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“I know what you’re thinking about,” said Tweedledum; “but
it isn’t so, nohow.” “Contrariwise,” continued Tweedledee,“if
it was so, it might be; and if it were so, it would be; but as it
isn’t; it ain’t. That’s logic.”

Through the Looking Glass by Lewis Carroll (aka Charles
Lutwidge Dodgson) [23]

1. Introduction

This survey article concerns significant recent progress concerning the exis-
tence of continuous maps θ : SN+m −→ SN between high-dimensional spheres
having non-zero Arf-Kervaire invariant. Even to sketch the problem will take
some preparation, at the moment it will suffice to say that this is a funda-
mental unresolved problem in homotopy theory which has a history extending
back over fifty years. During that time such maps have been constructed for
only five values of m. To a homotopy theorist it qualifies as a contender for
the most important unsolved problem in 2-adic stable homotopy theory.

Date: October 2009.
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I was invited to write this survey article for two reasons. Firstly because
I had recently published a monograph on the Arf-Kervaire invariant [101]
in which I conjectured what the experts must have been feeling for years,
that such θ’s only existed for the values m = 2, 6, 14, 30, 62. Secondly, much
more importantly, because recently preprints have appeared ([8] and [34])
which almost completely prove this non-existence conjecture – only m = 126
remains unresolved.

Since the inception of algebraic topology [84] the study of homotopy classes
of continuous maps between spheres has enjoyed a very exceptional, central
role. As is well-known, for homotopy classes of maps f : Sn −→ Sn with
n ≥ 1 the sole homotopy invariant is the degree, which characterises the
homotopy class completely. The search for a continuous map between spheres
of different dimensions and not homotopic to the constant map had to wait
for its resolution until the remarkable paper of Heinz Hopf [36]. In retrospect,
finding an example was rather easy because there is a canonical quotient map
from S3 to the orbit space of the free circle action S3/S1 = CP1 = S2. On
the other hand, the problem of showing that this map is not homotopic to the
constant map requires either ingenuity (in this case Hopf’s observation that
the inverse images of any two distinct points on S2 are linked circles) or, more
influentially, an invariant which does the job (in this case the Hopf invariant).
The Hopf invariant is an integer which is associated to any continuous map of
the form f : S2n−1 −→ Sn for n ≥ 1. Hopf showed that when n is even there
exists a continuous map whose Hopf invariant is equal to any even integer.
On the other hand the homotopy classes of continuous maps g : Sm −→ Sn

in almost all cases with m > n ≥ 1 form a finite abelian group. For the study
of the 2-Sylow subgroup of these groups the appropriate invariant is the Hopf
invariant modulo 2. With the construction of mod p cohomology operations
by Norman Steenrod it became possible to define the mod 2 Hopf invariant
for any g but the only possibilities for non-zero mod 2 Hopf invariants occur
when m− n+ 1 is a power of two ([104] p.12).

When n >> 0 the homotopy classes of g’s form the stable homotopy group
πm−n(Σ

∞S0), which is a finite abelian group when m > n. The p-Sylow
subgroups of stable homotopy groups were first organised systematically by
the mod p Adams spectral sequence, constructed by Frank Adams in [1].
Historically, the case when p = 2 predominates. Spectral sequences require
a few words of explanation, after which we shall see in Theorem 2.3 that,
on the line s = 1 in the classical Adams spectral sequence four elements
exist denoted by h0, h1, h2, h3. They correspond, respectively, to four stable
homotopy elements in πj(Σ

∞S0) when j = 0, 1, 3 and 7, respectively. In
positive dimensions the homotopy classes with non-zero mod 2 Hopf invariant
would all be represented on the s = 1 line in dimensions of the form j = 2k−1,
by Steenrod’s result ([104] p.12). However, a famous result due originally to
Frank Adams ([2]; see also [4], [98] and ([101] Chapter Six, Theorem 6.3.2)
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shows that only h1, h2, h3 actually correspond to homotopy classes with non-
zero mod 2 Hopf invariant.

The non-existence of homotopy classes with Hopf invariant one was a big-
ticket item in its day. Inspection of the segment of the spectral sequence which
is given in Theorem 2.3 correctly gives the impression that next important
problem concerns whether or not the classes labelled h2

i represent elements of
π2i+1−2(Σ

∞S0). The invariant which is capable of detecting homotopy classes
represented on the s = 2 line is due to Michel Kervaire [44] as generalised by
Ed Brown Jr. [21]. Bill Browder discovered the fundamental result [19] (this
is Theorem 9.3, whose proof by the technique of [101] is sketched in 9.4), the
analogue of Steenrod’s result about the Hopf invariant, that the Arf-Kervaire
invariant could only detect stable homotopy classes in dimensions of the form
2i+1 − 2.

I am very grateful to Peter Landweber for a series of email discussions
during 2008 concerning [8] and [9]. Similarly I am very grateful to Mike
Hopkins and Doug Ravenel for an email and a phone call respectively in 2009
– a few days before Mike announced the result of [34] at the Atiyah Fest
in Edinburgh, Scotland and Doug lectured in it at a conference in Lisbon,
Portugal.

2. Stable homotopy groups of spheres

2.1. Digression on spectral sequences
In a textbook dealing with spectral sequences ([69]; [35] Chapter VIII; [103]

Chapter 9) one is apt to find a notation of the form

E2
p,q =⇒ Ep+q.

