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Abstract We study the spectrum of prime ideals in the tensor-triangulated
category of compact equivariant spectra over a finite group. We completely
describe this spectrum as a set for all finite groups. We also make significant
progress in determining its topology and obtain a complete answer for groups
of square-free order. For general finite groups, we describe the topology up to
an unresolved indeterminacy, which we reduce to the case of p-groups. We
then translate the remaining unresolved question into a new chromatic blue-
shift phenomenon for Tate cohomology. Finally, we draw conclusions on the
classification of thick tensor ideals.
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1 Introduction

Let G be a finite group and let SH(G) denote the G-equivariant stable homo-
topy category, with respect to a completeG-universe. It is a tensor-triangulated
category. We want to determine the tensor-triangular spectrum Spc(SH(G)c)

of its subcategory of compact objects SH(G)c.
As we explain below, this question is the equivariant analogue of the

celebrated chromatic filtration in classical stable homotopy theory, due to
Devinatz-Hopkins-Smith [11,19]. Important work on this topic has been done
by Strickland [25]; see also Joachimi [20, Chap.3]. However, the question
remained open even for the group of order two. We return to a discussion of
earlier literature at the end of the Introduction, after stating our results.

For a tensor-triangulated categoryK, like the above SH(G)c, the topological
space Spc(K) := {

P � K
∣
∣P is prime

}
consists of all proper tt-ideals P (thick

triangulated ⊗-ideal subcategories ofK) which are prime (x ⊗ y ∈ P implies
x ∈ P or y ∈ P); the support of an object x ∈ K is the closed subset
supp(x) := {

P ∈ Spc(K)
∣
∣x /∈ P

}
and these closed subsets form a closed

basis for the topology of Spc(K). Conceptually, this spectrum is the universal
space which carries a decent notion of support for objects ofK. (See [1,3] for
more details).

Computing the topological space Spc(K) is essentially equivalent to clas-
sifying all tt-ideals of K, and the latter may be thought of as classifying the
objects of K up to the naturally available tensor-triangulated structure. More
precisely, a classification of tt-ideals describes when two objects can be built
from each other by taking suspensions, direct sums, direct summands, cofiber
sequences, and tensor products. It is a major development of the last twenty
years that such classification theorems can be obtained for highly non-trivial
categories arising in stable homotopy theory, algebraic geometry, and modular
representation theory [7,13,19,26].
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The spectrum of the equivariant stable homotopy category 285

Up until now, such classification theorems were obtained before the deter-
mination of the corresponding tensor-triangular spectrum. The category K =
SH(G)c is a first case where the computation of Spc(K) can be achieved
beforehand, and the classification of tt-ideals deduced as a corollary. Indeed,
the fact that we attack the spectrum directly via methods of tensor-triangular
geometry is one of the novel aspects of our approach.

The subject of classifying tt-idealswas born in non-equivariant stable homo-
topy theory. In that case, the ⊗-unit (the sphere spectrum) generates the
category, hence every thick subcategory is automatically a ⊗-ideal. It then
follows from the Thick Subcategory Theorem of Hopkins and Smith [19] that
the corresponding Spc(SHc) is the space depicted at the top of the following
picture (see [2, Sect. 9]):

(1.1)

C2,∞ C3,∞ · · · Cp,∞ · · ·
Spc(SHc) =

ρSHc

...
...

...

C2,n+1 C3,n+1 · · · Cp,n+1 · · ·
C2,n C3,n · · · Cp,n · · ·

...
...

...

C2,2 C3,2 · · · Cp,2 · · ·
C0,1

Spec(Z) = 2Z 3Z · · · pZ · · ·
(0)

Here Cp,n is the kernel in SHc of the p-local (n − 1)-th Morava
K-theory (composed with localization SHc → SHc

(p) at p). In particular,

Cp,1 = SHc,tor =: C0,1 is the subcategory of torsion finite spectra, inde-
pendently of p, while Cp,∞ = ∩n≥1Cp,n = Ker(SHc → SHc

(p)) is the
subcategory of p-acyclic finite spectra. The closure of each point consists
of the points above it in the picture (related by an upwards line), so that each
Cp,∞ is a closed point, while C0,1 is a dense point. A general closed subset is
the closure of finitely many points.

For an arbitrary ⊗-triangulated categoryK, there is a so-called comparison
map

(1.2)
ρK : Spc(K) −→ Spec(EndK(1))

P 	−→ {
f : 1 → 1

∣
∣ cone( f ) /∈ P

}

from the tensor-triangular spectrum ofK to the Zariski spectrum of the endo-
morphism ring of the ⊗-unit object 1. For K = SHc, we have EndK(1) = Z
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and ρSHc is the projection Cp,∗ 	→ pZ displayed in picture (1.1). This view-
point highlights how the spectrum of the non-equivariant stable homotopy
category is a chromatic refinement of Spec(Z): The Morava K -theories pro-
vide an interpolation between HQ and HFp, or in other words, between the
prime (0) and the prime pZ.

For our tensor-triangulated categoryK = SH(G)c, the ring EndK(1) is iso-
morphic to theBurnside ring A(G),whoseZariski spectrumwasdeterminedby
Dress [12], and the comparison map ρSH(G)c : Spc(SH(G)c) → Spec(A(G))

will similarly exhibit Spc(SH(G)c) as a kind of “chromatic refinement”
of Spec(A(G)).

We review Dress’s result in Sect. 3. In short, Spec(A(G)) is covered by
copies of Spec(Z) coming via the “H -fixed points” ring homomorphisms

f H : A(G) −→ A(1) = Z

[X ] 	−→ |XH | (for all finite G-sets X)

for each subgroup H ≤ G (up to conjugacy). These copies of Spec(Z) over-
lap at some primes p dividing the order of G; namely, for two subgroups
H, K ≤ G, the primes p(H, p) := ( f H )−1(pZ) and p(K , p) = ( f K )−1(pZ)

coincide in Spec(A(G)) when Op(H) and Op(K ) are conjugate in G; here
Op(H) denotes the smallest normal subgroup of H of index a power of p (see
details in Definition 3.1).

For every subgroup H ≤ G, the above H -fixed-points homomorphism
f H : A(G) = EndSH(G)c(1) → EndSHc(1) = A(1) is precisely the map
induced on endomorphism rings by the geometric H -fixed points functor

�H : SH(G)c → SHc

recalled in Sect. 2, Part (H) below.Moreover, since�H is a tensor-triangulated
functor it provides a means for pulling back the non-equivariant primes Cp,n
to obtain “G-equivariant primes”, i.e., primes in SH(G)c, as follows:

P(H, p, n) := (�H )−1(Cp,n) ∈ Spc(SH(G)c).

Our first main result states that every prime of SH(G)c is of this form, and
that the overlap is minimal.

Theorem (Theorems 4.9 and 4.14) All G-equivariant primes are obtained by
pulling back non-equivariant primes via geometric fixed point functors with
respect to the various subgroups H ≤ G. Moreover, there is no redundancy,
in the sense that the primes P(H, p, n) and P(H ′, p′, n′) coincide only if
the subgroups H and H ′ are conjugate in G and the chromatic primes Cp,n
and Cp′,n′ coincide in SHc.
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We thus obtain a complete description of Spc(SH(G)c) as a set, for every
finite group G. Interestingly, this already shows that the height one colli-
sions observed by Dress in the Zariski spectrum of the Burnside ring do not
occur in the tensor-triangular spectrum of SH(G)c. Thus, Spc(SH(G)c) is
not only a chromatic refinement of Spec(A(G)) but it also remembers some
group-theoretic information which was lost in Spec(A(G)). Another interest-
ing consequence of these results is an equivariant version of the Nilpotence
Theorem (Theorem 4.15). The latter was obtained by Strickland [25] by dif-
ferent methods.

There are two main ingredients in the proofs of Theorems 4.9 and 4.14.
The first is the exploitation of the fact that the geometric fixed point functor
�G : SH(G) → SH is a finite Bousfield localization. Although this property
already appears in [22], it does not seem to have been given the attention it
deserves in the literature. We will make a systematic use of finite localiza-
tions on the category of G-equivariant spectra—both in the equivariant and
chromatic directions. However, we will need to go beyond such “classical”
localizations, towards the tensor-triangular analogue of the étale topology. In
this vein, the second crucial ingredient is a result of [8] which states that the
restriction functor resGH : SH(G) → SH(H) is a separable extension (a. k. a.
a finite étale extension). We remind the reader in (D) below. This fact enables
us to apply results from [5] on the tensor-triangular geometry of separable
extensions. These techniques give us complete control of the geometric fixed
point functors �H at the level of tensor-triangular spectra, as each �H can be
understood as a finite étale extension followed by a finite localization.

With this knowledge of the underlying set of Spc(SH(G)c), we focus on
its topology from Sect. 6 onwards. This question reduces (cf. Proposition 6.1)
to understanding the inclusions between equivariant primes: P(K , q, n) ⊂
P(H, p,m). For primes corresponding to the sameconjugacy class (K ∼G H ),
these inclusions precisely match the inclusions in the original non-equivariant
case, i.e., the inclusions displayed in diagram (1.1). On the other hand, the
comparison map ρSH(G)c : Spc(SH(G)c) → Spec(A(G)) greatly restricts the
possible inclusions among primes associated to different conjugacy classes
of subgroups. Ultimately, the determination of the topology reduces to the
question of understanding possible inclusions P(K , p, n) ⊂ P(H, p,m) for
the same prime p dividing the order of G and for “p-subnormal subgroups”
K ≤ H in the sense of 3.2.
We first attack this question for G = Cp, where we are able to give a

complete answer by utilizing results of Hovey–Sadofsky [18] and Kuhn [21]
on blue-shift phenomena in Tate cohomology. It turns out that there is a shift
by one: P(1, p, n) ⊂ P(Cp, p,m) iff n ≥ m + 1. Here is a complete picture
of the spectrum in this case, together with the comparison map to the Zariski
spectrum of A(Cp):
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ρSH(Cp)c

Spc(SH(Cp)
c) =

Spec(A(Cp)) =

P(1,p,∞)

P(1,p,2)

P(1,p,3)

P(1,p,4)

P(1,p,5)

•◦
•◦
•◦
•◦

...
•◦ P(Cp,p,∞)

P(Cp,p,2)

P(Cp,p,3)

P(Cp,p,4)

P(Cp,p,5)

•◦
•◦
•◦
•◦

...
•◦

P(1,q,n) ...
(q �=p, n≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

. . .

. . .

. . .

. . .

. . .

P(Cp,q,n) ...
(q �=p, n≥2)

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

•◦
•◦
•◦
•◦

...
•◦

. . .

. . .

. . .

. . .

. . .

•◦ •◦
P(1,0,1) P(Cp,0,1)

︸︷︷︸

p(1,p)=p(Cp,p)���
p(1,q) ...

(q �=p)•◦•◦•◦•◦ . . .

p(Cp,q) ...
(q �=p)•◦•◦•◦•◦ . . .

•◦ •◦
p(1,0) p(Cp,0)

(1.3)

Looking only at the primes involving the subgroup Cp itself (the red dots),
we see a copy of the chromatic picture in (1.1); similarly with the trivial
subgroup (the green dots). Note how the collision p(1, p) = p(Cp, p) in
the spectrum of the Burnside ring A(Cp) disappears in the spectrum of the
Cp-equivariant stable homotopy category SH(Cp)

c, in which the fiber over
that green-red point is a connected pair of “chromatic towers”. We provide
further comments in Remark 8.5.

More generally, we can fully determine the topology of Spc(SH(G)c) for
groups whose order is square-free (Theorem 8.12). For instance, the spectrum
of the symmetric group G = S3 is discussed in Example 8.14.

For arbitrary finite groups, we can completely describe the topology of
our spectrum up to an unresolved indeterminacy in the case of p-groups. This
indeterminacy can be explained as follows. For a p-groupG of order pr and for
n > r , we can prove that P(1, p, n) ⊂ P(G, p, n− r) but it might be possible
a priori that this is not the best such inclusion:We could have an inclusion into
a smaller prime, i.e.,P(1, p, n) ⊂ P(G, p, n−r+1). Our current guess is that
the inclusionP(1, p, n) ⊂ P(G, p, n−r) is the sharpest one, andwe introduce
this as Conjecture 8.7, mainly to fix the ideas. If the answer turns out to be
different than the one predicted by Conjecture 8.7, the complete determination
of the topology of Spc(SH(G)c) will nevertheless follow, mutatis mutandis.
Here is a summary of what we know about the topology, for G an arbitrary
finite group:
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The spectrum of the equivariant stable homotopy category 289

Theorem 1.4 (Corollary 8.19) Every closed subset of Spc(SH(G)c) is a
finite union of irreducible closed subsets, and every irreducible closed set
is of the form {P} = {

Q ∈ Spc(SH(G)c)
∣
∣Q ⊆ P

}
for a unique prime

P ∈ Spc(SH(G)c). The only inclusions Q ⊆ P between equivariant primes
happen when Q = P(K , p, n) and P = P(H, p,m) with K conjugate in G
to a p-subnormal subgroup of H (see 3.2) and when n is greater or equal
to a certain chromatic integer nmin, which depends on p, H, K and m.
We have that nmin ≤ m + logp(|H |/|K |). Conjecture 8.7 is equivalent to
nmin = m + logp(|H |/|K |). This holds if G has square-free order.

