(1) = 1
and (1 × γ)(i) = γ(i − 1) + 1 for 2 ≤ i ≤ 1 + n. The structure maps of shX are the reindexed structure
maps for X.

For any symmetric spectrum X, integer k and large enough n we have

π(k+1)+n(shX)n = πk+(1+n)X1+n ,

and the maps in the colimit system for πk+1(shX) are the same as the maps in the colimit system for πkX.
Thus we get πk+1(shX) = πkX.

Warning: the suspension and shift construction both shift the homotopy groups, but, however, there
is in general no morphism between S1 ∧X and shX which induces an isomorphism of homotopy groups.
This is closely related to the phenomenon of ‘semistability’, which we discuss in more detail in Section 4.5.
There is an important natural morphism λ : S1 ∧X −→ shX for every symmetric spectrum X whose level
n component λn : S1 ∧Xn −→ X1+n is the composite

(2.19) S1 ∧Xn

∼=−−−−→
twist

Xn ∧ S1 σn−−−→ Xn+1
χn,1−−−→ X1+n .

One should note that using only the structure map σn without the twist isomorphism and permutation
χn,1 = (1, . . . , n, n+1) does not yield a morphism of symmetric spectra ! The morphism λ is not in general
a π∗-isomorphism, but when it is, the symmetric spectrum X is called semistable (compare Theorem 4.44).

We can iterate the shift construction and get (shmX)n = Xm+n. In every level of the symmetric
spectrum shmX the symmetric group Σm acts via the ‘inclusion’ (−×1) : Σm −→ Σm+n, and these actions
are compatible with the structure maps. So in this way shmX becomes a Σm-symmetric spectrum.

Example 2.20 (Twisted smash product). The twisted smash product starts from a number m ≥ 0, a
pointed Σm-space (or Σm-simplicial set) L and a symmetric spectrum X and produces a new symmetric
spectrum which we denote L.mX. This construction is a simultaneous generalization of semifree symmetric
spectra (Example 2.13) and the smash product of a space and a spectrum (Example 2.15) and also provides
a left adjoint to the shift construction (Example 2.18). Once the internal smash product of symmetric
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spectra is available, we will identify the twisted smash product L .m X with the smash product of GmL
and X, see Proposition 3.5 below.

We define the twisted smash product L .m X as a point in levels smaller than m and in general by

(L .m X)m+n = Σ+
m+n ∧Σm×Σn L ∧Xn .

The structure map σm+n : (L.mX)m+n∧S1 −→ (L.mX)m+n+1 is obtained from Id∧σn : L∧Xn∧S1 −→
L ∧Xn+1 by inducing up.

Here are some special cases. Taking X = S gives semifree and free symmetric spectra as

L .m S = GmL respectively (Σ+
m ∧K) .m S = FmK .

For m = 0 we get
K .0 X = K ∧X ,

the levelwise smash product of K and X. The twisted smash product has an associativity property in the
form of a natural isomorphism

L .m (L′ .n X) ∼= (Σ+
m+n ∧Σm×Σn L ∧ L′) .m+n X .

The twisted smash product is related by various adjunctions to other constructions. As we noted at the
end of Example 2.18, the m-fold shift of a symmetric spectrum Z has an action of Σm through spectrum
automorphisms, i.e., shm Z is a Σm-symmetric spectrum. The levelwise smash product L ∧ X (in the
sense of Example 2.15) of the underlying space of L and X also is a Σm-symmetric spectrum through the
action on L. Given a morphism f : L .m X −→ Z of symmetric spectra, we can restrict the component
in level m+ n to the summand 1 ∧ L ∧Xn in (L .m X)m+n and obtain a Σm × Σn-equivariant based map
f̄n = fm+n(1 ∧ −) : L ∧ Xn −→ Zm+n = (shm Z)n. The compatibility of the fm+n’s with the structure
maps translates into the property that the maps f̄ = {f̄n}n≥0 form a morphism of Σm-symmetric spectra
from L∧X to shm Z. Conversely, every Σm-equivariant morphism L∧X −→ shm Z arises in this way from
a morphism f : L .m X −→ Z. In other words, the assignment f 7→ f̄ is a natural bijection of functors

(2.21) SpΣ(L .m X,Z) ∼= Σm-SpΣ(L ∧X, shm Z) .

The case m = 1 and L = S0 gives a bijection,

SpΣ(S0 .1 X,Z) ∼= SpΣ(X, shZ) ,

natural in the symmetric spectra X and Z, which shows that X 7→ S0 .1X is left adjoint to shifting. [Same
for modules]

Example 2.22 (Function spectra). If X is a symmetric spectrum and K a pointed space, we define a
symmetric function spectrum XK by

(XK)n = XK
n = map(K,Xn)

with Σn-action induced by the action on Xn. The structure map is the composite

XK
n ∧ S1 −→ (Xn ∧ S1)K −→ XK

n+1

where the first map is adjoint to the evaluation map XK
n ∧S1∧K −→ Xn∧S1 and the second is application

of map(K,−) to the structure map of X. [Same for modules]
We note that if X is an Ω-spectrum, then so is XK , provided we also assume that
• K is a CW-complex (when in the context of topological spaces), or
• X is levelwise a Kan complex (when in the context of simplicial sets).

Indeed, under either hypothesis, the map mapping space functor map(K,−) takes the weak equivalence
σ̃n : Xn −→ ΩXn+1 to a weak equivalence

XK
n = map(K,Xn)

map(K,σ̃n)−−−−−−−→ map(K,ΩXn+1) ∼= Ω(XK
n+1) .
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If R is a symmetric ring spectrum and L an unpointed space, then RL
+

is again a symmetric ring
spectrum. The multiplication maps RL

+

n ∧RL+

m −→ RL
+

n+m are the composites

map(L+, Rn) ∧map(L+, Rm) ∧−−→ map(L+ ∧ L+, Rn ∧Rm)
map(diagonal,µn,m)−−−−−−−−−−−−−→ map(L+, Rn+m)

using the diagonal map L+ −→ (L × L)+ ∼= L+ ∧ L+. Associativity of the multiplication on RL
+

comes
from associativity of R and coassociativity of the diagonal map. The unit map ιn : Sn −→ RL

+

n is the
composite of the unit map of R with the map Rn ∼= RS

0

n −→ RL
+

n induced by the based map L+ −→ S0

which takes all of L to the non-basepoint of S0. If the multiplication of R is commutative, then so is the
multiplication of RL

+
, since the diagonal map is cocommutative.

In good cases (namely if X is semistable), the homotopy groups of XK are the values of the reduced
cohomology theory represented by X on the space K, i.e,

πk(XK) ∼= X̃−k(K) .

A concrete example if X = HA, the Eilenberg-Mac Lane spectrum of an abelian group A. Then

πk(HAK) ∼= H̃−k(K;A) ,

the reduced singular cohomology of K with coefficients in A. If A is a ring, then HA becomes a ring
spectrum and this isomorphism takes the product of homotopy groups to the cup product in singular
cohomology.

Example 2.23 (Loops). The loop ΩX of a symmetric spectrum X is defined by applying the functor
Ω = map(S1,−) levelwise, where the structure maps do not interact with the new loop coordinate. In other
words, ΩX is the special case of a function spectrum as in the previous example. We claim that looping
shifts the homotopy groups.

We use the isomorphism α : πk+nΩ(Xn) ∼= π1+k+nXn defined by sending a representing continuous
map f : Sk+n −→ Ω(Xn) to the class of the adjoint f̂ : S1+k+n −→ Xn given by f̂(s ∧ t) = f(t)(s), where
s ∈ S1, t ∈ Sk+n. As n varies, these particular isomorphisms are compatible with stabilization maps, so
they induce an isomorphism

α : πk(ΩX)
∼=−−→ π1+kX

on colimits. The composite

π∗X
S1∧−−−−−−→ π1+∗(S1 ∧X) α−1

−−−→ π∗(Ω(S1 ∧X))

is the map induced by the adjunction unit X −→ Ω(S1∧X) on homotopy, where S1∧− is the isomorphism
of Example 2.16. Similarly, the composite

π1+∗(S1 ∧ (ΩX))
(S1∧−)−1

−−−−−−−→ π∗(ΩX) α−−→ π1+∗X

is the map induced by the adjunction counit S1 ∧ ΩX −→ X on homotopy.
What we said about the loop spectrum works as well for symmetric spectra of simplicial sets as long

as they are levelwise Kan complexes.

Example 2.24 (Mapping spaces). There is a whole space, respectively simplicial set, of morphisms
between two symmetric spectra. For symmetric spectra X and Y of topological spaces, every morphism
from f : X −→ Y consists of a family of based continuous maps {fn : Xn −→ Yn}n≥0 which satisfy
some conditions. So the set of morphisms from X to Y is a subset of the product of mapping spaces∏
n≥0 T (Xn, Yn) and we give it the subspace topology of the (compactly generated) product topology. We

denote this mapping space by map(X,Y ).
Now suppose thatX and Y are symmetric spectra of simplicial sets. Then the mapping space map(X,Y )

is the simplicial set whose n-simplices are the spectrum morphisms from ∆[n]+ ∧X to Y . For a monotone
map α : [n] −→ [m] in the simplicial category ∆, the map α∗ : map(X,Y )m −→ map(X,Y )n is given by
precomposition with α∗ ∧ IdX : ∆[n]+ ∧X −→ ∆[m]+ ∧X. The morphism space has a natural basepoint,
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namely the trivial map from ∆[0]+ ∧ X to Y . We can, and will, identify the vertices of map(X,Y ) with
the morphisms from X to Y using the natural isomorphism ∆[0]+ ∧X ∼= X.

The topological and simplicial mapping spaces are related by various adjunctions. We list some of
these. For a simplicial spectrum X and a topological spectrum Y there is an isomorphism of simplicial sets

map(X,S(Y )) ∼= S(map(|X|, Y ))

which on vertices specializes to the adjunction between singular complex and geometric realization.
Furthermore, for a pointed space K and topological symmetric spectra X and Y we have adjunction

homeomorphisms
T (K,map(X,Y )) ∼= T (K ∧X,Y ) ∼= map(X,Y K) .

For free symmetric spectra we have homeomorphisms

map(FmK,Y ) ∼= T (K,Ym) .

For K = S0 this specializes to a homeomorphism map(FmS0, Y ) ∼= Ym. In the context of symmetric spectra
of simplicial sets, the analogous isomorphisms of mapping simplicial sets hold as well.

We have associative and unital composition maps

map(Y, Z) ∧map(X,Y ) −→ map(X,Z) .

Indeed, for symmetric spectra of topological spaces this is just the observation that composition of mor-
phisms is continuous for the mapping space topology. For symmetric spectra of simplicial sets the compo-
sition maps are given on n-simplices by

SpΣ(∆[n]+ ∧ Y, Z) ∧ SpΣ(∆[n]+ ∧X,Y ) −→ SpΣ(∆[n]+ ∧X,Z)

g ∧ f 7−→ g ◦ (Id∆[n]+ ∧f) ◦ (diag+ ∧ IdX)

Example 2.25 (Internal Hom spectra). Symmetric spectra have internal function objects: for symmet-
ric spectra X and Y we define a symmetric spectrum Hom(X,Y ) in level n by

Hom(X,Y )n = map(X, shn Y )

with Σn-action induced by the action on shn Y as described in Example 2.18. The structure map σn :
Hom(X,Y )n ∧ S1 −→ Hom(X,Y )n+1 is the composite

map(X, shn Y ) ∧ S1 −→ map(X,S1 ∧ shn Y )
map(X,λshn Y )−−−−−−−−−−→ map(X, sh1+n Y )

map(X,χ1,n)−−−−−−−−→ map(X, shn+1 Y )

where λshn Y : S1 ∧ shn Y −→ sh(shn Y ) is the natural morphism defined in (2.19).
The internal function spectrum Hom(−,−) is adjoint to the internal smash product of symmetric

spectra, to be discussed in Section 3. A natural isomorphism of symmetric spectra Hom(FmS0, Y ) ∼= shm Y
is given at level n by

Hom(FmS0, Y )n = map(FmS0, shn Y ) ∼= (shn Y )m = Yn+m
χn,m−−−→ Ym+n = (shm Y )n .

In the special case m = 0 we have F0S
0 = S, which gives a natural isomorphism of symmetric spectra

Hom(S, Y ) ∼= Y .

Example 2.26 (Endomorphism ring spectra). For every symmetric spectrumX, the symmetric function
spectrum Hom(X,X) defined in Example 2.25 has the structure of a symmetric ring spectrum which we call
the endomorphism ring spectrum of X. The multiplication map µn,m : Hom(X,X)n ∧ Hom(X,X)m −→
Hom(X,X)n+m is defined as the composite

map(X, shnX) ∧map(X, shmX) shm ∧ Id−−−−−→ map(shmX, shm+nX) ∧map(X, shmX)

◦−−−−→ map(X, shm+nX)
map(X,χm,n)−−−−−−−−−→ map(X, shn+mX)

where the second map is the composition pairing of Example 2.24. While this construction always works on
the pointset level, one can only expect Hom(X,X) to be homotopically meaningful under certain conditions
on X. The stable model structures which we discuss later will explain which conditions are sufficient.
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In much the same way as above we can define associative and unital action maps Hom(X,Z)n ∧
Hom(X,X)m −→ Hom(X,Z)n+m and Hom(X,X)n ∧ Hom(Z,X)m −→ Hom(Z,X)n+m for any other
symmetric spectrum Z. This makes Hom(X,Z) and Hom(Z,X) into right respectively left modules over
the endomorphism ring spectrum of X.

Example 2.27 (Telescope and diagonal of a sequence). We will sometimes be confronted with a sequence
of morphisms of symmetric spectra

(2.28) X0 f0

−−→ X1 f1

−−→ X2 f2

−−→ · · ·

of which we want to take a kind of colimit in a homotopy invariant way, and such that the homotopy groups
of the ‘colimit’ are the colimits of the homotopy groups. We describe two constructions which do this job,
the mapping telescope and the diagonal.

The mapping telescope teliXi of the sequence (2.28) is a classical construction for spaces which we
apply levelwise to symmetric spectra. It is defined as the coequalizer of two maps of symmetric spectra∨

i≥0X
i ////

∨
i≥0 [i, i+ 1]+ ∧Xi

Here [i, i+ 1] denotes a copy of the unit interval (when in the context of spaces) respectively the 1-simplex
∆[1] (when in the context of simplicial sets). One of the morphisms takes Xi to {i + 1}+ ∧ Xi by the
identity, the other one takes Xi to {i+ 1}+ ∧Xi+1 by the morphism f i.

The diagonal diagiXi of the sequence (2.28) is the symmetric spectrum given by

(diagiX
i)n = Xn

n ,

i.e., we take the n-th level of the n-th symmetric spectrum with its given Σn-action. The structure map
(diagiXi)n ∧ S1 −→ (diagiXi)n+1 is the composite around either way in the commutative square

Xn
n ∧ S1

σnn //

fnn∧Id

��

Xn
n+1

fnn+1

��
Xn+1
n ∧ S1

σn+1
n

// Xn+1
n+1

Lemma 2.29. For every sequence of symmetric spectra (2.28), the k-th homotopy group of the diagonal
symmetric spectrum is naturally isomorphic to the colimit of the k-th homotopy groups of the spectra Xi,
along the maps πk(f i),

(2.30) πk(diagiX
i) ∼= colimi πk(Xi) .

For symmetric spectra of simplicial sets or symmetric spectra of non-degenerately based spaces there is a
chain of two natural π∗-isomorphisms between the diagonal diagiXi and the mapping telescope teliXi of
the sequence.

Proof. The right hand side of (2.30) is a sequential colimit of groups which are themselves sequential
colimits, and it is thus the colimit over the poset N × N of the functor (n, i) 7→ πk+n(Xi

n). The left hand
side πk(diagiXi) equals the colimit over the diagonal terms in this system. Since the diagonal embedding
N −→ N× N is cofinal, the colimit over the diagonal terms is isomorphic to the colimit over N× N, which
proves the isomorphism (2.30).

To prove the second statement we use the ‘partial telescopes’ tel[0,n]X
i, the coequalizer of two maps of

symmetric spectra ∨n−1
i=0 X

i // //
∨n
i=0 [i, i+ 1]+ ∧Xi

defined as before. The spectrum tel[0,n]X
i includes into the next spectrum tel[0,n+1]X

i with (categorical)
colimit the mapping telescope. The morphism cn : tel[0,n]X

i −→ Xn which projects each wedge summand
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[i, i+ 1]+ ∧Xi onto Xi and then applies the morphism fn−1 · · · f i : Xi −→ Xn is a homotopy equivalence.
The commutative diagram of symmetric spectra

tel[0,0]Xi //

c0

��

tel[0,1]Xi //

c1

��

tel[0,2]Xi //

c2

��

· · ·

X0

f0
// X1

f1
// X2

f2
// · · ·

induces a morphism
diagn(tel[0,n]X

i) −→ diagnX
n

on diagonals which is thus levelwise a homotopy equivalence, hence a π∗-isomorphism. On the other hand
we have a morphism of symmetric spectra

diagn(tel[0,n]X
i) −→ teliXi

which is levelwise given by the inclusion of a partial telescope in the full mapping telescope. This morphism
is a π∗-isomorphism by the same kind of cofinality argument as in the first part. Here we use that an
(unstable) homotopy group of the mapping telescope of a sequence of simplicial sets or non-degenerately
based spaces is the colimits of the sequence of homotopy groups. �

Both mapping telescope and diagonal preserve module structures. Suppose that each symmetric spec-
trum Xi in the sequence (2.28) has the structure of right module over a symmetric ring spectrum R and that
all morphisms f i are R-linear. Then the mapping telescope is naturally an R-module since all constructions
used to build it preserves the action by the ring spectrum. The diagonal is naturally an R-module as well,
with action maps (diagiXi)n ∧ Rm −→ (diagiXi)n+m equal to the composite around either way in the
commutative square

Xn
n ∧Rm

αnn,m //

(fn+m−1···fn)n∧Id

��

Xn
n+m

(fn+m−1···fn)n+m

��
Xn+m
n ∧Rm

αn+m
n,m

// Xn+m
n+m

Let me point out two advantages of the diagonal construction over the mapping telescope of a sequence
of symmetric spectra. One advantage is that the formula (2.30) is proved formally, and it holds without any
assumptions on the symmetric spectra involved. So when we work with symmetric spectra of topological
spaces, no hypothesis about non-degenerate basepoints is needed. Another advantage is that the diagonal
construction has nicer formal and in particular multiplicative properties, as we shall see, for example, in
Examples 2.33 and 4.65.

Example 2.31 (I-spaces). Symmetric spectra are intimately related to the category I of finite sets and
injective maps. Here we denote by I the category with objects the sets n = {1, . . . , n} for n ≥ 0 (where 0 is
the empty set) and with morphisms all injective maps. In other words, I is the subcategory of the category
Fin of standard finite sets (compare Remark 1.12) with only injective maps as morphisms. We denote by
T I the category of I-spaces, i.e., covariant functors from I to the category of pointed spaces.

Given an I-space T : I −→ T and a symmetric spectrum X, we can form a new symmetric spectrum
T ∧X by setting

(T ∧X)n = T (n) ∧Xn

with diagonal action of Σn (which equals the monoid of endomorphism of the object n of I). The structure
map is given by

(T ∧X)n ∧ S1 = T (n) ∧Xn ∧ S1 T (ι)∧σn−−−−−→ T (n + 1) ∧Xn+1 = (T ∧X)n+1

where ι : n −→ n + 1 is the inclusion. If K is a pointed space and T the constant functor with values K,
then T ∧X is equal to K ∧X, i.e., this construction reduces to the pairing of Example 2.15.
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Example 2.32 (Monoid ring spectra). If R is a symmetric ring spectrum and M a topological or
simplicial monoid (depending on the kind of symmetric spectra), we can define a symmetric ring spectrum
R[M ] by R[M ] = M+ ∧R, i.e., the levelwise smash product with M with a disjoint basepoint added. The
unit map is the composite of the unit map of R and the morphism R ∼= {1}+ ∧R −→M+ ∧R induced by
the unit of M . The multiplication map µn,m is given by the composite

(M+ ∧Rn) ∧ (M+ ∧Rm) ∼= (M ×M)+ ∧ (Rn ∧Rm)
mult.∧µn,m−−−−−−−−−→ M+ ∧Rn+m .

If both R and M are commutative, then so is R[M ]. A right module over the symmetric ring spectrum
R[M ] amounts to the same data as an R-module together with a continuous (or simplicial) right action of
the monoid M by R-linear endomorphisms.

The construction of the monoid ring over S is left adjoint to the functor which takes a symmetric
ring spectrum R to the simplicial monoid R0. If R is semistable (see Theorem 4.44), then the homotopy
groups of R[M ] are the R-homology groups of the underlying space of M , with the Pontryagin product as
multiplication. In the special case of a discrete spherical monoid ring, the homotopy groups are the monoid
ring, in the ordinary sense, of the homotopy groups, i.e., there is a natural isomorphism

π∗R[M ] ∼= (π∗R)[M ] .

Example 2.33 (Ring spectra from multiplicative I-spaces). We can use the construction which pairs an
I-space with a symmetric spectrum (see Example 2.31) to produce symmetric ring spectra which model the
suspension spectra of certain infinite loop spaces such as BO, the classifying space of the infinite orthogonal
group, even if these do not have a strictly associative multiplication. This works for infinite loop spaces
which can be represented as ‘monoids of I-spaces’, as we now explain.

The symmetric monoidal sum operation restricts from the category Fin of standard finite sets to the
category I. Thus I has a symmetric monoidal product ‘+’ given by addition on objects and defined for
morphisms f : n −→ n′ and g : m −→m′ we define f + g : n + m −→ n′ + m′ by

(f + g)(i) =

{
f(i) if 1 ≤ i ≤ n, and

g(i− n) + n′ if n+ 1 ≤ i ≤ n+m.

The product + is strictly associative and has the object 0 as a strict unit. The symmetry isomorphism is
the shuffle map χn,m : n + m −→m + n.

Consider an I-space T : I −→ T with a pairing, i.e., an associative and unital natural transformation
µn,m : T (n) ∧ T (m) −→ T (n + m). If R is a symmetric ring spectrum, then the smash product T ∧R (see
Example 2.31) becomes a symmetric ring spectrum with respect to the multiplication map

(T ∧R)n ∧ (T ∧R)m −→ (T ∧R)n+m

defined as the composite

T (n) ∧Rn ∧ T (m) ∧Rm
Id∧twist∧Id−−−−−−−−→ T (n) ∧ T (m) ∧Rn ∧Rm

µn,m∧µn,m−−−−−−−→ T (n + m) ∧Rn+m .

If the transformation µ is commutative in the sense that the square

T (n) ∧ T (m)
µn,m //

twist

��

T (n + m)

T (χn,m)

��
T (m) ∧ T (n)

µm,n

// T (m + n)

commutes for all n,m ≥ 0 and if the multiplication of R is commutative, then the product of T ∧R is also
commutative. This construction generalizes monoid ring spectra (see Example 2.32): if M is a topological
(respectively simplicial) monoid, then the constant I-functor with values M+ inherits an associative and
unital product from M which is commutative if M is. The smash product of a ring spectrum R with such
a constant multiplicative functor equals the monoid ring spectrum R[M ].
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Later we shall also discuss an internal ‘tensor product’ of I-spaces and an internal smash product of
symmetric spectra and see that these constructions are intimately related.

A more interesting instance of this construction is a commutative symmetric ring spectrum which
models the suspension spectrum of the space BO+, the classifying space of the infinite orthogonal group
with a disjoint basepoint. Here we start with the ‘I-topological group’ O, a functor from I to topological
groups whose value at n is O(n), the n-th orthogonal group. The behavior on morphisms is determined by
requiring that a permutation γ ∈ Σn acts as conjugation by the permutation matrix associated to γ and
the inclusion ι : n −→ n + 1 induces

ι∗ : O(n) −→ O(n+ 1) , A 7−→
(
A 0
0 1

)
.

A general injective set map α : n −→m then induces the group homomorphism α∗ : O(n) −→ O(m) given
by

(α∗A)i,j =


Aα−1(i),α−1(j) if i, j ∈Im(α),

1 if i = j and i 6∈Im(α),
0 if i 6= j and i or j is not contained in Im(α).

Orthogonal sum of matrices gives a natural transformation of group valued functors

O(n)×O(m) −→ O(n + m) , (A,B) 7−→
(
A 0
0 B

)
.

This transformation is unital, associative and commutative, in a sense which by now is hopefully clear.
The classifying space functor B takes topological groups to pointed topological spaces and commutes with
products up to unital, associative and commutative homeomorphism. So by taking classifying spaces
objectwise we obtain an I-space BO with values BO(n) = BO(n). This I-space inherits a unital, associative
and commutative product in the sense discussed above, but with respect to the cartesian product, as
opposed to the smash product, of spaces. So if we add disjoint basepoints and perform the construction
above, we obtain a symmetric spectrum BO+ ∧ S whose value in level n is the space BO(n)+ ∧Sn. By our
previous discussion, this is a commutative symmetric ring spectrum. Since the connectivity of the maps
Bι∗ : BO(n) −→ BO(n + 1) tends to infinity with n, the underlying symmetric spectrum of BO ∧ S is
π∗-isomorphic to the suspension spectrum Σ∞BO+ [justify].

This construction can be adapted to yield commutative symmetric ring spectra which model the sus-
pension spectra of BSO,BSpin,BU,BSU and BSp, which disjoint basepoints added. In each case, the
respective family of classical groups fits into an ‘I-topological group’ with commutative product, and from
there we proceed as for the orthogonal groups. More examples of the same kind are obtained from families
of discrete groups which fit into ‘I-groups’ with commutative product, for example symmetric groups, al-
ternating groups or general or special linear groups over some ring. [is commutativity of the ring needed?
check BSp]

Example 2.34 (Matrix ring spectra). If R is a symmetric ring spectrum and k ≥ 1 we define the
symmetric ring spectrum Mk(R) of k × k matrices over R by

Mk(R) = map(k+, k+ ∧R) .

Here k+ = {0, 1, . . . , k} with basepoint 0, and so Mk(R) is a k-fold product of a k-fold coproduct (wedge)
of copies of R. So ‘elements’ of Mk(R) are more like matrices which in each row have at most one nonzero
entry. The multiplication

µn,m : map(k+, k+ ∧Rn) ∧ map(k+, k+ ∧Rm) −→ map(k+, k+ ∧Rn+m)

sends f ∧ g to the composite

k+ g−−→ k+ ∧Rm
f∧Rm−−−−−→ k+ ∧Rn ∧Rm

µn,m−−−→ Rn+m .
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Since homotopy groups take wedges and products to direct sums, we get a natural isomorphism of graded
abelian groups

π∗(Mk(R)) ∼= Mk(π∗R) .
If R semistable, then so is Mk(R) and the above is an isomorphism of graded rings [prove this later].

Example 2.35 (Inverting m). We consider an integer m and define S[1/m], the sphere spectrum with
m inverted by starting from the sphere spectrum and using a map ϕm : S1 −→ S1 of degree m as the new
unit map ι1. Since the multiplication on S is commutative, centrality is automatic. So S[1/m] has the same
spaces and symmetric group actions as S, but the n-th unit map ιn of S[1/m] is the n-fold smash power of
ϕm, which is a self map of Sn of degree mn. The unit maps form a morphism S −→ S[1/m] of symmetric
ring spectra which on homotopy groups induces an isomorphism

π∗ S[1/m] ∼= π∗S⊗ Z[1/m] .

For m = 0, the homotopy groups are thus trivial and for m = 1 or m = −1 the unit morphism S −→ S[1/m]
is a π∗-isomorphism.

Example 2.36 (Inverting homotopy elements). Let R be a symmetric ring spectrum and let x : S1 −→
R1 be a central map of pointed spaces, i.e., the square

Rn ∧ S1 Id∧x //

τ

��

Rn ∧R1

µn,1 // Rn+1

χn,1

��
S1 ∧Rn x∧Id

// R1 ∧Rn µ1,n
// R1+n

commutes for all n ≥ 0. We define a new symmetric ring spectrum R[1/x] as follows. For n ≥ 0 we set

R[1/x]n = map(Sn, R2n) ,

the n-fold loop space of R2n. The group Σn acts on Sn by coordinate permutations, on R2n via restriction
along the diagonal embedding ∆ : Σn −→ Σ2n given by

∆(γ)(i) =

{
2 · γ((i+ 1)/2)− 1 for i odd,

2 · γ(i/2) for i even,

and by conjugation on the whole mapping space. The multiplication µn,m : R[1/x]n ∧ R[1/x]m −→
R[1/x]n+m is the map

map(Sn, R2n) ∧map(Sm, R2m) −→ map(Sn+m, R2(n+m))

f ∧ g 7−→ µ2n,2m ◦ (f ∧ g) ,
which is associative since smashing of maps and the product of R are. The multiplication map is Σn×Σm-
equivariant since the original multiplication maps are equivariant and since the diagonal embeddings ∆n :
Σn −→ Σ2n, ∆m : Σm −→ Σ2m and ∆n+m : Σn+m −→ Σ2(n+m) satisfy

∆n(γ)×∆m(τ) = ∆n+m(γ × τ) .
We have R[1/x]0 = R0 and the 0th unit map for R[1/x] is the same as for R.

Next we define pointed maps jn : Rn −→ map(Sn, R2n) as the adjoints of the maps

Rn ∧ Sn
Id∧x∧n−−−−−→ Rn ∧R∧n1

µn,1,...,1−−−−−→ Rn+n

χ×n,2−−−→ R2n

where χ×n,2 ∈ Σn2 is the multiplicative shuffle defined by

χ×n,2(j) =

{
2j − 1 for 1 ≤ j ≤ n,

2(j − n) for n+ 1 ≤ j ≤ n+ n.

(See Remark 1.12 for more background on the multiplicative shuffle and why to expect it here.) Since the
map µn,1,...,1 ◦x(n) : Rn∧Sn −→ Rn+n is Σn×Σn-equivariant and the diagonal embedding ∆ : Σn −→ Σ2n
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satisfies ∆(γ) ◦χ×n,2 = χ×n,2(γ× γ) in Σn+n; together these imply that the adjoint jn is Σn-equivariant. The
maps jn are multiplicative in the sense of the relation µn,m(jn ∧ jm) = jn+mµn,m; this boils down to the
relation χ×n+m,2 ◦ (1× χn,m × 1) = χ×n,2 × χ

×
m,2 in Σ(n+m)2.

We define unit maps Sn −→ R[1/x]n as the composite of the unit map of R with jn; this finishes the
definition of R[1/x] which is again a symmetric ring spectrum and comes with a morphism of symmetric
ring spectra [centrality of the unit of R[1/x]]

j : R −→ R[1/x] .

Note that the map x does not enter in the definition of the spaces R[1/x]n, and it is not used in defining
the multiplication of R[1/x], but it enters in the definition of the unit map of the ring spectrum R[1/x].
Thus the colimit systems which define the homotopy groups of R and R[1/x] consist of the same groups, but
the effect of x is twisted into the morphisms in the sequence, and so the homotopy groups of R and R[1/x]
are potentially different. We show in Proposition 4.67 below that if R is semistable, then so is R[1/x] and
the effect of the morphism j : R −→ R[1/x] on the graded rings of homotopy groups is precisely inverting
the class in π0R represented by the map x.

Example 2.37 (Adjoining roots of unity). As an application of the localization construction of Exam-
ple 2.36 we construct a commutative symmetric ring spectrum which models the ‘Gaussian integers over S’
with 2 inverted. To construct it, we start with the spherical group ring S[C4] of the cyclic group of order
4, a commutative symmetric ring spectrum as in Example 2.32. We invert the element

1− t2 ∈ Z[C4] = π0 S[C4]

where t ∈ C4 is a generator, and define

S[1/2, i] = S[C4][1/(1− t2)] .

In more detail, the space S[C4]1 = C+
4 ∧ S1 is a wedge of 4 circles and the map from π1S[C4]1 to the stable

group π0 S[C4] is surjective. So 1 − t2 ∈ π0 S[C4] can be represented by a based map x : S1 −→ S[C4]1 to
which we apply Example 2.36. The monoid ring spectrum S[C4] is commutative and semistable, and so
Corollary 4.69 below shows that the ring of homotopy groups of S[C4][1/(1− t2)] is obtained from the ring
π∗S[C4] by inverting the class 1− t2 in π0.

Because (1 + t2)(1− t2) = 0 in the group ring Z[C4], inverting 1− t2 forces 1 + t2 = 0, so t becomes a
square root of −1. Since (1− t2)2 = 2(1− t2), inverting 1− t2 also inverts 2, and in fact

π0 S[1/2, i] = Z[C4][1/(1− t2)] ∼= Z [1/2, i] .

The ring spectrum S[1/2, i] is π∗-isomorphic as a symmetric spectrum to a wedge of 2 copies of S[1/2], and
thus deserves to be called the ‘Gaussian integers over S’ with 2 inverted. Moreover, S[1/2, i] is a Moore
spectrum for the ring Z[1/2, i], i.e., its integral homology is concentrated in dimension zero.

If p is a prime number and n ≥ 1, we can similarly adjoin a primitive pn-th root of unity to the sphere
spectrum, provided we are also willing to invert p in the homotopy groups. We first form the monoid ring
spectrum S[Cpn ] of the cyclic group of order pn, let t ∈ Cpn denote a generator and invert the element
f = p− (tq(p−1) + tq(p−2) + · · ·+ tq + 1) in Z[Cpn ] = π0S[Cpn ], where q = pn−1. This defines

S[1/p, ζ] = S[Cpn ][1/f ] .

We have f2 = pf , so inverting f also inverts the prime p and forces the expression p− f to become 0 in the
localized ring. If we let ζ denote the image of t in the localized ring, then the latter says that ζ is a root of
the cyclotomic polynomial, i.e.,

ζq(p−1) + ζq(p−2) + · · ·+ ζq + 1 = 0

where again q = pn−1. In fact we have Z[Cpn ][1/f ] = Z[1/p, ζ] where ζ is a primitive pn-th root of unity;
moreover the commutative symmetric ring spectrum S[1/p, ζ] is a Moore spectrum for the ring Z[1/p, ζ].

We can do the same constructions starting with any semistable commutative symmetric ring spectrum
R instead of the sphere spectrum, yielding a new commutative symmetric ring spectrum R[1/p, ζ]. If p is
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already invertible and the cyclotomic polynomial above is irreducible in π0R, then this adjoins a primitive
pn-th root of unity to the homotopy ring of R.

These examples are a special case of a much more general phenomenon: every number ring can be
‘lifted’ to an extension of the sphere spectrum by a commutative symmetric ring spectrum, provided we
also invert the ramified primes. However, the only proofs of this general fact that I know use obstruction
theory, and so we cannot give a construction which is as explicit and simple as the one above for adjoining
roots of unity.

2.3. Restrictions from other kinds of spectra.

Example 2.38 (Continuous functors). By a continuous functor we mean a functor F : T −→ T from
the category of pointed spaces to itself which is pointed in that it takes one-point spaces to one-point spaces
and continuous in the sense that for all pointed spaces K and L the map

F : T (K,L) −→ T (F (K), F (L))

is continuous with respect to the compact open topology on the mapping spaces. The (continuous !) map

L
l 7→(k 7→k∧l)−−−−−−−−→ T (K,K ∧ L) F−−−−−→ T (F (K), F (K ∧ L)) .

then has an adjoint
F (K) ∧ L −→ F (K ∧ L)

which we call the assembly map. The assembly map is natural in K and L, it is unital in the sense that the
composite

F (K) ∼= F (K) ∧ S0 assembly−−−−−→ F (K ∧ S0) ∼= F (K)
is the identity and it is associative in the sense that the diagram

(F (K) ∧ L) ∧M ass.∧Id //

∼=
��

F (K ∧ L) ∧M ass. // F ((K ∧ L) ∧M)

F (∼=)

��
F (K) ∧ (L ∧M)

assembly
// F (K ∧ (L ∧M))

commutes for allK,L andM , where the vertical maps are associativity isomorphisms for the smash product.
As usual, there is also a simplicial version. A simplicial functor is an enriched, pointed functor F :

sset* −→ sset* from the category of pointed simplicial sets to itself. So F assigns to each pointed simplicial
set K a pointed simplicial set F (K) and to each pair K,L of pointed simplicial sets a morphism of pointed
simplicial sets

F : map(K,L) −→ map(F (K), F (L))
which is associative and unital and such that F (∗) ∼= ∗. The restriction of F to vertices is then a functor
in the usual sense. The same kind of adjunctions as for continuous functors provides a simplicial functor
with an assembly map F (K) ∧ L −→ F (K ∧ L), again unital and associative.

To every continuous (respectively simplicial) functor F we can associate a symmetric spectrum of spaces
(respectively of simplicial sets) F (S) by

F (S)n = F (Sn)
where Σn permutes the coordinates of Sn. The structure map σn : F (Sn)∧ S1 −→ F (Sn+1) is an instance
of the assembly map. More generally, we can evaluate a continuous (simplicial) functor F on a symmetric
spectrum X and get a new symmetric spectrum F (X) by defining F (X)n = F (Xn) with structure map the
composite

F (Xn) ∧ S1 assembly−−−−−→ F (Xn ∧ S1)
F (σn)−−−−→ F (Xn+1) .

Some of the symmetric spectra which we described are restrictions of continuous functors to spheres,
for example suspension spectra and Eilenberg-Mac Lane spectra. Free symmetric spectra FmK or semifree
symmetric spectra GmK do not arise this way (unless m = 0 or K = ∗) and cobordism spectra like MO
and MU don’t either.
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A consequence of the formal properties of the assembly map is that the structure of a triple on a
continuous or simplicial functor T yields a multiplication on the symmetric spectrum T (S). Indeed, using
the assembly map twice and the triple structure map produces multiplication maps

T (K) ∧ T (L) −→ T (K ∧ T (L)) −→ T (T (K ∧ L)) −→ T (K ∧ L) ;

here K and L are pointed spaces. If we apply this to spheres, we get Σp × Σq-equivariant maps

T (Sp) ∧ T (Sq) −→ T (Sp+q)

which provide the multiplication. The unit maps come from the natural transformation Id −→ T by
evaluating on spheres. Here are some examples.

• The identity triple gives the sphere spectrum as a symmetric ring spectrum.
• Let Gr be the reduced free group triple, i.e., it sends a pointed set K to the free group generated

by K modulo the normal subgroup generated by the basepoint. Since Gr(Sn) is weakly equivalent
to ΩSn+1, which in the stable range is equivalent to Sn, the unit maps form a π∗-isomorphism
S −→ Gr(S). The same conclusion would hold with the free reduced monoid functor, also known
as the ‘James construction’ J , since J(Sn) is also weakly equivalence to ΩSn+1 as soon as n ≥ 1.
• Let M be a topological monoid and consider the pointed continuous functor K 7→M+ ∧K. The

multiplication and unit of M make this into a triple whose algebras are pointed sets with left
M -action. The associated symmetric ring spectrum is the spherical monoid ring S[M ].
• Let A be a ring and consider the free reduced A-module triple Ã[K] = A[K]/A[∗]. Then Ã[S] =
HA, the Eilenberg-Mac Lane ring spectrum. We shall see later [ref] that for every symmetric
spectrum of simplicial sets X the symmetric spectrum Ã[X] is π∗-isomorphic to the smash product
HA ∧X.
• Let B be a commutative ring and consider the triple X 7→ I(B̃(X)), the augmentation ideal of

the reduced polynomial algebra over B, generated by the pointed set X. The algebras over this
triple are non-unital commutative B-algebras, or augmented commutative B-algebras (which are
equivalent categories). The ring spectrum associated to this triple is denoted DB, and it is closely
related to topological André-Quillen homology for commutative B-algebras. The ring spectrum
DB is rationally equivalent to the Eilenberg-Mac Lane ring spectrum HB, but DB has torsion in
higher homotopy groups.

More generally, if we evaluate a triple T on a symmetric ring spectrum R, then the resulting spectrum T (R)
is naturally a ring spectrum with multiplication maps

T (Rn) ∧ T (Rm) −→ T (Rn ∧Rm)
T (µn,m)−−−−−→ T (Rn+m) .

Example 2.39 (Γ-spaces). Many continuous or simplicial functors arise from so called Γ-spaces, and
then the associated symmetric spectra have special properties. The category Γ is a skeletal category of the
category of finite pointed sets: there is one object n+ = {0, 1, . . . , n} for every non-negative integer n, and
morphisms are the maps of sets which send 0 to 0. (Γ is really equivalent to the opposite of Segal’s category
Γ, cf. [55]). A Γ-space is a covariant functor from Γ to the category of spaces or simplicial sets taking 0+

to a one point space (simplicial set). A morphism of Γ-spaces is a natural transformation of functors. We
follow the established terminology to speak of Γ-spaces even if the values are simplicial sets.

A Γ-spaceX can be extended to a continuous (respectively simplicial, depending on the context) functor
by a coend construction. If X is a Γ-space and K a pointed space or simplicial set, the value of the extended
functor on K is given by ∫ n+∈Γ

Kn ∧ X(n+) ,

where we use thatKn = map(n+,K) is contravariantly functorial in n+. We will not distinguish notationally
between the original Γ-space and its extension. The extended functor is continuous respectively simplicial.

In the simplicial context, the extension of a Γ-space admits the following different (but naturally
isomorphic) description. First, X can be prolonged, by direct limit, to a functor from the category of
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pointed sets, not necessarily finite, to pointed simplicial sets. Then if K is a pointed simplicial set we get
a bisimplicial set [k] 7→ X(Kk) by evaluating the (prolonged) Γ-space degreewise. The simplicial set X(K)
defined by the coend above is naturally isomorphic to the diagonal of this bisimplicial set.

Symmetric spectra which arise from Γ-spaces have special properties. Here we restrict to Γ-spaces of
simplicial sets, where things are easier to state. First, every simplicial functor which arises from a Γ-space
X preserves weak equivalences of simplicial sets, see [11, Prop. 4.9]. So if f : A −→ B is a level equivalence
of symmetric spectra of simplicial sets, then X(f) : X(A) −→ X(B) is again a level equivalence. We shall
see later that X(−) also preserves π∗-isomorphisms and stable equivalences [ref]. Another special property
is that symmetric spectra of the form X(S) for Γ-spaces of simplicial sets X are connective and the colimit
systems for the stable homotopy groups stabilize in a uniform way. This is because for every Γ-space X,
the simplicial set X(Sn) is always (n− 1)-connected [11] and the structure map X(Sn) ∧ S1 −→ X(Sn+1)
is 2n-connected [34, prop. 5.21]. Moreover, up to π∗-isomorphisms, Γ-spaces model all connective spectra
(see Theorem 5.8 of [11] [also reference to [55]?])

A Γ-space X is called special if the map X((k + l)+) −→ X(k+) × X(l+) induced by the projections
from (k + l)+ ∼= k+ ∨ l+ to k+ and l+ is a weak equivalence for all k and l. In this case, the weak map

X(1+)×X(1+) ∼←− X(2+)
X(∇)−−−→ X(1+)

induces an abelian monoid structure on π0 (X(1+)). Here ∇ : 2+ −→ 1+ is defined by ∇(1) = 1 = ∇(2).
The Γ-space X is called very special if it is special and the monoid π0 (X(1+)) is a group. By Segal’s theorem
([55, Prop. 1.4] or [11, Thm. 4.2]), the spectrum X(S) associated to a special Γ-space X by evaluation on
spheres is a positive Ω-spectrum.

If X is very special, then X(S) is even an Ω-spectrum (i.e., from the 0th level on). In particular,
the homotopy groups of a very special Γ-space X are naturally isomorphic to the homotopy groups of the
simplicial set X(1+).

Example 2.40 (Orthogonal spectra). An orthogonal spectrum consists of the following data:
• a sequence of pointed spaces Xn for n ≥ 0
• a base-point preserving continuous left action of the orthogonal group O(n) on Xn for each n ≥ 0
• based maps σn : Xn ∧ S1 −→ Xn+1 for n ≥ 0.

This data is subject to the following condition: for all n,m ≥ 0, the iterated structure map

σm : Xn ∧ Sm −→ Xn+m

is O(n)×O(m)-equivariant. The orthogonal group acts on Sm since this is the one-point compactification
of Rn and O(n)×O(m) acts on the target by restriction, along orthogonal sum, of the O(n+m)-action.

A morphism f : X −→ Y of orthogonal spectra consists of O(n)-equivariant based maps fn : Xn −→ Yn
for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn = σn ◦ (fn ∧ IdS1) for
all n ≥ 0.

An orthogonal ring spectrum R consists of the following data:
• a sequence of pointed spaces Rn for n ≥ 0
• a base-point preserving continuous left action of the orthogonal group O(n) on Rn for each n ≥ 0
• O(n)×O(m)-equivariant multiplication maps µn,m : Rn ∧Rm −→ Rn+m for n,m ≥ 0, and
• O(n)-equivariant unit maps ιn : Sn −→ Rn for all n ≥ 0.

This data is subject to the same associativity and unit conditions as a symmetric ring spectrum (see
Definition 1.3) and a centrality condition for every unit map ιn. In the unit condition, permutations such
as χn,m ∈ Σn+m have to be interpreted as permutation matrices in O(n+m). An orthogonal ring spectrum
R is commutative if for all n,m ≥ 0 the relation χn,m◦µn,m = µm,n◦twist holds as maps Rn∧Rm −→ Rm+n.

A morphism f : R −→ S of orthogonal ring spectra consists of O(n)-equivariant based maps fn :
Rn −→ Sn for n ≥ 0, which are compatible with the multiplication and unit maps (in the same sense as for
symmetric ring spectra).

Orthogonal spectra are ‘symmetric spectra with extra symmetry’ in the sense that every orthogonal
spectrum X has an underlying symmetric spectrum UX. Here (UX)n = Xn and the symmetric group acts
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by restriction along the monomorphism Σn −→ O(n) given by permutation matrices. The structure maps
of UX are the structure maps of X. Many spectra that we have introduced above have this extra symmetry,
i.e., they are underlying orthogonal spectra. Examples are the sphere spectrum, suspension spectra or more
generally any symmetric spectrum which is obtained from a continuous functor by evaluation on spheres.
The various Thom spectra such as MO and MU arise from orthogonal spectra by forgetting symmetry, but
they do not extend to continuous functors.

There is a more natural notion where we use vector spaces with inner product to index the spaces in
an orthogonal spectrum. A coordinate free orthogonal spectrum X consists of the following data:

• a pointed space X(V ) for each inner product space V , i.e., finite dimensional real vector space
with a euclidian scalar product,
• a base-point preserving continuous left action of the orthogonal group O(V ) of V on X(V ), for

each inner product space V ,
• a structure map σV,W : X(V ) ∧ SW −→ X(V ⊕W ) for each pair of inner product spaces V and
W which is O(V )×O(W )-equivariant. Here SW is the one-point compactification of W on which
the group O(W ) acts by extension of the action on W , fixing the basepoint at infinity. The group
O(V )×O(W ) acts on the target by restriction of the O(V ⊕W )-action.

This data should satisfy two conditions: the composite

X(V ) ∼= X(V ) ∧ S0 σV,0−−−→ X(V ⊕ 0) ∼= X(V )

should be the identity [isometries V ∼= W should also act] and the square

X(V ) ∧ SW ∧ SZ
Id∧µW,Z //

σV,W∧Id

��

X(V ) ∧ SW⊕Z

σV,W⊕Z

��
X(V ⊕W ) ∧ SZ σV⊕W,Z

// X(V ⊕W ⊕ Z)

commutes for all inner product spaces V,W and Z.
A morphism f : X −→ Y of coordinate free orthogonal spectra consists of O(V )-equivariant pointed

maps f(V ) : X(V ) −→ Y (V ) for all V which are compatible with the structure maps in the sense that
f(V ⊕W ) ◦ σV,W = σV,W ◦ (f(V ) ∧ Id) for all V and W .

A coordinate free orthogonal spectrum X gives rise to a coordinate free symmetric spectrum UX
(see Remark 1.11) by forgetting symmetry. For a finite set A the space (UX)A is X(RA), the value of
X at the inner product space RA which has A as orthonormal basis. [define the structure maps α∗ :
(UX)A ∧ SB−α(A) −→ (UX)B ]

Example 2.41 (Unitary spectra). Unitary spectra are the complex analogues of orthogonal spectra, and
they again come in a coordinatized and a coordinate free flavor. A coordinate free unitary spectrum assigns
a pointed spaces X(V ) for each complex inner product space V , i.e., finite dimensional complex vector space
with a hermitian metric, together with a base-point preserving continuous left action of the unitary group
U(V ) of V on X(V ), and U(V ) × U(W )-equivariant structure maps σV,W : X(V ) ∧ SW −→ X(V ⊕W )
which are associative and unital.

Given a unitary spectrum X we can produce an orthogonal spectrum Φ(X) as follows. We set

Φ(X)(V ) = map(SiV , X(C⊗R V )) ,

where i ∈ C is a square root of −1 and SiV is the one-point compactification of the imaginary part of
the complex inner product space C ⊗R V . The orthogonal group acts on SiV , on X(C ⊗R V ) via the
complexification map O(V ) −→ U(C⊗R V ) and on the mapping space by conjugation. The structure map
σV,W : Φ(X)(V ) ∧ SW −→ Φ(X)(V ⊕W ) is adjoint to the map

map(SiV , X(C⊗R V )) ∧ SW ∧ Si(V⊕W ) ∼= map(SiV , X(C⊗R V )) ∧ SiV ∧ SC⊗RW

eval∧Id−−−−−→ X(C⊗R V ) ∧ SC⊗RW
σC⊗V,C⊗W−−−−−−−→ X(C⊗R (V ⊕W ))
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where we have made identifications such as SW ∧ SiW ∼= SW⊕iW ∼= SC⊗RW and C ⊗R V ⊕ C ⊗R W ∼=
C⊗R (V ⊕W ).

The functor Φ : SpU −→ SpO turns unitary ring spectra into orthogonal ring spectra. An example
of this is the complex cobordism spectrum MU of Example 2.9 which arises naturally as a unitary ring
spectrum, made into an orthogonal spectrum via the functor Φ. More precisely, the symmetric sequence
denoted MU in Example 2.9 comes from a unitary spectrum with V th space

MU(V ) = EU(V )+ ∧U(V ) S
V ,

the Thom space of the vector bundle over BU(V ) with total space EU(V )×U(V ) V .

Example 2.42 (Periodic complex cobordism). We define the periodic complex cobordism spectrum
MUP , a unitary spectrum, as follows. For a complex inner product space V we consider the ‘full Grass-
mannian’ of V ⊕ V . A point in this ‘full Grassmannian’ is any complex subvector space of V ⊕ V , and
this space is topologized as the disjoint union of the Grassmannians of k-dimensional subspaces of V ⊕ V
for k = 0, . . . , 2 dim(V ). Over the ‘full Grassmannian’ sits a tautological hermitian vector bundle (of non-
constant rank!): the total space of this bundle consist of pairs (X,x) where X is a complex subvector space
of V ⊕ V and x ∈ X. We define (MUP )(V ) as the Thom space of this tautological vector bundle, i.e., the
quotient space of the unit disc bundle by the sphere bundle. The multiplication

(MUP )(V ) ∧ (MUP )(W ) −→ (MUP )(V ⊕W )

sends (X,x) ∧ (Y, y) to (X + Y, (x, y)) where X + Y is the image of X ⊕ Y under the isometry Id∧τ ∧ Id :
(V ⊕V )⊕ (W ⊕W ) ∼= (V ⊕W )⊕ (V ⊕W ). The unit map SV −→ (MUP )(V ) sends x ∈ V to (∆(V ), (v, v))
where ∆(V ) is the diagonal copy of V in V ⊕ V . [explain that MUP is a wedge of suspended copies of
MU , i.e., there is a π∗-isomorphism

∨
k∈Z S

2k ∧MU −→MUP ; real version
∨
k∈Z S

k ∧MO 'MOP ]

Example 2.43 (S-modules). We describe a functor Φ :MS −→ SpΣ from the category of S-modules
in the sense of Elmendorf, Kriz, Mandell and May [19] to the category of symmetric spectra which preserves
homotopy groups and multiplicative structures. For this we need the S-module S∧L LS -1 = S∧L LΣ∞1 S

0

defined in [19, II 1.7], which we abbreviate to S -1
c . What matters is not the precise form of S -1

c , but that it
is a cofibrant desuspension of the sphere S-module, i.e., it comes with a weak equivalence S -1

c ∧ S1 −→ S,
where S1 denotes the circle. For n > 0 we define S -n

c to be the n-fold smash power of the S-module S -1
c ,

endowed with the permutation action of the symmetric group on n letters. We set S0
c = S, the unit of the

smash product; here the notation is slightly misleading since S0
c is not cofibrant. The functor Φ is then

given by
Φ(X)n = MS(S -n

c , X)

where the right hand side is the topological mapping space in the category of S-modules. The symmetric
group acts on the mapping space through the permutation action of the source. The desuspension map
S -1
c ∧ S1 −→ S induces a map

MS(S -n
c , X) −→ MS(S -(n+1)

c ∧ S1, X) ∼= T (S1,MS(S -(n+1)
c , X))

whose adjoint
MS(S -n

c , X) ∧ S1 −→MS(S -(n+1)
c , X)

makes Φ(X) into a symmetric spectrum. For n ≥ 1, the S-module S -n
c is a cofibrant model of the (-n)-sphere

spectrum. So the functor Φ takes weak equivalences of S-modules to maps which are level equivalences
above level 0, and the i-th homotopy group of the space Φ(X)n is isomorphic to the (i − n)-th homotopy
group of the S-module X by [19, II 1.8]. In particular there is a natural isomorphism of stable homotopy
groups π∗Φ(X) ∼= π∗X.

