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 FUNCTION SPACES AND DUALITY

 BY E. H. SPANIER*

 (Received April 13, 1959)

 Introduction

 This paper is devoted to a new approach to the duality in S-theory in-

 troduced by J. H. C. Whitehead and the author [10, 12, 14]. The duality

 as originally defined was based on imbedding X and its dual X' in a sphere

 Sn in such a way that each is an S-deformation retract of the complement

 of the other. If Y and Y' are similarly imbedded in Sn, there is a duality

 isomorphism Dn: {X, Y} -,{ Y', X'} of the S-groups ({X, Y} is, by defini-
 tion, the limit with respect to k of the set of homotopy classes of maps

 SIX - SI Y) having many of the properties one would expect (and hope
 for) in a duality. The construction of this isomorphism involves factoring

 a map into a composite of inclusion maps and retractions by deformation

 for each of which one knows what the dual map is, defining the dual of

 the map to be the composite of the duals of the factors, and then proving

 that the end result does not depend on the factorization and other choices
 involved in the construction. This method of defining the duality map is

 not explicit, and there seems to be no way of determining if a map

 f: SkX - SI Y represents an element of {X, Y} corresponding (under DO)
 to the element of {Y', X'} represented by a mapf': St' Y' -- Sk'X' except
 to go back to the original construction of the duality.

 The present paper presents a new treatment of this duality. It seems

 to be more natural and more general and gives more explicitly the relation

 between maps representing corresponding elements of the S-groups in

 question.

 We start with the category of connected polyhedra having base points.

 If X and Y have base points x., y., respectively, we define X c Y to be
 the quotient of X x Y when X x y0 U x0 x Y is collapsed to a single
 point. Then a duality map is a continuous map

 u: XI >?c X - Sn

 for some n, such that the slant product u*s*/z e Hn-q(X) (sn* a generator
 of Hn(Sn), z e Hq (X')) induces an isomorphism1

 (pu Hj(Xf) Hn-Q(X).

 * Research supported by the AFOSR.
 1 We shall always work with homology and cohomology modulo the point base. Thus,

 Hlq(X) is an abbreviation for Hq(X, xo) and Hq(X) is an abbreviation for Hq(X, xo).
 338
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 FUNCTION SPACES AND DUALITY 339

 By (5.1) below, this is a generalization of the older concept of duality.

 u also induces a duality map

 Upq SpX' >c SqX Sn+p+q

 for every p > 0, q > 0. Let v: Y' c Y Sn be another duality map
 (for the same n). The main result, (5.9) below, asserts the existence of

 an isomorphism

 Dn(u, v) {X, Y} - {Y', X'}.

 This isomorphism is characterized by the property (see (5.11) below) that

 for k, k'large enough if f: SkX >+ SIy, f': St' Yip-+ Sk'X' then D {f}
 {f'} if and only if the following diagram is homotopy commutative:

 Sk Yf >+ St X St'y >e' S kyo

 of VI 1 1 ,Is

 S'X >ac S kXh Sn+k+k'

 The fact that Dn is characterized by the homotopy commutativity of the
 above diagram makes possible a natural direct derivation of the main prop-

 erties of the duality. This is done in ?6.

 The proof of the main theorem is given in ?5. It is based on the concepts

 of spectrum and functional dual developed in the earlier sections. Spectra

 were introduced by Lima [6] in order to generalize S-theory. In S-theory

 one essentially replaces a space X by the sequence of spaces X, SX,

 S2X,.- - -. By using spectra it is possible to extend this further by allowing

 sequences of spaces X., Xl, X2, *-- together with maps SX, -+ X,+ for
 every n having certain convergence properties ((3.1), (3.2)). The defini-

 tions and basic properties of spectra are given in ?3.

 Given a polyhedron X there is associated a spectrum F(X) whose klth
 space is the set of continuous maps X -+ St in the compact-open topology.
 In ?4 the spectra F(X) are introduced and the "exponential law" for func-

 tion spaces ((2.3) below) implies the existence of a duality isomorphism

 D: {Y, F(X)} > {X, F(Y)}

 as in (4.9) below. This duality underlies the duality Dn(u, v) because if

 U: X' >C X_+ Sn is a duality map there is a canonical equivalence of X'
 with the nth suspension of F(X) (see (5.5) below).

 Naturally the whole theory can be developed in relative form using car-
 riers as in [14]. We have preferred to present only the absolute case in

 detail, but the final section indicates how the basic result appears in the
 relative form.
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 340 E. H. SPANIER

 Most of the results are known [10, 12, 14], but (5.8) below is new. It
 implies that if v: Y' > y -e Sn is a duality map there is an isomorphism

 (see (6.9) below)

 1': {XZ Y'} { NX < Y, SnZ}.

 In particular, let Y be a simply connected polyhedron with Hi(Y) = 0

 except for i = p (where 1 < p, and we shall suppose p < n - 2). Then

 we can take for Y' a simply connected polyhedron with H,,( Y')- 0 except

 for i = n - p. Let G = H'(Y) Hn -,(Y'). Then the isomorphism above
 implies the equivalence of two possible definitions of the S-group with

 coefficients in G, denoted by {X, Z; G}. We shall return to a consideration
 of these groups in a future publication.

 1. Preliminaries

 We shall be concerned exclusively with topological spaces X with base

 points x.. By a mapf: X -* Y we shall mean a continuous function from
 X to Y preserving base points (so frx = y0). A homotopy between two
 maps will mean a homotopy relative to the base points. By a polyhedron
 we mean a finite CW-complex [17] with a vertex as base point.

 We use the notation [X, Y] to denote the set of homotopy classes of
 maps X -- Y. If f: X -- Y then [f] denotes the homotopy class of f. If
 g: X - X', h: Y-- Y' we let g*: [X', Y] -* [X, Y], ho: [X, Y] [X, Y']
 denote the induced maps defined by gl[f] = [fg], ho[f] = [hf].

 If Xand Yare spaces the sum Xv Ywill denote the subset X x y0 U x0 x Y

 of X x Y with (x,, y0) as base point. It is the union of disjoint copies of
 X and Y in which the base points have been identified. It is easy to verify
 that, up to canonical homeomorphism, the operation of forming the sum
 is commutative and associative. If A is a closed subset of X containing
 xo we define X/A to be the quotient space obtained by identifying A to a
 single point (to be used as base point for X/A). We define the reduced
 product X < Y to be the quotient space X x Y/X V Y. If x e X, y e Y,
 then x +< y will denote the point of X +< Y obtained from (x, y) by
 the collapsing map X x Y-- X < Y. Thus x +< y0 x0 =<y, x, 0-< y for
 allxeX,yeY. Iff:X--X',g: Y--*Y'weusefVg:XVY--X'VY',

 f c g: - X +< Y -- X' +< Y for the corresponding maps.
 .The map x +< y -- y +< x is a canonical homeomorphism of X +< Y onto

 Y < X. The canonical map (x < y) < z -- x < (y < z) is not, in general,
 a homeomorphism of (X < Y) < Z onto X < (Y < Z); however, if two of
 X, Y, Z are compact Hausdorff spaces, it follows from [3; pp. 220-225]
 that it is a homeomorphism (because (X +< Y) < Z and X +c (Y '+ Z) are
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 FUNCTION SPACES AND DUALITY 341

 both quotient spaces of X x Y x Z). There is also a canonical homeo-

 morphism of X c Y V X' c Y onto (X V X') +< Y induced by the inclu-

 sions X Yc(XVXI) < Y, X'I Yc(XVX')+ Y. In the future

 we shall use a double headed arrow ?-* to denote a natural homeomorphism
 resulting from the commutative, associative, and distributive properties

 of the sum and reduced product. For example, (X>< Y) +< Z.--* Ye (ZCX)

 denotes the map (x < y) < z -+ y c (z < x), which is a homeomorphism if
 two of X, Y, Z are compact Hausdorff.

 If X and Y are CW-complexes with vertices as base points, then X V Y

 is a CW-complex whose set of cells is the union of the sets of cells of X

 and of Y with the base vertices identified. If at least one of X, Y is

 locally finite, then X < Y is a CW-complex with cells e c e' where e, e'

 are cells of X, Y, respectively, different from the base vertices together

 with one more cell, the base vertex x, > y0 of X c Y.
 In the sequel we shall be mainly interested in spaces in which the base

 point is smoothly imbedded in a suitable sense. Following Puppe [9] we

 say x. is a non-degenerate base point of X if there exists a neighborhood
 U of x. and continuous maps D: U x I -* X, u: X -* I such that:

 (1) D(x, 0) = x, D(x,, t) = x0, D(x, 1) = x.
 (2) u(x) = 1, u(X- U) = 0.
 Puppe proved the following properties:

 (1.1) There is no loss of generality in the definition if the neighborhood
 U is assumed to be closed.

 (1.2) Any point of a CW-complex is a non-degenerate base point.
 (1.3) If X and Y have non-degenerate base points, so do X V Y and

 X Y.

 We shall need the following additional properties:

 LEMMA (1.4). If xo is a non-degenerate base point of X there exists a
 homotopy h: X x I -* X and neighborhoods W, V of x0 such that
 W c interior V and

 (1.5) h(x, O) = x, h(x,, t) = x,, h(V x 1) = x,.

 PROOF. By (1.1) we choose a closed neighborhood U of x0 and maps D,
 u satisfying (1), (2) above. Then define

 (x if x U

 h(x, t) D(x, 2u(x)t) if x e U, u(x) < 1/2

 (D(x, t) if x e U, u(x) < 1/2.

 Let V ={x I u(x) > 1/2}, W = {x I u(x) > 3/4}. Then all the conditions are
 satisfied for these choices of h, V, W.
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 342 E. H. SPANIER

 LEMMA (1.6). If X and Y have non-degenerate base points, then the
 collapsing map

 k: (X x Y. X V Y) -(Xc Y, x. y)

 induces isomorphisms of the corresponding homology and cohomology
 groups2.

 PROOF. By (1.4) we find h: X x I-- X and neighborhoods W, V of x0
 in X satisfying (1.5) and similarly h': Y x I -* Y and neighborhoods W',
 V' of y0 in Y also satisfying (1.5). Define

 h: (X x Y) x I -X x Y, h: (X > Y) x I -X Y

 by h((x, y), t) = (h(x, t), h'(y, t)), h(x >c y, t) = h(x, t) >c h'(y, t). Let

 f: (X x Y, Xx V'UVx Y)* uv (X x Y, X V Y) and

 f: (X Y. X V'U V Y) -(X Y. X 0+ YO)

 be defined by f(x, y) = h((x, y), 1),f (x >c y) - h(x < y, 1). Let

 k': (X x Y, X x V'U V x Y) -(X > Y. X > V'U V > Y)

 be the collapsing map and let

 i:(Xx Y,XV Y)c(Xx Y,.Xx V'UVx Y),

 j: (X ( Y. x0 +yO) c (.X Y. X V'U V> Y)

 be inclusion maps. Then we have the commutative diagram

 H(X x Y, X V Y) *Hq(X < Y. xo Yo)

 1~~ Y _k* '.~ J*X>cV uV>cY H(Xx Y,Xx V'UVx Y) H(XY,XV'UVY)

 1~l 1f*
 Hq(X x Y, X V Y) k* Hq(X c Y. xo - Yo).

