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1. Introduction

The purpose of this paper is to introduce the “schematic viewpoint” in algebraic topology. This seems to
be the most natural framework in which to discuss the algebraic structures which arise from complex-oriented
cohomology theories. Many of the parts which are original are joint work with Mike Hopkins and Matthew
Ando.

We give a definition of (formal) schemes which is well adapted to the particular technicalities which arise
in the study of Morava K-theory and completed E(n)-theory. We show how to interpret the generalised
(co)homology of CP∞, Z×BU , BΣpm , projective bundles and Thom spaces of complex vector bundles, and
various other spaces, using the language of formal group theory.

While we use many ideas from algebraic geometry, our examples are rather different from those usually
considered by the algebraic geometer on the Clapham omnibus. It is thus difficult to extract from the
literature an adequate set of foundations for our work, which cover the situations which we need to cover
without prolonged discussion of phenomena which we will never encounter. This paper makes some attempt
to remedy this. The reader should be warned, however, that very few of our definitions will be precisely
equivalent to those used in algebraic geometry.

The sections are mostly arranged in a pedagogical order, with some more technical pieces of algebra placed
at the end.

2. Notation

Given a category C, we usually write C(X,Y ) for the set of C-morphisms from X to Y .

Given a spectrum E we write E∗ for E∗S0. If E∗ has period 2 and is concentrated in even degrees we
write E for E0 and E(X) for E0(X). Often, E and K will be Morava E-theory and K-theory, as explained
in section 3. The prime p and the height n will be omitted from the notation. In this context, we write
E∨Z = π0LK(E ∧ Z+) (where Z is a space).

All vector bundles over spaces will be complex. (We will also consider vector bundles over schemes, see
section 10

If R is a ring then R{ai | i ∈ I} means the free R-module on the indicated elements. If the ai are already
elements of an R-module M then use of this notation implicitly claims that they generate a free submodule.

3. Morava K-Theory and E-Theory

In this section, we define the cohomology theories which will provide the central examples for the rest of
this paper.

Let p be a prime, and n > 0 an integer (called the height). We shall say that we are working at the
chromatic prime pn, and omit p and n from the notation almost everywhere. In particular, K and E will

refer to spectra closely related to those usually called K(n) and Ê(n) — details are given below.

We will write κ = Fpn for the finite field of order pn. This has the form Fp[ω]/h(ω), for a suitable monic
irreducible factor h of the cyclotomic polynomial Φpn−1(x) in Fp[x]. This can be lifted uniquely to give a
monic irreducible factor h of Φpn−1 in Zp[x], and we can define the Witt ring W = WFpn as Zp[ω]/h(ω).

The ring W is a free module of rank n over Zp and is a complete discrete valuation ring. Any element
x ∈W can be written uniquely as pvy with v ≥ 0 and y ∈W×. In particular, W is local with maximal ideal
(p) and residue field W/p = κ.

There is a unique map τ : κ −→ W (the Teichmüller map) satisfying τ(ab) = τ(a)τ(b) and τ(a) = a

(mod p). Indeed, if ã ∈W is any lift of a, then the sequence ãp
nk

converges p-adically to τ(a) as m −→ ∞.
We also write â for τ(a).

Any element a ∈ W can be written uniquely as a =
∑
k≥ 0 τ(ak)p

k, for suitable ak ∈ κ. If also b =∑
k≥ 0 τ(bk)p

k and c = a+ b =
∑
k≥0 τ(ck)p

k then the ck are essentially given in terms of the ak and bk by
the Witt addition formula. However, this fact is rarely useful in the present context.
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There is a unique automorphism φ of W (the Frobenius automorphism) satisfying φ(â) = âp for all a ∈ κ.
This also has φn = 1. The fixed ring of Cn = 〈φ | φn = 1〉 acting on W is just Zp. In fact, W ' Zp[Cn] as
Zp[Cn]-modules (but not as rings).

We define an ungraded ring

E = E0 = W [[u1, . . . , un−1]]

and a graded ring

E∗ = E[u, u−1] |u| = −2

We also take u0 = p and un = 1 and uk = 0 for k > n.

The coefficient ring of the Brown-Peterson spectrum is

BP ∗ = Z(p)[vk | k > 0] |vk| = −2(pk − 1)

We define a map BP ∗ −→ E∗ sending vk to up
k−1uk. Using this, we define a functor from spectra to

E∗-modules by

E∗(X) = E∗ ⊗BP∗ BP∗(X)

The BP ∗-module E∗ is Landweber exact, so this functor is a homology theory, represented by a spectrum
which we shall also call E. We shall refer to this as Morava E-theory. The ring E has a pleasant interpretation
in terms of deformations of formal groups, which will be discussed later.

Remark 3.1. Given two spectra E and E′ and a natural isomorphism f : E∗(−) −→ E′∗(−), there is an
isomorphism f : E −→ E′ of representing spectra, unique up to addition of a phantom map. In the present
case, we shall see shortly that E can be written as the homotopy inverse limit of a tower of spectra with finite
homotopy groups. It follows that there are no phantom maps to E, and thus that E is unique up to unique
isomorphism.

This spectrum has been constructed by pure homotopy theory, so only homotopical methods (such as
obstruction theory) are available to analyse it. Nonetheless, Hopkins and Miller have shown that can be made
canonically into an E∞ ring spectrum.

The ring E is a complete, regular local ring, with maximal ideal mE = (p = u0, u1, . . . , un−1). By iterated
cofibrations, preferably carried out in the derived category of E∞ E-modules, one can construct an algebra-
spectrum K over E with K∗ = E∗/mE = κ[u±1]. We shall refer to this as Morava K-theory. It is a finite
wedge of suspensions of the spectrum usually called K(n).

More generally, given α = (α0, . . . , αn−1) we define Iα = (uα0
0 , . . . u

αn−1

n−1 ) C E0. We can construct E-
algebra spectra Eα = E/Ial with E0

α = E0/Iα. For a cofinal family of ideals Iα there is a finite ring spectrum
Mα such that Eα = E ∧Mα (see [3]). The original spectrum E can be recovered as E = holim

←- α
Eα.

If n = 1 then E = KUp, the p-adic completion of complex K-theory. Moreover, K = KU/p.

We make E into a topological ring by declaring {mk | k ≥ 0} to be a base of neighbourhoods of zero. This
actually makes E into a formal ring (see section 6). We also consider K as a formal ring with the discrete
topology.

Rather than think about E and related rings directly, we shall consider the represented functors spf(E).
This is the functor from a suitable class of topological rings to sets defined by

spf(E)(R) = Homcts(E,R)

Details are in section 6.
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We shall use the following notation:

X = spf(E)

G = spf(E(CP∞))

X1 = spf(W ) = V (u1, . . . un−1) < X

G1 = G×X X1

X0 = spf(κ) = V (mE) < X1

G0 = spf(K(CP∞)) = G×X X0

4. Schemes

Let Rings be the category of rings. Given a ring R we consider the functor

spec(R) : Rings −→ Sets

spec(R)(S) = Rings(R,S)

An affine scheme is a functor X : Rings −→ Sets such that X ' spec(R) for some R. We shall often say
“scheme” instead of “affine scheme”. Non-affine schemes do occur in topology (for example, in the theory
of the period mapping or of elliptic spectra), but we will have quite enough to do without considering them
here.

Example 4.1.

Gm(S) = S× = the group of units of S

Gm(S) ' Rings(Z[x, x−1], S) so Gm ' spec(Z[x±1])

One might say that the scheme Gm is a “more natural” object than the representing ring Z[x±1]. This is true
to a much greater extent of many of the rings which arise in topology.

The group Gm(S) = S× is usually called the multiplicative group of S, so we simply refer to Gm as “the
multiplicative group”. It arises, incidentally, in equivariant topology: Gm = spec(K0

S1).

Example 4.2. A formal group law over a ring S is a formal power series

F (x, y) =
∑
k,l≥0

aklx
kyl

satisfying

F (x, 0) = x

F (x, y) = F (y, x)

F (F (x, y), z) = F (x, F (y, z))

We can define a scheme FGL as follows:

FGL(S) = { formal group laws over S}

To see that FGL is a scheme, we consider the ring L0 = Z[akl | k, l ≥ 0] and the formal power series
F (x, y) =

∑
aklx

kyl ∈ L0[[x, y]]. We then let I be the smallest ideal of L0 such that the formal group law
conditions for F are satisfied modulo I. For example, the first condition says that a00−1 ∈ I and ak0 ∈ I for
k > 0, and the second says that akl − alk ∈ I. Finally, set L = L0/I. It is easy to see that FGL = spec(L).
The ring L is called the Lazard ring. It is usual in algebraic topology to identify L with MU∗. We shall take
a slightly different point of view (explained at the end of section 14) which takes the grading into account.
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We also define a pre-scheme to be an arbitary functor X : Rings −→ Sets. We shall usually only use this
language when we intend to prove later that X is a scheme.

Note that spec is a functor Ringsop −→ Schemes. In fact, by Yoneda’s lemma, it is an equivalence of
categories:

Schemes(spec(S), spec(R)) ' spec(R)(S) ' Rings(R,S)

We write A1 for the affine line:

A1(S) = S A1 = spec(Z[x])

We write OX = Schemes(X,A1) so (by Yoneda again) we have OX = R iff X = spec(R). We refer to OX
as the ring of functions on X. We shall often write ⊗X for ⊗OX and HomX for HomOX .

Example 4.3. There is a map α : Gm × FGL −→ FGL defined by

α(u, F ) = Fu Fu(x, y) = uF (x/u, y/u)

It is best to define this map as above, and work as far as possible with the description given, rather than
trying to work out the representing map α∗ : OFGL −→ OGm⊗OFGL. Sometimes one cannot avoid calculating
the representing map, so we shall do this case as an example. We think of aij as a natural map FGL(R) −→ R,
defined implicitly by

F (x, y) =
∑
ij

aij(F )xiyj

Thus

Fu(x, y) = u
∑

aij(F )(x/u)i(y/u)j =
∑

u1−i−jaij(F )xiyj

This shows that aij(Fu) = u1−i−jaij(F ), in other words α∗(aij) = u1−i−jaij .

Example 4.4. A strictly invertible power series over a ring S is a formal power series f ∈ S[[x]] such that
f(x) = x+O(x2). This implies, of course, that f has a composition-inverse g = f−1, so that f(g(x)) = x =
g(f(x)). We write IPS(S) for the set of such f , which is easily seen to be a scheme. It is actually a group
scheme, in that IPS(S) is a group (under composition), functorially in S.

The group IPS acts on FGL by

(f, F ) 7→ Ff Ff (x, y) = f(F (f−1x, f−1y))

A strict isomorphism between formal group laws F and G is a strictly invertible series f such that
f(F (a, b)) = G(f(a), f(b)). Let SI be the following scheme:

SI(S) = {(F, f,G) | F,G ∈ FGL(S) and f : F −→ G is a strict iso }

There is an evident composition map

SI×FGL SI −→ SI ((F, f,G), (G, g,H)) 7→ (F, gf,H)

Moreover, there is an isomorphism

IPS×FGL −→ SI (F, f) 7→ (F, f, Ff )

Again, one can write implicit formulae in the representing rings, but this should be avoided where possible.

The category of schemes is quite “geometric”. It has an initial object ∅ = spec(0) and a final object
1 = spec(Z). It has coproducts and pullbacks:

X t Y = spec (OX ×OY )

X ×Z Y = spec (OX ⊗Z OY )

As functors, we have

(X ×Z Y )(R) = X(R)×Z(R) Y (R)
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but

(X t Y )(R) = {(S, T, x, y) | S, T ≤ R , R = S × T , x ∈ X(S) , y ∈ Y (T )}
To explain this, note that an element of (X t Y )(R) is (by Yoneda) a map spec(R) −→ X t Y . This will be
given by a decomposition spec(R) = spec(S) t spec(T ) and maps spec(S) −→ X and spec(T ) −→ Y .

More general colimits do exist in the category of schemes, but the geometric interpretation is typically
bad. Part of the problem is that we consider only affine schemes. Algebraic geometers do have an extensive
theory of non-affine schemes, of course, but they seem not to be very relevant in topology. Even if we allowed
non-affine schemes, many problems with colimits would remain. Some of these can be resolved using the
ideas of faithfully flat descent and stack theory, which we will discuss later.

An important class of delicate colimit problems which we will have to consider involves taking the quotient
of a scheme X by the action of a finite group G. The functor S 7→ X(S)/G is unlikely to be a scheme. The
obvious candidate for X/G is spec(OGX). This gives a map X(S)/G −→ (X/G)(S), which is iso when S is an
algebraically closed field, but not in general.

We can also do a number of things with subschemes. A closed subscheme of X is a scheme of the form
V (I) = spec(OX/I) for an ideal I ≤ OX . An open subscheme is one of the form D(a) = spec(OX [a−1]) for
some a ∈ OX , and a locally closed subscheme has the form D(a) ∩ V (I) = spec(OX [a−1]/I).

Example 4.5. Suppose X = spec(k[x]) is the affine line over a field k, and λ, µ ∈ k. The closed subscheme
V (x− λ) = spec(k[x]/(x− λ)) ' spec(k) corresponds to the point λ of the affine line; it is natural to refer to
it as {λ}. The closed subscheme V ((x− λ)(x− µ)) corresponds to the pair of points {λ, µ}. If λ = µ, this is
to be thought of as the point λ with multiplicity two, or as an infinitesimal thickening of the point λ.

We can easily form the intersection of locally closed subschemes:

D(a) ∩ V (I) ∩D(b) ∩ V (J) = D(ab) ∩ V (I + J)

We cannot usually form the union of open subschemes and still have an affine scheme. Again, it would
be easy enough to consider non-affine schemes, but it rarely seems to be necessary. Moreover, a closed
subscheme V (a) determines the complementary open subscheme D(a) but not conversely; D(a) = D(a2) but
V (a) 6= V (a2) in general.

We say that a scheme X is reduced iff OX has no nonzero nilpotents, and write Xred = spec(OX/
√

0),
which is the largest reduced closed subscheme of X. Moreover, if Y ⊆ X is closed then Yred = Xred iff
X(k) = Y (k) for every field k.

We define the union of closed subschemes by V (I)∪ V (J) = V (I∩ J). We also define the schematic union
by V (I) + V (J) = V (IJ). This is a sort of “union with multiplicity” — in particular, V (I) + V (I) 6= V (I)
in general. In the previous example, we have

{λ} ∪ {λ} = V ((x− λ)2)

which is a thickening of {λ}. Note that V (IJ)red = V (I ∩ J)red.
We shall say that X is connected iff it cannot be split nontrivially as Y t Z, iff there are no idempotents

in OX other than 0 and 1. There is more information about this sort of question in section 32.

Example 4.6. Let E be MoravaE-theory, andG a finite group. WriteX = spec(p−1(E0BG)). Warning:
this is not the same as (p−1E)0BG ' (p−1E)0(point). Work of Hopkins, Kuhn and Ravenel [8] implies that
X has one component for each conjugacy class of Abelian p-subgroups of G. On the other hand, spec(K0BG)
is connected (where K is Morava K-theory).

We shall say that a scheme X is integral iff OX is an integral domain, and that X is irreducible iff Xred

is integral. We also say that X is Noetherian iff the ring OX is Noetherian. If so, then Xred can be written
in a unique way as a finite union

⋃
i Yi with Yi an integral closed subscheme. The schemes Yi are called the

irreducible components of Xred; they are precisely the schemes V (pi) for pi a minimal prime ideal of OX . We
can also write X =

⋃
iXi with (Xi)red = Yi, but this decomposition is not quite unique. See [11, section 6]

for this material.
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Suppose that X is Noetherian and reduced, say X =
⋃
i∈ S Yi as above for some finite set S. Suppose

S = S′ t S′′. Write X ′ =
⋃
S′ Yi = V (I ′), where I ′ =

⋂
S′ pi, and similarly for X ′′ and I ′′. If we then write

Γ(I ′) = {a ∈ OX | a(I ′)N = 0 for N � 0}

we find that Γ(I ′) = I ′′ and thus V (Γ(I ′)) = X ′′. This construction occurs in the Greenlees-May theory of
local cohomology and Tate spectra [4, 5].

Example 4.7. Take Z = spec(k[x, y]/(xy2)) and set

X = V (y) = spec(k[x])

X ′ = V (y2) = spec(k[x, y]/(y2))

Y = V (x) = spec(k[y])

Then X is the x-axis, Y is the y-axis and X ′ is an infinitesimal thickening of X. The schemes X and Y are
integral, and X ′ is irreducible because X ′red = X. The scheme Z is reducible, and its irreducible components
are X and Y .

Example 4.8. Let G be a finite group, and X = spec(H2∗(BG;Fp)). Then work of Quillen shows that X
has one irreducible component for each maximal conjugacy class of elementary Abelian p-subgroups.

Example 4.9. Let E be Morava E-theory (with height n), and suppose that A is a finite Abelian p-
group. Write A∗ = Hom(A,S1) and EA = E(BA∗). We shall show in section 26 that Y = spec(EA) has
one irreducible component YB for each quotient A/B of rank at most n, and derive many properties of the
schemes YB .

5. Formal Rings and Modules

Let R be a ring, and M an R-module. A linear topology on M is a topology such that the collection of
open submodules forms a base of neighbourhoods of zero. We shall write N ≤O M to indicate that N is an
open submodule. Note that if N is open and N ≤ L ≤ M then L is a union of translates of N and thus
also open. Similarly, M \ N is open, so N is closed. Note also that the ring operations are automatically
continuous for a linear topology on R. Any directed family of submodules gives rise to a linear topology in
an obvious way. We say that M is complete with respect to a given linear topology iff

M = lim
←-

N≤OM

M/N

Suppose that M is a complete linearly-topologised A-module, and that N is a submodule. Then N inherits
a linear topology in an obvious way. The closure of N is given by

N =
⋂

L≤OM
N + L

Moreover, N is closed iff it is complete. If so, the quotient M/N also inherits a complete linear topology.

Definition 5.1. A formal ring is a ring with a given linear topology, with respect to which it is complete.

Definition 5.2. An ideal of definition for a formal ring R is an open ideal I such that {Ik | k ≥ 0} is a
base of neighbourhoods of zero. Note that such a thing may or may not exist, and that in general a power of
an open ideal need not be open.

Example 5.1. Consider K(BU) = K0BU = K[[ck | k > 0]], where K is Morava K-theory. We give this a
topology by declaring that ker(K(BU) −→ K(Z)) be open for any finite complex Z and any map Z −→ BU . In
particular, the augmentation ideal J is open. Note that every open ideal contains ck for k � 0. In particular,
J2 is not open. This shows that there is no ideal of definition.
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Definition 5.3. A formal module over a formal ring R is a complete linearly topologised R-module M
such that the action map R×M −→M is continuous. (Note that this has nothing to do with the Lubin-Tate
theory of formal A-modules, which are formal groups G with a map A −→ End(G)).

If M and N are formal modules, the symbol HomR(M,N) will always refer to continuous homomorphisms.
Note that

HomR(M,N) = lim
←-
β

lim
-→
α

HomR(M/Mα, N/Nβ)

whereMα andNβ run over open submodules. We give this module the topology of uniform convergence, which
is defined by the family of submodules {Hom(M,Nβ)}; this makes it into a formal module. In particular, we
define the topological dual M∨ = Hom(M,R).

If S is a set, we write F (S,M) for the formal R-module of functions a : S −→ R, topologised as a product of
copies of M . We say that a ∈ F (S,M) is nullconvergent iff for all M ′ ≤O M we have as ∈M ′ for almost all
s ∈ S. We write F0(S,M) for the set of nullconvergent functions. We give F0(S,M) the topology defined by
the submodules F (S,M ′)∩ F0(S,M), where M ′ ≤O M . One can then check that F (S,M)∨ is topologically
isomorphic to F0(S,M

∨). If M is finitely generated then F0(S,M)∨ is algebraically isomorphic to F (S,M∨)
but has a different topology. Moreover, for all M and N there are topological isomorphisms

F (S,M)⊗̂RF (T,N) = F (S × T,M⊗̂RN)

F0(S,M)⊗̂RF0(T,N) = F (S × T,M⊗̂RN)

We say that M is pro-free iff it is topologically isomorphic to F (S,R) for some S. If so, the functor

N 7→M⊗̂RN ' F (S,N)

is exact and preserves infinite products.

Example 5.2. Suppose that Z is a spectrum and E0Z is free over E0 on generators indexed by a set S.
Then E(Z) ' F (S,E) and E∨ Z = π0LK(E ∧ Z) ' F0(S,E).