If R is an S-algebra with multiplication µ : R ∧ R −→ R and unit i : S −→ R, then Φ(R) becomes a
symmetric ring spectrum with multiplication maps

MS(S -m
c , R) ∧ MS(S -n

c , R) ∧−−→ MS(S -(m+n)
c , R ∧ R)

µ−−→MS(S -(m+n)
c , R) .
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The unit maps i0 : S0 −→ Φ(S)0 =MS(S,R) is the unit i and the unit map S1 −→ Φ(S)1 =MS(S -1
c , R) is

adjoint to the composite S -1
c ∧ S1 −→ S

i−→ R. If R is a commutative S-algebra, then Φ(R) is a commutative
symmetric ring spectrum.

Different kinds of (categories of) spectra yield symmetric spectra:

Γ-spaces // continuous functors //

**TTTTTTTTTTTTTTTT unitary spectra

Φ

��
MS

// orthogonal spectra // symmetric spectra

The triangle only commute up to natural π∗-isomorphism: for every continuous functor F there is a natural
π∗-isomorphism whose V th term is the map F (SV ) −→ map(SiV , F (SC⊗RV )) adjoint to the assembly map
F (SV )∧ SiV −→ F (SC⊗RV ). We did not say how to make an orthogonal spectrum from an S-module; this
construction can be found in [38].

3. Smash product

One of the main features which distinguishes symmetric spectra from the more classical spectra without
symmetric group actions is the internal smash product. The smash product of symmetric spectra is very
much like the tensor product of modules over a commutative ring. To stress that analogy, we recall three
different ways to look at the classical tensor product and then give analogies involving the smash product
of symmetric spectra.

In the following, R is a commutative ring and M,N and W are right R-modules.

(A) Tensor product via bilinear maps. A bilinear map from M and N to another right R-module
W is a map b : M ×N −→ W such that for each m ∈ M the map b(m,−) : N −→ W is R-linear and for
each n ∈ N the map b(−, n) : M −→W is R-linear. The tensor product M ⊗R N is the universal example
of a right R-module together with a bilinear map from M ×N . In other words, there is a specified bilinear
map i : M ×N −→M ⊗R N such that for every R-module W the map

HomR(M ⊗R N,W ) −→ BilinR(M ×N,W ) , f 7→ f ◦ i
is bijective. As usual, the universal property characterizes the pair (M ⊗R N, i) uniquely up to preferred
isomorphism.

(B) Tensor product as an adjoint to internal Hom. The category of right R-modules has
‘internal Hom-objects’: the set HomR(N,W ) of R-linear maps between two right R-modules N and W is
naturally an R-module by pointwise addition and scalar multiplication. For fixed right R-modules M and
N , the functor HomR(M,HomR(N,−)) : mod-R −→ mod-R is representable and tensor product M ⊗R N
can be defined as a representing R-module. This point of view is closely related to the first approach since
the R-modules HomR(M,HomR(N,W )) and BilinR(M ×N,W ) are naturally isomorphic.

(C) Tensor product as a construction. Often the tensor product M ⊗R N is introduced as a
specific construction, usually the following: M ⊗RN is the free R-module generated by symbols of the form
m⊗ n for all m ∈M and n ∈ N subject to the following set of relations

• (m+m′)⊗ n = m⊗ n+m′ ⊗ n , m⊗ (n+ n′) = m⊗ n+m⊗ n′
• (mr)⊗ n = (m⊗ n) · r = m⊗ (nr)

for all m,m′ ∈ M , n, n′ ∈ N and r ∈ R. Since this is a minimal set of relations which make the map
M ×N −→M ⊗R N given by (m,n) 7→ m⊗ n into a bilinear map, the tensor product is constructed as to
have the universal property (A).

Now we introduce the smash product of symmetric spectra in three ways, analogous to the ones above.
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(A) Smash product via bilinear maps. We define a bimorphism b : (X,Y ) −→ Z from a pair of
symmetric spectra (X,Y ) to a symmetric spectrum Z as a collection of Σp×Σq-equivariant maps of pointed
spaces or simplicial sets, depending on the context,

bp,q : Xp ∧ Yq −→ Zp+q

for p, q ≥ 0, such that the diagram

(3.1) Xp ∧ Yq ∧ S1

Id∧σq

vvnnnnnnnnnnnnnnn

bp,q∧Id

��

Id∧twist // Xp ∧ S1 ∧ Yq

σp∧Id

��
Xp ∧ Yq+1

bp,q+1
((QQQQQQQQQQQQQQQ
Zp+q ∧ S1

σp+q

��

Xp+1 ∧ Yq

bp+1,q

��
Zp+q+1 Zp+1+q

1×χ1,q

oo

commutes for all p, q ≥ 0. In Exercise 5.7 we give a justification for calling this notion ‘bimorphism’.
The smash product X ∧ Y can now we introduced as the universal example of a symmetric spectrum

with a bimorphism from X and Y . More precisely, we will show in (C) below that for every pair of
symmetric spectra (X,Y ) the functor which assign to Z ∈ SpΣ the set of bimorphism from (X,Y ) to Z
is representable. A smash product of X and Y is then a representing object, i.e., a pair consisting of a
symmetric spectrum X∧Y and a bimorphism ι : (X,Y ) −→ X∧Y such that for every symmetric spectrum
Z the map

(3.2) SpΣ(X ∧ Y,Z) −→ Bimor((X,Y ), Z) , f 7−→ fi = {fp+q ◦ ip,q}p,q
is bijective. Very often only the object X ∧ Y will be referred to as the smash product, but one should
keep in mind that it comes equipped with a specific, universal bimorphism. We will often refer to the
bijection (3.2) as the universal property of the smash product of symmetric spectra.

(B) Smash product as an adjoint to internal Hom. In Example 2.25 we introduced ‘internal
Hom objects’ in the category of symmetric spectra. For every pair of symmetric spectra (X,Y ) we defined
another symmetric spectrum Hom(X,Y ) such that the morphism from X to Y are (in natural bijection
to) the vertices of the 0th level of Hom(X,Y ). We claim that for fixed symmetric spectra X and Y , the
functor Hom(X,Hom(Y,−)) : SpΣ −→ SpΣ is representable. The smash product X ∧ Y can then be
defined as a representing symmetric spectrum. This point of view can be reduced to perspective (A) since
the sets SpΣ(X,Hom(Y, Z)) and Bimor((X,Y ), Z) are in natural bijection (see Exercise 5.7). In particular,
since the functor Bimor((X,Y ),−) is representable, so is the functor SpΣ(X,Hom(Y,−)). [extend this to
an isomorphism of spectra Hom(X,Hom(Y, Z)) ∼= Bimor((X,Y ), Z)]

(C) Smash product as a construction. Now we construct a symmetric spectrum X ∧ Y from two
given symmetric spectra X and Y . We want X ∧ Y to be the universal recipient of a bimorphism from
(X,Y ), and this pretty much tells us what we have to do. For n ≥ 0 we define the nth level (X ∧Y )n as the
coequalizer, in the category of pointed Σn-spaces or pointed Σn-simplicial sets (depending on the context),
of two maps

αX , αY :
∨

p+1+q=n

Σ+
n ∧Σp×Σ1×Σq Xp ∧ S1 ∧ Yq −→

∨
p+q=n

Σ+
n ∧Σp×Σq Xp ∧ Yq .

The wedges run over all non-negative values of p and q which satisfy the indicated relations. The map αX
takes the wedge summand indexed by (p, 1, q) to the wedge summand indexed by (p+ 1, q) using the map

σXp ∧ Id : Xp ∧ S1 ∧ Yq −→ Xp+1 ∧ Yq
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and inducing up. The other map αY takes the wedge summand indexed by (p, 1, q) to the wedge summand
indexed by (p, 1 + q) using the composite

Xp ∧ S1 ∧ Yq
Id∧twist−−−−−→ Xp ∧ Yq ∧ S1

Id∧σYq−−−−→ Xp ∧ Yq+1
Id∧χq,1−−−−−→ Xp ∧ Y1+q

and inducing up.
The structure map (X ∧Y )n ∧S1 −→ (X ∧Y )n+1 is induced on coequalizers by the wedge of the maps

Σ+
n ∧Σp×Σq Xp ∧ Yq ∧ S1 −→ Σ+

n+1 ∧Σp×Σq+1 Xp ∧ Yq+1

induced from Id∧σYq : Xp∧Yq∧S1 −→ Xp∧Yq+1. One should check that this indeed passes to a well-defined
map on coequalizers. Equivalently we could have defined the structure map by moving the circle past Yq,
using the structure map of X (instead of that of Y ) and then shuffling back with the permutation χ1,q; the
definition of (X ∧Y )n+1 as a coequalizer precisely ensures that these two possible structure maps coincide,
and that the collection of maps

Xp ∧ Yq
x∧y 7→1∧x∧y−−−−−−−−→

∨
p+q=n

Σ+
n ∧Σp×Σq Xp ∧ Yq

projection−−−−−−→ (X ∧ Y )p+q

form a bimorphism – and in fact a universal one.

The smash product X ∧ Y is a functor in both variables. This is fairly evident from the construction
(C), but it can also be deduced from the universal property (A) or the adjunction (B) as follows. If we use
the universal property (A) the contravariant functoriality of the set Bimor((X,Y ), Z) in X and Y turns into
functoriality of the representing objects. In more detail, if f : X −→ X ′ and g : Y −→ Y ′ are morphisms
of symmetric spectra, then the collection of pointed maps{

Xp ∧ Yq
fp∧gq−−−−→ X ′

p ∧ Y ′q
i′p,q−−→ (X ′ ∧ Y ′)p+q

}
p,q≥0

forms a bimorphism (X,Y ) −→ X ′ ∧ Y ′. So there is a unique morphism of symmetric spectra f ∧ g :
X ∧ Y −→ X ′ ∧ Y ′ such that (f ∧ g)p+q ◦ ip,q = i′p,q ◦ (fp ∧ gq) for all p, q ≥ 0. The uniqueness part of the
universal property implies that this is compatible with identities and composition in both variables.

If we define the smash product as a representing object for the functor Hom(X,Hom(Y,−)), then
functoriality in X and Y follows from functoriality of the latter functor in X and Y .

Now that we have constructed a smash product functor we can investigate its formal and homotopi-
cal properties. The formal properties will be discussed in the rest of this section, but we postpone the
homotopical analysis until Section 5 of Chapter II.

The first thing to show is that the smash product is symmetric monoidal. Since ‘symmetric monoidal’
is extra data, and not a property, we are obliged to construct associativity isomorphisms

αX,Y,Z : (X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z) ,

symmetry isomorphisms
τX,Y : X ∧ Y −→ Y ∧X

and right unit isomorphisms
rX : X ∧ S −→ X

which satisfy a certain list of coherence conditions. We then define left unit isomorphisms lX : S∧X −→ X
as the composite of the symmetry isomorphism τS,X and the right unit rX .

First construction. We can obtain all the isomorphisms of the symmetric monoidal structure just
from the universal property. So suppose that for each pair of symmetric spectra (X,Y ) a smash product
X ∧ Y and a universal bimorphism i = {ip,q} : (X,Y ) −→ X ∧ Y have been chosen.
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For construction the associativity isomorphism we notice that the family{
Xp ∧ Yq ∧ Zr

ip,q∧Id−−−−→ (X ∧ Y )p+q ∧ Zr
ip+q,r−−−−→ ((X ∧ Y ) ∧ Z)p+q+r

}
p,q,r≥0

and the family{
Xp ∧ Yq ∧ Zr

Id∧iq,r−−−−−→ Xp ∧ (Y ∧ Z)q+r
ip,q+r−−−−→ (X ∧ (Y ∧ Z))p+q+r

}
p,q,r≥0

both have the universal property of a trimorphism (whose definition is hopefully clear) out of X, Y and Z.
The uniqueness of representing objects gives a unique isomorphism of symmetric spectra

αX,Y,Z : (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

such that (αX,Y,Z)p,q,r ◦ ip+q,r ◦ (ip+q ∧ Id) = ip,q+r ◦ (Id∧iq,r).
The symmetry isomorphism τX,Y : X ∧ Y −→ Y ∧X corresponds to the bimorphism

(3.3)
{
Xp ∧ Yq

twist−−−→ Yq ∧ Xp
ιq,p−−→ (Y ∧X)q+p

χq,p−−−→ (Y ∧X)p+q
}
p,q≥0

.

The block permutation χq,p is crucial here: without it the diagram (3.1) would not commute and we
would not have a bimorphism. If we restrict the composite τY,X ◦ τX,Y in level p + q along the map
ip,q : Xp ∧ Yq −→ (X ∧ Y )p+q we get ip,q again. Thus τY,X ◦ τX,Y = IdX∧Y and τY,X is inverse to τX,Y .

In much the same spirit, the universal properties can be used to provide a right unit isomorphism.
Because of the commuting left part of the diagram (3.1) a bimorphism b : (X,S) −→ Z is completely
determined by the components bp,0 : Xp ∧ S0 −→ Zp, which constitute a morphism b•,0 : X −→ Z;
moreover, every morphism from X to Z arises in this way from a unique bimorphism out of (X,S). Hence
the morphism rX : X ∧S −→ X corresponding to the bimorphism consisting of the iterated structure maps
σm : Xn ∧ Sm −→ Xn+m is an isomorphism of symmetric spectra.

Second construction. The coherence isomorphisms can also be obtained from the construction of
the smash product in (C) above, as opposed to the universal property. In level n the spectra (X ∧ Y ) ∧ Z
and X ∧ (Y ∧ Z) are quotients of the spaces∨

p+q+r=n

Σ+
n ∧Σp+q×Σr

(
Σ+
p+q ∧Σp×Σq Xp ∧ Yq

)
∧ Zr

respectively ∨
p+q+r=n

Σ+
n ∧Σp×Σq+r Xp ∧

(
Σ+
q+r ∧Σq×Σr Yq ∧ Zr

)
.

The wedges run over all non-negative values of p, q and r which sum up to n. We get a well-defined maps
between these two wedges by wedging over the maps

Σ+
n ∧Σp+q×Σr

(
Σ+
p+q ∧Σp×Σq Xp ∧ Yq

)
∧ Zr ←→ Σ+

n ∧Σp×Σq+r Xp ∧
(
Σ+
q+r ∧Σq×Σr Yq ∧ Zr

)
σ ∧ ((τ ∧ x ∧ y) ∧ z) 7−→ (σ(τ × 1)) ∧ (x ∧ (1 ∧ y ∧ z))

σ(1× γ) ∧ ((1 ∧ x ∧ y) ∧ z) ←− σ ∧ (x ∧ (γ ∧ y ∧ z))

where σ ∈ Σn, τ ∈ Σp+q, γ ∈ Σq+r, x ∈ Xp, y ∈ Yq and z ∈ Zr.
The symmetry isomorphism τX,Y : X ∧X −→ Y ∧X is obtained by wedging over the maps

Σ+
n ∧Σp×Σq Xp ∧ Yq −→ Σ+

n ∧Σq×Σp Yq ∧Xp

σ ∧ x ∧ y 7−→ (σχp,q) ∧ y ∧ x

where σ ∈ Σn, x ∈ Xp and y ∈ Yq and passing to quotient spaces. The shuffle permutation χp,q is needed
to make this map well-defined on quotients.
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Theorem 3.4. The associativity, symmetry and unit isomorphisms make the smash product of sym-
metric spectra into a symmetric monoidal product with unit object the sphere spectrum S. This product is
closed symmetric monoidal in the sense that the smash product is adjoint to the internal Hom spectrum,
i.e., there is an adjunction isomorphism

Hom(X ∧ Y, Z) ∼= Hom(X,Hom(Y, Z)) .

Proof. We have to verify that several coherence diagrams commute. We start with the pentagon
condition for associativity. Given a fourth symmetric spectrum W we consider the pentagon

((W ∧X) ∧ Y ) ∧ Z
αW,X,Y ∧Id

ssggggggggggggggggggg
αW∧X,Y,Z

++WWWWWWWWWWWWWWWWWWWW

(W ∧ (X ∧ Y )) ∧ Z

αW,X∧Y,Z ''NNNNNNNNNNN
(W ∧X) ∧ (Y ∧ Z)

αW,X,Y∧Zwwooooooooooo

W ∧ ((X ∧ Y ) ∧ Z)
Id∧αX,Y,Z

// W ∧ (X ∧ (Y ∧ Z)))

If we evaluate either composite at level o+ p+ q + r and precompose with

Wo ∧Xp ∧ Yq ∧ Zr
io,p∧Id∧ Id−−−−−−−→ (W ∧X)o+p ∧ Yq ∧ Zr
io+p,q∧Id−−−−−−→ ((W ∧X) ∧ Y )o+p+q ∧ Zr

io+p+q,r−−−−−→ (((W ∧X) ∧ Y ) ∧ Z)o+p+q+r
then both ways around the pentagon yield the composite

Wo ∧Xp ∧ Yq ∧ Zr
Id∧ Id∧iq,r−−−−−−−→Wo ∧Xp ∧ (Y ∧ Z)q+r
Id∧ip,q+r−−−−−−→Wo ∧ (X ∧ (Y ∧ Z))p+q+r

io,p+q+r−−−−−→ (W ∧ (X ∧ (Y ∧ Z)))o+p+q+r .

So the uniqueness part of the universal property shows that the pentagon commutes.
Coherence between associativity and symmetry isomorphisms means that the two composites from the

upper left to the lower right corner of the diagram

(X ∧ Y ) ∧ Z
αX,Y,Z //

τX,Y ∧Id

��

X ∧ (Y ∧ Z)
τX,Y∧Z // (Y ∧ Z) ∧X

αY,Z,X

��
(Y ∧X) ∧ Z

αY,X,Z
// Y ∧ (X ∧ Z)

Id∧τX,Z
// Y ∧ (Z ∧X)

should be equal, and the same kind of argument as for the pentagon relation for associativity works.
It remains to check the coherence conditions relating associativity and symmetry isomorphisms to the

unit morphisms. We define the left unit isomorphism lX : S ∧X ∼= X as the composite lX = rXτS,X of the
right unit and the symmetry isomorphism. Then the unit isomorphism are compatible with symmetry, and
furthermore we have lS = rS : S ∧ S −→ S since both arise from the bimorphism Sn ∧ Sm

∼=−→ Sn+m made
up from the canonical isomorphisms. Finally, the triangle

(X ∧ S) ∧ Y
αX,S,Y //

rX∧Id &&NNNNNNNNNN
X ∧ (S ∧ Y )

Id∧lYxxpppppppppp

X ∧ Y
should commute, which is true since it holds after restriction with the maps

(Xp ∧ Sq) ∧ Yr
ip,q∧Id−−−−→ (X ∧ S)p+q ∧ Yr

ip+q,r−−−−→ ((X ∧ S) ∧ Y )p+q+r .

�
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Now we identify the smash products of certain kinds of symmetric spectra and relate it by natural
maps to other constructions. We start by describing the smash product with a semifree spectrum. In
Example 2.20 we introduced the twisted smash product L .m X of a pointed Σm-space L and a symmetric
spectrum X.

Let X be a symmetric spectrum and L be a pointed Σm-space (or Σm-simplicial set) for some m ≥ 0.
The twisted smash product L .m X was defined in Example 2.20 and consists of a point in levels smaller
than m is given in general by

(L .m X)m+n = Σ+
m+n ∧Σm×Σn L ∧Xn .

In order to link L .m X to GmL ∧X we note that as n varies, the (m,n)-components

L ∧Xn = (GmL)m ∧Xn
ιm,n−−−→ (GmL ∧X)m+n = (shm(GmL ∧X))n

of the universal bimorphism ι : (GmL,X) −→ GmL∧X in fact define a morphism of Σm-symmetric spectra
b̄ : L ∧ X −→ shm(GmL ∧ X). By the adjunction (2.21) this morphism corresponds to a morphism of
symmetric spectra b : L .m X −→ GmL ∧X.

Proposition 3.5. Let L be a pointed Σm-space (or Σm-simplicial set) for some m ≥ 0 and X a
symmetric spectrum. Then the morphism of symmetric spectra

b : L .m X −→ GmL ∧X

is a natural isomorphism.

Proof. In (2.21) we constructed a natural bijection

SpΣ(L .m X,Z) ∼= Σm-SpΣ(L ∧X, shm Z) .

The adjunctions between the smash product and mapping spaces, the definition of the homomorphism
spectrum and the fact that Gm is adjoint to evaluation at level m yield a natural bijection

Σm-SpΣ(L ∧X, shm Z)) ∼= Σm- sset*(L,map(X, shm Z))

= Σm- sset*(L,Hom(X,Z)m) ∼= SpΣ(GmL,Hom(X,Z)) .

Combining all these isomorphisms gives a representation of the functor SpΣ(GmL,Hom(X,−)) by the
symmetric spectrum L .m X. Since the smash product GmL ∧ X represents the same functor, we get a
preferred isomorphism L .m X ∼= GmL ∧X, which in fact equals the morphism b. �

We specialize the previous proposition in several steps. The special case m = 0 provides a natural
isomorphism

K ∧X = K .0 X ∼= (Σ∞K) ∧X
for pointed spaces (or simplicial sets) K and symmetric spectra X. We can also consider a Σm-space L
and a Σn-space L′. If we spell out all definitions we see that L .m (GnL′) is isomorphic to the semifree
symmetric spectrum Gm+n(Σ+

m+n ∧Σm×Σn L∧L′). So Proposition 3.5 specializes to a natural isomorphism

(3.6) Gm+n(Σ+
m+n ∧Σm×Σn L ∧ L′) ∼= GmL ∧GnL′ .

The isomorphism is adjoint to the Σm+n-equivariant map

Σ+
m+n ∧Σm×Σn L ∧ L′ −→ (GmL ∧GnL′)m+n

which in turn is adjoint to the Σm × Σn-equivariant map

L ∧ L′ = (GmL)m ∧ (GnL′)n
im,n−−−→ (GmL ∧GnL′)m+n

given by the universal bimorphism. So the isomorphism (3.6) rephrases the fact that a bimorphism from
(GmL,GnL′) to Z is uniquely determined by its (m,n)-component, which can be any Σm×Σn-equivariant
map L ∧ L′ −→ Zm+n. The isomorphism (3.6), and the ones which follow below, are suitably associative,
commutative and unital.
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As a special case we can consider smash products of free symmetric spectra. If K and K ′ are pointed
spaces or simplicial set then we have FmK = Gm(Σ+

m ∧ K) and FnK
′ = Gn(Σ+

n ∧ K ′), so the isomor-
phism (3.6) specializes to an associative, commutative and unital isomorphism

Fm+n(K ∧K ′) ∼= FmK ∧ FnK ′ .

As the even more special case for m = n = 0 we obtain a natural isomorphism of suspension spectra

(Σ∞K) ∧ (Σ∞L) ∼= Σ∞(K ∧ L)

for all pairs of pointed spaces (or pointed simplicial sets) K and L.
The tensor product of I-spaces is taken to the smash product by the smash product paring of Exam-

ple 2.31. More precisely, for I-spaces T, T ′ and symmetric spectra X and X ′ there is a natural and coherent
isomorphism

(T ∧X) ∧ (T ′ ∧X ′) ∼= (T ∧ T ′) ∧ (X ∧X ′) .
[elaborate] Note that here the various smash product signs have three different meanings: three smash
products are pairings between an I-space and a symmetric spectrum, two smash products are internal
smash products of symmetric spectra and one is the internal smash product of I-spaces.

The bimorphism

(shX)p ∧ Yq = X1+p ∧ Yq
i1+p,q−−−−→ (X ∧ Y )1+p+q = sh(X ∧ Y )p+q

corresponds to a natural homomorphism of symmetric spectra

ξX,Y : (shX) ∧ Y −→ sh(X ∧ Y ) .

The homomorphism ξX,Y is compatible with the unit and associativity isomorphisms in the sense that the
following diagrams commute

((shX) ∧ Y ) ∧ Z
αshX,Y,Z //

ξX,Y ∧Id

��

(shX) ∧ (Y ∧ Z)

ξX,Y∧Z

��

(shX) ∧ S
rshX

''OOOOOOOOOOOO

ξX,S

��

sh(X ∧ Y ) ∧ Z

ξX∧Y,Z

��

shX

sh((X ∧ Y ) ∧ Z)
sh(αX,Y,Z)

// sh(X ∧ (Y ∧ Z)) sh(X ∧ S)
sh(rX)

77oooooooooooo

Moreover, the map ξS,Y ‘is’ the morphism λY : S1∧Y −→ shY is the following sense: we have sh S = Σ∞S1

and so (sh S) ∧ Y ∼= S1 ∧ Y . with this identification, the following square commutes

(sh S) ∧ Y

∼=
��

ξS,Y // sh(S ∧ Y )

sh(lY )

��
S1 ∧ Y

λY

// shY

There are natural composition morphisms

◦ : Hom(Y, Z) ∧ Hom(X,Y ) −→ Hom(X,Z)

which are associative and unital with respect to a unit map S −→ Hom(X,X) adjoint to the identity of X
(which is a vertex in level 0 of the spectrum Hom(X,X)). The composition morphism is obtained, by the
universal property of the smash product, from the bimorphism consisting of the maps

map(Y, shn Z) ∧map(X, shm Y ) shm ∧ Id−−−−−→ map(shm Y, shm+n Z) ∧map(X, shm Y )

◦−−−−→ map(X, shm+n Z)
map(X,χm,n)−−−−−−−−−→ map(X, shn+m Z)
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where the second map is the composition pairing of Example 2.24. If we specialize to X = Y = Z, we
recover the multiplication of the endomorphism ring spectrum as defined in Example 2.26.

If X and Y are symmetric spectra we can also define natural coherent morphisms

XK ∧ Y L −→ (X ∧ Y )K∧L

for pointed spaces (simplicial sets) K and L and morphisms

map(A,X) ∧map(B, Y ) −→ map(A ∧B,X ∧ Y ) and

Hom(A,X) ∧Hom(B, Y ) −→ Hom(A ∧B,X ∧ Y )

for symmetric spectra A and B.

Now we can make precise the idea that symmetric ring spectra are the same as monoid objects in the
symmetric monoidal category of symmetric spectra with respect to the smash product.

Construction 3.7. Let us define an implicit symmetric ring spectrum as a symmetric spectrum R
together with morphisms µ : R ∧ R −→ R and ι : S −→ R which are associative and unital in the sense
that the following diagrams commute

(R ∧R) ∧R
αR,R,R //

µ∧Id

��

R ∧ (R ∧R)
Id∧µ // R ∧R

µ

��

S ∧R

lR
''NNNNNNNNNNNNN

ι∧Id // R ∧R
µ

��

R ∧ SId∧ιoo

rR
wwppppppppppppp

R ∧R µ
// R R

We say that the implicit symmetric ring spectrum (R,µ, ι) is commutative if the multiplication is unchanged
when composed with the symmetric isomorphism, i.e., if the relation µ ◦ τR,R = µ holds.

Given an implicit symmetric ring spectrum (R,µ, ι) we can make the collection of Σn-spaces Rn into a
symmetric ring spectrum in the sense of the original Definition 1.3 as follows. As unit maps we simply take
the components of ι : S −→ R in levels 0 and 1. We define the multiplication map µn,m : Rn∧Rm −→ Rn+m

as the composite

Rn ∧Rm
in,m−−−→ (R ∧R)n+m

µn+m−−−−→ Rn+m .

Then the associativity condition for µ above directly translates into the associativity condition of Defini-
tion 1.3 for the maps µn,m. Evaluating the two commuting unit triangles in level 0 gives the unit condition
of Definition 1.3. Spelling out the condition µ(ι ∧ Id) = lR = rR ◦ τS,R in level 1 + n and composing with
the map i1,n : S1∧Rn −→ (S∧R)1+n gives the centrality condition of Definition 1.3. Finally, the condition
µ(Id∧ι) = rR in level n+ 1 composed with ιn,1 : Rn ∧ S1 −→ (R ∧ S)n+1 shows that µn,1 ◦ (Id∧ι1) equals
the structure map σn : Rn ∧ S1 −→ Rn+1 of the underlying symmetric spectrum of R. So the conceivably
different meaning of ‘underlying symmetric spectrum’ in the sense of Remark 1.6 (iii) in fact coincides with
the underlying spectrum R.

Theorem 3.8. The construction 3.7 which turns an implicit symmetric ring spectrum into a symmetric
ring spectrum in sense of the original Definition 1.3 is an isomorphism between the category of implicit
symmetric ring spectra and the category of symmetric ring spectra. The functor restricts to an isomorphism
from the category of commutative implicit symmetric ring spectra to the category of commutative symmetric
ring spectra.

Proof. �

Now that we have carefully stated and proved Theorem 3.8 we will start to systematically blur the dis-
tinction between implicit and explicit symmetric ring spectra. Whenever convenient we use the isomorphism
of categories to go back and forth between the two notions without further mentioning.
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Example 3.9 (Smash product of ring spectra). Here is a construction of a new symmetric ring spectrum
from old ones for which the possibility to define ring spectra ‘implicitly’ is crucial. If R and S are symmetric
ring spectra, then the smash product R∧ S has a natural structure as symmetric ring spectrum as follows.
The unit map is defined from the unit maps of R and S as the composite

S
r−1

S,S =l−1
S,S←−−−−−−− S ∧ S ι∧ι−−−−−→ R ∧ S .

The multiplication map of R ∧ S is defined from the multiplications of R and S as the composite

(R ∧ S) ∧ (R ∧ S)
Id∧τS,R∧Id−−−−−−−−→ (R ∧R) ∧ (S ∧ S)

µ∧µ−−−→ R ∧ S ,

where we have suppressed some associativity isomorphisms. It is a good exercise to insert these associativity
isomorphisms and observe how the hexagon condition for associativity and symmetry isomorphisms enters
the verification that the product of R ∧ S is in fact associative.

Example 3.10. Another class of examples which can only be given as implicit symmetric ring spectra
are symmetric ring spectra ‘freely generated’ by a symmetric spectrum. These come in two flavors, an
associative and a commutative (and associative) version.

Given a symmetric spectrum X we define the tensor algebra as the symmetric spectrum

TX =
∨
n≥0

X ∧ · · · ∧X︸ ︷︷ ︸
n

with the convention that a 0-fold smash product is the unit object S. The unit morphism ι : S −→ TX
is the inclusion of the wedge summand for n = 0. The multiplication is given by ‘concatenation’, i.e., the
restriction of µ : TX ∧ TX −→ TX to the (n,m) wedge summand is the canonical isomorphism

X∧n ∧X∧m ∼=−→ X∧(n+m)

followed by the inclusion of the wedge summand indexed by n+m. In order to be completely honest here we
should throw in several associativity isomorphisms; strictly speaking already the definition of TX requires
choices of how to associate expressions such as X ∧X ∧X and higher smash powers. However, all of this is
taken care of by the coherence conditions of the associativity (and later the symmetry) isomorphisms, and
we will not belabor this point any further.

Given any symmetric ring spectrum R and a morphism of symmetric spectra f : X −→ R we can define
a new morphism f̂ : TX −→ R which on the nth wedge summand is the composite

X∧n f∧n−−→ R∧n
µn−−→ R .

Here µn is the iterated multiplication map, which for n = 0 has to be interpreted as the unit morphism
ι : S −→ R. This extension f̂ : TX −→ R is in fact a homomorphism of (implicit) symmetric ring spectra.
Moreover, if g : TX −→ R is any homomorphism of symmetric ring spectra then g = ĝ1 for g1 : X −→ R
the restriction of g to the wedge summand indexed by 1. Another way to say this is that

Homring spectra(TX,R) −→ SpΣ(X,R) , g 7→ g1

is a natural bijection. In fact, this bijection makes the tensor algebra functor into a left adjoint of the
forgetful functor from symmetric ring spectra to symmetric spectra.

The construction has a commutative variant. We define the symmetric algebra generated by a symmetric
spectrum X as

PX =
∨
n≥0

(X∧n)/Σn .

Here Σn permutes the smash factors [elaborate] of X∧n using the symmetry isomorphisms, and we take
the quotient symmetric spectrum. This symmetric spectrum has unique unit and multiplication maps such
that the quotient morphism TX −→ PX becomes a homomorphism of symmetric ring spectra. So the unit
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morphism ι : S −→ PX is again the inclusion of the wedge summand for n = 0 and the multiplication is
the wedge of the morphisms

(X∧n)/Σn ∧ (X∧m)/Σm −→ (X∧(n+m))/Σn+m

induced on quotients by X∧n ∧X∧m ∼= X∧(n+m).

Example 3.11. For two abelian groups A and B, a natural morphism of symmetric spectra

HA ∧HB −→ H(A⊗B)

is obtained, by the universal property (3.2), from the bilinear morphism

(HA)n ∧ (HB)m = (A⊗ Z[Sn]) ∧ (B ⊗ Z[Sm])

−→ (A⊗B)⊗ Z[Sn+m] = (H(A⊗B))n+m

given by (∑
i

ai · xi

)
∧

∑
j

bj · yj

 7−→
∑
i,j

(ai ⊗ bj) · (xi ∧ yj) .

A unit map S −→ HZ is given by the inclusion of generators. With respect to these maps, H becomes a
lax symmetric monoidal functor from the category of abelian groups to the category of symmetric spectra.
As a formal consequence, H turns a ring A into a symmetric ring spectrum with multiplication map

HA ∧HA −→ H(A⊗A) −→ HA .

This is the ‘implicit’ construction of an Eilenberg-Mac Lane ring spectrum whose explicit variant appeared
in Example 2.7. Similarly, an A-module structure on B gives rise to an HA-module structure on HB.

The definition of the symmetric spectrum HA makes just as much sense when A is a simplicial abelian
group; thus the Eilenberg-Mac Lane functor makes simplicial rings into symmetric ring spectra, respecting
possible commutativity of the multiplications.

4. Homotopy groups, M-modules and semistability

As we shall explain in Section 4 of Chapter II, formally inverting the π∗-isomorphisms between sym-
metric spectra leaves ‘too many homotopy types’. Instead, we will later introduce a strictly larger class
of stable equivalences, defined as the morphisms which induce isomorphisms on all cohomology theories.
In order to understand the relationship between π∗-isomorphisms and stable equivalences, it is useful to
exploit extra algebraic structure on the homotopy groups of a symmetric spectrum. This extra structure is
an action of the injection monoidM, the monoid of injective self-maps of the set of natural numbers under
composition. TheM-modules that come up, however, have a special property which we call tameness, see
Definition 4.11. Tameness has strong algebraic consequences and severely restricts the kinds ofM-modules
which can arise as homotopy groups of symmetric spectra.

An important class of symmetric spectra is formed by the semistable symmetric spectra. Within this
class, stable equivalences coincide with π∗-isomorphisms, so it is very useful to recognize a given symmetric
spectrum as semistable. In Theorem 4.44, we characterize the semistable symmetric spectra as those for
which the M-action on homotopy groups is trivial.

4.1. Exact sequences of stable homotopy groups. In this section we construct long exact se-
quences of homotopy groups from a morphism of symmetric spectra. The long exact homotopy sequence
involving the homotopy fibre also exists unstably. However, a fundamental property of stable homotopy
groups of spectra which is not satisfied by (unstable) homotopy groups of spaces is that also the mapping
cone fits into a long exact homotopy sequence.

The mapping cone C(f) of a morphism of symmetric spectra f : X −→ Y is defined as

(4.1) C(f) = ([0, 1] ∧X) ∪f Y ,
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where [0, 1] is pointed by 0 ∈ [0, 1], so that [0, 1]∧X is the cone of X. At level n, C(f)n is just the pointed
mapping cone of fn : Xn −→ Yn. The mapping cone comes with an inclusion Y −→ C(f) whose quotient
C(f)/Y is the spectrum S1 ∧X. [how do we identify [0, 1]/{0, 1} with S1 ?]

We define a connecting homomorphism δ : π1+kC(f) −→ πkX as the composite

(4.2) π1+kC(f)
π1+k(proj)−−−−−−−−→ π1+k(S1 ∧X) ∼= πkX ,

where the first map is the effect of the projection C(f) −→ S1 ∧X on homotopy groups, and the second
map is the inverse of the isomorphism S1 ∧ − : πkX −→ π1+k(S1 ∧X) introduced in Example 2.16.

There is construction ‘dual’ to the mapping cone, namely the homotopy fibre. Let f : X −→ Y be a
morphism between symmetric spectra. The homotopy fibre F (f) is the symmetric spectrum

F (f) = ∗ ×Y Y [0,1] ×Y X

i.e., the pullback in the cartesian square

(4.3) F (f)

��

p // X

(∗,f)

��
Y [0,1]

(ev0,ev1)
// Y × Y

Here evi : Y [0,1] −→ Y for i = 0, 1 is the ith evaluation map which takes a path ω ∈ Y [0,1] to ω(i), i.e.,
the start or endpoint. So levelwise a point in F (f) is a pair (ω, x) where ω is a path in Y starting at the
basepoint and x is a lift of the endpoint, i.e., f(x) = ω(1).

There are morphisms

ΩY i−→ F (f)
p−→ X

f−→ Y

the first two being given by
i(ω) = (ω, ∗) respectively p(ω, x) = x .

The composite pi is the trivial map and the composite fp comes with a preferred null-homotopy H :
[0, 1]+∧F (f) −→ Y [specify], i.e., H starts with the constant map at the basepoint and ends with fp. Thus
H factors over a well-defined morphism

(4.4) h : S1 ∧ F (f) −→ Y/f(X) .

We define a connecting homomorphism δ : π1+kY −→ πkF (f) as the composite

(4.5) π1+kY
α−1

−−→ πk(ΩY )
πk(i)−−−−→ πkF (f),

where α : πk(ΩY ) −→ π1+kY is the isomorphism defined in Example 2.23.
The ‘duality’ between the two constructions manifests itself when we take morphisms into a third

symmetric spectrum, in the form of a natural isomorphism

Hom(C(f), Z) ∼= F (Hom(f, Z) : Hom(Y,Z) −→ Hom(X,Z)) ,

along with analogous isomorphisms for homotopy classes and mapping spaces.
The constructions of mapping cone and homotopy fibre make perfect sense for a morphism between

symmetric spectra of simplicial sets, provided the interval [0, 1] is replaced by the simplicial 1-simplex ∆[1]
throughout. The simplicial face operators d0, d1 : ∆[0] −→ ∆[1] then take the roles of the inclusions of the
two endpoints of the interval.

The following elementary lemma will be needed below to establish a long exact sequence of homotopy
groups. Here, CA = [0, 1] ∧A is the cone of a based space A.

Lemma 4.6. Let f : A −→ B be a based continuous maps between based spaces and let pA : CA −→
S1∧A and pB : CB −→ S1∧B denote the projections. [specify an identification between S1 and [0, 1]/0 ∼ 1]
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(i) The triangle
CA ∪f CB

pA∪∗

xxqqqqqqqqqq
∗∪pB

&&MMMMMMMMMM

S1 ∧A
τ∧f

// S1 ∧B

commutes up to homotopy, where τ : S1 −→ S1 is the map of degree -1 given by τ(t) = 1− t.
(ii) Let β ∈ πmB be a homotopy class in the kernel of πm(i) : πmB −→ πmC(f). Then there exists a

homotopy class α ∈ π1+m(S1 ∧A) such that (S1 ∧ f)∗(α) = S1 ∧ β in π1+m(S1 ∧B).

Proof. (i) We define a based homotopy H : CA× [0, 1] −→ S1 ∧B by the formula

H([s, a], t) = [2− s− t, f(a)]

which has to be interpreted as the basepoint if 2− s− t ≥ 1. Another based homotopy H ′ : CB× [0, 1] −→
S1 ∧B is given by the formula

H ′([s, b], t) = [s− t, b]
which has to be interpreted as the basepoint if s ≤ t. The two homotopies are compatible in the sense that

H([1, a], t) = [1− t, f(a)] = H ′([1, f(a)], t)

for all t ∈ [0, 1] and a ∈ A. So H and H ′ glue together and yield a homotopy

(CA ∪f CB)× [0, 1] ∼= (CA× [0, 1]) ∪f×Id (CB × [0, 1]) H∪H′−−−−→ S1 ∧B .

For t = 0 this homotopy starts with the map ∗ ∪ pB , and it ends for t = 1 with the map (τ ∧ f) ◦ (pA ∪ ∗).
(ii) Let b : Sm −→ B be a representative of β and let H : C(Sm) −→ C(f) be a based nullhomotopy of

the composite of b with i : B −→ C(f), i.e., such that H[1, x] = i(b(x)) for all x ∈ Sm. We collaps 1× Sm
in C(Sm) and the image of B in C(f) and get a map H̄ : S1∧Sm −→ S1∧A induced by H on the quotient
spaces. We claim that the homotopy class α = [H] has the required property.

To prove the claim we need the homotopy equivalence p∪ ∗ : C(Sm)∪1×Sm C(Sm) −→ S1 ∧ Sm which
collapses the second cone. We obtain a sequence of equalities and homotopies

(S1 ∧ f) ◦ H̄ ◦ (p ∪ ∗) = (S1 ∧ f) ◦ (pA ∪ ∗) ◦ (H ∪ C(b))

' (τ ∧B) ◦ (∗ ∪ pB) ◦ (H ∪ C(b))

= (τ ∧B) ◦ (S1 ∧ b) ◦ (∗ ∪ p)
= (S1 ∧ b) ◦ (τ ∧ Sm) ◦ (∗ ∪ p) ' (S1 ∧ b) ◦ (p ∪ ∗)

Here H ∪ C(b) : C(Sm) ∪1×Sm C(Sm) −→ C(f) ∪B CB ∼= CA ∪f CB. The two homotopies result from
part (i) applied to f respectively the identity of Sm, and we used the naturality of various constructions.
Since the map p ∪ ∗ is a homotopy equivalence, this proves that the map (S1 ∧ f) ◦ H̄ which represents
(S1 ∧ f)∗(α) is homotopic to S1 ∧ b. �

Proposition 4.7. Let f : X −→ Y be a morphism of symmetric spectra.
(i) The long sequence of abelian groups

· · · −→ πkX
πkf−−−−→ πkY

πk(incl)−−−−−→ πkC(f) δ−−→ πk−1X −→ · · ·

is exact.
(ii) In the simplicial context, suppose also that X and Y are levelwise Kan complexes. Then the long

sequence of abelian groups

· · · −→ π1+kX
π1+kf−−−−−→ π1+kY

δ−→ πkF (f)
πkp−−−−→ πkX −→ · · ·

is exact.



4. HOMOTOPY GROUPS, M-MODULES AND SEMISTABILITY 53

Proof. (i) In the simplicial context, homotopy groups are defined after geometric realization, which
commutes with mapping cones. So it suffices to treat the case of symmetric spectra of spaces. We show
that the sequence

πkX
πkf−−−−→ πkY

πk(incl)−−−−−→ πkC(f)
πk(proj)−−−−−→ πk(S1 ∧X)

πk(S
1∧f)−−−−−−→ πk(S1 ∧ Y )

is exact; when we substitute definition (4.2) of the boundary map δ, this becomes the exact sequence of
part (i).

Exactness at πkY : the composite of f : X −→ Y and the inclusion Y −→ C(f) is nullhomotopic, so it
induces the trivial map on πk. So it remains to show that every element in the kernel of πk(incl) : πkY −→
πkC(f) is in the image of πkf .

Let β ∈ πk+nYn represent an element in the kernel. By increasing n, if necessary, we can assume that
incl∗(β) is trivial in πk+nC(fn). By Lemma 4.6 (ii) there is a homotopy class α ∈ π1+k+n(S1 ∧Xn) such
that (S1 ∧ fn)∗(α) = S1 ∧ β. The homotopy class α̃ = (−1)k+n · (τS1,Xn)∗(α) ∈ πk+n+1(Xn ∧ S1) then
satisfies (fn ∧ S1)∗(α̃) = β ∧ S1, and thus (σn)∗(α̃) ∈ πk+n+1Xn+1 hits ι∗(β) ∈ πk+n+1Yn+1. So the class
represented by β in the colimit πkY is in the image of πkf : πkX −→ πkY .

Exactness at πkC(f): If we apply the previous paragraph to the inclusion i : Y −→ C(f) instead of f ,
we see that the sequence

πkY
πk(i)−−−→ πkC(f)

πk(incli)−−−−−→ πkC(i)

is exact. We claim that the collaps map

∗ ∪ p : C(i) ∼= CY ∪f CX −→ S1 ∧X

is a homotopy equivalence, and thus induces an isomorphism of homotopy groups. Since the composite
of the homotopy equivalence ∗ ∪ p : C(i) −→ S1 ∧ X with the inclusion of C(f) equals the projection
C(f) −→ S1 ∧X, we can replace the group πkC(i) by the isomorphic group πk(S1 ∧X) and still obtain an
exact sequence.

To prove the claim we define a homotopy inverse

r : S1 ∧X −→ CY ∪f CX

by the formula

r([s, x]) =

{
[2s, x] ∈ CX for 0 ≤ s ≤ 1/2, and

[2− 2s, f(x)] ∈ CY for 1/2 ≤ s ≤ 1,

which is to be interpreted levelwise. [specify the homotopies r(∗ ∪ p) ' Id and (∗ ∪ p)r ' Id]
Exactness at πk(S1 ∧ Y ): If we apply the previous paragraph to the inclusion i : Y −→ C(f) instead

of f , we see that the sequence

πkY
πk(inclf )−−−−−−→ πkC(f)

πk(incli)−−−−−→ πk(C(incl))

is exact. We claim that the collaps map

C(proj) ∼= C(CX ∪f Y ) ∪proj (S1 ∧X) −→ S1 ∧ Y

[define; give details] is a homotopy equivalence, so induces an isomorphism of homotopy groups. Moreover,
the composite

S1 ∧X incl−−→ C(proj) −→ S1 ∧ Y

is homotopic to the morphism τ ∧f : S1∧X −→ S1∧Y , whose effect on homotopy groups is the negative of
πk(S1∧f). Since the sign has no effect on the kernel, we can replace the group πkC(proj) by the isomorphic
group πk(S1 ∧ Y ) and still obtain an exact sequence.

(ii) Pass to the colimit from the exact sequences of unstable homotopy groups. �



54 I. BASIC DEFINITIONS AND EXAMPLES

We draw some consequences of Proposition 4.7. For every morphism A −→ B of symmetric spectra
which is levelwise an h-cofibration [define] (in the topological context) respectively levelwise injective (in
the simplicial context), the quotient spectrum B/A is level equivalent to the mapping cone. Dually, if
f : X −→ Y is a morphism of symmetric spectra which is levelwise a Serre fibration of spaces respectively
Kan fibration of simplicial sets, the strict fibre F is level equivalent to the homotopy fibre. This gives:

Corollary 4.8. (i) Suppose f : A −→ B is a h-cofibration of symmetric spectra of topological spaces
or an injective morphism of symmetric spectra of simplicial sets. Denote by p : B −→ B/A the quotient
map. Then there is a natural long exact sequence of homotopy groups

· · · −→ πkA
πk(f)−−−→ πkB

πk(p)−−−→ πk(B/A) δ−−→ πk−1A −→ · · ·
where the connecting map δ is the composite of the inverse of the isomorphism πkC(f) −→ πk(B/A) induced
by the level equivalence C(f) −→ B/A which collapses the cone of A and the connecting homomorphism
πkC(f) −→ πk−1A defined in (4.2).

(ii) Suppose f : X −→ Y is a morphism of symmetric spectra which is levelwise a Serre fibration of
spaces respectively Kan fibration of simplicial sets. Denote by i : F −→ X the inclusion of the fibre over
the basepoint. Then there is a natural long exact sequence of homotopy groups

· · · −→ πkF
πk(i)−−−→ πkX

πk(f)−−−→ πkY
δ−−→ πk−1F −→ · · ·

where the connecting map δ is the composite of the connecting homomorphism πkY −→ πk−1F (f) defined
in (4.5) and the inverse of the isomorphism πk−1F (f) −→ πk−1F induced by the level equivalence F −→
F (f) which sends x ∈ F to (const∗, x).

(iii) Suppose that f : X −→ Y is an h-cofibration (when in the topological context) respectively levelwise
injective and X and Y are levelwise Kan complexes (when in the simplicial context). Then the morphism
h : S1 ∧ F (f) −→ Y/X (4.4) from the suspension of the homotopy fibre to the quotient of f is a π∗-
isomorphism.

Proof. (iii) Compare the two long exact sequences and use the five lemma. �

Corollary 4.9. (i) For every family of symmetric spectra {Xi}i∈I and every integer k the canonical
map ⊕

i∈I
πkX

i −→ πk

(∨
i∈I

Xi

)
is an isomorphism of abelian groups.

(ii) For every finite indexing set I, every family {Xi}i∈I of symmetric spectra and every integer k the
canonical map

πk

(∏
i∈I

Xi

)
−→

∏
i∈I

πkX
i

is an isomorphism of abelian groups.
(iii) For every finite family of symmetric spectra the natural morphism from the wedge to the product

is a π∗-isomorphism.

The restriction to finite indexing sets in part (ii) of the previous corollary is essential, compare Exam-
ple 4.39.

Proof. (i) We first show the special case of two summands. If A and B are two symmetric spectra,
then the wedge inclusion iA : A −→ A ∨ B has a retration. So the associated long exact homotopy group
sequence of Proposition 4.7 (i) splits into short exact sequences

0 −→ πkA
πk(iA)−−−−→ πk(A ∨B) incl−−→ πk(C(iA)) −→ 0 .

The mapping cone C(iA) is isomorphic to (CA)∨B and thus homotopy equivalent to B. So we can replace
πk(C(iA)) by πkB and conclude that πk(A ∨B) splits as the sum of πkA and πkB, via the canonical map.



4. HOMOTOPY GROUPS, M-MODULES AND SEMISTABILITY 55

The case of a finite indexing set I now follows by induction, and the general case follows since homotopy
groups of symmetric spectra commute with filtered colimits [since the image of every compact space in an
infinite wedge lands in a finite wedge].

(ii) Unstable homotopy groups commute with products, which for finite indexing sets are also sums,
which commute with filtered colimits.

(iii) This is a direct consequence of (i) and (ii). More precisely, for finite indexing set I and every
integer k the composite map⊕

i∈I
πkX

i −→ πk(
∨
i∈I

Xi) −→ πk(
∏
i∈I

Xi) −→
∏
i∈I

πkX
i

is an isomorphism, where the first and last maps are the canonical ones. These canonical maps are isomor-
phisms by parts (i) respectively (ii), hence so is the middle map. �

Remark 4.10. A wedge of π∗-isomorphisms is a π∗-isomorphism, and [justify] a wedge of stable equiva-
lences is a stable equivalence. This is a stable phenomenon; unstably, one needs a non-degeneracy conditions.
[Give an example]

4.2. M-action on homotopy groups. The definition of homotopy groups does not take the sym-
metric group actions into account; using these actions we will now see that the homotopy groups of a
symmetric spectrum have more structure.

Definition 4.11. The injection monoidM is the monoid, under composition, of injective self-maps of
the set ω = {1, 2, 3, . . . } of natural numbers. An M-module is a left module over the monoid ring Z[M].
We call an M-module W tame if for every element x ∈ W there exists a number n ≥ 0 with the following
property: for every element f ∈M which fixes the set n = {1, . . . , n} elementwise we have fx = x.