 In this diagram f*i* is just the homomorphism induced by hl (X x Y) x 1
 regarded as a map of (X x Y, X V Y) into itself. Since h is a homotopy
 between the identity map of (X x Y, X V Y) and this map (note that

 2 Here and later when we do not specify a homology (or cohomology) theory we mean

 any one satisfying the Eilenberg-Steenrod axioms [4]. We assume that all pairs for which

 we have to consider homology groups are admissible for the theory. Though some of the

 results are valid more generally we shall always assume the coefficient group of the theory

 to be the integers.
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 FUNCTION SPACES AND DUALITY 343

 h((X V Y) x I) cX V Y), it follows that f*i* is the identity map. Simi-

 larly f*j* is the identity map of Hq(X >c Y, x0 > y0).
 Now X x W' U W x Y is an open subset of X x Y whose closure,

 X x W' U W x Y, is contained in the interior of X x V' U V x Y. Simi-
 larly X >c W' U W >c X is an open subset of X >c Y whose closure is con-

 tained in the interior of X >c V' U V >c Y. In the commutative diagram
 (where ki" is the appropriate collapsing map, j', j"t are excisions, and

 A= Xx W'U W x Y, B =Xx V'UVx Y, C= X W'U W Y.
 D = X V'u Vi Y)

 Hq(Xx Y-A,B-A) > Hq(X x Y, B)

 Hq(X Y-CD-C) J*-H>(X<YD),

 it follows that ji, jff are isomorphisms. Since ki" is a homeomorphism, 1c*
 is also an isomorphism so, by the commutativity of the diagram, k1 is an

 isomorphism.

 Returning to the larger diagram considered earlier we have shown that

 the two vertical composites are identities and the middle horizontal map

 k1 is an isomorphism. It follows purely formally from these properties

 and the commutativity of the diagram that k* is also an isomorphism.
 A similar argument applies for cohomology giving the result.

 It follows from (1.6) and the Ktinneth theorem that if X and Y have

 non-degenerate base points we have homomorphisms

 HJ(X) (? Hq( Y) - Hp+q(X < Y)

 HP(X) ? Hq(Y) - HP+q(X < Y).

 If z e HJ(X), z' e Hq( Y), we let z >c z' denote the corresponding element
 of Hp+q(X < Y). Similarly if u e HP(X), u' e Hq( Y), u >c u' will denote

 the corresponding element of HP+q(X >c Y). If we let <u, z> denote the

 value of the cohomology class u on the homology class z, then we see that

 <U )+ uf, Z )+ Z'> = <u, Z> * <u', Z'> .

 Let I denote the unit interval with 0 as base point. Then the cone TX

 over X is defined to be X < I, and X is imbedded in TX by the map
 x -_ x < 1. Let S' denote I with 0 and 1 identified to a single point,
 denoted by 0 and used as base point for S1. Then the suspension SX is
 defined to be X < S1. By iteration we define

 SPX= S(Sp-1X) for p > 1.
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 344 E. H. SPANIER

 There are canonical homeomorphisms of STX with TSX and, inductively,

 of SITX with TS PX by means of which we shall identify these spaces.

 If f: X-* Y we define Tf: TX-+ TY, SPf: S PX- SP Y to be the in-
 duced maps (e.g., Tf is defined by Tf (x < t) = fx < t for x e X, t e I).
 In this way T and S are functors. It is clear that if X or Y is compact

 there are canonical homeomorphisms

 S (.X >(Y) SX ><Y X <S Y.

 There is also a canonical homeomorphism

 TX/X SX .

 LEMMA (1.7). If X has a non-degenerate base point the collapsing map

 k: (TX, X) -* (SX, x.) induces isomorphisms of all the homology and
 cohomology groups.

 PROOF. Let h: X x I-- X and W, V satisfy (1.5). Define h: TX x I--
 TXby

 h(x, s) < (t + st) if O < t < 1/2
 h((x >+ t), s) =

 h(x, s) ><(s + t- st) if 1/2 < t < 1 .

 Then letting A = V < I U X < [1/2, 1]c TX we see that

 h(x < t, O) = x < t, h(X x I)cX, h(A x 1)czX.

 Let f: (TX, A) -* (TX, X) be the map defined by hI TX x I and let
 i: (TX, .X) c (TX, A). Then h is a homotopy between the identity map of

 (TX, X) and fi so the composite

 Hq(TX, X) Hq(TX, A) Hq(TX, X)

 is the identity.

 Passing to the quotient by X, the map hdefines a map h: (TX/X) x I-

 TX/X and f defines a map f: (TX/X, A/X) -* (TX/X, x) such that, if

 j: (TX/X, x) c (TX/X, AIX), then h- is -a homotopy between the identity

 map of (TX/X, x,) and fj. Then we have the commutative diagram
 (where the vertical maps are induced by appropriate collapsing maps)

 Hq(TX, X) Hq(TX, A) H Hq(TX, X)

 1* . * 1 k*

 Hq(TX/X, x.) >* Hq(TX/X, A/X) f* Hq(TX/X, xo),
 and the composite across each row is the identity map. We can excise
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 FUNCTION SPACES AND DUALITY 345

 We IU X (3/4, 1]fromthepair(TX, A)and (W<IU X (3/4, 1])/X
 from the pair (TX/X, AIX) to obtain identical pairs. Therefore, as in

 (1.6) k' is an isomorphism so it follows (again as in (1.6)) that k1c* is an
 isomorphism which completes the proof.

 Since TX is contractible to x0 the map

 a: Hq+,(TX, X) , Hq(X)

 is an isomorphism'. If X has a non-degenerate base point, it follows from

 (1.7) that we have an isomorphism

 k*: Hq+i(TX, X) Hq,+(SX)

 The composite k*1-& will be denoted by

 S: Hq(X) , Ha+i(SX)

 and is an isomorphism if X has a non-degenerate base point. Similarly

 we let

 S: Hq(,X) , Hq+'(SX)

 denote the composite

 Hq(X) >H +'(TX, X) >*- Hq~(

 defined when X has a non-degenerate base point. Then we see that if
 z e Hq(X), u G Hq(X),

 <Su, Sz> = <u, Z> .

 We define S) to be the two point space consisting of 0 and 1 with 0 as
 base point. For n ? 1 let Sn be defined inductively by Sn - S(Sn-1) (for
 n = 1 we have S(S0) = S0 I S1, which is homeomorphic to S1 by the map

 1 < t -+ t, so this notation is consistent with the earlier definition of Si).
 Since S" is a CW-complex it has a non-degenerate base point so

 S: H (Sn) H +1(Sn+) and S: Hn(Sn) I)

 We let s, e H,(S0) be the integral homology class which is represented by
 the point 1 with value 1 and the point 0 with value 0. We define so e HJ(S')
 inductively by

 s = S(s,,l) forn > 1 .

 We also define s* e Hn(Sn) by the condition <4S*, Sn> = 1. Then Ss* s*
 for n > 1.

 Inductively, we define natural homeomorphisms SPX X > SP for
 p > 0 in such a way that we have commutative diagrams
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 346 E. H. SPANIER

 SP+IX = SPX >+ SI ' (X >+ SP) >+ SI

 I I
 X >?C SP+1 = X )< (S P ,?< S1)

 It follows that we have natural homeomorphisms

 Sp(SqX) s____. Sp+qX

 and that we have a commutative diagram

 Sp(SqX)' < Sq(SpX)

 I I
 S p qX---- > p qX

 S ,X < Sq

 where p = 1 < e where 1: Xc X and E: SP+q SP+q has degree (-1)pq.
 We shall have occasion later to use these natural homeomorphisms and
 shall have to know the degrees of the maps of the spheres involved.

 Given a space of the form X c Sn we let --1: X Sn_ X ( Sn denote
 a map of the form 1 < e where s: Sn __ Sn has degree -1. Two such
 maps are homotopic, and when we refer to such a map the homotopy type

 of the map will be the only thing of importance in the discussion.

 LEMMA (1.8). Under the homeomorphism SPX---,X c SP if z e Hq(X)

 then SP(z) corresponds to (- 1)Pqz ( sp.
 PROOF. It clearly suffices to verify the lemma for p = 1 and use induc-

 tion on p. Let a denote the 1-cell of I oriented so that 8- 1 - 0. Then

 a e H1(I, 0 U 1) and (- 1)qz c a e Hq+l(TX, X) is such that &((- )qz ( q) = z.
 Since the natural map I--* S1 sends a into a representative of s1, we have

 Sz = k*((-l)qz + >r) - (-l)qz + 8 S

 2. Function spaces

 If X and Y are topological spaces with base points, we let F(X, Y)
 denote the space of maps X -* Y (sending x. into y0) topologized by the
 compact-open topology and with the constant map w0: X -* yo as base
 point. This topology has the following properties [2, 5, 8, 15]:

 (2.1) If X is locally compact Hausdorff, the evaluation map

 E: Fi(X, Y) n Ef X ef i nY

 defined by E(f >+ x) =_ f (x) is continuous.
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 FUNCTION SPACES AND DUALITY 347

 (2.2) For locally compact Hausdorff X and arbitrary Z a map g: Z

 F(X, Y) is continuous if and only if g' = E o (g c 1): Z < X -- Y is con-
 tinuous (where 1: X c X).

 (2.3) For locally compact Hausdorff X and arbitrary Z the map g -* g'
 of (2.2) is a homeomorphism of F(Z, F(X, Y)) onto F(Z c X, Y).

 We shall also need the following.

 LEMMA (2.4). If X is compact and Y has a non-degenerate base point

 then F(X, Y) also has a non-degenerate base point.

 PROOF. Let U be a neighborhood of y0 and let maps D: U x It Y.

 u: Y -* I be given satisfying the conditions (1), (2) guaranteed by the non-
 degeneracy of y, in Y. Let U' = {f e F(X, Y)IfXc U}. Then
 U'D {If ifX c interior U}, which is an open set containing the constant
 map w0, so U' is a neighborhood of w0. Define D': U' x I-* F(X, Y)
 by D'(f, t)(x) = D(f(x), t). We show D' is continuous. If (C, V) denotes

 the set {ff e F(X, Y) I fC c V} where C is compact in X and V is open
 in Y, then (C, V) forms a sub-base for the topology on F(X, Y). If

 D'(fo, to) e (C, V) then D(fo(C), to)c V so there is an open neighborhood
 W of foC and an open neighborhood N of to with D( W x N) c V. Then
 D'((C, W) x N) c (C, V) proving D' is continuous. Furthermore,

 D'(f, O)(x) D(fx, 0) = fx so D'(f, 0) = f

 D'(0)o, t)(x) D(yo, t) = yo so D'(0)o, t) = o)o
 D'(f, 1)(x) = D(f(x), 1) 5 0o so D'(U' x 1) =o,

 and D' has all the requistite properties.

 Define u': F(X, Y) -*I by u' f = inf uf(x). Then u'(w0) = 1, u'(f) = 0
 if fX?z U, so u' has also the requisite properties and U', D', u' show
 that x0 is a non-degenerate base point of F(X, Y).