Remark 5.1. Let R be a Noetherian formal ring. Suppose that there is an ideal of definition I, and
that I ≤ m for every maximal ideal m C R. Then every finitely generated module is complete under the
topology defined by the submodules IkM . Let f : M −→ N be a map of finitely generated modules. Then f
is continuous, if it is injective it is a closed embedding, and if it is surjective it is open (and thus a quotient
map). The key point here is the Artin-Rees lemma, see [11, section 8].

6. Formal Schemes

The definitions in this section are not the usual ones in algebraic geometry, but they appear to be what is
required for our applications.

Definition 6.1. If R is a formal ring, we define a functor

spf(R) : Rings −→ Sets spf(R)(S) = lim
-→

ICOR
Rings(R/I, S)

A formal scheme is a functor of the form spf(R) for some formal ring R. We write Formal for the category
of formal schemes.

Note that any ordinary scheme is a formal scheme. We shall say that a formal scheme is discrete iff it is
actually an ordinary scheme. Any formal scheme is a directed colimit of closed inclusions of discrete schemes.
Considered as a functor Rings −→ Sets, it preserves finite limits.

Example 6.1. Suppose X is a scheme and Y = V (I) is a a closed subscheme. Let O
X̂

be the completion

of OX at I, and give it the linear topology defined by the powers of I. Then X̂ = spf O
X̂

is a formal scheme,

called the formal completion of X along Y . It is the colimit of the schemes V (Ik) in the category of formal
schemes.
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Example 6.2. Consider the ring R = Z[[x]] with the formal topology defined by powers of x. Then

spf(R)(S) = Â1(S) = Nil(S) = { nilpotent elements of S}

Example 6.3. If Z is a reasonable space, with finite subspectra Zα, then E(Z) will be the same as
lim
←-

E(Zα), and this will be a formal ring. More details are given in section 7.

Example 6.4. spf Zp is a formal scheme.

Example 6.5. Write K for p-adic complex K-theory, and consider

K(CP∞) = lim
←-
k

K(CP k) = lim
←-
l

K(BZ/pl) = Zp[[x]]

This ring has three different formal topologies, defined by ideals

Jk,l = ([pk](x), pl)

Ik = ker(K(CP∞) −→ K(BZ/pk)) = ((1 + x)p
k − 1)

Km = ker(K(CP∞) −→ K(CPm−1)) = (xm)

The first of these seems most useful. It is also defined by the ideals (xk, pl).

Given a formal scheme X, we can form the ring

OX = Formal(X,A1)

A point x ∈ X(A) gives a map x̂ : OX −→ A; we write Jx for the kernel. These ideals form a directed family,
and thus give rise to a linear topology on OX . Moreover, OX is complete with this topology, so OX is a
formal ring. One can show that

Formal(X,Y ) = FormalRings(OY ,OX)

Ospf(R) = R

so that the category of formal schemes is dual to that of formal rings.

Definition 6.2. Let R be a formal ring. An element x ∈ R is topologically nilpotent iff xn −→ 0 as
n −→ ∞, iff it is nilpotent in R/I for every I CO R. We write Nil(R) for the ideal of topologically nilpotent
elements. An ideal J C R is topologically nilpotent iff J ≤ Nil(R), and strongly topologically nilpotent iff for
all I CO R we have JN ≤ I for N � 0. Note that a finitely generated ideal which is topologically nilpotent
is strongly so.

Note that

Formal(X, Â1) = FormalRings(Z[[x]],OX) = Nil(OX)

The following is proved later as proposition 32.1.

Proposition 6.1. Nil(R) is the intersection of all open prime ideals, and is thus closed.

We can define products and coproducts of formal schemes, with

OXtY = OX ×OY

OX×Y = OX⊗̂OY = lim
←-
α,β

OXα ⊗OXβ

Let X be a formal scheme. If J C OX is a closed ideal then OX/J is a formal ring and we write
V (J) = spf(OX/J). A formal scheme of this kind will be called a closed formal subscheme of X.

Most constructions with schemes can be carried over to formal schemes, by requiring rings and modules
to be topologised and maps to be continuous.
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We will also consider formal schemes as representable functors on the category of formally-topologised
rings:

X(R) = FormalRings(OX , R) = Formal(spf R,X)

7. Schemes in Algebraic Topology

Let E be a spectrum like Morava E-theory. The precise list of properties we require is as follows. E must
be a complex-orientable two-periodic ring spectrum with Eodd = 0. We must be given a directed system of
ideals Iα C E0 and algebra-spectra Eα such that E∗α = E∗/Iα and E = holim

←- α
Eα. It follows that the Iα

define a formal topology on E0. We also require that E0 be Noetherian, and that there be a subsequence of
the Iα which is cofinal. This will allow us to apply the usual theory of lim and lim1 for towers. Much of the
theory would go through with less restrictive assumptions, of course.

Example 7.1. Anything obtained from Morava E-theory by killing some generators qualifies. In particu-
lar, Morava K-theory is an example, as are p-adic or mod p complex K-theory. Any two-periodic even ring
spectrum E with the discrete topology also qualifies. If we take Morava E-theory at height n, invert um
(with m < n) and complete at (u0, . . . um−1), we get another example.

We write E(Z) for E0(Z) and E for E0.

Definition 7.1. Let Z be a CW-spectrum, and let Zβ run over the finite subspectra. Write Jαβ =
ker(E(Z) −→ Eα(Zβ)). We say that Z is tolerable iff E(Z) = lim

←- α,β
E(Z)/Jαβ and E1(Z) = 0. If so, we give

E(Z) the formal topology defined by the submodules Jαβ . We say that Z is decent if E0Z is a free E-module
and E1Z = 0 — this implies that Z is tolerable.

A finite spectrum Z is tolerable iff E1Z = 0. Indeed, [ΣkZ,E/Iα] is finite, by induction on the number of
cells. Thus the tower is Mittag-Leffler and [ΣkZ,E] = lim

←- α
[ΣkZ,E/Iα] by the Milnor exact sequence.

As remarked earlier, if Z is decent then E(Z) is pro-free. It follows that E(Z)⊗̂EE(W ) is a cohomology
theory of W , and thus that E(Z ∧W ) = E(Z)⊗̂EE(W ).

Definition 7.2. Let Z be a tolerable CW complex. We then write

ZE = spfE Z = spf(E(Z))

This is a formal scheme, covariantly functorial in Z. It is also naturally polarised (see section 11).

For any finite complex and many infinite complexes, the ring E(Z) will be Noetherian. The Artin-Rees
lemma will then apply, and many questions about formal topologies will simplify greatly (c.f. remark 5.1).

There are various obvious possible modifications. For example, we can think about H∗Z = H∗(Z;F2) as an
ungraded commutative ring, and define ZH to be its spectrum. We can define an action ofGm = spec(F2[u

±1])
on ZH by the map

α∗ : H∗Z −→ OGm ⊗H∗Z

α∗(
∑
k

ak) =
∑
k

aku
k (ak ∈ HkZ)

This action will then keep track of the grading.
In what follows, we will give (some) details of the two-periodic case, but feel free to present examples from

analogous cases.
Write X = pointE = spf(E0), so there is a canonical map ZE −→ X. We now have a covariant functor

from the homotopy category of (some) spaces to the (geometric) category of polarised formal schemes over
X. This preserves quite a lot of structure:

(Y t Z)E = YE t ZE
(Y × Z)E = YE ×X ZE if Z is decent
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Example 7.2. Let K denote p-adic complex K-theory, and let A be a finite Abelian p-group, with classi-
fying space BA. Then we have

(BA)K = Hom(A∗, Gm)

In other words, for any formal Zp-algebra R we have

Hom(K(BA), R) = Hom(A∗, R×)

This is just a paraphrase of the well-known fact that

K(BA) = Zp[A∗]

Example 7.3. If E = MU [u±1] =
∨
k∈Z Σ2kMU then MU∗ ' E0 (by a 7→ u−|a|/2a). Thus, (by a

fundamental result of Quillen) we have X ' spec(MU∗) ' FGL.

Many more examples will be given when we have a little more language with which to talk about them.
Note also that there are a number of rings (and therefore schemes) of topological origin which do not quite

fit into the framework discussed above. For example, if Z is an H-space then we can consider spec(E0Z). It
turns out to be more useful to modify this slightly, and consider

E∨Z = π0 holim
←-
α

Eα ∧ Z+

In the case of Morava E-theory, this is the same as π0LK(E ∧ Z) (see [9]). Note that as usual we are
suppressing the height n from the notation, so LK = LK(n).

If Z is decent then E∨ Z = E0Z
∧ = E(Z)∨. On the other hand, if G is a finite group then the typical

situation seems to be as follows. E0BG is a free module of finite rank over E0 and EoddBG = 0. However,
E0BG is I-torsion and has an odd-dimensional part. On the other hand, π∗LK(E ∧ BG+) is just the
continuous dual of E∗BG. I am not sure what is the strongest theorem one can prove along these lines.

More generally, given a K-local E-algebra spectrum F we can consider spf(F 0) as a scheme over X =
spf(E0). By taking F to be the function spectrum F (Z+, E) or the localised smash product LK(E ∧Z+) we
recover the previous examples.

8. Points and Sections

Let X be a scheme. An R-valued point of X is an element a ∈ X(R). Such a thing corresponds naturally
to a map a′ : Y = spec(R) −→ X. Explicitly, a′ is the natural transformation

Y (S) = Rings(R,S) −→ X(S)

defined as follows. If Y (S) 3 b : R −→ S then a′(b) = X(b)(a), the image of a ∈ X(R) under the map
X(b) : X(R) −→ X(S). From now on we shall not distinguish notationally between a and a′. We shall also
refer to R-valued points as Y -based points, or points defined over Y (where Y = spec(R) still), and write
a ∈R X or a ∈Y X. Such a thing should be thought of as a family of points of X indexed by Y .

We shall often talk about “a point a ∈ X” without specifying R. In that context, the word “scalar” means
an element of the unspecified ring R, in other words a point of A1 over R. Given a point a of X and an
element f ∈ OX we write f(a) for the image of a under the map f : X(R) −→ A1(R) = R. If X = spec(S)
then we can identify OX with S and so consider f as an element of S, and a as an element of Rings(S,R).
With these identifications, we have f(a) = a(f).

In these terms, we have

D(f)(R) = {a ∈R X | f(a) is invertible }

V (I)(R) = {a ∈R X | f(a) = 0 for all f ∈ I}
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Example 8.1. Let F be a point of FGL, in other words a formal group law over some ring R. We can
write

[3](x) = F (x, F (x, x)) = 3x+ u(F )x2 + v(F )x3 +O(x4)

for certain scalars u(F ) and v(F ). This construction associates to each point F ∈ FGL a point v(F ) ∈ A1

in a natural way, thus giving an element v ∈ OFGL. Of course, we know that OFGL is the Lazard ring L,
which is generated by the coefficients akl of the universal formal group law

Funiv(x, y) =
∑
k,l

aklx
kyl

Using this formal group law, we find that

[3](x) = 3x+ 3a11x
2 + (a2

11 + 8a12)x
3 +O(x4)

This means that

v(Funiv) = a2
11 + 8a12

It follows for any F over any ring R that v(F ) is the image of a2
11 + 8a12 under the map L −→ R classifying

F .

Example 8.2. For any scalar a, we have a formal group law

Ha(x, y) = x+ y + axy

The construction a 7→ Ha gives a natural transformation A1(R) −→ FGL(R), in other words a map of schemes
A1 −→ FGL. This can be thought of as a family of formal group laws, parametrised by a ∈ A1. It can also be
thought of as a single formal group law overZ[a] = OA1 . This map A1 −→ FGL is actually a closed embedding,
in other words an isomorphism of A1 with the closed subscheme V (J) of FGL, where J = (akl | k + l > 1).

Example 8.3. The point of view described above allows for some slightly schizophrenic constructions,
such as regarding the two projections π0, π1 : X ×X −→ X as two points of X over X2. Indeed, this is the
universal example of a scheme Y equipped with two points of X defined over Y . Similarly, we can think of
the identity map X −→ X as the universal example of a point of X. This is analogous to thinking of the
identity map of K(Z, n) as a cohomology class u ∈ HnK(Z, n); this is of course the universal example of a
space with a given n-dimensional cohomology class.

Often, we will have a given base scheme X and consider various schemes Y = spec(R) with given maps
Y −→ X. We refer to such a scheme Y as a scheme over X, or just an X-scheme, and write SchemesX for the
category of X-schemes. Given another X-scheme Z, a section of Z over Y is a map a : Y −→ Z such that the
composite Y

a−→ Z −→ X is the given map Y −→ X. Such sections biject with OX -algebra maps OZ −→ OY .
We write a ∈Y/X Z to indicate that a is a section, and let Γ(Y,Z) or Γ(R,Z) denote the set of sections.

Often, we will describe a scheme Y over X by describing Γ(R, Y ) as a functor of OX -algebras R. More
precisely, we have equivalences between the following categories:

(1) Schemes Y over X.
(2) Representable functors Y ′ : OX -Alg −→ Sets
(3) Representable functors Y ′′ : SchemesopX −→ Sets
(4) OX -algebras R

The equivalences are given by

R = OY
Y ′(S) = OX -Alg(R,S) = Γ(S, Y )

Y ′′(Z) = SchemesX(Z, Y ) = Γ(Z, Y )

Y (S) = Rings(R,S) = {(x, y) | x ∈ X(S), y ∈ Y ′(S)}
In the last equation, S is regarded as an OX -algebra via x∗ : OX −→ S.
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Example 8.4. Suppose that Y and Z are schemes over X, and that OY is a finitely generated free module
over OX . We can define a functor MapX(Y,Z) from schemes over X to sets by

Γ(W,MapX(Y,Z)) = SchemesW (W ×X Y,W ×X Z)

This is in fact representable. To see this, observe that an element of Γ(W,MapX(Y,Z)) is just an OW -algebra
map

OW ⊗X OZ −→ OW ⊗X OY
or equivalently, just an OX -algebra map

OZ −→ OW ⊗X OY

Write O∨Y = HomX(OY ,OX) and A = SymX [O∨Y ⊗X OZ ]. Then

OX -Alg(A,OW ) = OX -Mod(O∨Y ⊗X OZ ,OW ) = OX -Mod(OZ ,OW ⊗X OY )

A suitable quotient B of A will pick out the algebra maps. To be more explicit, let {ei} be a basis for OY
over OX , with 1 =

∑
i biei and eiej =

∑
k cijkek. Let {εi} be the dual basis for O∨Y . Then B is A mod the

relations

εk ⊗ ab =
∑
i,j

(εi ⊗ a)(εj ⊗ b)

εi ⊗ 1 = di

More abstractly, B is the largest quotient of A such that the following diagrams commute:

OZ ⊗OZ ⊗O∨Y OZ ⊗O∨Y

OZ ⊗OZ ⊗O∨Y ⊗O∨Y

OZ ⊗O∨Y ⊗OZ ⊗O∨Y

B ⊗B B

w

µZ⊗1

u

1⊗µ∨Y

u

u

twist

u

w
µB

O∨Y OX

O∨Y ⊗OZ B

w

η∨

u

1⊗η

u

η

w

We conclude that MapX(Y,Z) = spec(B). We also write SchemesX(Y,Z) for this scheme.

Example 8.5. Now suppose that G and H are group schemes over X, and that OG is a finitely generated
free module over OX . We can then define a closed subscheme Groups

X
(G,H) ⊆ SchemesX(G,H) such that

Γ(W,Groups
X

(G,H)) = GroupsW (W ×X G,W ×X H)

In particular, take X = spec(Z), and

G = µp = specZ[x]/(xp − 1) H(R) = {r ∈ R× | rp = 1}

H = Z/p = spec(F (Z/p,Z))

This is the constant group scheme corresponding to Z/p. The representing ring is the ring of functions
Z/p −→ Z under pointwise multiplication, made into a Hopf algebra in the usual way. We write ek for the
function having value 1 at k ∈ Z/p and 0 elsewhere, so the ek form a basis for F (Z/p,Z).

K = Groups
X

(G,H) = GroupsZ(µp,Z/p)
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A point of K over a ring A is just a map of Hopf algebras

F (Z/p,A) −→ A[x]/(xp − 1)

There is a trivial point of K over Z, defined by ek 7→ δk,0. Moreover, if ω is a primitive p’th root of unity
then there is a point of K over the ring B = Z[1/p, ω] defined by

ek 7→ (

p−1∑
l=0

ωklxl)/p

Together, these points give a map
spec(Z×B) −→ K

This can be shown to be an isomorphism.

We conclude this section with some remarks about open mappings. We have to make a slightly twisted
definition, because in our affine context we do not have enough open subschemes. Suppose that f : X −→ Y
is a map of spaces, and that F ⊆ X is closed. We can then define G = {y ∈ Y | f−1y ⊆ F} = f(F c)c.
Clearly f is open iff (F closed implies G closed). Now suppose that f : X −→ Y is a map of schemes,
and that F ⊆ X is a closed subscheme. For any point y : T −→ Y of Y , so we have a closed inclusion
Fy = T ×Y F −→ Xy = T ×Y X. We can thus define a sub-pre-scheme G of Y by

G(T ) = {y ∈ Y (T ) | Fy = Xy}

Definition 8.1. A map f : X −→ Y is open iff for every closed subscheme F ⊆ X the prescheme G defined
above is a closed subscheme of Y .

Proposition 8.1. Suppose that f makes OX into a free module over OY . Then f is open.

Proof. Write A = OX and B = OY , and choose a basis A = B{eα}. Suppose that F = V (I) is a closed
subscheme of X with I = (gβ) and gα =

∑
β gβαeα. Consider a C-valued point y∗ : B −→ C of Y . This will

lie in G(C) iff C⊗B A = C⊗B (A/I), iff the image of I in C⊗B A = C{eα} is zero. This image is generated
by the elements hβ =

∑
α y∗(gβα)eα. Thus, it vanishes iff y∗(gβα) = 0 for all α and β. This shows that

G = V (J), where J = (gβα).

9. Zariski Spectra and Geometric Points

If A is a ring, we define the associated Zariski space to be

zar(A) = { prime ideals p < A}

If X is a scheme, we write Xzar = zar(OX). Note that

V (I)zar = zar(OX/I) = {p ∈ Xzar | I ≤ p}

D(a)zar = zar(OX [a−1]) = {p ∈ Xzar | a 6∈ p}
(X t Y )zar = Xzar t Yzar

There is a map
(X × Y )zar −→ Xzar × Yzar

but it is almost never a bijection.
Suppose that Y,Z ≤ X are locally closed; then

(Y ∩ Z)zar = Yzar ∩ Zzar

If Y and Z are closed then
(Y ∪ Z)zar = (Y + Z)zar = Yzar ∪ Zzar

We give Xzar the topology with closed sets V (I)zar. A map of schemes X −→ Y then induces a continuous
map Xzar −→ Yzar.
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Suppose that R is an integral domain, and that x ∈R X. Then x gives a map x∗ : OX −→ R, whose kernel
px is prime. We thus have a map X(R) −→ Xzar, which is natural for monomorphisms of R and arbitary
morphisms of X.

A geometric point of X is an element of X(k), for some algebraically closed field k. Suppose that either
OX is a Q-algebra, or that some prime p is nilpotent in OX . Let k be an algebraically closed field of the
appropriate characteristic, with transcendence degree at least the cardinality of R. Then it is easy to see that
X(k) −→ Xzar is epi.

A useful feature of the Zariski space is that it behaves quite well under colimits. The following proposition
is an example of this.

Proposition 9.1. Suppose that a finite group G acts on a scheme X. Then (X/G)zar = Xzar/G, and
(X/G)(k) = X(k)/G when k is an algebraically closed field.

A number of interesting things can be detected by looking at Zariski spaces. For example, Xzar splits as
a disjoint union iff X does — see corollary 32.5.

Example 9.1. In this example, all rings are Q-algebras. Let X(R) be the set of n × n matrices M

over R with M2 = M ; this is a closed subscheme of An2

Q . Let X(m) denote the closed subscheme where
trace(M) = m. For any field K ≥ Q, elementary linear algebra gives

X(K) =
n∐

m=0

X(m)(K)

It follows by corollary 32.5 that

X =
n∐

m=0

X̃(m) X̃(m)zar = X(m)zar

We also use the space Xzar to define the Krull dimension of X.