As we shall soon see, the homotopy groups of a symmetric spectrum have a natural tame M-action.
An example of anM-module which is not tame is the free module of rank 1. Tameness has many algebraic
consequences which we discuss in the next section. We will see in Remark 4.41 that the M-action gives
all natural operations on the homotopy groups of a symmetric spectrum; more precisely, we show that the
ring of natural operations on π0X is a completion of the monoid ring ofM, so that an arbitrary operation
is a sum, possibly infinite, of operations by elements from M.

Construction 4.12. We define an action of the injection monoid M on the homotopy groups of a
symmetric spectrum X. We break the construction up into two steps and pass through the intermediate
category of I-functors. The category I has an object n = {1, . . . , n} for every non-negative integer n,
including 0 = ∅. Morphisms in I all injective maps. An I-functor is a covariant functor from the category
I to the category of abelian groups.

Step 1: from symmetric spectra to I-functors. For every integer k we assign an I-functor πkX to the
symmetric spectrum X. On objects, this I-functor is given by

(πkX)(n) = πk+nXn

if k + n ≥ 2 and (πkX)(n) = 0 for k + n < 2. If α : n −→ m is an injective map and k + n ≥ 2, then
α∗ : (πkX)(n) −→ (πkX)(m) is given as follows. We choose a permutation γ ∈ Σm such that γ(i) = α(i)
for all i = 1, . . . , n and set

α∗(x) = sgn(γ) · γ∗(ιm−n∗ (x))
where ι∗ : πk+nXn −→ πk+n+1Xn+1 is the stabilization map (1.5).

We have to justify that this definition is independent of the choice of permutation γ. Suppose γ′ ∈ Σm
is another permutation which agrees with α on n. Then γ−1γ′ is a permutation of m which fixed the
numbers 1, . . . , n, so it is of the form γ−1γ′ = 1 × τ for some τ ∈ Σm−n, where 1 is the unit of Σn. It
suffices to show that for such permutations the induced action on πk+mXm via the action on Xm satisfies
the relation

(4.13) (1× τ)∗(ιm−n∗ (x)) = sgn(τ) · (ιm−n∗ (x))
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for all x ∈ πk+nXn. To justify this we let f : Sk+n −→ Xn represent x. Since the iterated structure map
σm−n : Xn ∧ Sm−n −→ Xm is Σn × Σm−n-equivariant, we have a commutative diagram

Sk+m
f∧Id //

Id∧τ
��

Xn ∧ Sm−n
σm−n //

Id∧τ
��

Xm

1×τ
��

Sk+m
f∧Id

// Xn ∧ Sm−n
σm−n

// Xm

The composite through the upper right corner represents (1 × τ)∗(ιm−n∗ (x)). Since the effect on homo-
topy groups of precomposing with a coordinate permutation of the sphere is multiplication by the sign of
the permutation, the composite through the lower left corner represents sgn(τ) · (ιm−n∗ (x)). This proves
formula (4.13) and completes the definition of α∗ : (πkX)(n) −→ (πkX)(m).

The inclusion n −→ n + 1 induces the map ι∗ over which the colimit πkX is formed, so if we denote
the inclusion by ι, then two meanings of ι∗ are consistent. We let N denote the subcategory of I which
contains all objects but only the inclusions as morphisms, and then we have

πkX = colimN πkX .

Step 2: from I-functors to tame M-modules. The next observation is that for any I-functor F the
colimit of F , formed over the subcategory N of inclusions, has a natural left action by the injection monoid
M. Applied to the I-functor πkX coming from a symmetric spectrum X, this yields theM-action on the
stable homotopy group πkX.

We let Iω denote the category with objects the sets n for n ≥ 0 and the set ω and with all injective maps
as morphisms. So Iω contains I as a full subcategory and contains one more object ω whose endomorphism
monoid is M. We will now extend an I-functor F to a functor from the category Iω in such a way that
the value of the extension at the object ω is the colimit of F , formed over the subcategory N of inclusions.
It will thus be convenient, and suggestive, to denote the colimit of F , formed over the subcategory N of
inclusions, by F (ω) and not introduce new notation for the extended functor. TheM-action on the colimit
of F is then the action of the endomorphisms of ω in Iω on F (ω).

So we set F (ω) = colimN F and first define β∗ : F (n) −→ F (ω) for every injection β : n −→ ω as
follows. We set m = max{β(n)}, denote by β|n : n −→ m the restriction of β and take β∗(x) to be the
class in the colimit represented by the image of x under

(β|n)∗ : F (n) −→ F (m) .

It is straightforward to check that this is a functorial extension of F , i.e., for every morphism α : k −→ n
in I we have (βα)∗(x) = β∗(α∗(x)).

Now we let f : ω −→ ω be an injective self-map of ω, and we want to define f∗ : F (ω) −→ F (ω). If
[x] ∈ F (ω) is an element in the colimit represented by a class x ∈ F (n), then we set f∗[x] = [(f |n)∗(x)]
where f |n : n −→ ω is the restriction of f and f∗ : F (n) −→ F (ω) was defined in the previous paragraph.
Again it is straightforward to check that this definition does not depend on the representative x of the class
[x] in the colimit and that the extension is functorial, i.e., we have (fα)∗(x) = f∗(α∗(x)) for injections
α : n −→ ω as well as (fg)∗[x] = f∗(g∗[x]) when g is another injective self-map of ω. As an example, if we
also write ι : n −→ ω for the inclusion, then we have ι∗(x) = [x] for x ∈ F (n).

The definition just given is in fact the universal way to extend an I-functor F to a functor on the
category Iω, i.e., we have just constructed a left Kan extension of F : I −→ Ab along the inclusion
I −→ Iω. However, we do not need this fact, so we omit the proof.

A trivial but important observation straight from the definition is that the action of the injection
monoid M on the colimit of any I-functor F is tame in the sense of Definition 4.11: every element in the
colimit F (ω) is represented by a class x ∈ F (n) for some n ≥ 0; then for every element f ∈ M which fixes
the numbers 1, . . . , n, we have f∗[x] = [x].
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Example 4.14. To illustrate the action of the injection monoid M on the homotopy groups of a
symmetric spectrum X we make it explicit for the injection d : ω −→ ω given by d(i) = i + 1, which will
also play an important role later. For every n ≥ 1, the map d and the cycle (1, 2, . . . , n, n + 1) = χn,1 of
Σn+1 agree on n, so d acts on πkX as the colimit of the system

πkX0
ι∗ //

ι∗

��

πk+1X1
ι∗ //

−(1,2)∗◦ι∗
��

πk+2X2
ι∗ //

(1,2,3)∗◦ι∗
��

· · · ι∗ // πk+nXn
ι∗ //

(−1)n(1,2,...,n,n+1)∗◦ι∗
��

πk+1X1 ι∗
// πk+2X2 ι∗

// πk+3X3 ι∗
// · · ·

ι∗
// πk+n+1Xn+1 ι∗

//

(at least for k ≥ 0; for negative values of k only a later portion of the system makes sense).

Remark 4.15. The stable homotopy group πkX of a symmetric spectrum X can also be calculated
from the system of stable as opposed to unstable homotopy groups of the individual spaces Xn. For us, the
mth stable homotopy group πs

mK of a pointed space K is the colimit of the sequence of abelian groups

(4.16) πmK
S1∧−−−→ π1+m(S1 ∧K) S1∧−−−→ π2+m(S2 ∧K) S1∧−−−→ · · ·

[not consistent with earlier definition as πk(Σ∞K)] where we stabilize from the left. Smashing with the
identity of S1 from the right provides a stabilization map (even an isomorphism) πs

mK −→ πs
m+1(K ∧ S1).

For a symmetric spectrum we can then define an I-functor πs
kX by setting (πs

kX)(n) = πs
k+nXn on objects

(with no restriction on k + n) and defining the action of a morphism n −→ m in the same way as for the
I-functor πkX of unstable homotopy groups.

The map from the initial term to the colimit of the sequence (4.16) provides a natural transformation
πmK −→ πs

mK which is compatible with stabilization, so it defines a morphism of I-functors πkX −→ πs
kX

for every symmetric spectrum X. The induced map on colimits

colimN πkX
∼=−−→ colimN πs

kX

is bijective and thus an isomorphism ofM-modules.

Example 4.17. Here is an alternative perspective on the I-functor πkX associated to a symmetric
spectrum X. In Example 2.31 we associated to every I-space T : I −→ T a symmetric spectrum T ∧ S.
This construction has a right adjoint Ω• : SpΣ −→ T I defined as follows. If X is a symmetric spectrum,
we set

(Ω•X)(n) = map(Sn, Xn)
on objects, where the symmetric group Σn acts by conjugation, i.e., (γ∗f)(x) = γf(γ−1x) for f : Sn −→ Xn

and γ ∈ Σn.
If α : n −→ m is an injective map then α∗ : map(Sn, Xn) −→ map(Sm, Xm) is given as follows. We

choose a permutation γ ∈ Σm such that γ(i) = α(i) for all i = 1, . . . , n and set

α∗(f) = γ∗(σm−n(f ∧ Sm−n)) ,
i.e., we let γ acts as just defined on the composite

Sm ∼= Sn ∧ Sm−n f∧Sm−n−−−−−−→ Xn ∧ Sm−n
σm−n−−−−→ Xm .

The proof of the relation (4.13) above in fact shows that this definition is independent of the choice of
permutation γ. Functoriality of the assignment α 7→ α∗ is then straightforward.

The adjunction
SpΣ(T ∧ S, X) ∼= T I(T,Ω•X)

takes a morphism ϕ : T ∧ S −→ X to the natural transformation ϕ̂ : T −→ Ω•X whose value at the object
n is the adjoint T (n) −→ map(Sn, Xn) of ϕn : T (n) ∧ Sn −→ Xn.

The isomorphism πk map(Sn, Xn) ∼= πk+nXn (adjoint the loop coordinates to the right) gives an iso-
morphism of abelian groups between πk(Ω•X)(n) and (πkX)(n). The Σn-action on the source sphere in
map(Sn, Xn) induces the sign action on homotopy groups, so the above isomorphism is Σn-equivariant.
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Since the stabilization map ι∗ : πk+nXn −→ πk+n+1Xn+1 corresponds precisely to the effect of ι∗ :
map(Sn, Xn) −→ map(Sn+1, Xn+1) on πk, we in fact have an isomorphism of I-functors πk(Ω•X) ∼= (πkX).

We now give a construction which associates to an I-functor with Σm-action F (i.e., a covariant functor
F : I −→ Z[Σm]-mod) a new I-functor .mF and give a formula for theM-module (.mF )(ω). This will be
relevant later when we identify the M-action on the homotopy groups of semifree symmetric spectra.

Given F : I −→ Z[Σm]-mod we define a new I-functor .mF by (.mF )(k) = 0 for k < m and

(4.18) (.mF )(m + n) = Z[Σm+n]⊗Σm×Σn F (n) .

We define .mF on morphisms α : m + n −→ m + k in I as follows. We choose a permutation γ ∈ Σm+k

which agrees with α on m + n and define

α∗ : (.mF )(m + n) = Z[Σm+n]⊗Σm×Σn F (n) −→ Z[Σm+k]⊗Σm×Σk F (k) = (.mF )(m + k)

by α∗(τ ⊗ x) = γ(τ × 1k−n)⊗ ι∗(x) where ι : n −→ k is the inclusion. [functorial...]
We define a homomorphism of monoids × : Σm ×M −→M by

(4.19) (γ × f)(i) =

{
γ(i) for 1 ≤ i ≤ m, and

f(i−m) +m for m+ 1 ≤ i.

We denote by Z[M]+m the monoid ring of M with its usual left multiplication action, but with action by
the monoid Σm×M via restriction along the homomorphism × : Σm×M −→M. Since F takes values in
Σm-modules, the colimit F (ω) not only has an action ofM, but also a compatible left action by the group
Σm. So we can form

Z[M]+m ⊗Σm×M F (ω)

which is a leftM-module via the left multiplication action of Z[M] on itself. The point of this construction
is that it describes the colimit of the functor .mF as anM-module:

Lemma 4.20. For every I-functor with Σm-action F the natural map

Z[M]+m ⊗Σm×M F (ω) −→ (.mF )(ω)

f ⊗ [x] 7−→ f · [1⊗ x]

is an isomorphism of M-modules.

Proof. We define a morphism in the other direction by

(.mF )(ω) −→ Z[M]+m ⊗Σm×M F (ω) , [γ ⊗ x] 7−→ γ ⊗ [x]

where x ∈ F (n) and γ ∈ Σm+n. The main point is to check that the formulas for both maps are actually
well-defined, i.e., they indeed factor over the tensor product over Σm ×M respectively over Σm × Σn and
are independent of the representative x respectively [γ ⊗ x] in the colimit F (ω) respectively (.mF )(ω). We
omit these routine verifications, and after that it is clear that both maps areM-linear and inverse to each
other. �

4.3. Algebraic properties of tame M-modules. In this section we discuss some algebraic prop-
erties of tame M-modules. It turns out that tameness is a rather restrictive condition. We start with a
result which controls a lot of the homological of the monoid ring ofM.

Lemma 4.21. The classifying space BM of the injection monoid M is contractible.

Proof. The classifying space BM is the geometric realization of the nerve of the category BM with
one object whose monoid of endomorphisms isM. Let t ∈M be given by t(i) = 2i. We define an injective
endomorphism ct :M−→M as follows. For f ∈M and i ∈ ω we set

ct(f)(i) =

{
i if i is odd, and

2 · f(i/2) if i is even.
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Even though t is not bijective, the endomorphism ct behaves like conjugation by t in the sense that the
formula ct(f) · t = t · f holds. Thus t provides a natural transformation from the identity functor of BM
to B(ct). On the other hand, if s ∈ M is given by s(i) = 2i − 1, then ct(f) · s = s for all f ∈ M, so s
provides a natural transformation from the constant functor of BM with values 1 ∈ M to B(ct). Thus
via the homotopies induced by t and s, the identity of BM is homotopic to a constant map, so BM is
contractible. �

We introduce some useful notation and terminology. For an injective map f : ω −→ ω we write |f |
for the smallest number i ≥ 0 such that f(i + 1) 6= i + 1. So in particular, f restricts to the identity on
{1, . . . , |f |}. An element x of an M-module W has filtration n if for every f ∈ M with |f | ≥ n we have
fx = x. We denote by W (n) the subgroup of W of elements of filtration n; for example, W (0) is the set of
elements fixed by all f ∈ M. We say that x has filtration exactly n if it lies in W (n) but not in W (n−1).
By definition, anM-module W is tame if and only if every element has a finite filtration, i.e., if the groups
W (n) exhaust W .

The following lemmas collect some elementary observations, first for arbitraryM-modules and then for
tame M-modules.

Lemma 4.22. Let W be any M-module.
(i) If two elements f and g of M coincide on n = {1, . . . , n}, then fx = gx for all x ∈ W of

filtration n.
(ii) For n ≥ 0 and f ∈M set m = max{f(n)}. Then f ·W (n) ⊆W (m).
(iii) We denote by d ∈M the map given by d(i) = i+ 1. If x ∈W has filtration exactly n with n ≥ 1,

then dx has filtration exactly n+ 1.
(iv) Let V ⊆ W be an M-submodule such that the action of M on V and W/V is trivial. Then the

action of M on W is also trivial.

Proof. (i) We can choose a bijection γ ∈ M which agrees with f and g on n, and then γ−1f and
γ−1g fix n elementwise. So for x of filtration n we have (γ−1f)x = x = (γ−1g)x. Multiplying by γ gives
fx = gx.

(ii) If g ∈M satisfies |g| ≥ m, then gf and f agree on n. So for all x ∈W (n) we have gfx = fx by (i),
which proves that fx ∈W (m).

(iii) We have d ·W (n) ⊆W (n+1) by part (ii). To prove that d increases the exact filtration we consider
x ∈W (n) with n ≥ 1 and show that dx ∈W (n) implies x ∈W (n−1).

For f ∈ M with |f | = n − 1 we define g ∈ M by g(1) = 1 and g(i) = f(i − 1) + 1 for i ≥ 2.
Then we have gd = df and |g| = n. We let h be the cycle h = (f(n) + 1, f(n), . . . , 2, 1) so that we have
|hd| = f(n) = max{f(n)}. Then fx ∈W (f(n)) by part (ii) and so

fx = (hd)(fx) = h(g(dx)) = (hd)x = x .

Altogether this proves that x ∈W (n−1).
(iv) Since the M-action is trivial on V and W/V , every f ∈ M determines an additive map δf :

W/V −→ V such that x − fx = δf (x + V ) for all x ∈ W . These maps satisfy δfg(x) = δf (x) + δg(x) and
so δ is a homomorphism from the monoid M to the abelian group of additive maps from W/V to V . By
Lemma 4.21 the classifying space BM of the monoid M is contractible, so H1(BM, A) = Hom(M, A) is
trivial for every abelian group A. Thus δf = 0 for all f ∈M, i.e.,M acts trivially on W . �

Corollary 4.23. The assignment n 7→ W (n) extends to an I-functor W (•) in such a way that W 7→
W (•) is right adjoint to the functor which assigns to an I-functor F the M-module F (ω). The counit of
the adjunction (W (•))(ω) −→ W is injective with image the subgroup of elements of finite filtration, which
is also the largest tame submodule of W . The assignment W 7→ (W (•))(ω) =

⋃
nW

(n) is right adjoint to
the inclusion of tame M-modules into all M-modules.

Proof. To define the I-functor W (•) on morphisms α : n −→ m in the category I we choose any
extension α̃ : ω −→ ω of α and define α∗ : W (n) −→ W (m) as the restriction of α̃· : W −→ W . This really
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has image in W (m) by part (ii) of Lemma 4.22 and is independent of the extension by (i) of that lemma.
The rest is immediate. �

Lemma 4.24. Let W be a tame M-module.
(i) Every element of M acts injectively on W .
(ii) If the filtration of elements of W is bounded, then W is a trivial M-module.
(iii) If the map d given by d(i) = i+ 1 acts surjectively on W , then W is a trivial M-module.
(iv) If W is finitely generated as an abelian group, then W is a trivial M-module.

Proof. (i) Consider f ∈ M and x ∈ W (n) with fx = 0. Since f is injective, we can choose h ∈ M
with |hf | ≥ n. Then x = (hf)x = h(fx) = 0, so f acts injectively.

(ii) Lemma 4.22 (iii) implies that if W = W (n) for some n ≥ 0, then n = 0, so the M-action is trivial.
(iii) Suppose M does not act trivially, so that W (0) 6= W . Let n be the smallest positive integer such

that W (0) 6= W (n). Then by part (iii) of Lemma 4.22, any x ∈ W (n) −W (0) is not in the image of d, so d
does not act surjectively.

(iv) The union of the nested sequence of subgroups W (0) ⊆ W (1) ⊆ W (2) ⊆ · · · is W . Since finitely
generated abelian groups are Noetherian, we have W (n) = W for all large enough n. By part (ii), the
monoidM must act trivially. �

Parts (i), (iii) and (iv) of Lemma 4.24 can fail for non-tameM-modules: we can let f ∈M act on the
abelian group Z as the identity if the image of f : ω −→ ω has finite complement, and we let f acts as 0 if
its image has infinite complement.

Example 4.25. We introduce some important tame M-modules Pn for n ≥ 0. The module Pn is the
free abelian group with basis the set of ordered n-tuples of pairwise distinct elements of ω (or equivalently
the set of injective maps from n to ω). The monoid M acts from the left on this basis by componentwise
evaluation, i.e., f(x1, . . . , xn) = (f(x1), . . . , f(xn)), and it acts on Pn by additive extension. For n = 0,
there is only one basis element, the empty tuple, and so P0 is isomorphic to Z with trivial M-action. For
n ≥ 1, the basis is countably infinite and theM-action is non-trivial. The module Pn is tame: the filtration
of a basis element (x1, . . . , xn) is the maximum of the components. So the filtration subgroup P(m)

n is
generated by the n-tuples all of whose components are less than or equal to m. An equivalent way of saying
this is that P(m)

n = Z[I(n,m)], the free abelian group generated by all injections from n to m; in particular,
P(m)
n is trivial for m < n.

The module Pn represents the functor of taking elements of filtration n: for every M-module W , the
map

HomM-mod(Pn,W ) −→ W (n) , ϕ 7→ ϕ(1, . . . , n)

is bijective.

We end this section with some homological algebra of tameM-modules. This will not be needed until
Section 4.2 of Chapter II where we construct a spectral sequence which converges to the ‘true’ homotopy
groups of a symmetric spectrum. The E2-term of that spectral sequence consists of Tor groups over the
monoid ring Z[M].

Lemma 4.26. (i) Let Z[M]+ denote the monoid ring of M with its usual left action, but with right
action through the monomorphism (1×−) :M−→M given by (1× f)(1) = 1 and (1× f)(i) = f(i− 1)+1
for i ≥ 2. Then for every n ≥ 0 the map

κ : P1+n −→ Z[M]+ ⊗M Pn

which sends the generator (1, . . . , n+ 1) to the element 1⊗ (1, . . . , n) of filtration n+ 1 in Z[M]+ ⊗M Pn
is an isomorphism of M-modules.

(ii) For every n ≥ 0 and every abelian group A, the groups TorZ[M]
p (Z,Pn ⊗ A) vanish in positive

dimensions.
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(iii) For every n ≥ 0 and every Σn-module B we have a natural isomorphism

TorZ[M]
∗ (Z,Pn ⊗Σn B) ∼= H∗(Σn;B) .

Proof. (i) For any n-tuple (x1, . . . , xn) of pairwise distinct natural numbers we can choose g ∈ M
with g(i) = xi for 1 ≤ i ≤ n. Because of

f ⊗ (x1, . . . , xn) = f ⊗ g(1, . . . , n) = f(1× g) · (1⊗ (1, . . . , n))

the element 1⊗ (1, . . . , n) generates Z[M]+⊗MPn, so the map κ is surjective. The map Z[M]+⊗MPn −→
P1+n which sends f⊗(x1, . . . , xn) to (f(1), f(x1 +1), . . . , f(xn+1)) is right inverse to κ since the composite
sends the generator (1, . . . , n+ 1) to itself. So κ is also injective.

(ii) The groups TorZ[M]
p (Z, A) are isomorphic to the singular homology groups with coefficients in A of

the classifying space BM of the monoid M. This classifying space is contractible by Lemma 4.21, so the
groups TorZ[M]

p (Z, A) vanish for p ≥ 1, which proves the case n = 0.
For n ≥ 1, the M-modules P1+n ⊗ A and Z[M]+ ⊗M Pn ⊗ A are isomorphic by part (i). Since the

M-bimodule Z[M]+ is free as a left and right module separately, the balancing property of Tor groups
yields

TorZ[M]
∗ (Z,P1+n ⊗A) ∼= TorZ[M]

∗ (Z,Z[M]+ ⊗M Pn ⊗A)
∼= TorZ[M]

∗ (Z⊗M Z[M]+,Pn ⊗A) ∼= TorZ[M]
∗ (Z,Pn ⊗A)

since Z ⊗M Z[M]+ is again the trivial right M-module Z. So induction on n shows that the groups
TorZ[M]

p (Z,Pn ⊗A) vanish in positive dimensions.
(iii) Since Pn is free as a right Σn-module, the functor Pn ⊗Σn − is exact. The functor takes the free

Σn-module of rank 1 to Pn, so by part (ii) it takes projective Σn-modules to tame M-modules which are
acyclic for the functor Z⊗M −.

Thus if P• −→ B is a projective resolution of B by Σn-modules, then Pn ⊗Σn P• is a resolution of
Pn ⊗Σn B which can be used to calculate the desired Tor groups. Thus we have isomorphisms

TorZ[M]
∗ (Z,Pn ⊗Σn B) = H∗(Z⊗M Pn ⊗Σn P•) ∼= H∗(Z⊗Σn P•) = H∗(Σn;B) .

�

4.4. Examples. We discuss several classes of symmetric spectra with a view towards the M-action
on the stable homotopy groups.

Example 4.27 (Eilenberg-Mac Lane spectra). Every tame M-module W can be realized as the ho-
motopy group of a symmetric spectrum. For this purpose we modify the construction of the symmetric
Eilenberg-Mac Lane spectrum of an abelian group. We define a symmetric spectrum HW of simplicial sets
by

(HW )n = W (n) ⊗ Z[Sn] ,

whereW (n) is the filtration n subgroup ofW and Z[Sn] refers to the simplicial abelian group freely generated
by the simplicial set Sn = S1∧. . .∧S1, divided by the subgroup generated by the basepoint. The symmetric
group Σn takes W (n) to itself and we let it act diagonally on (HW )n, i.e., on Sn by permuting the smash
factors. If M acts trivially on W , then this is just the ordinary Eilenberg-Mac Lane spectrum introduced
in Example 2.7. Note that HW is an Ω-spectrum if and only if the M-action on W is trivial.

Since (HW )n is an Eilenberg-Mac Lane space of type (W (n), n) the homotopy groups of the symmetric
spectrum HW are concentrated in dimension zero where we have π0HW ∼=

⋃
n≥0W

(n) = W asM-modules.
As an aside we note that instead of the system n 7→W (n) we could use any I-functor in the definition above;
this shows that every I-functor arises as the I-functor π0 of a symmetric spectrum.

Example 4.28 (Twisted smash products). We describe the homotopy groups of a twisted smash product
L .m X (see Example 2.20) as a functor of the homotopy groups of L ∧X, using all available structure on
those. Since L .m X is isomorphic to GmL ∧X this gives a description of the homotopy groups of smash
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products with semifree spectra. Since free and semifree symmetric spectra are special cases of twisted smash
products, this will specialize to formulas for the homotopy groups of free and semifree symmetric spectra.

So we consider a symmetric spectrum X and a non-degenerately based Σm-space (or pointed Σm-
simplicial set) L for some m ≥ 0. We construct a natural isomorphism ofM-modules

(4.29) πk(L .m X) ∼= Z[M]+m ⊗Σm×M (sgnm⊗πk+m(L ∧X)) .

Here we use the left Σm-action on πk+m(L∧X) through the action on L, twisted by the sign representation
sgnm of Σm, and Z[M]+m is the monoid ring of M with its natural left multiplication action and right
action of Σm ×M through the homomorphism × : Σm ×M −→M, compare (4.19).

We remark that as a right Σm ×M-module, Z[M]+m is free of countably infinite rank. One possible
basis is given by the ‘(m,∞)-shuffles’, i.e., by those bijections f ∈ M which satisfy f(i) < f(i + 1) for
all i 6= m. In other words, all bijective f which keep the sets m = {1, . . . ,m} and {m + 1,m + 2, . . . } in
their natural order. So the isomorphism (4.29) in particular implies that the underlying abelian group of
πk(L .m X) is a countably infinite sum of copies of the underlying abelian group of πk+m(L ∧X).

To establish the isomorphism (4.29) we calculate the I-functor πs
k(L .m X) consisting of the stable

homotopy groups of the spaces in the spectrum L .m X and exploit that for any symmetric spectrum Y
the M-module πkY can also be calculated as the colimit of πs

kY instead of the I-functor πkY of unstable
homotopy groups, see Remark 4.15. We denote by sgnm the sign representation of the symmetric group
Σm and recall that for every spectrum Y the action of Σm = I(m,m) on (πskY )(m) = πsk+mYm is induced
by the action on Ym twisted by sgnm.

Since stable homotopy groups takes wedges to sums we have an isomorphism of Σm+n-modules

πs
k(L .m X)(m + n) = sgnm+n⊗πs

k+(m+n)

(
Σ+
m+n ∧Σm×Σn (L ∧Xn)

)
(4.30)

∼= Z[Σm+n]⊗Z[Σm×Σn]

(
sgnm⊗ sgnn⊗πs

(k+m)+n(L ∧Xn)
)

= Z[Σm+n]⊗Z[Σm×Σn]

(
sgnm⊗πs

k+m(L ∧X)
)

The isomorphism (4.30) is also compatible with stabilization maps, so it is an isomorphism of I-functors

πs
k(L .m X) ∼= .m(sgnm⊗πs

k+m(L ∧X))

where .m is the construction for I-functors with Σm-action defined in (4.18). Lemma 4.20 provides an
isomorphism ofM-modules

(.m(sgnm⊗πs
k+m(L ∧X)))(ω) ∼= Z[M]+m ⊗Σm×Z[M] (sgnm⊗πk+m(L ∧X)) .

Combining these two isomorphisms gives (4.29).

Example 4.31 (Free and semifree symmetric spectra). We saw in Example 2.12 that the zeroth stable
homotopy group of the free symmetric spectrum F1S

1 is free abelian of countably infinite rank. We now
refine this calculation to an isomorphism ofM-modules π0(FmSm) ∼= Pm, see (4.33) below; here Pm is the
M-module which represents taking filtration m elements, see Example 4.25. So while the groups π0(FmSm)
are all additively isomorphic for different positive m, theM-action distinguishes them. In particular, there
cannot be a chain of π∗-isomorphisms between FmSm and FnSn for n 6= m.

The calculation of the M-action on free and semifree symmetric spectra is a special case of the very
general formula (4.29) for the homotopy groups of a twisted smash product. Let L be a pointed space (or
simplicial set) with a left action by the symmetric group Σm, for some m ≥ 0. Recall that GmL denotes
the semifree symmetric spectrum generated by L in level m, defined in Example 2.13, which is also equal
to the twisted smash product L .m S of L with the sphere spectrum. The functor Gm is left adjoint to
evaluating a symmetric spectrum at level m, viewed as a functor with values in pointed Σm-spaces. When
we apply formula (4.29) to GmL = L .m S we obtain an isomorphism ofM-modules

πk(GmL) = πk(L .m S) ∼= Z[M]+m ⊗Σm×M (sgnm⊗πk+m(L ∧ S)) .
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The homotopy groups of the spectrum L ∧ S = Σ∞L are the stable homotopy groups of L. Since the
M-action on πk+m(L ∧ S) is trivial [justify] we get

Z[M]+m ⊗Σm×M (sgnm⊗πk+m(L ∧ S)) ∼= (Z[M]+m ⊗1×M Z)⊗Σm (sgnm⊗πsk+mL) .

The tame M-module Pm has a compatible right Σm-action which is given on the basis by permuting the
components of an m-tuple, i.e., (x1, . . . , xm)γ = (xγ(1), . . . , xγ(m)). The map

Z[M]+m ⊗1×M Z −→ Pm , f ⊗ 1 7−→ (f(1), . . . , f(m))

is an isomorphism of M-Σm-bimodules; so combining all these isomorphisms we finally get a natural
isomorphism ofM-modules

(4.32) πk(GmL) ∼= Pm ⊗Σm (πs
k+mL)(sgn) .

On the right of the tensor symbol, the group Σm acts by what is induced on stable homotopy groups by
the action on L, twisted by sign.

Free symmetric spectra are special cases of semifree symmetric spectra. For a pointed space K (without
any group action) we have FmK ∼= Gm(Σ+

m ∧K) and πs
k+m(Σ+

m ∧K) ∼= Z[Σm] ⊗ πs
k+mK as Σm-modules.

So (4.32) specializes to a natural isomorphism ofM-modules

(4.33) πk(FmK) ∼= Pm ⊗ πs
k+mK .

Here πs
k+mK is the (k +m)th stable homotopy group of K; the monoidM acts only on Pm.

Example 4.34 (Loop and suspension). The loop ΩX and suspension S1∧X of a symmetric spectrum X
are defined by applying the functors Ω respectively S1∧− levelwise, where the structure maps do not interact
with the new loop or suspension coordinates, compare Examples 2.16 and 2.23. We already saw that loop
and suspension simply shift the homotopy groups, and we shall now prove that theM-action is unchanged
in this process.

For every symmetric spectrumX the map S1∧− : πk+nXn −→ π1+k+n(S1∧Xn) is Σn-equivariant and a
natural transformations of I-functors as n varies. So the induced morphism S1∧− : πkX −→ π1+k(S1∧X)
on colimits is M-linear, and hence, by Example 2.16, an isomorphism ofM-modules.

The isomorphism α : πk+nΩ(Xn) ∼= π1+k+nXn which we used in Example 2.23 sends a representing
continuous map f : Sk+n −→ Ω(Xn) to the class of the adjoint f̂ : S1+k+n −→ Xn given by f̂(s ∧ t) =
f(t)(s), where s ∈ S1, t ∈ Sk+n. As n varies, these particular isomorphisms are compatible with the
symmetric group actions and stabilization maps, so they form an isomorphism of I-functors α : πk(ΩX) ∼=
π1+kX. Hence the induced isomorphism on colimits α : πk(ΩX) ∼= π1+kX is M-linear.

Example 4.35 (Shift). The shift is another construction for symmetric spectra which reindexes the
homotopy groups, but unlike the suspension, this construction changes the M-action in a systematic way.
The shift of a symmetric spectrum X was defined in Example 2.18 by (shX)n = X1+n with action of Σn
via the monomorphism (1 × −) : Σn −→ Σ1+n. The structure maps of shX are the reindexed structure
maps for X.

If we view Σn as the subgroup ofM of maps which fix all numbers bigger than n, then the homomor-
phism (1 × −) : Σn −→ Σ1+n has a natural extension to a monomorphism (1 × −) : M −→ M given by
(1 × f)(1) = 1 and (1 × f)(i) = f(i − 1) + 1 for i ≥ 2. The image of the monomorphism 1 × − is the
submonoid of those g ∈ M with g(1) = 1. If W is an M-module, we denote by W (1) the M-module with
the same underlying abelian group, but with M-action through the endomorphism 1 × −. We call W (1)
the shift of W . Since |1 × f | = 1 + |f |, shifting an M-module shifts the filtration subgroups, i.e., we have
W (1)(n) = W (1+n) for all n ≥ 0. Thus the M-module W (1) is tame if and only if W is.

For any symmetric spectrum X, integer k and large enough n we have

π(k+1)+n(shX)n = πk+(1+n)X1+n ,

and the maps in the colimit system for πk+1(shX) are the same as the maps in the colimit system for πkX.
Thus we get πk+1(shX) = πkX as abelian groups. However, the action of a permutation on πk+1+n(shX)n
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is shifted by the homomorphism 1×−, so we have

(4.36) π∗+1(shX) = (π∗X)(1)

as M-modules.

Example 4.37 (Shift adjoint). The shift functor has a left adjoint S0.1 given by (S0 .1 X)0 = ∗ and

(S0 .1 X)1+n = Σ+
1+n ∧Σn Xn

for n ≥ 0. Here Σn acts from the right on Σ1+n via the monomorphism (1 × −) : Σn −→ Σ1+n. The
structure map (Σ+

1+n ∧Σn Xn) ∧ S1 −→ Σ+
1+n+1 ∧Σn+1 Xn+1 is induced by (−× 1) : Σ1+n −→ Σ1+n+1 (the

‘inclusion’) and the structure map of X.
The effect on homotopy groups of the functor S0.0 is given as a special case of the very general

formula (4.29) for the homotopy groups of a twisted smash product. Indeed, that formula specializes to a
natural isomorphism ofM-modules

(4.38) πk(S0 .1 X) ∼= Z[M]+ ⊗M πk+1X .

Here Z[M]+ denotes the monoid ring of M with its usual left action, but with right action through the
monomorphism (1×−) :M −→M given by (1× f)(1) = 1 and (1× f)(i) = f(i− 1) + 1 for i ≥ 2. As a
rightM-module, Z[M]+ is free of countably infinite rank (one possible basis is given by the transpositions
(1, n) for n ≥ 1). So the isomorphism (4.38) in particular implies that the underlying abelian group of
πk(S0 .1 X) is a countably infinite sum of copies of the underlying abelian group of πk+1X.

The functor Z[M]+⊗M− is left adjoint to HomM(Z[M]+,−), which is a fancy way of writing the alge-
braic shift functor W 7→W (1). Under the isomorphism (4.38) and the identification (4.36), the adjunction
between shift and S0.1 as functors of symmetric spectra corresponds exactly to the adjunction between
W 7→W (1) and Z[M]+ ⊗Z[M] − as functors of tame M-modules.

Example 4.39 (Infinite products). Finite products of symmetric spectra are π∗-isomorphic to finite
wedges, so stable homotopy groups commute with finite products. But homotopy groups do not in general
commute with infinite products. This should not be surprising because stable homotopy groups involves a
sequential colimit, and these generally do not preserve infinite products.

There are even two different ways in which commutation with products can fail. First we note that an
infinite product of a family {Wi}i∈I of tame M-modules is only tame if almost all the modules Wi have
trivialM-action. Indeed, if there are infinitely many Wi with non-trivialM-action, then by Lemma 4.24 (ii)
the product

∏
i∈IWi contains tuples of elements whose filtrations are not bounded. We define the tame

product of the family {Wi}i∈I by
tame∏
i∈I

Wi =
⋃
n≥0

(∏
i∈I

W
(n)
i

)
,

which is the largest tame submodule of the product and thus the categorical product in the category of
tame M-modules.

Now we consider a family {Xi}i∈I of symmetric spectra. Since the monoid M acts tamely on the
homotopy groups of any symmetric spectrum, the natural map from the homotopy groups of the product
spectrum to the product of the homotopy groups always lands in the tame product. But in general, this
natural map

(4.40) πk

(∏
i∈I

Xi

)
−→

tame∏
i∈I

πkXi

need not be an isomorphism. As an example we consider the symmetric spectra (F1S
1)≤i obtained by

truncating the free symmetric spectrum F1S
1 above level i, i.e.,

((F1S
1)≤i)n =

{
(F1S

1)n for n ≤ i,
∗ for n ≥ i+ 1
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with structure maps as a quotient spectrum of F1S
1. Then (F1S

1)≤i has trivial homotopy groups for all i.
The 0th homotopy group of the product

∏
i≥1(F1S

1)≤i is the colimit of the sequence of maps∏
i≥n

P(n)
1 −→

∏
i≥n+1

P(n+1)
1

which first projects away from the factor indexed by i = n and then takes a product of inclusions P(n)
1 −→

P(n+1)
1 . The colimit is the quotient of the tame product

∏tame
i≥1 P1 by the sum

⊕
i≥1 P1; so π0 of the

product is non-zero and even has a non-trivial M-action.

Remark 4.41. The injection monoidM gives essentially all natural operations on the homotopy groups
of symmetric spectra. More precisely, we now identify the ring of natural operations π0X −→ π0X with
a completion of the monoid ring Z[M]. Moreover, tame M-modules can equivalently be described as the
discrete modules over the ring of operations. We will not need this information later, so we will be brief.

We define the ring Z[[M]] as the endomorphism ring of the functor π0 : SpΣ −→ Ab. So an element
of Z[[M]] is a natural self-transformation of the functor π0, and composition of transformations gives the
product. The following calculation of this ring depends on the fact that the homotopy group functor π0

is pro-represented, in the level homotopy category of symmetric spectra, by the inverse system of free
symmetric spectra FnSn, and that we know π0(FnSn) by Example 4.31.

In more detail: for every n ≥ 0 we let jn ∈ πn(FnSn)n be the wedge summand inclusion Sn −→
Σ+
n ∧ Sn = (FnSn)n indexed by the unit element of Σn. Then evaluation at jn is a bijection

[FnSn, X] −→ πnXn , [f ] 7→ f∗(jn)

where the left hand side means homotopy classes of morphisms of symmetric spectra. We write λ :
Fn+1S

n+1 −→ FnS
n for the morphism adjoint the wedge summand inclusion Sn+1 −→ Σ+

n+1 ∧ (Sn ∧S1) =
(FnSn)n+1 indexed by the unit element of Σn+1. Then we have

λ∗(jn+1) = ι∗(jn)

in the group πn+1(FnSn)n+1 which implies that the squares

[FnSn, X]
∼= //

[λ,X]

��

πnXn

ι∗

��
[Fn+1S

n+1, X] ∼=
// πn+1Xn+1

commute. Passage to colimits give a natural isomorphism

colimn [FnSn, X] −→ π0X .

From here the Yoneda lemma shows that we get an isomorphism of abelian groups

(4.42) β : Z[[M]] −→ lim
n

π0(FnSn) ,

(where the limit is taken over the maps π0λ) by sending a natural transformation τ : π0 −→ π0 to the tuple
{τFnSn [jn]}n.

It remains to exhibit the ring Z[[M]] as a completion of the monoid ring Z[M]. The natural action of
M on the 0th homotopy group of a symmetric spectrum provides a ring homomorphism Z[M] −→ Z[[M]].
We define a left ideal In of Z[M] as the subgroup generated by all differences of the form f − g for all
f, g ∈ M such that f and g agree on n. If W is a tame M-module and if x ∈ W (n) has filtration n, then
In ·x = 0. So the action of the monoid ring Z[M] on any tame module automatically extends to an additive
map

(lim
n

Z[M]/In)⊗W −→ W .
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(Warning: In is not a right ideal for n ≥ 1, so the completion does not a priori have a ring structure). Since
the homotopy groups of every symmetric spectrum form tame M-modules, this gives a map of abelian
groups

α : lim
n

Z[M]/In −→ Z[[M]]

which extends the map from the monoid ring Z[M].
To prove that α is a bijection we show that the composite βα : limn Z[M]/In −→ limn π0(FnSn)

with the isomorphism (4.42) is bijective. But this holds because the composite arise from compatible
isomorphisms

Z[M]/In −→ π0(FnSn) , f + In 7−→ f · [jn] ,
which in turn uses the isomorphisms Pn ∼= π0(FnSn) from Example 4.31.

We end this remark by claiming without proof that the extended action of Z[[M]] on a tameM-module
W makes it a discrete module in the sense that the action map

Z[[M]]×W −→ W

is continuous with respect to the discrete topology on W and the filtration topology on Z[[M]]. Conversely,
ifW is discrete module over Z[[M]], then its underlyingM-module is tame. This establishes an isomorphism
between the category of tame M-modules and the category of discrete Z[[M]]-modules.

4.5. Semistable symmetric spectra. The semistable spectra form an important class of symmetric
spectra since for these, the naively defined homotopy groups of (1.5) coincide with the ‘true’ homotopy
groups, i.e., morphisms in the stable homotopy category from the sphere spectra (a more precise definition
of the true homotopy groups will be given in Section 4.2 of Chapter II). As a slogan, for semistable
spectra the homotopy groups are ‘correct’, and they are pathological otherwise. The rigorous meaning of
this statement will only become clear later when we have introduced stable equivalences and the stable
homotopy category. Many symmetric spectra which arise naturally are semistable, compare Example 4.48.

In Theorem 4.44 below we define semistable symmetric spectra via several equivalent conditions. To
state these, we need a few definitions. As we have seen in Examples 2.16 and 2.18, the suspension and
shift construction both shift the homotopy groups. However, there is in general no morphism of symmetric
spectra which realizes an isomorphism on homotopy groups. The two constructions are related by the
natural morphism λX : S1 ∧X −→ shX which was defined in (2.19). We set RX = Ω(shX) and obtain a
morphism λ∗X : X −→ RX as the adjoint of λX . The n-th level of λ∗ differs from the adjoint structure map
σ̃n : Xn −→ ΩXn+1 by the isomorphism Ω(χn,1) : Ω(Xn+1) −→ Ω(X1+n). So X (levelwise Kan when in
the simplicial context) is an Ω-spectrum if and only if the morphism λ∗X : X −→ RX is a level equivalence.

We iterate this construction and let R∞X be the colimit of the sequence

(4.43) X
λ∗−−→ RX

R(λ∗)−−−−−→ R2X
R2(λ∗)−−−−−−→ · · · .

This construction comes with a canonical natural morphism λ∞X : X −→ R∞X.

Theorem 4.44. For every symmetric spectrum X the following conditions are equivalent.
(i) The action of the monoid M is trivial on all homotopy groups of X.
(ii) The morphism λX : S1 ∧X −→ shX is a π∗-isomorphism.
(iii) The morphism λ∗X : X −→ Ω(shX) is a π∗-isomorphism.
(iv) The morphism λ∞X : X −→ R∞X is a π∗-isomorphism.
(v) The symmetric spectrum R∞X is an Ω-spectrum.
(vi) There exists a π∗-isomorphism from X to an Ω-spectrum.

If conditions (i)-(vi) hold, then X is called semistable. [For symmetric spectra of simplicial sets, X should
be levelwise Kan in (iii), (iv) and (v).]

Proof. For symmetric spectra of simplicial sets all relevant notions are defined by geometrically re-
alizing to a topological spectrum. So it suffices to prove the theorem for symmetric spectra of topological
spaces.
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To see that condition (i) implies condition (iii) we compare the effect of λ∗X : X −→ Ω(shX) on
homotopy with the action of the special monoid element d given by d(i) = i + 1. The level n component
λ∗n : Xn −→ Ω(X1+n) is adjoint to the composite

S1 ∧Xn

∼=−−−−→
twist

Xn ∧ S1 σn−−−−−→ Xn+1
(1,...,n,n+1)−−−−−−−−→ X1+n

So the square

πk+nXn

πk+n(λ∗n)

��

ι∗ // πk+n+1Xn+1

(−1)n(1,...,n,n+1)∗

��
πk+nΩ(X1+n)

(−1)kα

∼= // πk+1+nX1+n

commutes, where ι∗ is the stabilization map, and the isomorphism α is as in Example 2.23. The signs arise
as the effect of moving a sphere coordinate past k respectively n other coordinates. As n increases, the
maps (−1)n(1, . . . , n, n + 1)∗ ◦ ι∗ : πk+nXn −→ πk+1+nX1+n stabilize to the left multiplication of d ∈ M
on πkX, see Example 4.14. So the square

(4.45) πkX

πk(λ
∗
X)

��

d· // (πkX)(1)

πkΩ(shX)
(−1)kα

∼= // πk+1(shX)

commutes, and ifM, hence in particular d, acts trivially, then λ∗X is a π∗-isomorphism.
Conditions (ii) and (iii) are equivalent since we have a commutative square

πkX
πk(λ

∗
X) //

S1∧− ∼=
��

πkΩ(shX)

α∼=
��

π1+k(S1 ∧X)
π1+k(λX)

// π1+k(shX)

in which both vertical maps are isomorphisms.
(iii) ⇒ (iv): The commutative square (4.45) implies a natural isomorphism ofM-modules

(4.46) πk(R∞X) ∼= (πkX)(∞) .

Here for anM-module V we denote by V (∞) the colimit of the sequence

V
d·−−→ V (1) d·−−→ V (2) d·−−→ · · ·

(note that (1× f)d = df for all f ∈ M, which means that d· : V −→ V (1) is indeed M-linear, and so the
colimit V (∞) is naturally an M-module). If condition (iii) holds for X then it also holds for RnX for all
X and the morphism X −→ R∞X is a π∗-isomorphism.

(iv) ⇒ (v): As we saw in the proof of the previous implication, the effect of λ∞X on homotopy groups
coincides with the natural injection πkX −→ (πkX)(∞) obtained by iterated left multiplication by d ∈M.
If that injection is a bijection the d acts bijectively on the homotopy groups of X. Hence every monoid
element acts identically on πkX. The commutative square

πkX
(1n×d)· //

∼=
��

πkX

∼=
��

πk+n(R∞X)n ι∗
// πk+n+1(R∞X)n+1

[define the vertical iso; check] thus shows that R∞X is an Ω-spectrum.
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To see that condition (vi) implies condition (i) we show that the M-action on the homotopy groups
of an Ω-spectrum is always trivial. If X is an Ω-spectrum, then for every integer k the canonical map
πkX0 −→ πkX (for k ≥ 0) or the map π0X−k −→ Xk (for k ≤ 0) is bijective. So every element of πkX has
filtration max(0,−k). But tame M-modules with bounded filtration necessarily have trivial M-action by
Lemma 4.24 (ii). �

Proposition 4.47. Let X be a symmetric spectrum which satisfies one of the following conditions.
(i) For every k ∈ Z there is an n ≥ 0 such that the canonical map πk+nXn −→ πkX is surjective.
(ii) Every even permutation γ ∈ Σn acts as the identity on the homotopy groups of Xn.
(iii) X is underlying an orthogonal spectrum.
(iv) The homotopy groups of X are dimensionwise finitely generated as abelian groups.

Then the M-action on all homotopy groups of X is trivial and so X is semistable.

Proof. (i) Under the assumption every element of πkX has filtration n. But tame M-modules with
bounded filtration necessarily have trivialM-action by Lemma 4.24 (ii).

(ii) We consider more generally any I-functor F which takes all even permutations to identity maps.
Given f ∈ M and an element [x] ∈ F (ω) in the colimit represented by x ∈ F (n), then we can find
m ≥ max{f(n)} and an even permutation γ ∈ Σm such that γ agrees with f on n. Since γ is even, we
then have f∗[x] = [(f |n)∗(x)] = [(γ|n)∗(x)] = [γ∗(ιm−n∗ (x))] = [ιm−n∗ (x)] = [x]. Thus the monoid M acts
trivially on the colimit F (ω).

(iii) The inclusion Σn −→ O(n) as permutation matrices sends all even permutations to the path
component of the unit in O(n). So if the Σn-action on a pointed space Xn extends to an O(n)-action, then
all even permutations act as the identity on the homotopy groups of Xn. So part (ii) applies.

(iv) If πkX is finitely generated as an abelian group, then tameness forces the M-action to be trivial
on πkX (Lemma 4.24 (iv)). �

Example 4.48. An important special case where condition (i) in Proposition 4.47 above holds is when
the homotopy groups of a symmetric spectrum X stabilize, i.e., for each k ∈ Z there exists an n ≥ 0 such
that from the group πk+nXn on, all maps in the sequence (1.5) defining πkX are isomorphisms.

Examples of symmetric spectra with stabilizing homotopy groups include all suspension spectra (Exam-
ple 2.16), Ω-spectra, or Ω-spectra from some point Xn on. So it includes Eilenberg-Mac Lane spectra HA
associated to an abelian group (see Example 2.7) as well as spectra of topological K-theory (Example 2.10)
and algebraic K-theory (Example 2.11). The symmetric spectrum obtained from a Γ-space A (see Exam-
ple 2.39) by evaluation on spheres is another example since the structure map A(Sn) ∧ S1 −→ A(Sn+1) is
(2n+ 1)-connected [34, Prop. 5.21]. So all these kinds of symmetric spectra are semistable.

The various Thom spectra MO, MSO and MSpin of Example 2.8 or MU , MSU and MSp of Exam-
ple 2.9 are underlying orthogonal spectra, so they are all semistable.

Example 4.49. We collect some examples of symmetric spectra which are not semistable. Example 4.31
identifies the homotopy groups of free and semifree symmetric spectra as

πk(FmK) ∼= Pm ⊗ πs
k+mK respectively πk(GmL) ∼= Pm ⊗Σm (πs

k+mL)(sgn) .

Since Pm is free of countably infinite rank as a right Σm-module, the free or semifree symmetric spectra
generated in positive level m are never semistable unless K respectively L has trivial stable homotopy
groups.

If W is a tame M-module with non-trivial M-action, then π0HW ∼= W as M-modules and so the
generalized Eilenberg-Mac Lane spectrum HW as defined in Example 4.27 is not semistable.

Example 4.39 shows that an infinite product of symmetric spectra with trivial homotopy groups can
have homotopy groups with non-trivialM-action. In particular, infinite products of semistable symmetric
spectra need not be semistable.

If X has at least one non-trivial homotopy group, then S0 .1 X ∼= F1S
0 ∧ X is not semistable by

Example 4.37.



4. HOMOTOPY GROUPS, M-MODULES AND SEMISTABILITY 69

The ‘trivial M-action’ criterion is often handy for showing that semistability is preserved by certain
constructions. We give a few examples of this in the following proposition.

Example 4.50. If f : X −→ Y is any morphism of symmetric spectra, then the homotopy groups of
the spectra X, Y and the mapping cone C(f) = [0, 1]+ ∧X ∪f Y are related by a long exact sequence of
tame M-modules (we use that the M-action does not change under loop and suspension). Trivial tame
M-modules are closed under taking submodules, quotient modules and extensions (Lemma 4.22 (iv)); so if
two out of three graded M-modules π∗X, π∗Y and π∗C(f) have trivial M-action, then so does the third.
Thus the mapping cone of any morphism between semistable symmetric spectra is semistable.

If f : X −→ Y is an h-cofibration [define] of symmetric spectra, or simply an injective morphism when
in the simplicial context, then the mapping cone C(f) is π∗-isomorphic to the quotient Y/X. Thus if two
of the spectra X, Y and Y/X are semistable, then so is the third.

Example 4.51. Semistability is preserved under suspension, loop, wedges, shift and sequential colimits
along h-cofibrations (or injective morphisms when in the simplicial context) since these operations preserve
the property ofM acting trivially on homotopy groups.

We shall see later (see Theorem II.5.17) that the smash product of two semistable symmetric spectra
is semistable if at least one of the factors is flat. Moreover, if X is a semistable symmetric spectrum and A
is a Γ-space, then A(X) is semistable (see Proposition II.5.18 (iii)) [also true for simplicial functors?]