 There are natural maps X: SF(X, Y) -; F(X, S Y), a: F(X, Y)
 F(SX, SY) defined by

 (A'(f >+ O)XX) = f x )+ t, Pf (x >+ t) = fix )+ t

 for f e F(X, Y), x c X, t e S'. If X is compact and E: F(X, Y)<X-* Y,
 E': F(X, SY) +< X-+ SY, E": F(SX, SY) >< SX-*SY denote the appro-

 priate evaluation maps, we have the commutative diagrams

 SF (X, Y) >+ X - S(F (X, Y) >+ X)

 (2.5) AI Et ISE

 I(X, SY) < - > SY
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 348 E. H. SPANIER

 F (X, Y)> c SX- S S(F(X, Y) >+ X)

 (2.6) {SE

 Fz(SX, SY) >+ sx >s

 SF(X, Y) F(X, SY) F(SX, S (SY))

 (2.7) Sij

 SF(SX, SY) F(SX, S(SY)),

 where p is induced by the map (y >< t) < t'-* (y < t') >< t of S(SY) into
 itself.

 Assume X is a connected polyhedron of dimension < m. Assume n > m

 and let E: F(X, Sn) < X-+ Sn be the evaluation map and sj e Hn(S n)
 be the standard generator. Then E*s* e Hn(F(X, Sn) < X) and if
 z e Hq(F(X, Sn)) then the slant product [7, 11] E*s*/z e Hn-q(X) is defined.
 If we define

 ,cp Hq(F(X, Sn)) > Hn-,,(X)

 by 9p(z) = E*s/z, then Moore [7; Theorem 3] has shown:
 (2.8) qp is an isomorphism of the reduced groups for q < 2(n -im).

 Let f: X -* X' and define f: F(X', S ') -- F(X, Sn) by f (w) = owf for
 e F(X', Sn). Then we have a commutative diagram

 %(' SI > X I F(X' Sn) it X'
 (2.9) f+ El

 This together with naturality properties of the slant product [11; (11.1)]
 implies the commutativity of

 Hq f(' Sn)) >H ('

 (2.10) fj

 Hq(F(X, SY'6)) H n (X) )
 The slant product has the following easily verified property. Let

 w e H"(X), w' e Hn(Y9( Z), z e Hr(X), z' e Hq(Y), then w c w' e
 Hr+n(X KC (Y KC Z)), z c z' e Hr+q(X c Y) and

 (2.11) w < w'/z z' = <w, z>w'/z'
 (2.11) together with [11; (11.1)], (1.8) and the commutativity of (2.5)

 gives the commutativity of
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 Hq(F(X, Sn)) S Hq+i(SF(X, Sn))

 (2.12) A*

 H4n-Q(X) <?Hq,+,(F(X, Snf l))

 and (2.11), [11; (11.1)], (1.8) and the commutativity of (2.6) give the com-
 mutativity of

 Hq(F(X, Sn)) i* Hq(F(SX, Sn+)

 (2.13) 4q

 Hn-q(X)- , Hn-Q+1(S-)

 3. Direct spectra

 By a (direct) spectrum X= (Xk, Pk) we shall mean a sequence of topo-
 logical spaces (with non-degenerate base points) Xk for k = 0, 1, *-- and
 continuous mappings pk: SXk -* Xk+l for k > 0 such that3:

 (3.1) There exists an integer Q (positive or negative) such that

 rq+k(X,) = 0 for all k > 0 and all q < Q.
 (3.2) For any (positive or negative) integer q there exists an integer N,

 such that for k > N,

 Pk*: Hq+k+l(SXk) I q+k+l(Xk+l)

 For any positive or negative integer q the groups Hq+k(Xk) together
 with the homomorphisms

 HQ +k (Xk) Hq +k + 1(SXk) J(~F(&I

 form a direct system of groups. We define Hq(X) to be the limit of this
 sequence. It follows from (3.2) above that Hq(X) - Hq+,(Xk) for k > N_
 It follows from (3.1) that Hq+k(X) = 0 for q < Q so Hq(X) 0 O for q < Q.
 Then (3.2) implies that for given q

 ok*S: I.1+k(Xk) ~ Hj+k+1(Xk+l)

 for all j < q and all sufficiently large k (merely choose k larger than N,+,
 NQ+2S*--, N).

 If X is a space with a non-degenerate base point, there is a spectrum
 S(X) consisting of the sequence SkX for k > 0 and the identity maps
 Pk: S(SkX) CSk+lX.

 3 This concept of direct spectrum is a slight modification of the one used by Lima 161.
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 To obtain a more interesting example of a spectrum let X be a connected

 polyhedron and let Y be a space with a non-degenerate base point. Let

 F(X, Y) denote the sequence of spaces F(X, SIY) for k > 0 and the

 sequence of maps pk: SF(X, SIY) -+ F(X, Sk+lY) each defined to be the
 map X of ?2. We show F(X, Y) is a spectrum. By (2.3) we have

 [Sq , F (X, Sky)] t: [Sq > 4 X, Sky]

 and we know [Sq > X, Sk Y] = 0 if k > q + dim X. Hence 7rq(F(XSk Y))
 - 0 for q < k - dim X so (3.1) is satisfied by taking Q = - dim X - 1.

 To show that (3.2) is satisfied we need some preparation. Let

 Ek: F(X, SkY) c X-E SkY

 be the evaluation map. If f: SI F(X, SkY) represents an element

 [f] e [SJ, F(X, Sk y)] we define Jkrf ] e [S jX, Sk Y] by *kk[f] = [g] where
 g is the composite

 f1E
 S JX A S- go X F(X, SkY) X- SkY .

 It follows from (2.3) that fJk is well defined and is a 1 - 1 correspondence

 k: [S,~ (,X, SkY)] z~ [S X, Skyf] .

 Consider the diagram

 [Si, F(X, SkY)] [SJX, SkY]

 SI

 (3.3) [Si+', SF(X, SkY)] S

 1k 1
 ES ,1 FMX Sk Y) LSJ+lX, Sk +1 Y1

 This diagram is commutative in view of the commutativity of (2.5) and

 the definitions of *kk *kk+l1

 In (3.3) the maps *kk kk+l are 1 - 1 by (2.3). By the suspension theorem
 [13; (7.2)] the right hand vertical map is a 1 - 1 correspondence if

 j < 2k - 2 - dim X (because St Y is (k - 1)-connected) and the left hand

 vertical map S is a 1 - 1 correspondence if j < 2k - 2 - dim X (because
 F(X, Sk Y) is (k - dim X - 1)-connected). Therefore, the commutativity

 of (3.3) implies that X# is an isomorphism

 X#: 7j+ ,(SF(X, SkY)) --r J+ (F (X, S k +1 Y))
 forj 2k -2- 2dimX.

 It follows [16] that for j ? k - 3 - 2 dim X we have isomorphisms
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 Hk +J+ l(SF(X, Sk Y)) S He+J+l(F(X Sk+lY))

 Hence, (3.2) is satisfied by Nq = q + 3 + 2 dim X so F (X, Y) is a spec-
 trum.

 If X = (Xk, Pk) is any spectrum, we define its suspension SX to be the

 spectrum consisting of the sequence of spaces whose kth term is Xk+l and

 the sequence of maps whose kth term is the map Pk+1: SXk+l -+ Xk+2. In-
 ductively, we define

 SPX - S(SP1X) for p > 1.

 There are isomorphisms

 S: Hq(X) > Hq+i(SX)

 defined by passing to the limit with the homomorphisms

 Hk+q(Xk) Hk+q+l(SXk) Hk+q+l(Xk+l),

 where the first map is always an isomorphism (because Xk has a non-
 degenerate base point), and the second map is an isomorphism for k large
 enough by (3.2).

 Let Y be a polyhedron and let X = (Xk, PJ) be a spectrum. We define
 { Y, X} to be the direct limit of the groups4 [Sky, Xk] relative to the
 homomorphisms

 [Sk Y Xk] [Sk+ Y. SXk] - #> [Sk+lY1 Xk+l]

 Since Xk is (Q + k)-connected by (3.1) and dim SkY = k + dim Y, it fol-
 lows [13; (7.2)] that for k > dim Y - 2Q we have the isomorphism

 S: [Sk Y Xk] a' [S k+Y, SXk]J

 We also know that for sufficiently large k the map Pk induces isomorphisms

 Pk": Hj+k+l(SXk) 5 HJ+k+l(Xk+l) for j < dim Y + 1

 For sufficiently large k, SXk and Xk+1 are simply-connected (by 3.1) so the
 above condition implies

 Pk#: Wj+k+l(SXk) - wj+k+l(Xk+l) for j < dim Y.

 which, in turn, implies that we have a 1 - 1 correspondence

 Pk#: [Z, SXk] : [Z. Xk+1]

 for any polyhedron Z with dim Z < k + dim Y + 1. In particular,

 Pk: [S+Y, SXk] > [Sk+1 Y Xk+1]

 4 These are track groups [1] which are defined for k? 1 and are abelian for k?2.
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 for k large enough. Combining the above isomorphisms we see that

 { Y, X} I [SIY, Xk] for k large enough.
 For any (positive or negative) integer p we define

 ({S YX} if p?0

 {Y. XIP =d
 (I{Y. SAX} if p?< O .

 These groups are attained by [SI+P Y, Xj] for k large enough. We also see
 that {YSX}p= {YX}I-1and {SY,X}p= {Y,X}I)+l. If f: Sp+ky__+Xk
 we let {If } e { Y, X} X denote the element determined by f. If X is a space
 with a non-degenerate base point, we have already defined the spectrum

 S(X) and we define {Y, X}, by

 {Y .X} = { Y. S(X)}X.

 This is the same as the S-group defined in [12; p. 66].

 THEOREM (3.4). Let X and Y be polyhedra and let Z be a space with a

 non-degenerate base point. There is an isomorphism

 A: {X,F(Y,Z)} >{Xc Y,Z}

 such that if f: SkX -* F(Y, SkZ) represents {If} e {X, F(Y, Z)} then
 A {If} is represented by the composite

 Sk(X ( Y) S /IX 2 y F( YSkZ) > Y E Stz
 PROOF. It follows from (2.3) that the map sending f into the above

 composite, call it f, is a homeomorphism

 F(SkX, F(Y, SkZ)) F F(Sk(X c Y), SkZ)

 so induces a 1 - 1 correspondence

 Ak: [S X, F(Y, SZ)]> [Sk(X c Y), SkZ].