Definition 9.1. If there is a chain p0 < . . . < pn in Xzar, but no longer chain, then we say that dim(X) =
n. If there are arbitarily long chains then dim(X) =∞.

Example 9.2. dim(Zp) = 1 — the unique maximal chain is (0) < (p).

Example 9.3. If E = W [[u1, . . . , un−1]] (as in Morava E-theory) and X = spf(E) then dim(X) = n.

Example 9.4. dim(FGL) =∞.

The appropriate generalisation to formal rings is not entirely clear. The proofs of the results in section 26
use Zariski spaces, but only for formal schemes with OY a complete Noetherian local ring. In this context
all prime ideals are closed, and only the maximal ideal is open. As yet I know no applications for a more
general theory.

We ought really to say something here about rigid analytic spaces (as used in [6]), but I’m not sure what.

10. Sheaves, Modules and Vector Bundles

A sheaf over a formal scheme X will simply mean a formal module over OX , in other words a complete,
linearly topologised R-module such that the action R×M −→M is continuous.

A vector bundle or locally free sheaf will mean a finitely generated projective OX -module, with the obvious
topology. If M and N are vector bundles then linear maps M −→ N are automatically continuous and
M⊗̂RN = M ⊗R N . The dual module M∨ is also a vector bundle and M∨∨ = M . If the evaluation map
M ⊗X M∨ −→ OX is iso, we say that M is a line bundle or invertible sheaf. If L and M are line bundles, we
often write LM for L⊗X M and L−1 for L∨.

The most common situation coming from algebraic topology is that vector bundles are actually free modules
and line bundles are free of rank one.
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Example 10.1. Let Z be a space, and V a vector bundle over Z with Thom space ZV . Then L(V ) =
Ẽ(ZV ) is a line bundle over ZE .

Given a vector bundle M over X, we define formal schemes A(M) and Â(M) over X by

Γ(R,A(M)) = M⊗̂XR

Γ(R, Â(M)) = M⊗̂X Nil(R)

To see that these are indeed representable, write

SymX [M∨] =
⊕
k

Symk
OX [M∨]

Sym′X [M∨] = lim
←-

ICOOX
SymOX/I [M

∨]/I

Sym′′X [M∨] =
∏
k

Symk
OX [M∨]

Note that Sym′′ is the completion of Sym or Sym′ at J . Suppose that a ∈ Sym′′. Then a ∈ Sym iff ak = 0
for k � 0. Moreover, a ∈ Sym′ iff ak −→ 0 as k −→ ∞. More precisely, given I CO OX we require that
al ∈ I Syml

X [M∨] for l� 0. In particular, if OX is discrete then Sym′ = Sym.
It is now not hard to check that

A(M) = spf(Sym′X [M∨])

Â(M) = spf(Sym′′X [M∨])

More generally, if M is pro-free then the functor

Γ(R,A(M)) = M⊗̂XR

is again a scheme, represented by Sym′X [M∨]. Here we have to build the symmetric algebra using the
completed tensor product, of course.

Example 10.2. spf(E∨BU) = A(Ẽ(CP∞)).

If M is a sheaf over a scheme X and x ∈ X(R) is an R-valued point of X then we write Mx = M ⊗OX R.
Here R is considered as an OX -module via the map x : OX −→ R. Thus Mx is an R-module, which should
be thought of as the fibre of M at x.

Suppose that P is a vector bundle finitely generated projective module over A = OX . We shall say that
P has constant rank m if Px ' km for any field-valued point x : A −→ k. The following proposition is partial
justification for the name “vector bundle” (see also example 12.8) .

Proposition 10.1. We can canonically write X =
∐n
m=0Xm such that P has constant rank m on Xm,

and Xm is an open and closed subscheme.

Proof. We have P = E.An for some matrix E ∈ Mn(A) with E2 = E. For sets S, T ⊆ {1, . . . n} with
|S| = |T | = m we write EST for the m ×m minor of E indexed by S × T and E′ST for the complementary
(n −m) × (n −m) minor of 1 − E. We also write aST = det(EST ) det(E′ST ). We let Im denote the ideal
generated by the elements aST for which |S| = |T | 6= m, and write Xm = V (Im). Suppose that f : A −→ k
where k is a field. Elementary linear algebra applied to the matrix f(E) assures us that f(aST ) 6= 0 for some
S, T with |S| = |T | = rank(f(E)). It follows that X(k) =

∐
mXm(k). We deduce using corollary 32.5 that

there are ideals I ′m with the same radical as Im, such that the corresponding schemes X ′m partition X. It is
easy to see that P has constant rank m on X ′m. (see also example 9.1.
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11. Polarised Schemes

Definition 11.1. A polarised scheme is a scheme X equipped with a free line bundle L, in other words
a free module L of rank one over OX . A morphism (X,L) −→ (Y,M) is a map f : X −→ Y together with an
isomorphism L ' f∗M . Equivalently, a morphism is a pullback square

L M

X Y

w

f̃

u u

w

f
w

If X is a polarised scheme, then there is a noncanonical isomorphism u : L −→ OX (so u ∈ L−1).
The category of polarised schemes is equivalent to that of graded rings R∗ such that Rodd = 0 and there

exists a unit u ∈ R−2. The equivalence is just R2k = L⊗k, where the tensor product is taken over R0 = OX
and L⊗(−k) = HomR0(L⊗k, R0).

In particular, if E is a two-periodic ring spectrum then X = spf(π0E) has a natural polarisation. If E
is p-adic K-theory then L−1 = Zpu, and the action of the Adams operations is ψku = k−1u (for k ∈ Zp×).
This shows that although L is a trivial line bundle, it is not equivariantly trivial for an important group of
automorphisms.

12. Faithful Flatness and Descent

Let f : A −→ B be a map of rings. We say as usual that f is flat iff B is flat as an A-module via f . We
say that f (or B) is faithfully flat iff it is flat and also satisfies the following equivalent conditions:

(1) B ⊗AM = 0 implies M = 0.
(2) If C∗ is a complex of A-modules and B ⊗A C∗ is acyclic then C∗ is acyclic.
(3) The map of Zariski spaces zar(B) −→ zar(A) is surjective.

Let f : X −→ Y be a map of affine schemes. We say that f is (faithfully) flat iff f∗ : OY −→ OX is.

Example 12.1. An open inclusionD(a) −→ X (where a ∈ OX) is always flat. If a1, . . . , am ∈ OX generate
the unit ideal then

∐
kD(ak) −→ X is faithfully flat.

Example 12.2. If D is a divisor on G over Y (see section 17) then D −→ Y is faithfully flat.

Example 12.3. Looking forward to section 14, suppose that G and H are formal groups over X. Suppose
that OX is a complete local ring, and write X0 = spf(OX/m). Suppose that q : G −→ H is not zero on X0.
We shall see later that q is faithfully flat.

Example 12.4. Let G be a finite group, X a G-space and V a complex vector bundle over X. Suppose
that Flag(V )G −→ XG is surjective. Then (Flag(V )G)E −→ (XG)E is faithfully flat [8].

Proposition 12.1. The composite of two faithfully flat maps is faithfully flat. If X −→ Y is faithfully flat
and Z −→ Y is arbitary then X ×Y Z −→ Z is faithfully flat.

Proposition 12.2. If X −→ Y is faithfully flat, then the diagram

X ×Y X −→−→ X −→ Y

is a coequaliser in the category of affine schemes, and this remains true after pulling back along an arbitary
map Z −→ Y .

Proof. Write A = OY and B = OX , so we need to show that the following diagram is an equaliser:

A −→ B −→−→ B ⊗A B

a −→ f(a) b −→
{
b⊗ 1
1⊗ b
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As B is faithfully flat over A, it is enough to check that the diagram is an equaliser after tensoring by B over
A. Indeed, this makes it a split equaliser:

B = B ⊗A A←− B ⊗A B ←− B ⊗A B ⊗A B

bb′ ←− b⊗ b′ bb′ ⊗ b′′ ←− b⊗ b′ ⊗ b′′

For the last part, we need only recall that Z ×Y X −→ Z is again faithfully flat.

Now suppose that f : X −→ Y is faithfully flat, and that M is a sheaf over X. We will need to know when
M descends to a sheaf over Y , in other words when there is a sheaf N on Y such that M ' f∗N . There is an
entirely parallel theory for schemes U over X; one asks whether they have the form V ×Y X for some scheme
V over Y .

Definition 12.1. Descent data for a sheaf M over X consists of a collection of maps θa,b : Ma −→Mb for
any pair of points a, b of X with f(a) = f(b). These maps are required to be natural in (a, b), and to satisfy
the cocycle conditions θa,a = 1 and θa,c = θb,c ◦ θa,b.

Remark 12.1. The universal example of such a pair a, b consists of the two projections π0, π1 : X×Y X −→
X. It is thus enough to specify a map θ : π∗0M −→ π∗1M . Similarly, the cocycle conditions can be checked
over X and X ×Y X ×Y X respectively.

Remark 12.2. Note also that the cocycle conditions imply θa,b ◦ θb,a = 1, so θa,b is iso.

See section 27 for another interpretation of this.

Definition 12.2. Descent data as above are effective iff there is a sheaf N over Y and an isomorphism
φ : M ' f∗N such that

θa,b = (Ma
φ−→ Nf(a) = Nf(b)

φ−1

−−→Mb)

Proposition 12.3 (Faithfully Flat Descent). If f is faithfully flat, then descent data are always
effective. Moreover, the functor f∗ gives an equivalence between sheaves over Y and sheaves over X with
given descent data. The inverse sends M to the equaliser N of the following diagram:

N −→M −→−→ OY ⊗X M

m −→
{

π∗1m
θπ∗0m

In other words, the sections of N biject with sections s of M such that s(b) = θa,bs(a) whenever f(a) = f(b).

We shall say that a statement holds locally in the flat topology or fpqc locally if it is true after pulling back
along a faithfully flat map. (fpqc stands for fidèlement plat et quasi-compact; the compactness condition is
automatic for affine schemes). Suppose that a certain statement S is true whenever it holds fpqc-locally. We
then say that S is an fpqc-local statement.

Remark 12.3. Let X be a topological space. We say that a statement S holds locally on X iff there is
an open covering X =

⋃
i Ui such that S holds on each Ui. Write Y =

∐
i Ui, so Y −→ X is a coproduct of

open inclusions and is surjective. We could call such a map an “disjoint covering map”. We would then say
that S holds locally iff it holds after pulling back along a disjoint covering map. One can get many analogous
concepts varying the class of maps in question. For example, we could use covering maps in the ordinary
sense. In the category of compact smooth manifolds, we could use submersions. This is the conceptual
framework in which the above definition is supposed to fit.
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Example 12.5. Suppose that N is a sheaf on Y which vanishes fpqc-locally. This means that there is a
faithfully flat map f : X −→ Y such that f∗N = OX ⊗Y N = 0. By the very definition of faithful flatness,
this implies that N = 0. In other words, the vanishing of N is an fpqc-local condition. Similarly, suppose
that n ∈ N vanishes fpqc-locally, so that f∗n = 0 ∈ M = f∗N . By proposition 12.3, we know that there is
an equaliser diagram

N −→M −→−→ π∗1M

In particular, f∗ : N −→M is mono and thus n = 0. Thus, the vanishing of n is also an fpqc-local condition.

Example 12.6. Flatness is itself an fpqc-local property. Indeed, suppose that X −→ Y is such that
X ×Y Z −→ Z is flat for some faithfully flat map Z −→ Y . One can then show easily from the definitions that
X −→ Y is flat.

Example 12.7. Any open inclusion D(a) −→ X is clearly flat, as is any finite coproduct
∐
i∈I D(ai) −→ X

of such. Using the third criterion for faithful flatness, we see that this map is faithfully flat iff no maximal
ideal contains all the ai, iff X(k) =

⋃
iD(ai)(k) whenever k is a field, iff (ai | i ∈ I) = A.

Example 12.8. Suppose that P is a vector bundle over X = spec(A). We keep the notation of proposi-
tion 10.1 (and its proof). Suppose that P has constant rank m. The claim is that P is fpqc-locally free of
rank m. To see this, write Y =

∐
|S|=|T |=mD(aST ). This is clearly flat over X, and P is free over D(aST )

(because Am
jS−→ An

E−→ P is iso) and hence over Y . Moreover, the map Y −→ X is faithfully flat because
X(k) =

⋃
S,T D(aST )(k) when k is a field.

Example 12.9. Any monic polynomial f ∈ A[x] can be factored as a product of linear terms, locally in the
flat topology. Indeed, suppose f =

∑m
0 (−1)m−kam−kxk with a0 = 1. It is well known that B = Z[x1, . . . xm]

is free of rank m! over C = BΣm = Z[σ1, . . . σm]. A basis is given by the monomials xα =
∏
xαkk for which

αk < k. We can map C to A by sending σk to ak, and then observe that D = B ⊗C A is free and thus
faithfully flat over A. Clearly f(x) =

∏
k(x− xk) in D[x], as required.

Example 12.10. Let f : G −→ H be a homomorphism of group schemes over X. Suppose that the kernel
K is faithfully flat over X, and that f is fpqc-locally surjective. This means that the identity point 1 ∈X X is
in the image of f after pulling back along a faithfully flat map Y −→ X. In other words, the homomorphism
G ×X Y −→ H ×X Y admits a non-additive section, so that G ×X Y ' H ×X K ×X Y as schemes over
Y . It follows that G ×X Y −→ H ×X Y is faithfully flat, and finally that f itself is faithfully flat. This has
applications to various maps of the connective covers BU〈m〉.

13. Constant and Étale Schemes

Let X be a formal scheme and S a set. We define F (S,OX) to be the ring of functions S −→ OX , with the
product topology. We write

SX = spf(F (S,OX))

Such a scheme is called a constant scheme over X. It is the S-fold coproduct of copies of X, in the sense that

Schemes(SX , Y ) = Map(S,Schemes(X,Y ))

SchemesX(SX , Y ) = Map(S,Γ(X,Y ))

Moreover, we have Y ×X SX = SY . In particular, SX = S ×X, where S = spf(F (S,Z)).

We shall say that a map f : X −→ Y is an étale covering iff it becomes constant after pulling back along a
faithfully flat map Z −→ Y .
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Example 13.1. Let K −→ L be a finite separable field extension; then spec(L) −→ spec(K) is an étale
covering. Indeed, by the theorem of the primitive element, we can write L = K[x]/f(x) for some irreducible,
separable polynomial f(x). Let K ′ be the splitting field of f over K, so that K ′ is clearly faithfully flat over
K. Moreover, f(x) =

∏
i∈I(x − ai) ∈ K ′[x] with ai 6= aj for i 6= j. It follows by the Chinese remainder

theorem that
K ′ ⊗K L = K ′[x]/f(x) ' F (I,K ′) g(x) 7→ (i 7→ g(ai))

We can also interpret I as K-Alg(L,K ′); in this picture, the map

K ′ ⊗K L −→ F (I,K ′)

sends a⊗ b to (σ 7→ aσ(b)).

Example 13.2. More generally, let A be an arbitary ring and f(x) a monic polynomial of degree m over
A. We would like to know when A[x]/f(x) is étale over A. Let B be a faithfully flat extension of A in which

f factors as
∏m−1
k=0 (x − bk). We define the discriminant of f as ∆ =

∏
k 6=l(bk − bl). This is a symmetric

polynomial in the roots bk, and thus lies in A and is independent of the choice of B and the factorisation.
Suppose that ∆ is invertible. As in the previous example, we have a map B[x]/f(x) −→ Bm. If we use the
basis {xk | 0 ≤ k < m} for B[x]/f(x) and the obvious basis for Bm then the matrix of this map is the
Vandermonde matrix M = (alk)0≤k,l<m. It is well known that det(M)2 = ∆, so our map is an isomorphism
and A[x]/f(x) is étale. It is also not hard to establish the converse, so that A[x]/f(x) is étale iff ∆ is a unit.

Proposition 13.1. The composite of two étale coverings is an étale covering. If X −→ Y is an étale
covering and Z −→ Y is arbitary then X ×Y Z −→ Z is an étale covering. If X −→ Y is an étale covering
then X = ∅ or X −→ Y is faithfully flat.

More generally, we would like to define S where S is a topological space. Let us suppose that S is
Hausdorff, and that the compact open subsets form a basis (e.g. S could be discrete or profinite). This seems
to cover the cases we need. We then let C(S,OX) be the ring of continuous functions S −→ OX . Let T be
an compact open subspace of S, and I C OX an open ideal. Note that OX/I is discrete. It follows that the
map C(S,OX) −→ C(T,OX/I) is epi; we write W (T, I) for the kernel. We give C(S,OX) the compact-open
topology, which is just the same as that defined by the ideals W (T, I). Finally, we define S = spf(C(S,Z))
and SX = spf(C(S,OX)).

Lemma 13.2. If A −→ B is a continuous map of formal rings then C(S,A)⊗̂AB = C(S,B)

Proof. Let I run over open ideals of A, J over open ideals of B, and T over compact open subspaces
of S. Write J∗ for the preimage of J in A, which is an open ideal. Note that B/J is discrete, so that a
continuous map T −→ B/J is locally constant, and can be written more or less uniquely as a B/J-linear
combination of characteristic functions of open-and-closed subsets of T . It follows that when I ≤ J∗ we have

C(T,A/I)⊗A B/J ' C(T,B/J)

The definition of the completed tensor product is

C(S,A)⊗̂AB = lim
←-
T,I,J

C(S,A)/W (T, I)⊗A B/J = lim
←-
T,I,J

C(T,A/I)⊗A B/J

The family of triples (T, I, J) with I ≤ J∗ is cofinal, so

C(S,A)⊗̂AB = lim
←-
T,J

C(T,B/J)

We have S = lim
-→

T and B = lim
←-

B/J as spaces, so lim
←- T,J

C(T,B/J) = C(S,B). This gives a bijection

C(S,A)⊗̂AB ' C(S,B), natural in all variables. Using naturality, one can see that it is a homeomor-
phism.

Corollary 13.3. SX = S ×X.
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Now let X and Y be formal schemes. The discrete closed subschemes X ′ ⊆ X biject with open ideals
I CO OX via X ′ = V (I).

Write S̃ for the constant functor Rings −→ Sets, sending everything to S (this is not a scheme unless
S = ∅). Thus, natural transformations α : S̃ × X −→ Y biject with functions S −→ Formal(X,Y ). We say
that such a map is a proper action iff for all compact open T ⊆ S and all discrete closed X ′ ≤ X the map
T ×X ′ −→ Y factors through a discrete closed subscheme Y ′ ≤ Y .

Proposition 13.4. There are natural bijections between

(1) continuous maps S ×OY −→ OX which are ring homomorphisms in the second variable.
(2) proper actions S̃ ×X −→ Y
(3) maps of formal schemes S ×X −→ Y

Proof. Let us abbreviate A = OX , B = OY . Let I, J and T run over open ideals in A or B, or compact
open subspaces of S respectively. Let α : S ×B −→ A be a ring map in the second variable. I claim that α is
continuous iff for all T and I there exists J such that α(T × J) ⊆ I. Indeed, suppose α is continuous. Then
α−1(I) is open, and contains T ×{0}. As T is compact, the “tube lemma” says that T ×J ⊆ α−1(I) for some
open neighbourhood J of 0 in B, wlog an ideal. The converse is easy. It is immediate from the definitions
that it is also equivalent for α to give a proper action S̃ ×X −→ Y . Thus, (1) and (2) are equivalent. Next,
recall that C(S,−) is right adjoint to S × (−) (because S is locally compact), and that OS× X = C(S,OX).
It follows easily that (1) is equivalent to (3).

Example 13.3. If Σ is the Morava stabiliser group, E is Morava E-theory and Z is a tolerable space then

spf(π0LK(E∧(n+1) ∧ Z)) = Σn × spf(E∨Z)

14. Formal Groups

A group scheme over a scheme X is an X-scheme G −→ X which is a commutative group in the category of

X-schemes. In other words, it must be provided with a zero-section X
0−→ G, an addition G×X G

µ−→ G and

an inversion G
χ−→ G, satisfying the obvious identities. It is equivalent to require that OG be a bicommutative

Hopf algebra over OX .
Such a group scheme G should be thought of as a “bundle of groups” over X. Note that this structure

makes Γ(Y,G) into an honest group for any X-scheme Y .
Similarly, we can define formal group schemes G over a formal scheme X (in shorthand, formal groups

G/X), or over an ordinary scheme X. We are mostly interested in smooth, commutative one-dimensional
formal group schemes, so we shall just refer to these as “formal groups”:

Definition 14.1. Let X be a formal scheme. Define Â1
X = spf OX [[x]], where the topology is generated

by ideals I[[x]] + (xk) with I open in OX . A formal group over X is a formal group scheme G over X which

is isomorphic to Â1
X as a pointed formal scheme over X. In other words, there is required to be an element

x ∈ OG such that

(1) x(0) = 0
(2) OG = OX [[x]]
(3) The topology is generated by ideals I[[x]] + (xk).