In Sect. 9 we translate our conjecture into a new chromatic blue-shift phe-
nomenon for the Tate construction, which would enhance and clarify known
results in the subject. Existing blue-shift results in the literature usually con-
sider the functor tG(triv(−))G : SH → SH from non-equivariant spectra to
itself and roughly state that this functor lowers chromatic degree (at p) by one
for all finite groups G whose order is divisible by p. (See Theorem 5.21 for
a precise statement.) In particular, the chromatic degree only goes down by
one even if p2 divides the order of G, or p3, etc. In contrast, we conjecture
that the functor �G(tG(triv(−))) : SH → SH, obtained by replacing cate-
gorical fixed points by geometric fixed points, reduces chromatic degree by
logp(|G|) for any p-group G, and more generally for Tate cohomology with
respect to suitable families of subgroups. The precise statements can be found
in Sect. 9. Specifically, we prove in Theorem 9.1 that this conjectural property
of Tate cohomology is equivalent to Conjecture 8.7 and would therefore com-
plete the determination of the topology of Spc(SH(G)c) for all finite groups.
Again, if future research isolates a different behavior of Tate cohomology than
the shift by logp(|G|), the methods we provide in Sect. 9 will still allow the
determination of the topology of Spc(SH(G)c), which is the ultimate goal.

Finally, Sect. 10 contains the translation of the computation of Spc(SH(G)c)

into the classification of tt-ideals. See Corollary 10.6.
Let us conclude our introduction with a word about the existing litera-

ture. Beyond of course the non-equivariant case [19] already mentioned, the
problem of classifying tt-ideals in SH(G)c is seriously considered only in
Strickland’s unpublished notes [25], parts of which have been written up in
Joachimi [20, Chap.3]. Althoughwe do not rely on any result from this source,
we are extremely grateful to Neil Strickland for sharing this material with us
while we were working on the project. The inspiration for Proposition 7.1
clearly came from his work. It is our understanding that [25] does not contain
a complete classification of tt-ideals, even for the cyclic group G = Cp; in
contrast, we do provide a complete answer in this case, among others. Never-
theless, [25] remains a highly valuable source, discussing several other topics.
For instance, Strickland proves the equivariant version of the Nilpotence The-
orem, which is also our already mentioned Theorem 4.15.
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2 Background on equivariant stable homotopy theory

Everywhere, “tt” is short for “tensor-triangulated” or “tensor-triangular”.

In this preliminary section we isolate some basic features of equivariant
stable homotopy theory, seen from the angle of tt-geometry. All results we
need concern the stable homotopy category SH(G), not any given model, and
we will remain agnostic about the choice of such model-theoretic foundations.
All of the following facts can be checked using, e.g., the Lewis–May approach
to G-spectra [22], but more recent foundations such as equivariant orthogonal
spectra [23] would serve equally well. Our goal is not to be exhaustive, nor
brilliantly pedagogical, but simply to exhibit key features of the tt-category
SH(G) which enable our proofs to work. One motivation is that our tech-
niques may have some success in computing the spectrum of other equivariant
tt-categories which exhibit similar features (e.g., have a nice enough set of
generators and well-behaved analogues of the geometric fixed point functors).
In any case, the reader will find a modern detailed discussion of the funda-
mental features of equivariant stable homotopy theory in the Appendices of
[16], while the triangulated category aspects are discussed in [17]. Before we
begin, let us get the following notation and terminology out of the way:

Notation 2.1 We write H ∼G Hg = {
g−1h g

∣
∣h ∈ H

}
to indicate conjuga-

tion. We say that H is subconjugate to K if Hg ≤ K for some g ∈ G and
write H ≤G K .

Terminology 2.2 We use standard terminology from the theory of tensor trian-
gulated categories (such as thick subcategory, localizing subcategory,⊗-ideal,
compact, rigid) all of which may be found in [10, Sects. 1, 2]. Note that the
topology literature sometimes uses “small” or “finite” as a synonym for “com-
pact”, and “strongly dualizable” for “rigid”. The compatibility axioms for our
tt-categories are those of [17, Appendix A]. Finally, by a tt-functor we mean
a triangulated functor which is also a strong tensor functor.

The equivariant stable homotopy category

(A) For any finite group G, the equivariant stable homotopy category of
genuine G-spectra SH(G) is a rigidly-compactly generated tt-category;
i.e., it is a compactly generated triangulated category with a compatible
closed symmetricmonoidal structure having the property that the compact
objects coincide with the rigid (a. k. a. strongly dualizable) objects. Every
pointed G-space X defines a suspension G-spectrum �∞

G X in SH(G)

and the collection of �∞
G G/H+ for all subgroups H ≤ G provides a

set of compact-rigid generators (see e.g. [17, Sect. 9.4]). We denote the
tt-category of compact-rigid objects by SH(G)c ⊂ SH(G).
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(B) Any group homomorphism α : H → G induces a tt-functor α∗ :
SH(G) → SH(H) which necessarily preserves compact objects (since
compact=rigid in these categories and any strong tensor functor preserves
rigid objects). For example, inclusion of a subgroup H ↪→ G provides the
restriction functor resGH : SH(G) → SH(H), while a quotientG � G/N
provides the inflation functor inflGG/N : SH(G/N ) → SH(G).

(C) Restriction admits adjoints on both sides (induction and coinduction)
which are isomorphic: indGH � coindGH . On the other hand, the right
adjoint to inflation is the “categorical” fixed-point functor (−)N :
SH(G) → SH(G/N ). This does not recover usual fixed-points on sus-
pension spectra, nor does it preserve compact objects (cf. the tom Dieck
splitting theorem) and therefore inflation does not have a left adjoint
(by [9]). Although (−)N ◦ inflGG/N �� IdSH(G/N ), we do have a projection
formula:

(inflGG/N (x) ⊗ y)N � x ⊗ yN

for every x ∈ SH(G/N ) and y ∈ SH(G).

Restriction as a separable-extension

(D) For every subgroup H ≤ G, the G-spectrum AG
H := G/H+ (we often

drop the �∞
G for readability) is a separable commutative ring object

(=a tt-ring, or a finite étale ring) in the tt-category SH(G). (See [4,5]
for the definition of separable and for a discussion of how such rings pro-
vide tt-geometry with an analogue of the étale topology.) By [8], there is
a tt-equivalence

AG
H -ModSH(G)

∼= SH(H)

such that extension-of-scalars SH(G) −→ AG
H -ModSH(G) along AG

H is
isomorphic to the restriction functor resGH : SH(G) −→SH(H). Since
AG
H is compact, the same relation holds for the compact objects :

SH(H)c ∼= AG
H -ModSH(G)c .

(E) By [5], for any tt-categoryK and any tt-ring A inK, the map induced on
spectra Spc(A-ModK) → Spc(K) has image exactly supp(A). Hence, in
view of (D), we have the following equality of subsets of Spc(SH(G)c):

Im
(
Spc(resGH )

) = supp(G/H+).

(F) Also by [5], if a tt-ring A has finite degree (in the sense of [6]) then
ϕA : Spc(A-ModK) → Spc(K) satisfies the “Going-Up Theorem”: For
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292 P. Balmer, B. Sanders

every Q ∈ Spc(A-ModK) and every P′ ∈ {ϕA(Q)} there exists Q′ ∈ {Q}
such that ϕA(Q′) = P′. It follows from [6, Corollary 4.8] and the fact that
the geometric fixed point functors (see below) are jointly conservative that
every tt-ring in SH(G)c has finite degree. So, in particular, the Going-Up
Theorem holds for A = G/H+, that is, for resGH .

Geometric fixed points

(G) To quickly motivate the construction below—in light of the incompati-
bility between categorical fixed-points and suspension spectra—note that
for subgroups H, K ≤ G, the H -fixed points of the G-set G/K is the
set NG(H, K )/K where NG(H, K ) :={

g ∈ G
∣
∣Hg ⊆ K

}
. For instance,

(G/K )H is empty if NG(H, K ) = ∅, that is, if H �≤G K . In particular,
when H =N � G is normal, the N -fixed points of theG-setG/K is either
empty when N � K , or G/K when N ≤ K . So, adding base-points, we
expect N -fixed points to “kill” G/K+ (i.e., map it to ∅+ = 0) when N �≤
K . This “killing” is nothing but a localization, as we formalize below.

(H) Let N �G be a normal subgroup and let

LN := Loc⊗(G/K+
∣
∣K ≤ G, N � K )

denote the localizing⊗-ideal of SH(G) generated by the compact objects{
G/K+

∣
∣K ≤ G, N � K

}
; see (G). Then inflation SH(G/N ) → SH(G)

composed with the (Bousfield) localization of SH(G)with respect toLN

SH(G/N )
inflGG/N

∼=
SH(G) SH(G)/LN

is an equivalence of tt-categories (by [22, Corollary II.9.6]). Then, the
composite

(2.3) SH(G) � SH(G)/LN
∼=−→ SH(G/N )

is the so-calledgeometric N-fixedpoint functor �̃N :SH(G) �SH(G/N ).
By construction, inflation splits the geometric fixed point functor:

(2.4) �̃N ◦ inflGG/N
∼= IdSH(G/N ) .

Since LN is compactly generated, (2.3) presents SH(G/N ) as a finite
localization of SH(G), with �̃N as the localization functor. It follows
from Neeman [24, Theorem2.1] that the same is also true on the subcat-
egories of compact objects, up to an idempotent completion (denoted �):
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SH(G)c �SH(G)c/JN ↪→ (SH(G)c/JN )�
∼=−→ SH(G/N )c

where JN := thick⊗(G/K+|N �≤ K ). (We will discuss such finite local-
izations in more detail in Sect. 5; see especially Remark 5.19.) Note that
in this special case, the idempotent completion (−)� is not necessary,
since �̃N is split by inflGG/N , which preserves compact objects.

(I) For an arbitrary subgroup H ≤ G, we define the (absolute) geometric
H-fixed point functor �H : SH(G) → SH as the composite

�H : SH(G)
resGH−−→ SH(H)

�̃H−−→ SH .

Note that this functor is the composition of an “étale” extension in the
sense of (D) with a finite localization in the sense of (H). When necessary
to distinguish the ambient group, we shall write �H,G : SH(G) → SH.
Since the functor �H,G : SH(G) → SH is a tt-functor which preserves
compact objects, it induces a continuousmap on tt-spectra, that we denote

ϕH,G : Spc(SHc) → Spc(SH(G)c).

It is defined by P 	→ (�H,G)−1(P) = {
x ∈ SH(G)c

∣
∣�H,G(x) ∈ P

}
.

(J) For any N ≤ N ′ � G, with N �G, we have �̃N ′/N ◦ �̃N ∼= �̃N ′

from SH(G) to SH(G/N ′), as localization can be performed in two
“nested” steps. In fact, for any N ≤ H ≤ G, with N � G, we also have
�H/N ◦ �̃N ∼= �H from SH(G) to SH. For example, �G/N ◦ �̃N ∼= �G

and resG/N
1 ◦ �̃N ∼= �N for any N � G.

(K) Let α : G → G ′ be a group homomorphism. Consider H ≤ G and its
imageα(H) ≤ G ′. Thenwe have an isomorphism�H,G◦α∗ = �α(H),G ′

.
Indeed, the following diagram commutes up to isomorphism, for N :=
ker(α) ∩ H :

SH(G ′) res

α∗

�α(H),G′

SH(α(H)) id

α∗|H=inflH
α(H) SH(α(H))

�̃α(H)

SH .

SH(G) res
�H,G

SH(H)
�̃N

�̃H

It uses (2.4) for themiddle triangle and (J) on the right, plus the definitions.
Hence the induced maps from Spc(SHc) to Spc(SH(G ′)c) coincide:

123



294 P. Balmer, B. Sanders

Spc(α∗) ◦ ϕH,G = ϕα(H),G ′
.

(L) For any g ∈ G, the isomorphism (−)g : H ∼−→ Hg induces an equivalence

SH(Hg)
∼=−→ SH(H) such that the diagram

SH(Hg) �̃Hg

∼=SH(G)

resGH

resGHg

SH

SH(H) �̃H

commutes up to isomorphism. (The equivalence SH(G)
∼=−→ SH(G)

induced by the inner automorphism (−)g : G ∼−→ G is naturally isomor-
phic to the identity functor.) Hence �H,G ∼= �Hg,G and ϕH,G = ϕHg,G .

(M) The trivial homomorphismG → 1 induces a tt-functor inflG1 abbreviated

triv : SH → SH(G)

which sends a spectrum to the “trivial”G-spectrum. It splits the (absolute)
H -fixed point functor �H : SH(G) → SH for every H ≤ G. Hence
Spc(triv) retracts ϕH,G : Spc(SHc) → Spc(SH(G)c) for every H ≤ G,
which shows that the maps ϕH,G are all injective.

(N) The geometric fixed point functors have the nice property that they
commute with suspension spectra (see e.g. [22, Corollary II.9.9]). In par-
ticular, for a finite G-set X and for any subgroup H ≤ G, we have
�H (�∞

G X+) ∼= �∞XH+ in SHc.

3 The spectrum of the Burnside ring

The purpose of this section is to briefly recall Dress’s description of the
spectrum of the Burnside ring [12] and related ideas concerning p-perfect
subgroups.

Definition 3.1 Agroup is said to be p-perfect if it admits no non-trivial homo-
morphism to a p-group, or equivalently if the only normal subgroup of index
a power of p is the group itself. Every finite group G has a unique normal
p-perfect subgroup Op(G) such that the quotient G/Op(G) is a p-group;
Op(G) is the intersection of all normal subgroups of index a power of p.
So, Op(G) contains all p-perfect subgroups H of G (since the composite
H → G → G/Op(G) must be trivial) and Op(G) is contained in every
normal subgroup of G of index a power of p.
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Terminology 3.2 A p-subnormal tower H = Hr �p Hr−1 �p · · · �p H1�p H0 = G is a subnormal tower Hi+1 � Hi all of whose subquotients
Hi/Hi+1 have order p.