 We show this correspondence is homomorphic for k > 2. Let f, g: S kX
 F( Y, SkZ). We can find closed subsets A, B c SkX such that x0 e A n B,
 A U B S SkX, f - fj, g - g1 where f1 I A = w0, g1 I B = wo (where 0 is the
 constant map Y- zo). Define h: SkX-- F(Y, SkZ) by h I A = g1 I A, h I B
 fI B. It follows from basic properties of the track addition [1] that

 [If] + [g] = [h]. Let A, B c Sk(,X c Y) correspond to A > Y, B c Y.
 respectively, under the homeomorphism Sk(X c Y)*(oSkX > Y. Then

 xo 0c yo eA n B, A u B = St(X 9 Y) and fj IA = zo, 91 IB = zo. Since f -f1
 and g gj, we see that Ak[f] = [Al], Aj[g] = [91]. Also hIA gjjA,

 \B = i B so [h] = [f] + [gJ]. Therefore,

This content downloaded from 128.151.13.16 on Thu, 17 Jan 2019 15:03:56 UTC
All use subject to https://about.jstor.org/terms



 FUNCTION SPACES AND DUALITY 353

 Ak([f ] + [g]) = Ak[h] = [h] = Ak[f] F A[g]

 and Ak is homomorphic.

 To complete the proof we must show that the isomorphisms A, are con-
 sistent on passing to the limit. Consider the diagram

 S c +l(X Y) S (S k(X Y))

 I

 Sk+lX Y + S(SkX ( Y)

 Sf j }l 1S(f + 1)

 SF(Y, SkZ) ( Y4v S(F(Y. SkZ) ( Y)
 A >' 1 1SE

 F(Y, Sk+lZ) >' Y l Sk+lZ.
 The first two squares are commutative by the naturality of the associa-
 tivity and commutativity of reduced products, and the last square com-
 mutes by the commutativity of (2.5). The composite down the right hand

 side is Sf while the composite along the other edge of the diagram is X(Sf).
 Therefore,

 SA[]f] [ Sf [X(Sf)] = Akil\*S[f],
 so the maps Ak are consistent and define the desired isomorphism

 A: {X, F(Y, Z)} I {X Y, Z}
 by passage to the limit.

 Let X = (Xk, Pk), X' = (Xi, pk) be spectra. By a map f: X -- X' we
 mean a sequence of maps fk: Xk -* Xk such that commutativity holds in
 each diagram

 SXk Xk +1

 Sf4 k +

 It is clear such a map induces homomorphisms

 f*: Hq(X) > Hq(X')
 for every q and homomorphisms

 f#: { Y. XI P ) I Y. X1 }P
 for every polyhedron Y and every p. f will be called a weak equivalence

 if f, is an isomorphism f,: { Y, X} p > { Y, X'} p for every polyhedron Y and
 every p.
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 THEOREM (3.5). A map f: X -+X' is a weak equivalence if and only if
 it induces isomorphisms

 f*: Hq(X) > Hq(X') for every q

 PROOF. Let m be a fixed integer. Choose N so that N > m - 2 max (Q,
 Q') and such that for k > N we have isomorphisms

 PkS: Hj+k(Xk) Hj+k+l(Xk+l) forj ? m
 pi*S: HJ+k(Xk) k J+k+l(Xk+l) f

 Such a choice of N is always possible in view of the comments following

 (3.2) and depends only on m (and X, X'). Then for q<m we have Hq(X) X

 Hq+N(XN) Hq(X') 5 Hq+N(XN), and if Y is any polyhedron with dim Y ?
 m + Nthen

 {Y.X}-N :-[[Y.XN], {fY.X'}-N~[Y.XN.

 Therefore, f is a weak equivalence if and only if for every m, then with

 N as above, if Y is a polyhedron with dim Y < m + N then

 (3 .6) f N#: [ Y. XN] [Y XN

 (3.6) implies

 fN*: HQ+N(XN) X Hq+N(Xy) for q < m - 1

 so f*: HQ(X) > Hq(X') for q < m - 1. Since m is arbitrary, the necessity
 is proved.

 Conversely, if f*: Hq(X) > Hq(X') for all q, then for fixed m if N is as
 before we have

 fN*: Hq+N(XN) : Hq+N(XN) for q < m .

 This implies (3.6) if dim Y < m + N. Again since m is arbitrary, the
 sufficiency is proved.

 If X = (Xk, Pk) is a spectrum, we define a spectrum X' = (Xf, pk) by
 X' = SXk and p4: S(SXk) SX,+i equals Spk. There is a canonical map
 f: X' -+ SX defined by fk Pk. Since f*: Hq(X') X Hq(SX) for all q, the
 map f is a weak equivalence. Hence, up to weak equivalence the suspen-

 sion of a spectrum is just the spectrum of suspensions.

 4. Functional duals

 Given a polyedron X let F(X) denote the spectrum consisting of the

 sequence of function spaces F(X, Sk) and maps Pk: SF(X, Sk) - F(X, Sk+1)
 defined to be the map X of ?2. F(X) will be called the functional dual of

 X. Clearly F(X) is the same as F(X, SI) defined in ?3.
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 LEMMA (4.1). If X is a connected polyhedron, there is an isomorphism

 a: HQ(F(X)) 5:- H- q(X)

 such that commutativity holds in the diagram

 Hk+q(F(X, SI)) > Hq(X)

 Hq(F(X))

 where * is the canonical map to the limit group.

 PROOF. By (2.12) we have, for every n, a commutative diagram

 Hk+q(F(X S k)) Hk+q+1(F(X, Sk+))

 (O\ /0c+
 H-q(.X).

 Therefore, the homomorphisms Pk: Hk+q(F(X, Sk)) -+ H-(X) fit together
 to give a homomorphism of the limit group

 a: Hq(F(X))- > H-q(X)

 commuting with the map A: Hk+q(F(X, Sk)) -- H-q(X).
 By (2.8) Pk is an isomorphism

 Pk: Hk+q(F(X, Sk)) -, H-q(X)

 for k + q < 2(k - dim X) (or k > q + 2 dim X). Hence, for all q we have
 the isomorphism

 a: H,,(F(X)) -- -H-Q(X) .

 LEMMA (4.2). There is an isomorphism

 P: Hq+,(SF(X)) 5: H-q(X)

 such that commutativity holds in the diagram

 Hq(F(X)) )Hq+,(SF(X))

 (4,3) \ 9
 H-q(X) .

 PROOF. By (2.12) each of the diagrams

 Hk+q(F(X, S )) Hk ++l(F(X, Sk))

 k\ 1 +/

 H-a(X)
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 is commutative. Hence, if we define q): Hq+i(SF(X)) - H-q(X) by passing
 to the limit with the maps pk+l: Hk+q+I(F(X, Sk+l)) - H-q(X), we will
 obtain the commutativity of (4.3). Since S and ap: Hq(F(X)) H-"(X)
 are isomorphisms in (4.3), so is ap: Hq+,(SF(X)) H-q(X) and all is proved.

 For a connected polyhedron X we define a map

 f: F(X) - SF(SX)

 by the condition that fk: F(X, SI) F(SX, Sk+') be the map defined by

 (fkw))(x + t)=t +wAx forwoeF(X,Sk),xeX,teS1.

 It is easy to verify commutativity in the diagram

 SF(X, Sk) F(X, S A+1)

 fkj {k+ I

 SF(SX, Sk+l) F(SX, Sk+2)

 so the maps f, do define a map f: F(X) -- SF(SX).

 LEMMA (4.4). For a connected polyhedron X the map f: F(X) -- SF(SX)
 is a weak equivalence. Furthermore, commutativity holds in the diagram

 Hq(F(X)) Hq(SF(SX))

 (4.5) 4 j(_1)qp

 H-q(X) H-q+I(SX).
 PROOF. In order to prove the lemma it suffices to prove the commuta-

 tivity of (4.5) because we know that all the homomorphisms in (4.5), ex-
 cept possibly for f,:, are isomorphisms. Hence, commutativity of (4.5)
 would imply f* is an isomorphism so it would follow from (3.5) that f is a
 weak equivalence.

 To prove the commutativity of (4.5) it suffices to prove commutativity of

 Hk+q(F(X, S ))f Hk+q(F(SX, Sk+l))

 (4.6) (k1 - UvA,

 H-q(X) - -i H-1 (SX)

 for every k because (4.5) is the limit of the above diagrams. Let p: SI+ -a
 SI+l be defined by

 C(tl C to C . . * + t +I ) =1 t 2 * . . tk+1 z tl.

 From the definition of f, and , of ?2 we obtain a commutative diagram
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 F(X, Sk) < F(SX, Sk+1) +< SX

 fki1j EE

 F(SX, S k+1) >+ SXE > kt+1 P Sk+1

 It then follows from the naturality properties of the slant product and

 the fact that p*S*+l = (- )kSk*+ (because p has degree (-_ )k) that we
 have a commutative diagram

 Hk+q(F(X, S )) - > Hk+q(F(SX, Sk+))

 fk* |0)' 1

 Hk+q,(F(SX, Sk )) ) H-q '(SX)

 Therefore, the commutativity of (4.6) is equivalent to that of

 Hk+q(F(X, Sk)) - 3 Hk+q(F(SX, S k+))

 H-q(X) > Hq+l(SX),

 which is identical with the commutative diagram (2.13).

 LEMMA (4.7). Let X and Y be polyhedra. There is an isomorphism

 A: {X, SnF(Y)} t {X>?< Y, Sn}

 such that if f: SkX-+ F( Y, Sn+k) represents an element {f } e {X, SnF( Y)}
 then A {f} is represented by the composite

 Sk(X >+ Y), f >> I X y (Y nk) >+. y E Sn+k Sk(X~< Y * ~SkX >< Yf 2 F(Y, Sn+k)<Y S .
 PROOF. Since S"F(Y) - F(Y, Sn), this is just a restatement of (3.4)

 for the special case Z = Sn.

 Consider the map yk: [Sk(Y < X), Sn+k] + [Sk(Y < SX), Sn+k+l] which
 assigns to the homotopy class [f ], where f: Sk(y > X) _+ Sn+k, the homo-
 topy class of the composite

 S k(Y,< SX) 2'k)Sk+1(Y >< X) Sf)Sl1

 where gk(y < (x < t) < t1i ... < tk) = (Y < x) < t < t. tk (so gk
 equals (-_ )k times the canonical homeomorphism

 Sk(Y >?< SX)_ S(S k(Y < X)) = Sk+ (Y >< X)).

 yk is an isomorphism for k large enough because it equals the composite
 S~~~~~~~~~~~~~

 [Sk(Y ><X X), Sn+k S ), Sn+k+l] 9 [Sk(y>9<SX), Sn+k+l]
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 and the first map is an isomorphism for k > dim Y + dim X - 2(n - 1),
 while the second map, being induced by a homeomorphism, is always an

 isomorphism. Since Sg, = g,+1: Sk+l(Y >?c SX) -+S1+2(Y < X), it follows
 that Sryk = -1k+1S so the maps yk define, in the limit, an isomorphism

 S: Y < X, Sn} { Y +< SX, Sn+1}

 LEMMA (4.8). Let X and Y be connected polyhedra and let f: F(X)
 SF(SX) be the weak equivalence of (4.4). Then we have a commutative
 diagram

 { Y, SnF(X)} { y, Sn+'F(SX)}

 {Y9 X, Sn}- { Y <SX, Sn+1}

 PROOF. Let f: SkY--+ F(X, Sn+k) represent the element {f} e

 { Y, SnF(x)}. Then A If} = {f } where f is the composite

 S( + <X)~ ~,k><Xf>~ S (n+k) >?c X E Sn+k
 and f#{f }= {fkf }where fkf:Sk Y- .F(SX, Sn+k +l). Consider the diagram

 Sk(Y 9C SX) ' S(Sk(Y y9 X))

 S YkC SX < 'SS Yo >K X) f> I Ij>'1
 F(X, Sn+k) +< SX - S(F(X, Sn+k) C X)

 IL(1 E" {SE

 F(SX, Sn+k+l) >?< Sx Sn+k+l

 which is commutative in view of the naturality of the commutativity and
 associativity of the reduced product and (2.6). Going from Sk(Y > SX)

 to Sn+lc+1 by going across and down is, by definition, (-1YtS {f } and going

 down and across is, by definition, (_ )kA {fjf } (because fk 2f (-_)kp).
 Therefore,

 SAf} = S {f} = A{fkf} = Afo{f }
 THEOREM (4.9). Let X and Y be connected polyhedra. There is an iso-

 morphism

 D: {Y, SnF(X)} ; {X, S nF(Y)}

 characterized by the property that for k large enough f: SI Y
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 F(X, Sn+k) and g: SkX -+ F(Y, Sn+k) represent elements corresponding
 under D if and only if the following diagram is homotopy commutative

 SkY < X < - SkX < Y

 (4.10) f)lI g u 1

 F(X, Sn+k) ) SX n+ - F(Y, Sn+k) Y.