Example 4.52. For a symmetric spectrum X and a pointed space K we let K ∧X be the symmetric
spectrum obtained by smashing K levelwise with X (compare Example 2.15). For example, when K = S1 is
the circle, this specializes to the suspension of X. We claim that if X is semistable and K is a CW-complex,
then the symmetric spectrum K ∧X is again semistable.

We first prove the claim for finite dimensional CW-complexes by induction over the dimension. If K is
0-dimensional, then K ∧X is a wedge of copies of X, thus semistable. If K has positive dimension n and
K(n−1) is its (n− 1)-skeleton, then K/K(n−1) is a wedge of n-spheres and so the quotient of K ∧X by the
subspectrum K(n−1)∧X is a wedge of n-fold suspension of X. By induction the subspectrum K(n−1)∧X is
semistable; since the inclusion is an h-cofibration and the quotient spectrum is also semistable, so is K ∧X.
For a general CW-complex K the symmetric spectrum K ∧X is the sequential colimit, over h-cofibrations,
of the smash product of X with the skeleta of K. So K ∧X is semistable.

The geometric realization of any simplicial set is a CW-complex, so in the simplicial context we conclude
that for any pointed simplicial set K and any semistable symmetric spectrum X the symmetric spectrum
K ∧X is again semistable.

Example 4.53. Let F : J −→ SpΣ be a functor from a small category J to the category of symmetric
spectra. If F (j) is semistable for each object j of J , then the homotopy colimit of F over J is semistable.

Indeed, the homotopy colimit is the geometric realization of the simplicial replacement q∗F in the
sense of Bousfield and Kan [10, Ch. XII, 5.1], a simplicial object of symmetric spectra. The spectrum of
n-simplices of q∗F is a wedge, indexed over the n-simplices of the nerve of J , of spectra which occur as
values of F . The geometric realization |q∗F | is the sequential colimit, over h-cofibrations, of the realizations
of the skeleta sknq∗F in the simplicial direction, so it suffices to show that each of these is semistable.
The skeleton inclusion realizes to an h-cofibration | skn−1q∗F | −→ | sknq∗F | whose quotient symmetric
spectrum is a wedge, indexed over the non-degenerate n-simplices of the nerve of J , of n-fold suspensions
of spectra which occur as values of F . So the quotient spectra are semistable, and so by induction the
symmetric spectra | sknq∗F | are semistable.

4.6. Homotopy groups of ring spectra. In Example 2.4 we constructed a product on the stable
stems and an action of this graded ring on the homotopy groups of a symmetric spectrum. We now
extend this type of multiplication to symmetric ring spectra; however, the situation is more subtle, and in
general only those stable homotopy classes which are fixed by theM-action support a multiplication. More
precisely, we show:

Theorem 4.54. Let R be a symmetric ring spectrum. There is a natural structure of a graded ring on
the graded subgroup (π∗R)(0) of M-fixed elements in the homotopy groups of R. If R is commutative, then
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the product on (π∗R)(0) is graded-commutative. The homotopy groups of every right R-module naturally
form a graded right module over the graded ring (π∗R)(0).

Thus if R is semistable then the homotopy groups π∗R form a graded ring which acts naturally on the
homotopy groups of every right R-module.

To prove Theorem 4.54 we consider a right R-module M and try to define a biadditive pairing from
πkM×πlR to πk+lM in the same way as for R = S in Example 2.4 (an S-module is the same as a symmetric
spectrum). As we shall see, the case of general ring spectra is more subtle, and the condition of being fixed
by M comes up naturally when checking that an unstable product is well-defined on stable homotopy
classes. Given two homotopy classes f ∈ πk+nMn and g ∈ πl+mRm we denote by f · g the homotopy class
in πk+l+n+mMn+m given by the composite

(4.55) Sk+l+n+m Id∧χl,n∧Id−−−−−−−→ Sk+n+l+m f∧g−−−−→Mn ∧Rm
µn,m−−−−→Mn+m .

This dot operation is associative, i.e., if h ∈ πj+qRq is another homotopy class, then we have (f · g) · h =
f · (g · h) in πk+l+j+n+m+qRn+m+q. After spelling out the definitions, this associativity ultimately boils
down to the equality

(k × χl,n ×m× j × q) ◦ (k × l × χj,n+m × q) = (k × n× l × χj,m × q) ◦ (k × χl+j,n ×m× q)

in the symmetric group Σk+l+j+q+n+m and the associativity of the action of R on M .
Using the dot product we can rewrite the stabilization map ι∗ : πk+nMn −→ πk+n+1Mn+1 as ι∗(f) =

f · ι1, where ι1 ∈ π1R1 is the class of the unit map of R. In the special case M = R we can also multiply
with the unit map ι1 from the left, and then ι1 · g is the composite of the top row in the diagram

Sl+1+m
χl,1×m //

l×χ1,m ''PPPPPPPPPPPP S1+l+m
S1∧g //

χ1,l+m

��

S1 ∧Rm
ι1∧Rm //

twist

��

R1 ∧Rm
µ1,m // R1+m

Sl+m+1
g∧S1

// Rm ∧ S1
Rm∧ι1

// Rm ∧R1 µm,1
// Rm+1

χm,1

OO

The diagram commutes, using centrality of ι1, so that we have the relation

ι1 · g = (−1)m(χm,1)∗(g · ι1)

in πl+1+mR1+m. The image of the right hand side in the stable group πlR is precisely d · [g], where d· is the
action of the special monoid element d ∈ M, see Example 4.14. So we deduce the relation [ι1 · g] = d · [g]
in πlR.

Now it is easy to investigate to what extent the dot product passes to an operation stable homotopy
groups. If we replace the right factor g ∈ πl+mRm by the next representative ι∗(g) then associativity gives

f · ι∗(g) = f · (g · ι1) = (f · g) · ι1 = ι∗(f · g) ,

so the class [f · g] in the stable group πk+lM only depends on the class [g] in πlR, and not on the unstable
representative.

However, the dot product interacts differently with stabilization in the left factor, for we have

(4.56) ι∗(f) · g = (f · ι1) · g = f · (ι1 · g)

which in general will not have the same image in πk+lM as f · g. So in general we cannot expect that the
dot product passes to a well-defined operation on πkM × πlR.

Let us now make the additional assumption that the stable class [g] ∈ πlR is fixed by the special monoid
element d ∈ M. Because of the relation [ι1 · g] = d · [g] = [g] in πlR and equation (4.56) we then get that
ι∗(f) · g and f · g do have the same image in πk+lM . Note that if d[g] = [g], then [g] in fact has filtration
zero (by Lemma 4.22 (iii)) which means that it is fixed by all monoid elements. So by restricting to classes
in πlR which are M-fixed we get a well-defined paring

· : πkM × (πlR)(0) −→ πk+lM .
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In particular, if R is semistable, then we end up with a well-defined map · : πkM × πlR −→ πk+lM .
The proof that the dot operation is biadditive is the same as in the special case R = S, compare

Example 2.4. We claim that the product ifM-linear in the left variable, i.e., we have (α · x) · y = α · (x · y)
for α ∈M, x ∈ πkM and y ∈ (πlR)(0).[justify]

If we specialize to M = R then the product provides a biadditive graded pairing · : πkR× (πlR)(0) −→
πk+lR on the homotopy groups of the symmetric ring spectrum R. ByM-linearity in the left variable, this
restricts to a biadditive pairing · : (πkR)(0) × (πlR)(0) −→ (πk+lR)(0). Associativity for the unstable dot
product immediately implies associativity for its stabilized version, i.e., for every right R-module M the
diagram

πkM × (πlR)(0) × (πjR)(0)
·×Id //

Id×·
��

πk+lM × (πjR)(0)

·
��

πkM × (πl+jR)(0) ·
// πk+l+jM

commutes. This finishes the proof of Theorem 4.54, except for the verification that the product on (π∗R)(0)

is graded-commutative if R is commutative. This will come out of the study of the product on the opposite
ring spectrum, which we discuss now.

Example 4.57 (Opposite ring spectrum). For every symmetric ring spectrum R we can define the
opposite ring spectrum Rop by keeping the same spaces (or simplicial sets), symmetric group actions and
unit maps, but with new multiplication µopn,m on Rop given by the composite

Ropn ∧Ropm = Rn ∧Rm
twist−−−→ Rm ∧Rn

µm,n−−−→ Rm+n
χm,n−−−→ Rn+m = Ropn+m .

As a consequence of centrality of ι1, the higher unit maps for Rop agree with the higher unit maps for R.
By definition, a symmetric ring spectrum R is commutative if and only if Rop = R.

For example, we have (HA)op = H(Aop) for the Eilenberg-Mac Lane ring spectra (Example 2.7) of an
ordinary ring A and its opposite, we have (T ∧R)op = T op ∧Rop for the smash product of an I-space with
multiplication and a ring spectrum (Example 2.31), and R[M ]op = (Rop)[Mop] for the monoid ring spectra
(Example 2.32) of a simplicial or topological monoid M and its opposite.

We claim that for every ring spectrum R and integer k the homotopy groups πkR and πk(Rop) are
equal (not just isomorphic) as M-modules and

(4.58) (π∗(Rop))(0) = ((π∗R)(0))op

(again equality) as graded rings, where the right hand side is the graded-opposite ring, i.e., the graded
abelian group π∗R with new product x ·op y = (−1)kly · x for x ∈ πkR and y ∈ πlR. In particular, if R is
semistable, then we have π∗(Rop) = (π∗R)op as graded rings.

Let us first check that πkR and πk(Rop) are the sameM-modules. This follows from the stronger claim
that the I-functors πkR and πk(R

op) are equal. It is immediate from the definition of Rop that these two
I-functors agree on objects and bijective morphisms in the category I. There is something to check though
to see that πkR and πk(R

op) agree on the inclusions n −→ n + 1 (and thus on all injections), i.e., that
they have the same stabilization maps. The stabilization map ιop∗ for the opposite ring spectrum takes the
homotopy class of a map f : Sk+n −→ Rn to the class of the composite

(4.59) Sk+n+1
f∧Id // Rn ∧ S1

Id∧ι1 // Rn ∧R1
twist //

µopn,1

22R1 ∧Rn
µ1,n // R1+n

χ1,n // Rn+1 .

Because the unit map ι1 is central, the composite of the last four maps in (4.59) is actually equal to
µn,1(Id∧ι1). Thus the total composite in (4.59) equals the composite

Sk+n+1 f∧Id−−−→ Rn ∧ S1 Id∧ι1−−−−→ Rn ∧R1
µn,1−−−→ Rn+1 ,
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which is precisely the effect of the stabilization map for R. So the I-functors πkR and πk(R
op) are equal

and hence their colimits πkR and πk(Rop) are equal (or at least as equal as a colimit is canonical) as
M-modules.

Now consider two homotopy classes f ∈ πk+nRn and g ∈ πl+mRm which representsM-fixed classes in
πkR respectively πlR. Spelling out the definitions leads to the equation

f ·op g = (χm,n)∗ ◦ (g ·R f) ◦ (χk,l × χn,m) = (−1)kl+nm(χm,n)∗(g · f)

as elements of πk+l+n+mRn+m. We already know that the element represented by this class in πk+lR is
M-fixed, and hence

[(−1)nm(χm,n)∗(g · f)] = d · [g · f ] = [g · f ]
in πk+lR. Thus [f ·op g] = (−1)kl[g · f ], which proves the equation (4.58).

As a special case of (4.58) we obtain the claim about commutative ring spectrum made in Theorem 4.54.
If R is commutative, then R = Rop and so then (π∗R)(0) agrees with its graded opposite ring, which means
that the multiplication on (π∗R)(0) is commutative in the graded sense.

The product on the homotopy groups of a symmetric ring spectrum can also be explained from a
different angle using the smash product. For symmetric spectra X and Y smashing of representatives and
composing with the universal bimorphism in,m : Xn∧Ym −→ (X ∧Y )n+m passes to anM-linear biadditive
pairing

· : πkX × (πlY )(0) −→ πk+l(X ∧ Y ) .
The verification that this well-defined and the reason for restricting toM-fixed classes in the second factor
are the same as above. It is straightforward to check that for a symmetric ring spectrum R and a right
R-module M the multiplication as defined in Theorem 4.54 agrees with the composite

πkM × (πlR)(0) ·−→ πk+l(M ∧R) α−−→ πk+lR .

where α : M ∧R −→M is the ‘external’ form of the action of R on M .
Again we have associativity, i.e., for every triple of symmetric spectra X,Y and Z the diagram

πkX × (πlY )(0) × (πjZ)(0)
·×Id //

Id×·
��

πk+l(X ∧ Y )× (πjZ)(0)

·
��

πkX × (πl+j(Y ∧ Z))(0) ·
// πk+l+j(X ∧ Y ∧ Z)

commutes. The graded commutativity of the multiplication in the homotopy of a commutative ring spec-
trum also has a precursor: for all symmetric spectra X and Y the square

(πkX)(0) × (πlY )(0)
· //

twist

��

πk+l(X ∧ Y )(0)

πk+l(τX,Y )

��
(πlY )(0) × (πkX)(0) ·

// πl+k(Y ∧X)(0)

commutes up to the sign (−1)kl.

Example 4.60 (Killing a homotopy class). We describe a construction that can be used to ‘kill’ the
action of a homotopy class in a ring spectrum on a given module. We consider a symmetric ring spectrum
R and a map x : Sl+m −→ Rm. For every right R-module M we define a morphism of symmetric spectra

ρx : Sl+m ∧M −→ shmM

in level n as the composite

Sl+m ∧Mn
twist−−−→Mn ∧ Sl+m

Id∧x−−−→Mn ∧Rm
αn,m−−−→Mn+m

χn,m−−−→Mm+n = (shmM)n .

The name ρx stands for ‘right multiplication by x’. For example, if x = ι1 : S1 −→ R1 is the unit map then
ρι1 : S1 ∧M −→ shM equals the map λM defined in (2.19). [relate the composite of ρy and ρx to ρx·y]
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While the construction of the morphism ρx : Sl+m ∧M −→ shmM makes sense for any map x and
R-module M , we can only analyze it homotopically under additional assumptions.

Proposition 4.61. Let R be a symmetric ring spectrum, x : Sl+m −→ Rm a based map and M a right
R-module.

(i) Suppose that the map x is central, i.e., the square

Rn ∧ Sl+m
Id∧x //

τ

��

Rn ∧Rm
µn,m // Rn+m

χn,m

��
Sl+m ∧Rn x∧Id

// Rm ∧Rn µm,n
// Rm+n

commutes for all n ≥ 0. Then the morphism of symmetric spectra ρx : Sl+m ∧M −→ shmM is a
homomorphism of R-modules.

(ii) If the class [x] ∈ πlR in the l-th stable homotopy group is M-fixed and M is semistable, then
the morphism ρx : Sl+m ∧M −→ shmM realizes right multiplication by [x] in homotopy. More
precisely, the diagram

πkM
·[x] //

Sl+m∧− ∼=
��

πk+lM

πl+m+k(Sl+m ∧M)
πl+m+k(ρx)

// πl+m+k(shmM)

commutes up to the sign (−1)k(l+m).

As usual, the sign in part (ii) above can be predicted by remembering that the group πk+lM is ‘naturally’
equal to πk+l+m(shmM) (compare Example 2.18), whereas the ‘natural’ target of the lower vertical map
is πl+m+k(shmM); so secretly, k sphere coordinates move past l +m other coordinates, hence the sign.

Proof of Proposition 4.61. Part (i) is straightforward from the definitions. For (ii) we consider an
element f ∈ πk+nMn which represents a class in πkM and chase it around both sides of the square. We
then have

(4.62) (ρx)∗(Sl+m ∧ f) = (χn,m)∗(f · x) ◦ γ∗

in the group π(l+m)+(k+n)Mm+n, where γ∗ : S(l+m)+(k+n) −→ S(k+l)+(n+m) is the coordinate permutation
induced by the element γ ∈ Σl+m+k+n given by

γ(i) =


i+ k for 1 ≤ i ≤ l,
i+ k + n for l + 1 ≤ i ≤ l +m,
i− l −m for l +m+ 1 ≤ i ≤ l +m+ k,
i−m for l +m+ k + 1 ≤ i.

The permutation γ has sign (−1)k(l+m)+nm and since M is semistable the effect of the shuffle χn,m in
the stable homotopy group is the sign (−1)nm. So when we pass from the unstable homotopy group
π(l+m)+(k+n)Mm+n to the stable group πl+m+k(shmM), the equation (4.62) becomes πl+m+k(ρx)(Sl+m ∧
[f ]) = (−1)k(l+m)[f ] · [x], as claimed. �

Now suppose that the hypothesis of both (i) and (ii) hold in Proposition 4.61, i.e., the map x is central,
its class [x] in πlR isM-fixed and M is semistable. We let M/x denote the mapping cone of the morphism
ρ̃x : Sl∧M −→ Ωm(shmM) which is adjoint to ρx. Then by Proposition 4.61 the morphism ρ̃x also realizes
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multiplication by [x] on homotopy [levelwise Kan] in the sense that the square

πkM
·[x] //

Sl∧− ∼=
��

πk+lM

∼= λ∗

��
πl+k(Sl ∧M)

πl+k(ρ̃x)
// πl+k(Ωm(shmM))

commutes up to the sign (−1)k(l+m). The long exact homotopy sequence of a mapping cone (Propo-
sition 4.7 (i)) breaks up into a short exact sequence of (π∗R)(0)-modules [the connecting morphism is
(π∗R)(0)-linear]

0 −→ π∗M/(π∗−lM) · [x] −→ π∗(M/x) −→ {π∗+l−1M}[x] −→ 0

where the first map is induced by the composite of λ∗ : M −→ Ωm(shmM) and the mapping cone inclusion
Ωm(shmM) −→ M/x and {−}[x] denotes the submodule of homotopy classes annihilated by [x]. So we
conclude that if x acts injectively on the homotopy groups of M , then the morphism M −→ M/x realizes
the quotient map π∗M −→ π∗M/(π∗−lM) · [x] on homotopy groups.

In contrast, if the class [x] annihilates nonzero classes in the homotopy of M then we may not be able
realize the module π∗M/(π∗−lM) · [x] as the homotopy of an R-module. In fact, Toda brackets give the
first obstructions to such a realization. If there are homogeneous elements m ∈ π∗M and x, y ∈ (π∗R)(0)

such that mx = 0 = xy and the Toda bracket 〈m,x, y〉 does not contain 0, then the projection π∗M −→
π∗M/(π∗−lM) · [x] is not realizable as the effect on homotopy of any R-module homomorphism out of M .
[explain]

Example 4.63 (Killing a regular sequence). We can iteratively kill homotopy classes as in the previous
example and thereby kill the action of certain ideals in the homotopy groups of a symmetric ring spectrum.
We just saw that we can only control the homotopy groups of M/x if the homotopy class [x] which is killed
is not a zero divisor on π∗M . So iterating the construction naturally leads us to consider regular sequences.

Recall that a sequence, finite or countably infinite, of homogeneous elements yi in a graded commutative
ring R∗ is a regular sequence for a graded R∗-module M∗ if y1 acts injectively on M∗ and for all i ≥ 2 the
element yi acts injectively on M∗/M∗ · (y1, . . . , yi−1). A homogeneous ideal I of R∗ is a regular ideal for M∗
if it can be generated by a regular sequence, finite or countably infinite, for M∗.

To simplify the exposition we now assume that the ring spectrum R we work over is semistable and
commutative. As in Example 4.60 this can be relaxed to the assumption that all relevant homotopy classes
are M-fixed and can be represented by central maps.

Proposition 4.64. Let R be a commutative semistable symmetric ring spectrum, M a semistable right
R-module and I a homogeneous ideal of π∗R. If I is a regular ideal for the module π∗M then there exists
a semistable R-module M/I and a homomorphism q : M −→ M/I of R-modules such that the induced
homomorphism of homotopy group

π∗(q) : π∗M −→ π∗(M/I)

is surjective and has kernel equal to (π∗M)I.

Proof. We choose a sequence y1, y2, . . . of homogeneous elements of π∗R which generate the ideal I
and form a regular sequence for π∗M . We construct inductively a sequence of semistable R-modules M i

and homomorphisms
M = M0 q1−→ M1 q2−→ M2 q3−→ · · ·

such that the composite morphism M −→ M i is surjective on homotopy groups and has kernel equal to
(π∗M) · (y1, . . . , yi).

The induction starts with i = 0, where there is nothing to show. In the ith step we let l be the dimension
of the homotopy class yi and choose a based map x : Sl+m −→ Rm which represents yi ∈ πlR. By induction
the homotopy groups of M i−1 realize the π∗R-module π∗M/(π∗M) · (y1, . . . , yi−1). Since we have a regular
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sequence for π∗M the class yi = [x] acts injectively on the homotopy of M i−1, so the morphism qi :
M i−1 −→M i−1/x constructed in Example 4.60 realizes the projection π∗M i−1 −→ π∗M

i−1/(π∗M i−1) · yi.
We can thus take M i = M i−1/x; then the composite morphism M −→M i is again surjective on homotopy
groups and its kernel is

(π∗M) · (y1, . . . , yi−1) + (π∗M) · yi = (π∗M) · (y1, . . . , yi) .

This finishes the argument if I is generated by a finite regular sequence.
If the generating sequence is countably infinite we define M/I as the diagonal (see Example 2.27) of

the above sequence of R-modules M i. Then the natural map

colimi π∗Mi −→ π∗(M/I)

is an isomorphism (see (2.30)), and the left hand side is isomorphic to

colimi (π∗M/(π∗M) · (x1, . . . , xi)) ∼= π∗M/(π∗M) · (x1, x2, . . . ) = π∗M/(π∗M) · I .

�

Example 4.65 (Inverting a homotopy class). In Example 2.36 we defined a new symmetric ring spec-
trum R[1/x] from a given symmetric ring spectrum R and a central map x : S1 −→ R1. We now generalize
this construction to central maps x : Sl+m −→ Rm and also analyze it homotopically.

First we extend the localization construction to right R-modules M . We define a right R[1/x]-module
M [1/x] by

M [1/x]p = map(S(l+m)p,M(1+m)p) .

The symmetric group Σp acts on S(l+m)p and M(1+m)p by permuting the p blocks of l + m respectively
1 +m coordinates, i.e., by restriction along the diagonal embeddings

∆ : Σp −→ Σ(l+m)p respectively ∆ : Σp −→ Σ(1+m)p .

More precisely, the diagonal embedding ∆ : Σp −→ Σnp is defined by ∆(γ) = Idn ·γ (using the notation of
Remark 1.12) which unravels to

∆(γ)(j + (i− 1)n) = j + (γ(i)− 1)

for i ≤ j ≤ n and 1 ≤ i ≤ p. The action of Σp on the whole mapping space M [1/x]p is then by conjugation.
A special case of this is M = R and we now define Σp × Σq-equivariant action maps

αp,q : M [1/x]p ∧R[1/x]q −→ M [1/x]p+q

as the composite

map(S(l+m)p,M(1+m)p) ∧map(S(l+m)q, R(1+m)q) −→ map(S(l+m)(p+q),M(1+m)(p+q))

f ∧ g 7−→ µ(1+m)p,(1+m)q ◦ (f ∧ g) .

The action maps are associative because smashing and the original action maps are. The verification the
maps αp,q are Σp × Σq-equivariant ultimately boils down to the equivariant for the original action maps
and the fact that the diagonal embeddings ∆p : Σp −→ Σnp, ∆q : Σq −→ Σnq and ∆p+q : Σp+q −→ Σn(p+q)

satisfy
∆p(γ)×∆q(τ) = ∆p+q(γ × τ) .

The next piece of data we define are maps jp : Mp −→ M [1/x]p which we will later recognize as a
homomorphism of R-modules. We denote by xp : S(l+m)p −→ Rmp the composite

S(l+m)p x(p)

−−→ R(p)
m

µm,...,m−−−−−→ Rmp ;

because x is central the map xp is Σp-equivariant if we let Σp act on source and target through the diagonal
embeddings. We define

jp : Mp −→ map(S(l+m)p,M(1+m)p) = M [1/x]p
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as the adjoint to

Mp ∧ S(l+m)p Id∧xp−−−−→ Mp ∧Rmp
αp,mp−−−−→ Mp+mp

ξ∗−→ M(1+m)p

where ξ ∈ Σ(1+m)p is given by

ξ(i) =

{
1 + (i− 1)(1 +m) if 1 ≤ i ≤ p
(j + 1) + (k − 1)(1 +m) if i = p+mk + j for 1 ≤ k ≤ p, 1 ≤ j ≤ m.

The map jp is Σp-equivariant. In terms of the adjoint of jp this means that for every permutation
γ ∈ Σp the outer composites in the diagram

Mp ∧ S(l+m)p Id∧xp //

γ∧∆(γ)

��

Mp ∧Rmp
αp,mp //

γ∧∆(γ)

��

Mp+mp

γ×∆(γ)

��

ξ // M(1+m)p

∆(γ)

��
Mp ∧ S(l+m)p

Id∧xp
// Mp ∧Rmp αp,mp

// Mp+mp
ξ

// M(1+m)p

agree. The left square commutes by equivariance of xp, the middle square by the equivariance of the actions
maps of M . The right square commutes because the relation

ξ ◦ (γ ×∆(γ)) = ∆(γ) ◦ ξ

holds in the symmetric group Σ(1+m)p.
The collection of maps jp is multiplicative in the sense that the squares

Mp ∧Rq
αp,q //

jp∧jq
��

Mp+q

jp+q

��
M [1/x]p ∧R[1/x]q αp,q

// M [1/x]p+q

commute [elaborate].
ForM = R we define the unit maps ιn : Sn −→ R[1/x]n as the composite of the unit map ιn : Sn −→ Rn

for R with jn : Rn −→ R[1/x]n. [central] Then j : R −→ R[1/x] is a homomorphism of symmetric ring
spectra and j : M −→M [1/x] is a morphism of R-modules if we view M [1/x] as an R-module by restriction
of scalars along j : R −→ R[1/x]. In other words, we have constructed a functor

mod-R −→ mod-R[1/x] , M 7−→ M [1/x]

and a natural transformation of R-modules j : M −→ j∗(M [1/x]).

Remark 4.66. The permutation ξ can be predicted as follows by the general rules which we introduced
in Remark 1.12. The natural ‘coordinate free’ target of the map αp,m,...,m is indexed by the set

p + m + · · ·+ m︸ ︷︷ ︸
p

= 1 · p + m · p .

This set is equal to the set (1 + m) · p, but the way the parenthesis arise naturally reminds us that we
should use the right distributivity isomorphism

p + m · p = 1 · p + m · p
∼=−→ (1 + m) · p

to identify the two sets. The right distributivity isomorphism is defined using the multiplicative shuffles
as χ×p,1+m ◦ (χ×1,p × χ×m,p), which is precisely the permutation ξ. Note that in contrast, the definition of
the actions map αp,q does not need any permutations. Indeed, the natural coordinate free target of αp,q is
indexed by the set (1 + m) ·p + (1 + m) · q, which is equal to the set (1 + m) · (p + q). Here, however, the
parenthesis suggest using the left distributivity isomorphism, which is the identity permutation.
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The relation ξ ◦ (γ ×∆(γ)) = ∆(γ) ◦ ξ which came up in the proof of the equivariance on the map jp
just expresses the fact that the multiplicative shuffle χ×n,m : n ·m −→m · n is a natural isomorphism

1 · p + m · p
χ×1,p+χ

×
m,p //

ξ

++

Id1 ·γ+Idm ·γγ+∆(γ)

��

p · 1 + p ·m = p · (1 + m)
χ×p,1+m //

γ·Id1 +γ·Idm γ·Id1+m

��

(1 + m) · p

∆(γ)γ·Id1

��
1 · p + m · p

χ×1,p+χ
×
m,p

//

ξ

33p · 1 + p ·m = p · (1 + m)
χ×p,1+m

// (1 + m) · p

Now we analyze the construction homotopically, under the additional assumption that the class of x in
πlR is M-fixed. The centrality condition on the map x implies that then the stable homotopy class [x] is
central in the graded ring (π∗R)(0). [when is R[1/x] equivalent to just changing the unit map ?]

Proposition 4.67. Let R be a symmetric ring spectrum and x : Sl+m −→ Rm a central map whose
class [x] in πlR isM-fixed. Then for every semistable right R-module M [levelwise Kan] the R[1/x]-module
M [1/x] is again semistable [and levelwise Kan] and the morphism j : M −→M [1/x] of R-modules induces
a natural isomorphism

(4.68) (π∗M)[1/[x]] ∼= π∗
(
M [1/x]

)
of graded modules over (π∗R)(0). In the special case M = R the morphism of symmetric ring spectra
j : R −→ R[1/x] induces an isomorphism of graded rings

(π∗R)(0)[1/[x]] ∼= π∗
(
R[1/x]

)(0)
.

Proof. As an R-module M [1/x] is equal to the diagonal [No: not correct Σn- action] (see Exam-
ple 2.27) of the sequence of R-module homomorphisms

M
ρ̃x−−−−−→ Ωl+m(shmM)

Ωl+m shm(ρ̃x)−−−−−−−−−→ Ω(l+m)2(shm2M) · · ·

· · · Ω(l+m)p(shmpM)
Ω(l+m)p shmp(ρ̃x)−−−−−−−−−−−→ · · ·

where ρ̃x is adjoint to the ‘right multiplication’ homomorphism defined in Example 4.60. The map j :
M −→M [1/x] is the canonical morphism from the initial term of a sequence to the diagonal spectrum.

By Proposition 4.61 (ii) the effect of ρ̃x on homotopy groups is right multiplication by the class [x] ∈
πlR. So since the homotopy groups of the diagonal are isomorphic to the colimit of the homotopy groups
(see (2.30)), we deduce that j induces the isomorphism

π∗(M [1/x]) = π∗ diagp
(
Ω(l+m)p(shmpM)

)
∼= colimp π∗

(
Ω(l+m)p(shmpM)

)
∼= colimp π∗+lpM

with the last colimit being taken over iterated multiplication by [x]. Since the right hand side is the result
of inverting [x] in π∗M , this proves the first claim.

In the special case M = R we now know that the morphism of symmetric ring spectra j : R −→ R[1/x]
induces an isomorphism of graded (π∗R)(0)-modules

(π∗R)(0)[1/[x]] ∼= π∗
(
R[1/x]

)(0)
.

This is necessarily a multiplicative isomorphism. �

An important special case of the above is when the symmetric ring spectrum R is commutative (which
makes centrality of the map x is automatic) and semistable (so that all of π∗R is M-fixed). For easier
reference we spell out Proposition 4.67 in this special case.
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Corollary 4.69. Let R be a commutative semistable symmetric ring spectrum [levelwise Kan] and
x : Sl+m −→ Rm a based map. Then R[1/x] is a commutative symmetric ring spectrum, the homomorphism
of symmetric ring spectra j : R −→ R[1/x] sends the class [x] ∈ πlR to a unit in the l-th homotopy group
of R[1/x] and the induced morphism of graded commutative rings

(π∗R)[1/[x]] ∼= π∗
(
R[1/x]

)
is an isomorphism.

Example 4.70 (Brown-Peterson, Johnson-Wilson spectra and Morava K-theory). If we apply the
method of ‘killing a regular sequence’ to the Thom spectrum MU we can construct a whole collection of
important spectra. In Example 2.9 we constructed MU as a commutative symmetric ring spectrum, and
MU is semistable because it underlies an orthogonal spectrum (compare Proposition 4.47). As input for the
following construction we need the knowledge of the homotopy ring of MU . The standard way to perform
this calculation is in the following sequence of steps:

• calculate, for each prime p, the mod-p cohomology of the spaces BU(n) and BU ,
• use the Thom isomorphism to calculate the mod-p cohomology of the Thom spectrum MU as a

module over the mod-p Steenrod algebra,
• use the Adams spectral sequence, which for MU collapses at the E2-term, to calculate the p-

completion of the homotopy groups of MU ,
• and finally assemble the p-local calculations into the integral answer.

When the dust settles, the result is that π∗MU is a polynomial algebra generated by infinitely many
homogeneous elements xi of dimension 2i for i ≥ 1. The details of this calculation can be found in [61]
and [50] [check this; other sources?]. A very different geometric approach to this calculation was described
by Quillen [47], who determines the ring of cobordism classes of stably almost complex manifolds, which
by Thom’s theorem is isomorphic to π∗MU . (Quillen’s argument, however, needs as an input the a priori
knowledge that the homotopy groups of MU are finitely generated in each dimension.)

Now fix a prime number p. Using the close connection between the ring spectrum MU and the theory
of formal groups laws one can make a particular choices for the (pn − 1)-th generator xpn−1, the so-called
Hazewinkel generator, which is then denoted vn. Killing all polynomial generators except those of the form
xpn−1 produces a semistable MU -module BP with homotopy groups π∗(BP ) = Z[v1, v2, v3, . . . ] where the
degree of vn is 2pn − 2. Localizing at p produces a semistable MU -module BP , called the Brown-Peterson
spectrum, with homotopy groups

π∗BP ∼= Z(p)[v1, v2, v3, . . . ] .
The original construction of this spectrum by Brown and Peterson was quite different, and we say more

about the history of BP in the ‘History and credits’ section at the end of this chapter.
Now we can keep going and kill more of the polynomial generators vi in the homotopy of BP , and possi-

bly also invert another generator. In this way we can produce various MU -modules BP/I and (BP/I)[v−1
n ]

together with MU -homomorphisms from BP whose underlying stable homotopy types play important roles
in stable homotopy theory. Some examples of spectra which we can obtained in this way are given in the
following table, along with their homotopy groups:

BP 〈n〉 Z(p)[v1, v2, . . . , vn] E(n) Z(p)[v1, v2, . . . , vn, v−1
n ]

P (n) Fp[vn, vn+1, . . . ] B(n) Fp[v−1
n , vn, vn+1, . . . ]

k(n) Fp[vn] K(n) Fp[vn, v−1
n ]

[discuss uniqueness] The spectrum E(n) is referred to as the Johnson-Wilson spectrum and k(n) respectively
K(n) are the connective and periodic Morava K-theory spectra.

We have so far only constructed the spectra above as MU -modules. The way we have presented the
homotopy groups of the various spectra above does not only give graded modules over the homotopy ring
of MU , but in fact graded commutative algebras. This already hints that the spectra have more structure.
In fact, all the spectra above can be constructed as MU -algebra spectra, so in particular as symmetric ring
spectra. We may or may not get back to this later.
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Construction 4.71 (Toda brackets). The homotopy groups of a symmetric ring spectrum have even
more structure than that of a graded ring, they also have ‘secondary’ (and higher. . . ) forms of multiplica-
tions, called Toda brackets. We will restrict ourselves to the simplest kind of such brackets, namely triple
brackets (as opposed to four-fold, five-fold,. . . ) with single entries (as opposed to ‘matric’ Toda brackets).
In order to simplify the exposition we will only consider semistable ring spectra; the discussion works more
generally if the operations and relations are suitably restricted toM-fixed classes.

So we let R be a semistable symmetric ring spectrum and M a right R-module. The Toda bracket
〈x, y, z〉 is defined for every triple of homogeneous elements x ∈ π∗M and y, z ∈ π∗R which satisfies the
relations xy = 0 = yz. If the dimensions of x, y and z are k, l and j respectively, then the bracket is not a
single homotopy class, but an entire coset in πk+l+j+1M for the subgroup x · πl+j+1R+ πk+l+1M · z. This
subgroup is called the indeterminacy of the bracket. [construct the bracket]

Here are some examples of non-trivial Toda bracket. In the stable stems, i.e., the homotopy groups of
the sphere spectrum (compare the table in Example 2.4) we have

η2 ∈ 〈2, η, 2〉 mod (0) 6ν ∈ 〈η, 2, η〉 mod (12ν)
ν2 ∈ 〈η, ν, η〉 mod (0) 40σ ∈ 〈ν, 24, ν〉 mod (0)

ησ + ε∈ 〈ν, η, ν〉 mod (0) ε ∈ 〈η, ν, 2ν〉 mod (ησ)

Toda brackets satisfy a number of relations. The first are a kind of ‘higher form of associativity’ and
are often referred to as ‘juggling formulas’. For the juggling formula we need another homogeneous class
w ∈ π∗R satisfying zw = 0. Then we have

x · 〈y, z, w〉 = ±〈x, y, z〉 · w
module the common indeterminacy x · πs|yz|+1 · w. [fix the sign] An example of the juggling formula is

η · 〈2, η, 2〉 = 〈η, 2, η〉 · 2
which holds in πs3 without indeterminacy. By the table above, the first bracket contains η3 while the second
bracket contains 12ν. So we get the multiplicative relation η3 = 12ν as a consequence of the Toda brackets
involving 2 and η.

The first brackets η2 ∈ 〈2, η, 2〉 in the table above is a special case of Toda’s relation

ηx ∈ 〈2, x, 2〉
which holds for all 2-torsion classes x in the homotopy of every commutative [?] symmetric ring spectrum.
This in turn is a special case of relations which hold between Toda brackets and power operations in the
homotopy ring of commutative symmetric ring spectra. We plan to get back to this later. Another example
of a non-trivial Toda bracket is u ∈ 〈1, η, 2〉 (modulo 2u) in π2KU . Here the complex topological K-theory
spectrum KU is viewed just as a symmetric spectrum (and not as a ring spectrum). So the Bott class u
and 1 are homotopy classes of KU , while η and 2 have to be viewed as elements in the stable stems.

It is straight forward to check that homomorphisms of symmetric ring spectra preserve Toda brackets.
More precisely, for every homomorphism f : S −→ R we have

f∗ (〈x, y, z〉) ⊆ 〈f∗(x), f∗(y), f∗(z)〉
whenever the bracket on the left is defined. The indeterminacy of the right hand side may be larger than
the image of the indeterminacy of the bracket 〈x, y, z〉, which is why in general we only have containment,
not necessarily equality, as subsets on πk+l+j+1R. For example, the relation η2 ∈ 〈2, η, 2〉 holds in the
homotopy of every ring spectrum (with possibly bigger indeterminacy, and possibly with η2 = 0); since η2

is non-zero, in the homotopy of real topological K-theory KO (compare the table in Example 2.10), we get
a non-trivial bracket η2 ∈ 〈2, η, 2〉 (modulo 0) in π2KO. In π4KO we also have ξ ∈ 〈2, η, η2〉 (modulo 2ξ).

Exercises

Exercise 5.1. The definition of a symmetric spectrum contains some redundancy. Show that the
equivariance condition for the iterated structure map is already satisfied if for every n ≥ 0 the following
two conditions hold:



80 I. BASIC DEFINITIONS AND EXAMPLES

(i) the structure map σn : Xn ∧ S1 −→ Xn+1 is Σn-equivariant where Σn acts on the target by restriction
from Σn+1 to the subgroup Σn.
(ii) the composite

Xn ∧ S2 σn ∧ Id−−−−→ Xn+1 ∧ S1 σn+1−−−→ Xn+2

is Σ2-equivariant.

Exercise 5.2. Let X be a symmetric spectrum such that for infinitely many n the action of Σn on Xn

is trivial. Show that all stable homotopy groups of X are trivial. (Hint: identify the quotient space of the
Σ2-action on S2.) What can be said if infinitely many of the alternating groups act trivially?

Exercise 5.3. Let S[k] denote the symmetric subspectrum of the sphere spectrum obtained by trun-
cating below level k, i.e.,

(S[k])n =

{
∗ for n < k

Sn for n ≥ k.

Show that for every symmetric spectrum X and all k ≥ 0 the inclusion S[k] −→ S induces a π∗-isomorphism
S[k] ∧X −→ S ∧X ∼= X.

Exercise 5.4. Let X be a symmetric spectrum. For each finite set A, choose a bijection κA : A −→ n
where n = |A| is the cardinality of A, insisting that κn is the identity. Define XA = Xn. For each injective
map α : A −→ B of finite sets define a structure map α∗ : XA ∧ SB−α(A) −→ XB as the composite

Xn ∧ SB−α(A) Id∧(γκB)∗−−−−−−−→ Xn ∧ Sm−n
σm−n−−−−→ Xm

γ−1
∗−−→ Xm

where n = |A| and m = |B| and γ ∈ Σm is any permutation such that γκBα = ιm−nκA. The first
isomorphism comes from the bijection B − α(A) ∼= m − n = {n + 1, . . . ,m} given by the restriction of
γκB : B −→m.

Show that the above data defines a coordinate free symmetric spectrum and that together with restric-
tion it defines an equivalence between the category of symmetric spectra and the category of coordinate
free symmetric spectra.

Exercise 5.5. Here is yet another perspective on what a symmetric spectrum is. We define a based
topological category Σ as follows. The objects of Σ are the natural numbers 0, 1, 2, . . . and the based
space of morphisms from n to m is given by Σ(n,m) = Σ+

m ∧1×Σm−n S
m−n, which is to be interpreted as

a one-point space if m < n. The identity in Σ(n, n) = Σ+
n ∧ S0 is the identity of Σn (smashed with the

non-basepoint of S0) and composition ◦ : Σ(m, k) ∧ Σ(n,m) −→ Σ(n, k) is defined by

[τ ∧ z] ◦ [γ ∧ y] = [τ(γ × 1) ∧ (y ∧ z)]

where τ ∈ Σk, γ ∈ Σm, z ∈ Sk−m and y ∈ Sm−n.
(i) Given a symmetric spectrum X we define a map X̄ : Σ(n,m) ∧Xn −→ Xm by

[τ ∧ z] ∧ x 7−→ γ∗(σm−n(x ∧ z)) .

Verify that this assignment defines a based continuous functor X̄ : Σ −→ T from the category Σ to the
category of pointed spaces. Show that X 7→ X̄ is an isomorphism between the category of symmetric
spectra and the category of based continuous functors Σ −→ T . How can one modify this to accommodate
symmetric spectra of simplicial sets?

(ii) We define a functor + : Σ×Σ −→ Σ on objects by addition of natural numbers and on morphisms
by

[τ ∧ z] + [γ ∧ y] = [(τ × γ) ∧ (1× χn,m̄ × 1)∗(z ∧ y)] ∈ Σ(n+ n̄,m+ m̄)

for [τ ∧ z] ∈ Σ(n,m) and [γ ∧ y] ∈ Σ(n̄, m̄). Show that ‘+’ is strictly associative and unital, i.e., a strict
monoidal product on the category Σ. Define a symmetry isomorphism to make this into a symmetric
monoidal product.
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(iii) Show that the construction in (i) can be extended to an isomorphism between the categories of
symmetric ring spectra and strong monoidal functors from Σ to T such that it takes commutative symmetric
ring spectra isomorphically onto the full subcategory of symmetric monoidal functors.

Exercise 5.6. Let R be a symmetric ring spectrum. Define mapping spaces (simplicial sets) and
function symmetric spectra of homomorphisms between two given R-modules. Check that for all k ≥ 0 the
endomorphism ring spectrum HomR(k+∧R, k+∧R) of the R-module k+∧R is isomorphic, as a symmetric
ring spectrum, to the matrix ring spectrum Mk(R) (see Example 2.34).

Exercise 5.7. This exercise is supposed to motivate the term ‘bimorphism’ which we used in the first
way to introduce the smash product of symmetric spectra. Let X,Y and Z be symmetric spectra.

(i) Let bp,q : Xp∧Yq −→ Zp+q be a collection of Σp×Σq-equivariant maps. Show that the commutativity
of the left part of (3.1) is equivalent to the condition that for every p ≥ 0 the maps bp,q : Xp ∧ Yq −→ Zp+q
form a morphism bp.• : Xp ∧ Y −→ shp Z of symmetric spectra as q varies. Show that the commutativity
of the right part of (3.1) is equivalent to the condition that for every q ≥ 0 the composite maps

Yq ∧Xp
twist−−−→ Xp ∧ Yq

bp,q−−→ Zp+q
χp,q−−−→ Zq+p

form a morphism Yq ∧X −→ shq Z of symmetric spectra as p varies.

(ii) Let b = {bp,q : Xp∧Yq −→ Zp+q} be a bimorphism. Define b̄p : Xp −→ map(Y, shp Z) as the adjoint
of the morphism of symmetric spectra bp.• : Xp ∧ Y −→ shp Z (compare part (i)). Show that as p varies,
the maps b̄p form a morphism of symmetric spectra b̄ : X −→ Hom(Y, Z). Show then that the assignment

Bimor((X,Y ), Z) −→ SpΣ(X,Hom(Y, Z)) , b 7→ b̄

is bijective and natural in all three variables.

Exercise 5.8. The way Hovey, Shipley and Smith introduce the smash product in their original pa-
per [25] is quite different from our exposition, and this exercise makes the link. Thus the paper [25] has the
solutions to this exercise. A symmetric sequence consists of pointed spaces (or simplicial set) Xn, for n ≥ 0,
with based, continuous (respectively simplicial) Σn-action on Xn. Morphisms f : X −→ Y are sequences
of equivariant based maps fn : Xn −→ Yn. The tensor product X ⊗ Y of two symmetric sequences X and
Y is the symmetric sequence with nth term

(X ⊗ Y )n =
∨

p+q=n

Σ+
n ∧Σp×Σq Xp ∧ Yq .

(i) Make the tensor product into a closed symmetric monoidal product on the category of symmetric
sequences.

(ii) Show that the sequence of spheres S = {Sn}n≥0 forms a commutative monoid in the category of
symmetric sequences. Show that the category of symmetric spectra is isomorphic to the category of right
S-modules in the monoidal category of symmetric sequences.

(iii) Given a commutative monoid R in the monoidal category of symmetric sequences and two right
R-modules M and N , show that the coequalizer M ∧R N of the two morphisms

αM ⊗ Id, Id⊗(αN ◦ τR,N ) : M ⊗R⊗N −→ M ⊗N
is naturally a right R-module. Show that the smash product over R is a closed symmetric monoidal product
on the category of right R-modules.

(iv) Show that the smash product over S corresponds to the smash product of symmetric spectra under
the isomorphism of categories of part (ii).

Exercise 5.9. Define a notion of ‘commuting homomorphisms’ between symmetric ring spectra such
that homomorphism of symmetric ring spectra R∧S −→ T are in natural bijection with pairs of commuting
homomorphisms (R −→ T, S −→ T ). Deduce that the smash product is the categorical coproduct for
commutative symmetric ring spectra.
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Exercise 5.10. In Remark 4.41 we introduced the ring Z[[M]] of natural operations on the 0-th
homotopy group of symmetric spectra and identified it with a certain completion of the monoid ring Z[M].

(i) An I-set is a functor from the category I of finite sets and injections to the category of sets. Show
that the endomorphism monoid of the ‘colimit over inclusions’ functor

(I-sets) −→ (sets) , F 7→ F (ω)

is isomorphic to M.
(ii) Show that the endomorphism ring of the ‘colimit over inclusions’ functor

(I-functors) −→ (ab. groups) , F 7→ F (ω)

is isomorphic to the ring Z[[M]].

History and credits

I now summarize the history of symmetric spectra and symmetric ring spectra, and the genesis of the
examples which were discussed above, to the best of my knowledge. My point with respect to the examples
is not when certain spectra first appeared as homotopy types or ring spectra ‘up to homotopy’, but rather
when a ‘highly structured’ multiplication was first noticed in one form or another. Additions, corrections
and further references are welcome.

Symmetric spectra and symmetric ring spectra were first introduced under this name in the article [25]
by Hovey, Shipley and Smith. However, these mathematical concepts had been used before, in particular in
several papers related to topological Hochschild homology and algebraic K-theory. For example, symmetric
ring spectra appeared as strictly associative ring spectra in [22, Def. 6.1] and as FSPs defined on spheres
in [23, 2.7].

There is a key observation, however, which is due to Jeff Smith and which was essential for the devel-
opment of symmetric spectra and related spectra categories. Smith noticed that symmetric ring spectra
are the monoids in a category of symmetric spectra which has a smash product and a compatible stable
model structure. Smith gave the first talks on this subject in 1993. In the fall of 1995, Hovey, Shipley
and Smith started a collaboration in which many remaining issues and in particular the model structures
were worked out. The results first appeared in a joint preprint on the Hopf algebraic topology server
(at hopf.math.purdue.edu), the K-theory preprint server (at www.math.uiuc.edu/K-theory/) and the
ArXiv (under math.AT/9801077) in January 1998. This preprint version has a section about symmetric
spectra based on topological spaces which did not make it into the published version [25] because the referee
requested that the paper be shortened.

Several of the examples which we gave in Section 2.1 had been around with enough symmetries before
symmetric spectra were formally introduced. For example, Bökstedt and Waldhausen introduced functors
with smash product, or FSPs for short, in [6], from which symmetric ring spectra are obtained by restricting
to spheres. Eilenberg-Mac Lane spectra (Example 2.7) and monoid ring spectra (Example 2.32) arise in
this way from FSPs and seem to have first appeared in [6] (or already in Gunnarson’s preprint [22] ?).
Matrix ring spectra (Example 2.34) were also treated as FSP in [6] [first published reference ?].

Cobordism spectra first appeared as highly structured ring spectra in the form of as ‘I∗-prefunctors’
in [42]. I∗-prefunctors are the same as [commutative ?] orthogonal ring spectra, and the underlying
symmetric ring spectra are what we present in Example 2.8. The construction in Example 2.41 which turns
unitary spectra into orthogonal spectra by looping with the imaginary spheres appears to be new.

The model for the complex topological K-theory spectrum in Example 2.10 is a specialization of a more
general construction for C∗-algebras by Joachim and Stolz [29]. Earlier, Joachim had given a different model
for real topological K-theory as a commutative symmetric ring spectrum in [28].

Waldhausen notes on p. 330 of [66] that the iterated S·-construction defines a (sequential) spectrum
which is an Ω-spectrum from level 1 upwards. Waldhausen’s construction predates symmetric spectra,
and it was later noticed by Hesselholt [20, Appendix] that iterating the S·-construction in fact has all
the symmetries needed to form a symmetric spectrum. Moreover, bi-exact pairings of input data yields
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multiplications of associated K-theory spectra. Our treatment of the algebraic K-theory spectrum on
Example 2.11 follows very closely the Appendix of [20].

Free and semifree symmetric spectra, suspensions, loop and shifts of symmetric spectra were first
discussed in the original paper [25] of Hovey, Shipley and Smith.

The particular method for inverting a homotopy elements in a symmetric ring spectrum described in
Examples 2.35, 2.36 and 4.65 seems to be new. The construction of Example 2.37 for adjoining roots of
unity to a symmetric ring spectrum is due to Schwänzl, Vogt and Waldhausen [51]. They originally wrote
up the construction in the context of S-modules, but their argument only needs that one can form monoid
rings and invert homotopy elements within the given framework of commutative ring spectra. So as soon
as these constructions are available, their argument carries over to symmetric ring spectra.

I learned the model of the periodic complex cobordism spectrum MUP given in Example 2.42 from
Morten Brun, who adapted a construction of Strickland [60, Appendix] from ‘complex S-modules’ to unitary
spectra.

The category of Γ-spaces was introduced by Segal [55], who showed that it has a homotopy category
equivalent to the usual homotopy category of connective spectra. Bousfield and Friedlander [11] considered
a bigger category of Γ-spaces in which the ones introduced by Segal appeared as the special Γ-spaces. Their
category admits a closed simplicial model category structure with a notion of stable weak equivalences giving
rise again to the homotopy category of connective spectra. Then Lydakis [34] showed that Γ-spaces admit
internal function objects and a symmetric monoidal smash product with good homotopical properties.

After the discovery of smash products and compatible model structures for Γ-spaces and symmetric
spectra it became obvious that variations of this theme are possible. Simplicial functors were first used for
the purposes of describing stable homotopy types by Bökstedt and Waldhausen when they introduced ‘FSPs’
in [6]. Various model structures and the smash product of simplicial functors were systematically studied
by Lydakis in [35]. The paper [39] contains a systematic study of ‘diagram spectra’, their model structures
and smash products, which includes symmetric spectra, Γ-spaces and simplicial functors. Here orthogonal
spectra and continuous functors (defined on finite CW-complexes) make their first explicit appearance. The
category of S-modules is very different in flavor from the categories diagram spectra, and it is defined and
studied in the monograph [19].

The smash product of symmetric spectra was defined by Hovey, Shipley and Smith in their original
paper [25]. However, their exposition of the smash product differs substantially from ours. Hovey, Shipley
and Smith use the category of symmetric sequences (sequences of pointed spaces Xn, for n ≥ 0, with Σn-
action on Xn) as an intermediate step towards symmetric spectra and in the construction of the smash
product, compare Exercise 5.8. I chose to present the smash product of symmetric spectra in a different
way because I want to highlight its property as the universal target for bimorphisms.