Lemma 3.3 Let H ≤ G be a subgroup. The following are equivalent:

1. Op(H) = Op(G);
2. H ⊇ Op(G);
3. There exists a p-subnormal tower from H to G.

In this case, we say that H is a p-subnormal subgroup of G.

Proof Since Op(G) contains all p-perfect subgroups of G, we have Op(H) ⊆
Op(G). The equivalence (1) ⇔ (2) follows. To prove (1) ⇒ (3), assume (1),
let N := Op(H) = Op(G) and consider H/N ≤ G/N in the p-group G/N .
Every subgroup of a p-group admits a p-subnormal tower to the ambient group
(by an easy inductive argument using the non-trivial center, for instance) and
a p-subnormal tower from H/N to G/N lifts to a p-subnormal tower from
H to G. Finally, (3) ⇒ (1) follows inductively from the observation that if
N �p G then N ⊇ Op(G). ��
Remark 3.4 Recall that the Burnside ring, A(G), is the Grothendieck ring of
the category of finite G-sets with respect to disjoint union, and equipped with
Cartesian product as multiplication. For each subgroup H ≤ G, there is a ring
homomorphism f H : A(G) → Z which sends (the class of) a finite G-set X
to the number of H -fixed points |XH |. By pulling back the prime ideals of Z,
we get prime ideals

(3.5) p(H, p) := ( f H )−1(pZ) and p(H, 0) := ( f H )−1((0))

of A(G). Dress’s result [12] can be summarized as follows:

Theorem 3.6 (Dress) Every prime ideal of A(G) is of the form p(H, p) or
p(H, 0) for some H ≤ G. Moreover, for any subgroups H, K ≤ G and any
primes p, q:

(a) p(H, 0) ⊆ p(K , 0) iff p(H, 0) = p(K , 0) iff H ∼G K .
(b) p(H, p) ⊆ p(K , q) implies p = q and p(H, p) = p(K , p).
(c) p(H, 0) ⊆ p(K , p) iff p(H, p) = p(K , p) iff Op(H) ∼G Op(K ).
(d) p(H, 0) ⊂ p(H, p) and p(H, p) � p(K , 0).

Remark 3.7 In other words, the ring A(G) has Krull dimension 1 and
Spec(A(G)) is covered by copies of Spec(Z) indexed by conjugacy classes
of subgroups H ≤ G. The copy of Spec(Z) in Spec(A(G)) corresponding
to H ≤ G is an irreducible closed subset with generic point p(H, 0). In
the closure of p(H, 0) are height 1 closed points p(H, p) for all prime num-
bers p. The only overlap between two such copies, say for two subgroups
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H and K , happens at closed points, corresponding to the same prime p in
each copy, exactly when Op(H) and Op(K ) are conjugate in G. For given H
and K , this can happen at several primes p. However, note that if p does not
divide the order of G then Op(H) = H for all H ≤ G. Hence there can
only be non-trivial collisions for p dividing the order of G. See the bottom
of (1.3) for a picture of the G = Cp case (which is representative of the sit-
uation for all p-groups) and see Example 8.14 for a picture of the G = S3
case.

Remark 3.8 The ring homomorphism A(G) ∼= EndSH(G)c(1) → EndSHc(1)∼= Z induced by the geometric fixed point functor �H : SH(G)c → SHc is
exactly the map f H : A(G) → Z used above (see the proof of Proposition6.7,
if necessary). From this point of view, it is very natural to attempt a categorified
version of what Dress accomplished for the Burnside ring, as announced in
the Introduction. Furthermore, this compatibility between �H and f H will
allow (cf. Proposition 6.7) for an easy description of the comparison map
ρSH(G)c : Spc(SH(G)c) → Spec(A(G)) once we know what the primes in
Spc(SH(G)c) actually are.

4 The set Spc(SH(G)c)

Recall theHopkins-Smithnon-equivariant primesCp,n ∈ Spc(SHc) from (1.1).
We now consider their image under the map ϕH,G : Spc(SHc) →
Spc(SH(G)c) induced by geometric H -fixed points �H,G : SH(G) → SH,
as explained in (I).

Definition 4.1 For every subgroup H ≤ G, every prime number p and every
“chromatic integer” 1 ≤ n ≤ ∞, we have a tt-prime in SH(G)c given by

P(H, p, n) := ϕH,G(Cp,n) = {
x ∈ SH(G)c

∣
∣�H (x) ∈ Cp,n in SH

c}.

By (L), we have that P(H, p, n) = P(Hg, p, n) for every g ∈ G. So
P(H, p, n) only depends on the conjugacy class of H inG. Also, since Cp,1 =
Cq,1 for all primes p, q, the same is true for P(H, p, 1) = P(H, q, 1) and we
could replace p by 0 in the notation, if it avoids putting the wrong emphasis
on a particular p:

P(H, 0, 1) := P(H, p, 1) (for any p) = {
x ∈ SH(G)c

∣
∣�H (x) is torsion

}
.

Finally, when necessary, we will write PG(H, p, n) to indicate the ambient
group G.
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Remark 4.2 SinceCp,∞ = ∩n≥1Cp,n we getP(H, p, ∞) = ∩n≥1P(H, p, n).

Let us say a word about the functoriality of these primes PG(H, p, n) in
the group G. We recall that for every tt-functor F : K → L the induced map
Spc(F) : Spc(L) → Spc(K) sends Q to F−1(Q) and is inclusion-preserving.

Proposition 4.3 Let α : G → G ′ be a group homomorphism, and α∗ :
SH(G ′) → SH(G) the induced tt-functor. Then the induced map Spc(α∗) :
Spc(SH(G)c) → Spc(SH(G ′)c) maps PG(H, p, n) to PG ′(α(H), p, n) for
every H ≤ G.

Proof This follows directly from (K) and Definition 4.1. ��
Corollary 4.4 Consider H ≤ G and the tt-functor resGH : SH(G) →
SH(H). The induced map Spc(resGH ) : Spc(SH(H)c) → Spc(SH(G)c) maps
PH (K , p, n) to PG(K , p, n) for any K ≤ H. ��
Corollary 4.5 Consider N � G and the tt-functor inflGG/N : SH(G/N ) →
SH(G). The induced map Spc(inflGG/N ) : Spc(SH(G)c) � Spc(SH(G/N )c)

maps PG(H, p, n) to PG/N (HN/N , p, n) for any H ≤ G. ��
The special case N = G shows that we can, in some sense, drop the

group-theoretic information by projecting onto the chromatic information;
see also (M):

Corollary 4.6 The tt-functor triv = inflG1 : SH → SH(G) induces an
inclusion-preserving map Spec(triv) : Spc(SH(G)c) → Spc(SHc) which
sends the equivariant prime P(H, p, n) to the non-equivariant prime Cp,n.

��
Proposition 4.7 Consider N �G and the tt-functor �̃N :SH(G) �SH(G/N ).
The induced map Spc(�̃N ) : Spc(SH(G/N )c) ↪→ Spc(SH(G)c) is injective
and maps PG/N (H/N , p, n) to PG(H, p, n) for any N ≤ H ≤ G. The image
of Spc(�̃N ) is exactly

{
P ∈ Spc(SH(G)c)

∣
∣G/H+ ∈ P for all H s.t. N �≤ H

}
.

Proof In view of (H), �̃N : SH(G)c �SH(G/N )c is the localization with
respect to JN := thick⊗(G/K+|N �≤ K ). It is a general fact that Spc(K/J) ∼={
P ∈ Spc(K)

∣
∣J ⊆ P

}
, hence the injectivity of the induced map on spectra and

the description of its image. The description of its value on PG/N (H/N , p, n)

comes from the functoriality of Spc(−) and the relation �H/N ◦ �̃N ∼= �H

in (J). ��
Remark 4.8 Contrary towhat happens in Proposition 4.7, the apparently harm-
less map of Corollary 4.4 is not injective in general. There is some fusion
phenomenon happening, since PH (K , p, n) depends on the conjugacy class
of K in H , whereas PG(K , p, n) only depends on the conjugacy class of K
in the larger group G.
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Theorem 4.9 Every prime P ∈ Spc(SH(G)c) is of the form P(H, p, n) for
some H ≤ G, some prime p and some 1 ≤ n ≤ ∞.

Proof We need to show that Spc(SH(G)c) = ⋃
H≤G Im(ϕH,G). We proceed

by induction on |G|. The result is clear for G trivial. So, let us suppose the
result known for all proper subgroups of G. By Proposition 4.7 for N = G,
we can then identify the image of ϕG,G = Spc(�G) as follows:

Im(ϕG,G) = {
P ∈ Spc(SH(G)c)

∣
∣P � G/H+ for all H � G

}
.

Since
{
P
∣
∣P �� G/H+

} = supp(G/H+) by definition of the support, we
have

Spc(SH(G)c) = Im(ϕG,G) ∪
⋃

H�G

supp(G/H+) .

By (E), we have supp(G/H+) = Im(Spc(resGH )). By the induction hypoth-
esis applied to H � G, we know that Spc(SH(H)c) is covered by the
images of ϕK ,H for K ≤ H and we need to know what happens to those
images Im(ϕK ,H ) under Spc(resGH ). By (K), we know that Spc(resGH ) will
map Im(ϕK ,H ) into Im(ϕK ,G) and this completes the proof. ��

We now want to describe the support of some basic objects in SH(G)c.

Lemma 4.10 For two subgroups H, K ≤ G, we have in SH that

�H (G/K+) =
{
1⊕	 for some 	 > 0 if H ≤G K (Notation 2.1),
0 if H �≤G K .

Proof By (N), it suffices to compute the H -fixed subset of the finite G-set
G/K . The result holds with 	 = |NG(H, K )/K | by the discussion in (G). ��
Proposition 4.11 Let H, K ≤ G be two subgroups, p a prime and 1 ≤ n ≤
∞. Then G/K+ ∈ P(H, p, n) if and only if H �G K .

Proof This is immediate from the definition of P(H, p, n) as (�H )−1(Cp,n)

andLemma4.10 since1 /∈ P and 0 ∈ P for every primeP = Cp,n in Spc(SHc).
��

Corollary 4.12 If P(K , q, n) ⊆ P(H, p,m) then K ≤G H.

Proof Use (the contrapositive of) Proposition 4.11 twice: As H ≤G H , we
have G/H+ /∈ P(H, p,m) and therefore G/H+ /∈ P(K , q, n), which implies
K ≤G H . ��
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Corollary 4.13 Let K ≤ G be a subgroup. We have

supp(G/K+) = {
P(H, p, n)

∣
∣H ≤G K

} = Im(Spc(resGK )).

Proof By definition, supp(G/K+) = {
P
∣
∣G/K+ /∈ P

}
and by Theorem 4.9,

every prime P is of the form P(H, p, n). So, the first equality results from
Proposition 4.11. The other equality supp(G/K+) = Im(Spc(resGK )) is (E)
again. ��
Theorem 4.14 The primes P(H, p, n) are uniquely characterized by the con-
jugacy class of H, the prime p and the chromatic integer 1 ≤ n ≤ ∞. More
precisely, if P(H, p,m) = P(K , q, n) then Hg = K for some g ∈ G and
Cp,m = Cq,n in SHc (meaning m = n, and, as long as m = n > 1 then also
p = q).

Proof Suppose that P(H, p,m) = P(K , q, n). By Corollary 4.12, we have
H ≤G K and K ≤G H , so H ∼G K . Finally Corollary 4.6 gives Cp,m = Cq,n
as desired. ��

At this stage, we have a complete description of the set Spc(SH(G)c). We
also have a complete description of the maps Spc(α∗) induced by group homo-
morphisms α : G → G ′. Before moving on to the topology of Spc(SH(G)c),
we can prove the following result, which is also obtained in [25]. It will not
be used in the rest of the paper.

Theorem 4.15 (Equivariant Nilpotence Theorem) The collection of functors

K(p, n)∗(�H (−)) : SH(G)c → K(p, n)∗-Mod∗

detects ⊗-nilpotence. That is, a morphism f : x → y between compact G-
spectra x, y ∈ SH(G)c is⊗-nilpotent inSH(G)c (i.e., f ⊗	 = 0 : x⊗	 → y⊗	

for some 	 ≥ 1) if and only if K(p, n)∗(�H ( f )) = 0 for all H ≤ G, all primes
p and all 1 ≤ n ≤ ∞.

Proof By the non-equivariant Nilpotence Theorem, up to replacing f by some
⊗-power, we can assume that �H ( f ) = 0 for all of the finitely many sub-
groups H ≤ G. By induction on the order of the group, applying the result to
proper subgroups H � G, together with the fact that�K ,G = �K ,H ◦resGH for
all K ≤ H ≤ G, we can similarly assume that resGH ( f ) = 0 for all H � G.
Consequently, f ⊗ G/H+ = 0 for all H � G. Since the subcategory “on
which f is ⊗-nilpotent”,

{
z ∈ SH(G)c

∣
∣ f ⊗	 ⊗ z = 0 for some 	 ≥ 1

}
,

is a tt-ideal (see [2, Proposition2.12]) we deduce that for every z ∈ J :=
thick⊗

{
G/H+

∣
∣H � G

}
there exists 	 = 	(z) ≥ 1 such that f ⊗	 ⊗ z = 0.