Note that x(0) ∈ OX is the value of the function x ∈ OG at the point 0 of G over X, or equivalently the
image of x under the map OG −→ OX induced by the zero-section map X −→ G. In other words, the condition
x(0) = 0 just means that x lies in the augmentation ideal. An element x as above is called a coordinate on G.

Suppose that H/Y is a formal group and f : X −→ Y . The pullback f∗H = X ×Y H is then a formal
group over X in an obvious way. We will say that f∗H is obtained from H by a base change. We will also
sometimes think of f as a point of Y defined over X. In that case we would probably call it y instead of f ,
and write Hy for y∗H.

We shall need to consider various kinds of morphisms of formal groups.
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Definition 14.2. Let G/X and H/Y be formal groups, and suppose f : X −→ Y . A morphism of formal
groups over f is a map of formal schemes f̃ : G −→ H such that the following diagrams commute:

G H G×X G H ×Y H

X Y G H

w

f̃

u u

w

f̃×X f̃

u

µ

u

µ

w

f
w

f̃

If X = Y then a morphism from G to H will mean a morphism over 1X unless otherwise stated. In general,
a morphism over f from G to H is equivalent to a morphism over 1X from G to f∗H. We shall say that a
morphism f̃ over f is a fibrewise isomorphism iff the left hand square above is a pullback, iff the resulting
map G −→ f∗H is iso.

Definition 14.3. A map q : G −→ H of formal groups over X is an isogeny iff it makes OG into a finitely
generated projective module over OH .

Proposition 14.1. Suppose that OY is a complete local ring, and that f : G −→ H is a nonzero map of
formal groups over Y . Then Y is an isogeny.

We also define a curve on G to be a map γ : Â1
X −→ G of pointed X-schemes (so γ(0) = 0). We say that a

curve γ is basic if it is an isomorphism, so that the inverse map x = γ−1 is a coordinate.
Suppose that x a coordinate on G. As

OG×XG = OG⊗̂XOG = OX [[x, y]]

we have

µ∗(x) = F (x, y) =
∑
k,l

aklx
kyl

for uniquely defined elements akl ∈ OX . It is easy to see that F is actually a formal group law over X.
Suppose that Y is an X-scheme, and that u, v ∈ Γ(Y,G), so we can form the sum u + v ∈ Γ(Y,G) using

the group structure on G. We can also evaluate the function x at the points u, v, u + v of G over Y to get
functions x(u) etc. on Y . One can see by unraveling the definitions that these satisfy

x(u+ v) =
∑

aklx(u)
kx(v)l

This is the most natural way to think about the formal group law in our schematic picture.
Similarly, for each integer n there is a power series [n](x) such that

x(nu) = [n](x(u))

Remark 14.1. To construct definite examples of formal groups, we often start with a formal group law
F and then define G(R) to be Â1(R) = Nil(R) with the group structure given by F . We shall write (Â1, F )

for this formal group. It is convenient to forget that G has the same underlying scheme as Â1, and to write

γ and x for the (identity) maps Â1 γ−→ G
x−→ Â1. Thus, γ is a curve on G and x is a coordinate. If we write

a, b ∈ G and then refer to a + b, we will always mean F (a, b). If we want to refer to the ordinary sum, we
shall write x(a) + x(b).

Write J = {f ∈ OG | f(0) = 0} for the augmentation ideal. Then ωG = J/J2 is a free module of rank one
over OX , in other words a line bundle over X. It should be thought of as the fibrewise cotangent space of G
at the zero section. There is more about this in section 16. We also define the Lie algebra of G as LG = ω∨G.

Let X be a polarised formal scheme, and G a formal group over X. As Â(L) ' Â1, there certainly

exist pointed isomorphisms y : G −→ Â(L). Any such map gives an obvious identification Ly : LG ' L (or
equivalently, L∨ ' ωG).
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Definition 14.4. Let X be a polarised formal scheme. A polarised formal group over X is a formal group
together with an isomorphism λ : LG ' L. An orientation of a polarised formal group is an isomorphism
y : G −→ Â(L) of pointed formal schemes over X such that Ly = λ : LG ' L.

Definition 14.5. A strict isomorphism of polarised formal groups is a map f : G −→ H such that λH◦Lf =
λG : LG −→ L. (Note that such a map gives an isomorphism LG −→ LH and thus is iso, as the name suggests).

Now let E be a two-periodic ring spectrum, giving rise to a polarised scheme (X,L). Note that there is
a canonical identification L−1 = E−2 = Ẽ0CP 1. We shall say that E is complex-orientable iff Ẽ0CP∞ −→
Ẽ0CP 1 is surjective. Suppose so. It is then well known that E(CP∞) is a Hopf algebra over E of the
right kind for G = spf E(CP∞) to be a formal group over X. Moreover, there is a canonical isomorphism
ωG ' Ẽ0CP 1 ' L−1, so G is canonically polarised.

An orientation of G corresponds to a choice of generator y ∈ Ẽ2CP∞ which restricts to the canonical class
in Ẽ2CP 1 = L−1. In other words, y is a complex orientation of the spectrum E in the usual (strict) sense,
corresponding to a map of ring spectra MU −→ E.

This brings us to the following question: what functor does the ring MU∗ represent ? In the present
picture, the answer is as follows. Given a polarised scheme (X,L), write

OFG(X,L) = { iso classes of oriented formal groups over X}

The isomorphisms here are supposed to respect the orientation; in particular, there are no automorphisms.
Suppose (G, y) is such an oriented formal group. We can then write

y(a+ b) =
∑
k,l

αkly(a)
ky(b)l

for uniquely determined elements αkl ∈ L1−k−l. These elements depend only on the isomorphism class of
(G, y). They satisfy the Lazard identities (c.f. example 4.2), and thus give a map of graded rings MU∗ −→
O∗X =

⊕
k∈Z L

k. We can interpret Quillen’s theorem as saying that

OFG(X,L) ' GradedRings(MU∗,O∗X)

This has a number of advantages over the usual description. Firstly, it exhibits the rôle of the grading;
this becomes important when one considers unstable operations. Secondly, it is more compatible with the
available descriptions of the homotopy rings of other spectra, such as elliptic homology or Morava E-theory.
In each case, the homotopy ring classifies isomorphism classes of polarised formal groups or elliptic curves
with some extra structure.

Write Γ(Y,Orient(G)) for the set of orientations on G ×X Y . It is not hard to see that this is a scheme
over X; in fact

Orient(G) = spf(E∨MU)

One might ask for a spectrum whose homotopy classifies isomorphism classes of formal groups with no
extra structure. It is not hard to see, however, that this functor (call it FG, say) is not representable. Indeed,
the map FG(Z) −→ FG(Q) = {Ga} is not even injective.

More generally, one only expects the functor

R 7→ { iso classes of widgets over R}

to be representable in a reasonable way if widgets have no automorphisms. This leads to discussion of stacks,
moduli problems and Adams-type spectral sequences, which may or may not end up in this document.
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15. More about Morava E-Theory

Let us resume the notation of section 3. We thus have a formal groupG = (CP∞)E over a baseX = pointE .

The group G thus comes equipped with a p-typical basic curve γ : Â1 −→ G, and thus a basis e = Lγ of LG.
There is a unique curve η with η = pe and η(s+t) = η(s)+η(t). In language which may be more familiar, this
is just the statement that expF (px) is integral (and even divisible by p). The generators uk are characterised
by

γ(pt) = η(t) +
n∑
k=1

γ(ukt
pk)

As well as the coordinate x = γ−1, there is another coordinate xAndo constructed by Matthew Ando, which
is more convenient for many purposes — see section 29.

If we restrict everything to X0 then we have γ(pt) = γ(tp
n

) so [p](x0) = xp
n

0 . On the other hand, if we
work over D(p) = spec(p−1E) ⊂ X then η becomes a basic curve and there is a coordinate l (the logarithm)
with l(η(t)) = pt and thus l(a+ b) = l(a) + l(b). An explicit formula can be given for l in terms of x. Over
X1 it becomes quite simple:

l1(a) =
∑
k

x1(a)
pnk/pk

More conceptually, we have

l(a) = lim
k−→∞

p−kx(pka)

Note that we have done something a bit funny here. If we rationalise the pro-system {E/mk} then we get
0, because p ∈ m. Thus, in order to get a nontrivial answer we have to replace spf(E) by spec(E) before
rationalising. However, the whole point about the ring E is that it represents a nice functor in the category
of formal schemes (see section 23), so we certainly want to work with spf(E) most of the time. See also
section 31 in this regard.

Next, we consider the endomorphisms of G. As G is an Abelian group object, its endomorphisms form a
ring. By proposition 16.1, we have a monomorphism

End(G) −→ End(LG) = OX
It is not hard to show that the map Z −→ End(G) extends uniquely to give an isomorphism Zp −→ End(G).

We write nG for the image of n ∈ Zp in End(G).
Let α ∈ W be such that αp

n

= α. Using the formula for l1, we can see that l1(αa) = αl1(a) and thus
F (αx, αy) = αF (x, y) over X1. Using this, we obtain a map αG : G1 −→ G1. Using the fact that W is
generated by Zp together with such elements α, we obtain a map W −→ End(G1), which is an isomorphism.

Over G0, proposition 16.1 does not apply, so the map End(G0) −→ End(LG0) need not be (and is not)
injective. Indeed, there is an endomorphism F defined by Fγ0(t) = γ0(t

p). The full endomorphism ring is
isomorphic to the noncommutative ring

D = W 〈S〉/(Sn − p, Sa− aφS)

(with S acting as F ). Any element a of Dn can be written uniquely as

a =
∞∑
k=0

akS
k ak ∈W ap

n

k = ak

or

a =
n−1∑
l=0

blS
l bk ∈W

This is invertible iff a0 6= 0 iff b0 ∈W×. The corresponding automorphism aG of G0 is given by

aGγ0(t) =
∑
k

γ0(akt
pk) =

∑
l

blγ0(t
pl)
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The group Σ = D× ' Aut(G0) is the (non-strict) Morava stabiliser group.

16. Differential Geometry of Formal Groups

A formal group should be thought of as the analogue of a Lie group in the category of schemes, so we
need to understand some differential geometry. The cotangent bundle is just the module ΩG/X of Kähler
differentials. To define this, we let I be the kernel of the multiplication map

OG ⊗X OG −→ OG

We regard this as an OG-module using the left factor. We set

ΩG/X = I/I2

If f ∈ OG we define

df = f ⊗ 1− 1⊗ f + I2 ∈ ΩG/X

and check easily that

d(fg) = d(f)g + fd(g)

It follows that if x is a coordinate then ΩG/X is a free module over OG on one generator.
This construction can be interpreted as follows. The closed subscheme V (I) ⊂ G×XG is just the diagonal

∆G/X , in other words the set of pairs of points (a, b) of G in the same fibre such that a = b. The slightly
thicker subscheme V (I2) is the set of pairs (a, b) where a and b are “infinitesimally close to first order”. A
form ω ∈ ΩG/X is just a function on V (I2) which vanishes on ∆. The form df corresponds to the function
(a, b) 7→ f(a)− f(b).

We write TG for the dual bundle Ω∨G/X . The Lie algebra of G is the pullback of TG along the zero-section:

LG = 0∗TG. One checks that LG∨ is just J/J2, where J = {f ∈ OG | f(0) = 0} is the augmentation ideal.
We next need to understand how to define invariant differentials on G, and show that the space ωG of such

is isomorphic to LG∨ (as in the case of Lie groups).
If we are prepared to work “synthetically” with infinitesimal neighbourhoods, this is easy. A form ω on G

is a function on V (I2) such that ω(a, a) = 0. We say that such a form is invariant iff ω(a+ c, b+ c) = ω(a, b)
for any a, b, c where a and b are close to first order. It is clear that such an ω is freely and uniquely determined
by the function ω0 on V (J2) sending c to ω(0, c). This is just the image of ω in J/J2 = LG∨, or equivalently
the value of ω at the zero section.

To make this more concrete, choose a coordinate x on G and write F for the resulting formal group law. We
need to find the invariant form ω on G with ω0 = d0x ∈ LG∨. As ωG = OG{dx}, we must have ω = g(x)dx
for some g ∈ OX [[x]] with g(0) = 1. As a function on V (I2) we have

ω(a, b) = g(x(a))(x(a) − x(b))

Write D2F for the partial derivative of F with respect to the second variable. If c ∈ V (J2) we have x(c)2 = 0
so

ω(a, a+ c) = g(x(a)) [x(a)− F (x(a), x(c))] = −g(x(a))D2F (x(a), 0)x(c)

On the other hand, we are supposed to have

ω(a, a+ c) = ω(0, c) = −x(c)

It follows that

g(x) = D2F (x, 0)−1 ω = dx/D2F (x, 0)

Proposition 16.1. Suppose that OX is torsion-free, and that G and H are formal groups over X. Then
L : Hom(H,G) −→ HomX(LH,LG) is injective.
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Proof. Suppose that f : G −→ H has Lf = 0. Let x be a coordinate on G, and ω = g(x)dx the
corresponding invariant differential. Let y be a coordinate on H, so f∗x = u(y) for some u ∈ OX [[y]] with
u(0) = 0. Then f∗ω is an invariant differential on H which vanishes (because Lf = 0) at zero, so it vanishes
everywhere. Thus

0 = f∗(g(x)dx) = g(u(y))u′(y)dy

Because g(x) is invertible, this means that u′ = 0. Because OX is torsion-free, this means that u = 0 and
thus f = 0

17. Divisors and Bundles

Let G/X be a formal group. An effective divisor of degree m on G over an X-scheme Y is a closed formal
subscheme D < G×X Y such that OD is a free module of rank m over OY .

Let x be a coordinate onG, and let D be such a divisor. Note thatOD is a quotient ofOG⊗XOY = OY [[x]].
Write

f(t) = fD(t) =
m∑
k=0

cm−kt
k c0 = 1

for the (monic) characteristic polynomial of the OY -linear endomorphism of OD given by multiplication by
x. By Cayley-Hamilton, we see that f(x) = 0 in OD. It follows that

OD = OY [[x]]/f(x) = OY [[x]]/
m∑
k=0

cm−kx
k

for uniquely determined elements ck ∈ OY . We refer to f(x) as the equation of D.

Lemma 17.1. ck is topologically nilpotent for k > 0.

Proof. Let p be an open prime ideal in OX . By lemma 32.1, we need only check that ck ∈ p, or
equivalently that f(t) becomes tm over OX/p. As x ∈ Nil(OG) and OG −→ OD is continuous, we know
that multiplication by x is a nilpotent endomorphism of OX/p ⊗X OD ' (OX/p)m. Some standard linear
algebra over the field of fractions of OX/p assures us that the characteristic polynomial can only be tm, as
required.

Example 17.1. If E is complex oriented then CPmE = spf(OG/xm+1) is a divisor on G over X.

Example 17.2. Suppose that E is Morava K-theory or E-theory of height n at a prime p. We have a
long fibration sequence

Z/pm −→ S1 f−→ S1 −→ BZ/pm −→ CP∞ Bf−−→ CP∞

where f(z) = zp
m

. We pick out from this the circle bundle

S1 −→ BZ/pm −→ CP∞

The Euler class is just [pm](x) = (pmG )∗x. This can be written (by the Weierstrass preparation theorem) as
g(x)u(x) where u(x) is an invertible power series and g(x) is a monic polynomial of degree pnm, congruent
to xp

nm

modulo the maximal ideal of E. In particular, [pm](x) is not a zero-divisor, so the Gysin sequence
for our circle bundle is just a short exact sequence

E(BZ/pm)←− E(CP∞)
×[pm](x)←−−−−−− E(CP∞)

It follows that

E∗BZ/pm = E∗[[x]]/[pm](x) = E∗[[x]]/g(x)

This is the cokernel in the category of Hopf algebras of the map (pmG )∗ : E(CP∞) −→ E(CP∞). We conclude
that G(m) = (BZ/pm)E is a divisor of degree pnm on G over X, and is also the kernel of pmG : G −→ G. This
map is in fact an isogeny. This means that it is about as surjective as a map of schemes can be without being
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split, so G should be thought of as a divisible sort of group. In fact, (Qp/Zp)n is a good model to have in
mind.

Example 17.3. Let Z be a space, and V a complex vector bundle of dimension m over Z. We can define
the associated projective bundle

P (V ) = {(z, L) | z ∈ Z , L ≤ Vz a line }

(where “line” means “one-dimensional subspace”). There is a tautological line bundle L(V ) over P (V ),
defined by

L(V )(z,L) = L

This is classified by a map P (V ) −→ CP∞. We thus obtain a map P (V ) −→ CP∞ × Z and hence P (V )E −→
G×X ZE . It is a standard fact that

E∗P (V ) = E∗Z[[x]]/
∑

cm−kx
k

where the coefficients cm−k are the Chern classes of V (and x is identified with the Euler class of L(V )).
This shows that D(V ) = P (V )E is a divisor of degree m on G over ZE.

Example 17.4. Consider the diagonal subscheme ∆ < G ×X G. This can be considered as a divisor on
G defined over G, or as the family of one-point divisors [a] parametrised by a ∈ G. If we write OG×XG =
OX [[x, y]] in the obvious way, then J∆ = (x− y). Let L −→ CP∞ be the universal bundle. Then D(L) = ∆.

Example 17.5. Let a1, . . . , am be sections of G over an X-scheme Y , so that x(ak) ∈ OY . We can define
ideals

Jk < OG×XY Jk = {f | f(ak) = 0} = (x− x(ak))
and thus a divisor

D = OG×XY /
∏
k

Jk = OG×XY /
∏
k

(x− x(ak))

Note that this is actually independent of the choice of coordinate x. We write [a1, . . . am] or
∑
k[ak] for this

divisor. Note that {ak} is not really a single point, but should be thought of as

{ak} = {(ak(y), y) | y ∈ Y } ⊂ G×X Y

Given a divisor D, a list of sections giving rise to it as above is called a full set of points for D. If ζ is a
vector bundle of dimension m over Z then a splitting of ζ as a sum of line bundles gives rise to a full set of
sections of the associated divisor. See section 20 for some related but more general definitions.

We would like to be able to define virtual divisors, to be compared with virtual bundles. We can do this
as follows. Let Y be a formal scheme, and H a formal group over Y . If x and y are two coordinates on H
then x = uy for a unit u ∈ O×H . Thus, the ring

MH = lim
←-

ICOOY
x−1(OY /I⊗̂YOH)

is invariantly defined. Any element f ∈ MH has the form
∑
k∈Z akx

k with ak ∈ OY and ak −→ 0 as k −→ −∞.

Definition 17.1. A Cartier divisor on H over Y is an element ofM×H/O×H .

If we need to distinguish between Cartier divisors and divisors as defined previously, we shall refer to the
latter as effective Weil divisors. The effective Weil divisors form an Abelian semigroup with cancellation.
This can be embedded in a group in the usual way. We refer to elements of this group as Weil divisors.

If D is an effective Weil divisor of degree m, then JD = ker(OH −→ OD) is a Cartier divisor. This
construction gives a homomorphism from the group of all Weil divisors to that of Cartier divisors. This is
iso if Y is a connected informal scheme, but not in general.
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Suppose that Y is a connected formal scheme, so that OY has no nontrivial idempotents. We say that
g(x) ∈MH is holomorphic at infinity if it can be written as g(x) =

∑
k≤0 akx

k, and then we write g(∞) for
a0.

Using corollary 33.3, we see that any Cartier divisor has a unique representative of the form xng(x), where
n ∈ Z, g(x) is holomorphic at infinity and g(∞) = 1. We refer to n as the degree of the divisor.