 The isomorphism D: {X, SnF(Y)} ; {IY, SnF(X)} is the inverse of the
 one above.

 PROOF. Define D to be the composite

 {Y. S nF(X) A> A>- X, Sn' > fX>?C Y. Sn} { X, SnF(Y)'

 where the middle map is induced by the canonical homeomorphism X ( Ye
 Y e X. Then commutativity of (4.10) characterizes D in view of the

 definition of A. The last statement is an immediate consequence of the
 symmetry of (4.10).

 We define an isomorphism

 S: {X, SnF(Y)} f {SX, Sn+hF(Y)}

 so that commutativity holds in the diagram

 {X, S'%F(Y)} - {SX, Sn +1F(Y)}

 A j
 {X ( Y, Sn} {SX ( Y, Sn1}

 { y( X, Sn S 0{ y KC SX, Sn+1}

 If f: SkX-- F( Y, Sn+k) represents an element { f} e {X, SnF( Y)}, then

 it is easily verified that S f f } is represented by the composite

 Sk(SX) 4-k S(SkX) -f SF( Y, Sn+k - F( Y Sn+k+l)
 THEOREM (411). For connected polyhedra X, Y there is a commutative

 diagyam

 {SY, S `F(X)} {SY, S + F(SX)}

 D ~~~~~D

 X, Sn n
 {X, ShF(SY)} - {SX, S +hF(SY)}.

 PROOF. This follows from (4.8) and the definitions of D, S.
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 COROLLARY (4.12). Commutativity holds in the diagram

 {Y, SnF(SX)} -) {SY, Sn+1F(SX)}

 {SX, SnF(Y)} -o {SX, Sn%+1F(SY)}

 PROOF. Since D= D-1, this follows from (4.11) on interchanging X
 and Y.

 5. Duality

 Let X and X' be connected polyhedra. Let u: X' ) X . Sn be a con-
 tinuous map. If u has the property that the map

 INy: Hq(.X') ) Hn-q(X)

 defined by 9u(z) = u*s*/z is an isomorphism, then u will be called a du-
 ality map and X' will be called an n-dual of X by means of u.

 LEMMA (5.1). Let X be a connected subpolyhedron of Sn+l and X' a

 connected subpolyhedron of Sn - X such that the inclusion map
 X c Sn+ - X induces isomorphisms of all the singular homology groups
 Hq(X') ; Hq(Sn + - X). Then there is a duality map

 U: XI KC X >Sn

 showing that X' is an n-dual5 of X.

 PROOF. This follows from [11; (12.1) and the remarks following (12.2)].
 The lemma above shows that the present concept of dual is more gener-

 al than the one in [12]. It also shows that for sufficiently large n a con-
 nected polyhedron has an n-dual.

 LEMMA (5.2). Let u: X' ) X -_ Sn be a duality map. For p ? 0, q > 0
 we define

 Up SpXI >a( Sqx-- > Snspoq

 by

 up q,,((x' >+ ti p (x >+ Z'i >+ * Z q))
 =u(x' >+ x) >+ t, >+ ... >+ tp >+ Zi >+ * * ( tq.

 Then up,,q is also a duality map and for z' e Hr(X')- we have the relation

 (5.3) PU p (SpZ') - (-l)q(pr)Sq(p,(z )) .
 5 This lemma says that every (n? 1)-dual of X in the sense of [12] is an n-dual of X

 in the present sense. In view of the definition of dual used in the present paper it seems

 more natural to relabel duals so that the old (n+ 1)-dual now becomes an n-dual.
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 PROOF. By (1.8) we know that under the homeomorphism Sn?p+q
 Sn > S7 >f S" the cohomology class s*+p+q corresponds to

 1_)" P+nil~pqsS* )f< S1 >>( S*

 and under the homeomorphism SPX?---*X' < SP the homology class Spz'

 corresponds to (- 1)Prz7 c sP. Then under the homeomorphism S qX
 X ( Sq, p (SPz') corresponds to a cohomology class a e Hn+q-r(X >?< Sq)
 such that

 <a, z )+c Sq> = < Pq(S* s* )C S*), Z' )+( Sp ( z )c( Sq>

 where Upwq .X' > SP >< X >< Sq -_ Sn >< SP >+ Sq corresponds to upq. So

 <a, z +~ Sq> = (-1) 9 q S+, +lp~ ) < P qu(Z' )+< Sp > Z )+< Sq)>
 = (-1) 8 ( Sp * s, U*(Z' < Z) < 7)p )+< Sq>

 = (-l~nq~qn , *(Z' >>( Z)>
 =(_)nq +)pq<cp(z7), z> = (-1)n +pq<q(z7) ( Sq', Z )+( sq>

 Therefore, a = (-1)nq+Pq9pu(Z) sd*, and since qpt(z') < s* corresponds to
 (--_)q(n-r'Sq(pU(z')), (5.3) is proved. This, in turn, shows that up,q is a
 duality map.

 LEMMA (5.4). Let X, X' be connected polyhedra and let u: X' >c X-_ Sn

 be a duality map. Then the map u: X+X'Sn defined by ii(x < x') -
 u(u' < x) is also a duality map.

 PROOF. Let c e Cn(X' < X) be an n-cochain representing u*s*. Let

 w3: Cq(X') ~- Cn~q(X) be defined by -(a) = c/a for a e Cq(X'). Then the
 isomorphism cpa: Hq(X') ~ Hn-q(X) is identical with the homomorphism

 ;p* induced by -. Since X, X' are polyhedra, we can identify Cn-q(X)
 Hom (Cn-q(X), Z) and C'(X') = Hom (Cq(X'), Z). Then, letting qJ* also
 denote the homomorphism induced by qT on the groups of homomorphisms,
 we obtain a commutative diagram

 O > Hom (B n -,, +(X), Z) > Cn -q(X) Hom (Zn-(I(X), Z) ) O

 4-

 O- > Hom (Bq1-(X'), Z) > Cq(X') > Hom (Zq(X'), Z) 0

 where each row is exact. Passing to homology we get the commutative

 diagram

 O > EXt (Hn-ql(X), Z) > Hn q(X)- Hom (Hn-,(X), Z) > 0

 0 Ext (Hq.-(X'), Z) H (X-) Hom (Hq(X'), Z) -0

 with the following properties:
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 (a) Each row is exact (by the universal coefficient theorem).

 (b) Each of the outside vertical maps is induced by qAd so is an isomor-
 phism by assumption on u.

 (c) The middle vertical map is, up to sign, the map p- because if
 b e Cn-q(X), a e Cq(X'), then

 <K-*b, a> = <pa, b> = <c/a, b> = <c, a c b>
 = ?<c', b + a>= + <c'b, a>

 where c' e Cn(X > X') represents ii*s*.
 From (a), (b) and the 5-lemma [4] it follows that the middle vertical

 map is an isomorphism. By (c) this implies that il is a duality map.
 The last two results show that associated to every duality map

 U: X' < X-> Sn

 there are other duality maps Upq, U, Up,q. When we start with a duality
 map u by means of which X' is an n-dual of X, then we shall implicitly
 understand that SPX' is (n + p + q)-dual to SqX by Upq.

 If X', X are connected subpolyhedra of Sn+1 with X' c Sn+ -X so that
 Hq(X') t Hq(Sn+l - X) then, as in (5.1), we have a duality map

 U: X' KC X-> S.

 Then SPX', SqX are similarly related in Sn+p++l [12; (3.2)] so we have a
 map

 UK: SpX' En< sqx Sn+p+q

 and also X has the same relation to X' that X' has to X [12; (3.2)] so we
 have a map

 ": X> XX- S .

 It is easy to verify that u' 2 (-1)Pupq and un z (-1)8u. The fact that
 these signs are present accounts for the differences in sign between some
 of the theorems of [12] and the corresponding theorems of the present
 paper.

 THEOREM (5.5). Let u: X' ( X Sn be a duality map. There is a
 map g: S(X') -f SkF(X) which is a weak equivalence and such that for
 every k > 0 we have a commutctive diagram

 SkXl X

 (5.6) 9k Sn+k

 F(X S En) k

 F(Xt S n+k) >? X
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 PROOF. By (2.2) there is a unique map g,: SkX1 - F(X, Sn+k) such that
 (5.6) is commutative. We shall show that the collection (gk)k=0,1l... defines
 a map g: S(X') -+ SnF(X) which is a weak equivalence. First we verify
 that for every k we have a commutative diagram

 S kc+1Xf

 Sgk1 \9k+1

 / A \
 SF(X, Sn+k) - F(X Sn+k+l)

 This follows, using (2.3), from the commutativity of the diagram

 S k Xf >?C X _ ) S +k+1

 Sgk >c 14 1 En+k

 SF(X, S n+k)::' x X- F(X~ S n+k+l) X

 which is commutative because it combines the suspension of the commuta-

 tive diagram (5.6) with the commutative diagram (2.5) and the commuta-

 tivity of

 S(SkX? ,4c X) SUk,? Sn+k+l

 t/7
 I Tk+10 Sk+X1 /fc Y.

 This shows that g is a map. To show it is a weak equivalence we use

 (3.5). We have the homomorphism

 IPuko: HI+k (SkX ) >Hn-q(X)

 and, by 5.3, we have a commutative diagram

 H~(SkX,)SIH klf Hq+k ( X q+ k+1(SX)

 PUkO+ /uk+1,O

 Hn-q(X)

 in which each map is an isomorphism. Passing to the limit we obtain an

 isomorphism

 /t Hq(S(X,)) t: Hn-q(X).

 From (5.6) and the definition of puk OI tn+kwe have a commutative dia-
 gram

 Hq+k(S X Hq+k~(F(X, Sn+k))

 uo\\O I(n+k
 Hn-q (X) .
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 Passing to the limit gives the commutative diagram

 Hq(S(.X')) 9* > HI (S nF(X))

 V\/
 Hn-q(X).