The M-action on the homotopy groups of symmetric spectra was first studied systematically by the
author in [53]. However, several results related to theM-action on homotopy groups are already contained,
mostly implicitly, in the papers [25] and [56]. The definition of semistable symmetric spectra and the
characterizations (ii)-(v) of Theorem 4.44 appear in Section of [25]; the criterion of trivial M-action on
homotopy groups (Theorem 4.44 (i)) first appears in [53]. I owe the proof of Lemma 4.21 to Neil Strickland.

Multiplications on the ‘classical’ homotopy groups of a symmetric ring spectrum have not previously
been discussed in the literature. One reason may be that the naive approach to defining a product on the
homotopy groups of a symmetric ring spectrum does not always work because it is not in general compatible
with stabilization. The preferred way to bypass this issue has so far been to consider ‘derived homotopy
groups’, i.e., to redefine homotopy groups as the classical homotopy groups of a stably fibrant replacement
(which we will discuss in the next chapter). In this approach, a symmetric spectrum is replaced by an
Ω-spectrum, which is in particular semistable, and thus has a well-defined multiplication.

The idea to construct various spectra from the Thom spectrum MU by killing a regular sequence and
possibly inverting an element (see Example 4.70) is taken from Chapter V of [19] where this process is
carried out in the world of S-modules. This strategy had previously been adapted to symmetric spectra in
Weiner’s Diplomarbeit [67].
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The original construction of the Brown-Peterson spectrum in the paper [12] by Brown and Peterson
was quite different. They constructed a spectrum whose mod-p homology realizes a certain polynomial
subalgebra of the dual Steenrod algebra. Later Quillen gave a construction of the spectrum BP using the
theory of formal groups, and Quillen’s approach is still at the heart of most current applications of BP .
Quillen used p-typical formal groups to produce an idempotent endomorphism e : MU(p) −→ MU(p) of
the p-localization of MU in the stable homotopy category (see Section II) which is even a homomorphism
of homotopy ring spectra (see Section II.5 below). The ‘image’ of this idempotent is isomorphic, in the
stable homotopy category, to the spectrum BP , and Quillen’s construction produces it as a homotopy ring
spectrum. Part II of Adams’ notes [2] are a good exposition of Quillen’s results in this area. [original
paper?]



CHAPTER II

The stable homotopy category

1. Injective Ω-spectra

Our definition of the stable homotopy category uses symmetric spectra of simplicial sets. We define
the stable homotopy category as the homotopy category of injective Ω-spectra. In Chapter III we establish
various stable model category structures for symmetric spectra and can then interpret the stable homotopy
category as introduced here as the homotopy category, in the sense of model category theory, with respect
to the stable model structures.

In order to make sense of the ‘homotopy category of injective Ω-spectra’ we still have to define the
homotopy relation and ‘injective’ symmetric spectra. Recall from Example 2.15 of Chapter I that we can
smash a symmetric spectrum levelwise with a pointed simplicial set K, in such a way that the symmetric
groups and the structure maps do not act on K.

Definition 1.1. Two morphisms of symmetric spectra f0, f1 : A→ X are called homotopic if there is
a morphism

H : ∆[1]+ ∧A −→ X ,

called a homotopy, such that f0 = H ◦d0, and f1 = H ◦d1, where dj : A −→ ∆[1]+∧A for j = 0, 1 is induced
by the face morphisms dj : ∆[0] −→ ∆[1] and A is identified with ∆[0]+ ∧ A. We denote by [A,X] the
set of homotopy classes of morphisms of symmetric spectra, i.e., the classes under the equivalence relation
generated by homotopy.

The homotopy relation is not in general an equivalence relation, but it is when the target is injective,
see Proposition 1.6 (ii) below. The notion of homotopy makes just as much sense for symmetric spectra of
topological spaces. The only change is that the simplicial 1-simplex ∆[1] should be replaced by the unit
interval [0, 1] in the definition of a homotopy, and the morphisms dj : ∆[0] −→ ∆[1] are replaced by the
endpoint inclusions of the interval. In the context of symmetric spectra of spaces ‘homotopy’ is always an
equivalence relation, with no restriction on the target spectra.

A homotopy between spectrum morphisms is really the same as levelwise pointed homotopies between
(f0)n and (f1)n : An → Xn compatible with the Σn-actions and structure maps. Hence for a morphism of
spectra we have implications

homotopy equivalence =⇒ level equivalence =⇒ π∗-isomorphism,

but the converse implications are not true in general. Yet another way to look at homotopies is via the
mapping space. Since the spectrum ∆[0]+ ∧ A is canonically isomorphic to A, we can identify the vertices
of the morphism space map(A,X) with the spectrum morphisms from A to X. Then a morphism f0 is
homotopic to a morphism f1 if and only if there exists a 1-simplex H ∈ map(A,X)1 satisfying d0(H) = f0
and d1(H) = f1.

Example 1.2. Homotopy groups are represented by homotopy classes of morphisms from the sphere
spectrum. In more detail, if we denote by 1 ∈ π0 S the class of the identity map, then for every integer n
and every Ω-spectrum X which is levelwise Kan, the evaluation map[

S, X
]
−→ π0X , [f ] 7−→ (π0f)(1) ,

is bijective. Then the evaluation map factors as a composite[
S, X

]
−→ π0|X0| −→ π0X

85
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where the first map takes the homotopy class of a morphism S −→ X to the component of the image of the
non-basepoint in S0 = S0. The second map is the canonical map from π0|X0| to the stable homotopy group
in dimension 0. Since the sphere spectrum S is a suspension spectrum, a morphism from S to any other
spectrum is uniquely determined by its restriction to the zeroth level, and similarly for homotopies. So the
first map in the composition is a bijection for any spectrum X, no matter whether it is an Ω-spectrum or
not. However, if X is an Ω-spectrum, then the second map from π0|X0| to π0X is also bijective.

Definition 1.3. A symmetric spectrum X of simplicial sets is injective if for every monomorphism
which is also a level equivalence i : A −→ B and every morphism f : A −→ X there exists an extension
g : B −→ X with f = gi.

Injective spectra do not arise ‘in nature’ very often, but we prove in Proposition 4.21 (i) below that
injectivity can always be arranged up to level equivalence.

Example 1.4 (Co-free symmetric spectrum). Let Pm : Σm-sset* −→ SpΣ be right adjoint to evaluation
at level m, considered as a Σm-simplicial set. We call PmL the co-semifree symmetric spectrum generated
by the Σm-simplicial set L in level m. The spectrum PmL can explicitely be described as follows: it is just
a point above level m and for n ≤ m we have

(PmL)n = map1×Σm−n(Sm−n, L) ,

the subspace of 1 × Σm−n-equivariant maps in map(Sm−n, L), with restricted Σn-action from L. The
structure map σn : (PmL)n ∧ S1 −→ (PmL)n+1 is adjoint to the map

map1×Σm−n(Sm−n, L) incl.−−−→ map1×Σm−n−1(Sm−n, L) ∼= Ω
(
map1×Σm−n−1(Sm−n−1, L)

)
.

The forgetful functor Σm-sset* −→ sset* also has a right adjoint given by K 7→ map(Σ+
m,K), the

function space from the set Σm into K (i.e., a product of m! copies of K). So the composite forgetful functor
SpΣ −→ sset* which takes X to the pointed simplicial set Xm has a right adjoint Rm : sset* −→ SpΣ

given by RmK = Pm(map(Σ+
m,K)).

Every Kan simplicial set has the right lifting property with respect to all injective weak equivalences of
simplicial sets. So by adjointness, the co-free symmetric spectrum RmK is injective for every Kan simplicial
set K. More generally, let L be a pointed Σm-simplicial set with the property that for all subgroups H ≤ Σm
the H-fixed simplicial set LH is a Kan complex. Then H has the right lifting property with respect to all
injective based morphisms of Σm-simplicial sets which are weak equivalences after forgetting the Σm-action.
So again by adjointness, the co-semifree symmetric spectrum PnL is injective.

Here is the main definition of this chapter.

Definition 1.5. The stable homotopy category SHC is the homotopy category of injective Ω-spectra.
In other words, the objects of SHC are all injective Ω-spectra of simplicial sets and for such spectra, the
morphisms from X to Y in SHC are given by [X,Y ], the set of homotopy classes of spectrum morphisms.

As we already mentioned, injective spectra rarely occur in nature. In fact, at this point, trivial spectra
(with all levels a point) are the only injective Ω-spectra we can write down explicitly. However, we explain
in Section 4 below how every symmetric spectrum can be replaced, up to a notion called ‘stable equivalence’,
by an injective Ω-spectrum. In that way every symmetric spectrum ‘represents a stable homotopy type’,
i.e., gives rise to an object in the stable homotopy category.

In Chapter III we will show that the stable equivalences can be complemented by various useful choices
of cofibrations and fibrations, thus arriving at different stable model category structures for symmetric
spectra. For one particular choice (the injective stable model structure), every symmetric spectrum is
cofibrant and the fibrant objects are precisely the injective Ω-spectra. Moreover, the ‘concrete’ homotopy
relation using homotopies defined on ∆[1]+ ∧ A coincides with the model category theoretic homotopy
relation using abstract cylinder objects. Thus the stable homotopy category as introduced above turns out
to be the homotopy category, in the sense of model category theory, with respect to the injective stable
model structure.
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Our next aim in Sections 2 and 3 of this chapter will be to show that the stable homotopy category
just defined has the structure of a triangulated category. We first develop some tools needed in these later
sections.

Proposition 1.6. Let X be an injective spectrum.
(i) For every injective morphism i : A −→ B of symmetric spectra the map map(i,X) :

map(B,X) −→ map(A,X) is a Kan fibration of simplicial sets. If in addition i is a level equiva-
lence, then map(i,X) is a weak equivalence.

(ii) For every symmetric spectrum B the function space map(B,X) is a Kan complex and the homotopy
relation for morphisms from B to X is an equivalence relation.

(iii) For every n ≥ 0 the simplicial set Xn is a Kan complex.

Proof. (i) We have to check that map(i,X) has the right lifting property with respect to every injective
weak equivalence j : K −→ L of pointed simplicial sets. By the adjunction between the smash pairing and
mapping spaces, a lifting problem in the form of a commutative square

K //

j

��

map(B,X)

map(i,X)

��
L // map(A,X)

corresponds to a morphism K∧B∪K∧AL∧A −→ X, and a lifting corresponds to a morphism L∧B −→ X
which restricts to the previous morphism along the ‘pushout product’ map j∧i : K∧B∪K∧AL∧A −→ L∧B.
Since j is an injective weak equivalence and i is injective, the pushout product morphism j∧ i is an injective
level equivalence of symmetric spectra. So the lifting exists since we assumed that X is injective.

The second part is very similar. If i is injective and a level equivalence, then for every injective morphism
j : K −→ L (not necessarily a weak equivalence) of pointed simplicial sets, the pushout product map j∧ i is
an injective level equivalence of symmetric spectra. So map(i,X) has the right lifting property with respect
to all injective morphisms of pointed simplicial sets.

Part (ii) is the special case of (i) where A is the trivial spectrum so that map(A,X) is a one-point
simplicial set. Vertices of the simplicial set map(B,X) correspond bijectively to morphisms B −→ X in
such a way that 1-simplices correspond to homotopies. So the second claim of (ii) follows since in every
Kan complex, the relation x ∼ y on vertices defined by existence of a 1-simplex z with d0z = x and d1z = y
is an equivalence relation.

The simplicial set Xn is naturally isomorphic to the mapping space map(FnS0, X) with source the free
symmetric spectrum generated by S0 in level n. So (iii) is a special case of (ii). �

We now get a criterion for level equivalence by testing against injective spectra.

Proposition 1.7. A morphism f : A −→ B of symmetric spectra of simplicial sets is a level equivalence
if and only if for every injective spectrum X the induced map [f,X] : [B,X] −→ [A,X] on homotopy classes
of morphisms is bijective.

Proof. Suppose first that f is a level equivalence. We replace f by the inclusion of A into the mapping
cylinder of f , which is homotopy equivalent to B. This way we can assume without loss of generality that f
is injective. By part (i) of Proposition 1.6 the map map(f,X) : map(B,X) −→ map(A,X) is then a weak
equivalence of simplicial sets, so in particular a bijection of components. Since π0 map(B,X) ∼= [B,X], and
similarly for A, this proves the claim.

Now suppose conversely that [f,X] : [B,X] −→ [A,X] is bijective for every injective spectrum X. If K
is a pointed Kan complex and m ≥ 0, then the co-free symmetric spectrum RmK of Example 1.4 is injective.
The adjunction for morphisms and homotopies provides a natural bijection [A,RmK] ∼= [Am,K]sset* to the
based homotopy classes of morphisms of simplicial sets. So for every Kan complex K, the induced map
[fm, X] : [Bm,K] −→ [Am,K] is bijective, which is equivalent to fn being a weak equivalence of simplicial
sets. Since this holds for all m, the morphism f is a level equivalence. �
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The next lemma can be used to recognize certain morphisms as homotopy equivalences, and thus as
isomorphism in the stable homotopy category.

Proposition 1.8. (i) Every level equivalence between injective spectra is a homotopy equivalence.
(ii) Every π∗-isomorphism between Ω-spectra is a level equivalence.

Proof. (i) Let f : X −→ Y be a level equivalence between injective spectra. Using the mapping
cylinder construction, f can be factored as a monomorphism followed by a homotopy equivalence. So we
can replace Y by the mapping cylinder and assume without loss of generality that f is also a monomorphism.
By Proposition 1.6 (i) the induced map map(f,X) : map(Y,X) −→ map(X,X) is a weak equivalence and
Kan fibration, thus surjective on vertices. So there is a morphism g : Y −→ X satisfying gf = IdX .

Also by Proposition 1.6 (i) the induced map map(f, Y ) : map(Y, Y ) −→ map(X,Y ) is a weak equiv-
alence and Kan fibration. Since moreover map(f, Y ) takes the vertices fg and IdY of map(Y, Y ) to the
same vertex (namely f ∈ map(X,Y )), they can be joined by a 1-simplex in map(Y, Y ), i.e., a homotopy of
spectrum morphisms.

(ii) For every Ω-spectrum X and all k, n ≥ 0, the canonical map πkXn −→ πk−nX is a bijection. So if
f : X −→ Y is a π∗-isomorphism between Ω-spectra, then for every n ≥ 0, the morphism fn : Xn −→ Yn
induces a bijection of path components and isomorphisms of homotopy groups in positive dimensions,
based at the distinguished basepoint of Xn. In particular, fn restricts to a weak equivalence between the
components containing the distinguished basepoints. Since Xn and Yn are loop spaces, their various path
components are all weakly equivalent, and so fn restricts to a weak equivalence on every path component
of X, i.e., fn is a weak equivalence of simplicial sets for every n ≥ 0. �

Theorem 1.9. For every π∗-isomorphism f : A −→ B between symmetric spectra and every injective
Ω-spectrum X the induced map on homotopy classes [f,X] : [B,X] −→ [A,X] is a bijection.

Proof. We use the functor R∞ introduced in (4.43) of Chapter I. Since X is an Ω-spectrum, the
morphism λ∗ : X −→ RX = Ω(shX) is a level equivalence, and so are all other morphisms in the se-
quence (4.43) whose colimit is R∞X. Thus also the morphism λ∞X : X −→ R∞X is a level equivalence, and
R∞X is again an Ω-spectrum. Since X is an injective spectrum the map [λ∞X , X] : [R∞X,X] −→ [X,X] is
bijective by Proposition 1.7. So there exists a morphism r : R∞X −→ X such that the composite rλ∞ is
homotopic to the identity of X (the other composite need not be homotopic to the identity of R∞X).

The functor R∞ preserves the homotopy relation, so we can define a natural transformation

[A,X] −→ [R∞A,X] , [ϕ] 7→ [r ◦R∞ϕ] .

There also is a natural transformation [R∞A,X] −→ [A,X] in the other direction given by precomposition
with λ∞A : A −→ R∞A. Since r is a retraction (up to homotopy) to λ∞X , the composite of the two natural
maps is the identity on [A,X]. In other words, for fixed injective Ω-spectrum X, the functor [−, X] is a
retract of the functor [R∞(−), X].

Now suppose that f : A −→ B is a π∗-isomorphism. We assume first that both A and B are levelwise
Kan complexes. In [prove] we established a natural isomorphism πk(R∞A)m ∼= πk−mA (but beware that
R∞A is not an Ω-spectrum unless A is semistable). So R∞f : R∞A −→ R∞B is a level equivalence
[homotopy groups at other basepoints ?]. So by Proposition 1.7 the map [R∞f,X] : [R∞B,X] −→ [R∞A,X]
is bijective. Since this has [f,X] : [B,X] −→ [A,X] as a retract, the latter is bijective.

In general we apply the functors ‘geometric realization’ and ‘singular complex’ to the morphism f :
A −→ B to replace it by a level equivalent morphism whose source and target are levelwise Kan. Since
[−, X] takes level equivalences to bijections, the general case follows from the special case. �

If X is an Ω-spectrum, then so is the shifted spectrum shX. The left adjoint S0.0 to shifting (see
Example I.4.37) preserves level equivalences and level injections, so shifting also preserves the property of
being injective. Moreover, shifting preserves homotopies since sh(∆[1]+ ∧X) = ∆[1]+ ∧ shX. If X is an
Ω-spectrum and levelwise Kan, then so is the loop spectrum ΩX, and the functor Ω preserves injective
spectra and the homotopy relation. Moreover, for every Ω-spectrum X the natural map

λ∗ : X −→ Ω(shX)
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is a level equivalence, thus a homotopy equivalence by part (i) of Proposition 1.8. And so on the level of
the stable homotopy category, Ω and shift are inverse to each other. So we have shown

Proposition 1.10. The shift functor and the functor Ω are quasi-inverse self-equivalences of the stable
homotopy category.

2. Additive structure

Now we prove that the stable homotopy category is additive. We have to define an addition on mor-
phisms sets in SHC for which composition is bilinear.

Theorem 2.1. For all symmetric spectra of simplicial sets A and B the natural morphism A∨B → A×B
is a π∗-isomorphism.

Proof. This is a direct consequence of the fact that homotopy groups take both finite wedges and
finite products of symmetric spectra to direct sums. More precisely, for every integer k the composite map

πkA⊕ πkB −→ πk(A ∨B) −→ πk(A×B) −→ πkA× πkB
is the identity, where the first and last maps are the canonical ones. These canonical maps are isomorphisms
by Corollary I.4.9, hence so is the middle map. �

The stable homotopy category has sums (coproducts) and products of arbitrary size. For products
this is easy to see: let {Xi}i∈I be a family of injective Ω-spectra. Then the product

∏
i∈I X

i is again an
injective Ω-spectrum, so it represents an object of the stable homotopy category. Moreover, a morphism to∏
i∈I X

i is just a family of morphisms, one to each Xi, and similarly for homotopies. So the map

[A,
∏
i∈I

Xi] −→
∏
i∈I

[A,Xi]

induced by the projections from
∏
i∈I X

i to each Xi is a bijection for every symmetric spectrum A. In
particular this holds when A is an injective Ω-spectrum, i.e., the pointset level product of symmetric spectra
descends to a product in the stable homotopy category.

The case of sums is slightly more involved. On the level of symmetric spectra, the coproduct of a family
of symmetric spectra {Xi}i∈I is given by the levelwise wedge. However, even if allXi are injective Ω-spectra,
the wedge is not an injective Ω-spectrum. Still, the stable homotopy category has sums (coproducts): the
product X × Y is also a co-product of X and Y in the stable homotopy category, as we will now show.
Infinite coproducts in the stable homotopy are constructed differently, see Proposition 4.14 (iii) below.

Given symmetric spectra A and B we denote by i1 = (Id, ∗) : A −→ A × B respectively i2 = (∗, Id) :
B −→ A×B the ‘inclusions’ of the factors into the product.

Proposition 2.2. For every injective Ω-spectrum X and all symmetric spectra A and B the map

[A×B,X] −→ [A,X]× [B,X](2.3)

[f ] 7−→ ([fi1], [fi2])

is bijective. Thus if A and B are also injective Ω-spectra, then the morphisms i1 and i2 make A × B into
a co(!)-product of A and B in the stable homotopy category.

Proof. The map (2.3) factors as a composite

(2.4) [A×B,X] −→ [A ∨B,X] −→ [A,X]× [B,X] .

The first map in (2.4) is precomposition with the canonical injection A∨B → A×B; this is a π∗-isomorphism
by Theorem 2.1, so it induces a bijection of homotopy classes of maps into X by Theorem 1.9. The second
map in (2.4) is restriction to the respective wedge summands. A morphism from X ∨ Y is the same as two
morphisms, one from X and one from Y , and similarly for homotopies. So the second map in (2.4) is also
bijection, which finishes the proof.

If A and B are injective Ω-spectra, then the fact that the map (2.3) is bijective is precisely the universal
property of a categorical coproduct in the special case of the stable homotopy category. �
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Construction 2.5. We define an operation ‘+’ on the set [A,X] of homotopy classes of morphisms
from an arbitrary symmetric spectrum A to an injective Ω-spectrum X. For two homotopy classes a, b ∈
[A,X] we denote by a∨ b the unique class in [A×A,X] which restricts to the pair (a, b) along the bijection
of Proposition 2.2. Then we define a+ b = (a ∨ b)∆ where ∆ : A −→ A×A is the diagonal morphism.

Proposition 2.6. For every symmetric spectrum A and every injective Ω-spectrum X, the binary
operation + makes the set [A,X] of homotopy classes of morphisms into an abelian group. The neutral
element is the class of the trivial morphism. Moreover, the group structure is natural for all morphisms in
the source variable A and all morphisms between injective Ω-spectra in the target variable X. In particular,
the stable homotopy category is an additive category.

The additivity of the stable homotopy category is a fundamental result which deserves two different
proofs.

First proof. The proof is a lengthy, but essentially formal consequence of Proposition 2.2 which says
that to the eyes of [−, X] coproducts are the same as products. For the associativity of ‘+’ we consider
three morphisms a, b, c : A −→ X. Then a + (b + c) respectively (a + b) + c are the two outer composites
around the diagram

A
∆

vvmmmmmmmmm
∆

((QQQQQQQQQ

A×A
Id×∆ ��

A×A
∆×Id��

A× (A×A)

a∨(b∨c) ((PPPPPPPPP
(A×A)×A

(a∨b)∨cvvnnnnnnnnn

X

If we fill in the canonical associativity isomorphism A× (A×A) ∼= (A×A)×A then the upper part of the
diagram commutes because the diagonal morphism is coassociative. The lower triangle then commutes up
to homotopy since the two morphisms a∨ (b∨ c), (a∨ b)∨ c : A× (A×A) −→ X have the same ‘restrictions’
to X, namely a, b respectively c.

The commutativity is a consequence of two elementary facts: first, b∨a = (a∨ b)τ as homotopy classes,
where τ : A×A −→ A×A is the morphism which interchanges the two factors; this follows from τi1 = i2
and τi2 = i1. Second, the diagonal map is cocommutative, i.e., τ∆ = ∆ : A −→ A×A. Altogether we get

a+ b = (a ∨ b)∆ = (a ∨ b)τ∆ = (b ∨ a)∆ = b+ a .

We denote by 0 ∈ [A,X] the class of the trivial morphism. Then we have a ∨ 0 = ap1 in [A × A,X]
where p1 : A × A −→ A is the projection onto the first factor. Hence a + 0 = (a ∨ 0)∆ = ap1∆ = a; by
commutativity we also have 0 + a = a.

Now we know that the addition makes the set [A,X] into an abelian monoid, and it remains to show
that additive inverses exist. An arbitrary abelian monoid M has additive inverses if and only if the map

M2 −→ M2 , (a, b) 7−→ (a, a+ b)

is bijective. Indeed, the inverse of a ∈ A is the second component of the preimage of (a, 0). For the abelian
monoid [A,X] we have a commutative square

[A×A,X]
[i1∨∆,X] //

∼=
��

[A ∨A,X]

∼=
��

[A,X]2
(a,b) 7→(a,a+b)

// [A,X]2

The effect of the morphism i1 ∨∆ : A ∨A −→ A×A on homotopy groups

π∗A⊕ π∗A ∼= π∗(A ∨A)
π∗(i1∨∆)−−−−−−→ π∗(A×A) ∼= π∗A⊕ π∗A
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is given by (x, y) 7→ (x+ y, y), so i1 ∨∆ is a π∗-isomorphism since homotopy groups have additive inverses.
Thus the map [i1 ∨∆, X] is bijective by Theorem 1.9, and so the abelian monoid [A,X] is a group.

Now we verify naturality of the addition on [A,X] in A and X. To check (a + b)c = ac + bc for
a, b : A −→ X and c : A′ −→ A we consider the commutative diagram

A′

∆

��

c // A
∆ //

∆

��

A×A

a∨b
��

A′ ×A′

ac∨bc

33
c×c // A×A a∨b // X

in which the composite through the upper right corner is (a+b)c. The lower vertical composite (a∨b)(c×c)
equals ac∨bc since both have the same ‘restrictions’ ac respectively bc to the two factors of A′×A′. Since the
composite through the lower left corner is ac+bc, we have shown (a+b)c = ac+bc. Naturality in X is even
easier. For a morphism d : X −→ Y between injective Ω-spectra we have d(a∨b) = da∨db : A×A −→ Y since
both sides have the same ‘restrictions’ da respectively db to the two factors of A×A. Thus d(a+b) = da+db
by the definition of ‘+’. �

Second proof. If X is an injective Ω-spectrum then λ∗ : X −→ Ω(shX) is a natural level equivalence,
homotopy equivalence (by Proposition 1.8 (i)) between injective Ω-spectra. So λ∗ induces a homotopy
equivalence

map(A, λ∗) : map(A,X) −→ map(A,Ω(shX)) ∼= Ω map(A, shX)
on mapping spaces. Since the target is the simplicial loop space, the loop addition defines a group structure
on the set of components π0 map(A,Ω(shX)) which we pull back along the bijection induced by map(A, λ∗)
to a natural group structure on π0 map(A,X). Now we show that the natural bijection

[A,X] ∼= π0 map(A,X)

takes the operation ‘+’ to the loop product in the components of the mapping space map(A,X) and we show
simultaneously that the product on the right hand side is abelian. For this we consider the commutative
diagram

[A,X]2
∼= //

+

��

(π0 map(A,X))2

loop product

��

[A×A,X]

(i∗0 ,i
∗
1)∼=

OO

∼= //

[∆,X]

��

π0 map(A×A,X)

(i∗0 ,i
∗
1) ∼=

OO

π0 map(∆,X)

��
[A,X] ∼=

// π0 map(A,X)

of sets in which all horizontal and the left upper vertical map are bijections. The left vertical composite
defines ‘+’. The right vertical composite coincides with the loop product in π0 map(A,X) since it is a
homomorphism which sends (f, ∗) and (∗, f) to f . Since the group multiplication (π0 map(A,X))2 −→
π0 map(A,X) is a homomorphism of groups, the group π0 map(A,X), and thus [A,X], is abelian. �

For every injective Ω-spectrum X, the identity morphism of the loop spectrum ΩX has an additive
inverse in the group [ΩX,ΩX]. However, there is no natural endomorphism of the symmetric spectrum ΩX
which represents the negative of the identity in the homotopy category. This is really a consequence of the
rigidity of simplicial sets: if we work instead with symmetric spectra based on topological spaces, then we
can ‘invert the direction’ of a loop, i.e., precompose a loop with the any selfmap of S1 of degree −1 and
thus realize − IdΩX naturally on the pointset level. It will be convenient later to have something analogous
for symmetric spectra based on simplicial sets, and we can arrange for this by using a simplicial model of
the circle which is slightly larger than S1 = ∆[1]/∂∆[1].
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We define a simplicial set S̄1 as a quotient of the horn Λ2[2] (the simplicial subset of ∆[2] generated by
d0∆[2] and d1∆[2]) by identifying the two ‘outer’ vertices, compare the picture.

•2 • 2

0 •

d1∆[2]
AA�������

identify
• 1

d0∆[2]
]];;;;;;;

•

e1

??

e0

__

0 ∼ 1

Λ2[2] S̄1

We use the common image of the two outer vertices in S̄1 as the basepoint and denote the two non-
degenerate 1-simplices of S̄1 by e0 and e1. There is an involution τ : S̄1 −→ S̄1 which interchanges e0 and
e1. The geometric realization of S̄1 is homeomorphic to a circle and τ realizes a map of degree −1.

There are two based morphism p0, p1 : S̄1 −→ S1 = ∆[1]/∂∆[1] where pi sends ei to the generating 1-
simplex of S1 and it sends e1−i to the basepoint. We have p1 = p0τ . Both p0 and p1 are weak equivalences,
so for every symmetric spectrum X which is levelwise Kan the induced maps p∗0, p

∗
1 : ΩX = XS1 −→ X S̄1

are level equivalences. If X is an injective Ω-spectrum, then so is X S̄1
(by the same reasoning as for

ΩX = XS1
).

Lemma 2.7. For every injective Ω-spectrum X the relation [p∗1] = −[p∗0] holds in the group [ΩX,X S̄1
].

and the morphism τ∗ : X S̄1 −→ X S̄1
represents the negative of the identity in the group [X S̄1

, X S̄1
].

Proof. The diagram of morphisms of symmetric spectra

XS1 ∨XS1

p∗0∨p
∗
1

++WWWWWWWWWWWWWWWWWWWWWWWWW
// XS1 ×XS1

XS1∨S1
∼=oo

pinch∗

��

XS1fold∗oo

(fold◦pinch)∗zzttttttttt

X S̄1

commutes. Here we use the fold map S1 ∨ S1 −→ S1 and the ‘pinch’ map S̄1 −→ S1 ∨ S1 which sends e0
and e1 to the generating 1-simplex of S1. By the very definition of the addition in the group [ΩX,X S̄1

] this
proves that the sum of the homotopy classes of p∗0 and p∗1 is represented by the morphism (fold ◦ pinch)∗ :
XS1 −→ X S̄1

.
The composite fold ◦ pinch : S̄1 −→ S1 factors as the composite

S̄1 = Λ2[2]/(0 ∼ 1) incl−−→ ∆[2]/d2∆[2] s0−→ ∆[1]/∂∆[1] = S1

where the second map is induced by the morphism s0 : ∆[2] −→ ∆[1] on quotients. Since the simplicial
set ∆[2]/d2∆[2] is contractible, the morphism (fold ◦ pinch)∗ : XS1 −→ X S̄1

is null-homotopic. This proves
[p∗1] + [p∗0] = 0 in [ΩX,X S̄1

]. Since we have [τ∗p∗0] = [p∗1] = −[p∗0] and p∗0 is a homotopy equivalence, we
conclude that [τ∗] = − Id. �

Loops of symmetric spectra are defined levelwise, so we have Ω(shX) = sh(ΩX). We thus have the
two morphisms λ∗ΩY and Ω(λ∗Y ) from ΩY to Ω2(shY ), and they differ by the involution of Ω2(shY ) = Y S

2

which flips the two coordinates in S2. So we have shown

Lemma 2.8. The relations

λ∗ΩY = −Ω(λ∗Y ) and λ∗shY = − sh(λ∗Y )

hold in the groups [ΩY,Ω2(shY )] respectively [shY,Ω(sh2 Y )].
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3. Triangulated structure

Besides the shift functor, for which we use the notation X[1], a triangulated category has another piece
of extra structure, namely a specified class of distinguished triangles. In the stable homotopy category,
these arise from homotopy fibre sequences as follows.

Recall from (4.3) of Chapter I that the homotopy fibre F (ϕ) of a morphism ϕ : X −→ Y between
symmetric spectra is the pullback in the cartesian square

F (ϕ)

��

p // X

(∗,ϕ)

��
Y ∆[1]

(ev0,ev1)
// Y × Y

We write ‘elements’ of F (ϕ) as pairs (ω, x) where ω is a path in Y starting at the basepoint and x is a point
in X such that ϕ(x) is the endpoint of ω. There are morphisms

ΩY i−→ F (ϕ)
p−→ X

ϕ−→ Y

the first two being given by
i(ω) = (ω, ∗) respectively p(ω, x) = x .

The composite pi is the trivial map and the composite ϕp comes with a preferred null-homotopy [specify
it].

We call a morphism of symmetric spectra of simplicial sets an injective fibration if it has the right lifting
property with respect to all monomorphisms which are also level equivalences. So X is injective if and only
if the unique morphism from X to a trivial spectrum is an injective fibration. Note that here the adjective
‘injective’ refers to a lifting property and does not mean that such maps are monomorphisms.

Lemma 3.1. Let ϕ : X −→ Y be a morphism of symmetric spectra.
(i) If X and Y are Ω-spectra and ϕ is levelwise a Kan fibration, then the fibre of ϕ over the basepoint

is an Ω-spectrum.
(ii) If X and Y are Ω-spectra which are levelwise Kan complexes, then so is the homotopy fibre F (ϕ).
(iii) Let X be an injective symmetric spectrum and K −→ L a monomorphism of pointed simplicial

sets. Then the induced morphism XL −→ XK is an injective fibration.
(iv) If X and Y are injective, then the projection p : F (ϕ) −→ X is an injective fibration and the

homotopy fibre F (ϕ) is injective.

Proof. (i) Standard. Uses that the geometric realization of a Kan fibration is a Serre fibration, the
long exact sequence of homotopy groups of a Kan fibration and the five lemma.

(ii) The homotopy fibre F (ϕ) is the fibre over the basepoint of the morphism ev0 : Y ∆[1] ×Y X −→ Y .
This morphism is levelwise a Kan fibration The spectrum Y ∆[1] ×Y X is homotopy equivalent to X by
‘contracting a path to its endpoint’, so source and target of ev0 are Ω-spectra. The morphism is also
levelwise a Kan fibration: for every morphism ψ : V −→ W between pointed Kan complexes, the lower
horizontal map in the pullback square

W∆[1] ×W V

��

(ev0,p) // W × V

(Id,ψ)

��
W∆[1]

(ev0,ev1)
// W ×W

is a Kan fibration (since W is Kan), and hence so is its base change. Since V is Kan, the projection
W × V −→ W is a Kan fibration, hence also the composite ev0 : W∆[1] ×W V −→ W . So the morphism
ev0 : Y ∆[1] ×Y X −→ Y satisfies the hypothesis of part (i), and so its (strict) fibre F (ϕ) is an Ω-spectrum.
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(iv) Since Y is injective and the boundary inclusion ∂∆[1] −→ ∆[1] is a monomorphism of simplicial
set, the evaluation morphism (ev0, ev1) : Y ∆[1] −→ Y ∂∆[1] ∼= Y × Y is an injective fibration, by part (iii).
So p : F (ϕ) −→ X is an injective fibration since these are stable under basechange. If furthermore X is
injective, then so is F (ϕ) by the composition property. �

Now consider a morphism of symmetric spectra ϕ : X −→ Y . If we let F denotes the (strict) fibre of
ϕ at the basepoint, then we have a morphism j : F −→ F (ϕ) given by x 7→ (∗, x) where we write ∗ for
the constant path in Y at the basepoint. If X and Y are levelwise Kan and ϕ : X −→ Y is levelwise a
Kan fibration, then the morphism j : F −→ F (ϕ) is a level equivalence. This holds in particular whenever
X and Y are injective Ω-spectra and ϕ : X −→ Y is an injective fibration, and then the level equivalence
j : F −→ F (ϕ) has injective Ω-spectra as source and target, and so it is a homotopy equivalence, thus an
isomorphism in the stable homotopy category.

An elementary distinguished triangle in the stable homotopy category is a diagram of the form

F
incl.−−−−→ X

ϕ−−→ Y
δϕ−−→ F [1]

for an injective fibration ϕ : X −→ Y between injective Ω-spectra. The ‘connecting’ morphism δ : Y −→
F [1] is the unique morphism in the stable homotopy category which makes the square

Y
δ //

λ∗Y ∼=
��

F [1]

j[1]∼=
��

ΩY [1]
i[1]

// F (ϕ)[1]

commute. Both vertical maps are isomorphism in the stable homotopy category; the left one is the level
equivalence λ∗Y : Y −→ Ω(shY ) = ΩY [1]. The lower morphism is the shift of the morphism i : ΩY −→ F (ϕ).
[remark naturality in the fibration and δshϕ = − sh(δϕ)]

A distinguished triangle is any diagram

A
f−→ B

g−→ C
h−→ A[1]

in the stable homotopy category which is isomorphic to an elementary distinguished triangle, i.e., such that
there is an injective fibration ϕ : X −→ Y between injective Ω-spectra and isomorphisms α : A −→ F ,
β : B −→ X and γ : C −→ Y in SHC such that the diagram

A
f //

α

��

B
g //

β

��

C

γ

��

h // A[1]

α[1]

��
F

incl.
// X ϕ

// Y
δϕ

// F [1]

commutes. Our aim is to show that the shift functor and the class of distinguished triangles make the stable
homotopy category into a triangulated category. We first collect some ways to produce new distinguished
triangles from old ones.

Proposition 3.2. (i) If a triangle (f, g, h) is distinguished, then so is the triangle

ΩC −h̄−−→ A
f−−→ B

λ∗C◦g−−−→ ΩC[1]

where h̄ : ΩC −→ A is the unique morphism in the stable homotopy category such that h̄[1] ◦ λ∗C = h.
(ii) If (f, g, h) is a triangle such that the rotated triangle (g, h,−f [1]) is distinguished, then so is the original
triangle (f, g, h).
(iii) If the triangle (f, g, h) is distinguished, then so is the triangle

A[1]
−f [1]−−−→ B[1]

−g[1]−−−→ C[1]
−h[1]−−−→ A[2] .
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Proof. (i) We can assume without loss of generality that we are dealing with the elementary dis-
tinguished triangle (incl, ϕ, δϕ) of an injective fibration ϕ : X −→ Y between injective Ω-spectra. By
Lemma 3.1 (iv) the projection p : F (ϕ) −→ X is again an injective fibration between injective Ω-spectra.
We claim that the diagram

ΩY
−δ̄ϕ //

− Id

��

F
incl. //

j

��

X
λ∗Y ◦ϕ // ΩY [1]

− Id

��
ΩY

i
// F (ϕ)

p
// X

δp

// ΩY [1]

commutes in the stable homotopy category where δ̄ϕ is the unique morphism such that (δ̄ϕ)[1] ◦ λ∗Y = δ.
Indeed, by the definition of the connective morphism δ we have

i[1] ◦ λ∗Y = j[1] ◦ δ = j[1] ◦ (δ̄ϕ)[1] ◦ λ∗Y .

Since λ∗Y is an isomorphism and shifting is faithful this implies i = j ◦ δ̄ϕ, i.e., the left square commutes.
With respect to the right square we first claim that the relation ip = −j ◦ Ω(ϕ) holds in the group

[ΩX,F (p)], where j : ΩY −→ F (p) is given by j(ω) = (const∗, ω). Granted this for a moment, we have

δp = (j−1ip)[1] ◦ λ∗X = −Ω(ϕ)[1] ◦ λ∗X = −λ∗Y ◦ ϕ

(using naturality of λ∗), i.e., the right square commutes.
We are now reduced to proving the relation ip = −j ◦ Ω(ϕ) in [ΩX,F (p)]. If we were using symmetric

spectra based on topological spaces we could realize the negative of Ω(ϕ) by ‘inversion of the loop’ and
write down an explicit homotopy between ip and the ‘loop inverted’ composite j ◦ Ω(ϕ). Since we work
simplicially and S1 = ∆[1]/∂∆[1] has no selfmap of degree −1, we have to say a bit more to make this idea
rigorous. We use the level equivalent model Y S̄

1
for the loop spectrum ΩY , where S̄1 = Λ2[2]/(0 ∼ 1) is

the ‘large’ simplicial circle (compare Lemma 2.7). A morphism

g : F (p) = ∗ ×X X∆[1] ×X F (ϕ) −→ Y S̄
1

is defined levelwise by sending (λ, ν) to the map S̄1 −→ Y which is ϕ ◦ λ on the 1-simplex e0 of S̄1, and
which is ν on 1-simplex e1. The morphism g is a level equivalence, and thus an isomorphism in SHC, since
the composite with the level equivalence j : ΩY −→ F (p) is the level equivalence p∗1 : ΩX −→ Y S̄

1
induced

by the weak equivalence p1 : S̄1 −→ S1.
The two composites

gip, gjΩ(ϕ) : ΩX −→ Y S̄
1

differ precisely, on the pointset level, by the involution τ∗ : Y S̄
1 −→ Y S̄

1
induced by the ‘flip’ τ of the

‘large’ circle S̄1. By Lemma 2.7 this involution realizes the negative of the identity, so we conclude that
[gip] = −[gjΩ(ϕ)] in the group [ΩX,X S̄1

]. Since g becomes an isomorphism in the stable homotopy category
[justify], this proves the claim.

The lower row of the commutative diagram is the elementary distinguished triangle associated to p :
F (ϕ) −→ X and all vertical morphisms are isomorphism. So the upper triangle is distinguished.

(ii) If (g, h,−f [1]) is a distinguished triangle, then so is the lower triangle in the diagram

A
f //

−λ∗A
��

B
g // C

h // A[1]

−λ∗A[1]

��
ΩA[1]

f [1]

// B g
// C

λ∗A[1]◦h
// ΩA[2]

by part (i). The right square commutes by Lemma 2.7 which says that λ∗A[1] = −λ∗A[1]. The left square
commutes since we have

f [1] = f [1][1] ◦ λA[1] = −(f [1] ◦ λA)[1]
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where the first equation is the defining property of f [1]. So (f, g, h) is isomorphic to a distinguished triangle,
and thus itself distinguished.

(iii) If suffices to prove the claim for the elementary distinguished triangle associated to an injective
fibration ϕ : X −→ Y between injective Ω-spectra. Shifting preserves fibres and injective fibrations. How-
ever, the two morphisms sh(λ∗Y ) and λ∗shY are inverse to each other in the additive group [shY, sh(Ω(shY ))]
by Lemma 2.8. This implies δshϕ = − sh(δϕ) and so in the stable homotopy category we have a commutative
diagram

shF
− sh(incl) // shX

− shϕ //

− Id

��

shY
− sh(δϕ) // sh2 F

Fshϕ
incl

// shX
shϕ

// shY
δshϕ

// shF (shϕ)

The lower row is the elementary distinguished triangle associated to the injective fibration shϕ : shX −→
shY . The upper row is thus distinguished. �

Now we can state and prove the main result of this section.

Theorem 3.3. The shift functor and the class of distinguished triangles make the stable homotopy
category into a triangulated category.

Proof. We verify the axiom (T1), (T2) and (T3) as stated in Section 2 of Appendix A. These axioms
seem weaker than Verdier’s original axiom, but we recall in the appendix that they are in fact equivalent.

(T1) This axiom has three parts:
(a) For every injective Ω-spectrum X the unique morphism X −→ ∗ is an injective fibration and the triangle
is X Id−→ X −→ 0 −→ X[1] the associated elementary distinguished triangle.
(b) Let [ϕ] ∈ [X,Y ] be a morphism in the stable homotopy category and let ϕ : X −→ Y be a representing
morphism between injective Ω-spectra. By Lemma 3.1 (iv) the projection p : F (ϕ) −→ X from the
homotopy fibre of ϕ toX is an injective fibration between injective Ω-spectrum, which thus has an associated
elementary distinguished triangle (i, p, δp). By two applications of (T2) the lower row in the diagram

X
ϕ // Y

λ∗Y
��

−i[1]◦λ∗Y // F (ϕ)[1]
−p[1] // X[1]

X
δp

// ΩY [1]
−i[1]

// F (ϕ)[1]
−p[1]

// X[1]

is distinguished. Since the left square commutes in the stable homotopy category [...] the upper row is
distinguished.

It is worth noting that the triangle which we get this way depends on the choice of representing
morphism ϕ, and is thus not natural in the homotopy class [ϕ]. In fact, if ϕ′ : X −→ Y is homotopic to ϕ,
then the homotopy fibre F (ϕ) is homotopy equivalent to F (ϕ′), but any construction of such a homotopy
equivalence involves a choice of homotopy between ϕ and ϕ′. Different choices of homotopies will in general
lead to different homotopy classes of homotopy equivalences.
(c) By definition, every triangle isomorphic to a distinguished triangle is itself distinguished.

(T2) If (f, g, h) is a distinguished triangle, then the triangle (−f [1],−g[1],−h[1]) is distinguished by
Proposition 3.2 (iii). Thus the triangle (g, h,−f [1]) is distinguished by two applications of part (ii) of
Proposition 3.2.

(T3) The axiom is usually referred to as the octahedral axiom. Consider distinguished triangles
(f1, g1, h1), (f2, g2, h2) and (f3, g3, h3) such that f1 and f2 are composable and f3 = f2f1. Then there
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exist morphisms x and y such that (x, y, g1[1] ◦ h2) is a distinguished triangle and the following diagram
commutes

A
f1 // B

f2

��

g1 // C

x

��

h1 // A[1]

A
f3

// D g3
//

g2

��

E
h3

//

y

��

A[1]

f1[1]

��
F

h2

��

F

g1[1]◦h2��

h2

// B[1]

B[1]
g1[1]

// C[1]

We will use that for every distinguished triangle (f, g, h) there exists an injective fibration ϕ : X −→ B
and isomorphisms α : A −→ X and γ : C −→ Fϕ in the stable homotopy category such that the diagram

A

α

��

f // B
g // C

γ

��

h // A[1]

α[1]

��
X ϕ

// B
δϕ

// Fϕ[1]
−iϕ[1]

// X[1]

commutes, where the bottom row is the rotation of the elementary distinguished triangle associated to ϕ.
Indeed, the triangle (−h̄, f, λ∗C ◦ g) is distinguished by Proposition 3.2; so there is an isomorphism from
(−h̄, f, λ∗C ◦ g) to an elementary distinguished triangle (i, ϕ, δϕ), which we can rotate.

By the above we can assume without loss of generality that the triangle (f2, g2, h2) is the rotation
of the elementary distinguished triangle (inclψ, ψ, δψ) associated to an injective fibration ψ : Y −→ Z.
We can then assume that the triangle (f1, g1, h1) equals the rotation of (inclϕ, ϕ, δϕ) for another injective
fibration ϕ : X −→ Y , where X,Y and Z are injective Ω-spectra. The composite ψϕ : X −→ Z is then
again an injective fibration and we can finally assume that the triangle (f3, g3, h3) is the rotated elementary
distinguished triangle of ψϕ. We are now in the situation of the following commutative diagram, where the
two dotted morphisms have to be constructed:

X
ϕ // Y

ψ

��

δϕ // Fϕ[1]

incl[1]

��

−iϕ[1] // X[1]

X
ψϕ

// Z
δψϕ

//

δψ

��

Fψϕ[1]
−iψϕ

//

ϕ̄[1]

��

X[1]

ϕ[1]

��
Fψ[1]

−iψ[1]

��

Fψ[1]

−δϕ̄[1]
��

−iψ[1]
// Y [1]

Y [1]
δϕ[1]

// Fϕ[2]

We can fill in the required morphisms in the third row taking the shift of the inclusion Fϕ −→ Fψϕ
respectively the restriction of ϕ to the strict fibre of ψϕ : X −→ Z, which we denote by ϕ̄ : Fψϕ −→ Fψ.

With these fillers the four squares involving the spectrum Fψϕ commute because the construction of
the triangle from an injective fibration is natural. In order to verify the octahedral axiom (T3) it remains to
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show that the third row is a distinguished triangle. The restriction ϕ̄ : Fψϕ −→ Fψ of the injective fibration
ϕ is again an injective fibration, and the strict fibres of ϕ : X −→ Y and its restriction ϕ̄ are equal. So the
triangle

Fϕ
incl−−−→ Fψϕ

ϕ̄−→ Fψ
δϕ−→ Fϕ[1]

is elementary distinguished; by part (iii) of Proposition 3.2, and closure under isomorphisms (to get rid of
two signs) the triangle

Fϕ[1]
incl[1]−−−−−→ Fψϕ[1]

ϕ̄[1]−−→ Fψ[1]
−δϕ[1]−−−−→ Fϕ[2]

is distinguished. The relation δϕ̄ = δϕiψ holds in the group [Fψ, Fϕ[1]] by another instance of the naturality
of elementary distinguished triangles in the injective fibration defining it. �

4. Stable equivalences

By our definition, only injective Ω-spectra are objects of the stable homotopy category. However,
many constructions which one can perform with symmetric spectra do not preserve the property of being
an injective Ω-spectra, so it would be convenient if we can regard arbitrary symmetric spectra as objects
of the stable homotopy category. In this section we introduce the notion of stable equivalence and show
that up to stable equivalence, every symmetric spectrum can be replaced by an injective Ω-spectrum. The
ultimate consequence will be that the stable homotopy category arises as the localization of the category
of symmetric spectra obtained by ‘inverting stable equivalences’, compare Theorem 4.12.

Definition 4.1. A morphism f : A −→ B of symmetric spectra of simplicial sets is a stable equivalence
if for every injective Ω-spectrum X the induced map

[f,X] : [B,X] −→ [A,X]

on homotopy classes of spectrum morphisms is a bijection.

In Theorem 4.3 below we give a list of several equivalent characterizations of stable equivalences. In
Proposition 4.5 we prove that stable equivalences are closed under various operations. In our new language,
Theorem 1.9 says that every π∗-isomorphisms of symmetric spectra is a stable equivalence; the converse
does not in general hold, as Example 4.2 below shows. For morphisms of symmetric spectra we thus have
the implications

homotopy equivalence =⇒ level equivalence =⇒ π∗-isomorphism =⇒ stable equivalence.

Example 4.2. While every π∗-isomorphism of symmetric spectra is a stable equivalence, the converse
is not true. The standard example of this phenomenon is the following: consider the symmetric spectrum
F1S

1 freely generated by the circle S1 in level 1, compare Example I. 2.12. We consider the morphism
λ : F1S

1 −→ F0S
0 = S which is adjoint to the identity in level 1.

Since F1S
1 is freely generated by the circle S1 in level 1, it ought to be a desuspension of the suspension

spectrum of the circle. And indeed, the morphism λ : F1S
1 −→ F0S

0 = S is a stable equivalence. To see
this we consider an injective Ω-spectrum X and consider the commutative square

[S, X]
[λ,X] //

eval0 ∼=
��

[F1S
1, X]

eval1∼=
��

[S0, X0]sset* = π0X0 ι∗
// π1X1 = [S1, X1]sset*

The vertical maps given by evaluation at levels 0 respectively 1 are adjunction bijections and the lower
horizontal map is the stabilization map. Since X is an Ω-spectrum, the lower vertical map is a bijection,
hence the upper vertical map is, which proves that λ is a stable equivalence.

However, we calculated the 0th homotopy group of the free symmetric spectrum F1S
1 in Example I.2.12

and, more systematically, in Example I.4.31. The group π0F1S
1 is isomorphic to the M-module P1 and
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in particular free abelian of countably infinite rank. But π0S is free abelian of rank one, so λ is not a
π∗-isomorphism.

Theorem 4.3. The following are equivalent for a morphism f : A −→ B of symmetric spectra of
simplicial sets:

(i) f is a stable equivalence;
(ii) for every injective Ω-spectrum X the induced map map(f,X) : map(B,X) −→ map(A,X) is a

weak equivalence of simplicial sets;
(iii) for every injective Ω-spectrum X the induced map Hom(f,X) : Hom(B,X) −→ Hom(A,X) is a

level equivalence of symmetric spectra;
(iv) the mapping cone C(f) of f is stably equivalent to the trivial spectrum.
(v) the suspension S1 ∧ f : S1 ∧A −→ S1 ∧B is a stable equivalence;

If A and B are levelwise Kan complexes, conditions (i)-(v) are furthermore equivalent to
(vi) the homotopy fibre F (f) of f is stably equivalent to the trivial spectrum;
(vii) the loop Ωf : ΩA −→ ΩB is a stable equivalence.

Proof. (i)⇒(ii) For every simplicial setK and every injective Ω-spectrumX the function spectrumXK

is again injective by Lemma 3.1 (iii) and an Ω-spectrum by Example I.2.22. We have an adjunction bijection
[K,map(A,X)] ∼= [A,XK ] where the left hand side means homotopy classes of morphisms of simplicial
sets. So if f is a stable equivalence, then [f,XK ] is bijective, hence [K,map(f,X)] : [K,map(B,X)] −→
[K,map(B,X)] is bijective. Since this holds for all simplicial sets K, map(f,X) is a weak equivalence.