18. Classification of Divisors

Let G be a formal group over X. Consider the m’th tensor power R =
⊗̂m

OXOG and the symmetric subring

S = RΣm . If x is a coordinate on G then

R = OX [[x1, . . . , xm]]

S = OX [[c1, . . . , cm]]

where the ck are (up to sign) the elementary symmetric functions of the xk (and we take c0 = 1).
It is clear that spf(R) is the m-fold product GmX = G ×X . . . G. The k’th projection ak : GmX −→ G is

a section of G over GmX . As in example 17.5, these sections give a divisor D0 on G over GmX . In fact,
D0 = spf R[[x]]/

∑
cm−kxk, so D0 is obtained by pulling back a divisor D = spf S[[x]]/

∑
cm−kxk over

Y = spf(S).
Now let D′ be a divisor on G over an arbitary formal X-scheme Y ′. Then

OD′ = OY ′ [[x]]/
∑

c′m−kx
k

for uniquely determined topologically nilpotent coefficients c′l ∈ Nil(OY ′). There is a map OY −→ OY ′
sending cl to c′l, and thus a corresponding map Y ′ −→ Y . This is clearly the unique map Y ′ −→ Y for which
the pullback of D is D′. This construction gives a natural bijection

{divisors of degree m on G over Y ′} = FormalX(Y, Y ′)

It follows that the functor

Div+
m(R) = {(f,D) | f : spf(R) −→ X , D a divisors of degree m on G over R}

is actually a formal scheme; in fact Div+
m = Y .

Topologically, of course, we have

Div+
m = BU(m)E

Moreover,BU(m) classifies bundles, Div+
m classifies divisors, we know how to construct divisors from bundles,

and everything is compatible in the evident sense.
It is tempting to interpret the above construction as saying that Div+

m = GmX/Σm. This is true in the sense
that Div+

m is the categorical quotient of GmX by the action of Σm in the category of formal schemes, and this
is useful for constructing maps out of Div+

m (e.g. proposition 18.1, or the definition of convolution below).
However, the functor Div+

m is rather poorly related to the functor R 7→ G(R)mX(R)/Σm.

We can make {Div+
m}m≥0 into a graded semiring in the category of schemes, as follows. Given a divisor

D we write JD for the ideal such that D = spf(OG×XY /JD). Given a coordinate x, we know that JD = (f)
for some monic polynomial f , so JD is actually a free module of rank one over OG×XY . We define addition
of divisors by JD+D′ = JDJD′ . This defines a map

Div+
m×X Div+

n −→ Div+
m+n

Suppose now that we have full sets of sections {a1, . . . am} and {b1, . . . bn} for D and D′. It is easy to see
that D +D′ = {a1, . . . am, b1, . . . bn}. In this context, we can also define the convolution

D ∗D′ = {ak + bl | 1 ≤ k ≤ m, 1 ≤ l ≤ n}
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Here ak + bl refers to the addition in the group G, of course. Using the description Div+
m = GmX/Σm and

working with the universal case, one can construct a unique map Div+
m×X Div+

n −→ Div+
mn giving rise to this

convolution.
This semiring structure also arises from the maps BU(m)×BU(n) −→ BU(m+n) and BU(m)×BU(n) −→

BU(mn) classifying direct sum and tensor product of vector bundles.
Arguments similar to the above show that

BUE = Div0 = { Cartier divisors of degree 0 }

(Z×BU)E = Div = { Cartier divisors }
Note that the natural inclusion is

BU(n) −→ {n} × BU −→ Z×BU

Another interpretation of BUE is the following. Further explanation of the statement is given in the proof.

Proposition 18.1. Div0 = BUE the free group scheme over X on the underlying pointed X-scheme of
G = CP∞E . Similarly, Div is the free ring scheme over X generated by the group scheme G. Moreover, the
above remains true after pullback along an arbitary map Y −→ X.

Proof. First, let us make the claim more concrete. There is a map j : G −→ Div0 sending a point a of G to
the divisor [a]− [0]. This corresponds to the usual map CP∞ −→ {0}×BU , classifying the reduced canonical
bundle L− 1. Let H be a commutative group in the category of formal schemes over X (not necessarily of
dimension one), and let f : G −→ H be a map of formal schemes with f(0) = 0. The claim is that there is a
unique factorisation f = g ◦ j with g : Div0 −→ H a group map. To prove this, observe that the map

Gm
fm−−→ Hm sum−−−→ H

factors through a map

gm : Gm/Σm = Div+
m −→ H .

There are maps

jm : Div+
m −→ Div0 D 7→ D −m[0]

corresponding to the usual maps BU(m) −→ BU . It is easy to see that E(BU) = lim
←-

E(BU(m)) as formal

rings, so Div0 = lim
-→

Div+
m as formal schemes. The maps gm thus fit together to give a map g : Div0 −→ H as

required. By merely changing the notation, we see that the same holds after base change to Y . For the second
claim, we note that Div is a ring scheme over X under addition and convolution of divisors, corresponding to
direct sum and tensor product of bundles. The unit element is the one-point divisor [0]. The map j′ : G −→ Div
sending a to [a] is a homomorphism from G to Div (considered as a semigroup under convolution). Suppose
that R is another ring scheme over X, and that f ′ : G −→ R is a homomorphism in the same sense. The
claim is that f ′ = g′ ◦ j′ for a unique map g′ : Div −→ R of ring schemes. To see this, define f : G −→ R by
f(a) = f ′(a) − 1 and use the first part to get a map g : Div0 −→ R of (additive) group schemes. The map
Div0 −→ Divm sending D to D + m[0] is iso, so we can define g′ : Div −→ R by g′(D +m[0]) = g(D) +m.
One can check that this works.

Remark 18.1. There is a certain confusion among the people about the above result. It is widely held
that “E∗BU is the Witt Hopf algebra” and that “the Witt Hopf algebra classifies curves”. Both of these
things are true up to unnatural isomorphism. If we choose a basic curve γ : Â1 ' G, then the above gives an
isomorphism

GroupsX(BUE ,H) = Map0
X(G,H) ' Map0

X(Â1,X) = Curves(H)

However, because of the arbitary choice of γ we cannot expect this identification to commute with most
interesting operations. Moreover, it is telling us about curves on any group H, and not especially about
curves on G.
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Example 18.1. We could, nonetheless, take H = G, and ask for a map of groups Div0 −→ G extending
the inclusion j0 : a 7→ [a] − [0]. The resulting map is just (B det)E : BUE −→ BS1

E . It sends a degree zero
divisor

∑
i ni[ai] (with

∑
i ni = 0) to

∑
i niai.

There is an evident partial order on divisors, defined by D′ ≤ D iff D = D′ +D′′ for some (necessarily
unique) D′′, iff fD′ divides fD. This order is particularly useful in the light of the following proposition.

Proposition 18.2. Suppose that D and D′ are divisors on G defined over an X-scheme Y . There is then
a closed subscheme Z ≤ Y which is universal for the condition D′ ≤ D. In other words, a map w : W −→ X
has w∗D′ ≤ w∗D iff w factors through Z.

Proof. Suppose D has degree m. We can then write

fD′(x) =
m−1∑
k=0

akx
k (mod fD)

for uniquely determined coefficients ak. It follows that

fw∗D′(x) =
m−1∑
k=0

w∗akx
k (mod fw∗D)

Thus, we can take I = (ak | 0 ≤ k < m) and Z = V (I) = spf(OY /I).

See section 26 for an interesting application.

The scheme of divisors is functorial in two different ways. First, suppose that q : G −→ H is an map of
formal groups over X. Using the description Div+

m(G) = GmX/Σm, we see immediately that q induces a map
q∗ : Div+

m(G) −→ Div+
m(H). Moreover, this gives a map of ring schemes.

Now suppose that q is an isogeny of degree d, and that D is a divisor on H of degree m. We can then
form the pullback

q∗D D

G H

ww

y

u

y

u

ww
q

We see that q∗D −→ D is free of degree d, and thus that q∗D is a divisor of degree md on H. This gives a
map q∗ : Div(H) −→ Div(G), which is q∗-linear in the sense that

q∗(D ∗ q∗D′) = (q∗D) ∗D′

Given a divisor D over Y , the ideal JD is free of rank one over OG×XY . It can thus be thought of as a
line bundle over G×X Y ; in this guise we shall refer to it as O(D).

Remark 18.2. There are apparently two possible meanings for q∗O(D). On the one hand, O(D) is a line
bundle over H, so we can form the pullback L = OG ⊗H O(D). On the other hand, q∗ is a map OH −→ OG
and O(D) is an ideal in OH so we can form the image M = q∗(O(D)), which is an OH -submodule of OG.
Applying flatness of q to the inclusion O(D) −→ OH , one can see that L ' OGM . Now let f be a generator

of O(D). Thinking of f as a map H −→ Â1, we see that D = f∗[0]. It follows that q∗D = (f ◦ q) ∗ [0] and
thus that f ◦ q = q∗f ∈M generates O(q∗D). In conclusion,

q∗O(D) = OG. image(O(D)
q∗−→ O(G)) = O(q∗D)
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19. Cohomology of Thom Spectra

We also have an algebraic analogue of the Thom space of a vector bundle. Let D be a divisor on G over
Y . Pulling back the line bundle O(D) on G ×X Y by the zero section 0: Y −→ G ×X Y , we obtain a line
bundle over Y :

L(D) = 0∗O(D) = JD/J{0}+D

It is not hard to show that L(D + D′) = L(D) ⊗ L(D′). If Y = ZE and D = D(V ) = P (V )E then
L(D) = Ẽ∗ZV , the reduced cohomology of the Thom space of V . This follows from the cofibration

P (V ) −→ P (V ⊕ C) −→ ZV

We also write L(V ) for L(D(V )).
We write ∆ for the diagonal divisor on G ×X G (see example 17.4). In terms of topology, we have

∆ = D(L), where L is the universal line bundle over CP∞.
We also write ∗ for convolution of divisors (so that D(V ⊗ W ) = D(V ) ∗D(W )) and D for the image of

D under the negation map (−1)G : G −→ G.

Proposition 19.1. L(D ∗∆) = O(D)

Proof. First note that if f(x) ∈ OG×XY generates JD then f(x −F y) ∈ OG×XY×XG generates JD∗∆.
This implies that

L(D ∗∆) =
OY [[x, y]]f(x−F y)
OY [[x, y]]xf(x−F y)

Next, consider the embedding Y ×X G −→ G ×X Y ×X G by (y, b) 7→ (0, y, b). This induces a map
OG×XY×XG −→ OY×XG, sending x to 0. It is easy to see that this induces L(D ∗∆) ' (f([−1]F (y))) = JD
as required.

There is a small point of compatibility to be dealt with here. Pulling back the above statement along
the zero map Y −→ Y ×X G, we obtain an isomorphism L(D) ' 0∗O(D). On the other hand, we have
L(D) = 0∗O(D) by definition. One can check that the resulting isomorphism 0∗O(D) ' 0∗O(D) is just
induced by the negation map (−1)G.

The Thom module for the trivial line bundle over a point is just J0/J
2
0 = ωG. This is of course compatible

the isomorphism Ẽ(1C) = Ẽ(CP 1) = E−2 = L−1 = ωG.

20. Norms and Full Sets of Points

Suppose that f : X −→ Y is a finite free map, in other words it makes OX into a finitely generated free
module (of rank m, say) over OY . We can then define a (nonadditive) norm map Nf = NX/Y : OX −→ OY ,
by letting Nf (u) be the determinant of multiplication by u, considered as an OY -linear endomorphism of OX .

Proposition 20.1.

(1) NX/Y (uv) = NX/Y (u)NX/Y (v)
(2) NY/Z ◦NX/Y = NX/Z
(3) NX/Y f

∗(w) = wn

Moreover suppose we have a pullback diagram

V X

W Y

w

a

u

u

g

u

u

f

w

b

If f is a finite free map then so is g, and Ng ◦ a∗ = b∗ ◦Nf .

Example 20.1. Suppose C = B[t]/g(t), for some monic polynomial g of degree m. By using the basis
{1, t, . . . tm−1} for C over B, we find that NC/B(t) = (−1)mg(0).
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More generally, given Z −→ Y we define

NZ
X/Y = NX×Y Z/Z : OX ⊗Y OZ −→ OZ

In particular, we can consider Z = A1
Y = specOY [t], take u ∈ OY and consider the characteristic polynomial

PX/Y (u, t) = NZ
X/Y (t− u) ∈ OX [t]

Similarly, we define PZX/Y (u, t) for arbitary Z −→ Y and u ∈ OX ⊗Y OZ .

Example 20.2. Let B and C be as in example 20.1. I claim that N
B[s]
C/B(t − s) = g(s). To see this, take

u = t− s, so that
B[s]⊗B C = C[s] = B[s, t]/g(t) = B[s][u]/g(s+ u)

Note that h(u) = g(s+ u) is a monic polynomial of degree m in u over B[s], so example 20.1 gives

N
B[s]
C/B(t− s) = NC[s]/B[s](u) = h(0) = g(s)

Definition 20.1. Suppose Z is a scheme over Y . We say that a list (a1, . . . an) ∈ Γ(Z,X)n is a full set
of points of X (over Z) iff for all g : W −→ Z and u ∈ OW×YX we have

NW
X/Y (u) =

∏
i

u(ai)

It is equivalent to require that for all W and u we have

PWX/Y (u, t) =
∏
i

(t− u(ai))

In the last two equations, ai really means g∗ai ∈ Γ(W,X).

Lemma 20.2. Suppose C = B[t]/g(t), for some monic polynomial g of degree m, and write X = spec(C)
and Y = spec(B). Then {b1, . . . bm} is a full set of sections iff g(s) =

∏
i(s− b∗i t).

Proof. Necessity follows immediately from example 20.2. For sufficiency, write bi for b∗i t and suppose

that g(s) =
∏
i(t − bi). Consider an element f(t) =

∑m−1
i=0 ait

i ∈ A ⊗B C, for some B-algebra A. We are
required to show that NA

C/B(f) =
∏
i f(bi). By an evident naturality argument, we may assume that

A = B = Z[a0, . . . , am−1, b1, . . . , bm]

We only need to verify that certain polynomial expressions in the a’s and b’s are equal, so we are free replace
B by a larger ring. In particular, we can invert the discriminant of g (c.f. example 13.2). In this context, the
map

B[t]/g(t) −→ Bm t 7→ (b1, . . . bm)

is iso, and the claim is trivial.

Example 20.3. Suppose that D is an effective divisor of degree m on a formal group G/X, and that
a1, . . . , am are sections of G. By choosing a coordinate on G and appealing to lemma 20.2, we see that
the ai form a full set of sections for D iff D =

∑
i[ai]. This shows that definition 20.1 generalises that in

example 17.5.
Next, consider the X-prescheme defined by

Γ(T,FSP(D/X)) = { full sets of points for D over T }

This is actually a scheme, in fact a closed subscheme of the m-fold fibre product Dm
X . Put xk = x(ak) and

let
dk ∈ ODm

X
= OX [x1, . . . , xm]/(f(x1), . . . f(xm))

be the coefficient of tm−k in
∏
i(t− x(ai)). If we write J = (d1 − c1, . . . dm − cm), then FSP(D/X) = V (J).
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Example 20.4. Let Z be a space and V a vector bundle over Z. Then

FSP(D(V )/ZE) = Flag(V )E

This follows easily from the universal case, in which Z = BU(m) and V is the canonical bundle. We take
EU(m) to be the space of m-frames in C∞, so that BU(m) = EU(m)/U(m) is the Grassmannian of m-
dimensional subspaces. Let T (m) = (S1)m ≤ U(m) be the maximal torus. With this model it is clear that
Flag(V ) = EU(m)/T (m) = BT (m) ' (CP∞)m. Thus ZE = Div+

m = GmX/Σm, D(V ) is the universal divisor
over Div+

m, and Flag(V )E = GmX = FSP(D(V )).

Example 20.5. Let q : G −→ H be an isogeny of formal groups over X, with kernel K. Suppose that
{a1, . . . , an} is a full set of sections for K (they need not form a group). Write τi for the translation map
b 7→ b+ ai of G. Then q∗Nqf =

∏
i τ
∗
i f .

Proof. Let σ : K ×X G −→ G be the addition map, so we have a pullback square

K ×X G G

G H

w

σ

u

u

π

u

u

q

w
q

Write ãi = ai ×X 1G : G −→ K ×X G. These maps form a full set of sections for π : K ×X G −→ G, and
σ ◦ ãi = τi. Thus

q∗Nqf = Nπσ
∗f =

∏
i

ãi
∗σ∗f =

∏
i

τ∗i f

Example 20.6. This example uses concepts defined in section 26 below. Consider the finite free map
Level(A,G) −→ X, where rank(A) ≤ n . This has no sections. Suppose that pmA = 0, so there exist
monomorphisms α : A −→ Λm. Consider the pulled-back map

Level(A,G) ×X Level(Λm, G) −→ Level(Λm, G)

For each monomorphism α as above, we get a section

(φ ◦ α, φ)←− φ

These sections form a full set, although the corresponding map∐
α

Level(Λm, G) −→ Level(A,G)×X Level(Λm, G)

is only an isomorphism rationally.

Example 20.7. We can generalise the part of example 20.3 as follows. Let Y −→ X be an arbitary finite
free map, and define the X-prescheme FSP(Y/X) by

Γ(T,FSP(Y/X)) = { full sets of points for Y over T }

This is again a closed subscheme of Y mX .
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Proof. The condition for an m-tuple a of sections to be a full set involves an element f of OY ′×XY . The
universal example of a scheme Y ′ over X with m sections and a function f is Ỹ = Y mX ×X A(OY ). In other
words, for any point x ∈ X

Ỹx = {(a, f) | a ∈ Y mx , f : Yx −→ A1}
Note that OỸ is free over OYm

X
, so that the projection Ỹ −→ YmX is an open map by proposition 8.1. We have

a function g = N Ỹ
Y/X(f)−

∏
f(ai) ∈ OỸ . The fibre of V (g) over a point a ∈ Y mx is

V (g)a = {f : Yx −→ A1 | N(f) =
∏
i

f(ai)}

Thus

Γ(T,FSP(Y/X)) = {a ∈ Γ(T, Ymx ) | V (g)a = Ỹa}
It follows (from the definition 8.1 of an open map) that this is a closed subscheme as claimed. To make this
more explicit, write

A = OX B = OY
C = B⊗Am = OYm

X

D = C ⊗A SymA[B∨] = OỸ
The inclusion B∨ −→ SymA[B∨] gives by adjunction an element of B⊗SymA[B∨] and thus (under the obvious
inclusion) an element f ∈ B ⊗A D. Taking the determinant of this as D-linear endomorphism of B ⊗A D
gives an element Nf ∈ D. On the other hand, we have m inclusions ak : B −→ C, each giving rise to a map

B ⊗A D = B ⊗A C ⊗A SymA[B∨] −→ C ⊗A SymA[B∨]

The image of f is naturally denoted f(ak). We can now form g = Nf −
∏
f(ak) ∈ D. Expanding this in

terms of a basis for D over C, we get various coefficients gα ∈ C. Finally, FSP(Y/X) = spec(C/(gα)).

Our next task is to extend the norm construction to line bundles and their sections. First, we describe the
motivating example. Let X be a scheme, S a finite set, and Y = S×X. A line bundle L over Y just consists
of a family {Ls}s∈S of line bundles over X. We can define NY/XL =

⊗
s Ls, considered as a bundle over X.

Given a section a = (as)s∈S of L, we define a section NY/Xa of NY/XL in the evident way.
Now let f : Y −→ X be an arbitary finite free map, of degree m say. Given a line bundle L over Y , we

define

NfL = NY/XL = HomX (
∧m
XOY ,

∧m
XL)

Let l be a section of L. By regarding it as an OX -linear map l : OY −→ L, we get an section Nf(l) of NfL.
Here are some properties of the functor on line bundles; analogous things are true for the map on sections.

(1) NfL is a line bundle over X.
(2) NfOY = OX and Nf (L⊗Y M) = Nf (L)⊗X Nf(M).
(3) Nf (f

∗N) = N⊗m.
(4) Suppose that {a1, . . . , am} is a full set of sections. Then NfL '

⊗
k a
∗
kL.

Proposition 20.3. Let q : G −→ H be an isogeny of formal groups over X, with kernel K ∈ Div(G).
Suppose D ∈ Div(G). Then NqO(D) = O(q∗D), and q∗NqO(D) = q∗O(q∗D) = K ∗D.

Proof. This is an equality between two ideals in OH . As q is faithfully flat, it suffices to show that
q∗NqOD = q∗O(q∗D). Write K for the kernel of q. By making a faithfully flat base change to give K a full
set of sections, and using a pullback diagram as in example 20.5, we see that

q∗NqO(D) = O(K ∗D)

Now suppose D = [a]. Note that K = q∗[0], so

q∗[q(a)] = q∗τ∗−q(a)[0] = τ∗−aq
∗[0] = [a] ∗K
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After giving D a full set of points and extending this in the evident way, we conclude that q∗O(q∗D) =
O(K ∗D) also.