 Since (p, (vI are isomorphisms, so is g, which completes the proof.
 The converse of (5.5) is also valid as the next result shows.

 THEOREM (5.7). Let X' be a connected polyhedron and suppose g: S(X')-*

 SnF(X) is a weak equivalence. If u: X' > X-+ Sn is defined so that

 commutativity holds in the diagram

 X' X

 \U

 go > 1 \\sq

 1/En

 F(X, S ) + X
 then u is a duality map.

 PROOF. Such a map u exists (merely let u = E o (go c 1), and it is easy
 to prove inductively that for k > 0 we have a commutative diagram

 SkXI >?C X

 \Uk,,

 \\.Sn+k
 gE9v +s

 F(X, Sn+k)Ad X

 It follows that we have a commutative diagram

 Hq(X') = Hq(S(X'))

 VU1 9g*
 Hn-q (X) < H (S nF()

 so (pI is an isomorphism and u is a duality map.
 This last result gives a procedure for obtaining a dual of the connected

 polyhedron X. Namely, first construct the spectrum F(X); then find an
 n and a connected polyhedron X' such that there is a weak equivalence

 g: S(X') -+ SnF(X). This can be done inductively, an intermediate step
 being to find an integer n', a polyhedron X',, and a map gm9 : S(X )
 S 6'F(X) such that gm* Hq(S(X' ))tHq(S 'F(X)) for q < m and Hq(S(X' ))=0
 for q > m.
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 LEMMA (5.8). Let u: X' > X -+ Sn be a duality map and let Y be a
 polyhedron. There is an isomorphism

 -r71: f y, Xtj : > ( {dx, Snj

 such that if f: SkYe--* SkXI represents an element {ff} I {Y, X'}, then
 Pru f} is represented by the composite

 ( Y >?c X) Ad k Y >+ X SkX1 >?e X 2t, nfk

 PROOF. Using (5.5) we have an isomorphism

 go: {Y, X'} j {Y, SnF(X)}

 and, using (4.7), we have an isomorphism

 A: {Y, SnF(X)} > {Y>( X, Sn}.

 We define P, = Ago. If f: SkYe__* SkXI, then gi{f} = {gkf}. Consider
 the diagram

 Sk(Y> X) h SkY) XL-2 X SkX il>?XU Sn+k

 F(X, Sn+k) > X.

 By the definition of A we have Ag# {f} is represented by the composite
 E(gk KC 1)(f >( 1)h, and by the commutativity of (5.6), this equals the
 composite uk,O(f > 1)h, completing the proof.

 THEOREM (5.9). Let X, X', Y, Y' be connected polyhedra and let
 u: XI >( X __ S, v: Y' > Y -+ Sn be duality maps. There is an isomor-
 phism

 Dn(u, v): {XI Y} 1 { Y', X'}

 such that for sufficiently large k if f: SkX +Sk Y and f ': Sk Y_ SkXI
 then Dn{f} - {I'" if and only if the following diagram is homotopy
 commutative

 Sk Y, >+ X YI >+ S Y

 (5.10) f f, l I 1l +.f

 SkXI + X Uko) Sn+k kO yI >( ST Y

 The isomorphism D,(v, u): { Y', X'} - {X, Y} is the inverse of the one
 above.

 PROOF. Let v: Y Y,+ Sn be the duality map defined by v as in (5.4).
 There is then an isomorphism P -: {X, Y} X {x ( Y', S }. We also have
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 an isomorphism F.: { y', X'} I { Y' ( X, S }n. We define Dn(U, v) to be
 the composite

 jXs Y} > X >?CYS ( Y Y ? sS} > {y Y

 where the middle map is induced by the canonical homeomorphism

 Y' > X X X+ X Y'. Choose k large enough so that {X, Y} - [SkX, SkY],
 {X + Y, S } S [Sk(X 4 Y%), Sn+k], { Y. X'} [Sk Y, SkX ]. Let
 f: SkX___ SkYandf': SkY_ SkX,. Consider thediagram

 Sk( Y >?c X) hSk Y' >?c X fSkX1 >?c X
 hi hl \Uk,o

 Sk(X >c Y')2S SkX YV >?c y k,O Sn+k

 Clearly hh, = h2h'. By definition of F we have :P{f'} = {ukO(f' I 1)h1}

 and FV {f} = Jvk,0(f 1 1)h2}. Therefore, Dn {f } = {f'} if and only if the
 above diagram is homotopy commutative (i.e., iik,O(f >?c 1)h "- ukf (f' c 1)).
 On the other hand, by the definition of v- we have a commutative diagram

 S X >?c Yt f S k y >?c yI

 t t \Vk,O

 +O Ic

 y' >?c S X Y' >Y c Sk Y.

 Combining these diagrams, we see that Dn {f } = {f } if and only if (5.10)
 is homotopy commutative.

 The symmetry of (5.10) establishes the last statement of the theorem.

 It is convenient to express the last result in the following form.

 THEOREM (5.11). Let u: X' > X-_ Sn, v: Y' > Y__ Sn be duality
 maps. Given maps f: SkX__ Sk yand f': Sk'Y' __ Sk'X, with k, k' large
 enough then Dn {f } = {f'} if and only if the following diagram is homo-
 topy commutative

 S 'Y, >c S kX% Sk'YI >c Sky

 (5. 12) f I 1~'1 1VIk I

 Sk'Xf >~ SIcX? Uk, nk S X)CSkXSn+k+k'

 PROOF. We choose k, k' so large that {X, Y} t [S kX, SIc Y], { Y', X'} 1
 [S k' Y', Sk'X'] and consider the case where k < k' (a similar argument
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 applies if k'<k). Letf:SkX SkY, f': Sk'Y' -+ Sk'X'. The commuta-
 tivity of (5.10) gives us the homotopy commutativity of

 Sk y' KC X-+ Y' )? Sk X

 fc1/ \1 + Sk/-kf

 SUk1 VOk' X
 Sk'X1 yXL 4Sn+k' Y (Sk'Y.

 By suspending this diagram k times and combining it with other diagrams
 which are easily seen to be homotopy commutative we find that the homo-

 topy commutativity of the above diagram is equivalent to the homotopy
 commutativity of the following diagram.

 St' mY >KC SkX -_S'y'( C Sty Vk ok Sn+k+k'

 I Sk'-k(Dcf)|{|K(-1)k k'-k)
 S - k(S Yf )> SkX) - A Sk'-(SkYf c SkY) _ ) Sn+k+k'

 I 1 _Sk'-kf Sky Sky Vk.k | +k+k'
 SkY~~~~~~~~~~Sk'X - ~ ~ ~ ~ ~~~~~_J~k

 Sk( Y >?c Sk'X) Sk(jISk if) Sk( YI k/Sx) SkV?'k') Sn+k +k' I S f (- 1)klc'~~>~(

 Sk(.f >~1) SkUkO1 Sk(S k' >"( X) - Sk(Sk'X' ( X) S Sn+k+k

 Sk'Y S kX f f'V1 Sk' SkX - 3 k1

 The composite down the first column corresponds to the homeomorphism
 of Sk'k(Sk Y) ( SkX into itself which switches the two sets of Sk -coordi-
 nates so equals (_ 1)k. The composite down the last column also equals
 (_ )k. Therefore, we can drop both signs and have the result that the
 homotopy commutativity of the above diagram is equivalent to that of

 S VYl > SkX S2' Y, >)( Sk Y

 Of I 1 Vk'7k

 k'XI >?C SkX S n+k+k-'

 and this completes the proof.

 We want to see how the duality Du(u, v) is altered by changing one of
 the duality maps. The next result answers this in the most important
 case, namely when u is altered by following it by a homeomorphism of S .
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 THEOREM (5.13). Let U: X' < X-* Sn, v: Y' < Ye- Sn be dualities.

 Let r: Sn -* Sn have degree ? 1. Then ru = U': X' < X-* Sn is also a
 duality map and Dn(u', v) = (degree r)Dn(u, v).

 PROOF. u' is also a duality map because u, = (degree r)qu. Since
 u = ru, it follows that u',, = (S 1r)uk,. Let f: SIX-- SY, f* S
 SkX' be such that

 Uk k(1 1 f) - vk k(f + 1).

 Then Dn(u, v){f} = {f '}. Also we see that

 uk I(1 + f) ? (degree 7)ukk(1 1 f) 2 vk,k((degree 72)f 1)

 showing that Dn(u', v) {f } = (degree r7) {f '}, and completing the proof.

 6. Properties of the duality

 In this section we summarize some of the properties of the duality Dn

 of the last section. We shall assume that all the spaces X, Y, X', Y',

 etc., of this section are connected polyhedra and shall use u: X' + X-* Sn,
 v: Y' + Y_* Sn for duality maps.

 THEOREM (6.1). Let a e {X, Y}. Then DJ(u, v)a e {Y', X'} and we
 have a commutative diagram

 Hq( Yf) 'v H (Y)
 (DI(u, v)a)* a*

 Hq(Xf) ' u H -(X)
 PROOF. Let f: S kX__ S Y, f': SI Y' _ S kX' be such that (5.12) is

 homotopy commutative. Then Dn {f} = {f'}, and it follows from the
 commutativity of (5.12) and naturality properties of the slant product
 that

 f *k, I= Ukkf

 Since {If} * is defined to be the composite

 Hn -(Y) SHp-+k(Sk Y) f* Hn-q+k(SkX) (Sk)- Hn-q(X)

 and {If'} * is defined to be the commposite

 H Sk (SIY)f'* .k (Sk)-1
 q(Y') _+ Hq+ (SEY ) 1) Hq XH (X')

 it follows from (5.3) and the equality above that

 which is the desired result.
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 THEOREM (6.2). Commutativity holds in each diagram

 D {syx}, {sx Iy} n ) . X

 IDn+ i(I,i, o, vi o)\\ S / ?n+ l(uo,l, vo, i)

 Is Yf SXt1 {SX~ SY}

 PROOF. We prove only the first commutativity as the second follows
 from the first by interchanging X with X', Y with Y', u with u-, and v
 with vz. Let f: S X * S Y, f': SI Y' S XI be such that (5.12) is homo-
 topy commutative. Then Dn(u, v) {f} = {f'}. Suspending (5.12) and
 using obvious commutativity properties we obtain a homotopy commuta-
 tive diagram

 S k+ly > j SkX k+1 Y' )> Sk Y Vk +l, Sn+2k+

 I (1cf S

 S(Sk y' l SkX)_ f S(Skyl(Sky) Vkt Sn 2k+l

 S (S YI S YX) - S Vf1) (SkX SkX) Smkk S +2k,+

 Sk+y > c SkX_ Sk~lXf +- SkX -k+l k Sn+2k+l

 Under the homeomorphism Sk(SYf) --S___ Y' defined by

 (y '~ 0 t) K tl C*** tk __ Y' 8 K t "+ tl t~k

 we see that Vk+lk corresponds to (vl O)k,7. Under a similar homeomorphism
 Uk+lk corresponds to (ul O)k k. Then homotopy commutativity of the above

 diagram implies that Dn+J(U1,0 V1O) {f} {= Sf '} = SDJ(u, v) {f }I.