(ii)⇒(iii) For every injective Ω-spectrum X and n ≥ 0 the shifted spectrum shnX is again an injective
Ω-spectrum. So if f : A −→ B satisfies (ii), it also satisfies (iii) since the nth level of the spectrum
Hom(A,X) is defined as map(A, shnX).

(iii)⇒(iv) The morphism spectrum from the mapping cone C(f) to a symmetric spectrumX is naturally
isomorphic to the homotopy fibre of the morphism Hom(f,X), i.e.,

Hom(C(f), X) ∼= F (Hom(f,X) : Hom(B,X) −→ Hom(A,X)) .

So if (iii) holds then for every injective Ω-spectrum X the morphism Hom(f,X) is a level equivalence, thus
the homotopy fibre F (Hom(f,X)) is levelwise contractible. So the isomorphic spectrum Hom(C(f), X)
is levelwise contractible and in particular [C(f), X] ∼= π0 Hom(C(f), X)0 has only one element. So the
mapping cone C(f) is stably equivalent to the trivial spectrum.

(iv)⇒(v) If p : C(f) −→ S1 ∧A denotes the morphism which collapses B to a point then the mapping
cone of p is homotopy equivalent to ΣB. More precisely there is a diagram of symmetric spectra

C(f)

p
%%JJJJJJJJJ
// Z(p)

'
��

// C(p)

'
��

S1 ∧A
S1∧f

// S1 ∧B

in which the triangle commutes and the square commutes up to homotopy. If condition (iv) holds then by
the already established implication ‘(i)=⇒(ii)’ the simplicial set map(C(f), X) is weakly contractible for
every injective Ω-spectrum X. We have a homotopy fibre sequence

map(C(p), X) −→ map(Z(p), X) −→ map(C(f), X)

whose last term is weakly contractible. So the first morphism is a weak equivalence. Since it is homotopy
equivalent to map(S1 ∧ f,X), that morphism is a weak equivalence. Taking path components shows that
[S1 ∧ f,X] : [S1 ∧ B,X] −→ [S1 ∧ A,X] is bijective for every injective Ω-spectrum X, so that S1 ∧ f is a
stable equivalence.

(v)⇒(i) Suppose that the suspension S1∧f is a stable equivalence and let X be an injective Ω-spectrum.
Then the shifted spectrum shX is also an injective Ω-spectrum, so the map [S1∧f, shX] : [S1∧B, shX] −→
[S1 ∧ A, shX] is bijective. By adjunction, the map [f,Ω(shX)] : [B,Ω(shX)] −→ [A,Ω(shX)] is then also
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bijective. Since the map λ∗ : X −→ Ω(shX) is a homotopy equivalence, it follows that f induces a bijection
on homotopy classes of morphisms to X. So f is a stable equivalence.

(iv)⇔(vi) We assume that A and B are levelwise Kan complexes. The suspension of the homotopy fibre
is π∗-isomorphic, hence stably equivalent, to the mapping cone. By the equivalence of conditions (i) and
(v), a symmetric spectrum is stably trivial if and only if its suspension is. So (iv) and (vi) are equivalent.

(iv)⇔(vi) If A is levelwise Kan, then the adjunction counit S1 ∧ ΩA −→ A is a π∗-isomorphism, thus
a stable equivalence. So f is a stable equivalence if and only if S1 ∧ Ω(f) is. By the already established
equivalence between conditions (i) and (v) this is equivalent to Ωf being a stable equivalence. �

For the next proposition we recall that a commutative square of simplicial sets

V
α //

ϕ

��

W

ψ

��
X

β
// Y

is called homotopy cartesian if for some (hence any) factorization of the morphism g as the composite of a
weak equivalence w : W −→ Z followed by a Kan fibration f : Z −→ Y the induced morphism

V
(ϕ,wα)−−−−→ X ×Y Z

is a weak equivalence. The definition is in fact symmetric in the sense that the square is homotopy cartesian
if and only if the square obtained by interchanging X and W (and the morphisms) is homotopy cartesian.
So if the square is homotopy cartesian and ψ (respectively β) is a weak equivalence, then so is ϕ (respectively
α).

Proposition 4.4. Consider a pullback square of symmetric spectra of simplicial sets

A
i //

f

��

B

g

��
C

j
// D

in which the morphism g is levelwise a Kan fibration. Then for every injective Ω-spectrum X the commu-
tative square of simplicial sets

map(D,X)
map(g,X) //

map(j,X)

��

map(B,X)

map(i,X)

��
map(C,X)

map(f,X)
// map(A,X)

is homotopy cartesian.

Proof. In a first step we prove the proposition under the additional assumption that the morphism
j : C −→ D is a monomorphism. This implies that its basechange i : A −→ B is also a monomorphism. In
this situation the morphism j ∪ g : C ∪A B −→ D is a π∗-isomorphism [ref], thus a weak equivalence by
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Theorem 1.9. We fix an injective Ω-spectrum X and consider the commutative diagram of simplicial sets

map(D,X)
map(g,X) //

map(j,X)

��

map(f∪i,X)

))SSSSSSSSS
map(B,X)

map(i,X)

��

map(C ∪A B,X)

33ggggggggggggg

yyssssssssssssss

map(C,X)
map(f,X)

// map(A,X)

The right vertical map map(i,X) is a Kan fibration by Proposition 1.6 (i) and the lower right part of the
diagram is a pullback. The morphism map(f ∪ i,X) is a weak equivalence, so the outer commutative square
is homotopy cartesian.

Now we prove the general case. We factor the morphism j as the mapping cylinder inclusion C −→ Z(j)
followed by the projection p : Z(j) −→ D which is a homotopy equivalence. Then the square decomposes
as the composite of two pullback squares

A
i //

f

��

Z(j)×D B
p̃ //

��

B

g

��
C // Z(j)

p
// D

For every injective Ω-spectrum X the functor map(−, X) takes the left pullback square to a homotopy
cartesian square of simplicial sets by the special case above. The projection p is a level equivalence, hence
so is its basechange p̃. So both p and p̃ become weak equivalences after applying map(−, X) and the
functor map(−, X) also takes the right pullback square to a homotopy cartesian square. The composite of
two homotopy cartesian squares is homotopy cartesian, which proves the claim. �

Proposition 4.5. (i) A wedge of stable equivalences is a stable equivalence.
(ii) A finite product of stable equivalences is a stable equivalence.
(iii) Consider a commutative square of morphisms of symmetric spectra

A

f

��

ϕA // A′

f ′

��
B ϕB

// B′

and let f ′′ : C(ϕA) −→ C(ϕB) be the map induced by f and f ′ on mapping cones. Then if two of
the three morphisms f , f ′ and f ′′ are stable equivalences, so is the third.

(iv) Consider a commutative of symmetric spectra of simplicial sets

A
i //

f

��

B

g

��
C

j
// D

If the square is a pushout, f a stable equivalence and i or f is injective, then g is a stable equiv-
alence. If the square is a pullback, g a stable equivalence and j or g is levelwise a Kan fibration,
then f is a stable equivalence.

(v) For every stable equivalence f : A −→ B and every pointed simplicial set K the morphism K ∧ f :
K ∧A −→ K ∧B is a stable equivalence. If A and B are levelwise Kan complexes and K is finite,
then the morphism fK : AK −→ BK is a stable equivalence.
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(vi) Let I be a filtered category. If A : I −→ SpΣ is a functor which takes every morphism to an
injective stable equivalence, then for every object i ∈ I the canonical morphism A(i) −→ colimI A
is an injective stable equivalence.

(vii) Let I be a filtered category and let A,B : I −→ SpΣ be functors which take all morphisms in I
to monomorphisms of symmetric spectra. If τ : A −→ B is a natural transformation such that
τ(i) : A(i) −→ B(i) is a stable equivalence for every object i of I, then the induced morphism
colimI τ : colimI A −→ colimI B on colimits is a stable equivalence.

[is the diagonal of stable equivalences a stable equivalence ?]

Proof. (i) For every family {Ai}i∈I of symmetric spectra and every injective Ω-spectrum X that
natural map

[
∨
i∈I

Ai, X] −→
∏
i∈I

[Ai, X]

is bijective by the universal property of the wedge, applied to morphisms and homotopies.
(ii) Finite products are π∗-isomorphic to finite wedges (see Theorem 2.1), and π∗-isomorphisms are

stable equivalences (see Theorem 1.9), so the claim follows from part (i).
(iii) We show that if f and f ′ are stable equivalences, then so if f ′′. The other cases are similar.
For every injective Ω-spectrum X we have a commutative diagram [explain]

[ΣA′, X]
[ΣϕA,X] //

[Σf ′,X]

��

[ΣA,X]
[p,X] //

[Σf,X]

��

[C(ϕA), X]
[i,X] //

[f ′′,X]

��

[A′, X]
[ϕA,X] //

[f ′,X]

��

[A,X]

[f,X]

��
[ΣB′, X]

[ΣϕB ,X]
// [ΣB,X]

[p,X]
// [C(ϕB), X]

[i,X]
// [B′, X]

[ϕB ,X]
// [B,X]

in which both rows are long exact sequences of abelian groups. If f and f ′ are stable equivalences, then
all except possibly the middle vertical maps are bijective. So the middle map is bijective by the 5-lemma.
[easier to using mapping spaces into X?]

(iv) Let us first consider the case of a pushout square with f a stable equivalence and i or f injective.
For every injective Ω-spectrum X the commutative square of simplicial sets

(4.6) map(D,X)
map(g,X) //

map(j,X)

��

map(B,X)

map(i,X)

��
map(C,X)

map(f,X)
// map(A,X)

is then a pullback and at least one of the maps map(i,X) or map(f,X) is a Kan fibration by Proposi-
tion 1.6 (i). Since moreover the lower horizontal map is a weak equivalence (by Theorem 4.3 (ii)), so is the
upper horizontal map. Again by Theorem 4.3 (ii) this means that g is a stable equivalence.

Now we consider the case of a pullback square in which one of the morphisms j or g is levelwise a Kan
fibration. By Proposition 4.4 the commutative square (4.6) is then homotopy cartesian. If g is a stable
equivalence, then the upper horizontal map is a weak equivalence (by Theorem 4.3 (ii)). This means that the
lower horizontal maps induces an isomorphism of homotopy groups in positive dimensions and an injection
of path components. If we replace X by the injective Ω-spectrum shX we deduce that map(f, shX) :
map(C, shX) −→ map(A, shX) induces an isomorphism on fundamental groups and so Ω(map(f, shX)) ∼=
map(f,Ω(shX)) induces a bijection on path components. Since the simplicial set map(A,X) is naturally
weakly equivalent to map(A,Ω(shX)), this proves that map(f,X) is a weak equivalence for all injective
Ω-spectra X. Again by Theorem 4.3 this means that f is a stable equivalence.

(v) The first statement follows from the adjunction bijection [K∧A,X] ∼= [A,XK ] and the fact that XK

is an injective Ω-spectrum whenever K is. For the second statement we observe that the functor A 7→ AK

commutes with homotopy fibres and preserves the property of being levelwise Kan. So passage to homotopy
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fibres and the equivalence of conditions (i) and (vi) in Theorem 4.3 reduce us to showing that if A is levelwise
Kan and stably contractible, then so is AK . We prove this by induction over the dimension of K. If K is
0-dimensional, then AK is a finite product of copies of A, this stably contractible by part (ii). Now suppose
that K has positive dimension n. We do another induction on the number of non-degenerate n-simplices of
K. We write K = L ∪∂∆[n]+ ∆[n]+ for a simplicial subset L with one non-degenerate n-simplex less than
K. We obtain pullback square of symmetric function spectra

AK //

��

AL

��
A∆[n]+ // A∂∆[n]+

in which the horizontal morphisms are restrictions, thus levelwise Kan fibrations. The spectrum A∂∆[n]+

is stably contractible since ∂∆[n]+ has smaller dimension. Since ∆[n]+ is weakly equivalent to S0 the
spectrum A∆[n]+ is level equivalent to AS

0 ∼= A, thus stably contractible. In particular, the lower horizontal
morphism is a stable equivalence, hence so is the upper one by part (iv). Since AL is stably contractible by
induction, so is AK .

(vi) For every injective Ω-spectrum X the simplicial set map(colimI A,X) is isomorphic to the inverse
limit of the functor map(A,X) : Iop −→ sset*. Since A consists of injective stable equivalences, each
morphism in the inverse system map(A,X) is a weak equivalence (by Theorem 4.3 (ii)) and a Kan fibration
(by Proposition 1.6 (i)). Since I is filtered, the map from the inverse limit map(colimI A,X) to each stage
map(A(i), X) is then also a weak equivalence of simplicial set, which means that A(i) −→ colimI A is a
stable equivalence.

(vii) For every injective Ω-spectrum X the simplicial set map(colimI A,X) is isomorphic to the inverse
limit of the functor map(A,X) : Iop −→ sset*, and similarly for the functor B. Since A and B consists of
injective morphisms, all morphisms in the inverse systems map(A,X) and map(B,X) are Kan fibrations
(by Proposition 1.6 (i)). Filtered inverse limits of weak equivalences along Kan fibrations are again weak
equivalences, so the map map(colimI B,X) −→ map(colimI A,X) is a weak equivalence of simplicial set,
which means that colimI A −→ colimI B is a stable equivalence. �

Now that we mentioned many constructions which preserves stable equivalences we also mention one
which does not, namely shifting (this should be contrasted with the fact that shifting does preserve π∗-
isomorphisms because πk+1(shX) equals πkX as abelian groups). An example is the fundamental stable
equivalence λ : F1S

1 −→ S of Example 4.2 which is adjoint to the identity of S1. The symmetric spectrum
sh(F1S

1) is isomorphic to the wedge of F0S
1 and F1S

2, while sh S ∼= F0S
1; the map shλ : sh(F1S

1) −→ sh S
is the projection to the wedge summand. The complementary summand F1S

2 ∼= S1 ∧ F1S
1 is stably

equivalent, via the suspension of λ, to S1 ∧ S ∼= Σ∞S1, and is thus not stably contractible.

4.1. The stable homotopy category as a localization. We recall that a general symmetric spec-
trum is not π∗-isomorphic to an injective Ω-spectrum. By Theorem I.4.44 a necessary (and in fact sufficient)
condition for that is semistability. In contrast, we will now see that every symmetric spectrum is stably
equivalent to an injective Ω-spectrum. This is the key point in constructing a functor from the category
of symmetric spectra to the stable homotopy category, thus associating a ‘stable homotopy type’ to every
symmetric spectrum. In the language of model structures which we will discuss later, this amounts to the
existence of fibrant replacements in the injective stable model structure.

Theorem 4.7. For every symmetric spectrum A there exists a stable equivalence from A to an injective
Ω-spectrum.

We postpone the technical proof to the end of this section, where we give a functorial construction,
using the ’small object argument’.

Construction 4.8. We now construct a functor γ : SpΣ −→ SHC which by Theorem 4.12 below
is a localization of the category of symmetric spectra at the class of stable equivalences. First, for each
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symmetric spectrum A we choose a stable equivalence pA : A −→ γA with target an injective Ω-spectrum,
which is possible by Theorem 4.7. We insist that if A is already an injective Ω-spectrum, then γA = A and
pA is the identity. This is not really necessary, but will make some arguments slightly easier.

There is then a preferred way to make these choices into the object part of functor: given a morphism
f : A −→ B of symmetric spectra, we consider the diagram of morphisms of symmetric spectra (without
the dotted morphism)

(4.9) A
pA //

f

��

γA

γf

��
B pB

// γB

By definition of ‘stable equivalence’ the map [pA, γB] : [γA, γB] −→ [A, γB] is bijective. Thus there exists
a unique homotopy class of morphism γf : γA −→ γB which makes the entire square commute up to
homotopy.

Functoriality is a formal consequence of the uniqueness property. Since IdγA pA = pA, the uniqueness
of the filler guarantees that γ(IdA) = IdγA. If g : B −→ C is another morphism, then γ(g)γ(f)pA '
γ(g)pBf ' pC(gf). By uniqueness we conclude that γ(g)γ(f) = γ(gf) as homotopy classes in [γA, γC].

Remark 4.10. The choice pA : A −→ γA of stable equivalence to an injective Ω-spectrum could in fact
be made functorially at the pointset level (and not just up to homotopy), see Proposition 4.21. However,
if we want this extra functoriality, we cannot simultaneously arrange things so that γA = A if A is already
an injective Ω-spectra. The pointset level functoriality of γ is irrelevant for the current discussion, and so
we continue without it.

The next theorem says that the functor γ : SpΣ −→ SHC is a localization of the category of symmetric
spectra at the class of stable equivalence. Since the ‘collection’ of all categories forms a 2-category (with
respect to functors as morphisms and natural transformations), one should not expect such localizations to
be unique up to isomorphism, but rather only unique up to equivalence. The following definition captures
the ‘correct’ universal property of such a 2-categorical localization. We use the following notation: if C and
D are categories, then Hom(C,D) is the category whose objects are the functors from C to D and whose
morphisms are natural transformations [when is this a category, i.e., small Hom-sets?].

Definition 4.11. Let C be a category and W a class of morphisms in C. A localization of C at the
class W is a functor L : C −→ D with the following two properties:

• The functor L takes all morphisms in W to isomorphisms in D.
• For every category E , precomposition with the functor L induces an equivalence of categories

− ◦ L : Hom(D, E) −→ HomW (C, E)

where the target is the full subcategory of Hom(C, E) of functors which take all morphisms in W
to isomorphisms.

A direct consequence of the definition of ‘localization’ is the following. If L : C −→ D is a localization
of C and W then for every functor ε : D −→ E which takes W to isomorphisms, there exists a functor
ε : C −→ E , unique up to natural isomorphism, such that ε ◦ L is naturally isomorphic to ε. The existence
part is the statement that −◦L as in Definition 4.11 is essentially surjective on objects (i.e., functors); the
uniqueness part is the statement that − ◦ L is fully faithful.

The universal property of a localization L : C −→ D makes localizations unique up to equivalence,
whenever they exist. Indeed, if L′ : C −→ D′ is another localization, then there exist functors F : D −→ D′
and G : D′ −→ D such that F ◦ L is naturally isomorphic to L′ and G ◦ L′ is naturally isomorphic to L.
Then G ◦ F ◦ L is naturally isomorphic to L and by the ‘fully faithful’ part of the universal property, any
such natural isomorphism is of the form τ ◦L for a unique natural isomorphism τ : G ◦F ∼= IdD. Similarly,
F ◦G is naturally isomorphic to the identity functor of D′.
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Theorem 4.12. The functor γ : SpΣ −→ SHC is a localization of the category of symmetric spectra at
the class of stable equivalences. In particular, for every functor ε : SpΣ −→ C which takes stable equivalences
to isomorphisms, then there exists a functor ε : SHC −→ C, unique up to preferred natural isomorphism,
such that ε ◦ γ is naturally isomorphic to ε.

Proof. We start by showing that γ takes stable equivalences to isomorphisms. By definition of γf
we have the homotopy commutative diagram (4.9). So if f : A −→ B is a stable equivalence, then γf is a
stable equivalence between injective Ω-spectra and therefore a homotopy equivalence. In other words, γf
is an isomorphism in SHC.

Next make some observations about functors ε : SpΣ −→ E which invert stable equivalences. For every
spectrum A, the projection π : ∆[1]+ ∧ A −→ A is a homotopy equivalence, hence a stable equivalence, so
ε(π) is an isomorphism. The two end inclusions i0, i1 : A −→ ∆[1]+ ∧A satisfy π ◦ i0 = IdA = π ◦ i1, so we
have

ε(π) ◦ ε(i0) = Idε(A) = ε(π) ◦ ε(i1) .
Since ε(π) is an isomorphism, we deduce ε(i0) = ε(i1).

Suppose now that f, g : A −→ B are homotopic morphisms via some homotopy H : ∆[1]+ ∧ A −→ B.
Then

ε(f) = ε(H) ◦ ε(i0) = ε(H) ◦ ε(i1) = ε(g) .

In other words, every functor ε : SpΣ −→ E which takes stable equivalences to isomorphisms also takes
homotopic maps to the same morphisms.

Now we show that for every functor ε : SpΣ −→ E which takes stable equivalences to isomorphisms
there is a functor ε : SHC −→ E such that εγ is naturally isomorphic to ε. This proves that the functor
− ◦ γ : Hom(SHC, E) −→ Homst. equi.(SpΣ, E) is dense (essentially surjective on objects). We simply define
ε : SHC −→ E on objects by ε(A) = ε(A) and on morphisms via representatives by ε[f : A −→ B] = ε(f).
This will automatically be a functor. If we apply the functor ε to the stable equivalence pA : A −→ γA we
get a natural isomorphism in E

ε(pA) : ε(A) −→ ε(γA) = (εγ)(A) .

It remains to show that precomposition with γ is fully faithful. So we consider two functors F,G :
SHC −→ E and have to show that

− ◦ γ : Nat(F,G) −→ Nat(Fγ,Gγ)

is bijective. We define the inverse map K : Nat(Fγ,Gγ) −→ Nat(F,G) as follows. Given a natural
transformation τ : Fγ −→ Gγ of functors SpΣ −→ E we define the natural transformation K(τ) : F −→ G
of functors SHC −→ E as the restriction of τ to injective Ω-spectra. This makes sense because we had
insisted earlier that γX = X and pX = Id whenever X is an injective Ω-spectrum.

We have K(τ) ◦ γ = τ as natural transformations because γ(γX) = γX and pγX = Id (again because γ
is the identity on injective Ω-spectra). We also have K(ϕ◦γ) = ϕ for a natural transformation ϕ : F −→ G,
again because γX = X for every injective Ω-spectrum. So K is indeed inverse to precomposition with γ,
which finishes the proof. �

The next proposition makes precise in which way the suspension of a symmetric spectrum ‘is’ the shift
in the stable homotopy category and how homotopy cofibre and homotopy fibre sequences give rise to
distinguished triangles in SHC.

For any symmetric spectrum A we have a diagram of morphisms of symmetric spectra

S1 ∧A
pS1∧A //

S1∧pA
��

γ(S1 ∧A)

ΦA

��
S1 ∧ γA

λγA

// sh(γA)
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in which all solid arrows are stable equivalences. Since sh(γA) is an injective Ω-spectrum, there exists unique
homotopy class of morphisms ΦA : γ(S1 ∧ A) −→ sh(γA) which makes the entire square commute up to
homotopy. The morphism ΦA is a stable equivalence between injective Ω-spectra, thus an isomorphism

(4.13) ΦA : γ(S1 ∧A) ∼= (γA)[1]

in the stable homotopy category.
Dually, the functor γ commutes with taking functions out of a finite simplicial set, so in particular with

loops. Indeed, if K is a finite pointed simplicial set and A a symmetric spectrum which is levelwise a Kan
complex, then the morphism (pA)K : AK −→ (γA)K is a stable equivalence by part (v) of Proposition 4.5.
Since (γA)K is an injective Ω-spectrum, there is a unique homotopy class of morphisms ΨA,K : γ(AK) −→
(γA)K such that ΨA,K◦pAK is homotopic to (pA)K . This morphism is a stable equivalence between injective
Ω-spectra, thus a homotopy equivalence. An important special case is K = S1, which yields a preferred
homotopy class of homotopy equivalence ΨA,S1 : γ(ΩA) −→ Ω(γA).

The isomorphisms ΦA : γ(S1 ∧ A) −→ (γA)[1] and ΨA,K : γ(AK) −→ (γA)K are natural in SHC as
functors of A, which is a consequence of the uniqueness properties.

Proposition 4.14. (i) Let f : A −→ B be a morphism of symmetric spectra. Then the functor
γ : SpΣ −→ SHC takes the sequence

A
f−→ B

i−→ C(f)
p−→ S1 ∧A

to a distinguished triangle in the stable homotopy category after identifying γ(S1 ∧A) with (γA)[1] via φA.
(ii) Let f : A −→ B be a morphism of symmetric spectra which are levelwise Kan complexes. Then the
functor γ : SpΣ −→ SHC takes the sequence

ΩB i−→ F (f)
p−→ A

f−→ B

to a distinguished triangle in the stable homotopy category after making the identifications

(γ(ΩB))[1]
ΨB,S1 [1]
−−−−−→ Ω(γB)[1]

λ∗γB←−−− γB .

(iii) The functor γ commutes with arbitrary coproducts and finite products. Thus in particular the stable
homotopy category has arbitrary coproducts.

Proof. (iii) Given a family {Ai}i∈I of symmetric spectra, then the wedge of the stable equivalences
pi : Ai −→ γ(Ai) is a stable equivalence by Proposition 4.5 (i). Since γ(

∨
iAi) is an injective Ω-spectrum,

there is a unique homotopy class of morphism g :
∨
i γ(Ai) −→ γ(

∨
iAi) whose restriction with

∨
i pi is

homotopic to the stable equivalence pW
Ai . The morphism g is then also a stable equivalence, and so for

every injective Ω-spectrum X the induced map on homotopy classes

[g,X] : [γ(
∨
i

Ai), X] −→ [
∨
i

γ(Ai), X]

is bijective. The target is isomorphic to the product
∏
i[γ(Ai), X], which shows that the injective Ω-spectrum

γ(
∨
iAi) has the universal property of a coproduct of the objects γ(Ai).
The proof that γ preserves finite products is similar but slightly easier because products in the stable

homotopy category are given by pointset level products. We consider the case of two factors. By the same
reasoning as before there is a unique homotopy class of morphism h : γA × γB −→ γ(A × B) satisfying
h(pA×pB) = pA×B , and h is a stable equivalence. But now both sides are injective Ω-spectra, so the stable
equivalence is even a homotopy equivalence, i.e., an isomorphism in SHC. �

4.2. The homotopy groups of γA. We now have a way of associating to every symmetric spectrum
an object of the stable homotopy category, via the functor γ : SpΣ −→ SHC. However, the functor depends
on an abstract construction which produces a stable equivalence to an injective Ω-spectrum. This does not
make it transparent what ‘happens’ to a symmetric spectrum during this passage, and it not clear how
basic invariants like stable homotopy groups change in this process.
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By the ‘true’ homotopy groups of a symmetric spectrum A we mean the homotopy groups of the
spectrum γA. One can think of these true homotopy groups as ‘right derived functors’ of the homotopy
groups, since they are the homotopy groups of a fibrant replacement (in any of the stable model structures
to be introduced in Section III.2). If A is semistable, then the stable equivalence p : A −→ γA is a π∗-
isomorphism and the true homotopy groups are naturally isomorphic to the classical homotopy groups π∗A.
In fact, semistable symmetric spectra are characterized by this property.

For spectra which are not semistable it would thus be interesting to describe the true homotopy groups
in terms of the homotopy groups of A, which are often more readily computable from an explicit presentation
of the symmetric spectrum. The bad news is that the true homotopy groups are not a functor of the classical
homotopy groups, not even if one takes the M-action into account. But the next best thing is true: there
is a natural spectral sequence whose E2-term depends on π∗A as a gradedM-module and which converges
to the true homotopy groups of A. We shall now construct this spectral sequence and discuss it in some
examples.

In the next theorem and in what follows we use the notation − ⊗M − as short hand for the tensor
product over the monoid ring Z[M].

Theorem 4.15. There is a strongly convergent half-plane spectral sequence

E2
p,q = TorZ[M]

p (Z, πqA) =⇒ πp+q(γA) .

The spectral sequence is natural in the symmetric spectrum A with dr-differential of bidegree (−r, r − 1).
The edge homomorphism

Z⊗M πqA = E2
0,q −→ πq(γA)

is induced by the stable equivalence p : A −→ γA.

We will see below that the spectral sequence of Theorem 4.15 collapses in many cases, for example for
semistable symmetric spectra and for free symmetric spectra (see Example 4.17), and it always collapses
rationally (see Example 4.19). The spectral sequence typically does not collapse for semifree symmetric
spectra, see Example 4.20.

We need a preparatory Lemma.

Lemma 4.16. For every symmetric spectrum A there is a morphism of symmetric spectra P −→ A with
the following properties:

(i) the induced map π∗P −→ π∗A is surjective;
(ii) for all p ≥ 1 the groups TorZ[M]

p (Z, π∗P ) are trivial;
(iii) the map Z⊗M (π∗P ) −→ π∗(γP ) induced by the stable equivalence pP : P −→ γP is bijective.

Proof. For each k ∈ Z we choose a set of generators of πkA as anM-module, represent each generator
by a pointed map Sk+n −→ An for large enough n and consider the adjoint morphism FnS

k+n −→ A. We
take P as the wedge of these spectra FnSk+n for varying k and varying generators, with the induced map to
A, which is then surjective on homotopy groups. The Tor groups of this wedge vanish by Lemma 4.26 (ii),
the isomorphism π∗(FnSk+n) ∼= Pn ⊗ πs∗−k (see (4.33) of Chapter I) and because homotopy takes wedges
to sums.

To see that property (iii) holds we can similarly restrict to a single wedge summand of the form FnS
k+n.

For k ≥ 0 the morphism λ : FnSk+n −→ F0S
k = Σ∞Sk is a stable equivalence (compare Example 4.2) with

target a semistable symmetric spectrum. Since the target is semistable, its classical homotopy groups are the
true homotopy groups and we may show that λ induces an isomorphism Z⊗M (π∗FnSk+n) −→ π∗(Σ∞Sk)
By (4.33) of Chapter I, the effect of the morphism λ on homotopy groups is isomorphic to the morphism
ofM-modules

Pn ⊗ πs∗ −→ P0 ⊗ πs∗ ∼= πs∗

induced by the surjection π : Pn −→ P0 adjoint to the preferred generator of P0
∼= Z. Since Z ⊗M π :

Z⊗M Pn −→ Z⊗M P0 is an isomorphism, this proves property (iii) �
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Proof of Theorem 4.15. We inductively define symmetric spectra An and Pn starting with A0 = A.
In each step we choose a level fibration fn : Pn −→ An with the properties of Lemma 4.16, define An+1 as
the fibre of fn, denote by in : An+1 −→ Pn the inclusion, and iterate the construction. Then the homotopy
groups of the sequence of symmetric spectra

· · · −→ Pn+1
infn+1−−−−→ Pn −→ · · · −→ P0

f0−→ A0 = A

give a resolution of π∗A by tameM-modules which are Z⊗M− acyclic. Since the strict fibre An+1 is level
equivalent to the homotopy fibre F (fn) , Proposition 4.14 (ii) provides a distinguished triangle in the stable
homotopy category

γ(An+1)
γ(in)−−−→ γ(Pn)

γ(fn)−−−→ γ(An) −→ γ(An+1)[1]
which gives rise to a long exact sequence of homotopy groups. These homotopy groups thus assemble into
an exact couple with

E1
p,q = πq(γ(Pp)) and D1

p,q = πq(γ(Ap))
and morphisms

j : D1
p+1,q −→ E1

p,q induced by γ(ip) : γ(Ap+1) −→ γ(Pp),

k : E1
p,q −→ D1

p,q induced by γ(fp) : γ(Pp) −→ γ(Ap),

i : D1
p,q −→ D1

p+1,q−1

given by the boundary map πq(γ(Ap)) −→ πq−1(γ(Ap+1)) of the distinguished triangle.
By property (iii) of Lemma 4.16 we have

E1
p,q = πq(γ(Pp)) ∼= Z⊗M (πq(Pp)) ;

under this isomorphism, the differential d1 = jk : E1
p,q −→ E1

p−1,q becomes the map obtained by applying
Z ⊗M − to the above resolution of π∗A. Since the homotopy groups of the spectra Pp are acyclic for the
functor Z⊗M −, the E2-term calculates the Tor groups TorZ[M]

p (Z, πqA).
It remains to discuss convergence of the spectral sequence. The pth filtration subgroup F p of the

abutment π∗(γA) is the kernel of the map

ip : π∗(γA) = D1
0,∗ −→ D1

p,∗−p = π∗−p(γ(Ap)) .

To prove that the spectral sequence converges to the homotopy groups of γA we show that the filtration is
exhaustive, i.e., πq(γA) =

⋃
p F

p
q .

By construction, the connecting maps Ak −→ ΣAk+1 induce the trivial map on homotopy groups, so
the mapping telescope of the sequence

A = A0 −→ ΣA1 −→ Σ2A2 −→ · · ·
has trivial homotopy groups and is thus stably contractible. A mapping telescope of stable equivalences is
a stable equivalence, so the mapping telescope of the sequence

γ(A0) −→ γ(A1)[1] −→ γ(A2)[2] −→ · · ·
of stably fibrant replacements is also stably contractible. But this is a mapping telescope of semistable
spectra, thus itself semistable. Thus the homotopy groups of the mapping telescope of the sequence γ(Ap)[p],
which are isomorphic to the colimit of homotopy groups, are trivial. Since each instance of the map
i : D1

p,q −→ D1
p+1,q−1 is induced by a connecting homomorphism γ(Ak) −→ γ(Ak+1)[1] this shows that the

kernels of the maps ip exhaust all of π∗(γA). The spectral sequence is concentrated in a half-plane and has
exiting differentials in the sense of [5, II.6], so it is strongly convergent. �

Example 4.17 (Semistable and free symmetric spectra). When X is a semistable symmetric spectrum
or a free symmetric spectrum, then the higher Tor groups for the homotopy of X vanish by part (ii) of
Lemma I.4.26. Thus in the spectral sequence of Theorem 4.15 we have E2

p,q = 0 for p 6= 0, and so the edge
homomorphism

Z⊗M (π∗X) −→ π∗(γX)
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is an isomorphism. For the free symmetric spectrum generated by a pointed space (or simplicial set) K in
level m, the map K ∧ λ : K ∧ FnSn −→ K ∧ S ∼= Σ∞K is a stable equivalence, hence so is its n-fold loop
and thus the composite

FnK −→ Ωn(K ∧ FnSn) −→ Ωn(Σ∞K)

since the first map is a π∗-isomorphism. So the free symmetric spectrum FnK represents the same stable
homotopy type as γ(Σ∞K)[−n].

Example 4.18 (Eilenberg-Mac Lane spectra). In Example I.4.27 we associate an Eilenberg-Mac Lane
spectrum HW to every tameM-module W . The homotopy groups of HW are concentrated in dimension 0,
where we get the module W back. So the spectral sequence of Theorem 4.15 for HW collapses onto the
axis q = 0 to isomorphisms

πp(γ(HW )) ∼= TorZ[M]
p (Z,W ) .

In particular, the true homotopy groups of HW need not be concentrated in dimension 0. One can show
that HW is in fact stably equivalent to the product of the Eilenberg-Mac Lane spectra associated to the
groups TorZ[M]

p (Z,W ), shifted up p dimensions.
Here is an example which shows that for non-trivial W the Eilenberg-Mac Lane spectrum HW can be

stably contractible: we let W be the kernel of a surjection Pn −→ Z. Lemma I.4.26 and the long exact
sequence of Tor groups show that the groups TorZ[M]

p (Z,W ) vanish for all p ≥ 0. Thus the homotopy groups
of γ(HW ) are trivial, i.e., HW is stably contractible.

Example 4.19 (Rational collapse). We claim that for every tameM-module W and all p ≥ 1, we have
TorZ[M]

p (Q,W ) = 0. So the spectral sequence of Theorem 4.15 always collapses rationally and the edge
homomorphism is a rational isomorphism

Q⊗M (π∗X) −→ Q⊗ π∗(γX) .

The rational vanishing of higher Tor groups is special for tameM-modules.
To prove the claim we consider a monomorphism i : V −→ W of tame M-modules and show that the

kernel of the map Z ⊗M i : Z ⊗M V −→ Z ⊗M W is a torsion group. The inclusions W (n) −→ W induce
an isomorphism

colimn Z⊗Σn W
(n) ∼=−−→ Z⊗MW .

For every n ≥ 0, the kernel of Z ⊗Σn i
(n) : Z ⊗Σn V

(n) −→ Z ⊗Σn W
(n) is annihilated by the order of the

group Σn. Since the kernel of Z ⊗M i is the colimit of the kernels of the maps Z ⊗Σn i
(n), it is torsion.

Thus the functor Q⊗M− is exact on short exact sequences of tameM-modules and the higher Tor groups
vanish as claimed.

Example 4.20 (Semifree symmetric spectra). For semifree symmetric spectra (see Example 2.13) the
spectral sequence of Theorem 4.15 typically does not degenerate. As an example we consider the semifree
symmetric spectrum G2S

2, where S2 is a Σ2-space by coordinate permutations.
We first identify the stable equivalence type of G2S

2. The spectrum G2S
2 is isomorphic to the quotient

spectrum of Σ2 permuting the smash factors of (F1S
1)∧2. Since the Σ2-action on (F1S

1)∧2 is free [not yet
shown], the map

EΣ+
2 ∧Σ2 (F1S

1)(2) −→ (F1S
1)∧2/Σ2 = G2S

2

which collapses EΣ2 to a point is a level equivalence. On the other hand, the stable equivalence λ(2) :
(F1S

1)(2) −→ S is Σ2-equivariant, so it induces a stable equivalence

EΣ+
2 ∧Σ2 (F1S

1)(2) −→ EΣ+
2 ∧Σ2 S = Σ∞BΣ+

2

on homotopy orbit spectra. Altogether we conclude that G2S
2 is stably equivalent to Σ∞BΣ+

2 .
The spectral sequence of Theorem 4.15 for G2S

2 has as E2-term the Tor groups of π∗(G2S
2). Ac-

cording to (4.32) of Chapter I these homotopy groups are isomorphic to P2 ⊗Σ2 (πs
∗+2S

2)(sgn). The sign
representation cancels the sign action induced by the coordinate flip of S2, so we have an isomorphism
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of M-modules πq(G2S
2) ∼= P2 ⊗Σ2 π

s
qS

0, this time with trivial action on the stable homotopy groups of
spheres. Using part (iii) of Lemma I.4.26, the spectral sequence of Theorem 4.15 for G2S

2 takes the form

E2
p,q
∼= Gp(Σ2;πs

qS
0) =⇒ πs

p+q(BΣ+
2 ) .

This spectral sequence has non-trivial differentials and it seems likely that it coincides with the Atiyah-
Hirzebruch spectral sequence for the stable homotopy of the spaceBΣ+

2 . [In generalGmL is stably equivalent
to the semistable symmetric spectrum L ∧Σn Ωn(S|S|)]

4.3. Proof of Theorem 4.7. We have to construct, for every symmetric spectrum A, a stable equiv-
alence p : A −→ γA such that the target γA is an injective Ω-spectrum. We divide this construction into
two steps.

Proposition 4.21. (i) There exists a endofunctor (−)inj on the category of symmetric spectra and a
natural level equivalence A −→ Ainj such that Ainj is an injective spectrum.
(ii) There exists a endofunctor Q on the category of symmetric spectra and a natural stable equivalence
A −→ QA such that QA is an Ω-spectrum.

We get Theorem 4.7 by setting γA = (QA)inj and as morphism pA : A −→ γA the composite of
the stable equivalence of part (ii) of Proposition 4.21 with the level equivalence, for the spectrum QA, of
part (i).

In both cases we use the small object argument (see Theorem 1.6 of Appendix) with respect to a certain
class of morphisms of symmetric spectra. As usual with small object arguments we have to limit the size
of objects. We call a symmetric spectrum of simplicial sets countable if the cardinality of the disjoint union
of all simplices in all levels is countable.

Lemma 4.22. A morphism of symmetric spectra is an injective fibration if and only if it has the right
lifting property with respect to all injective level equivalences between countable symmetric spectra.

Proof. Suppose that f : X −→ Y has the right lifting property with respect to all injective level
equivalences with countable target (and hence source). Consider a lifting problem

A //

i

��

X

f

��
B // Y

in which i : A −→ B is an injective level equivalence, with no restriction on the cardinality of B.
We denote by P the set of ‘partial lifts’: an element of P is a pair (U, h) consisting of a symmetric

subspectrum U of B which contains the image of A and such that the inclusion U −→ B (and hence the
morphism A −→ U) is a level equivalence and a morphism h : U −→ X making the following diagram
commute

A //

i

��

X

f

��
U

h

77nnnnnnnnnnnnnn
incl.

// B // Y

The set P can be partially ordered by declaring (U, h) ≤ (U ′, h′) if U is contained in U ′ and h′ extends h.
Then every chain in P has an upper bound, namely the union of all the subspectra U with the common
extension of the morphisms h. So by Zorn’s lemma, the set P has a maximal element (V, k). We show that
V = B, so k provides the required lifting showing that f is an injective fibration.

We argue by contradiction and suppose that V is strictly smaller than B. Then we can find a countable
subspectrum W of B which is not contained in V and such that the morphism V ∩W −→ W is a level
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equivalence [justify; see Lemmas 5.1.6 and 5.1.7 of [25]]. Since W is countable, f has the right lifting
property with respect to the inclusion V ∩W −→W . We have a pushout square

V ∩W //

��

V

��
W // V ∪W

so f also has the right lifting property with respect to the inclusion V −→ V ∪W . But that means that
the morphism k : V −→ X can be extended to V ∪W , which contradicts the assumption that (V, k) is a
maximal element in the set P extensions. �

Proof of part (i) of Proposition 4.21. Let I be a set containing one morphism of each isomor-
phism class of injective level equivalences i : A −→ B for which B is a countable symmetric spectrum.
The class of injective level equivalences of symmetric spectra is closed under wedges, cobase change and
composition, possibly transfinite. So every I-cell complex is an injective level equivalence.

We apply the small object argument (see Theorem 1.6) to the unique morphism from a given symmetric
spectrum A to the trivial spectrum. We obtain a functor A 7→ Ainj together with a natural transformation
j : A −→ Ainj which is an I-cell complex, hence an injective level equivalence. Moreover, the morphism
from Ainj to the trivial spectrum is I-injective. Lemma 4.22 shows that Ainj is an injective spectrum. �

Proof of part (ii) of Proposition 4.21. We use the small object argument with respect to a cer-
tain set J of injective stable equivalences. First we let λn : Fn+1S

1 −→ FnS
0 denote the morphism which

is adjoint to the wedge summand inclusion S1 −→ (FnS0)n+1 = Σ+
n+1∧S1 indexed by the identity element.

The morphism λn factors through the mapping cylinder as λn = rncn where cn : Fn+1S
1 −→ Z(λn) is

the ‘front’ mapping cylinder inclusion and rn : Z(λn) −→ FnS
0 is the projection, which is a homotopy

equivalence. We then define K as the set of all pushout product maps

im ∧ cn : ∆[m]+ ∧ Fn+1S
1 ∪∂∆[m]+∧Fn+1S1 ∂∆[m]+ ∧ Z(λn) −→ ∆[m]+ ∧ Z(λn)

for n,m ≥ 0, where im : ∂∆[m] −→ ∆[m] is the inclusion. We let FIΛ be the set of all morphisms
FnΛk[m]+ −→ Fn∆[m]+ induced by the horn inclusions for n,m ≥ 0 and 0 ≤ k ≤ m.

By adjointness, a symmetric spectrum X has the right lifting property with respect to the set FIΛ
if and only if for all n ≥ 0 the simplicial set Xn has the right lifting property for all inclusions of horns
into simplices, i.e., if Xn is a Kan simplicial set. By adjointness, a symmetric spectrum X has the right
lifting property with respect to the set K if and only if for all n ≥ 0 the map of simplicial sets map(cn, X) :
map(Z(λn), X) −→ map(Fn+1S

1, X) ∼= ΩXn+1 has the right lifting property for all inclusions of boundaries
into simplices, which is equivalent to map(cn, X) being an acyclic Kan fibration of simplicial set. Since the
mapping cylinder Z(λn) is homotopy equivalent to FnS

0, the simplicial set map(Z(λn), X) is homotopy
equivalent to map(FnS0, X) ∼= Xn. So altogether the right lifting property with respect to the set K implies
that the map σ̃n : Xn −→ ΩXn+1 is a weak equivalence of simplicial sets.

So if X has the right lifting property with respect to the union J = K ∪ FIΛ then X is levelwise Kan
and σ̃n : Xn −→ ΩXn+1 is a weak equivalence, so X is an Ω-spectrum.

Now we apply the small object argument (see Theorem 1.6) for the set J to the unique morphism from
a given symmetric spectrum A to the trivial spectrum. We obtain a functor A 7→ QA together with a
natural transformation j : A −→ QA which is an J-cell complex and such that QA is J-injective. By the
above, this means that QA is an Ω-spectrum. By Proposition 4.5 the class of injective stable equivalences
of symmetric spectra is closed under wedges, cobase change and composition, possibly transfinite. So every
J-cell complex such as j : A −→ QA is an injective stable equivalence, which finishes the proof. �

In Proposition 1.8 we proved that every level equivalence between injective Ω-spectra is a homotopy
equivalence and that every π∗-isomorphism between Ω-spectra is a level equivalence. Along similar lines we
have

Lemma 4.23. Every stable equivalence between semistable symmetric spectra is a π∗-isomorphism.
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Proof. Suppose f : A −→ B is a stable equivalence between semistable spectra. We first treat
the special case where A and B are Ω-spectra and show that then f is even a level equivalence. In the
commutative square

A //

f

��

Ainj

f inj

��
B // Binj

the horizontal morphisms are level equivalences with injective targets of Proposition 4.21 (i). Since A and B
are Ω-spectra, so are Ainj and Binj. Thus the spectra Ainj and Binj are injective Ω-spectra. The morphism
f inj is a stable equivalence between injective Ω-spectra, hence a homotopy equivalence. In particular, all
three morphisms except possibly f are π∗-isomorphisms, hence f is a π∗-isomorphism.

Now we treat the general case where A and B are arbitrary semistable symmetric spectra. In the
commutative square

A
λ∞A //

f

��

R∞(S|A|)

R∞(S|f |)
��

B
λ∞B

// R∞(S|B|)

the horizontal morphisms are π∗-isomorphisms and the spectra R∞A and R∞B are Ω-spectra, by parts (iv)
and (v) of Theorem I.4.44. Since π∗-isomorphisms are stable equivalences and f is one, the morphism R∞f
is a stable equivalence. By the first part R∞f is a π∗-isomorphism, and hence so is f . �

5. Derived smash product

The main result of this section is that the pointset level smash product of symmetric spectrum (see
Section I.3) descends to a closed symmetric monoidal product on the stable homotopy category. Recall that
γ : SpΣ −→ SHC denotes the universal functor from symmetric spectra to the stable homotopy category
which inverts stable equivalences (see Theorem 4.12).

Theorem 5.1. The smash product of symmetric spectra has a total left derived functor. More precisely,
there exists a functor

∧L : SHC × SHC −→ SHC
and a natural transformation

ψA,B : (γA) ∧L (γB) −→ γ(A ∧B)
with the following universal property. If F : SHC × SHC −→ SHC is any functor and β : F (γA, γB) −→
γ(A∧B) a natural transformation, then there exists a unique natural transformation κ : F (X,Y ) −→ X∧LY
such that ψ ◦ κ(γ × γ) = β.

We refer to the functor ∧L as the derived smash product . We postpone the proof of Theorem 5.1 to the
end of this section. What makes it work is, roughly speaking, that every symmetric spectrum A admits a
‘flat resolution’, i.e., a level equivalence A[ −→ A from a symmetric spectrum such that smashing with A[

preserves level and stable equivalences. The proof will also show that if A or B is flat, than the universal
natural transformation ψA,B : (γA) ∧L (γB) −→ γ(A ∧ B) is an isomorphism in the stable homotopy
category. In other words, as soon as one of the factors is flat, the pointset level smash product has the
‘correct’ stable homotopy type.

Theorem 5.2. For every injective Ω-spectrum Z the functor Hom(−, Z) has a total right derived
functor. More precisely, there exists a functor

RHom(−, Z) : SHCop −→ SHC
and a natural transformation

φ : γ(Hom(A,Z)) −→ RHom(γA,Z)
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of functors from (SpΣ)op to SHC with the following universal property. If G : SHCop −→ SHC is any
functor and α : γ(Hom(A,Z)) −→ G(γA) a natural transformation, then there exists a unique natural
transformation λ : RHom(−, Z) −→ G such that λ(γ)φ = α.

We draw an important corollary from Theorem 5.1.

Theorem 5.3. The stable homotopy category is closed symmetric monoidal with respect to the derived
smash product. The unit object is γS, the stably equivalent replacement of the sphere spectrum.

[check: there is a unique way to choose natural coherence isomorphisms such that ψ : γA ∧L γB −→
γ(A ∧B) and the identity of γS make γ : SpΣ −→ SHC into a lax symmetric monoidal functor]

Proof. We have to construct coherence isomorphisms for the derived smash product; of course, these
don’t just come out of the blue, but they are ‘left derived’ from the coherence isomorphisms for the pointset
level smash product. We start with the associativity. We consider the functor

∧L ◦ (∧L × Id) : SHC × SHC × SHC −→ SHC

together with the natural transformation

(γA ∧L γB) ∧L γC ψA,B∧LId−−−−−−→ γ(A ∧B) ∧L γC ψA∧B,C−−−−−→ γ((A ∧B) ∧ C)
γ(αA,B,C)−−−−−−−→ γ(A ∧ (B ∧ C)) .

The universal property of the pair (∧L, ψ) implies that the above pair is a total left derived functor of
∧ ◦ (Id×∧) : (SpΣ)3 −→ SpΣ.

On the other hand there is the functor

∧L ◦ (Id×∧L) : SHC × SHC × SHC −→ SHC

together with the natural transformation

γA ∧L (γB ∧L γC)
Id∧LψB,C−−−−−−−→ γA ∧L γ(B ∧ C)

ψA,B∧C−−−−−→ γ(A ∧ (B ∧ C)) .

The universal property of the pair (∧L, ψ) similarly implies that this pair is another total left derived functor
of ∧ ◦ (Id×∧). By the uniqueness of universal objects there is a preferred natural isomorphism

ᾱX,Y,Z : (X ∧L Y ) ∧L Z −→ X ∧L (Y ∧L Z)

of functors from SHC3 to SHC such that for all symmetric spectra A,B and C the diagram

(γA ∧L γB) ∧L γC
ψA,B∧LId //

ᾱγA,γB,γC

��

γ(A ∧B) ∧L γC
ψA∧B,C // γ((A ∧B) ∧ C)

γ(αA,B,C)

��
γA ∧L (γB ∧L γC)

Id∧ψB,C
// γA ∧L γ(B ∧ C)

ψA,B∧C

// γ(A ∧ (B ∧ C))

commutes. Similarly, the universal properties of total left derived functors make sure that the pentagon
axiom for the pointset level smash product of symmetric spectra is inherited by the derived smash product.

The construction of the symmetry isomorphism τ̄ : X ∧L Y −→ Y ∧L X is completely analogous, and
there is a unique such natural isomorphism such that for all symmetric spectra A and B the

γA ∧L γB
ψA,B //

τ̄γA,γB

��

γ(A ∧B)

γ(τA,B)

��
γB ∧L γA

ψB,A

// γ(B ∧A)

commutes. [define unit isomorphism r̄X : X ∧L γ(S) ∼= X, coherence diagrams] �
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Now that we constructed the derived smash product (modulo the proof of Theorem 5.1), we can
consider monoid objects in the stable homotopy category with respect to the derived smash product. For
us a homotopy ring spectrum or ring spectrum up to homotopy is an injective Ω-spectrum S together with
morphisms µ : S ∧L S −→ S and ι : γS −→ S in the stable homotopy category which are associative and
unital in the sense that the following diagrams commute

(S ∧L S) ∧L S
ᾱS,S,S //

µ∧LId

��

S ∧L (S ∧L S)
Id∧Lµ // S ∧L S

µ

��

S ∧L S

l̄S
&&MMMMMMMMMMMM

ι∧LId // S ∧L S
µ

��

S ∧L S
Id∧Lιoo

r̄S
xxqqqqqqqqqqqq

S ∧L S µ
// S S

A homotopy ring spectrum (S, µ, ι) is homotopy commutative if the multiplication is unchanged when
composed with the symmetric isomorphism, i.e., if the relation µ ◦ τ̄S,S = µ holds in the stable homotopy
category.

The definition of the derived smash product was such that the universal functor γ : SpΣ −→ SHC is
lax symmetric monoidal (with respect to the universal transformation ψ : ∧L ◦ (γ× γ) −→ γ ◦∧). A formal
consequence is that γ takes symmetric ring spectra to homotopy ring spectra. Indeed, if (R,µ : R ∧R −→
R, ι : S −→ R) is a symmetric ring spectrum, then γR becomes a ring spectrum up to homotopy with
respect to the multiplication map

(γR) ∧L (γR)
ψR,R−−−→ γ(R ∧R)

γ(µ)−−−→ γR

and the unit map γ(ι) : γS −→ γR.
The converse is far from being true. More precisely, given a ring spectrum up to homotopy S one

can ask if there is a symmetric ring spectrum R such that γR is isomorphic to S as a homotopy ring
spectrum. There is an infinite sequence of coherence obstructions for the associativity to get a positive
answer. [Illustrate the pentagon coherence condition?] The question of when a homotopy commutative
homotopy ring spectrum is represented by a commutative symmetric ring spectrum is even more subtle.
We hope to get back to this later, and discuss some of the obstruction theories available to tackle such
‘rigidification’ questions.