21. Subgroup Divisors

A subgroup divisor on G over Y is a divisor H on G over Y which is a subgroup-scheme of G×X Y over
Y . It is equivalent to require that OH be a quotient Hopf algebra of OG ⊗X OY over OY , which is free of
finite rank over OY .

Example 21.1. Let G0 be the formal group arising from Morava K-theory, so OG0 = κ[[x]] and OG2
0

=

κ[[x, y]]. This is a Hopf algebra with ψ(x) = F (x, y) = x+ y (mod xy). Note every element of OG0 has the
form xmu for a unit u ∈ O×G0

, so that every divisor defined over κ has the form spf(κ[[x]]/xm) for some m.
For this to be a subgroup divisor, we must have

ψ(xm) = F (x, y)m = 0 (mod xm, ym)

If we work mod (x, y)m+1 then F (x, y)m = (x+ y)m and this will only vanish mod (xm, ym) if m is a power
of p. On the other hand, as the coefficients of F lie in Fp ≤ κ, we have

F (x, y)p
k

= F (xp
k

, yp
k

) = 0 (mod xp
k

, yp
k

)

It follows that the subgroup divisors defined over κ are precisely the divisors spf(κ[[x]]/xp
k

).

Example 21.2. Let Ga be the (informal) additive group over Fp, so that

Ga = spec(Fp[x]) G2
a = spec(Fp[x, y]) ψ(x) = x+ y

A degree m divisor defined over an Fp-algebra R has the form spec(R[x]/f(x)) where f(x) is monic of
degree m and f(x + y) = 0 (mod f(x), f(y)), say f(x + y) = g(x, y)f(x) + h(x, y)f(y). We can make this
representation unique by requiring that g have degree less than m in y. Considering the coefficient of xkyl

with l ≥ m we conclude that h is constant. A similar argument shows that g is constant. By working mod
x or y we find that g = h = 1, and thus f(x+ y) = f(x) + f(y). From this we find that it is neccessary and

sufficient for f to have the form
∑r
k=0 akx

pk with m = pr and ar = 1.

Example 21.3. Let Gm be the (informal) multiplicative group, so that

Gm = spec(Z[u±1]) G2
m = spec(Z[u±1, v±1]) ψ(u) = uv

Let H be a closed subgroup of Gm over R such that OH is free of rank r over R. Let f be the characteristic
polynomial of u on OH , so f is a monic polynomial of degree r and f(u) = 0 in OH . Moreover, f(0) is the
determinant of u on OH and thus a unit. It follows that

OH = R[u±1]/f(u) = R{1, u, . . . ur−1}

The condition for H to be a subgroup scheme is that f(uv) = 0 (mod f(u), f(v)). Using the obvious bases,
it is not hard to conclude that f(u) = ur − 1. In particular, H is already defined over Z rather than R.

Example 21.4. If E is Morava E-theory then the divisor G(r) = (BZ/pr)E = spfOG/[pr](x) = ker(prG)
is actually a subgroup divisor — see example 17.2.

Example 21.5. Consider the Morava K theory formal group G0/X0. It is a finite (but arduous) com-
putation to classify subgroup divisors on G0 over X0-schemes. For example, if n = p = 2, then a subgroup
divisor of degree 4 over a κ-algebra R has equation

x4 + b5x3 + bx2 + (b3 + b6)x

with b7 = 0. I have Mathematica programs to assist with such calculations, which I would be happy to
distribute or discuss.
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Suppose that H is a subgroup divisor on G of degree r; let us say for simplicity that it is defined over X.
We can define a quotient group G/H as follows. There are two maps

α, β : OG −→ OG×XH
(αf)(g, h) = f(g + h) (βf)(g, h) = f(g)

We define OG/H to be the equaliser, i.e. OG/H = {f ∈ OG | αf = βf}. Finally, we set G/H = spf(OG/H),
and write q : G −→ G/H for the projection.

Suppose that x is a coordinate on G. We can define a function y on G/H as follows. Observe that β makes
OG×XH into a free module of rank r over OG. Multiplication by α(x) is an OG-endomorphism of OG×XH
with this module structure. Let ỹ ∈ OG be the determinant of this endomorphism. It can be shown that
αỹ = βỹ, so ỹ comes from an element y ∈ OG/H . Suitably interpreted (see section 20), one can say that

y(qa) =
∏
b∈H

x(a+ b)

y(c) =
∏
qa=c

x(c)

It can also be shown that OG/H = OX [[y]], and that this is a sub-Hopf algebra of OG. In other words, G/H
is a quotient formal group of G. Moreover, OG is free of rank r over OG/H , so that the map G −→ G/H is
faithfully flat.

Another useful fact is that the “multiplication by r” map H
r−→ H is always just the zero map. This is

reasonable, because r should be thought of as the order of the finite group H. Moreover, if the base ring OX
is p-local then r is a power of p.

Recall (see section 18) that the divisors of degree m themselves form a scheme Div+
m = spf OX [[c1, . . . , cm]].

It is not hard to see that there are certain power series fi(c) in the variables ck such that a divisor with
parameters ck is a subgroup divisor iff fi(c) = 0. It follows the the functor on OX -algebras

Γ(Subm, R) = { subgroup schemes of degree m on G over R }

is a scheme, represented by the OX -algebra OX [[c1, . . . , cm]]/(fi). Of course, it is the empty scheme unless
m = pk for some k, by one of the remarks above.

We have a good understanding of this scheme in the case of Morava E-theory. To explain this, consider
the ring Rk = E(BΣpk). A partition subgroup means a subgroup of the form Σi × Σj with i + j = pm

and i, j > 0. We write I for the ideal in Rk generated by transfers from partition subgroups. We also
let V denote the standard permutation representation of Σpk ; note that this has a trivial summand after
restriction to a partition subgroup. The Euler class e(V − 1) thus restricts to zero on any such subgroup,
implying that I ≤ J = ann(e(V − 1)). A construction involving the E∞ structure on E gives a map
Y = spf(EBΣpm/I) −→ Subpk . We shall publish elsewhere a proof of the following result (the algebraic input
is provided by [12]).

Theorem 21.1. With notation as above, we have I = J and Y = Subpk . Moreover, OY = R/I is a
finitely generated free module over OX .

22. Cohomology of Abelian Groups

In this section, we suppose we keep the notations of section 3.
Let A be a finite Abelian p-group. We write I = Qp/Zp < S1 and

A∗ = Hom(A, I) = Hom(A,S1)

Note that A = A∗∗. We define a formal pre-scheme Hom(A,G) over X by

Γ(Y,Hom(A,G)) = Hom(A,Γ(Y,G))



40 CONTENTS

Proposition 22.1. The pre-scheme Hom(A,G) is a scheme. It is represented by the ring E(BA∗), which
is a free module over E of rank |A|n.

Proof. Suppose a ∈ A, and let f : E(BA∗) −→ R be a map of E-algebras. The element a gives a map
A∗ −→ S1 and thus a map Ba : BA∗ −→ CP∞. Let φ(a) ∈ Γ(R,G) = E-Alg(E(CP∞), R) be the composite

E(CP∞)
Ba∗−−→ E(BA∗)

f−→ R. This construction gives a map

φ : A −→ Γ(R,G)

or in other words a section of Hom(A,G) over R. This gives a map of pre-schemes

αA : spf(E(BA∗)) −→ Hom(A,G)

It is easy to see directly that

Hom(A⊕A′, G) = Hom(A,G)×X Hom(A′, G)

Recall from example 17.2 that E(BZ/pm) = E[[x]]/[pm](x) is free of finite rank over E. This implies (by a
Künneth argument) that

spf E(B(A ⊕A′)∗) = spf E(BA∗)×X spf E(BA′
∗
)

It also implies that

Γ(Y, (spf EBZ/pm)) = {a ∈ Γ(Y,G) | pa = 0} = Γ(Y,Hom(Z/pm, G))

It follows that αA is iso for all A.

23. Deformations of Formal Groups

Consider the Morava formal group G0/X0. The scheme X0 is about as small as a scheme can get, so we
can think about the problem of extending G0 over a larger base Y . More generally, we can pull back G0

along a map Y0 −→ X0 and then try to extend it to a “thicker” scheme Y ⊇ Y0. A deformation of G0/X0 is
such an extension; we shall be more precise in a moment.

We shall initially define deformations only over a restricted class of base schemes Y . We shall then show
that there is a universal example in this restricted setting. We can if we wish extend the definition by requiring
that this example remain universal (as one does in extending K-theory to infinte complexes).

We shall say that a formal scheme Y is local iff OY is a complete local ring, topologised by powers of the
maximal ideal. If so, we write Y0 = spec(OY /m), and call this the special fibre of Y . We shall say that Y is
semilocal iff it is a finite disjoint union of local formal schemes. If so, we define Y0 in the obvious way. If H
is a formal group over a semilocal formal scheme, we define H0 = H ×Y Y0.

Definition 23.1. A deformation of G0/X0 consists of a semilocal formal scheme Y together with a formal
group H/Y and a fibrewise isomorphism as follows.

H0 G0

Y0 X0

w

f̃0

u u

w

f0

A morphism of deformations is a fibrewise isomorphism of formal groups making the obvious diagram
commute.

Note that the Morava E-theory formal group G/X is by construction a deformation of G0/X0.

Proposition 23.1. An endomorphism of a deformation H/Y which is the identity on Y is the identity.
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Proof. We may assume that Y is local (rather than just semilocal). The claim is true (by the definition
of a map of deformations) over Y0 = spf(OY /m). Choose a coordinate y on H compatible in the evident
sense with the usual coordinate x0 on G0. Thus y(pa) = y(a)q + v(y(a)) where q = pn and v ∈ m[[y]]. Let f
be the endomorphism, so y(f(a)) = y(a) + u(y(a)) for some u ∈ m[[y]]. Suppose u ∈ mk[[y]]. We find that

y(pf(a)) = (y(a) + u(y(a))q + h(y(a) + u(y(a)))

= y(a) + h(y(a))

= y(pa) (mod mk+1)

On the other hand, y(pf(a)) = y(f(pa)) because f is a homomorphism. Thus y(f(pa)) = y(pa) over V (mk+1),
but a 7→ pa is faithfully flat (see example 12.3) so y(f(b)) = y(b) over V (mk+1).

The above is a prerequisite for a strong classification theory for deformations, and it at least makes plausible
the following theorem.

Theorem 23.2. G/X is terminal in the category of deformations of G0/X0. In other words, given a
deformation H/Y , there is a map g : Y −→ X and an isomorphism H ' g∗G compatible with the given
isomorphism (H0, Y0) ' (G0,X0).

Because of this, we refer to G as the universal deformation of G0, and to X as the (Lubin-Tate) universal
deformation space.

We can reinterpret the above slightly as follows. Let Y be a semilocal formal scheme, and consider the
category of deformations of G0/X0 with base Y . We can write a typical object as (H, f0, f̃0). The morphisms
are required to be the identity on Y . Write Def(Y ) for the set of isomorphism classes. There is then a natural
isomorphism

Formal(Y,X) ' Def(Y )

24. The Action of the Morava Stabiliser

In this section (as in the last) we use the notation of the “Morava situation”. We shall show that there is a
unique action of the Morava stabiliser group Σ ' Aut(G0) on the universal deformation G/X extending the
action on G0/X0. The action is (highly) nontrivial on X, so this does not contradict our earlier claim that
End(G) = Zp.

The topological significance is as follows. As mentioned in section 3, Hopkins and Miller have shown that
E can be made into an E∞ ring spectrum in such a way that Σ acts by E∞ ring maps on the nose. This
gives an action of Σ on G/X, extending the action on G0/X0. The algebraic argument given below shows
that this characterises it uniquely, so that calculation of the action becomes a problem in pure algebra.

Suppose a ∈ Σ, and write aG0 for the corresponding automorphism of G0. Then a acts on the functor
Y 7→ Def(Y ) by

(H, f0, f̃0) 7→ (H, f0, f̃0 ◦ a−1
G0

)

It therefore acts also on the representing object X.

We can be slightly more explicit and also more precise. We can present G/X as a deformation of G0/X0

in a twisted way, using the embedding

G0 G0 G

X0 X0 X
u

w

a−1
G0

u

w

u

w

1
w
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Because G/X (with the usual deformation structure) is terminal, the above fits into an expanded diagram
as follows.

X0 X0

G0 G0

X X

G G

�

�

? ?

-

-

? ?

�
�

��	

@
@
@@R

�
�
���

@
@

@@I

aX

1

a−1
G0

aG

(1)

or equivalently

X0 X0

G0 G0

X X

G G

-

-

? ?

-

-

? ?

�
�

��	

@
@
@@R

�
�
���

@
@

@@I

aX

1

aG0

aG

(2)

It follows that Σ acts on G/X as claimed.

We can give more explicit descriptions of this action in a variety of cases.

(1) The subgroup Zp× ≤ Σ (which is actually the centre) acts trivially on X. The action of Zp× on G
is just the obvious one discussed in section 15.

(2) Using the universal property of G/X, one can show that the action of W× ≤ Σ extends the action
on G1 −→ X1 discussed in section 15. In fact, W× is the largest subgroup of Σ which preserves X1,
and it acts as the identity on X1.

(3) For general a =
∑
k akS

k we have

uk = a−1
0

∑
k=l+m

ap
m

l a∗X(um) (mod m2)
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so

a∗X


u0

u1

u2

u3

 = a0


a0 0 0 0
a1 ap0 0 0

a2 ap1 ap
2

0 0

a3 ap2 ap
2

1 ap
3

0


−1

u0

u1

u2

u3

 (mod m2)

(4) There are uniquely determined functions tk : Σ −→ OX such that

a∗G(x) =

a∗XF∑
k

tk(a)x
pk

These functions satisfy

a∗GF∑
k

tk(a)([p]F (x))p
k

= [p]a∗
X
F

a∗XF∑
l

tl(a)x
pl


In principle one can determine a∗X(uk) and tk(a) by expanding this out and comparing coefficients
of x.

Further information can be obtained from the Dieudonné module of G (see [6]).
Because Σ acts on G/X, it also acts on the line bundle ωG of invariant differentials. On the other hand,

because Σ acts on the spectrum E, it acts on E−2 = Ẽ0CP 1 = ωG. It can be shown that these two actions
are the same.

25. Quotient Groups as Deformations

Let Y be a semilocal formal scheme. Suppose we have a point a ∈ Def(Y ). This means that we have an
isomorphism class of deformations H/Y of G0/X0. By the classification theory, this corresponds to a map
a : Y −→ X; each representative H is uniquely isomorphic to Ga = a∗G. We shall mostly use the notation
Ga. The picture is that G is a bundle of groups over the scheme X = Def, that a is a point of X, and that
Ga is the fibre of G over the point a.

By assumption, Y is a semilocal formal scheme, but we shall argue as though it were local as this will
involve no loss of generality. This means that OY0 is field; we are given a map Y0 −→ X0, so it must have
characteristic p. There is thus a Frobenius map FY0 : Y0 −→ Y0, given by F ∗Y0

u = up for u ∈ OY0 . Similarly,
there is a map FH0 of formal groups covering FY0 .

Now suppose we also have a subgroup divisor K < H, of degree pm say, so we can form the quotient group
H/K. The claim is that this group can also be considered as a deformation of G0. Indeed, example 21.1
tells us that K0 = Y0×K is just spfOH0/(y

pm). This implies that OH/K0
= OY0 [[z]], where z can be

identified with yp
m

under the embedding OH/K0
−→ OH0 . This in turn means that FmH0

induces a map
(H/K)0 = H0/K0 −→ H0 covering FmY0

. This gives the required fibrewise isomorphism:

(H/K)0 = H0/K0 H0 G0

Y0 Y0 X0

w

Fm

u

w

f̃0

u u

w

Fm
w

f0

We need to check that the left hand square is indeed a pullback, which is essentially clear once the notation
is straight. Write L = OY0 , and write ψ : L −→ L for the map a 7→ ap

m

induced by FmY0
. The claim is now

that the map

L⊗L,ψ L[[y]] −→ L[[yp
m

]] a⊗ u 7→ aup
m
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is iso. This is a special case of the fact that an embedding L −→M together with the map y −→ yp
m

induces
an isomorphism

M ⊗L L[[y]] 'M [[yp
m

]]

The fact that L = L just confuses the issue.
Anyway, the above diagram exhibits H/K as a deformation of G0. We therefore get a new map b : Y −→ X,

and a uniquely determined isomorphism H/K = Ga/K −→ Gb. In other words, we get an exact sequence of
group schemes over Y :

K −→ a∗G
q−→ b∗G

On the special fibre, we have b0 = Fm ◦ a0 and q0 = a∗0(F
m).

Conversely, suppose we have a semilocal scheme Y and two points a, b of X defined over Y . We say
that a map q : a∗G −→ b∗G is an Fm-isogeny if it behaves as above on the special fibre. Using Weierstrass
preparation, we see that q is indeed an isogeny. Moreover, there is a subgroup divisor K < a∗G such that
q factors as a∗G −→ a∗G/K

∼−→ b∗G. Using the classification theorem for deformations, we see that (a,K)
determines (a, q, b) and vice-versa. We conclude that the following functor is isomorphic to Subpm , and hence
is a formal scheme:

IsogFm(Y ) = {(a, q, b) | a, b ∈ Def(Y ), q : Ga −→ Gb an Fm-isogeny }

Remark 25.1. Note that FnX0
= 1 and pG0 = Fn : G0 −→ G0 (because the formal group law for K has

[p](x) = xp
n

). This implies that pG : G −→ G is an Fn-isogeny. This fact is somewhat accidental, however.
All formal groups of height n over an algebraically closed field, but the choice of a representative formal
group over Fp or Fpn is arbitary. Some choices satisfy pG0 = Fn, but most do not. In particular, if n = 2
and G0 is the formal group associated to a supersingular elliptic curve over Fp2 then this need not hold. It
does hold if n = 1 and G0 is the formal multiplicative group, however.

We also define

IsogF∗ =
∐
m≥0

IsogFm

This gives a category scheme, i.e. a functor from schemes to categories. The object-scheme is X = Def and
the morphism-scheme is IsogF∗ . We will develop a little general theory of such categories in section 27, and
apply these ideas to cohomology operations in section 28.

26. Level Structures

Let A be a finite Abelian p-group, and φ a point of Hom(A,G) defined over an X-scheme Y , so φ : A −→
Γ(Y,G). We need a good notion of what it means for φ to be injective. The naive definition has bad technical
properties; in particular, it does not give a subscheme of Hom(A,G).

To formulate a better notion, we need some definitions. First, we set A1 = {a ∈ A | pa = 0}. For each
a ∈ A we have a section φ(a) of G and hence a divisor [φ(a)]. We write [φ] =

∑
a∈A[φ(a)], which is a divisor

of degree |A| on G over Y . Similarly, we set [φ]1 =
∑
a∈A1

[φ(a)]. It turns out that the following conditions
are equivalent:

(1) [φ] is a subgroup divisor.

(2) [φ]1 ≤ G(1) = ker(G
p−→ G).

(3) [p](x) is divisible by
∏
a∈A1

(x− x(φ(a))).

We say that φ is a level structure or level-A structure iff these conditions are satisfied. More generally, we
say that φ is a pk-fold level structure iff the following equivalent conditions hold:

(1) pk[φ]1 ≤ G(1)

(2) [p](x) is divisible by
∏
a∈A1

(x− x(φ(a)))p
k

.
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We write
Levelk(A,G) ⊆ Level0(A,G) = Level(A,G) ⊆ Hom(A,G)

for the corresponding subfunctors. Using the second criterion for a level structure and proposition 18.2,
we see that they are closed subschemes: there are quotient rings DAD

k
A of E(BA∗) = OHom(A,G) such that

Levelk(A,G) = spf(Dk
A). These rings will be described in more detail later.

First, however, we make some remarks which will relate to power operation in Morava E-theory. Write a
for the map Level(A,G) −→ X. There is thus a level structure φ (the universal example of such a thing) on
a∗G. This gives rise to a subgroup divisor K = [φ]. As in section 25, we have a map b : Level(A,G) −→ X
classifying G/K, and thus an isogeny q : a∗G −→ b∗G with kernel K.

To return to the construction of DA, recall that [p](x) can be factored as g(x)u(x), where g(x) is a monic
polynomial of degree pn and u(x) is invertible. Using this, we see that Levelk(A,G) = ∅ if rank(A) > n− k
(where rank(A) is the number of cyclic factors).