Finally, from �G( f ) = 0 and the description of �G as a localization (see (H)
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for N = G), we see that f 	→ 0 under SH(G)c � SH(G)c/J. Therefore, by a
general fact on Verdier localization, f factors via some object z ∈ J. Combin-
ing the two results, we see that f ⊗(	+1) factors via f ⊗	 ⊗ z = 0 for 	 = 	(z)
as above. ��

5 Tensor idempotents and the Tate construction

In the second part of the paper, about the topology of Spc(SH(G)c), we shall
need additional tools relating to generalized Rickard idempotents in the sense
of [10] and generalized Tate cohomology in the sense of Greenlees [15].

LetT be a rigidly-compactly generated tt-category, like SH(G).We shall use
[−, −] to denote the internal hom functor, which restricts to Tc by assump-
tion, and we shall sometimes write x∨ := [x,1] for the dual of an object
x ∈ T.

Remark 5.1 Let K be an essentially small and rigid tt-category, like K = Tc.
Recall that a Thomason subset of Spc(K) is a set which can be written as a
(possibly infinite) union of closed subsets each having a quasi-compact com-
plement. By [1, Theorem4.10], the tt-ideals ofK correspond to the Thomason
subsets of Spc(K) via C 	→ supp(C) := ⋃

x∈C supp(x), with inverse given
by Y 	→ KY := {

x ∈ K
∣
∣ supp(x) ⊆ Y

}
. This is the classification of tt-ideals

resulting from a description of the space Spc(K).

Notation 5.2 For any Thomason subset Y ⊆ Spc(Tc), recall from [10]
that


Y := (
eY → 1 → fY → �eY

)

denotes the idempotent triangle in T for the finite localization associated to
the tt-ideal (Tc)Y = {

x ∈ Tc
∣
∣ supp(x) ⊆ Y

}
. The localizing subcategory TY

of acyclic objects is by definition the one generated by (Tc)Y (and we have
(TY )c = (Tc)Y ), and the idempotents e⊗2

Y
∼= eY and f ⊗2

Y
∼= fY satisfy TY =

eY ⊗T = Ker( fY ⊗−) and (TY )⊥ = fY ⊗T = Ker(eY ⊗−) = Ker([eY , −]).
Remark 5.3 For Y ⊆ Spc(Tc) a Thomason subset and V := Spc(Tc) � Y its
complement, we have the following diagram of adjunctions (a. k. a. recolle-
ment)
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⊥T(V ) = eY ⊗ T = TY

incl

[eY ,−]

[eY ,−]
∼= [eY ,T] = T(V )⊥ = (TY )⊥⊥

eY⊗−

incl

eY⊗−

T

eY⊗− [eY ,−]

fY⊗− [ fY ,−]

T(V ) := fY ⊗ T = [ fY ,T] = (TY )⊥

incl

in which each of the six “vertical” sequences • �T� • is a (Bousfield)
localization sequence of triangulated categories. In particular, the localization
fY ⊗ − : T�T(V ) = fY ⊗ T is a tt-functor, the tensor on T(V ) being that
of T. Moreover, T(V ) is also a rigidly-compactly generated tt-category whose
subcategory of compact objects is, by Neeman’s Theorem [24, Theorem2.1],
the idempotent completion of the image of the compact objects of T:

( fY ⊗ Tc)� ∼= T(V )c.

The spectrum of this tt-category T(V )c identifies with V = Spc(Tc) � Y ,

(5.4) Spc(T(V )c) ∼= V,

via Spc( fY ⊗ − : Tc → T(V )c); see [3, Sect. 2.2]. The internal hom [−, −]
on T restricts to an internal hom on the local category T(V ) = fY ⊗ T.
However, localization fY ⊗ − : T → T(V ) is not closed monoidal. Indeed,
one can show that for every x, y ∈ T, the following triangle is exact in T(V ):

fY ⊗ [x, eY ⊗ y] → fY ⊗ [x, y] → [ fY ⊗ x, fY ⊗ y] → ·
The second object is the image of the internal hom and the third is the

internal hom of the images. The first object describes the difference.

Remark 5.5 For every x, y ∈ T, it follows from [eY ⊗ T, fY ⊗ T] = 0 and
from the exact triangle x ⊗ 
Y that we have [x, fY ⊗ y] ∼= [ fY ⊗ x, fY ⊗ y].
Similarly, [eY ⊗ x, y] ∼= [eY ⊗ x, eY ⊗ y].
Lemma 5.6 Let eZ → 1 → fZ → �eZ be the idempotent triangle in a
rigidly-compactly generated tt-category T associated to a Thomason closed
subset Z ⊆ Spc(Tc). If there is a non-trivial decomposition eZ = e1 ⊕ e2 with
e1 ⊗ e2 = 0 then Z is disconnected, Z = Z1 � Z2, for closed Zi such that
ei = eZi for i = 1, 2.
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Proof Let J := Tc
Z denote the compact part generating the idempotent triangle;

that is, eZ ⊗ T = Loc(J) = Ker( fZ ⊗ −). Since Z is Thomason closed,
there is (by [1, Proposition 2.14]) some w ∈ Tc such that supp(w) = Z and
J = thick⊗(w) (the thick tensor-ideal of Tc generated by w). The object w

belongs to J ⊂ Loc(J), hence eZ ⊗ w ∼= w. So, we obtain a decomposition
w ∼= w1 ⊕ w2 with w1 ⊗ w2 = 0 by setting w1 := e1 ⊗ w and w2 := e2 ⊗ w.
Moreover, it is simple to check that J1 := e1 ⊗ J = thick⊗(w1) and J2 :=
e2 ⊗ J = thick⊗(w2). Finally, these thick tensor-ideals Ji are nonzero. For
example, if e1 ⊗ J = 0 then Loc(J) is contained in Ker(e1 ⊗ −) and, since
eZ ∈ Loc(J), we would have 0 = e1 ⊗ eZ ∼= e1 contradicting the assumption
that e1 �= 0. In conclusion, Z = supp(w) = supp(w1)� supp(w2) is a disjoint
union of non-empty closed sets and the rest follows easily. ��
Definition 5.7 (Greenlees [15]) Let Y ⊆ Spc(Tc) be a Thomason subset. We
define the Tate functor with respect to Y to be

tY := [ fY , �eY ⊗ −] : T → T.

Remark 5.8 Many classical results about the Tate spectrum [14] hold for this
more general construction. For example, we have

(5.9) tY = [ fY , �eY ⊗ −] ∼= fY ⊗ [eY , −]

(cf. [15, Corollary 2.5]). Furthermore, the Tate functor tY is Tc-linear, i.e.,

(5.10) tY (x) ⊗ y ∼= tY (x ⊗ y)

for all x ∈ T and y ∈ Tc. Indeed, every compact object y ∈ Tc is rigid, hence
[−, −] ⊗ y ∼= [−, − ⊗ y]. Finally, although tY is not a monoidal functor, it is
lax-monoidal (from the “lax-monoidality” of [−, −], the fact that eY and fY
are ⊗-idempotents, and description (5.9) of tY ). Hence tY (−) preserves ring
objects andmodules. In fact, if R is a ring object inT then not only is tY (R) also
a ring object, but also the natural map R → tY (R) is a ring homomorphism.
If M is an R-module then tY (M) inherits the structure of a tY (R)-module and
hence can also be regarded as an R-module.

Proposition 5.11 Let F : T → T′ be a tt-functor preserving coproducts. Let
K = Tc and K′ = (T′)c and let ϕ : Spc(K′) → Spc(K) be the induced map.
Let Y ⊆ Spc(K) be a Thomason subset and set Y ′ := ϕ−1(Y ) ⊆ Spc(K′).
ThenK′

Y ′ = thick⊗(F(KY )) and there is a unique isomorphism of idempotent
triangles

F
(
eY → 1 → fY → �eY

) ∼= (
eY ′ → 1 → fY ′ → �eY ′

)
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in T′. If moreover F is closed monoidal then F ◦ tY ∼= tY ′ ◦ F.

Proof For any collection of objects E ⊂ K, the tt-ideal thick⊗(E) cor-
responds to the Thomason subset

⋃
x∈E supp(x). The equality of tt-ideals

K′
Y ′ = thick⊗(F(KY )) then follows from the following equality of Thoma-

son subsets of Spc(K′):

Y ′=ϕ−1(Y ) = ϕ−1(
⋃

x∈KY

supp(x))=
⋃

x∈KY

ϕ−1(supp(x)) =
⋃

x∈KY

supp(Fx).

ThenT′
Y ′ = Loc(K′

Y ′) = Loc(F(KY )) and it follows that F( fY )⊗T′
Y ′ = 0.

Since F preserves coproducts, F(eY ) ∈ F(Loc(KY )) ⊆ Loc(F(KY )) = T′
Y ′ .

It then follows from the uniqueness of idempotent triangles (cf. [10, Theo-
rem 3.5]) that the triangle F(eY ) → 1 → F( fY ) → �F(eY ) is isomorphic
to eY ′ → 1 → fY ′ → �eY ′ . The statement about the Tate construction then
follows from the definitions. ��
Example 5.12 Let ep,n → 1 → f p,n → �ep,n be the idempotent triangle in
SH associated to the tt-idealCp,n ⊆ SHc =: K. Here,Cp,n = KYp,n forYp,n =
supp(Cp,n) = {

Q
∣
∣Cp,n � Q

} = {
Cp,m

∣
∣m ≥ n + 1

} ∪ {
Cq,m

∣
∣q �= p,m > 1

}

in Spc(SHc). The right idempotent f p,n is sometimes denoted L f
n−1S

0 in the
literature (the exponent “ f ” referring to “finite” localization and the index
“n − 1” referring to the Morava K -theory in use).

It follows from Proposition 5.11 that YG
p,n := Spc(triv)−1(Yp,n) ={

P(H, p,m)|H ≤ G,m ≥ n + 1
} ∪ {

P(H, q,m)
∣
∣H ≤ G, q �= p,m > 1

}
is

a Thomason subset of Spc(SH(G)c) with associated idempotent triangle

(5.13) 
YG
p,n

= (
triv(ep,n) → 1 → triv( f p,n) → � triv(ep,n)

)

in SH(G). The corresponding localized category

SH(G)p,n := triv( f p,n) ⊗ SH(G)

will be very useful in our discussion of Spc(SH(G)c). It can be called the
truncation of SH(G) below p-chromatic level n.

Note that the n = ∞ case is just localization at p. In particular, localization
with respect to f p,n in SH, or triv( f p,n) in SH(G), already localizes at p for
free.

Example 5.14 For a family F of subgroups of G, always assumed below to be
stable under conjugation and under passing to subgroups, we can consider the
tt-ideal CF := thick⊗(G/L+|L ∈ F) of SH(G)c. (By theMackey formula, we
can drop⊗ in the notation thick⊗(...) but this is a pedantic detail.) This tt-ideal
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CF corresponds to the Thomason closed subset YF := ⋃
L∈F supp(G/L+).

By Corollary 4.13, we have YF = {
P(H, p, n)

∣
∣H ∈ F, all p, n

}
. In this

example, we write


F = (
eF → 1 → fF → �eF

)

for the associated idempotent triangle
YF in SH(G).We also use the notation

tF := [ fF, �eF ⊗ −]

for the associated Tate functor. In more usual notation, eF = �∞
G (EF+) and

fF = �∞
G (ẼF).

Remark 5.15 The trivial families are F = ∅ and F = {all subgroups} whose
idempotent triangles are 0 → 1 → 1 → 0 and 1 → 1 → 0 → �1
respectively. Their Tate functors are zero.

Remark 5.16 The extreme non-trivial examples are the family F = {1} con-
sisting only of the trivial subgroup, and the family Fproper consisting of
all proper subgroups. For the former, the notation e{1} = �∞

G EG+ and
f{1} = �∞

G ẼG is probably more familiar to some readers. The Tate func-
tor tG := t{1} is the original construction studied in [14]. We shall also use the
notation eG := e{1} and fG := f{1} to keep some semblance to the classical
notation.

Example 5.17 For every group G, one can define a family of subgroups by
bounding the order of the subgroups, or equivalently their index in G. We
shall denote by F≤	 := {

H ≤ G
∣
∣|H | ≤ 	

}
the family of subgroups of order

at most 	. Such families will play an important role in Sect. 9.

Example 5.18 Let F be a family of subgroups of G as in Example 5.14. Let
H ≤ G be a subgroup and setF∩H := {

K ∈ F
∣
∣K ≤ H

}
. Then we can apply

Proposition 5.11 to the tt-functor resGH : SH(G) → SH(H), which is closed
monoidal. Combining this with Example 5.14 and the fact that resGH (G/L+) �
⊕[g]∈H\G/L(H/H ∩ gL)+, it is easy to see that resGH ◦tF ∼= tF∩H ◦ resGH .

Remark 5.19 We have already encountered in (H) the localization of SH(G)

with respect to the familyF[�≥N ] := {
K ≤ G

∣
∣K � N

}
associated to a normal

subgroup N � G. The thick ⊗-ideal here is thick⊗
{
G/K+

∣
∣K � N

}
. We

repeat the crucial fact that the corresponding localization fF[�≥N ] ⊗ SH(G) ∼=
SH(G/N ) yields the equivariant stable homotopy category for the quotient
group G/N , in such a way that �̃N : SH(G) → SH(G/N ) becomes the
localization functor.
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Remark 5.20 According to [18,21], the original Tate construction tG
(Remark 5.16) lowers chromatic degree by one. The following theorem states
this result in the form we will need.

Theorem 5.21 (Hovey–Sadofsky, Kuhn) Let p be a prime dividing the order
of a finite group G, and let f p,n denote the right idempotent for the localization
of SH associated to Cp,n (see Example 5.12). For any n ≥ 2, the kernel of the
functor tG(triv( f p,n))G ⊗ − : SHc → SH is precisely Cp,n−1.