 THEOREM (6.3). Let u: X' X Sn, v: Y' > Y Sn, w: ZI Z__ Sn
 be duality maps. Let ae {X, Y}, /Je {Y, Z}. Then 3Jae {X, Z} and

 D,(u, w)/3a = (DJ(U, v)a)(D.(v, w)3) .
 PROOF. Choose k large enough so that a is represented by f: S kX

 Sk Y, 3 is represented by g: Sk Y _* SkZ, Dn(u, v)a is represented by
 f ': Sk Y' S'X', Dn(v, w)/3 is represented by g': SkZ _ Sk Y' and
 vA,,k(1 KC f) _ Uk,(f + 1) vk k(g' > 1) - wk k(1 c g) Then

 Uk k(f'g 1) = Ukk(f I 1)(g' + 1) - Vkk(l + f)(g' c 1)
 vk, k (g' 1) (1 >c f) _ Wk,k(1 9 g)(1 f ) = wk, k(1 gf

 showing that
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 DJ(u, w){gf} = {fVg'}

 Since {gf } = fla and {f'g'} = (Dn(u, v)a)(Dn(v, w)/O), this completes the
 proof.

 If p > v then uS pY: X' ( SEXY Sn+P, vpO Spy, Ye sn+P are
 dualities so we have the isomorphism

 Dn+ juo"'Y v'-o): IXY YYp I {Yaw XT~p

 Similarly if p < 0 then uP,0: S-pX' < XS Sn-pV, v_: Y' S S-pYSn-
 are dualities and we have the isomorphism

 Dn-p(U-p,oy Vo, P): IXY Y1 p I {Ya Xtp .

 We define

 Dn+lp1(u, v) = Dn +(u0,y vro0) if p > 0
 lDn-(u.,v,y V03,P) if p ? 0

 Then for any p we have the isomorphism

 Dn+ lpl(y V): {X, YJ p I {Yt Xtp P

 We then have the following extension of (6.3).

 THEOREM (6.4). Let u: X' _ X_ Sn, v: Y' I Y-S, w: Z' ' ZSu

 be duality maps. Let a e {X, Y} P, a e { Y, Z} IP. Then ,ca e {X, Z} p+q and

 Dn+p+qjl(u, w)fla = (Dn+11l(u, V)t)(Dn+1q[(V, w)fl)

 PROOF. The proof involves consideration of several cases depending on

 the signs of p, q, p + q and follows from (6.2) and (6.3) and the definition
 of the composition operation. We omit the details.

 The next results show how to construct new dualities from old ones.
 Roughly, the sum of dualities is a duality, and the product of dualities is
 a duality.

 THEOREM (6.5) Let U: X' + X__ Sn, v: Y' + Y__ Sn be dualities.

 Define u v:(X'V Y')(XV Y)*Sn by u vIX' X=u,

 uFBvIY'+ Y=v, u ev(X'+ YU Y' X) = O. Then uev is a
 duality map such that the dual of the inclusion map of one of the
 summands (such as i: Xc X V Y or j': Y'cX' V Y') is the retrac-

 tion of the dual onto the corresponding summand (r': X' V Y' X' or
 s: XV Y-M Y).

 PROOF. The map u 0 v was defined so that we have a commutative

 diagram
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 (XI V Y') 'X +(XI V Y,)"< (X V Y)i Y, Y (X V Y)

 (6.6) r' ci{ {ucv {ics

 X' + X Y' Y.

 From this and the naturality of the slant product we get a commutative
 diagram

 o H,(Y') >* Hq(X' V Y') HO(X') 0

 (oj 8*
 o , H"-,(Y) - Hn-q(XV Y) > Hn-q(X) - 0.

 It follows from the direct sum theorem that each row is exact. Since Pv,
 PvP are isomorphisms, the 5-lemma implies that qSiv is an isomorphism
 showing that u B v is a duality map. The rest of the theorem follows
 from the commutativity of (6.6) (and of a similar diagram with X, Y and
 X', Y' interchanged) and (5.11).

 COROLLARY (6.7). Given dualities U: X' + X So, v: Y' + Ye Sn,
 ul: X1 Kc X1 s ,v: Y Kc Y1- Sn then if a e {X, X1}, y3e { Y, Y1}, we
 have a V8 fe {X V Y, X1 V Y1} and

 Dn(u ED v, ul e) vj)(a V /3) = (Dn(u, ul)a) V (Dn(v v1)/O )

 PROOF. This is an immediate consequence of (6.5) and the fact that
 {X V Y, X1 V Y1} is isomorphic to the direct sum

 {X, X1} + {X, Y1} + {Y X1} + {Y. Y1}e

 THEOREM (6.8). Let U: X' > X-+ S , v: Y' < Y-- S m be dualities.

 Deafne u Xg v: (XI )+ y,) (X +( Y) S n Kc( Sm 0 S S"+M by

 (u 0 v)((x' + y') + (x + y)) = u(x' c x) + v(y' c Y).
 Then u (v is a duality map. Given also duality maps ul: XI KcX1-S+,
 v,: Y , ycY Sm then if a e {X, X1}, e { Y, Y1} we have a >f 8 e
 {X&+ Y. X1 Y1} and

 Dn+.(u (? v, u1 (? v1)(aC KC j) = (Dn(u, uj)a) Kc (Dm(v, v,)fJ).

 PROOF. A direct calculation shows that qioS is induced by a chain trans-
 formation Cp+j(X' c Y') Cn+m-p-q (X< Y) which is, up to sign, the
 same as the tensor product of the chain transformations

 Cwi(X) > Cnce (X), Cg( Yr ) > Cn q( y)

 which induce we,, p,. Since pAn, we are isomorphisms, so is their tensor
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 product. This show that qu, is an isomorphism, so u ? v is a duality
 map.

 To prove the second part of the theorem letf: SkX + SkX1, g: SIY

 S Y1, f: SX SX, g: S YI Sk Y be maps such that the following
 are homotopy commutative

 S Xf > SkX S Xf > SkXj, Sk Yf >? Sk Y 1> Sk Yf + Sk hy
 ,( 4 { 0 t I('Ul)kk (Jr ),k

 S kXf > SX1, k Sn 2k Sk Yf SkY Y kA Sm+2A,

 From these we get a homotopy commutative diagram

 Sk e > + k ~ Sk Yf >+ S Y -gSkXf >+ SkXj >+ Sk Y' >+ Sr yJ

 f 1 g'+ 1{ { l(u i h (VI)kk

 SkXPf SkX + Skyf Sky Snkk + ksk n+m+4k.

 From the definition of u ? v we get a commutative diagram

 SkXP + SkX9+ SkYP f <Sy ak/kcV k7k Sn??4k

 SkXf >?C Sk Yf P SkX SY |(-1)k

 (yu ?V)2k 2k Sk(Xf >+ Yf ) C S2k(X )?e Ly) ( n (+ tit2 S +4

 with a similar diagram for u1, v1. Combining these with the preceding

 diagram with the middle terms commuted we get a homotopy commuta-

 tive diagram

 2k(XI >+ y1) >?( S2k(X >>< y) 1 2k. (X1 f ', ) y S 2k(Xj >+ Yl)

 h.' > 1 l(Ul (( ?l)2k,2k

 S2k(Xf >c Y?) > S2k(X > Y) ( - V)2k*2k n+m+4k

 where h: S2k(X > Y) __ S2k(Xl > Y1) is the composite

 S2(X > Y) S X S kY S kX, Sk Y S2k(Xl Y1)
 and h' is a similar composite. Then, by (5.11),

 Dn+m(U ? V, u'? v')({h})= {h'}

 Since {h} = {f} I {g}, {h'} = {f'} c {g'} and {f'} = Dn(U, v){f},
 {g'} = D.(u1, v1) {g}, the proof is complete.
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 COROLLARY (6.9). Let v: Y' Y + Sn be a duality map. For poly-
 hedra X, Z there is an isomorphism

 r: {X,Z Y'} {X)< YSnZ}

 such that if f: SkX + Sk(Z c Y') represents an element of {X, Z + Y'}
 then r {f } is represented by the composite

 S k(X >?C Y) Sn+kZ

 I Yr2S~Z 1 k
 SkX~ Y')( Y)k(Z >?C yZ) >?C y ___ Z >4Z (S k Sny) 1 Z o +k

 PROOF. For sufficiently large m there exists Z' and a duality w: ZcZ'-*
 Sm. Then, by (6.8),

 W 0 V: (Z >+ Y ) >+ (Z' >+ Y) > S

 is a duality. By (5.8) we have isomorphisms

 rWFV: {X, Z + Y'} j {X + (Z' + Y), Sn+m}
 _FWn0: {X >?k Y. SZ} I {(X >c Y) ,c Z', Sn+m}

 The associativity and commutativity of the reduced product gives a

 canonical isomorphism {X + (Z' + Y), Sn+m} > {(X + Y) + Z', Sn+m}.

 We define r: {X, Z + Y'} -_ {X + Y, SnZ} to be the composite

 {X, Z >?C y, } X >?C (Zr >?C Y), Sn+nqT t~ {(X ,?' y) ,?( Zr, Sn+m4} F-i

 )LI> {X + Y, SnZ}.

 Let f: SkX Sk(Z >?C Y') and let g be the composite

 Sk(X >?C Y) Yi2SkX y f Sk(Z + Y') Y Z y z (Sk Y'f Y)
 1 ' Vkn n+k Sn+kZ.
 --- Z ) ( S

 Then rwF0 {g} is represented by the composite

 (( > Y) > Z') <- S(X Y) > z' 2 Sn+kZ z' IAn+ko 5n+m+k
 and rg? I{f} is represented by the composite

 Sk(X Kc(Zf >% Y)) SkX + (Zf P Y)f+2Sk(Z + Y') + (Z' % Y)
 (W (2 V)kO1 +70

 Under the canonical homeomorphism Sk((X>?c Y)>Z') - Sk(X9, (Z' ( Y))
 these correspond, showing that r {f} {g} and completing the proof.

 Let f: X -+ Y. We form a space Zf equal to the quotient space of the
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 disjoint union of TX and Y by the identification x c 1 =fx. There is

 then a canonical injection i: Y-+ Zf and a canonical projection p: Zf
 SX defined by

 p(x) Ot) = x C t, py = x.

 It is easy to verify that we have an exact sequence

 *** > Hq(X) f* H(Y) ? HQ(Zf) I1H(SX) ( LHQ(SX)
 and a similar exact sequence for cohomology.

 It is also easy to verify that there is a canonical homeomorphism Zsf -
 SZf which combines with the suspension map S to map the above diagram

 isomorphically onto the diagram

 * @ @4 Hq > 1(SX) H Hq+(S Y) 4 Hq+l(Zsf) Hq+-(S2X) *
 Let U: X' ( X Sn, v: y y-* Sn be duality maps and assume

 f: X-* Y, f ': Y' X' are such that the diagram

 Y'+X- > Y' >+ Y

 f ~~~~~V

 Xf >?C X- U Sn

 is homotopy commutative. Let Z=Zf, Z= ZfI and let H: (Y'9<X) x I-S n

 be a homotopy of uff ' c 1) to v(1 c f ). Therefore,

 H(y' c x, 0) = u(f'g' c x), H(y' < x, 1) = v(y' c fx)

 H(y' c x, t) = H(y' c x', t) = 0.