A concrete example is the mod-pMoore spectrum SZ/p for a prime p ≥ 5. Indeed, SZ/p has a homotopy
associative and homotopy commutative multiplication in the stable homotopy category for p ≥ 5, but there
is no symmetric ring spectrum whose underlying spectrum is a mod-p Moore spectrum.

[derived smash product commutes with suspension and preserves distinguished triangles]

5.1. Flat symmetric spectra. To motivate the following definition, recall that a module over a
commutative ring is called flat if tensoring with it preserves monomorphisms.

Definition 5.4. A symmetric spectrum A of simplicial sets is flat if the functor A ∧ − preserves
monomorphisms.

There is a corresponding notion of flatness for symmetric spectra of topological spaces [reference], but
simply requiring that A∧− preserves monomorphisms is not the right condition in the topological context.
We will show in Chapter III that flat symmetric spectra are the cofibrant objects in suitable ‘flat model
structures’.

Example 5.5. For every m ≥ 0 and every pointed Σm-simplicial set L the semifree symmetric spectrum
GmL is flat and moreover, the functor GmL ∧− preserves level equivalences. As special cases, this applies
to free symmetric spectra FnK and suspension spectra Σ∞K.

Indeed, if X is another symmetric spectrum then GmL∧X is isomorphic to the twisted smash product
L .m X (see Proposition I.3.5) and so it is trivial in levels below m and we have a natural isomorphism

(5.6) (GmL ∧X)m+n
∼= Σ+

m+n ∧Σm×Σn L ∧Xn ,
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As a pointed simplicial set, the right hand side is a wedge of
(
m+n
m

)
copies of L∧Xn. So if f : X −→ Y

is a monomorphism respectively a level equivalence of symmetric spectra of simplicial sets, then so is
Id∧f : GmL ∧X −→ GmL ∧ Y .

Some other properties of flat spectra are fairly straightforward from the definition:

Proposition 5.7. (i) A wedge of flat symmetric spectra is flat.
(ii) A filtered colimit of flat symmetric spectra is flat.
(iii) The smash product of two flat symmetric spectra is flat.

Proof. Properties (i) and (ii) follow from the two facts that the smash product commutes with colimits
and that a filtered colimit or a wedge of monomorphisms is a monomorphism.

(iii) Let A and be B flat symmetric spectra of simplicial sets. If f : X −→ Y is a monomorphism, then
Id∧f : B ∧X −→ B ∧Y is a monomorphism since B is flat; then Id∧ Id∧f : A∧B ∧X −→ A∧B ∧Y is a
monomorphism since A is flat (where we have implicitly used the associativity isomorphisms). Thus A∧B
is flat. �

An example of a non-flat symmetric spectrum is S̄, the subspectrum of the sphere spectrum given by

(5.8) S̄n =

{
∗ for n = 0
Sn for n ≥ 1.

So the difference between S̄ and S is only one missing vertex in level 0, but that missing vertex makes a
huge difference for the flatness property. Indeed, since S̄ is trivial in level 0 we have

(S̄ ∧ S̄)2 = Σ+
2 ∧ S̄1 ∧ S̄1 = Σ+

2 ∧ S2

while (S̄∧ S)2 ∼= S̄2 = S2. So S̄∧− does not take the inclusion S̄ −→ S to a monomorphism, hence S̄ is not
flat.

Now we develop a convenient criterion for recognizing flat symmetric spectra which involves latching
spaces.

Definition 5.9. The nth latching space LnA of a symmetric spectrum A is the Σn-simplicial set
(A∧ S̄)n where S̄ is the subspectrum of the sphere spectrum defined in (5.8). The nth level of the morphism
Id∧i : A ∧ S̄ −→ A ∧ S ∼= A, for i : S̄ −→ S the inclusion, provides a natural map of pointed Σn-spaces
νn : LnA −→ An.

Since the latching spaces play important roles in what follows, we make their definition more explicit.
Specializing the construction of the smash product (compare Section I.3) to A ∧ S̄ displays LnA as the
coequalizer, in the category of pointed Σn-simplicial sets, of two maps

n−2∨
p=0

Σ+
n ∧Σp×Σ1×Σn−p−1 Ap ∧ S1 ∧ Sn−p−1 −→

n−1∨
p=0

Σ+
n ∧Σp×Σn−p Ap ∧ Sn−p .

(in the target we have discarded the wedge summand which would contribute An ∧ S̄0, since that is just a
point, and similarly in the source). One of the maps takes the wedge summand indexed by p to the wedge
summand indexed by p+ 1 using the map

σp ∧ Id : Ap ∧ S1 ∧ Sn−p−1 −→ Ap+1 ∧ Sn−p−1

and inducing up. The other map takes the wedge summand indexed by p to the wedge summand indexed
by p using the canonical isomorphism

Ap ∧ S1 ∧ Sn−p−1 ∼=−→ Ap ∧ Sn−p

and inducing up.
For example, L0A is a one-point simplicial set, L1A = A0 ∧ S1 and L2A is the pushout of the diagram

A0 ∧ S2 act on S2

←−−−−−−− Σ+
2 ∧A0 ∧ S2 Id∧σ0∧Id−−−−−−→ Σ+

2 ∧A1 ∧ S1 .
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Thus L2A is the quotient of Σ+
2 ∧A1 ∧ S1 by the equivalence relation generated by

γ ∧ σ0(a ∧ x) ∧ y ∼ (γ(1, 2)) ∧ σ0(a ∧ y) ∧ x

for a ∈ A0 and x, y ∈ S1. In general, LnA is a quotient of Σ+
n ∧Σn−1 An−1 ∧ S1 by a suitable equivalence

relation.

Proposition 5.10. A symmetric spectrum of simplicial sets A is flat if and only if for every n ≥ 1 the
map of Σn-simplicial sets νn : LnA −→ An is injective.

The proof of Proposition 5.10 uses a certain natural ‘filtration’ for symmetric spectra which shows
how a general symmetric spectrum is built from semifree ones. We have put the term ‘filtration’ in quotes
since in general this only is a natural sequence of symmetric spectra and morphisms with colimit the given
spectrum. In the special case of flat symmetric spectra, the morphisms are injective.

For any integer k we denote by S[k] the sphere spectrum truncated below level k, i.e., the symmetric
subspectrum of S with level

(S[k])n =

{
∗ for n < k

Sn for n ≥ k.

For example we have S[1] = S̄ and S[k] = S for all k ≤ 0. Note that two consecutive truncated sphere spectra
are related by the equation S1 ∧ S[k] = sh(S[1+k]). Given a symmetric spectrum A we define a sequence
FmA of symmetric spectra by

(FmA)n = (S[n−m] ∧A)n
as a Σn-space. The structure map (FmA)n ∧ S1 −→ (FmA)n+1 is given by the composite

(S[n−m] ∧A)n ∧ S1 twist−−−→ S1 ∧ (S[n−m] ∧A)n = (S1 ∧ S[n−m] ∧A)n = (sh(S[1+n−m]) ∧A)n
ξS[1+n−m],A−−−−−−−−→ (sh(S[1+n−m] ∧A))n = (S[1+n−m] ∧A)1+n

χ1,n−−−→ (S[n+1−m] ∧A)n+1 .

For example we have

F 0A = Σ∞A , (Fn−1A)n = LnA and (FmA)n = An for m ≥ n.

In general the spaces of (FmA)n for m < n are a kind of ‘generalized latching objects’. The inclusions
S[k+1] −→ S[k] induce morphisms jm : Fm−1A −→ FmA and in a fixed level n, the system stabilizes to
(A ∧ S)n which is isomorphic to An. So the colimit of the sequence of symmetric spectra FmA over the
morphisms jm is isomorphic to A.

Proposition 5.11. For every symmetric spectrum A and every m ≥ 0 the commutative square

(5.12) GmLmA
Gmνm //

��

GmAm

��
Fm−1A

jm
// FmA

is a pushout square, where the vertical morphisms are adjoint to the identity LmA = (Fm−1A)m respectively
the isomorphism (FmA)m ∼= Am.

Proof. The commutative square of symmetric spectra

Sk .k S̄ //

��

Sk .k S = GkS
k

��
S[k+1] // S[k]
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is a pushout, where .k is the twisted tensor product, see Example I.2.20. So after smashing with A we
obtain a pushout square

Sk .k (S̄ ∧A) //

��

Sk .k A

��
S[k+1] ∧A // S[k] ∧A

Evaluating at level k +m we obtain a pushout square of Σk+n-spaces (or simplicial sets)

Σ+
k+m ∧Σk×Σm Sk ∧ LmA //

��

Σ+
k+m ∧Σk×Σm Sk ∧Am

��
(Fm−1A)k+m // (FmA)k+m

which is precisely the part of the square (5.12) in level k +m. �

Proof of Proposition 5.10. One direction is essentially clear by definition: the inclusion i : S̄ −→ S
is certainly a monomorphism, so if A is flat, then Id∧i : A ∧ S̄ −→ A ∧ S is a monomorphism, hence each
level νn : LnA −→ An is injective.

[Alternative: define ‘flat cofibrations’; show they are preserves under cobase change, composition; show
inductively that Fm−1A −→ FmA is a flat cofibration] Now suppose conversely that the maps LnA −→ An
are injective and let f : X −→ Y be a monomorphism of symmetric spectra of simplicial sets. We use the
filtration of A by the spectra FmA and show inductively that the map Id∧f : FmA ∧X −→ FmA ∧ Y is
a monomorphism. Since A is the colimit of the FmA, the smash product commutes with colimits and the
sequential colimit of monomorphisms is a monomorphism, this proves that Id∧f : A ∧ X −→ A ∧ Y is a
monomorphism, i.e., A is flat.

For the inductive step we use the pushout square of Proposition 5.11. Since smashing is a left adjoint
the spectrum FmA ∧X is (isomorphic to) the pushout of the upper row in the commutative diagram

(5.13) Fm−1A ∧X
Id∧f

��

GmLmA ∧X
Gmνm∧Id //

Id∧f
��

oo GmAm ∧X

Id∧f
��

Fm−1A ∧ Y GmLmA ∧ Y
Gmνm∧Id

//oo GmAm ∧ Y

and FmA∧Y is the pushout of the lower row. The left vertical morphism is injective by induction hypothesis,
and we claim that in addition the pushout product map of the right square in (5.13)

Gmνm ∧ f : GmLmA ∧ Y ∪GmLmA∧X GmAm ∧X −→ GmAm ∧ Y

is injective. We can verify this claim levelwise and we can use the description of the levels of a smash
product GmL ∧X, for L any Σm-simplicial set,

(GmL ∧X)m+n
∼= Σ+

m+n ∧Σm×Σn L ∧Xn

of Proposition I.3.5. The claim in level m+ n then follows from the fact that the map of pointed simplicial
sets

νm ∧ fn : LmA ∧ Yn ∪LmA∧Xn Am ∧Xn −→ Am ∧ Yn
is injective since both νm : LmA −→ Am and fn : Xn −→ Yn are injective.

It is a general fact about simplicial sets (actually about set) that given a commutative diagram

A

��

B //

��

oo C

��
A′ B′ //oo C ′
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in which the map from A −→ A′ and the map B′ ∪B C −→ C ′ are injective, then the induced map on
pushouts A ∪B C −→ A′ ∪B′ C ′ is injective.

If we apply this levelwise to the diagram (5.13) we can conclude that the induced morphism on pushouts
FmA ∧X −→ FmA ∧ Y is also a monomorphism, which finishes the proof. �

Proposition 5.14. Let A be a flat symmetric spectrum.
(i) Smashing with A preserves level equivalences, π∗-isomorphisms and stable equivalences.
(ii) For every injective spectrum X the symmetric spectrum Hom(A,X) is injective.

Proof. We first prove the statement in (i) referring to level equivalences. For a level equivalence
f : X −→ Y we show by induction that the morphisms f ∧ Id : X∧FmA −→ Y ∧FmA are level equivalence
for all m ≥ 0. For the inductive step we use the pushout square of Proposition 5.11. Since smashing is a
left adjoint the spectrum FmA ∧ X is (isomorphic to) the pushout of the upper row in the commutative
diagram

Fm−1A ∧X
Id∧f

��

LmA .m X
νm.mId //

Id .mf

��

oo Am .m X

Id .mf

��
Fm−1A ∧ Y LmA .m Y

νm.mId
//oo Am .m Y

and FmA ∧ Y is the pushout of the lower row. The left vertical morphism is a level equivalence by
induction hypothesis and the other two vertical morphism are level equivalences by Example 5.5. Because
(L .m X)m+n = Σ+

m+n ∧Σm×Σn L ∧ Xn the functor − .m X takes injective maps of Σm-simplicial sets to
monomorphisms of symmetric spectra, and similarly for Y . Since A is flat the map νm : LmA −→ Am is
injective, and so the two horizontal morphisms labeled νm .m Id are monomorphisms. The gluing lemma
for simplicial sets allows us to conclude that the induced morphism on pushouts FmA ∧X −→ FmA ∧ Y
is also a level equivalence, which finishes the proof.

We now prove (i) for π∗-isomorphisms. Smash product with A commutes with the mapping cone
construction, so using the long exact sequence of homotopy groups of Proposition I.4.7 (i) it suffices to
show that if a symmetric spectrum C has trivial stable homotopy groups, then so does A ∧ C. By [...]
the symmetric spectrum L ∧ C has trivial stable homotopy groups for every pointed simplicial set L. The
isomorphism

πk(L .m C) ∼= Z[M]+m ⊗Σm×M πk+m(L ∧ C)
(see (4.29) in Chapter I) combined with the isomorphism L .m C ∼= GmL ∧ C shows that the homotopy
groups of GmL ∧ C are trivial. In other words, the claim holds for semifree symmetric spectra.

If A is an arbitrary flat symmetric spectrum we again use induction and show that FmA∧C has trivial
homotopy groups for all m ≥ 0. Since homotopy groups commute with filtered colimits this show that the
groups π∗(A ∧ C) vanish and it finished the argument. In the inductive step we use the pushout square of
Proposition 5.11. Since A is flat the morphism νm : LmA −→ Am is injective, hence jm∧Id : Fm−1A∧C −→
FmA ∧ C is a monomorphism. We know by induction that the homotopy groups of Fm−1A ∧ C vanish,
and we know that the homotopy groups of

(FmA ∧ C)/(Fm−1A ∧ C) ∼= Gm(Am/LmA) ∧ C
vanish by the special case. So the long exact sequence of homotopy groups shows that the homotopy groups
of FmA ∧ C are trivial.

Now we prove statement (ii). Given an level equivalence i : K −→ L of symmetric spectra which is also a
monomorphism and morphism g : K −→ Hom(A,X) we have to produce an extension ḡ : L −→ Hom(A,X)
satisfying ḡ ◦ f = g. By the definition of flatness and part (i) the morphism i ∧ Id : K ∧ A −→ L ∧ A
is an injective level equivalence. Since X is injective, the adjoint G : K ∧ A −→ X if g has an extension
Ḡ : L ∧ A −→ X satisfying Ḡ(f ∧ Id) = G. The adjoint L −→ Hom(A,X) of Ḡ is then the required
extension of g.

Now we prove the part of (i) referring to stable equivalences. If Z is an injective Ω-spectrum, then
Hom(A,X) is injective by part (ii) and an Ω-spectrum by [ref.] So for every stable equivalence f : X −→ Y
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the induced map [f,Hom(A,Z)] : [Y,Hom(A,Z)] −→ [X,Hom(A,Z)] is bijective. By adjunction, [f ∧
A,Z] : [Y ∧ A,Z] −→ [X ∧ A,Z] is bijective. Since this holds for all injective Ω-spectra Z, the morphism
f ∧ Id : X ∧A −→ Y ∧A is a stable equivalence. �

Example 5.15. Here is an example which shows that smashing with an arbitrary symmetric spectrum
does not preserve level equivalences. Let X be the symmetric spectrum with X0 = S0, X1 = CS1 and
Xn = ∗ for n ≥ 2. Here CS1 = S1 ∧ ∆[1] is the cone on S1, where ∆[1] is pointed at the 0th vertex.
The only nontrivial structure map σ0 : X0 ∧ S1 −→ X1 is the cone inclusion S1 −→ CS1. Let Y be the
symmetric spectrum with Y0 = S0 and Yn = ∗ for n ≥ 1. Then the unique morphism f : X −→ Y which
is the identity in level 0 is a level equivalence, but we claim that f ∧ S̄ : X ∧ S̄ −→ Y ∧ S̄ is not a level
equivalence. Indeed, in level 2 we have

(X ∧ S̄)2 = L2X ∼= pushout(S2 act←−− Σ+
2 ∧ S2 i∧S1

−−−→ Σ+
2 ∧ (CS1) ∧ S1)

which is the suspension of the double cone on S1, i.e., a simplicial 3-sphere. In contrast,

(Y ∧ S̄)2 = L2Y ∼= pushout(S2 act←−− Σ+
2 ∧ S2 −→ ∗)

is a point, so f∧S̄ is not a weak equivalence in level 2. [give an examples where π∗-isos or stable equivalences
are not preserved]

Proposition 5.16 (Flat resolutions). There exists a functor (−)[ : SpΣ −→ SpΣ with values in flat
symmetric spectra and a natural level equivalence A[ −→ A. Moreover, there is an isomorphism (K∧A)[ ∼=
K ∧A[ which is natural in pointed simplicial sets K and symmetric spectra A.

Proof. Given a symmetric spectrum A we construct the ‘flat resolution’ A[ and the level equivalence
r : A[ −→ A level by level, starting with A[0 = A0 and r0 = Id. Suppose now that A[ and r have been
constructed up to level n − 1. The definition of the nth latching only involves the data of a symmetric
spectrum in levels strictly smaller than n. So we have a latching object LnA[ and the morphism r induces a
Σn-equivariant map Lnr : LnA[ −→ LnA. We define A[n as the pointed mapping cylinder of the composite
map

LnA
[ Lnr−−→ LnA

νn−→ An .

This inherits a Σn-action from the actions on LnA[ and An, and the trivial action on the cylinder coordinate.
The structure map

σn−1 : A[n−1 ∧ S1 −→ A[n = Z(νn ◦ Lnr : LnA[ −→ An)
is the composite of the map

A[n−1 ∧ S1 1∧Id−−−→ Σ+
n ∧Σn−1×Σ1 A

[
n−1 ∧ S1 proj−−→ LnA

[

with the inclusion into the mapping cylinder. The nth level of the morphism r is the projection A[n =
Z(νn ◦Lnr) −→ An of the mapping cylinder onto the target; this is a homotopy equivalence so in particular
a weak equivalence.

After the dust settles we have constructed a symmetric spectrum A[ and a morphism r : A[ −→ A
which is levelwise a simplicial homotopy equivalence, so altogether a level equivalence (but in general not a
homotopy equivalence of symmetric spectra). The construction is made so that the map νn : LnA[ −→ A[n
is the mapping cylinder inclusion, thus injective. So by the criterion of Proposition 5.10 the symmetric
spectrum A[ is indeed flat. �

Theorem 5.17. Let X and Y be two semistable spectra one of which is flat. Then the smash product
X ∧ Y is semistable.

Proof. Suppose X is flat and semistable. We first prove the proposition when Y has a special form,
namely Y = ΩnL′(Σ∞K) for a pointed simplicial set K, where L′ is a level fibrant replacement functor.
Smashing with a flat symmetric spectrum preserves level equivalences (Proposition 5.14) so X ∧ L′(Σ∞K)
is level equivalent to X ∧Σ∞K, which is isomorphic to the symmetric spectrum K ∧X and thus semistable
by Example I.4.52.
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The counit of the adjunction between loop and suspension is a π∗-isomorphism ε : Sn∧ΩnL′(Σ∞K) −→
L′(Σ∞K), so by Proposition 5.14 the map

Id∧ε : X ∧ Sn ∧ ΩnL′(Σ∞K) −→ X ∧ L′(Σ∞K)

is a π∗-isomorphism. Since the target is semistable, so is X ∧ Sn ∧ΩnL′(Σ∞K). A symmetric spectrum is
semistable if and only if its suspension is, so we conclude that X ∧ ΩnL′(Σ∞K) is semistable.

To prove the general case we use Shipley’s detection functor [56, Sec. 3] which associates to every
symmetric spectrum Y the semistable symmetric spectrum DY . Here DY is the homotopy colimit of a
functor DY : I −→ SpΣ from the category I to the category of symmetric spectra with values DY (n) =
ΩnL′(Σ∞Yn). By the above the symmetric spectrum X ∧DY (n) = X ∧ΩnL′(Σ∞Yn) is semistable for each
n ≥ 0. Hence the homotopy colimit of the functor X ∧DY : I −→ SpΣ, which is isomorphic to X ∧DY , is
semistable by Example 4.53.

By [56, Cor. 3.1.7] the semistable spectrum Y is related by a chain of π∗-isomorphisms to the symmetric
spectrum DY . By Proposition 5.14 X ∧ Y is thus related by a chain of π∗-isomorphisms to the symmetric
spectrum X ∧DY , which we just recognized as semistable. Hence X ∧ Y is semistable, which finishes the
proof. �

We recall from Example I.2.39 that every Γ-space A of simplicial sets can be extended to a simplicial
functor from the category of pointed simplicial sets. The extended functor then comes with a natural
associative and unital assembly map A(K) ∧ L −→ A(K ∧ L). Evaluating A on simplicial spheres give
symmetric spectrum A(S). More generally, we can evaluate a Γ-space A on any symmetric spectrum and
obtain a new symmetric spectrum A(X) by A(X)n = A(Xn) with structure maps

A(Xn) ∧ S1 assembly−−−−−→ A(Xn ∧ S1) σn−−→ A(Xn+1) .

In this situation the collection of assembly maps

A(Sn) ∧Xm
assembly−−−−−→ A(Sn ∧Xm)

A(twist)−−−−−→ A(Xm ∧ Sn)
σn−−→ A(Xm+n)

A(χm,n)−−−−−→ A(Xn+m)

form a bimorphism and thus assemble into a morphism of symmetric spectra

A(S) ∧X −→ A(X)

which we also refer to as the assembly map.

Proposition 5.18. Let A be is a Γ-space of simplicial sets and X a symmetric spectrum of simplicial
sets.

(i) The symmetric spectrum A(S) obtained by evaluating A on spheres is flat.
[is A(X) flat if X is flat?]

(ii) The assembly morphism A(S) ∧X −→ A(X) is a π∗-isomorphism.
(iii) If X is semistable then the symmetric spectrum spectrum A(X) is again semistable.

Proof. (i) For every Γ-space of simplicial sets X and n ≥ 0 we define a new Γ-space LnX by

(LnX)(K) = colimA 6=⊂{1,...,n}X(KA) ∧KcA

for pointed sets K, where cA = {1, . . . , n} − A is the complement of A. The assembly maps assemble
into a morphism of Γ-spaces λn : LnX −→ X(−∧n). We then have X(S)n = X(Sn) = X((S1)∧n) and
Ln(X(S)) = (LnX)(S1) and the map λn : Ln(X(S)) −→ X(Sn) is given by evaluation the transformation
λn : LnX −→ X(−∧n) at S1.

So it suffices to show that for every Γ-space the morphism LnX −→ X(−∧n) is injective.
For all pointed simplicial sets A and B and all Γ-spaces X the natural map

X(A) ∧B ∪A∧X(1+)∧B A ∧X(B) −→ X(A ∧B)

induced by the assembly maps is injective. [...] For A = B = K this is the above.
(ii) We choose a strict (i.e., objectwise) weak equivalence of Γ-spaces Ac −→ A such that Ac is cofibrant

in the strict Quillen model structure [ref.] Then for every simplicial set K, the map Ac(K) −→ A(K) is a
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weak equivalence and thus the morphisms of symmetric spectra Ac(S) −→ A(S) and Ac(X) −→ A(X) are
level equivalences. In the commutative square

Ac(S) ∧X //

��

Ac(X)

��
A(S) ∧X // A(X)

the left vertical morphism is a level equivalence since Ac(S) and A(S) are flat. So in order to show that the
lower assembly map is a π∗-isomorphism we can show that the upper assembly map is one; in other words,
we can assume without loss of generality that the Γ-space A is Q-cofibrant.

Now use induction over the skeleta of the Γ-space. This reduced to the special case A = Γn of a
representable Γ-space where the assembly map becomes (S × · · · × S) ∧X = Γn(S) ∧X −→ Γn(X) = Xn

which is a π∗-isomorphism.
(iii) The symmetric spectrum A(S) is flat (by Proposition 5.7 (ii)) and semistable, so by Theorem 5.17

the smash product A(S) ∧X is semistable. By Proposition 5.18 the assembly map A(S) ∧X −→ A(X) is
a π∗-isomorphism, hence its target is also semistable. �

Example 5.19. Let A be an abelian group. We consider the Γ-space HA which assigns to a finite
pointed set k+ the simplicial abelian group A ⊗ Z̃[k+]. Then HA(S) equals the Eilenberg-Mac Lane
spectrum HA as defined in Example I.2.7. Proposition 5.18 shows that the Eilenberg-Mac Lane spectrum
HA is flat and the assembly morphism

HA ∧X −→ HA(X)

is a π∗-isomorphism for every symmetric spectrum of simplicial sets X. The nth level of the target spectrum
is A ⊗ Z̃[Xn] whose homotopy groups are the reduced homology groups of the pointed simplicial set Xn

with coefficients in A. So we get natural isomorphisms of abelian groups

(5.20) πk(HA ∧X) ∼= colimn H̃k+n(X;A) .

We still owe the proof of Theorem 5.1, i.e., we have to construct the derived smash product. Given
injective Ω-spectra X and Y define the derived smash product on objects by

X ∧L Y = γ(X[ ∧ Y )

where r : X[ −→ X is the ‘flat resolution’ of Proposition 5.16, i.e, a functorial level equivalence with
flat source. We could also use flat resolutions of both factors, but that makes no real difference since the
morphism X[∧Y [ −→ X[∧Y is a level equivalence by Proposition 5.14 (i), and so becomes an isomorphism
in the stable homotopy category after applying the universal functor γ : SpΣ −→ SHC.

This construction is evidently functorial in morphisms (i.e., homotopy classes) Y −→ Y ′ since smashing
commutes with ∆[1]+ ∧ − and hence preserves the homotopy relation. Functoriality in X need an extra
argument. Since the flat resolutions of Proposition 5.16 commutes with smash product with ∆[1]+ it induces
a well-defined map (−)[ : [X,X ′] −→ [X[, (X ′)[] on homotopy classes of morphisms, and then we can define
[f ] ∧L Y : X ∧L Y −→ X ′ ∧L Y to be [f [ ∧ Y ].

Having defined a functor ∧L : SHC × SHC −→ SHC we now need universal natural transformation
ψA,B : (γA) ∧L (γB) −→ γ(A ∧ B) in symmetric spectra A and B. We have a stable equivalence (pA)[ :
A[ −→ (γA)[ obtained by taking flat resolutions of the stable equivalence pA : A −→ γA. Since source
and target of (pA)[ are flat, the map (pA)[ ∧ pB : A[ ∧B −→ (γA)[ ∧ γB is again a stable equivalence. So
this last map become an isomorphism in the stable homotopy category after applying the universal functor
γ : SpΣ −→ SHC. Now we define ψA,B as the composite

(γA) ∧L (γB) = γ
(
(γA)[ ∧ γB

)
γ((pA)[∧pB)−1

−−−−−−−−−−→ γ(A[ ∧B)
γ(rA∧Id)−−−−−−→ γ(A ∧B) .
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If A or B is flat, then the morphism rA ∧ Id : A[ ∧ B −→ A ∧ B is a level equivalence [justify for A flat],
so it becomes an isomorphism after applying γ. Thus if at least one of A or B is flat, then ψA,B is an
isomorphism in the stable homotopy category.

Having defined the functor ∧L and the transformation ψ : ∧L ◦ (γ × γ) −→ γ ◦ ∧, it remains to show
that the pair (∧L, ψ) has the universal property of a total left derived functor. So we consider another
functor F : SHC × SHC −→ SHC and a natural transformation β : F (γA, γB) −→ γ(A ∧B). We define a
natural transformation κ : F (X,Y ) −→ X ∧L Y as the composite

F (X,Y )
∼=−−→ F (γX, γY )

∼=←−− F (γ(X[), γY )
β
X[,Y−−−−→ γ(X[ ∧ Y ) = X ∧L Y

and then we have ψ ◦ κ(γ × γ) = β [...]. Moreover, κ is uniquely determined by this property.

Exercises

Exercise 6.1. Show that for every injective Ω-spectrum X and all n,m ≥ 0 the bijection

[FnSm, X] −→ πm−nX , [f ] 7−→ (πm−nf)(j) ,

is additive, hence a group isomorphism. Here j ∈ πm−n(FnSm) is the ‘fundamental class’.

Exercise 6.2. This exercise generalizes Lemmas 2.7 and 2.8. Let K be a pointed simplicial set whose
reduced integral homology is concentrated in one dimension, where it is free abelian of rank 1. The degree
of a based self map τ : K −→ K is the unique integer deg(τ) such that τ induces multiplication by deg(τ)
on reduced integral homology.

Show that for every injective Ω-spectrum X the induced morphism τ∗ : XK −→ XK equals deg(τ) · Id
in the group [XK , XK ].

Exercise 6.3. [check if this works] Let R be a symmetric ring spectrum. An R-module M is strongly
injective is it has the extension property for all homomorphisms of R-modules which are levelwise injective
and a weak equivalence of underlying simplicial sets. We define the derived category D(R) of the ring
spectrum R as the homotopy category of those strongly injective R-modules whose underlying symmetric
spectra are Ω-spectra.

(i) Suppose that R is flat as a symmetric spectrum. Show that then the underlying symmetric spectrum
of a strongly injective R-modules is injective. Give an example showing that the converse is not true.

(ii) Show that the derived category D(R) has the structure of a triangulated category with shift and
distinguished triangles defined after forgetting the R-action.

(iii) Show that D(R) is the target of a universal functor from R-modules which takes stable equivalences
to isomorphisms.

(iv) Let f : R −→ S be a homomorphism of symmetric ring spectra which makes R a flat right
S-module. Show that restriction of scalars from S-modules to R-modules passes to an exact functor of
triangulated categories f∗ : D(S) −→ D(R).

(v) Suppose that the underlying symmetric spectrum of R is semistable. Show that then R, considered
as a module over itself, has a strongly injective Ω-spectrum replacement γR as an R-module. Show that
the map

[γR, γR]D(R)
k

∼= πk(γR) ∼= πkR

is an isomorphism of graded rings, where the first map is evaluation at the unit 1 ∈ π0(γR) ∼= πk(γR)[k].
Show that the map

[γR,M ]D(R)
k

∼= πkM

is an isomorphism of graded modules over π∗R for every strongly injective Ω-R-module M . Show that γR
is a compact weak generator of the triangulated category D(R).

We shall see later that for R = HA the Eilenberg-Mac Lane ring spectrum associated to a ring A (compare
Example I.2.7) the derived category D(HA) is triangle equivalent to the unbounded derived category of
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the ring A. In fact, the equivalence of triangulated categories will come out as a corollary of a Quillen
equivalence of model categories.

History and credits

The stable homotopy category as we know it today is usually attributed to Boardman, who introduced
it in his thesis [3] including the triangulated structure and the symmetric monoidal (derived !) smash
product. Boardman’s stable homotopy category is obtained from a category of CW-spectra by passing to
homotopy classes of morphisms. Boardman’s construction was widely circulated as mimeographed notes [4],
but he never published these. Accounts of Boardman’s construction appear in [62], [65], and [2, Part III].
Strictly speaking the ‘correct’ stable homotopy category had earlier been introduced by Kan [30] based on
his notion of semisimplicial spectra. Kan and Whitehead [31] defined a smash product in the homotopy
category of semisimplicial spectra and proved that it is homotopy commutative, but neither they, nor
anyone else, ever addressed the associativity of that smash product. Before Kan and Boardman there had
been various precursors of the stable homotopy category, and I recommend May’s survey article [43] for a
detailed discussion and an extensive list of references to these.

I am not aware of a complete published account that Boardman’s category is really equivalent to the
stable homotopy category as defined in Definition 1.5 using injective Ω-spectra. However, here is a short
guide through the literature which outlines a comparison. In a first step, Boardman’s stable homotopy
category can be compared to Kan’s homotopy category of semisimplicial spectra, which is done in Chapter
IV of Boardman’s unpublished notes [4]. An alternative source is Tierney’s article [62] where he promotes
the geometric realization functor to a functor from Boardman’s category of CW-spectra to Kan’s category
of semisimplicial spectra. Tierney remarks that the singular complex functor from spaces to simplicial set
does not lift to a pointset level functor in the other directions, but Section 3 of [62] then ends with the
words “(. . . ) it is more or less clear – combining various results of Boardman and Kan – that the singular
functor exists at the level of homotopy and provides an inverse to the stable geometric realization, i.e. the
two homotopy theories are equivalent. The equivalence of homotopy theories has also been announced by
Boardman.” I am not aware that the details have been carried out in the published literature.

Kan’s semisimplicial spectra predate model categories, but Brown [13, Thm. 5] showed later that the
π∗-isomorphisms used by Kan are part of a model structure on semisimplicial spectra. In the paper [11]
Bousfield and Friedlander introduce a model structure on a category of ‘sequential spectra’ which are just
like symmetric spectra, but without the symmetric group actions. In Section 2.5 of [11], Bousfield and
Friedlander describe a chain of Quillen equivalences between semisimplicial and sequential spectra, which
then in particular have equivalent homotopy categories. Hovey, Shipley and Smith show in [25, Thm. 4.2.5]
that the forgetful functor is the right adjoint of a Quillen equivalence from symmetric spectra (with the
stable absolute projective model structure in the sense of Chapter III) to the Bousfield-Friedlander stable
model structure of sequential spectra. Since the weak equivalences used for symmetric spectra are the
stable equivalences in the sense of Definition 4.1 we can conclude that altogether that Boardman’s stable
homotopy category is equivalent to the localization of the category of symmetric spectra at the class of
stable equivalences, which coincides with the stable homotopy category in our sense by Theorem 4.12.

A word of warning: the comparison which I just summarized passes through the intermediate homotopy
category of sequential spectra for which no intrinsic way to define a derived smash product has been studied.
As a consequence, it is not clear to me if the combined equivalence takes Boardman’s derived smash product
to the derived smash product as discussed in Section 5. However, I would be surprised if the composite
equivalence were not strongly symmetric monoidal.

The spectral sequence of Theorem 4.15 was first constructed by Shipley in [56], by completely different
method; more precisely, Shipley obtains a spectral sequence with isomorphic E2-term and isomorphic
abutment, and so it seems very likely that the spectral sequences are isomorphic. Shipley constructs a
spectral sequence of the form

E2
p,q = colimp

I (πs
qX) =⇒ πp+qDX
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which also converges to the true homotopy groups of a symmetric spectrum X and whose E2-term depends
on the I-functor πs

qX of stable homotopy groups of the spectrum X. Here D is Shipley’s detection func-
tor [56, Def. 3.1.1]. The proof that Shipley’s E2-term (the derived functors of colimit) is isomorphic to the
Tor groups which arise as the E2-term in Theorem 4.15 was given by the author in [53].

The argument used in Lemma 4.22 to reduce the lifting property to a set of morphisms with bounded
cardinality is taken from [25, Lemma 5.1.4 (6)] and ultimately goes back to Bousfield, who used it in [8] to
establish a ‘local’ model structure for simplicial sets with respect to a homology theory.



CHAPTER III

Model structures

Symmetric spectra support many useful model structures and we will now develop several of these.
We will mainly be interested in two kinds, namely level model structures (with weak equivalences the level
equivalences) and stable model structures (with weak equivalences the stable equivalences). The level model
structures are really an intermediate steps towards the more interesting stable model structures. We will
develop the theory for symmetric spectra of simplicial sets first, and later say how to adapt things to
symmetric spectra of topological spaces.

We have already seen pieces of some of the model structures at work. Our definition of the stable
homotopy category in Section 1 of Chapter II is implicitly relying on the absolute injective stable model
structure in which every object is cofibrant (as long as we use simplicial sets, not topological spaces) and the
fibrant objects are the injective Ω-spectra. However, this model structure does not interact well with the
smash product, so when we constructed the derived smash product in Section 5 of Chapter II we implicitly
worked in the flat model structures. So it should already be clear although the homotopy category of a
model category only depends on the class of weak equivalences, it can be useful to play different model
structures off against each other.

Besides the injective and flat model structures there is another useful kind of cofibration/fibration pair
which we will discuss, giving the projective model structures. Moreover, we will later need ‘positive’ versions
of the model structures which discard all homotopical information contained in level 0 of a symmetric
spectrum.

So each of the model structures which we discuss has four kinds of ‘attributes’:

• a kind of space (simplicial set or topological space)
• a kind of cofibration/fibration pair (injective, flat or projective)
• a type of equivalence (level or stable)
• which levels are used (absolute or positive)

Since all of these attributes can be combined, this already makes 2×3×2×2 = 24 different model structures
on the two kinds of symmetric spectra. More variations are possible: one can also take π∗-isomorphisms as
weak equivalences, or even isomorphisms in some homology theory (giving model structures which realize
Bousfield localizations), or one could study ‘more positive’ model structures which disregard even more
than the level 0 information. And this is certainly not the end of the story. . .

1. Level model structures

1.1. Types of cofibrations. The latching space LnA of a symmetric spectrum A was defined in
Definition II.5.9 as the nth level of the symmetric spectrum A∧ S̄, where S̄ is the subspectrum of the sphere
spectrum with S̄0 = ∗ and S̄n = Sn for positive n. We also gave a more explicit presentation of LnA as
a quotient of Σ+

n ∧Σn−1 An−1 ∧ S1. The latching space has a based Σn-action and comes with a natural
equivariant map νn : LnA −→ An.

125
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For a morphism f : A −→ B of symmetric spectra and n ≥ 0 we have a commutative square of
Σn-simplicial sets

LnA
Lnf //

νn

��

LnB

νn

��
An

fn

// Bn

We thus get a natural morphism of Σn-simplicial sets

νn(f) : An ∪LnA LnB −→ Bn .

Definition 1.1. A morphism f : A −→ B of symmetric spectra of simplicial sets is
• a projective cofibration if for every n ≥ 0 the morphism νn(f) is injective and the symmetric group

Σn acts freely on the complement of its image;
• a flat cofibration if for every n ≥ 0 the morphism νn(f) is injective;
• a level cofibration if it is a categorical monomorphism, i.e., if for every n ≥ 0 the morphism
fn : An −→ Bn is injective.

By the criterion for flatness given in Proposition II.5.10 a symmetric spectrum A is flat in the original
sense (i.e., A∧− preserves monomorphisms) if and only if the unique morphism ∗ −→ A is a flat cofibration.
We call a symmetric spectrum A projective if the unique morphism ∗ −→ A is a projective cofibration or,
equivalently, if for every n ≥ 0 the morphism νn : LnA −→ An is injective and the symmetric group Σn
acts freely on the complement of its image. Every symmetric spectrum of simplicial sets is level cofibrant.

Now we define the analogues of the three kinds of cofibrations for symmetric spectra of pointed topo-
logical spaces. We refer to the standard model structure on the category of pointed compactly generated
weak Hausdorff spaces as described for example in [24, Thm. 2.4.25]. In this model structure, the weak
equivalences are the weak homotopy equivalences and fibrations are the Serre fibrations. The cofibrations
are the retracts of ‘generalized CW-complexes’, i.e., cell complexes in which cells can be attached in any
order and not necessarily to cells of lower dimensions. The term ‘Σn-cofibration’ in the next definition refers
to the model structure on pointed Σn-spaces which is created by the forgetful functor to pointed spaces.
These cofibrations are the retracts of ‘generalized free Σn-CW-complexes’, i.e., equivariant cell complexes
in which only free Σn-cells are attached.

Definition 1.2. A morphism f : A −→ B of symmetric spectra of topological spaces is
• a projective cofibration if for every n ≥ 0 the morphism νn(f) is a Σn-cofibration;
• a flat cofibration if for every n ≥ 0 the morphism νn(f) is a cofibration of spaces;
• a level cofibration if for every n ≥ 0 the morphism fn : An −→ Bn is a cofibration of spaces.

To see the analogy with the earlier definitions for symmetric spectra of simplicial sets one should remem-
ber that in the standard model structure for pointed simplicial set the cofibrations are the monomorphisms.

By definition every projective cofibration is also a flat cofibration. Flat cofibrations are level cofibrations
by the following lemma.

Lemma 1.3. Let f : A −→ B be a morphism of symmetric spectra of simplicial sets or topological
spaces. Then f is a flat cofibration if and only if for every level cofibration g : X −→ Y the pushout product
map

f ∧ g : B ∧X ∪A∧X A ∧ Y −→ B ∧ Y
is a level cofibration. In particular, every flat cofibration is a level cofibration.

Proof. The inclusion S̄ −→ S is a level cofibration and in level n the pushout product of f with this
inclusion is the morphism νn(f) : An ∪LnA LnB −→ Bn. So the pushout product condition for all level
cofibrations implies that f : A −→ B is a flat cofibration.
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For the other direction we first consider the special case where f is of the form Gmi : GmK −→ GmL
for a Σm-equivariant map i : K −→ L of pointed simplicial sets or spaces which is a cofibration in the
underlying category. We use the isomorphism GmL ∧X ∼= L .m X (compare Proposition I.3.5) to rewrite
the pushout product (Gmi) ∧ g as

L .m X ∪K.mX K .m Y −→ L .m Y .

In level m+n this morphism is given by first forming the pushout product of i∧gn : L∧Xn∪K∧XnK∧Yn −→
L∧Yn as pointed simplicial set (or pointed spaces), and then inducing up from Σm×Σn to Σm+n. The map
i ∧ gn is a cofibration by the pushout product property of simplicial sets respectively spaces, and inducing
up preserves cofibrations. So in this special case the pushout product map is a level cofibration. [...]

If we apply this to the injective map ∗ −→ S the pushout product is isomorphic to the map f . So as a
special csae we obtain that every flat cofibration is a level cofibration. �

Lemma 1.4. Let f : A −→ B be a morphism of symmetric spectra of simplicial sets. Then f : A −→ B
is a projective cofibration if and only if it is a flat cofibration and the cokernel B/A is projective. [Is a
morphism f : A −→ B is a flat cofibration if and only if it is an injective cofibration (i.e., monomorphism)
and the cokernel B/A is flat?]

Proof. This is direct consequence of the definitions since a group acts freely on the complement of
the image of an equivariant map A −→ B if and only if the induced action on the quotient B/A is free
away from the basepoint. �

Thus we have the following implications for the various kinds of cofibrations:

projective cofibration =⇒ flat cofibration =⇒ level cofibration

All these containments are strict, as the following examples show. The symmetric spectrum S̄ is not flat
since its second latching object L2S̄ is isomorphic to S1∨S1 and the map L2S̄ −→ S̄2 = S2 is the fold map,
which is not injective. Semifree symmetric spectra GmL are flat for all pointed Σm-simplicial sets L, but
they are projective only if Σm acts freely away from the basepoint (compare the following proposition).

Proposition 1.5. (i) Let K be a pointed Σm-simplicial set for some m ≥ 0. Then the nth
latching spaces of the semifree symmetric spectrum GmK is trivial for n ≤ m and for n > m the
map νn : Ln(GmK) −→ (GmK)n is an isomorphism.

(ii) Given m ≥ 0 and an injective morphism f : K −→ L of Σm-simplicial sets, the induced map
Gmf : GmK −→ GmL on semifree symmetric spectra is a flat cofibration, and it is a projective
cofibration if and only if Σm acts freely on the complement of the image of f . In particular, every
semifree symmetric spectrum GmL is flat and it is projective if and only if Σm acts freely on L
away from the basepoint.

(iii) If f : K −→ L is a monomorphism of simplicial sets, then for every m ≥ 0, the induced map
Fmf : FmK −→ FmL is a projective cofibration. In particular, all free symmetric spectra are
projectively cofibrant.

Proof. (i) For n < m, the latching space Ln(GmK) consists only of the basepoint. For n ≥ m,
substitution of the definitions and some rewriting gives

Lm+n(GmK) = (GmK ∧ S̄)m+n
∼= (K .m S̄)m+n = Σ+

m+n ∧Σm×Σn K ∧ S̄n

=

{
∗ for n = 0, and

Σ+
m+n ∧Σm×Σn K ∧ Sn ∼= (GmK)m+n for n ≥ 1.

where we used the identification of GmK∧X with the twisted smash product K.mX (see Proposition I.3.5).
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(ii) We use part (i) to identify the terms in the commutative square of Σn-simplicial sets

Ln(GmK)
Ln(Gmf) //

νn

��

Ln(GmL)

νn

��
(GmK)n

fn

// (GmL)n

For n < m all four terms are just points. For n = m the two upper objects are points and the lower vertical
map is injective. For n > m both vertical maps are isomorphisms. So the map

νn(Gmf) : (GmK)n ∪Ln(GmK) Ln(GmL) −→ (GmL)n

is an isomorphism for n 6= m and injective for n = m. So Gmf is always a flat cofibration. The only case
in which νn(Gmf) is not an isomorphism is n = m, and then νn(Gmf) is isomorphic to f : K −→ L. So
Gmf is a projective cofibration if and only if Σm acts freely away from the image of f .

The natural isomorphism between FmK and Gm(Σ+
m ∧K) makes (iii) a special case of (ii). �

Proposition 1.6. Let A be a flat symmetric spectrum and n ≥ 2. Then the symmetric power spectrum
(A∧n)/Σn is again flat.
[is the product of flat spectra flat ? how about AK and shA ?]

Theorem 1.7. Let f : X −→ Y be an injective morphism of Γ-spaces of simplicial sets. Then the
associated morphism f(S) : X(S) −→ Y (S) is a flat cofibration of symmetric spectra. In particular, for
every Γ-space of simplicial sets X, the associated symmetric spectrum X(S) is flat.

[how do the BF- and Q-cofibrations of Γ-spaces relate to the various cofibrations ?]

Proof. �

Definition 1.8. A morphism f : K −→ L of Σn-simplicial sets is a Σn-fibration (respectively Σn-
equivalence ) if the induced map on H-fixed points fH : KH −→ LH is a Kan fibration (respectively weak
equivalence) of simplicial sets for all subgroups H of Σn.

Theorem 1.9. The category of symmetric spectra of simplicial sets admits the following three level
model structures in which the weak equivalences are those morphisms f : X −→ Y such that for all n ≥ 0
the map fn : Xn −→ Yn is a weak equivalence of simplicial sets.

(i) In the projective level model structure the cofibrations are the projective cofibrations and a mor-
phism f : X −→ Y is a projective level fibration if and only if for every n ≥ 0 the map
fn : Yn −→ Xn is a Kan fibration of simplicial sets.

(ii) In the flat level model structure the cofibrations are the flat cofibrations, and a morphism f :
X −→ Y is a flat level fibration if and only if for every n ≥ 0 the map fn : Yn −→ Xn satisfies
the following two equivalent conditions

– the map fn has the right lifting property for all injective morphisms of Σn-simplicial sets
which are weak equivalences on underlying simplicial set;

– map fn is a Σn-fibration and the commutative square

Xn
//

fn

��

map(EΣn, Xn)

map(EΣn,fn)

��
Yn // map(EΣn, Yn)

is Σn-homotopy cartesian. Here map(EΣn, X) is the simplicial mapping space of all maps
from the contractible free Σn-simplicial set to X, with Σn-action by conjugation.

A morphism f : X −→ Y is an acyclic fibration in the flat model structure if and only if for all
n ≥ 0 the map fn : Xn −→ Yn is a Σn-equivariant acyclic fibration.
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(iii) In the injective level model structure the cofibrations are the level cofibrations (i.e., monomor-
phisms) and the injective fibrations are those morphisms which have the right lifting property with
respect to all morphisms which are simultaneously level equivalences and monomorphisms.

Moreover we have:

• All three level model structures are proper, simplicial and cofibrantly generated.
• The flat and projective level model structures are even finitely generated and monoidal with respect

to the smash product of symmetric spectra.

Proof. The category of symmetric spectra of simplicial sets has all set-indexed limits and colimits, the
level equivalences satisfy the 2-out-of-3 property and in all three cases the classes of cofibrations, fibrations
and weak equivalences are closed under retracts. So it remains to prove the factorization and lifting axioms.

As usual we construct the factorizations using Quillen’s small object argument. We first defined the
respective classes I lvproj , I

lv
flat and I lvinj of generating cofibrations and J lvproj , J

lv
flat and J lvinj of generating

acyclic cofibrations. As generating projective cofibrations we take

I lvproj =
{
Fn∂∆[m]+ −→ Fn∆[m]+

}
n,m≥0

where Fn is the free symmetric spectrum generated by a pointed simplicial set in level n, see Example I.2.12.
Since Fn is left adjoint to evaluation at level n, a morphism f : X −→ Y of symmetric spectra has the right
lifting property with respect to I lvproj if and only if for every n ≥ 0 the map fn : Yn −→ Xn has the RLP
for the boundary inclusions ∂∆[n] −→ ∆[n], i.e., if it is a Kan fibration and a weak equivalence. In other
words, precisely the morphisms which are both level equivalences and projective level fibrations enjoy the
right lifting property with respect to I lvproj .

As generating flat cofibrations we take

I lvflat =
{
Gm (Σm/H × ∂∆[n])+ −→ Gm (Σm/H ×∆[n])+

}
n,m≥0, H≤Σn

where Gm is the semifree symmetric spectrum generated by a pointed Σm-simplicial set in level m, see
Example I.2.13. Since Gm is left adjoint to evaluation at level m with values in Σm-simplicial sets, a
morphism f : X −→ Y of symmetric spectra has the right lifting property with respect to I lvflat if and only
if for every m ≥ 0 and every subgroup H of Σn the map (fm)H : (Ym)H −→ (Xm)H on H-fixed points
of fm is a Kan-fibration and weak equivalence of simplicial sets. By Proposition 1.9 of Appendix A this
is equivalent to the property that fn is simultaneously a Σn-fibration, a weak equivalence on underlying
simplicial sets and the square above is Σn-homotopy cartesian; in other words, precisely the flat level
fibrations defined in (ii) above enjoy the right lifting property with respect to I lvflat.

Let f : X −→ Y be a flat level fibration. If H is a subgroup of Σn then the semifree symmetric spectrum
Gn(Σn/H)+ is flat. Since the flat model structure is simplicial, the induced map on mapping spaces

(Xn)H ∼= map(Gn(Σn/H)+, X) −→ map(Gn(Σn/H)+, Y ) ∼= (Yn)H

is a Kan fibration. Since this holds for all subgroup, the map fn : Xn −→ Yn is a Σn-fibration.
Suppose that X is fibrant in the flat level model structure. Let L be any (unbased) Σm-simplicial set.

Then the projection EΣn×L −→ L is Σn-equivariant and a weak equivalence of underlying simplicial sets.
So the induced map of semifree symmetric spectra

Gn(EΣn × L)+ −→ GnL
+

is a level equivalence between flat symmetric spectra. Since the flat model structure is simplicial, the
induced map on mapping spaces

map(GnL+, X) −→ map(Gn(EΣn × L)+, X)

is a weak equivalence. By adjointness that map is isomorphic to

mapΣn(L,Xn) −→ mapΣn(EΣn × L,Xn) ∼= mapΣn(L,map(EΣn, Xn))
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where map(EΣn, Xn) is the space (i.e., simplicial set) of all morphisms from EΣn to X with conjugation
action by Σn. If we specialize to L = Σn/H for a subgroup H of Σn we see that the map

Xn −→ map(EΣn, Xn)

is a weak equivalence on H-fixed points, so it is an equivariant equivalence.
To define the generating injective cofibrations we choose one representative for each isomorphism class

of pairs (B,A) consisting of a countable symmetric spectrum B and a symmetric subspectrum A.
�

We still have to show that the level model structures are simplicial and that the flat and projective
level model structures are monoidal with respect to the internal smash product of symmetric spectra. So
we have to verify various forms of the pushout product property. We recall that the pushout product of
a morphism i : K −→ L of pointed simplicial sets or symmetric spectra and a morphism j : A −→ B of
symmetric spectra is the morphism

i ∧ j : L ∧A ∪K∧A K ∧B −→ L ∧B .