Example 26.1. Suppose Y = spf(R), where R is an integral domain in which p 6= 0. It turns out that a
map φ : A −→ Γ(Y,G) is a level structure iff it is injective.

Example 26.2. Suppose Y = X0 = spf(κ). Then Γ(Y,G) = 0, so the only possible φ is the zero map.
Moreover, we have [p](x) = xp

n

in κ[[x]]. This implies that φ is a pk-fold level structure iff rank(A) ≤ n− k.

Example 26.3. Suppose n = 1, so that G = Ĝm is the formal multiplicative group, and [pr](x) =
(1 + x)p

r − 1. We know that Level(A,G) = ∅ if rank(A) > 1, which leaves only the case A = Z/pr. In this
case, a map φ : A −→ Γ(Y,G) sends the generator to a root α of [pr](x). One can check that this is a level
structure iff α is a root of [pr](x)/[pr−1](x) = f(x). Thus Level(A,G) = spf(Zp[x]/f(x)).

Example 26.4. Suppose n = p = 2 and A = {0, a, b, c = a + b} ' (Z/2)2. Suppose that p = u1 = 0 in
the E-algebra OY (so that Y lies entirely over the special fibre X0 ⊂ X). Suppose φ : A −→ Γ(Y,G). Write
α = x(φ(a)) and so on. One can show that [2](x) = x4 and x +F y = x + y + x2y2 (mod x4, y4) over OY .
It follows that α4 = [2](α) = x(φ(2a)) = 0 and similarly β4 = γ4 = 0. Moreover, c = a + b implies that
γ = α+F β = α+ β + α2β2. For φ to be a level structure, we require that x4 be divisible by

x(x− α)(x− β)(x− γ)

It follows that this product must actually be equal to x4, and hence that (x− α) divides x3, and hence that
α3 = 0. Similarly, β3 = 0 and so the product can be expanded as

αβ(α + β)x+ (α2 + αβ + β2)x2 + α2β2x3 + x4 = x4

This says that αβ(α + β) = (α2 + αβ + β2) = α2β2 = 0. In fact, it is equivalent to require only that
α2 + αβ + β2 = 0, as the other relations follow easily from this. We conclude that φ is a level structure iff

α3 = β3 = α2 + αβ + β2 = 0

This means that
Level(A,G) ×X X0 = spf(κ[α, β]/(α3, β3, α2 + αβ + β2))

We next turn to the definition and properties of the rings DA and Dk
A. We first give a simple definition

and then a more complicated one. Unfortunately it seems necessary to use the more complicated version to
establish the properties of DA and hence justify the simple version.

Because spf(EA) = Hom(A,G) we have a universal map φ : A −→ Γ(EA, G). We can thus think of A
as a subset of EA via a 7→ x(φ(a)). Write J =

∑
a6=0 ann(a) C EA; then DA = EA/J . Unfortunately,

this definition is hard to work with, because annihilators are not stable under change of base; if a ∈ R and
f : R −→ S then ann(f(a)) may be much larger than f(ann(a)).

For the more complicated version, we choose generators {e0, . . . er−1} for A, so that A = 〈ak | pmkak = 0〉
with m0 ≥ m1 . . . ≥ mr−1. We may assume wlog that r ≤ n, as otherwise DA = 0. We write A(k) =
〈a0, . . . ak−1 ≤ A〉 and define DA(k) recursively. Set A(k)′ = {a ∈ A(k) | pmka = 0}. Over DA(k) it works out
that [pmk ](x) is divisible by

∏
a∈A(k)(x − x(φ(a))). Moreover, the quotient has a Weierstrass factorisation
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as g(x)u(x), where g(x) is a monic polynomial of degree pnmk − |A(k)′|. We take DA(k+1) = DA(k)[α]/g(α),
where α = x(φ(ek)).

The ring DA has many good properties. It is a complete regular local ring of Krull dimension n, and thus
a unique factorisation domain, and thus is integrally closed in its field of fractions. It is a quotient of

W [[e0, . . . er−1, ur, . . . un−1]]

by a principal prime ideal. The prime p lies in the square of the maximal ideal of DA (provided A 6= 0), and
the role of the single relation is to write p in terms of the generators ei and uj. Moreover, DA is a finitely
generated free module over E.

As an important special case, take Λm = (Z/pm)n and Λ = (Qp/Zp)n =
⋃
m Λm. We write Dm = DΛm

and D∞ =
⋃
mDm. Note that Dm is obtained from E by adjoining a full set Λm of roots for [pm](x) (or

equivalently, for the associated Weierstrass polynomial).
We can do a certain amount of Galois theory with these rings. Write K and KA for the fields of fractions

of E and DA. Write also Mon(A,B) for the set of monomorphisms from A to B.

(1) HomE(DA, DB) = HomK(KA,KB) = Mon(A,B).
(2) Km is Galois over K with group Aut(Λm).
(3) The rank of DA over E is |Mon(A,Λ)|.

Similar constructions produce the rings Dk
A. Suppose that φ : A −→ Γ(Y,G) is a pk-fold level structure.

It is immediate from the definition that xp
k

divides [p](x) = expF (px) +F u1x
p +F . . . un−1x

pn−1

+F x
pn in

OY [[x]], and thus that p = u0 = u1 . . . = uk−1 = 0 in OY . Thus, to construct Dk
A, we start with E′ = E/Ik =

κ[[uk, . . . un−1]], where Ik = (u0, . . . uk−1). We then adjoin pk’th roots of the remaining generators to get a

new ring E′′ (thus making a totally inseparable extension). Over E′′ we have [pm](x) = f(x)p
k

for some
power series f , and we can adjoin roots of f to get Dk

A just as we adjoined roots of [p](x) to get DA. The
resulting ring Dk

A is again a complete regular local ring.
For each subgroup B ≤ A we have closed subschemes

Level(A/B,G) ≤ Hom(A/B,G) ≤ Hom(A,G)

These are the irreducible components of Hom(A,G), and

Hom(A,G) = Hom(A,G)red =
⋃
B

Level(A/B,G)

If we look only at what happens above the open subscheme D(p) = spec(p−1E) < X, then this union is
disjoint:

Hom(A,G)×X D(p) =
∐
B

Level(A/B,G)×X D(p)

In terms of rings, we have a monomorphism

EA −→
∏
B

DA/B

which is an isomorphism after inverting p.
More generally, consider the subschemes X(k) = spf(E/Ik) ≤ X and X(k)′ = X(k)∩D(uk). We find that

(Hom(A,G)×X X(k))red =
⋃
B

Levelk(A/B,G)

Moreover, the union is disjoint over X(k)′. The schemes Levelk(A/B,G) for varying k and B are precisely
the irreducible closed subschemes of Hom(A,G) invariant under the action of the Morava stabiliser group
Σ = Aut(G0).
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27. Category Schemes

A category scheme is a category object in the category of schemes, or equivalently, a functor C from rings
to categories, such that obj(C) and mor(C) are schemes. We shall also refer to such a thing as an internal
category in the category of schemes.

Example 27.1. The category of formal group laws and strict isomorphisms (more precisely, the functor
R 7→ (FGL(R),SI(R)) is an internal category.

Example 27.2. Let q : X −→ Y be a map of schemes. We can define an internal category C = C(q) by
obj(C) = X and mor(C) = X ×Y X. Thus, given points a, b ∈ X there is a unique map a −→ b if qa = qb,
and no maps otherwise.

Example 27.3. We can define four different category schemes with object scheme the Lubin-Tate defor-
mation space X = Def:

(1) mor(DefIso)(a, b) = { isomorphisms Ga −→ Gb}
(2) mor(DefHom)(a, b) = { homomorphisms Ga −→ Gb}
(3) mor(IsogF∗ )(a, b) = {F ∗-isogenies q : Ga −→ Gb}
(4) mor(Isog)(a, b) = { all isogenies Ga −→ Gb}

We need to see that these really are representable. Firstly, let Σ denote the Morava stabiliser group. It can
be shown that

DefIso = Σ×Def = spf(C(Σ, E)) = spf(E∨E)

Next, DefHom can be constructed as a closed subscheme of MapX(G,G) by techniques which should by now
be familiar. We conjecture that it arises in topology as follows. Let E0 be the 0’th space in the Ω-spectrum
for E. Then A = π0LK(E ∧E0) is supposed to be a Hopf ring, so that the ∗-indecomposables Ind(A) form
a ring under the circle product. We are supposed to get

DefHom = spf(Ind(A))

This can be proved modulo technicalities about formal topologies. Next, we know from section 25 that
IsogF∗ '

∐
k Subpk is a scheme, and it was explained in theorem 21.1 how it arises in topology. We can

rephrase this a little to make it look more like the case of DefHom. Consider E(DS0), where

DS0 =
∨
k

DkS
0 =

∐
k

BΣk

This can also be made into a Hopf ring, as explained in section 28 below. We have

IsogF∗ = spf(IndE(DS0))

Finally, let f : Ga −→ Gb be an isogeny of deformations, with kernel K say. Arguing much as in section 25,
we get a unique Fm-isogeny Ga −→ Gc with kernel K and an isomorphism Gc −→ Gb, whose composite is f .
This shows that Isog = IsogF∗ ×X DefIso, which is a scheme as required.

Definition 27.1. An internal functor on an internal category C is a scheme F over obj(C) with the
following extra structure. For any points a, b ∈Y obj(C) and any C-morphism u : a −→ b we are given a map
Fu : Fa −→ Fb. These maps satisfy F1 = 1 and Fuv = FuFv. Moreover, if we pull a,b and u back along a map
f : Y ′ −→ Y (so that Ff∗a = u∗Fa automatically) then Ff∗u = f∗Fu. By analysing the universal example, it
is equivalent to require a map F ×obj(C) mor(C) −→ F satisfying some not-quite-so-obvious conditions.

Example 27.4. In a suitable technical setting, spec(MU∗Z) becomes an internal functor on FGL.

Example 27.5. An internal functor on C(q) is just a map Z −→ X with descent data. Thus, if q is
faithfully flat, then internal functors on C(q) are equivalent to schemes over Y .
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28. Cohomology Operations

Let E and K be Morava E-theory and K-theory of height n, say. Let Z be a tolerable space, so that ZE
is a formal scheme over X = Def. We would like to understand the extra structure which this has because of
the action of various kinds of operations on E(Z). More generally let F be a K-local E-algebra spectrum.
For example, we could have F = F (Y+, E) where Y is a tolerable space, or F = LK(E ∧ MU). Write
Z = spf(F 0), which is a formal scheme over X.

Conjecture 28.1. Assuming various things about flatness, projectivity, and completeness, we have ac-
tions as follows.

(1) Z is an internal functor for DefIso.
(2) If F = F (Y+, E) then Z is an internal functor for DefHom.
(3) If F is an E∞ E-algebra then Z is an internal functor for Isog.
(4) If F = LK(E ∧ Y+) and Y is a decent infinite loop space then Z has a covariant action of Isog and

a contravariant action of DefHom.

All of these things are almost certainly true, with a suitable choice of technical details about formal
topologies. However, I have not yet pinned these details down. The last statement follows from the others.
There should be some sort of compatibility statement (which would be the analogue of the Nishida relations)
but I’m not sure what it should say. Note that none of the above accounts for nonadditive unstable operations,
although we shall say something about nonadditive operations when we outline the construction the actions
mentioned above.

Example 28.1. The scheme G itself is an internal functor for DefHom, as are things constructed from it
like Div+

m = BU(m)E and Hom(A,G) = (BA∗)E . The scheme Orient(G) = spf(E∨MU) has (as predicted)
no contravariant action of DefHom, because of the requirement that an orientation be an isomorphism G −→
Â(L). It does have a covariant action of Isog, however, given by the norm construction discussed in section 29
below. Divisors can be pushed forwards by an arbitary map, or pulled back by an isogeny; this gives two
actions on Div = (Z× BU)E , as predicted.

We next indicate the construction of the action of Isog. Because DefIso already acts, it is enough to
construct an action of IsogF∗ . We shall ignore some technicalities about topologies.

It is traditional to construct power operations one symmetric group at a time, giving a (nonadditive) map
Pk : F 0 −→ F (BΣk). We will instead outline an approach which uses all symmetric groups simultaneously,
and which compares very nicely with the Boardman-Johnson-Wilson [1] approach to unstable operations.
Unfortunately, this approach does introduce extra technicalities about formal topologies, which we have not
yet got around to resolving.

There is a total extended power functor DX =
∨
k≥0DkX from spectra to spectra, given on spaces by

DkX = EΣk ∧Σk X
∧k. In particular, DkS

0 = (BΣk)+. One also knows that D(X ∨ Y ) ' DX ∧ DY . The
obvious maps S0 −→ S0 ∨ S0 −→ S0 thus give maps

DS0 φ−→ DS0 ∧DS0 µ−→ DS0

The components can be described as follows.

φk,l : BΣk ×BΣl −→ BΣk+l

is the usual map, and

νk,l : BΣk+l −→ BΣk ×BΣl

is the transfer (this is not obvious, but it is stated in [2] and proved in [10]). We also consider the diagonal
map

ψk : BΣk −→ BΣk ×BΣk

It turns out that E(DS0) becomes a Hopf ring with star and circle products given by φ and ψ, and coproduct
induced by µ. Moreover, the E∞ structure of E gives a map θ : DE −→ E with various good properties. To
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be more precise, D is a monad on spectra and θ makes E into a D-algebra. Given u ∈ E (i.e. u : S0 −→ E)
we can define [u] = θ ◦Du ∈ E(DS0). It turns out that [u] ∗ [v] = [u+ v] and [u] ◦ [v] = [uv], so that E(DS0)
is a Hopf ring over the ring-ring E[E].

We now dualise. It can be shown that E(DS0) is pro-free and E∨ DS0 = E(DS0)∨. We thus discover
that T = spf(E∨ DS0) is an E-algebra object in the category of schemes over X = spf(E), in other words
a functor from formal E-algebras to E-algebras. It should be possible to introduce a natural topology on
T (R), in a way which will make T into a comonad.

Now let F be a K-local, E∞ E-algebra spectrum. Using the fact that F is K-local, one can show that
F 0(DS0) = E(DS0)⊗̂E F 0. We propose to define a coaction of our comonad on F 0, in other words a map
of E0-algebras

F 0 −→ E-Alg(E∨DS0, F 0)

The right hand side is contained in

E-Mod(E∨DS0, F 0) = E(DS0)⊗̂EF 0 ' F (DS0)

In this guise, the map F 0 = F (S0) −→ F (DS0) just sends u : S0 −→ F to θ ◦D(u).
We can now “linearise” this construction. For any ungraded Hopf ring A over E, we define

GL(A) = GLE(A) = {group-like elements} = {a ∈ A | ε(a) = 1 and ψ(a) = a⊗ a}

This is a ring, with addition given by the star product and multiplication by the circle product. Moreover,
spf(A∨) is a ring scheme, so E-Alg(A∨, R) is a ring; this is just the same as GLR(R⊗̂EA). Also, the
star-indecomposables in A form a ring under ordinary addition and circle product, and Ind(R⊗̂E A) =
R⊗̂E Ind(A). There is a ring homomorphism

GL(A) −→ Ind(A) a 7→ a− [0] = a− 1

Combining this with our power operation, we get a map

F 0 −→ T (F 0) = GL(F 0⊗̂EE(DS0)) −→ F 0⊗̂E Ind(E(DS0))

This turns out to be a ring map. If we recall that the star product in E(DS0) is given by transfers, and use
theorem 21.1, we conclude that spf Ind(E(DS0)) = IsogF∗ . We have thus constructed a map

spf(F 0)×X IsogF∗ −→ spf(F 0)

After chasing many more diagrams, we conclude that this makes spf(F 0) into an internal functor as claimed.
The Boardman-Johnson-Wilson theory, suitably adapted, should make the functor

T ′ : R 7→ E-Alg(E(E0), R)

into a comonad in the category of formal E-algebras. Recall that G is a functor from formal E-algebras to
groups. The results of [7], suitably adapted, should show that T ′ is the initial example of a representable
functor from formal E-algebras to formal E-algebras equipped with a map G −→ G◦T ′. One can show purely
algebraically that such an example exists, and is a comonad. If Z is a decent space then E(Z) is T ′-coalgebra.
Linearising this coaction makes ZE into an internal functor for DefHom. This part of the theory is joint work
with Paul Turner.

We now present a different version of power operations which is in some ways less satisfying, but which
does have the advantage that more details are in place.

Let A be a finite Abelian p-group, with dual A∗. We write DA∗Z for the A∗-extended power of a spectrum
Z. We also write DA = OLevel(A,G) as in section 26, and apologise profusely for any confusion caused by
this. If Z is a space then

DA∗Z = EA∗ ×A∗ Z∧(A∗)

The usual construction gives a map

F 0 = [S0, F ] −→ [DA∗S
0, DF ] −→ [DA∗S

0, F ] = F (BA∗)
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This is additive mod transfers from proper subgroups of A∗. Using the fact that F is K-local, one can show
that the right hand side is just E(BA∗) ⊗E F 0. Combining this with the map E(BA∗) −→ DA (which kills
the transfers) we get a ring map

F 0 −→ DA ⊗E F 0

or equivalently

spf(F 0)←− Level(A,G)×X spf(F 0)

Here, the fibre product is formed using the obvious map Level(A,G) −→ X, which we shall call a. Performing
the above construction with F = E and with F = F (CP∞+ , E), we get a new map b : Level(A,G) −→ X and
a map of schemes q : a∗G −→ b∗G. One can check that this is an isogeny of formal groups, that the kernel
is the subgroup divisor K defined by the level structure, and that the map is a power of Frobenius mod the
maximal ideal of DA. This is enough to prove that q and b are the same as the maps constructed algebraically
in section 26.

More generally, suppose we have a short exact sequence A −→ B −→ C. This gives a dual sequence
C∗ −→ B∗ −→ A∗ and hence a map B∗ −→ A∗ oC∗. Now, given an element u ∈ F (BC∗) = [DC∗S

0, F ] we can
form the composite

B(B∗)+ −→ B(A∗ o C∗)+ = DA∗DC∗S
0 DA∗u−−−−→ DA∗F

θ−→ F

This gives rise to a ring map DC ⊗E F −→ DB ⊗E F .
To interpret this, define a new category LevelDef(Y ) as follows. The objects are triples (a,A, φ), where

a ∈ Def(Y ) and φ : A −→ Ga is a level structure. The morphisms are diagrams

A B

Ga Gb

v

u

φ

ww

f

v

u

ψ

ww
q

in which q is an F ∗-isogeny, and ker(q) = [φ(ker(f))] as divisors. This defines a category scheme, provided
that we restrict to a small skeleton of the category of finite Abelian p-groups (or avoid the company of
obsessive set-theorists).

Write Z = spf(F 0) as before, and Z̃ = LevelDef ×DefZ. The extended power construction defined above
makes Z̃ into an internal functor on LevelDef. In other words, given a morphism (f, q) in LevelDef as above,
we get a map

Zf,q : Za −→ Zb

satisfying the obvious conditions.
Let Z be an internal functor for IsogF∗ and D a divisor of degree m on G over Z. Thus D < Z ×X G is

a subscheme of an internal functor, so it makes sense to require it to be a subfunctor. We shall say that D
is an equivariant divisor if this is so. Let us make this condition more explicit. Write π for the map Z −→ X
and Ga for Gπa. Suppose that a, b ∈ Z, that q : Ga −→ Gb is an F ∗-isogeny, and that Zq(a) = b. In future,
we shall simply write q : a 7→ b for this. We then have two degree-m divisors Da < Ga and Db < Gb, so it
makes sense to ask that q∗Da = Db. This holds for all q : a 7→ b iff D is an equivariant divisor. If so, the
map q∗ : OGb −→ OGa restricts to give a map (c.f. proposition 20.3)

O(Db) −→ q∗O(Db) = q∗O(q∗Da) = O(K ∗Da)

This kind of structure arises in topology as follows. Let V be the standard permutation representation of
Σm, which we can regard as a vector bundle over BΣm. Let W be another vector bundle over a tolerable
space Z. A small generalisation of our previous construction gives a (nonadditive) map

Ẽ(ZW ) −→ Ẽ((BΣm × Z)V⊗W )
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After passing to the quotient by proper transfers, we hope to find that D(V ) = K is the universal subgroup
defined over Subm(G). Assuming this, we find that D(V ⊗W ) = K ∗D(W ) and that D(W ) is an equivariant
divisor on ZE . The power operation on

Ẽ((Z × CP∞)W⊗L) = L(D(W ) ∗∆) = O(D(W ))

can be identified with the map q∗ : O(Db) −→ O(K ∗Da). The operation on Ẽ(ZW ) itself can be obtained by
pulling back along the zero section.