 We define a continuous map

 W: Z Z > Sn+1

 by

 JH Y'X 2~ x, - ) t if t < t', t 1

 w ((x' ') (x )= H y' >+ x, 1 1 t ) t' if t _ t', t' 1

 L O if t =t' = 1.

 w(x' >+ (x >+ t)) = u(x'. >+ x) >+ t
 w((y' > t') < y) = v(y' + y) < t'
 w(x' + y) = 0 .

 Then w is well defined (i.e., it is consistent with the identifications in Z',
 Z) and is continuous.

This content downloaded from 128.151.13.16 on Thu, 17 Jan 2019 15:03:56 UTC
All use subject to https://about.jstor.org/terms



 FUNCTION SPACES AND DUALITY 375

 THEOREM (6.10). w is a duality map and relative to the dualities

 ul, 0 SX r >f X _),S n + 1 U0, 1: X, >f SX - S n +l 1 V1 o Sy, >)c ye-, Sn+1,
 V*,1: Y' ?> SY-+ Sn+1 we have the (n + 1)-dual sequences

 X fY Z PSX SY

 UiO V1,O W Uji1 V0,1

 sx' Sf' PI Z'ifx' ff'

 (where the duality map has been inserted in the middle row).

 PROOF. By (5.11) we know Dn(U, v){f} = {If'} so, by (6.2),
 Dn+l(Uly Svlo) {If = {Sf'}, Dn+1(uo,1, v01) {Sf} = {f'}

 and the end maps are dual. From the definition of w we have commuta-

 tive diagrams

 X '+<Z PXI +<SX Zr ) Y Zf +<Z

 Z K< Z- Sn+1, SYr >P< Y vYo Sn+1
 which would show, by (5.11), that Dn,,(W, Uo01) {p} = {i'}, Dn+1(v, ,o w) {i}
 {p'} once we know w is a duality map. Hence, all that remains is to prove
 that w is a duality map.

 From the above properties and the naturality of the slant product we

 obtain a commutative diagram

 Hq(Y') Hn-q+l(SY)

 (Sf)*
 Hq(X') ?o Hn1 H +(SX)

 H.2(Z) fw>Hn-q+i Z

 I V1 i*
 Hq(SY') -?+ Hn-q+l(y)

 (Sf )*f*
 Hq(SX') 10 Hn-Q+l(X)

 All horizontal maps except possibly pw are isomorphisms because u, v are
 duality maps. Since each row is exact, it follows from the 5-lemma that

 spw is an isomorphism, so w is a duality map.
 The fact that (6.10) is true without a change of sign of {p'}, as distin-
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 guished from [12; (6.2)], is due to the fact that in [12; (6.2)] the dualities

 used are uO,1, v 1, -u1, O.-v1 0 (see that comment following (5.4)) and (5.13).

 7. Relative theory

 Let X be a polyhedron. By a polyhedral lattice I on X we mean a
 lattice of subcomplexes A of X each containing the base point and such

 that VI contains {xO} and X. Let A' be a polyhedral lattice on X' and
 assume there is an anti-isomorphism a: % -+ a'. Let G(a) denote the
 subset of X' c X composed of the union of all aA < A for A e W. Let

 u: X' c X/G(a) > Sn

 be a continuous map. If A1, A2 e { with A1c A2, then aA2caA1 and u de-
 fines a continuous map

 UA1,A ctA, )> A2/(aA1 )> Al U aA, )> A2) > Sn-

 Since there is a canonical homeomorphism

 aA, >c A2/(aAj >c Al U ctA, >c A2) A aA/aA2 >c A2/Aj

 the map UA1 A2 can be regarded as a map

 UA,A2.: aA1/aA2 KC A2/A - s.

 The pair (u, a) is called a duality map if a is an anti-isomorphism from f
 onto A' and if for every A1 c A2 in % the map UA1,A2 is a duality map in the
 sense of ?5. This is a generalization of the concept of external duality

 of [14].

 Let aqp: S( p_ S q%' (where Sp , S q' are polyhedral lattices on SPX,
 SqX1, respectively) be defined by aqp(SPA) = Sq(aA). Then

 uqqp SqX: > SPX/G(aq,p) >Sn+p+q

 is also a duality map. Similarly (v, a-1) is a duality map (where

 U: X >+ XIG(a-1) ,S

 is defined by t(x >c x') = u(x' > x)).

 Let Q3 be a polyhedral lattice on Y, 53' be a polyhedral lattice on Y', b
 be an anti-isomorphism b: 3 - 53', and let

 v: Y' >c Y/G(b) Sn

 be such that (v, b) is a duality map. Let f: f -- 53 be a join-homomorphism
 (by [14; (3.3)] every carrier I - 53 such that {x0} - {yj} is equivalent to
 a join-homomorphism). Let f: 530'- A be dual to f under a, b (as in ?4 of
 [14]). This means that fbB = af4B where fOB is the largest element of at
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 mapped into B by f. We define 1(f) c Y' )c X by

 '(f) = U {B'I AIB'e5s3', Ae 2% and B'cbtfA}.

 Since B 'cbfA b-1B'z fA # A c( f#b -B' # ,aAzdf'B' Acca-lf'B,
 it follows that under the canonical homeomorphism Y' c X < X Y'
 the subset 12(f) corresponds to 1r(f'). We let C(f) CS C' Y' Kc SIX denote
 the subset U {S IC 'B I S "A I B ' c bfA}. Then the main result on relative
 duality is the following analogue of (5.11).

 THEOREM (7.1). There is an isomorphism

 D.(u, a, v, b): {f} I

 such that for k, k' large enough the f-map f: SICX -- SkY and the f'-map
 f ': SIC Y' -- S 'X' are such that D {fI} = {f '} if and only if the follow-
 ing diagram is homotopy commutative

 S Y' S X/1rk' k(f) S y 'Yc S Y/G(bk',)

 (7.2) f VkI, I

 S kXf >c S kX G(ak', k)-- S

 (Note that (1 + f )(FI,IC(f)) CG(bI ,I) because fA c fA by the assumption that
 f is an f-map. Similarly (f , c 1)(r',k(f)) C G(Ct,' ,,) because f' is an f'-map.)

 The proof of (7.1) involves a repetition for relative theory of the steps
 leading to (5.11). This entails a development of the theory of spectra with
 partially ordered collections of subspectra, an analogue of the equivalence
 theorem (3.5) for such collections of spectra, and the theory of the func-
 tional dual F(SI) of a polyhedral lattice. We define the latter. For each
 A e 9I let A' denote the subspectrum of F(X) whose k"h term equals the
 space {w e F(X, SIC) IoA=0} . The map A -* A' is order-reversing and the
 collection of all A' forms the functional dual of %. Though f is a lattice,
 the functional dual need not be (because the set of functions vanishing on
 A1 n A2 need not equal the union of the set of functions vanishing on A,
 with the set of those vanishing on A2). This does not cause any trouble
 as we only need the equivalence theorem analogous to (3.5), and this is
 true for partially ordered collections of subspectra (which need not be
 lattices).

 Having (7.1), the results of ?6 are valid with minor modifications. In
 particular, the ad junction theorem (6.10) holds for the relative theory, and
 then the results of [14] can be derived.

 UNIVERSITY OF CHICAGO AND THE INSTITUTE FOR ADVANCED STUDY

This content downloaded from 128.151.13.16 on Thu, 17 Jan 2019 15:03:56 UTC
All use subject to https://about.jstor.org/terms



 378 E. H. SPANIER

 REFERENCES

 1. M. G. BARRATT, Track groups I, Proc. London Math. Soc. (3), 5 (1955), 71-106.

 2. N. BOURBAKI, Topologie Gen6rale, Livre III, Chap. X, Hermann, Paris, 1949.

 3. D. E. COHEN, Products and carrier theory, Proc. London Math. Soc. (3), 7 (1957),

 219-248.

 4. S. EILENBERG AND N. E. STEENROD, Foundations of Algebraic Topology, Princeton

 University Press, 1952.

 5. R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., 51 (1945),
 429-432.

 6. E. L. LIMA, Duality and Postinikov invariants, (doctorial dissertation) University of

 Chicago, 1958.

 7. J. MOORE, On a theorem of Borsuk, Fund. Math., 43 (1955), 195-201.

 8. , Homotopy theory (mimeographed notes), Princeton, 1953.

 9. D. PUPPE, Homotopiemengen und ihre induzierten Abbildungen I, Math. Zeit., 69
 (1958), 299-344.

 10. E. SPANIER, Duality and S-theory, Bull. Amer. Math. Soc., 62, (1956), 194-203.

 11. , Infinite symmetric products, function spaces, and duality, Ann. of Math.,

 69 (1959), 142-198.

 12. and J. H. C. WHITEHEAD, Duality in homotopy theory, Mathematika, 2

 (1955), 56-80.

 13. and , Carriers and S-theory, in Algebraic Geometry and Topology

 (A symposium in honor of S. Lefschetz), Princeton University Press, 1957,

 330-360.

 14. and , Duality in relative homotopy theory, Ann. of Math., 67 (1958),

 203-238.

 15. G. W. WHITEHEAD, Homotopy theory (mimeographed notes), Massachusetts Insti-

 tute of Technology, 1953.

 16. J. H. C. WHITEHEAD, On the homotopy type of ANR's, Bull. Amer. Math. Soc., 54

 (1948), 1133-1145.

 17. Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1949), 213-245.

This content downloaded from 128.151.13.16 on Thu, 17 Jan 2019 15:03:56 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 338
	p. 339
	p. 340
	p. 341
	p. 342
	p. 343
	p. 344
	p. 345
	p. 346
	p. 347
	p. 348
	p. 349
	p. 350
	p. 351
	p. 352
	p. 353
	p. 354
	p. 355
	p. 356
	p. 357
	p. 358
	p. 359
	p. 360
	p. 361
	p. 362
	p. 363
	p. 364
	p. 365
	p. 366
	p. 367
	p. 368
	p. 369
	p. 370
	p. 371
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376
	p. 377
	p. 378

	Issue Table of Contents
	Annals of Mathematics, Vol. 70, No. 2 (Sep., 1959) pp. 207-398
	The Word Problem [pp. 207-265]
	On Some Arithmetic Properties of Linear Algebraic Groups [pp. 266-290]
	þÿ�þ�ÿ���þ���ÿ�������O�������n������� �������S�������o�������m�������e������� �������P�������r�������o�������p�������e�������r�������t�������i�������e�������s������� �������o�������f������� ���������������-�������F�������i�������n�������i�������t�������e������� �������M�������o�������d�������u�������l�������e�������s������� �������[�������p�������p�������.������� �������2�������9�������1�������-�������3�������1�������2�������]
	The Stable Homotopy of the Classical Groups [pp. 313-337]
	Function Spaces and Duality [pp. 338-378]
	A Theorem on Semi-Simplicial Monoid Complexes [pp. 379-394]
	Corrections to Codimension and Multiplicity [pp. 395-397]