The first proposition below is about smash products of simplicial sets with symmetric spectra, and it says
that various model structures of symmetric spectra are simplicial model structures. The next proposition
is about internal smash products of symmetric spectra, and it says that various flat and projective (but not
injective) model structures of symmetric spectra are monoidal model structures.

Proposition 1.10. Let i : K −→ L be a morphism of pointed simplicial sets and j : A −→ B a
morphism of symmetric spectra.

(i) If i is injective and j a level cofibration, flat cofibration respectively projective cofibration, then the
pushout product i ∧ j is also a level cofibration, flat cofibration respectively projective cofibration.

(ii) If i is an injective weak equivalence of simplicial sets, and j is a level cofibration (i.e, monomor-
phism), then i ∧ j is also a level equivalence of symmetric spectra.

(iii) If i is injective and j a level cofibration (i.e, monomorphism) and a level equivalence, π∗-
isomorphism respectively stable equivalence of symmetric spectra, then i ∧ j is also a level equiva-
lence, π∗-isomorphism respectively stable equivalence.

Thus the injective, flat and projective level model structures are simplicial model categories.

Proof. For every pointed simplicial set K and symmetric spectrum A the smash product K ∧ L is
naturally isomorphic to the smash product of the suspension spectrum Σ∞K with A. The suspension
spectrum functor takes injective maps of simplicial sets to projective cofibrations (see Proposition 1.5 (iii)
for m = 0) and it takes weak equivalences to level equivalences. So this proposition is a special case of
Proposition 1.11 below. �

Proposition 1.11. Let i : K −→ L and j : A −→ B be morphisms of symmetric spectra.
(i) If i is a level cofibration and j is a flat cofibration, then i ∧ j is a level cofibration.
(ii) If both i and j are flat cofibrations, then so is i ∧ j.
(iii) If both i and j are projective cofibrations, then so is i ∧ j.
(iv) If i is a level cofibration, j a flat cofibration and one of i or j a level equivalence, π∗-isomorphism

respectively stable equivalence, then i ∧ j is also a level equivalence, π∗-isomorphism respectively
stable equivalence.

Thus the flat and projective level model structures are monoidal model categories with respect to the smash
product of symmetric spectra.

Proof. Check on generators. �

[State all adjoint forms of the simplicial and monoidal axiom]

Definition 1.12. A morphism f : K −→ L of Σn-spaces is a Σn-fibration (respectively Σn-equivalence)
if the induced map on H-fixed points fH : KH −→ LH is a Serre fibration (respectively weak equivalence)
for all subgroups H of Σn.
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Theorem 1.13. The category of symmetric spectra of topological spaces admits the following two level
model structures in which the weak equivalences are those morphisms f : X −→ Y such that for all n ≥ 0
the map fn : Xn −→ Yn is a weak equivalence of spaces.

(i) In the projective level model structure the cofibrations are the projective cofibrations and a mor-
phism f : X −→ Y is a projective level fibration if and only if for every n ≥ 0 the map
fn : Yn −→ Xn is a Serre fibration.

(ii) In the flat level model structure the cofibrations are the flat cofibrations, and a morphism f :
X −→ Y is a flat level fibration if and only if for every n ≥ 0 the map fn : Yn −→ Xn satisfies
the following two equivalent conditions

– the map fn has the right lifting property for all cofibrations of pointed Σn-spaces which are
weak equivalences on underlying spaces;

– map fn is a Σn-fibration and the commutative square

Xn
//

fn

��

map(EΣn, Xn)

map(EΣn,fn)

��
Yn // map(EΣn, Yn)

is Σn-homotopy cartesian. Here map(EΣn, X) is the space of all maps from the contractible
free Σn-space to X, with Σn-action by conjugation.

A morphism f : X −→ Y is an acyclic fibration in the flat model structure if and only if for all
n ≥ 0 the map fn : Xn −→ Yn is a Σn-equivariant acyclic fibration.

Moreover, both level model structures are proper, topological and finitely generated, and monoidal with
respect to the smash product of symmetric spectra.

[Is there are an injective level model structure for symmetric spectra of spaces ?]
[positive model structures]

2. Stable model structures

Recall from Definition II.4.1 that a morphism f : A −→ B if symmetric spectra of simplicial sets is a
stable equivalence if for every injective Ω-spectrum X the induced map

[f,X] : [B,X] −→ [A,X]

on homotopy classes of spectrum morphisms is a bijection.
For every morphism f : X −→ Y the natural morphism λ∗X : X −→ Ω(shX) adjoint to λX : S1∧X −→

shX gives rise to a commutative square of symmetric spectra

(2.1) X
λ∗X //

f

��

Ω(shX)

Ω(sh f)

��
Y

λ∗Y

// Ω(shY )

Theorem 2.2. The category of symmetric spectra of simplicial sets admits the following three stable
model structures in which the weak equivalences are the stable equivalences.

(i) In the projective stable model structure the cofibrations are the projective cofibrations and the
fibrations are those projective level fibrations f : X −→ Y for which the commutative square (2.1)
is levelwise homotopy cartesian.

(ii) In the flat stable model structure the cofibrations are the flat cofibrations, and the fibrations are
those flat level fibrations f : X −→ Y for which the commutative square (2.1) is levelwise homotopy
cartesian.
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(iii) In the injective stable model structure the cofibrations are the level cofibrations (i.e., monomor-
phisms) and the fibrations are those those injective fibrations f : X −→ Y for which the commu-
tative square (2.1) is levelwise homotopy cartesian.

Moreover we have:
• All three stable model structures are proper, simplicial and cofibrantly generated.
• The flat and projective stable model structures are even finitely generated and monoidal with respect

to the smash product of symmetric spectra.
• In all three cases a morphism is a stable acyclic fibration if and only if it is a level acyclic fibration.

Proof. We reduce the proof of the stable model structures to the level model structures by applying
a general localization theorem of Bousfield, see Theorem 1.8 of Appendix A. In Proposition II.4.21 we
constructed a functor Q : SpΣ −→ SpΣ with values in Ω-spectra and a natural stable equivalence α : A −→
QA. We note that a morphism f : A −→ B of symmetric spectra is a stable equivalence if and only if
Qf : QA −→ QB is a level equivalence. Indeed, since αA : A −→ QA and αB : B −→ QB are stable
equivalences, f is a stable equivalence if and only if Qf is. But Qf is a morphism between Ω-spectra, so it
is a stable equivalence if and only if it is a level equivalence.

We now apply Bousfield’s Theorem A.1.8 to the injective, flat and projective level model structures. All
three level model structures are proper by Theorem 1.9. Axiom (A1) holds since we have a commutative
square

(2.3) X
α //

f

��

QX

Qf

��
Y α

// QY

If f is a level equivalences, then Qf is a stable equivalence between Ω-spectra, hence a level equivalence.
Axiom (A2) holds: αQX is a stable equivalence between Ω-spectra, hence a level equivalence. Then QαX :
QX −→ QQX is a level equivalence since Q takes all stable equivalences, in particular αX , to level
equivalences.

We prove (A3) in the projective level model structure. Since the projective fibrations include the flat
and injective fibrations, it then also holds in the flat and injective level model structures. So we are given
a pullback square

V
i //

f

��

X

g

��
W

j
// Y

of symmetric spectra in which X and Y are Ω-spectra (possibly not levelwise Kan), f is levelwise a Kan
fibration and j is a stable equivalence. We showed in part (iv) of Proposition II.4.5 that then i is also a stable
equivalence. This proves (A3), and thus Bousfield’s theorem provides three model structures with stable
equivalences as weak equivalence and with cofibrations the projective, flat or level cofibrations respectively.

Bousfield’s theorem characterizes the fibrations as those level fibrations f : X −→ Y for which the
commutative square (2.3) is homotopy cartesian. So it remains to shows that for a morphism f : X −→
Y which is levelwise a Kan fibration the square (2.1) is levelwise homotopy cartesian if and only if the
square (2.3) is levelwise homotopy cartesian. �

Corollary 2.4. The following categories are equivalent
• the stable homotopy category, i.e., the homotopy category of injective Ω-spectra of simplicial sets;
• the homotopy category of those flat Ω-spectra of simplicial sets for which all Xn are Σn-fibrant

and the maps Xn −→ map(EΣn, Xn) are Σn-equivalences;
• the homotopy category of projective Ω-spectra which are levelwise Kan complexes.
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3. Model structures for modules

With the symmetric monoidal smash product and a compatible model structure in place, we are ready
to explore ring and module spectra. In this section we construct model structures on the category of
modules over a symmetric ring spectrum. We restrict our attention to stable model structures and show
that the forgetful functor to symmetric spectra ‘creates’ various such model structure. The forgetful functor
also creates various level model structures, but we have no use for that and so will not discuss level model
structures for R-modules.

The various stable model structures are also ‘stable’ in the technical sense that the suspension functor
on the homotopy category is an equivalence of categories. As consequence of this is that stable homotopy
category of modules over a ring spectrum is a triangulated category. The free module of rank one is a small
generator.

We originally defined a symmetric ring spectrum in Definition I.1.3 in the ‘explicit’ form, i.e., as a family
{Rn}n≥0 of pointed simplicial sets with a pointed Σn-action on Rn and Σp ×Σq-equivariant multiplication
maps µp,q : Rp ∧Rq −→ Rp+q and two unit maps subject to an associativity, unit and centrality condition.
Using the internal smash product of symmetric spectra we saw in Theorem I.3.8 that a symmetric ring
spectrum can equivalently be defined as a symmetric spectrum R together with morphisms µ : R∧R −→ R
and ι : S −→ R, called the multiplication and unit map, which satisfy certain associativity and unit
conditions. In this ‘implicit’ picture a morphism of symmetric ring spectra is a morphism f : R −→ S of
symmetric spectra commuting with the multiplication and unit maps, i.e., such that f ◦µ = µ ◦ (f ∧ f) and
f ◦ ι = ι.

Similarly, if R is a symmetric ring spectrum, a right R-module was originally defined explicitly, but it
can also be given in an implicit form as a symmetric spectrum M together with an action map M∧R −→M
satisfying associativity and unit conditions. A morphism of right R-modules is a morphism of symmetric
spectra commuting with the action of R. We denote the category of right R-modules by mod-R.

The unit S of the smash product is a ring spectrum in a unique way, and S-modules are the same
as symmetric spectra. The smash product of two ring spectra is naturally a ring spectrum. For a ring
spectrum R the opposite ring spectrum Rop is defined by composing the multiplication with the twist map
R ∧ R −→ R ∧ R (so in terms of the bilinear maps µp,q : Rp∧Rq −→ Rp+q, a block permutation appears).
The definitions of left modules and bimodules is hopefully clear; left R-modules and R-T -bimodule can also
be defined as right modules over the opposite ring spectrum Rop, respectively right modules over the ring
spectrum Rop ∧ T .

A formal consequence of having a closed symmetric monoidal smash product of symmetric spectra is
that the category of R-modules inherits a smash product and function objects. The smash product M ∧RN
of a right R-module M and a left R-module N can be defined as the coequalizer, in the category of

symmetric spectra, of the two maps

M ∧ R ∧ N // // M ∧ N

given by the action of R on M and N respectively. Alternatively, one can characterize M ∧R N as the
universal example of a symmetric spectrum which receives a bilinear map from M and N which is R-
balanced, i.e., all the diagrams

(3.1) Mp ∧Rq ∧Nr

αp,q∧Id

��

Id∧αq,r // Mp ∧Nq+r
ιp,q+r

��
Mp+q ∧Nr ιp+q,r

// (M ∧N)p+q+r

commute. If M happens to be a T -R-bimodule and N an R-S-bimodule, then M ∧R N is naturally a
T -S-bimodule. If R is a commutative ring spectrum, the notions of left and right module coincide and
agree with the notion of a symmetric bimodule. In this case ∧R is an internal symmetric monoidal smash
product for R-modules. There are also symmetric function spectra HomR(M,N) defined as the equalizer



134 III. MODEL STRUCTURES

of two maps
Hom(M,N) −→ Hom(R ∧M,N) .

The first map is induced by the action of R on M , the second map is the composition of R ∧ − :
Hom(M,N) −→ Hom(R ∧M,R ∧ N) followed by the map induced by the action of R on N . The in-
ternal function spectra and function modules enjoy the ‘usual’ adjointness properties with respect to the
various smash products. [spell out]

Theorem 3.2. Let R be a symmetric ring spectrum of topological spaces or simplicial sets. The category
of right R-modules admits the following four stable model structures in which the weak equivalences are
those morphisms of R-modules which are stable equivalences on underlying symmetric spectra.

(i) In the absolute projective stable model structure the fibrations are those morphisms of R-modules
which are absolute projective stable fibrations on underlying symmetric spectra.

(ii) In the positive projective stable model structure the fibrations are those morphisms of R-modules
which are positive projective stable fibrations on underlying symmetric spectra.

(iii) In the absolute flat stable model structure the fibrations are those morphisms of R-modules which
are absolute flat stable fibrations on underlying symmetric spectra.

(iv) In the positive flat stable model structure the fibrations are those morphisms of R-modules which
are positive flat stable fibrations on underlying symmetric spectra.

Moreover we have:
• All four stable model structures are proper, simplicial and cofibrantly generated.
• If R is commutative then all four stable model structures are monoidal with respect to the smash

product over R.
If underlying symmetric spectrum of R is flat, then the category of right R-modules admits the following

two injective stable model structures in which the weak equivalences are those morphisms of R-modules which
are stable equivalences on underlying symmetric spectra.

(v) In the absolute injective stable model structure the fibrations are those morphisms of R-modules
which are absolute injective stable fibrations on underlying symmetric spectra.

(vi) In the positive injective stable model structure the fibrations are those morphisms of R-modules
which are positive injective stable fibrations on underlying symmetric spectra.

Moreover, both injective stable model structures are proper, simplicial and cofibrantly generated.
In all six model structures, a cofibration of R-modules is a monomorphism of underlying symmetric

spectra.

Proof. In the language of Definition 1.3 of Appendix A we claim that in all of the six cases the forgetful
functor from R-modules to symmetric spectra creates a model structure on R-modules. In Theorem A.1.4
we can find sufficient conditions for this, which we will now verify.

The category of R-modules is complete, cocomplete and simplicial; in fact all limits, colimits, tensors
and cotensors with simplicial sets are created on underlying symmetric spectra. In particular the forgetful
functor preserves filtered colimits. The forgetful functor has a left adjoint free functor, given by smashing
with R. [Smallness]

It remains to check the condition which in practice is often the most difficult one, namely that every
(J ∧R)-cell complex is a weak equivalence. We claim that in all six cases the free functor X 7→ X ∧R takes
stable acyclic cofibrations of symmetric spectra of the respective kind to stable equivalences of R-modules
which are monomorphisms. In the first four cases (where we have no assumption on R) this uses that every
generating acyclic cofibration i : A −→ B is in particular a flat cofibration, so i ∧ Id : A ∧ R −→ B ∧ R
is injective and a stable equivalence by parts (i) and (iv) of Proposition 1.11. In the ‘injective’ cases (v)
and (vi) the argument is slightly different; then the assumption that R is flat assures that for every injective
stable equivalence i : A −→ B the morphism i ∧ Id : A ∧ R −→ B ∧ R is again injective (by the definition
of flatness) and a stable equivalence (by Proposition II.5.14).

So in all the six cases, the free functor −∧R takes the generating stable acyclic cofibrations to injective
stable equivalences of R-modules. Since colimits of R-modules are created on underlying symmetric spectra,
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the class of injective stable equivalences is closed under wedges, cobase change and transfinite composition.
So every (J ∧ R)-cell complex is a stable equivalence. So we have verified the hypothesis of Theorem 1.4,
which thus shows that the forgetful functor creates the six model structure. It also shows that the model
structures are simplicial and right proper.

[left proper] [monoidal if R commutative.] [preservation of cofibrations] �

[Is there an ‘strongly injective’ stable model structure in which cofibrations are the monomorphisms of
R-modules ? make exercise?]

Proposition 3.3. A morphism f : M −→ N of right R-modules is a flat cofibration if and only if for
every morphism g : V −→W of left R-modules the pushout product map

f ∧R g : M ∧RW ∪M∧RV N ∧RW −→ N ∧RW

is an injective morphism of symmetric spectra.

There are also characterizations of flat and projective cofibrations in terms of ‘R-module latching
objects’, see Exercise 4.1.

As we just proved, cofibrations of R-modules are always monomorphisms of underlying symmetric
spectra, but sometimes more is true. As the special case S = S of Theorem 3.4 (iii) below we will see that
if R is flat as a symmetric spectrum, then every flat cofibration of R-modules is also a flat cofibration on
underlying symmetric spectra. Similarly, if R is projective as a symmetric spectrum, then every projective
cofibration of R-modules is also a projective cofibration on underlying symmetric spectra.

For a morphism f : S −→ R of symmetric ring spectra, there is are two adjoint functor pairs relating the
modules over S and R. The functors are analogous to restriction and extension respectively coextension
of scalars. Every R-module becomes an S-module if we let S act through the homomorphism f ; more
precisely, given an R-module M we define an S-module f∗M as the same underlying symmetric spectrum
as M and with S-action given by the composite

(f∗M) ∧ S = M ∧ S Id∧f−−−→ M ∧R α−−→ M .

We call the resulting functor f∗ : mod-R −→ mod-S restriction of scalars along f and note that it has both
a left and right adjoint. We call the left adjoint extension of scalars and denote it by f∗ : mod-S −→ mod-R.
The left adjoint takes an S-module N to the R-module f∗N = N ∧S R, where S is a left R-module via f ,
and with right R-action through the right multiplication action of R on itself. We call the right adjoint of
f∗ the coextension of scalars and denote it by f! : mod-S −→ mod-R. The right adjoint takes an S-module
N to the R-module f!N = Hommod-S(R,N), where S is a right R-module via f , and with right R-action
through the left multiplication action of R on itself.

Theorem 3.4. Let f : S −→ R be a homomorphism of symmetric ring spectra.
(i) The functor pair

mod-S
f∗ // mod-R
f∗

oo

is a Quillen adjoint functor pair with respect to the absolute projective, the positive projective, the
absolute flat and the positive flat stable model structures on both sides.

(ii) If S and R are flat as symmetric spectra then (f∗, f∗) is a Quillen adjoint functor pair with respect
to the absolute injective and the positive injective stable model structures on both sides.

(iii) Suppose that the morphism f : S −→ R makes R into a flat (respectively projective) right S-
module. Then the functor pair

mod-R
f∗ // mod-S
f!

oo

is a Quillen adjoint functor pair with respect to the absolute and positive flat stable (respectively
absolute and positive projective stable) model structures on both sides. In particular, the restriction
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of scalars f∗ then takes flat (respectively projective) cofibrations of R-modules to flat (respectively
projective) cofibrations of S-modules.

(iv) If the homomorphism f : S −→ R is a stable equivalence, then the adjoint functor pairs (f∗, f∗)
and (f∗, f!) are a Quillen equivalences in all the cases when they are Quillen adjoint functors.

Proof. (i) In each case, the weak (i.e., stable) equivalences and the various kinds of fibrations are
defined on underlying symmetric spectra, hence the restriction functor preserves fibrations and acyclic
fibrations. By adjointness, the extension functor preserves cofibrations and trivial cofibrations.

(iv) If f : S −→ R is a stable equivalence, then for every flat right S-module N the morphism

N ∼= N ∧S S −→ N ∧S R = f∗N

is a stable equivalence. Thus if Y is a fibrant left R-module, an S-module map N −→ Y is a weak
equivalence if and only if the adjoint R-module map f∗N −→ Y is a weak equivalence. �

Example 3.5 (Modules over Eilenberg-Mac Lane spectra). For every ring A we have an associated
Eilenberg-Mac Lane ring spectrum, see Example I.2.7. This symmetric spectrum arises from a Γ-space
by evaluation on spheres, so it is flat as a symmetric spectrum (Proposition II.5.18). Hence all six model
structure of Theorem 3.2 are defined on the category of HA-modules, and they are Quillen-equivalent to
each other.

The homotopy category of HA-modules can be described purely algebraically in terms of A-modules.
More precisely, the stable model structures of HA-modules are Quillen equivalent to the category of chain
complexes of A-modules in any of the model structures which have the quasi-isomorphisms as weak equiv-
alences. In particular, we get an equivalence of triangulated categories

Ho(mod-HA) ∼= D(A)

to the unbounded derived category of the ring A.

Exercises

Exercise 4.1. Let R by a symmetric ring spectrum. We define an R-bimodule R̄ by

R̄n =

{
∗ for n = 0
Rn for n ≥ 1.

We define the n-latching object LRnM of a right R-module M by LRnM = (M ∧R R̄)n. The latching object
has a left action of the symmetric group Σn and a right action of the pointed monoid R0. The inclusion
R̄ −→ R is a morphism of R-bimodules and thus induces a morphism of Σn-R0 simplicial bisets

νn : LRnM = (M ∧R R̄)n −→ (M ∧R R)n ∼= Mn .

Show:
(i) A morphism f : M −→ N is a flat cofibration of R-modules if and only if the maps νn(f) :

LRnN ∪LRnM Mn −→ Nn are cofibrations of right R0-simplicial sets.
(ii) A morphism f : M −→ N is a projective cofibration of R-modules if and only if the maps

νn(f) : LRnN ∪LRnM Mn −→ Nn are cofibrations of Σn-R0-simplicial bisets.
(Hint: define a suitable R-module analog of the filtration FmA of a symmetric spectrum A so that the
proof of Proposition II.5.10 can be adapted.)

History and credits

The projective and injective level and stable model structures for symmetric spectra are constructed in
the original paper [25] of Hovey, Shipley and Smith. The flat model structures show up in the literature
under the name of S-model structure. (the ‘S’ refers to the sphere spectrum). The cofibrant objects in this
model structure (which we call ‘flat’ and Hovey, Shipley and Smith call ‘S-cofibrant’) and parts of the model
structures show up in [25] and in [52], but the first verification of the full model axioms appears in Shipley’s
paper [58]. I prefer the term ‘flat’ model structure because the cofibrant objects are very analogous to flat
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modules in algebra and because we can then also use the term ‘flat model structure’ for modules over a
symmetric ring spectrum. Shipley [58] calls the flat model structure for modules over a symmetric ring
spectrum R the ‘R-model structure’.





APPENDIX A

1. Tools from model category theory

1.1. Cofibrantly generated model categories and a lifting theorem. In this section we review
cofibrantly generated model categories and a general method for creating model category structures. If a
model category is cofibrantly generated, its model category structure is completely determined by a set of
cofibrations and a set of acyclic cofibrations. The transfinite version of Quillen’s small object argument
allows functorial factorization of maps as cofibrations followed by acyclic fibrations and as acyclic cofibra-
tions followed by fibrations. Most of the model categories in the literature are cofibrantly generated, e.g.
topological spaces and simplicial sets, as are all model structures involving symmetric spectra which we
discuss in this book.

The only complicated part of the definition of a cofibrantly generated model category is formulating
the definition of relative smallness. For this we need to consider the following set theoretic concepts. The
reader might keep in mind the example of a compact topological space which is ℵ0-small relative to closed
inclusions.

Ordinals and cardinals. An ordinal γ is an ordered isomorphism class of well ordered sets; it can be
identified with the well ordered set of all preceding ordinals. For an ordinal γ, the same symbol will denote
the associated poset category. The latter has an initial object ∅, the empty ordinal. An ordinal κ is a
cardinal if its cardinality is larger than that of any preceding ordinal. A cardinal κ is called regular if for
every set of sets {Xj}j∈J indexed by a set J of cardinality less than κ such that the cardinality of each Xj

is less than that of κ, then the cardinality of the union
⋃
J Xj is also less than that of κ. The successor

cardinal (the smallest cardinal of larger cardinality) of every cardinal is regular.
Transfinite composition. Let C be a cocomplete category and γ a well ordered set which we identify

with its poset category. A functor V : γ −→ C is called a γ-sequence if for every limit ordinal β < γ the
natural map colimV |β −→ V (β) is an isomorphism. The map V (∅) −→ colimγV is called the transfinite
composition of the maps of V . A subcategory C1 ⊂ C is said to be closed under transfinite composition
if for every ordinal γ and every γ-sequence V : γ −→ C with the map V (α) −→ V (α + 1) in C1 for every
ordinal α < γ, the induced map V (∅) −→ colimγ V is also in C1. Examples of such subcategories are the
cofibrations or the acyclic cofibrations in a closed model category.

Relatively small objects. Consider a cocomplete category C and a subcategory C1 ⊂ C closed under
transfinite composition. If κ is a regular cardinal, an object C ∈ C is called κ-small relative to C1 if for
every regular cardinal λ ≥ κ and every functor V :λ −→ C1 which is a λ-sequence in C, the map

colimλ HomC(C, V ) −→ HomC(C, colimλ V )

is an isomorphism. An object C ∈ C is called small relative to C1 if there exists a regular cardinal κ such
that C is κ-small relative to C1.

I-injectives, I-cofibrations and I-cell complexes. Given a cocomplete category C and a class I of maps,
we denote

• by I-inj the class of maps which have the right lifting property with respect to the maps in I.
Maps in I-inj are referred to as I-injectives.
• by I-cof the class of maps which have the left lifting property with respect to the maps in I-inj.

Maps in I-cof are referred to as I-cofibrations.

139
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• by I-cell ⊂ I-cof the class of the (possibly transfinite) compositions of pushouts (cobase changes)
of maps in I. Maps in I-cell are referred to as I-cell complexes.

In [46, p. II 3.4] Quillen formulates his small object argument, which immediately became a standard
tool in model category theory. In our context we will need a transfinite version of the small object argument,
so we work with the ‘cofibrantly generated model category’, which we now recall. Note that here I has to
be a set, not just a class of maps. The obvious analogue of Quillen’s small object argument would seem to
require that coproducts are included in the I-cell complexes. In fact, any coproduct of an I-cell complex is
already an I-cell complex, see [24, 2.1.6].

Lemma 1.1. Let C be a cocomplete category and I a set of maps in C whose domains are small relative
to I-cell. Then

• there is a functorial factorization of any map f in C as f = qi with q ∈ I-inj and i ∈ I-cell and
thus
• every I-cofibration is a retract of an I-cell complex.

Definition 1.2. A model category C is called cofibrantly generated if it is complete and cocomplete
and there exists a set of cofibrations I and a set of acyclic cofibrations J such that

• the fibrations are precisely the J-injectives;
• the acyclic fibrations are precisely the I-injectives;
• the domain of each map in I (resp. in J) is small relative to I-cell (resp. J-cell).

Moreover, here the (acyclic) cofibrations are the I (J)-cofibrations.

For a specific choice of I and J as in the definition of a cofibrantly generated model category, the
maps in I (resp. J) will be referred to as generating cofibrations (resp. generating acyclic cofibrations).
In cofibrantly generated model categories, a map may be functorially factored as an acyclic cofibration
followed by a fibration and as a cofibration followed by an acyclic fibration.

Definition 1.3. Let C be a model category

R : D −→ C

a functor. We say that R creates a model structure on the category D if the following definitions make D
into a model category: a morphism f in D is a

• weak equivalence if the morphism R(f) is a weak equivalence in C,
• fibration if the morphism R(f) is a fibration in C,
• cofibration if it has the left lifting property with respect to all morphisms in D which are both

fibrations and weak equivalences.

Theorem 1.4. Let C be a model category, D a category which is complete and cocomplete and let

R : D −→ C : L

be a pair of adjoint functors such that R commutes with filtered colimits. Let I (J) be a set of generating
cofibrations (resp. acyclic cofibrations) for the cofibrantly generated model category C. Let LI (resp. LJ) be
the image of these sets under the left adjoint L. Assume that the domains of LI (LJ) are small relative to
LI-cell (LJ-cell). Finally, suppose every LJ-cell complex is a weak equivalence. Then R : D −→ C creates a
model structure on D which is cofibrantly generated with LI (LJ) a generating set of (acyclic) cofibrations.

If the model category C is right proper, then so is the model structure on D.
If C and D are simplicially enriched, the adjunction (L,R) is simplicial, and the model structure of C

is simplicial, then the model structure on D is again simplicial.
If C and D are topologically enriched, the adjunction (L,R) is continuous, and the model structure of

C is topological, then the model structure on D is again topological.
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Proof. Model category axiom MC1 (limits and colimits) holds by hypothesis. Model category axioms
MC2 (saturation) and MC3 (closure properties under retracts) are clear. One half of MC4 (lifting properties)
holds by the definition of cofibrations in D.

The proof of the remaining axioms uses the transfinite small object argument (Lemma 1.1), which
applies because of the hypothesis about the smallness of the domains. We begin with the factorization
axiom, MC5. Every map in LI and LJ is a cofibration in D by adjointness. Hence every LI-cofibration or
LJ-cofibration is a cofibration in D. By adjointness and the fact that I is a generating set of cofibrations
for C, a map is LI-injective precisely when the map becomes an acyclic fibration in C after application of
R, i.e., an acyclic fibration in D. Hence the small object argument applied to the set LI gives a (functorial)
factorization of any map in D as a cofibration followed by an acyclic fibration.

The other half of the factorization axiom, MC5, needs the hypothesis. Applying the small object
argument to the set of maps LJ gives a functorial factorization of a map in D as an LJ-cell complex
followed by a LJ-injective. Since J is a generating set for the acyclic cofibrations in C, the LJ-injectives are
precisely the fibrations among the D-morphisms, once more by adjointness. We assume that every LJ-cell
complex is a weak equivalence. We noted above that every LJ-cofibration is a cofibration in D. So we see
that the factorization above is an acyclic cofibration followed by a fibration.

It remains to prove the other half of MC4, i.e., that any acyclic cofibration A −→ B in D has the left
lifting property with respect to fibrations. In other words, we need to show that the acyclic cofibrations are
contained in the LJ-cofibrations. The small object argument provides a factorization

A −→W −→ B

with A −→ W a LJ-cofibration and W −→ B a fibration. In addition, W −→ B is a weak equivalence
since A −→ B is. Since A −→ B is a cofibration, a lifting in

A //

��

W

∼
��

B

>>

B

exists. Thus A −→ B is a retract of a LJ-cofibration, hence it is a LJ-cofibration. �

In cofibrantly generated model categories fibrations can be detected by checking the right lifting property
against a set of maps, the generating acyclic cofibrations, and similarly for acyclic fibrations. This is in
contrast to general model categories where the lifting property has to be checked against the whole class of
acyclic cofibrations. Similarly, in cofibrantly generated model categories, the pushout product axiom and
the monoid axiom only have to be checked for a set of generating (acyclic) cofibrations:

Lemma 1.5. Let C be a cofibrantly generated model category endowed with a closed symmetric monoidal
structure. If the pushout product axiom holds for a set of generating cofibrations and a set of generating
acyclic cofibrations, then it holds in general.

Proof. For the first statement consider a map i :A −→ B in C. Denote by G(i) the class of maps
j :K −→ L such that the pushout product

A ∧ L ∪A∧K B ∧K −→ B ∧ L

is a cofibration. This pushout product has the left lifting property with respect to a map f :X −→ Y if
and only if j has the left lifting property with respect to the map

p : [B,X] −→ [B, Y ]×[A,Y ] [A,X].

Hence, a map is in G(i) if and only if it has the left lifting property with respect to the map p for all
f :X −→ Y which are acyclic fibrations in C.

G(i) is thus closed under cobase change, transfinite composition and retracts. If i : A −→ B is
a generating cofibration, G(i) contains all generating cofibrations by assumption; because of the closure
properties it thus contains all cofibrations, see Lemma 1.1. Reversing the roles of i and an arbitrary
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cofibration j : K −→ L we thus know that G(j) contains all generating cofibrations. Again by the closure
properties, G(j) contains all cofibrations, which proves the pushout product axiom for two cofibrations.
The proof of the pushout product being an acyclic cofibration when one of the constituents is, follows in
the same manner. �

We now spell out the small object argument for symmetric spectra.

Theorem 1.6 (Small object argument). Let I be a set of morphisms of symmetric spectra based on
simplicial sets. Then there exists a functorial factorization of morphisms as I-cell complexes followed by
I-injective morphisms.

Proof. In the first step we construct a functor F from the category of morphisms of symmetric spectra
to symmetric spectra as follows. Given a morphism f : X −→ Y and a morphism i : Si −→ Ti in the set I
we let Di denote the set of all pairs (a : Si −→ X, b : Ti −→ Y ) of morphisms satisfying fa = bi, i.e., which
make the square

Si
a //

i

��

X

f

��
Ti

b
// Y

commute. We define F (f) as the pushout in the diagram∨
i∈I
∨
Di
Si

∨a //

∨i
��

X

j

��∨
i∈I
∨
Di
Ti // F (f)

The morphisms b : Ti −→ Y and f : X −→ Y glue to a morphism p : F (f) −→ Y such that pj = f .
The factorization we are looking for is now obtained by iterating this construction infinitely often, possibly
transfinitely many times.

We define functors Fn : Ar(SpΣ) −→ SpecΣ and natural transformations X
jn−→ Fn(f)

pn−→ Y for every
ordinal n by transfinite induction. We start with F 0(f) = X, j0 = Id and p0 = f . For successor ordinal we
set Fn+1(f) = F (pn : Fn(f) −→ Y ) with the morphisms jn+1 = j ◦ jn respectively pn+1 = p(pn). For limit
ordinals λ we set Fλ(f) = colimµ<λ F

µ(f) with morphisms induced by the jµ and pµ. By construction, all
morphisms jn : X −→ Fn(f) are I-cell complexes.

We claim that there exists a limit ordinal κ, depending on the set I, such that for every morphism f
the map pκ : Fκ(f) −→ Y is I-injective. Then f = pκjκ is the required factorization.

We prove the claim under the simplifying hypothesis that for each morphism i ∈ I the source Si is
finitely presented as a symmetric spectrum, i.e., for every sequence Z0 −→ Z1 −→ Z2 −→ . . . the natural
map

colimn SpΣ(Si, Zn) −→ SpΣ(Si, colimn Zn)

is bijective. In that case, the first infinite ordinal ω will do the job. Indeed, Fω(f) is the colimit over the
sequence

X = F 0(f)
j1−→ F 1(f)

j2−→ F 2(f) · · · .
Given a morphism i ∈ I and a lifting problem

(1.7) Si
a //

i

��

Fω(f)

pω

��
Ti

b
// Y
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there exists a factorization a = can for some n ≥ 0 and some morphism an : Si −→ Fn(f) since Si is finitely
presented (where c : Fn(f) −→ Fω(f) is the canonical morphism to the colimit). The commutative square

Si
an //

i

��

Fn(f)

pωc=pn

��
Ti

b
// Y

is an element in the set Di which is used to define Fn+1(f) = F (pn). Thus the canonical morphism
C : Ti −→ Fn+1(f) makes the diagram

Si
an //

i

��

Fn+1(f)

pn+1

��
Ti

b
//

C

;;wwwwwwwww
Y

commute. Then the composite of C with the canonical morphism Fn+1(f) −→ Fω(f) solves the lifting
problem (1.7). �

1.2. Bousfield’s localization theorem.

Theorem 1.8 (Bousfield). Let C be a proper model category with a functor Q : C −→ C and a natural
transformation α : 1 −→ Q such that the following three axioms hold:

(A1) if f : X −→ Y is a weak equivalence, then so is Qf : QX −→ QY ;
(A2) for each object X of C, the maps αQX , QαX : QX −→ QQX are weak equivalences;
(A3) for a pullback square

V
k //

g

��

X

f

��
W

h
// Y

in C, if f is a fibration between fibrant objects such that α : X −→ QX, α : Y −→ QY and Qh : QW −→ QY
are weak equivalences, then Qk : QV −→ QX is a weak equivalence.

Then the following notions define a proper model structure on C: a morphisms f : X −→ Y is a
Q-cofibration if and only if it is a cofibration, a Q-equivalence if and only if Qf : QX −→ QY is a weak
equivalence, and Q-fibration if and only if f is a fibration and the commutative square

X
α //

f

��

QX

Qf

��
Y α

// QY

is homotopy cartesian.

The reference is [9, Thm. 9.3].

1.3. Some equivariant homotopy theory.

Proposition 1.9. Let G be a finite groups and f : X −→ Y a morphism of G-simplicial sets. Then
the following are equivalent.

(i) The morphism f has the right lifting property for all injective morphism of G-simplicial sets which
are weak equivalences of underlying simplicial sets.
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(ii) The morphism f is a G-fibration and the commutative square

X //

f

��

map(EG,X)

map(EG,f)

��
Y // map(EG, Y )

is G-homotopy cartesian. Here map(EG,X) is the simplicial mapping space of all maps from the
contractible free G-simplicial set to X, with G-action by conjugation.

Moreover, the following are equivalent:

(a) f is a weak equivalence of underlying simplicial set and has the equivalent properties (i) and (ii)
above.

(b) f is a G-acyclic fibration, i.e., induced a weak equivalence and Kan fibration on fixed points for
all subgroups of G.

Proof. (i)⇒(ii) If H is a subgroup of G then for all n ≥ 0 and 0 ≤ i ≤ n the map G/H × Λi[n] −→
G/H ×∆[n] is an injective G-morphism and weak equivalence on underlying simplicial sets. So f has the
right lifting property with respect to it which means by adjunction that the induced morphism on H-fixed
points fH : XH −→ Y H has the right lifting property for all horn inclusions, i.e., is a Kan fibration. So f
is G-fibration.

Now we claim that if f has the right lifting property of (i), then for every injective G-morphism K −→ L
which is an underlying weak equivalence, the induced map

(1.10) map(L,X) −→ map(K,X)×map(K,Y ) map(L, Y )

is a G-fibration and G-equivalence. To prove this, we note that the pushout product morphism

G/H × (L× ∂∆[n] ∪K×∂∆i[n] K ×∆[n]) −→ G/H × L×∆[n]

is injective, equivariant and an underlying weak equivalence for all subgroups H of G and all boundary
inclusions. Since f : X −→ Y has the RLP for such maps, by adjointness the H-fixed points of the
map (1.10) have the right lifting property for all boundary inclusions, so they are weak equivalences and
Kan fibrations. Since this holds for all subgroups H of G, the map (1.10) is a G-acyclic fibration.

Now we show that the square of property (ii) is G-homotopy cartesian. Since f is G-fibration, so is the
morphism map(EG, f), and hence it suffices to show that the morphism

X −→ Y ×map(EG,Y ) map(EG,X)

is a G-weak equivalence. The inclusion EG −→ C(EG) of EG into its cone is G-equivariant and an
injective weak equivalence of underlying simplicial sets (but not a G-weak equivalence !). So by the previous
paragraph the induced morphism

map(C(EG), X) −→ map(EG,X)×map(EG,Y ) map(C(EG), Y )

is a G-acyclic fibration. In the commutative square

X = map(∗, X) //

��

map(EG,X)×map(EG,Y ) map(∗, Y )

��
map(C(EG), X) // map(EG,X)×map(EG,Y ) map(C(EG), Y )

the vertical maps are induced by the unique morphism C(EG) −→ ∗ which is a G-equivariant homotopy
equivalence, so induces a homotopy equivalence on mapping spaces. So the top horizontal map is a G-weak
equivalence since the other three maps are.
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(ii)⇒(i) Let i : K −→ L be a monomorphism of pointed G-simplicial sets which is a weak equivalence
of underlying simplicial sets. Then i is a cofibration in the strong G-model structure. Since that model
structure is monoidal, the induced map

map(L,X) −→ map(K,X)×map(K,Y ) map(L, Y )

is a G-fibration. We show that it is also a G-weak equivalence, thus a G-acyclic fibration. Since the square
is G-homotopy cartesian, we can replace the G-fibration f : X −→ Y be the G-fibration map(EG, f) and
show that the G-fibration.

map(L,map(EG,X)) −→ map(K,map(EG,X))×map(K,map(EG,Y )) map(L,map(EG, Y ))

is a G-weak equivalence. This map is isomorphic to

map(L× EG,X) −→ map(K × EG,X)×map(K×EG,Y ) map(L× EG, Y ) .

What we have gained now is that the morphism i × Id : K × EG −→ L × EG is a G-equivariant weak
equivalence between free G-simplicial sets, thus a G-weak equivalence. So the latter morphism is a G-acyclic
fibration by the adjoint of the pushout product property.

By taking G-fixed points we then get an acyclic fibration of simplicial sets

mapG(L,X) −→ mapG(K,X)×mapG(K,Y ) mapG(L, Y )

which is in particular surjective on vertices. This exactly means that f : X −→ Y has the right lifting
property with respect to i : K −→ L.

(a)⇒(b) The map f is a G-fibration by assumption (ii), so we need to show that it is also a G-weak
equivalence. We show that for every free G-simplicial set L the induced map map(L, f) : map(L,X) −→
map(L, Y ) is a G-acyclic fibration. We first show this for finite-dimensional L by induction over the
dimension of L. We start the induction with L = ∅ being empty, when there is nothing to show. If L has
dimension n ≥ 0 then there exists a pushout square of G-simplicial sets

X × ∂∆[n] //

��

X ×∆[n]

��
L′ // L

where L′ has strictly smaller dimension than L and X is a free G-set. [...] In the general case of an arbitrary
free G-simplicial set L we use that L is the union of its simplicial skeleta, for which we have proved the
claim. So the morphism map(L, f) : map(L,X) −→ map(L, Y ) is the inverse limit of a tower of G-acyclic
fibrations, thus itself a G-acyclic fibration.

Now we specialize the above to the free G-simplicial set L = EG. We deduce that map(EG, f) :
map(EG,X) −→ map(EG, Y ) is a G-acyclic fibration. Since the square of condition (ii) is G-homotopy
cartesian, the map f : X −→ Y is then also a G-weak equivalence.

(b)⇒(a) If f is a G-acyclic fibration, then so is map(EG,X). Thus the square of condition (ii) is
G-homotopy cartesian. �

[remark about Shipley’s mixed model structure]

2. Triangulated categories

Let T be a category equipped with an endofunctor [1] : T −→ T . A triangle in T (with respect to
the functor [1]) is a triple (f, g, h) of composable morphisms in T such that the target of h is equal to [1]
applied to the source of f . We will often display a triangle in the form

A
f−→ B

g−→ C
h−→ A[1] .
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A morphism from a triangle (f, g, h) to a triangle (f ′, g′, h′) is a triple of morphisms α : A −→ A′, β : B −→
B′ and γ : C −→ C ′ in T such that the diagram

A
f //

α

��

B
g //

β

��

C

γ

��

h // A[1]

α[1]

��
A′

f ′
// B′

g′
// C ′

h′
// A′[1]

commutes. A morphism of triangles is an isomorphism (i.e., has an inverse morphism) if and only all three
components are isomorphisms in T .

Definition 2.1. A triangulated category is an additive category T together with a self-equivalence
[1] : T −→ T and a collection of triangles, called distinguished triangles which satisfy the following axioms
(T1), (T2) and (T3).

(T1)

(a) For every object X and every zero object 0 the triangle X Id−→ X −→ 0 −→ X[1] is distinguished.
(b) Every morphism f is part of a distinguished triangle (f, g, h).
(c) Any triangle which is isomorphic to a distinguished triangle is itself distinguished.

(T2) Distinguished triangles can be rotated: if a triangle (f, g, h) is distinguished, then so is the triangle
(g, h,−f [1]).

(TR3) [Octahedral axiom] Consider distinguished triangles (f1, g1, h1), (f2, g2, h2) and (f3, g3, h3) such
that f1 and f2 are composable and f3 = f2f1. Then there exist morphisms x and y such that (x, y, g1[1]◦h2)
is a distinguished triangle and the following diagram commutes

A
f1 // B

f2

��

g1 // C

x

��

h1 // A[1]

A
f3

// D g3
//

g2

��

E
h3

//

y

��

A[1]

f1[1]

��
F

h2

��

F

g1[1]◦h2��

h2

// B[1]

B[1]
g1[1]

// C[1]

This formulation of the axioms is due to May [44] who noticed a redundancy in Verdier’s original
axioms [63]. So the axioms are seemingly weaker, but in fact equivalent to the ones of Verdier [63]. There
are two differences: Verdier’s formulation (TR2) asks that distinguished triangles can be rotated in both
directions, where (T2) above only asks for one direction; the extra implication is part (v) of the following
proposition. Verdier has another axiom (TR3) which is the content of part (i) of the following proposition.

For the convenience of the reader we recall various useful standard facts about distinguished triangles,
including Verdier’s stronger forms of the axioms.

Proposition 2.2. Let T be a triangulated category in the sense of Definition 2.1. Then the following
two properties hold.
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(i) Consider two distinguished triangles (f, g, h) and (f ′, g′, h′). Any pair (α, β) of morphisms satis-
fying βf = f ′α can be extended to a morphism of triangles, i.e., there exists a morphism γ making
the following diagram commute

A
f //

α

��

B
g //

β

��

C

γ

��

h // A[1]

α[1]

��
A′

f ′
// B′

g′
// C ′

h′
// A′[1]

(ii) For every distinguished triangle (f, g, h) and every object X of T , the two sequences of abelian
groups

T (X,A)
T (X,f)−−−−−→ T (X,B)

T (X,g)−−−−→ T (X,C)
T (X,h)−−−−−→ T (X,A[1])

and

T (A[1], X)
T (h,X)−−−−−→ T (C,X)

T (g,X)−−−−−→ T (B,X)
T (f,X)−−−−−→ T (A,X)

are exact.
(iii) Let (α, β, γ) be a morphism of distinguished triangles. If two out of the three morphisms are

isomorphisms, then so is the third.
(iv) A triangle (f, g, h) is distinguished if and only if the triangle (−f [1],−g[1],−h[1]) is distinguished.
(v) Distinguished triangles can be rotated to the left: given any triangle (f, g, h) such that (g, h,−f [1])

is distinguished, then so is the original triangle (f, g, h).

Proof. (i) [...]
(ii) We start by showing exactness of the first sequence at T (X,B). By part (i) applied to the pair

(Id, f) there is a (necessarily unique) morphism from any zero object to C such that the diagram

A
Id // A //

f

��

0

��

// A[1]

A
f

// B g
// C

h
// A[1]

commutes (the top row is distinguished by (T1 a)). So gf = 0 and thus the image of T (X, f) is contained
in the kernel of T (X, g) for every object X.

Conversely, let ψ : X −→ B be a morphism in the kernel of T (X, g), i.e., such that gψ = 0. Applying
part (i) to the pair (ψ, 0) gives a morphism ϕ̄ : X[1] −→ A[1] such that the diagram

X //

ψ

��

0 //

��

X[1]

ϕ̄

��

− Id // X[1]

ψ[1]

��
B g

// C
h

// A[1]
−f [1]

// B[1]

commutes (both rows are distinguished by (T1 a) and (T2)). Since shifting is full, there exists a morphism
ϕ : X −→ A such that ϕ̄ = ϕ[1], and since shifting is faithful we have fϕ = ψ, so ψ is in the image of
T (X, f). Altogether, the first sequence is exact at T (X,B). If we apply this to the triangle (g, h,−f [1])
(which is distinguished by (T2)), we deduce that the first sequence is also exact at T (X,C). Exactness of
the second sequence is similar, using part (i) for suitable maps out of the distinguished triangle (f, g, h)
and its rotations.
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(iii) We first treat the case where α and β are isomorphisms. If X is any object of T we have a
commutative diagram

T (X,A)
f∗ //

α∗

��

T (X,B)
g∗ //

β∗

��

T (X,C)
h∗ //

γ∗

��

T (X,A[1])
(−f [1])∗ //

α[1]∗

��

T (X,B[1])

β[1]∗

��
T (X,A′)

f ′∗

// T (X,B′)
g′∗

// T (X,C ′)
h′∗

// T (X,A′[1])
(−f ′[1])∗

// T (X,B′[1])

where we write f∗ for T (X, f), etc. The top row is exact by part (ii) applied to the triangles (f, g, h) and
(g, h,−f [1]), which are distinguished by hypothesis, respectively axiom (T2). Similarly, the bottom row is
exact. Since α and β (and hence α[1] and β[1]) are isomorphisms, all vertical maps except possibly the
middle one are isomorphisms of abelian groups. So the five lemma says that γ∗ is an isomorphisms. Since
this holds for all objects X, the morphism γ : C −→ C ′ is an isomorphism.

If β and γ are isomorphisms, we apply the same argument to the triple (β, γ, α[1]). This is a morphism
from the distinguished (by (T2)) triangle (g, h,−f [1]) to the distinguished triangle (g′, h′,−f ′[1]). By the
above, α[1] is an isomorphism, hence so is α since shifting is an equivalence of categories. The third case is
similar.

(iv) One direction is a direct consequence of the axioms: if (f, g, h) is distinguished, then so is
(−f [1],−g[1],−h[1]) by three applications of (T2). Now suppose that (−f [1],−g[1],−h[1]) is distinguished.
Axiom (T1 b) let’s us choose a distinguished triangle

A
f−→ B

ḡ−→ C̄
h̄−→ A[1]

and by the first sentence, the triangle (−f [1],−ḡ[1],−h̄[1]) is distinguished. By (i) there is a morphism
γ̄ : C[1] −→ C̄[1] such that the diagram

A[1]
−f [1] // B[1]

−g[1] // C[1]

γ̄

��

−h[1] // A[2]

A[1]
−f [1]

// B[1]
−ḡ[1]

// C̄[1]
−h̄[1]

// A[2]

commutes. By part (iii), γ is an isomorphism. Since shifting is an equivalence of categories, we have γ̄ = γ[1]
for a unique isomorphism γ : C −→ C̄. Thus (f, g, h) is isomorphic to the distinguished triangle (f, ḡ, h̄),
so it is itself distinguished by axiom (T1 c).

(v) If (g, h,−f [1]) is distinguished, then so is (−f [1],−g[1],−h[1]) by two applications of (T2). So
(f, g, h) is distinguished by part (v). �
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[63] J.-L. Verdier, Des catégories dérivées des catégories abéliennes. With a preface by Luc Illusie. Edited and with a note
by Georges Maltsiniotis. Astrisque 239 (1996), xii+253 pp. (1997).

[64] V. Voevodsky, A1-homotopy theory. Doc. Math. ICM I (1998), 417-442.

[65] R. Vogt, Boardman’s stable homotopy category. Lecture Notes Series, No. 21 Matematisk Institut, Aarhus Universitet,
Aarhus 1970 i+246 pp.

[66] F. Waldhausen, Algebraic K-theory of spaces. Algebraic and geometric topology (New Brunswick, N.J., 1983), 318–419,
Lecture Notes in Math., 1126, Springer, Berlin, 1985.

[67] A. Weiner, Symmetric spectra and Morava K-theories. Diplomarbeit, Universität Bielefeld, 2005.



Index

B(n), 78

BO, 33

BP , 16, 78

BP 〈n〉, 78

BSO, 33

BSU , 33

BSp, 33

BSpin, 33

BU , 33

CA, 51

E(n), 78

HA, 37

I, 31

I-cell complex, 140

I-functor, 55

I-space, 31

K-theory

algebraic, 21

Morava, 78

topological, 20

K(n), 78

KO, 20

KU , 20

L .m X, 26, 46, 61

LnA, 115

MO, 18

MSO, 19

MSU , 19

MSp, 19

MSpin, 19

MU , 19, 40

MUP , 40

M ∧R N , 133

P (n), 78

PX, 49

RX, 66

R[1/x], 34, 75

R[M ], 32

R∞X, 66

Rop, 71

S-modules, 40

S·-construction, 21

TX, 49

W (1), 63

X[1], 89

Γ, 23, 37

Γ-space, 37

very special, 38

Hom(X, Y ), 29

HomR(M, N), 133

M, 55, 56, 58

M-module, 55

Ω-spectrum, 11

positive, 11

Pn, 60

S(X), 10

T , 4

S̄, 115

χn,m, 8

diagi Xi, 30

η, 15

γ, 103

λX , 26

S[M ], 37

S, 14, 85

S[1/m], 34

S[k], 116

map(X, Y ), 28

νn(f), 126

ρx, 72

SHC, 86

telN Xi, 30

f∗, 135

f∗, 135

f!, 135

k(n), 78

assembly map, 36, 120

bimorphism, 42

Bott periodicity theorem, 21

Brown-Peterson spectrum, 16, 78

category with cofibrations and weak equivalences, 21

coextension of scalars, 135

cofibrantly generated, 140

cofibration

flat, 126

level, 126

projective, 126

colimit

of symmetric spectra, 24

cone, 51

151



152 INDEX

connecting homomorphism, 51

continuous functor, 36

diagonal, 30

distinguished triangle

elementary, 94
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