29. The Ando Orientation

Now suppose that y is an orientation of the universal deformation G/X. Then y corresponds to a ring
map MU −→ E. One would like to know when this is a map of H∞ ring spectra.

Let us first reinterpret the notion of an orientation. Let G
π−→ X be a polarised formal group.

Definition 29.1. A k-rigid line bundle on G is a line bundle M together with an isomorphism λ : Lk '
0∗M . A rigid section of M is an isomorphism µ : π∗Lk ' M extending λ. We write Γrig(M) for the set
of rigid sections. Let N be a line bundle over X and m : π∗N −→ M an isomorphism. We then write
∆(m) = λm(0)−1m : π∗Lk −→M . This is clearly a rigid section.

Now let J = O([0]) be the augmentation ideal in OG. The polarisation makes this into a 1-rigid line
bundle, and Γrig(J) = Orient(G).

Consider again an orientation y of the universal deformation. Let q : Ga −→ Gb be an Fm-isogeny. We
thus have orientations ya and yb. We can think of Nqya as a map from π∗Lp

m

to

NqJa = NqOGa [0] = OGb(q∗[0]) = Jb

It thus makes sense to consider ∆(Nqya) ∈ Orient(Gb).

Definition 29.2. y is an Ando orientation iff ∆(Nqya) = yb for all a, b and q as above.

Theorem 29.1. y is an Ando orientation iff the map y : MU −→ E is H∞.

There is a simpler and closely related notion for coordinates.

Definition 29.3. A coordinate x on the universal deformation is an Ando coordinate iff Nqxa = xb for
all a, b and q as above.

Theorem 29.2. It is equivalent to require that NpGx = x. Any coordinate x0 on G0 extends uniquely to
an Ando coordinate x on G. In fact, if x is any coordinate on G then Nk

pGx converges to the Ando coordinate
y which agrees with x on G0.

Remark 29.1. We have used here the fact that pG0 = Fn and thus pG is an Fn-isogeny (c.f. remark 25.1).
The theorem becomes a little more complex without this.

If x is a coordinate on G then ∆(x) is an orientation. If x is an Ando coordinate then ∆(x) is an Ando
orientation. Conversely, any Ando orientation is ∆(x) for some Ando coordinate x.

Example 29.1. Let G be the formal multiplicative group (defined over Zp), and x the usual coordinate
x(u) = u− 1. Let ζ be a primitive p’th root of 1, and write A = Zp[ζ], which is faithfully flat over Zp. After
pulling back to A, we have a full set of points {1, ζ, . . . ζp−1} for G(1) = ker(pG). This gives

(NpG)f(up) =

p−1∏
k=0

f(uζk)

In particular (if p > 2),

(NpG)x(up) =
∏

(uζk − 1) = up − 1 = x(up)

Thus NpGx = x.
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Example 29.2. Let G0 be the Morava K-theory formal group over X0 = spf(κ), where κ = Fpn . Let
x = x0 be the usual p-typical coordinate, so that x(pa) = x(a)p

n

by definition. It is then easy to see that
f(pa) = f(a)p

n

for any function f =
∑
k αkx

k ∈ OG. Moreover, G0(1) = spf(κ[x]/xp
n

) has {0, . . . 0} (with
pn entries) as a full set of points. It follows that (NpGf)(pa) = f(a)p

n

= f(pa) for any f ∈ OG.

Example 29.3. More generally, suppose that G is a formal group over a complete local ring A, of residue
characteristic p > 2. Suppose that a coordinate x has the property that x(pa) = f(x(a)) for some (monic)
Weierstrass polynomial f , of degree pn say. Then NpG(x) = x. To see this, write y = f(x) and B = A[[y]]
and g(t) = f(t) − y ∈ B[t]. Then C = A[[x]] = B[x]/g(x), so NC/B(x) = (−1)p

n

g(0). Because f(0) = 0 and
p is odd, we get NC/B(x) = y. To compute NpG(x), we have to identify C with B via x 7→ x ◦ pG = y, so
NpG(x) = x as claimed.

30. Cartier Duality

Let H be a commutative formal group scheme over a formal scheme X. We do not assume that H is
a one-dimensional formal group. Suppose that OH is a pro-free OX -module. The duality then works well
enough to make O∨H into a topological Hopf algebra (in the obvious sense involving the completed tensor
product). Thus DH = spf(O∨H) is again a formal group scheme over X.

Let Ĝm be the formal multiplicative group:

Ĝm(R) = 1 + Nil(R) ≤ R×

Ĝm = spf
(
Z[u±1]∧(u−1)

)
= spf(Z[[x]]) x = u− 1

Proposition 30.1. DH = Groups(H, Ĝm). In other words, for any formal X-scheme Y we have

Γ(Y,DH) = GroupsY (H ×X Y, Ĝm × Y )

Proof. A map of schemes over Y f : H×X Y −→ Ĝm×Y is just the same as a map of schemes H×X Y −→
Ĝm ⊂ A1, which is just the same as an element f ′ ∈ OH⊗̂XOY such that f ′ − 1 is topologically nilpotent.
Note that OH⊗̂XOY is a Hopf algebra over OY . It is easy to see that f is a map of group schemes iff ε(f ′) = 1
and ψ(f ′) = f ′⊗̂f ′. Because OH is pro-free, we have

OH⊗̂XOY ' OX -Mod(O∨H ,OY ) = OX -Mod(ODH ,OY )

Write f ′′ for the map ODH −→ OY corresponding to f ′. Again, one sees that this is a ring map iff ε(f ′) = 1
and ψ(f ′) = f ′⊗̂f ′. This gives the required bijection.

We shall often just write DH = Hom(H, Ĝm).

Example 30.1. Take X = spf(Zp) and H = Ĝm × X, so that DH = End(H). There is a continuous
function χ : Zp −→ OH = Zp[[x]] defined by χ(n) = (1+x)n. Using C(Zp,OX) = C(Zp,Zp)⊗̂ZpOX , we obtain
an adjoint map ξ : O∨H = ODH −→ C(Zp,Zp). This can be shown to be a topological isomorphism.

Example 30.2. Let H be the constant group A = spf(F (A,Z)), where A is a finite Abelian group. Then
DH = spf(Z[A]).

Example 30.3. Let X be the Lubin-Tate deformation space, and H = Div0 = BUE . Then

D(Div0) = spf(E∨BU) = Hom(Div0, Ĝm) = Map0(G, Ĝm)

Here Map0(G, Ĝm) means the scheme of maps preserving the zero section. The last equality comes from
proposition 18.1.
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31. Barsotti-Tate Groups

Let G be a formal group over a formal scheme X. Suppose that pG : G −→ G is an isogeny of degree
pn > 1. It follows that p is topologically nilpotent in OX . We write G(m) = ker(pmG ); this is a finite free
group scheme over X of degree pnm. These groups fit together into an inductive system of closed inclusions

G(∗) = (G(1) −→ G(2) −→ G(3) −→ . . . )

This is called the Barsotti-Tate group (or BT-group) associated to G.
More generally, one can define a Barsotti-Tate group over X to be a system H(∗) = (H(1) −→ H(2) −→ . . . )

of closed inclusions of finite group schemes, such that there are short exact sequences

H(k) −→ H(k + l)
pk−→ H(l)

The point is that G(∗) behaves differently from G under change of base. We started with a formal
scheme X, with ring of functions OX . We can forget the topology on OX and consider the informal scheme
X̃ = spec(p−1OX). This is crude, of course. There is no sensible linear topology on p−1OX , but there
is a sensible topology of a more general kind (consider the case OX = Zp). However, we have not as yet

developed the relevant theory. We can pull back G(∗) to get a BT-group G̃(∗) over X̃ (provided we allow
ourselves a little latitude with the algebraic geometers’ definition of a BT-group). It turns out that G̃(m) is
an étale torsion group. If G/X is the Lubin-Tate universal deformation, then G̃(m) becomes isomorphic to
the constant group Λm = (Z/pm)n after a faithfully flat base change.

Suppose, on the other hand, that we want to pull back G to get a formal group over X̃. We cannot just
take p−1OG, because this is not a formal power series ring over p−1OX = OX̃ . Instead, we have to complete

again at (x) after rationalising. This gives a formal group G̃. This is now a formal group over a rational ring,
so it has a logarithm and is isomorphic to the additive group. It therefore has no torsion subgroups, and the
associated BT-group is zero.

Consider again the universal deformation G/X, of height n. Write Im = (u0, . . . um−1) C OX and
R = (u−1

m R)∧Im . We make this a formal ring, with ideal of definition Im, and write Y = spf(R). We can pull
back G(∗) to get a BT-group H(∗) over Y . It turns out that this fits into an extension

H(∗)inf −→ H(∗) −→ H(∗)ét

Here H(l)inf is local (or “infinitesimal”) and H(l)ét is étale. (The extension is analogous to the sequence
G1 −→ G −→ π0G where G is a Lie group.) The infinitesimal part has degree plm. The étale part has degree
pl(n−m), and becomes isomorphic to (Z/pn−m)l after faithfully flat extension.

It seems that the BT-group is the natural home of “chromatic fringe phenomena” such as the Greenlees-May
generalised Tate cohomology and the root invariant.

32. Nilpotents, Idempotents and Connectivity

Recall that for a formal ring R, Nil(R) is the set of topologically nilpotent elements.

Proposition 32.1. Nil(R) is the intersection of the open prime ideals of R, and thus is closed.

Proof. It is easy to reduce the first statement to the discrete case, which is theorem 1.2 of [11]. The
second statement follows as open ideals are closed.

Proposition 32.2 (Idempotent Lifting). Suppose that e ∈ R/Nil(R) is idempotent. Then there is a
unique idempotent ẽ ∈ R lifting e.

Proof. It is enough to prove this mod each open ideal I, so we may assume that R is discrete. Choose a
(not necessarily idempotent) lift of e to R, call it e, and write f = 1− e. We know that ef is nilpotent, say
enfn = 0. Define

c = en + fn − 1 = en + fn − (e+ f)n
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This is visibly divisible by ef , hence nilpotent; thus en + fn = 1 + c is invertible. Define

ẽ = en/(1 + c) f̃ = fn/(1 + c) = 1− ẽ

Then ẽ is an idempotent lifting e. If ẽ1 is another such then ẽ1f̃ is idempotent. It lifts ef = 0, so it is also
nilpotent. It follows that ẽ1f̃ = 0 and ẽ1 = ẽẽ1. Similarly, ẽ = ẽẽ1.

Proposition 32.3. Suppose that e ∈ R is idempotent, and f = 1− e. Then

eR = R/f = R[e−1] = {a ∈ R | fa = 0}

This ring has the same topology as a subspace or as a quotient of R and R is homeomorphic to eR× fR.

Proof. This is all fairly trivial.

Theorem 32.4 (Chinese Remainder Theorem). Suppose that {Iα} is a finite family of ideals in R,
which are pairwise coprime (i.e. Iα + Iβ = R when α 6= β). Then

R/
⋂
α

Iα =
∏
α

R/Iα

Proof. [11, Theorems 1.3,1.4]

Corollary 32.5. Suppose that zar(R) =
∐
α zar(R/Iα) (a finite coproduct). Then there are unique ideals

Jα ≤ Iα ≤
√
Jα such that R '

∏
αR/Jα.

Proof. Proposition 32.1 implies that
⋂
α Iα is nilpotent. If α 6= β then no prime ideal contains Iα + Iβ ,

so Iα + Iβ = R. Now use the chinese remainder theorem, followed by idempotent lifting.

33. The Weierstrass Preparation Theorem

In this section, we assemble some results about the structure of rings of formal power series.

Theorem 33.1 (Weierstrass Preparation). Let R be a formal ring, and f(x) =
∑
k ckx

k ∈ R[[x]] a
formal power series. Suppose that ck is topologically nilpotent for k < n, and that cn is a unit. Regard R[[x]]
as an algebra over R[[y]] via y 7→ f(x). Then the map

α : R[[y]]
n −→ R[[x]] a 7→

n−1∑
k=0

akx
k

is a homeomorphism.

Proof. Write A = R[[y]] and B = R[[x]]. Set I = (ak | k < n). This is a topologically nilpotent ideal,
so that for any J CO R we have IN ≤ J for N � 0. It is also finitely generated, which implies that
JmA = Jm[[x]] (and similarly for B). Without loss of generality, we may assume that cn = 1. For 0 ≤ k < n
and l ≥ 0 write zkl = xkf(x)l, so that zkl = xk+nl (mod J, xk+nl+1). Given an R-module M consider the
map ∏

k,l

M −→M [[x]] a 7→
∑
k,l

aklzkl

It is clear that this is iso if JM = 0, given the form of zkl mod J . It then follows inductively for M = R/Jk.
As J is topologically nilpotent and R is complete, we have R = lim

←- k
R/Jk, so our map is iso for M = R.

This implies that our original map α is also iso. We still need to prove that it is a homeomorphism. Suppose
I CO R and m ≥ 0, so that U = (xm, I)B is a basic open neighbourhood of zero in B. If J l ≤ I then
α((ylm, I)An) ⊆ U , so α is continuous. Next, observe that xn is a unit multiple of f(x) in B/JB. It follows
that x is nilpotent in B/(I, ym) for any I CO R and m ≥ 0; say xl ∈ (I, ym). Moreover, taking M = I above,
we have α(IAn) = IB. It follows that α((I, ym)An) ⊇ (I, xl)B, and thus α is an open map.
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Corollary 33.2. If f is as above then there is a unique way to write f(x) = g(x)u(x) where g(x) is a
monic polynomial of degree n and u(x) is invertible. Moreover, g(x) = xn (mod J) and neither f nor g is a
zero-divisor in R[[x]].

Proof. It is immediate from the theorem that R[[x]]/f(x) = R{xk | 0 ≤ k < n}. Thus, there is a
unique way to write xn mod f(x) as an R-linear combination of xk for k < n, in other words there is a
unique monic polynomial g(x) of degree n dividing f(x). Next, observe that xn divides f(x) mod J ; by
an obvious uniqueness argument, g(x) = xn (mod J). Thus, g(x) is invertible in x−1R/J [[x]], and thus also
in x−1R/Jm[[x]]. It follows easily that g(x) is not a zero-divisor in R[[x]], so there is a unique u(x) such
that f(x) = g(x)u(x). Moreover, u(x) is visibly invertible mod the topologically nilpotent ideal J , so it is
invertible.

Next, we consider the ring

C = (x−1R[[x]])∧ = lim
←-
I

x−1R/I[[x]]

This is the ring of series f(x) =
∑
k∈Z akx

k such that ak −→ 0 as k −→ ∞. We shall say that f ∈ C is
holomorphic at zero (resp. infinity) if ak = 0 for k < 0 (resp. k > 0).

Corollary 33.3. Suppose that f(x) =
∑
akx

k ∈ C has an ∈ R×, and ak ∈ Nil(R) for k < n. Then
f ∈ C×. Moreover, f(x) can be written uniquely as xng(x)u(x) with

(1) g(x) holomorphic at infinity
(2) g(∞) = 1
(3) u(x) holomorphic at zero
(4) u(0) ∈ R×.

Proof. Without loss of generality, n = 0. Suppose I C R is open, and write fI(x) for the image of f
in x−1R/I[[x]]. Then theorem 33.1 applies to xmfI(x) for some m � 0. This gives a unique factorisation
fI = gIuI as described above (with gI equal to x−m times the polynomial provided by the theorem). These
pass to the limit as required.

Proposition 33.4. Suppose that R is connected, in other words it has no idempotents other than 0 and
1. Suppose that f ∈ C×. Then f is as in corollary 33.3

Proof. Suppose f =
∑
k akx

k and f−1 = g =
∑
l blx

l. Write Jn = (ak | k < n) + (bl | l < −n). Suppose
that I CO R. There exists K > 0 such that ak, bk ∈ I for k < −K. Suppose that p C R is prime, and that
p ≥ I. For some n we have ak ∈ p for k < n but an 6∈ p. Similarly bl ∈ p for l < m but bm 6∈ p. This
means that mod p we have fg = anbmx

n+m plus higher terms, with anbm 6= 0. This means that m = −n
and |n| ≤ K, and that Jn ≤ p; but Jl 6≤ p for l 6= n. It follows that the ideals Jn are pairwise coprime mod I.
Their intersection is contained in all prime ideals p ≥ I, hence is nilpotent mod I. The Chinese remainder
theorem together with idempotent lifting gives a canonical splitting

R/I =
∏
n

R(I, n)

such that anb−n is invertible in R(I, n) and nilpotent in all the other factors. This splitting is actually finite,
because R(I, n) = 0 when |n| > K. In the limit, we get

R =
∏
n

lim
←-
I

R(I, n)

As R is connected, we have R = lim
←- I

R(I, n) for some n. It follows that anb−n is invertible in R, hence in

R/I, so that R/I = R(I, n) for all I. This implies that ak is topologically nilpotent for k < n.

Of course, if R is not connected, we may get different n’s on different components.
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34. Dictionary

spf(E) The universal deformation space Def = X

spf(K) The special fibre X0 < X

CP∞E The universal deformation G over X

(BZ/pm)E G(m) = ker(pmG : G −→ G)

K(Z/pm, l)E
∧l
G(m)

(BA∗)E Hom(A,G)

spf(E(BA∗)/
∑
a6=0 ann(x(a))) Level(A,G)

BU(m)E Div+
m(G)

BUE Div0(G)

(Z×BU)E Div(G)

spf(E∨CP∞) Hom(G, Ĝm)

spf(E∨(Z×BU)) Map(G, Ĝm)

spf(E∨BU) Map0(G, Ĝm)

spf(E∨MU) Orient(G)

E∨E The pro-constant stabiliser group Σ = DefIso
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base change, 24
basic curve, 25

Brown-Peterson spectrum, 6

Cartier divisor, 30, 32
category scheme, 47
Chinese remainder theorem, 54
closed formal subscheme, 12
closed ideal, 12
closed subscheme, 9
complete, 10
complex-orientable, 26
components, 9
connected, 9
constant group scheme, 16
constant rank, 19
constant scheme, 22
convolution, 31
coordinate, 24
cotangent bundle, 28
cotangent space, 25
curve, 25

decent, 13
deformation, 40
degree, 31
descent data, 21
descent data, effective, 21
discrete, 11

effective divisor, 29
equation, 29
equivariant divisor, 50
etale covering, 22

faithfully flat, 20
fibrewise isomorphism, 25
flat, 20
formal completion, 11
formal group, 24
formal group law, 7, 25
formal module, 11
formal ring, 10
formal scheme, 11
fpqc locally, 21
Frobenius automorphism, 6
Frobenius map, 43
full set of points, 30, 35

geometric point, 18
graded rings, 20
group scheme, 24

height, 5
holomorphic at infinity, 31

ideal of definition, 10
idempotent lifting, 53

58



INDEX 59

integral, 9
internal category, 47
internal functor, 47
invariant differential, 28, 43
invertible sheaf, 18
irreducible, 9
irreducible components, 9
isogeny, 25

Krull dimension, 18

Lazard ring, 7, 15
level structure, 44
line bundle, 18
linear topology, 10
local, 40
locally closed subscheme, 9
locally free sheaf, 18
locally in the flat topology, 21
logarithm, 27

minimal prime, 9
Morava stabiliser group, 28, 41
multiplicative group, 7

Noetherian, 9
norm map, 34

open mapping, 17
open subscheme, 9
orientation, 26

partition subgroup, 39
point, 14
polarised formal group, 26
polarised scheme, 20
pre-scheme, 8
pro-free, 11
projective bundle, 30
proper action, 24

quotient scheme, 9

reduced, 9
rigid section, 51
ring of functions, 8

schematic union, 9
section, 15
semilocal, 40
sheaf, 18
spec, 7
special fibre, 40
strict isomorphism, 8, 26
strongly topologically nilpotent, 12
subgroup divisor, 38

Teichmüller map, 5
Thom space, 34
tolerable, 13

topological dual, 11
topologically nilpotent, 12
transfer, 39

uniform convergence, 11

vector bundle, 18, 19, 22
virtual divisors, 30

Weierstrass preparation theorem, 54
Witt ring, 5

Zariski space, 17