Proof Note that if x ∈ SHc then tG(triv( f p,n))G ⊗ x = tG(triv( f p,n ⊗ x))G .
Define TG(−) := tG(triv(−))G for convenience. The main results of [21,
Theorem 1.5 and Lemma 4.1] imply that TG( f p,n ⊗ x) = 0 for all x ∈ Cp,n−1.

Just observe that f p,n = L f
n−1S

0 and that f p,n⊗x � L f
n−1(x) � Tel(x; vn−1)

for any x ∈ Cp,n−1 � Cp,n .

Conversely, Lm(S0) is an L f
m(S0)-module, hence TG(Lm(S0)) is a

TG(L f
m(S0))-module, so that TG(Lm(S0)) is TG(L f

m(S0))-local. It follows
that if x ∈ SHc is a finite spectrum such that TG(L f

m(S0)) ⊗ x = 0 then

(5.22) TG(Lm(S0)) ⊗ x∨ = [x,TG(Lm(S0))] = 0.

However, themain result of [18] establishes thatTG(Lm(S0)) and Lm−1(S0)
have the same Bousfield class provided that p divides the order of G. Hence
(5.22) implies that Lm−1(S0)⊗ x∨ = Lm−1(x∨) = 0 so that x∨ (and hence x)
is contained in Cp,m . Hence, plugging m = n − 1 and using f p,n = L f

n−1S
0

again, we see that TG( f p,n ⊗ x) = 0 for a finite spectrum x ∈ SHc implies
that x ∈ Cp,n−1. ��
Remark 5.23 If G = Cp then the family of proper subgroups coincides with
the trivial family {1}. In light ofRemark5.19,we see that in this case, tG(−)G ∼=
�GtG(−). This is something very special about the case of the cyclic groupCp
and is certainly not true for arbitrary groups. This remark lies at the heart of our
application of Theorem 5.21 and our conjectured blue-shift results in Sect. 9.

We conclude this section by describing how chromatic localization (Exam-
ple 5.12) affects the tt-spectrum of SH(G)c.

Proposition 5.24 Let p be a prime and let 1 ≤ n ≤ ∞ be a chromatic integer.
Consider the tt-category SH(G)p,n = triv( f p,n) ⊗ SH(G). Then the local-
ization functor SH(G)c → SH(G)cp,n induces a homeomorphism between
Spc(SH(G)cp,n) and the following subset Vp,n of Spc(SH(G)c):

Vp,n := {
P(H, p, n)

∣
∣H ≤ G, 1 ≤ m ≤ n

}
.

123



306 P. Balmer, B. Sanders

Proof The statement is a special case of (5.4) in Remark 5.3, for the big tt-
category T = SH(G) and for the Thomason subset Y = YG

p,n of its spectrum,
where YG

p,n is given in Example 5.12. Its complement Spc(SH(G)c) � YG
p,n is

exactly our Vp,n .

Corollary 5.25 For every prime p, the spectrum of SH(G)c(p) is homeo-

morphic to the subset Vp,∞ := {
P(H, p,m)

∣
∣H ≤ G, 1 ≤ m ≤ ∞}

of Spc(SH(G)c). ��
Remark 5.26 As is customary, we shall use the same notation P(H, p,m) for
the prime in SH(G)c and the corresponding prime in SH(G)cp,n .

6 Inclusions of primes and the comparison map

Our goal is to determine the topology of Spc(SH(G)c). We begin by reducing
the problem to the task of understanding all inclusions among the equivariant
primes:

Proposition 6.1 Every closed subset of Spc(SH(G)c) is a finite union of irre-
ducible closed subsets. Every (non-empty) irreducible closed subset is of the
form {P} = {

Q ∈ Spc(SH(G)c)
∣
∣Q ⊆ P

}
for some unique point P.

Proof It is basic tt-geometry [1] that every irreducible closed subset of Spc(K)

has a unique generic point and that the closure of a point P is exactly{
Q ∈ Spc(K)

∣
∣Q ⊆ P

}
; beware the reversal of the inclusion compared to

the Zariski topology. For the non-equivariant case, the proposition was proved
in [2, Corollary 9.5(e)]. By Theorem 4.9, the space Spc(SH(G)c) is covered
by the images of ϕH,G = Spc(�H ) : Spc(SHc) → Spc(SH(G)c) for sub-
groups H ≤ G. Then consider any closed subset Z ⊆ Spc(SH(G)c). By
what we have just said, Z = ∪H≤G ϕH,G((ϕH,G)−1(Z)). For any H ≤ G,
(ϕH )−1(Z) is a closed subset of Spc(SHc). So, by the non-equivariant result
it is a finite union of irreducible closed sets {Cp,n} for some primes p and
integers 1 ≤ n ≤ ∞. It follows that Z is the union of the closures of the
points P(H, p, n) corresponding to the generic points Cp,n of the irreducible
components of (ϕH )−1(Z), for all H ≤ G. As there are only finitely many
subgroups H ≤ G, and finitely many generic points for (ϕH )−1(Z), this is a
finite union. ��
Proposition 6.2 For every subgroup H ≤ G, primes p, q, and chromatic
integers 1 ≤ m, n ≤ ∞, the following are equivalent:

1. P(H, q, n) ⊆ P(H, p,m);
2. Cq,n ⊆ Cp,m;
3. n ≥ m and, either m = 1 or q = p.
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Proof The inclusions among the Cp,n manifest as inclusions among the
P(H, p, n), which are their preimages under�H . That these are the only inclu-
sions among the primes P(H, p,m) for fixed H follows from Corollary 4.6.

��
Remark 6.3 In other words, the inclusions among the primesP(H, p,m)—for
a fixed H—precisely match the inclusions among the non-equivariant primes
Cp,m . Thus, Spc(SH(G)c) consists of a number of copies of the non-equivariant
spectrum Spc(SHc) displayed in (1.1)—one such copy for each conjugacy
class of subgroups of G. The question is what the interaction is among the
different copies; that is, what are the inclusions P(K , q, n) ⊆ P(H, p,m) for
K 	G H?

We can start by projecting onto the chromatic information, viaCorollary 4.6:

Corollary 6.4 Suppose P(K , q, n) ⊆ P(H, p,m) for two subgroups H, K ≤
G, primes p, q and chromatic integers 1 ≤ n,m ≤ ∞. Then Cq,n ⊆ Cp,m
in SHc and in particular n ≥ m. If furthermore m > 1, then p = q. ��
Remark 6.5 If m = 1 in the previous statement, we cannot conclude that
p = q but this is slightly artificial because then P(H, p, 1) = P(H, 0, 1) =
P(H, q, 1) and p is irrelevant anyway. In that case, we are equivalently dis-
cussing the inclusionP(K , q, n) ⊆ P(H, q,m). In otherwords,when studying
inclusions P(K , q, n) ⊆ P(H, p,m) between primes in SH(G)c, we can just
as well assume p = q.

Remark 6.6 Recall the homeomorphism Spc(SH(G)cp,n) � Vp,n of Propo-
sition 5.24. This homeomorphism respects and detects inclusions among
primes. So, whenever we have to decide whether P(K , p, n) ⊆ P(H, p,m)

holds, we can just as well localize in SH(G)p,n = triv( f p,n) ⊗ SH(G) or
in SH(G)p,∞ = SH(G)(p). ��

Next we can project onto the group-theoretic information:

Proposition 6.7 The comparisonmapρSH(G)c : Spc(SH(G)c)→Spec(A(G))

is inclusion-reversing. It sends P(H, p, 1) = P(H, 0, 1) to p(H, 0) and it
sends P(H, p, n) to p(H, p) for n > 1.

Proof Recall that the isomorphism A(G) ∼= EndSH(G)(1) sends the class
[G/K ] to the composite 1 → G/K+ → 1 where 1 → G/K+ is the stable
transfer map (i.e., the unit for the ring structure on the G-spectrum G/K+)
and G/K+ → 1 is the stable map induced by the projection G/K+ → S0.
Applying�H this composite becomes1 → 1⊕	 → 1, a sum of 	 copies of the
identity map, where 	 = |(G/K )H | (cf. (N) and Lemma 4.10). It follows that
the ring homomorphism A(G) ∼= EndSH(G)(1) → EndSH(1) ∼= Z induced
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by the geometric fixed point functor �H : SH(G) → SH is precisely the ring
homomorphism f H from Sect. 3 and therefore the following diagram

Spc(SHc)

ρSHc

Spc(�H )
Spc(SH(G)c)

ρSH(G)c

Spec(Z)
Spec( f H )

Spec(A(G))

commutes (by naturality of the ρK construction, see [2]). The result then
follows from the definitions and the description of ρK recalled in (1.2). ��
Example 6.8 If P(K , q, 1) ⊆ P(H, p,m) then m = 1 by Corollary 6.4 and
p(K , 0) = p(H, 0) by Proposition 6.7. The latter forces H ∼G K by Dress’s
Theorem 3.6. So we have equality P(K , q, 1) = P(K , 0, 1) = P(H, 0, 1) =
P(H, p,m).

Proposition 6.9 Suppose PG(K , p, n) ⊆ PG(H, p,m) for subgroups H, K
≤ G, a prime p and chromatic integers 1 ≤ n,m ≤ ∞. Then the following
hold:

(a) K is G-conjugate to a p-subnormal subgroup of H; i.e., K g ≤ H and
Op(Kg) = Op(H) for some g ∈ G (see 3.2). Moreover, we can find
g ∈ G such that PH (Kg, p, n) ⊆ PH (H, p,m) in SH(H)c.

(b) If n = 1 then m = 1 and K ∼G H (so the two tt-primes were equal).

Proof By Corollary 4.12, we must have K ≤G H . So, replacing K by a
conjugate, we can assume that K ≤ H . Then Going-Up (F) applied to
resGH implies that there is a prime PH (K ′, p′, n′) ∈ Spc(SH(H)c) such that
PH (K ′, p′, n′) ⊆ PH (H, p,m) and such that PG(K ′, p′, n′) = PG(K , p, n)

(cf. Corollary4.4). The latter equality implies by Theorem 4.14 that K ∼G
K ′ and Cp,n = Cp′,n′ . Hence we have an inclusion PH (K ′, p, n) =
PH (K ′, p′, n′) ⊆ PH (H, p,m). Applying Proposition 6.7 yields an inclu-
sion of primes in the Burnside ring. By Dress’s description (cf. Theorem 3.6)
of the inclusions of prime ideals of A(H), we must have Op(K ′) ∼H Op(H).
However, Op(H) � H , so in fact Op(K ′) = Op(H). (Lemma 3.3 explains
how this means that K ′ is a p-subnormal subgroup of H .) Part (b) is
Example 6.8. ��
Remark 6.10 By Remark 6.5 and Proposition 6.9, we thus need only under-
stand the inclusions PG(K , p, n) ⊆ PG(H, p,m) for the same prime p and
for p-subnormal subgroups K of H . In particular, we need only consider those
primes p dividing the order ofG. (Otherwise, no subgroup ofG has any proper
p-subnormal subgroup.)
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Finally, we can further reduce our problem to the case whereG is a p-group:

Proposition 6.11 Let H, K ≤ G be subgroups. Then for any 1 ≤
n,m ≤ ∞, we have an inclusion PG(K , p, n) ⊆ PG(H, p,m) if and
only if K is G-conjugate to a p-subnormal subgroup K g ≤ H such that
PH/N (Kg/N , p, n) ⊆ PH/N (H/N , p,m) where N := Op(H) = Op(Kg).
Note that the subquotient H/N of G is a p-group.

Proof By Proposition 6.9 (a), there exists a G-conjugate Kg of K such
that Kg ≤ H , such that PH (Kg, p, n) ⊆ PH (H, p,m), and such that
Op(H) = Op(Kg). Let N := Op(H) = Op(Kg) be this normal subgroup
of H . Under themap induced by inflation inflGG/N (Corollary4.5), our inclusion
becomes PH/N (Kg/N , p, n) ⊆ PH/N (H/N , p,m). Conversely, the latter
inclusion of primes in SH(H/N ) gets mapped by Spc(�̃N ) to the inclu-
sion PH (Kg, p, n) ⊆ PH (H, p,m) by Proposition4.7, which then becomes
PG(Kg, p, n) ⊆ PG(H, p,m) under restriction (Corollary4.4).

7 The topology of Spc(SH(Cp)
c)

Let us consider G = Cp cyclic of prime order. Since there are two subgroups,
there are only two classes of primes in SH(G)c:

P(Cp, q, n) = {
x ∈ SH(G)c

∣
∣�G(x) ∈ Cq,n

}

and

P(1, q, n) = {
x ∈ SH(G)c

∣
∣ resG1 (x) ∈ Cq,n

}
.

By Remark 6.10, we only need to understand when there is an inclusion
P(1, p, n) ⊆ P(Cp, p,m), at the prime q = p.

Proposition 7.1 We have P(1, p, n) ⊆ P(Cp, p, n − 1) for every n ≥ 2.

Proof Let x ∈ SH(G)c be a compact G-spectrum such that resG1 (x) ∈ Cp,n .
This means that 0 = f p,n ⊗ resG1 (x) ∼= resG1 (triv( f p,n) ⊗ x) where f p,n is,
as always, the idempotent associated to Cp,n (cf. Example5.12). We deduce
that G+ ⊗ triv( f p,n) ⊗ x = 0. Therefore Loc⊗(G+) ⊗ triv( f p,n) ⊗ x = 0;
in particular eG ⊗ triv( f p,n) ⊗ x = 0, where eG → 1 → fG → �eG
is the idempotent triangle in SH(G) associated to the smashing subcategory
Loc⊗(G+) (cf. Remark 5.16). It follows that

tG(triv( f p,n) ⊗ x) = [ fG, �eG ⊗ triv( f p,n) ⊗ x] = 0.

123



310 P. Balmer, B. Sanders

Applying geometric fixed points we obtain

0 = �G(tG(triv( f p,n) ⊗ x)) = �G(tG(triv( f p,n)) ⊗ x)

= �G(tG(triv( f p,n))) ⊗ �G(x).

Note that �G(tG(triv( f p,n))) = tG(triv( f p,n))G since G = Cp
(cf. Remark 5.23) hence Theorem 5.21 implies that f p,n−1 ⊗ �G(x) = 0.
That is, �G(x) ∈ Cp,n−1. ��

Corollary 7.2 We have P(1, p, ∞) ⊆ P(Cp, p, ∞).

Proof This is immediate from the above proposition, sinceCp,∞ =⋂
n≥1 Cp,n .

Remark 7.3 Weknow thatP(1, p, n) � P(Cp, p, n+1), e.g. byCorollary6.4.
So, the only remaining question is whether or not P(1, p, n) can be included
in P(Cp, p, n).

Although not necessary in the formal arguments for the hyper-brainy read-
ers, there is a way to build intuition from geometric pictures which can help
average readers, down around 160 I.Q. points. Localizing at p, we have by
Corollary 5.25 the following (left-hand side) towers of primes in SH(Cp)

c:

•P(1,p,1)

•P(1,p,2)

•P(1,p,3)

...

•P(1,p,n−1)

•P(1,p,n)

...
•P(1,p,∞)

• P(Cp,p,1)

• P(Cp,p,2)

• P(Cp,p,3)

...

• P(Cp,p,n−1)

• P(Cp,p,n)

...
• P(Cp,p,∞)

Spc(SH(Cp)
c
(p))

⊃
•

•
•
...

•
•P(1,p,n)

•

•
•
...

•
• P(Cp,p,n)

Spc(SH(Cp)
c
p,n)

The dashed lines −− indicate that the inclusions P(1, p, n)
?⊂ P(Cp, p, n)

have not been ruled out yet. As in Proposition 5.24, we can further localize
below chromatic level n, via SH(G) � triv( f p,n)⊗SH(G) = SH(G)p,n . This
yields the right-hand side tt-spectrum in the above picture. The advantage of
doing so is that we see the two primes in question,P(1, p, n) andP(Cp, p, n),
at the top of the picture. Consider now the closed subset consisting of those
two primes, diagrammatically depicted as
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◦

◦
◦
...

◦
•P(1,p,n)

◦

◦
◦
...

◦
• P(Cp,p,n)

where the two • indicate the two points that we include in the closed subset and
the ◦mark the primes we exclude. The inclusionmarked by the top dashed line
•−−• holds if and only if this closed subset is connected (and is the closure of
the right-hand prime, corresponding to P(Cp, p, n)). To show that this inclu-
sion does not hold, we are going to show that this closed set is disconnected.
As explained in Sect. 5, this can be done by carefully analyzing idempotent
triangles and this is why we proceed with the following computation.

Lemma 7.4 Let G = Cp. For any n ≥ 2, we have a decomposition

triv(ep,n−1 ⊗ f p,n) � (
eG ⊗ triv(ep,n−1 ⊗ f p,n)

) ⊕ (
fG ⊗ triv(ep,n−1 ⊗ f p,n)

)

in SH(G), where ep,n and f p,n are the chromatic idempotents (Example5.12)
and eG and fG are the group-theoretic ones (Example 5.14 and Remark 5.16).

Proof More precisely, we prove that the triangle 
G ⊗ triv(ep,n−1 ⊗ f p,n)
splits, by showing that the last map in this triangle (the vertical one below) is
zero:

eG ⊗ triv(ep,n−1 ⊗ f p,n) triv(ep,n−1 ⊗ f p,n) fG ⊗ triv(ep,n−1 ⊗ f p,n)

�eG ⊗ triv(ep,n−1 ⊗ f p,n).

It suffices to show that Hom( fG ⊗ triv(ep,n−1⊗ f p,n), �eG ⊗ triv(ep,n−1⊗
f p,n)) = 0, which in turn follows from [ fG ⊗ triv(ep,n−1 ⊗ f p,n), �eG ⊗
triv(ep,n−1⊗ f p,n)] = 0. Let us temporarily stop writing “triv” for readability.
Using Remark 5.5, we can remove the factor ep,n−1 on the right and the factor
f p,n on the left. This reads:

[ fG ⊗ ep,n−1 ⊗ f p,n, �eG ⊗ ep,n−1 ⊗ f p,n] = [ fG ⊗ ep,n−1, �eG ⊗ f p,n].

So we want to prove that [ fG ⊗ ep,n−1, �eG ⊗ f p,n] = 0.
To this end, we start from Theorem 5.21, which gives us tG( f p,n)G ⊗

Cp,n−1 = 0. Thus, tG( f p,n ⊗ x∨)G = 0 for all x ∈ Cp,n−1. Moreover, since
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G = Cp, this actually gives an equality tG( f p,n ⊗ x∨) = 0 in SH(G) because
tG(−) takes fG-local values and here, fG = fproper. (See Remark5.23.)
Thus [ fG ⊗ triv(x), �eG ⊗ f p,n] = 0. But now, the kernel of the functor
[ fG ⊗ triv(−), �eG ⊗ f p,n] is a localizing subcategory of SH. Since we just
proved that this kernel contains Cp,n−1, it contains ep,n−1 ∈ Loc(Cp,n−1).
Hence [ fG ⊗ ep,n−1, �eG ⊗ f p,n] = 0 as desired. ��
Proposition 7.5 Let G = Cp and n ≥ 1. Then P(1, p, n) � P(Cp, p, n).

Proof Example 6.8 deals with the n = 1 case, so assume n ≥ 2.
Let SH(G)p,n = triv( f p,n) ⊗ SH(G) be the truncation of SH(G) below
p-chromatic level n; see Example5.12. As explained in Remark 7.3,
the tt-spectrum Spc(SH(G)cp,n) is homeomorphic to the open subset of
Spc(SH(G)c) consisting of those PG(H, p,m)—same p—for all H ∈ {1,G}
and 1 ≤ m ≤ n. Moreover, the image in SH(G)p,n of the (n − 1)-th tri-
angle ep,n−1 → 1 → f p,n−1 → �ep,n−1 is the idempotent triangle in
SH(G)p,n associated with the closed set {P(1, p, n),P(Cp, p, n)}; see Exam-
ple 5.12. By Lemma 7.4, the left idempotent ep,n−1⊗ f p,n of this triangle splits
inSH(G)p,n . That is,wehave ep,n−1⊗ f p,n = (ep,n−1⊗ f p,n⊗eG)⊕(ep,n−1⊗
f p,n ⊗ fG). By applying �G and resG1 respectively we see that the two direct
summands are non-zero; hence it is a non-trivial decomposition. Invoking
Lemma 5.6, we conclude that the closed subset {P(1, p, n),P(Cp, p, n)} of
Spc(SH(G)cp,n) consisting of precisely two points is disconnected. The claim
follows (see Remark 7.3 if necessary).

Remark 7.6 We thus have a complete description of the topology forG = Cp.
See (1.3) for a picture of the spectrum. As a consequence we obtain a complete
classification of the thick ⊗-ideals in SH(Cp)

c. More on this topic in Sect. 10.

8 The topology for general G and the log p-Conjecture

Next we consider the problem of determining the topology of Spc(SH(G)c)

for an arbitrary finite group G. As explained in Proposition 6.11, we have
reduced the problem to understanding the possible inclusions PG(K , p, n) ⊆
PG(H, p,m) for p a prime number and G a p-group.

We obtain an immediate generalization of Proposition 7.5:

Proposition 8.1 Let G be a finite group, H, K ≤ G subgroups, p a prime
and 1 ≤ n < ∞. Then PG(K , p, n) � PG(H, p, n)—for the same n—unless
H ∼G K (in which case the two primes coincide).

Proof Suppose ab absurdo that PG(K , p, n) ⊆ PG(H, p, n) for some n ≥ 1
and H, K ≤ G with H 	G K . Proposition 6.11 allows us to assume that G
is a p-group and that H = G. Our (absurd) situation is now: PG(K , p, n) ⊆
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PG(G, p, n), where G is a p-group and K < G. Then there exists a maximal
proper subgroup N�G containing K . SinceG is a p-group, N must have index
p andG/N � Cp. Finally, applyCorollary 4.5 toPG(K , p, n) ⊆ PG(G, p, n)

to obtain the absurd conclusion PCp(1, p, n) ⊆ PCp(Cp, p, n), contradicting
Proposition 7.5. ��

We can also generalize Proposition 7.1 to arbitrary finite groups:

Theorem 8.2 Let G be a finite group, p a prime, and K ≤ H ≤ G subgroups
such that K admits a p-subnormal tower to H of length s (seeTerminology3.2).
Then PG(K , p, n) ⊆ PG(H, p, n − s) for all n > s.

Proof By Corollary 4.4, we can assume that H = G. We then proceed by
induction on s. For the s = 1 base case, Proposition 4.7 applied to N = K
turns the inclusion PCp(1, p, n) ⊆ PCp(Cp, p, n − 1) of Proposition7.1 into
PG(K , p, n) ⊆ PG(G, p, n − 1). For the general case, let K ≤ K ′ �G with
[G : K ′] = p and K ≤ K ′ a p-subnormal subgroup of index ps−1. By
induction hypothesis,PK ′(K , p, n) ⊆ PK ′(K ′, p, n−s+1) for all n > s−1.
Applying Corollary 4.4, we get PG(K , p, n) ⊆ PG(K ′, p, n − s + 1). The
base case s = 1 gives the last bit: PG(K ′, p, n − s + 1) ⊆ PG(G, p, n − s).

��
Corollary 8.3 Let G be a p-group and K ≤ H ≤ G subgroups with
[H : K ] = ps. Then PG(K , p, n) ⊆ PG(H, p, n − s) for all n > s. ��

Finally, Corollary 7.2 (and its proof) passes to arbitrary finite groups:

Corollary 8.4 Let G be a finite group, p a prime, and K ≤ H ≤ G sub-
groups such that K admits a p-subnormal tower to H. Then PG(K , p, ∞) ⊆
PG(H, p, ∞). ��
Remark 8.5 We saw in Proposition 6.7 how Spc(SH(G)c) provides a “chro-
matic refinement” of Spec(A(G)), in the same way that Spc(SHc) refines
Spec(Z). However, Theorem 8.2 goes beyond this chromatic refinement.
Namely, the collision p(H, p) = p(K , p) when Op(H)∼G Op(K ) for non-
conjugate subgroupsH and K (Theorem3.6) doesnot happen inSpc(SH(G)c).
We have instead the inclusions of Theorem 8.2, which under the comparison
map ρSH(G)c : Spc(SH(G)c) → Spec(A(G)) yield inclusions between maxi-
mal primes, i.e., necessarily equalities p(H, p) = p(K , p) in A(G). These are
exactly the equalities observed by Dress.

Remark 8.6 By the above results, the question we have in the general case is
similar to the one we had for G = Cp. Theorem 8.2 shows that we have a shift
by s when K admits a p-subnormal tower of length s to H . The problem is
whether this is optimal. Proposition 8.1 shows that we do not have inclusion
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PG(K , p, n) ⊆ PG(H, p, n), but for s > 1 there is still the possibility that we
could have a more efficient inclusion than PG(K , p, n) ⊆ PG(H, p, n − s).
Moreover, by Proposition 6.11 the question of this indeterminacy is equivalent
to the question for a p-group. To be clear, if G is a p-group and H ≤ G
is a subgroup of index ps then we have PG(H, p, n) ⊆ PG(G, p, n − s)
for all n > s but the question is whether we could have PG(H, p, n) ⊆
PG(G, p, n − s + 1). We conjecture that this does not happen. In fact, this
conjecture reduces to the H = 1 case, which we state below:

Conjecture 8.7 (logp-Conjecture) We say that a group G of order pr satisfies
the logp-Conjecture if, for all n ≥ r , we have PG(1, p, n) � PG(G, p, n −
r + 1).

Example 8.8 Proposition 7.5 says that Cp satisfies the logp-Conjecture.

Remark 8.9 As we have seen in Remark 6.6, inclusions P(K , p, n) ⊆
P(H, p,m)—for the same p—can be tested p-locally. In other words, the
logp-Conjecture is truly a conjecture about SH(G)(p); see Corollary 5.25.

In the next section we will connect this conjecture to Tate cohomology but
for nowwe would like to demonstrate its consequences for the complete deter-
mination of the topology of Spc(SH(G)c), in conjunctionwith Proposition 6.1.

Theorem 8.10 Let G be a p-group and let H ≤ G. Suppose that G satisfies
the logp-Conjecture. Then P(H, p, n) ⊆ P(G, p,m) if and only if n ≥ m +
logp[G : H ].
Proof One direction is Theorem 8.2. Conversely suppose P(H, p, n) ⊆
P(G, p,m) and let r = logp |G| and s = logp |H |. By Theorem 8.2 again, we
know thatP(1, p, n+s) ⊆ P(H, p, n). Combining these inclusions, we obtain
P(1, p, n+ s) ⊆ P(G, p,m). By hypothesis, G satisfies the logp-Conjecture,
hence n + s ≥ m + r . ��

More generally, we get:

Theorem 8.11 Let G be a finite group and p a prime. Let H, K ≤ G be
arbitrary subgroups and 1 ≤ n,m ≤ ∞. Suppose the p-group H/Op(H), a
subquotient of G, satisfies the logp-Conjecture 8.7. Then we have an inclu-
sion of equivariant primes P(K , p, n) ⊆ P(H, p,m) if and only if K is
G-conjugate to a p-subnormal subgroup of H and n ≥ m + logp(|H |/|K |).
Proof In viewofProposition 6.11,we can reduce the question to the announced
p-group H/Op(H); note that |H |/|K | does not change under this reduction.
So we are down to the special case of p-groups established in Theorem 8.10.

��
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From the results of Sect. 7, we can deduce a conjecture-free statement:

Theorem 8.12 Let G be a finite group of square-free order. For any prime p
dividing |G|, any subgroups H, K ≤ G with H 	G K and any chromatic
integers 1 ≤ m, n ≤ ∞, the following are equivalent:

1. P(K , p, n) ⊂ P(H, p,m).
2. n ≥ m + 1 and K is G-conjugate to a normal subgroup of index p in H.

Proof We can apply the conclusion of Theorem 8.11 unconditionally since the
only p-subgroup which appears as a subquotient of G is Cp, which satisfies
the logp-Conjecture by Proposition 7.5. Also because |G| is square-free, we
see that there is no p-subnormal tower beyond length s = 1. This gives the
statement. ��
Remark 8.13 In the situation of Theorem 8.12, the prime p cannot divide |K |.
So K is p-perfect, Op(K ) = K ∼G Op(H) and the latter has index p in H .

Example 8.14 Consider G = S3 and p a prime. Let us draw a picture of the
space Spc(SH(G)c) at the prime p, that is, above Spec(A(G)(p)), or equiva-
lently let us draw the picture of Spc(SH(G)c(p)); see Remark8.9. This depends
on the prime p, with three cases to discuss: p = 2, p = 3, and p not divid-
ing |G|.

Spc(SH(S3)c(p)) =

Spec(A(S3)(p)) =

ρ •

•
•
•

...
•

•

•
•
•

...
•

•

•
•
•

...
•

•

•
•
•

...
•

• • • •

• •

{1}C2 A3 S3
if p = 2

•

•
•
•

...
•

•

•
•
•

...
•

•

•
•
•

...
•

•

•
•
•

...
•

• • • •

• • •

{1}C2 A3 S3
if p = 3

•

•
•
•

...
•

•

•
•
•

...
•

•

•
•
•

...
•

•

•
•
•

...
•

• • • •

• • • •

{1}C2 A3 S3
if p �= 2, 3

At the very right, when p �= 2, 3, the spectrum of the Burnside ring local-
ized at p is a disjoint union of four copies of Spec(Z(p)) = {(0), (p)}, one
for each conjugacy class of subgroup H ≤ G. Accordingly, above each copy
of Spec(Z(p)), we see a chromatic towerwith infinitelymany primes above (p)
and only one above (0). At p = 2, Dress’s collision happens between the triv-
ial subgroup and any of the conjugate cyclic subgroups of order 2, as well as
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between A3 = C3 and G. Each of those closed points now admits a chromatic
refinement for each H , i.e., here there are two towers of primes in SH(G)c

projecting down to the closed point (p). Moreover, the two towers are not dis-
connected but the one for the smaller subgroup is in some sense “in the closure”
of the one for the bigger subgroup. A similar phenomenon happens at p = 3
for the subgroups {1} and A3 = C3. Note however that although (any) H = C2
has index p = 3 in G, it is not p-subnormal simply because it is not normal.
We see here that Dress’s result already distinguishes p(H, p) = p(C2, 3) from
p(G, p) = p(S3, 3), which shows that the corresponding chromatic towers{
P(C2, 3, n)

∣
∣n ≥ 1

}
and

{
P(S3, 3, n)

∣
∣n ≥ 1

}
are disconnected.

Let us give a re-interpretation of Conjecture 8.7 in more geometric terms:

Proposition 8.15 Let G be a group of order pr . The following are equivalent:

(A) Conjecture 8.7 holds: P(1, p, n) � P(G, p, n − r + 1), whenever r ≤
n < ∞.

(B) For every N > r , the following subset of Spc(SH(G)c(p)) is closed:

Z p,N :={
P(H, p, 	) ∈ Spc(SH(G)c(p))

∣
∣H≤G, N − logp |H | ≤ 	≤∞}

.

(C) For every N > r , there exists x ∈ SH(G)c(p) with supp(x) = Z p,N .

When these conditions hold, the closed set Z p,N is irreducible and has
P(G, p, N − r) as generic point.

Proof (A)⇒(B): Since N > r , Corollary 8.3 implies that Z p,N is con-
tained in the closed set

{
Q ∈ Spc(SH(G)(p))

∣
∣Q ⊆ P(G, p, N − r)

} =
{P(G, p, N − r)}. If we prove the reverse inclusion, {P(G, p, N − r)} ⊆
Z p,N , then Z p,N is closed irreducible with the announced generic point. To
prove this, suppose ab absurdo that there exists a point Q ⊂ P(G, p, N − r)
in {P(G, p, N − r)} with Q /∈ Z p,N . By Theorem 4.9 (and Remark8.9),
we have Q = P(H, p, 	) for some H ≤ G and some 1 ≤ 	 ≤ ∞. Let
s = logp |H |, in which case Q /∈ Z p,N implies that N − 1 ≥ 	 + s. By
Proposition 6.2 and Corollary 8.3, we haveP(1, p, N −1) ⊂ P(1, p, 	+s) ⊂
P(H, p, 	) ⊂ P(G, p, N − r), which contradicts (A) for n = N − 1 ≥ r .

(B)⇒(C): In Spc(SH(G)c(p)), the closed subset Z p,N has finite (hence quasi-
compact) complement. (The picture (8.18) below may be a useful guide.) It
follows from general tt-geometry that any closed subset with quasi-compact
complement is the support of some object: see [1, Proposition2.14].

(C)⇒(A): Let n ≥ r and let x ∈ SH(G)c(p) be such that supp(x) = Z p,n+1,
that is, use (C) for N := n + 1 > r . Then P(G, p, n − r + 1) ∈ Z p,n+1 =
supp(x) means x /∈ P(G, p, n − r + 1), whereas P(1, p, n) /∈ Z p,n+1 =
supp(x) means x ∈ P(1, p, n). Together, this gives P(1, p, n) � P(G, p, n −
r + 1) as desired. ��
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Remark 8.16 One can almost make the same statement as above with SH(G)c

instead of the p-local version SH(G)c(p). However, there is some “fringe effect”
when N is small, typically if P(G, p, 1) is allowed in Z p,N ; in that case, Z p,N
is not closed but for the rather disjoint issue that P(G, p, 1) = P(G, q, 1)
for q �= p and thus contains in its closure many other primes P(H, q, n)

for q �= p.

Remark 8.17 As in Remark 7.3, it can be useful to draw a picture of
Spc(SH(G)c(p)). Let us assume thatG is a p-group for simplicity, say |G| = pr .
So subgroups H ≤ G can be filtered by the integer s = logp(|H |), which
runs between 0 and r . We read s horizontally and the chromatic degree m
of P(H, p,m) vertically:

m

n −
n − 1 −

...

n − r −
...

3 −
2 −
1 −

s|||||
r···s···0

(H=G)(|H |=ps )(H=1)

•
•
•
...

•
•
•
•
•
•
...

•
•
•
...

•
•
•
•
•
•
...

•
•
•
...

•
•
•
•
•
•
...

•
•
•
...

•
•
•
•
•
•
...

•
•
•
...

•
•
•
•
•
•
...

Spc(SH(G)c(p)) =

We warn the reader that this picture is slightly misleading since of course
G can have non-conjugate subgroups of a fixed order ps . So, the intermediate
columns (for 0 < s < r ) actually have several layers. This picture is nonethe-
less useful to build some intuition. (The picky reader can restrict toG = Cpr if
necessary.) The inclusions depicted above are the only ones if Conjecture 8.7
holds true.

Truncating below p-chromatic level n, i.e., localizing via SH(G) �
SH(G)p,n = triv( f p,n) ⊗ SH(G), the spectrum would be as above but trun-
cated to only include those m ≤ n. In particular, it is a finite space (but not a
discrete one).
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Also, the subset Z p,N of Proposition 8.15 looks as follows (the •, not the ◦):

(8.18)

m

N −
N − 1 −

...

N − r −
...

3 −
2 −
1 −

s|||||
r···s···0

(H=G)(|H |=ps )(H=1)

◦
◦
◦
...

◦
◦
◦
◦
•
•
...

◦
◦
◦
...

◦
◦
◦
•
•
•
...

◦
◦
◦
...

◦
◦
•
•
•
•
...

◦
◦
◦
...

◦
•
•
•
•
•
...

◦
◦
◦
◦
•
•
•
•
•
•
...

...

Z p,N

P(G, p, N − r)

Let us conclude this section with a summary of what we know about the
topology:

Corollary 8.19 Let G be a finite group. Every closed subset of Spc(SH(G)c)

is a finite union of irreducible closed subsets, and every irreducible closed
set is of the form {P} = {

Q ∈ Spc(SH(G)c)
∣
∣Q ⊆ P

}
for a unique prime

P ∈ Spc(SH(G)c).
Let us consider twoarbitrary primes inSH(G)c (see Theorems 4.9 and 4.14)

Q = P(K , q, n) and P = P(H, p,m)

for subgroups H, K ≤ G, primes p, q and chromatic integers 1 ≤ m, n ≤ ∞.
We fix P (i.e., we fix H, p and m) and we discuss when the inclusion Q ⊆ P

holds, i.e., when Q ∈ {P}, as function of K , q and n.

(a) If K is not G-conjugate to a q-subnormal subgroup of H then Q /∈ {P}.
(b) If m > 1 and p �= q then Q /∈ {P}. (If m = 1 then P = P(H, q, 1)

anyway.)

These statements were independent of n. In the remaining cases, the inclu-
sion Q ⊆ P does always happen, for all n in a connected interval. More
precisely:

(c) Suppose that K is G-conjugate to a q-subnormal subgroup of H and
suppose that either m = 1 or p = q. Then P(K , q, ∞) ∈ {P} and there
is a well-defined chromatic integer nK := min

{
1 ≤ 	 ≤ ∞∣

∣P(K , q, 	) ∈
{P}} such that
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m ≤ nK ≤ m + logq(|H |/|K |)

(for m = ∞, this simply means nK = m = ∞) with the property that

Q ∈ {P} if and only if nK ≤ n ≤ ∞.

If nK equals m and is finite, then K ∼G H. Finally, if Conjecture 8.7 holds
for the q-group H/Oq(H)—for instance if G has square-free order—then

nK = m + logq(|H |/|K |).

Proof Parts (a) and (b) follow from Corollary 6.4, Remark 6.5 and Proposi-
tion 6.9. Part (c) follows fromTheorem 8.2, Proposition 8.1 and Theorem 8.11.

��
Remark 8.20 In (c), if m = 1, one can replace p by q without changing
the problem since P is P(H, q, 1) as well. So one can read p instead of q
everywhere in (c).

9 Tate re-interpretation of the log p-Conjecture

In this section we provide equivalent formulations of the logp-Conjecture 8.7,
in terms of blue shift phenomena for Tate cohomology. Let G be a p-group of
order pr and let us denote by F≤ps the family of subgroups

{
H ≤ G

∣
∣|H | ≤

ps
}
of order at most ps ; see Example5.17. We denote the associated idem-

potent triangle by e≤ps → 1 → f≤ps → · and the associated Tate functor
by

t≤ps = [ f≤ps , �e≤ps ⊗ −] ∼= f≤ps ⊗ [e≤ps , −] : SH(G) → SH(G)

as in Sect. 5. Finally, let us agree that Cp,0 := SHc
(p) denotes the whole

category of compact p-local spectra, and recall that x is said to be of type-n if
x ∈ Cp,n\Cp,n+1.

Theorem 9.1 Let G be a group of order pr . The following are equivalent:

(A) Conjecture 8.7 holds : P(1, p, n) � P(G, p, n − r + 1) whenever r ≤
n < ∞.

(B) For all integers s, t and n such that 0 ≤ s < t ≤ r and n ≥ r − s, and
for every subgroup H ≤ G with |H | = pt , we have

�H (t≤ps (triv( f p,n))) ⊗ Cp,n−(t−s) = 0.
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In a slogan: the geometric fixed points of the Tate functor �H (t≤ps (−))

lowers chromatic degree by the (p-exponent) “distance” t − s from the
subgroup H to the family F≤ps .

Proof (A)⇒(B): Let N := s + n + 1 > r . Then by Proposition 8.15, there
exists an object x ∈ SH(G)c(p) whose support is Z p,N = {

P(K , p, 	) ∈
Spc(SH(G)c(p))

∣
∣K ≤ G, N − logp |K | ≤ 	 ≤ ∞}

. Localizing further
to SH(G)p,n = f p,n ⊗ SH(G) (see Proposition 5.24), we obtain an object
x ′ := x ⊗ f p,n ∈ SH(G)cp,n whose support is

supp(x ′) = {
P(K , p, 	)

∣
∣N − logp |K | ≤ 	 ≤ n

}
.

Note that any point P(K , p, 	) in supp(x ′) must satisfy logp |K | > s (oth-
erwise n + 1 = N − s ≤ 	 ≤ n). It follows that for every y ∈ SH(G)cp,n
in thick⊗{G/K+|K ∈ F≤ps } we have y ⊗ x ′ = 0 and [y, x ′] = 0 for they
have disjoint support in SH(G)cp,n . Hence the same vanishing is true for the
corresponding left idempotent e≤ps in place of y. Repatriated into SH(G)(p)
this reads e≤ps ⊗ x ⊗ f p,n = 0 and [e≤ps , x ⊗ f p,n] = 0. From either of them
we deduce

(9.2) t≤ps ( f p,n ⊗ x) = t≤ps ( f p,n) ⊗ x = 0.

Now for every subgroup H ≤ G with |H | = pt , we have by the construction
of x that P(H, p, n − (t − s)) /∈ Z p,N = supp(x) whereas P(H, p, n − (t −
s) + 1) ∈ Z p,N = supp(x). Unfolding the definitions, this means that �H (x)
belongs to Cp,n−(t−s) but not to Cp,n−(t−s)+1. In other words, �H (x) has
type exactly n − (t − s) (in SHc

(p)) and therefore Cp,n−(t−s) = thick(�H (x))
in SHc

(p). So, to prove (B), it suffices to prove the vanishing of

�H (t≤ps ( f p,n)) ⊗ �H (x).

But this follows by applying �H to (9.2).
(B)⇒(A): Again via Proposition 8.15, it suffices to prove that for every

N > r , the irreducible closed subset {P(G, p, N − r)} in Spc(SH(G)c(p)) is
exactly

Z p,N = {
P(K , p, 	)

∣
∣K ≤ G, 1 ≤ 	 ≤ ∞ such that 	 + logp |K | ≥ N

}
.

We already have one inclusion, {P(G, p, N − r)} ⊇ Z p,N , by Corol-
lary 8.3 and we now discuss the reverse inclusion. Since the complement
of {P(G, p, N − r)} in Spc(SH(G)c(p)) is compact (in fact, even the comple-
ment of Z p,N is finite), there exists an object z ∈ SH(G)c(p) whose support is
exactly

123



The spectrum of the equivariant stable homotopy category 321

supp(z) = {P(G, p, N − r)}.

Suppose ab absurdo that there exists a “bad point” P0 = P(K0, p, n)

belonging to {P(G, p, N − r)} but with P0 /∈ Z p,N ; the latter reads n +
logp |K0| < N . We can assume that n is minimal among such “bad points”.
This means that we can assume the following:

for all 	 < n, if 	 + logp |H | < N then P(H, p, 	) /∈ {P(G, p, N − r)}.
(9.3)

Let s := N − n − 1. Since n < N , we have s ≥ 0 and we can consider the
family F≤ps . We claim that the following Tate object vanishes in SH(G)(p):

t≤ps ( f p,n ⊗ z).

To see this, it suffices to prove that �H (t≤ps ( f p,n) ⊗ z) vanishes in SH(p)
for each H ≤ G. When H ∈ F≤ps this is automatic from Example 5.18 and
Remark 5.15. Let us then take H ≤ G with |H | = pt and t > s. We are in the
situation of hypothesis (B) for 0 ≤ s < t ≤ r . (Note we indeed have n ≥ r − s
because we started with N > r .) Hence the vanishing of

�H (t≤ps ( f p,n) ⊗ z) = �H (t≤ps ( f p,n)) ⊗ �H (z)

would follow from �H (z) ∈ Cp,n−(t−s). Now s = N − n − 1 by definition,
so n − (t − s) = N − t − 1 and we are left to prove �H (z) ∈ Cp,N−t−1. If
N − t −1 = 0 then there is nothing to prove. Otherwise, set 	 := N − t −1 <

N − s − 1 = n and consider the prime P(H, p, 	). We have 	 + logp |H | =
N − t − 1 + t = N − 1 < N and we can apply (9.3), which tells us that
P(H, p, 	) /∈ {P(G, p, N − r)} = supp(z). The latter reads z ∈ P(H, p, 	)
hence �H (z) ∈ Cp,	 = Cp,N−t−1 as desired.

At this stage, we have proved the announced vanishing of the Tate object:
t≤ps ( f p,n ⊗ z) = 0 in SH(G)(p). Tensoring by the dual of z, we get by rigidity

0 = t≤ps ( f p,n ⊗ z) ⊗ z∨ = [ f≤ps ⊗ z, �e≤ps ⊗ z ⊗ f p,n]
= [ f≤ps ⊗ z ⊗ f p,n, �e≤ps ⊗ z ⊗ f p,n]

where the last equality uses Remark 5.5 again. In the localization SH(G)p,n =
f p,n ⊗SH(G), the last equality implies HomSH(G)p,n ( f≤ps ⊗ z, �e≤ps ⊗ z) =
0.Consequently, the triangle
≤ps⊗z splits inSH(G)p,n , wherewe thus have:

z � z1 ⊕ z2 with z1 = e≤ps ⊗ z and z2 = f≤ps ⊗ z .
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Since z ∈ SH(G)cp,n is compact, so are z1 and z2 and their support must
then be contained in Y1 := {

P(K , p, n) ∈ Spc(SH(G)cp,n)
∣
∣|K | ≤ ps

}
and

Y2 := {
P(K , p, n) ∈ Spc(SH(G)cp,n)

∣
∣|K | > ps

}
respectively. Moreover, the

“bad point” P(K0, p, n) belongs to Y1, since logp |K0| < N − n = s + 1,
and P(G, p, N − r) belongs to Y2. Even more, this point P(G, p, N − r) is
the generic point of supp(z), which is irreducible (in Spc(SH(G)(p)), hence in
the open Spc(SH(G)cp,n) as well). The non-trivial decomposition supp(z) =
Y1 � Y2 is therefore absurd. Hence there was no “bad point” and we have the
desired equality {P(G, p, N − r)} = Z p,N . ��
Corollary 9.4 If G is a group of order pr which satisfies the logp-
Conjecture 8.7, then the geometric G-fixed points of the Tate construc-
tion lowers chromatic degree by r , namely for every n ≥ r , we have
�G(tG(triv( f p,n))) ⊗ Cp,n−r = 0.

Proof This is the extreme case s = 0 and t = r in part (B) of Theorem 9.1. ��
If one is willing to study the logp-Conjecture as a whole then global geo-

metric fixed points are also enough.

Corollary 9.5 Let p be a prime. The following are equivalent:

(A) The logp-Conjecture 8.7 holds for all p-groups.
(B) For every group G of order pr , every 0 ≤ s < r , and every n ≥ r − s,

we have �G(t≤ps (triv( f p,n))) ⊗ Cp,n−(r−s) = 0.

Proof (A)⇒(B) is the special case t = r of Theorem 9.1 (B). The converse
(B)⇒(A) also follows from Theorem 9.1 by induction on |G|. Indeed, the
“missing” cases �H (t≤ps (triv( f p,n))) ⊗ Cp,n−(t−s) = 0 with |H | = pt and
t < r hold by the induction hypothesis applied to H , using that resGH preserves
t≤ps (Example5.18). ��

10 The classification of tt-ideals in SH(G)c

As recalled inRemark 5.1, tt-ideals of SH(G)c are in bijectionwith the Thoma-
son subsets ofSpc(SH(G)c), i.e., arbitrary unions of closed subsets eachhaving
quasi-compact complement.

Proposition 10.1 Let Z = {P1}∪· · ·∪{Pk}be a closed subset ofSpc(SH(G)c)

(see Proposition6.1). We can assume that this is irredundant, that is, Pi � P j
for all 1 ≤ i �= j ≤ k. Let Pi = P(Hi , pi ,mi ) for all i = 1, . . . , k. Then
the complement of Z is quasi-compact if and only if all chromatic integers
m1, . . . ,mk are finite.
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Proof The overall architecture of the proof resembles that of Proposition 6.1.
The non-equivariant case (G = 1) can be found in [2, Corollary9.5 (d)].

For a general G, let us show that if all m1, . . . ,mk are finite then Z has
quasi-compact complement. As

{
supp(x)

∣
∣x ∈ SH(G)c

}
is a closed basis for

the topology, we need to prove that whenever Z = ∩i∈I supp(xi ) for a family
{xi }i∈I of objects in SH(G)c there exists a finite subset J ⊆ I such that
Z = ∩i∈J supp(xi ). Since Z ⊆ ∩i∈J supp(xi ) for any J ⊆ I , we just need
to make J big enough so that we get equality. We shall do this by collecting
together a finite union of finite subsets of I , one for each subgroup K ≤ G
(up to conjugacy). Indeed, since Spc(SH(G)c) = ∪K≤G Im(ϕK ,G), it suffices
to show that we can find a finite subset JK ⊆ I so that the desired equality
holds when intersected with Im(ϕK ,G):

(10.2) Z ∩ Im(ϕK ,G)
?= ∩i∈JK supp(xi ) ∩ Im(ϕK ,G).

SinceϕK ,G = Spc(�K ,G) is an inclusion-preserving bijection Spc(SHc)
∼→

Im(ϕK ,G), with inverse Spc(triv) suitably restricted (see Corollary4.6), we
can transport the question of (10.2) into Spc(SHc). Let us study both sides
separately.

For H, K ≤ G, p a prime and 1 ≤ m < ∞ finite, it is a direct conse-
quence of Corollary 8.19 that the intersection of {P(H, p,m)} = {

Q
∣
∣Q ⊆

P(H, p,m)
}
with Im(ϕK ,G) = {

P(K , q, n)
∣
∣q, n

}
is either empty or equals

the closure of a single point, namely P(K , q, nK ) in the notation of Corol-
lary 8.19 (c); note that this nK is finite sincem is. Also note thatP(K , q, nK ) =
ϕK ,G(Cq,nK ). Hence

(10.3) (ϕK ,G)−1({P(H, p,m)} ∩ Im(ϕK ,G)
) = {Cq,nK } or ∅.

Furthermore, for every object x ∈ SH(G)c, we have by a general tt-fact
that

(ϕK ,G)−1( supp(x) ∩ Im(ϕK ,G)
) = (ϕK ,G)−1(supp(x)) = supp(�K ,G(x)).

(10.4)

We can now use (10.3) and (10.4) to reduce the question of (10.2) to the
known non-equivariant case, thus producing the desired finite JK ⊆ I . Hence
the result.

Conversely, suppose that one of themi = ∞.Write Z = Z ′∪{P(H, p, ∞)},
regrouping the other irreducibles under Z ′. Since P(H, p, ∞) =
∩1≤n<∞P(H, p, n), we have Z = ∩1≤n<∞(Z ′ ∪ {P(H, p, n)}). If the com-
plement of Z is quasi-compact then there is a finite n such that Z =
Z ′ ∪ {P(H, p, n)}. But then P(H, p, n) ∈ Z = Z ′ ∪ {P(H, p, ∞)} and since
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P(H, p, n) � P(H, p, ∞), it follows that P(H, p, n) ∈ Z ′. However this
forces P(H, p, ∞) ∈ {P(H, p, n)} ⊆ Z ′, or in other words P(H, p, ∞) is
contained in one of the other irreducibles of Z , contradicting the assumption
that the P1, . . . ,Pk were irredundant. ��
Corollary 10.5 The Thomason subsets of Spc(SH(G)c) are the arbitrary
unions of {P(H, p,m)} = {

Q
∣
∣Q ⊆ P(H, p,m)

}
for arbitrary H ≤ G, p

prime and finite chromatic integer 1 ≤ m < ∞.

Proof This is direct from Proposition 6.1 and Proposition 10.1. ��
Corollary 10.6 (Classification of tt-ideals in SH(G)c) Let G be a finite group
and let N∞ := {0, 1, 2, . . .} ∪ {∞} with the obvious relation < (setting ∞ �<
∞). Consider all functions f : {

(H, p)
∣
∣H ≤ G and p prime

} → N∞ and let
us say that f is admissible if it satisfies the following property:

(A) If P(K , q, n) ⊆ P(H, p,m) and m > f (H, p) then n > f (K , q).

If the logp-Conjecture 8.7 is satisfied by every p-group subquotient of G (for
all primes p), then this property can equivalently be expressed without any
knowledge of inclusions between equivariant primes as follows:

(A’) For every prime p and for every p-subnormal K ≤ H, we have
f (K , p) ≤ f (H, p) + logp[H : K ]. Moreover, if f (H, p) = 0 for
any pair (H, p) then f (H, q) = 0 for all primes q.

Independently of the logp-Conjecture, there is a one-to-one correspondence
between such admissible functions and Thomason subsets of Spc(SH(G)c)

mapping f to Y f := {
P(H, p,m)

∣
∣m > f (H, p)

}
. Consequently, there

is a one-to-one correspondence between admissible functions and tt-ideals
in SH(G)c mapping f to

J f := {
x ∈ SH(G)c

∣
∣ �H (x) ∈ Cp, f (H,p), ∀ H ≤ G and p such that f (H, p) > 0

}
.

Proof If Y ⊆ Spc(SH(G)c) is a Thomason subset, then Y = ∪H≤G, p prime
X (H, p) where X (H, p) := {

P(H, p, n)
∣
∣P(H, p, n) ∈ Y

}
. By Corollar-

ies 8.19 and 10.5, we see that each non-empty X (H, p) is of the form{
P(H, p, n)

∣
∣nH,p ≤ n ≤ ∞}

for some finite nH,p ≥ 1. The link with our
function f is simply that we set f (H, p) = ∞ when X (H, p) = ∅ and
f (H, p) = nH,p −1 when X (H, p) is non-empty. This is made in such a way
that X (H, p) = {

P(H, p, n)
∣
∣n > f (H, p)

}
in both cases. The definitions of

“admissible” are translations of Corollary 8.19.
The classification of tt-ideals then follows from general tt-geometry (see

Remark 5.1) since one easily checks that J f = KY f for K = SH(G)c. ��
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