These symbols denote an organisational structure called a spectral sequence
and useful for computing the graded group E∗ = ⊕n∈Z En. Notice that
E2
∗,∗ = ⊕p,q E

2
p,q is a bi-graded group and bi-gradings in spectral sequences can

take a variety of forms. However, typically, there are families of differentials
which are homomorphisms of the form dr : Er

p,q −→ Ep−r,q+r−1 for each r ≥ 2
and satisfying (i) dr ·dr = 0 and (ii) there are given isomorphisms of the form

Er+1
p,q

∼=
Ker(dr : Er

p,q −→ Er
p−r,q+r−1)

Im(dr : Er
p+r,q−r+1 −→ Er

p,q)
.

Knowledge of all the differentials enables one to compute the sequence of
groups E2

p,q, E
3
p,q, . . . , E

r
p,q, . . . . In useful cases this sequence asymptotes to

a common value, which is a group denoted by E∞p,q of which a particularly
handy example occurs when E∞p,q = 0. Given all this, the final part of the
structure of a spectral sequence consists of a filtration on each Em of the
form . . . F2Em ⊆ F1Em ⊆ F0Em = Em together with isomorphisms of the
form FpEp+q/Fp+1Ep+q ∼= E∞p,q.

In the event that an element x ∈ E2
p,q satisfies d2(x) = 0 and that its

homology class in E3
p,q lies in the kernel of d3 and so on all the way to E∞p,q

3



we say that x is an infinite cycle. Furthermore if z ∈ Ep+q lies in FpEp+q
and coincides in FpEp+q/Fp+1Ep+q with the coset associated with the infinite
cycle x we say that z is represented by x in the spectral sequence. Usually,
in the presence of lots of non-zero differentials, the relation between z and x
has a lot of indeterminacy. However, if all the dr vanish, which is referred to
as the collapsing at E2

∗,∗ of the spectral sequence, then one can deduce a lot
about z (e.g. its order) from properties of x.

In the case of the classical 2-adic Adams spectral sequence Em = πSr (S0)⊗
Z2 where Z2 denotes the 2-adic integers and πSr (S0) is the stable stem defined
in §2.2.

2.2. The History
The set of homotopy classes of continuous maps from Sm to Sn form a

group denotes by πm(Sn). To add two maps we squeeze the equator of Sm

to a point, making two copies of Sm attached at one point, and we put
one of the given maps on each Sm. There is a homomorphism from πm(Sn)
to πm+1(S

n+1) given by treating the original spheres as equators in Sm+1

and Sn+1 and mapping each latitudinal Sm to the Sn at the same latitude
by a scaled down version of the original map. The stable homotopy group
(sometimes called a stable stem) is the direct limit πSk (S0) = limk→∞ πr+k(S

r)
– also denoted by πk(Σ

∞S0).
The calculation of the stable homotopy groups of spheres is one of the

most central and intractable problems in algebraic topology. In the 1950’s
Jean-Pierre Serre used his spectral sequence to study the problem [95]. In
1962 Hirosi Toda used his triple products and the EHP exact sequence to
calculate the first nineteen stems (that is, πSj (S0) for 0 ≤ j ≤ 19) [109]. These
methods were later extended by Mimura, Mori, Oda and Toda to compute
the first thirty stems ([76], [77], [78], [83]). In the late 1950’s the study of the
classical Adams spectral sequence began [1]. According to ([50] Chapter 1),
computations in this spectral sequence were still being pursued into the 1990’s
using the May spectral sequence and the lambda algebra. The best published
results are Peter May’s thesis ([67], [68]) and the computation of the first
forty-five stems by Michael Barratt, Mark Mahowald and Martin Tangora
([14], [65]), as corrected by Bob Bruner [22]. The use of the Adams spectral
sequence based on Brown-Peterson cohomology theory (BP theory for short)
was initiated by Sergei Novikov [82] and Raph Zahler [112]. The BP spectral
sequences were most successful at odd primes [70]. A comprehensive survey
of these computations and the methods which have been used is to be found
in Doug Ravenel’s book [92].

We shall be interested in two-primary phenomena in the stable homotopy
of spheres, generally ackowledged to be the most intractable case. What can
be said at the prime p = 2? A seemingly eccentric, cart-before-the-horse
method for computing stable stems was developed in 1970 by Joel Cohen
[25]. For a generalised homology theory E∗ and a stable homotopy spectrum
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X there is an Atiyah-Hirzebruch spectral sequence [27]

E2
p,q = Hp(X; πq(E)) =⇒ Ep+q(X).

Cohen studied this spectral sequence with X an Eilenberg-Maclane spectrum
and E equal to stable homotopy or stable homotopy modulo n. The idea was
that in this case the spectral sequence is converging to zero in positive degrees
and, since the homology of the Eilenberg-Maclane spectra are known, one
can inductively deduce the stable homotopy groups of spheres. This strategy
is analogous to the inductive computation of the cohomology of Eilenberg-
Maclane spaces by means of the Serre spectral sequence [24]. Cohen was only
able to compute a few low-dimensional stems before the method became too
complicated. Therefore the method was discarded in favour of new methods
which used the Adams spectral sequence. In 1972 Nigel Ray used the Cohen
method with X = MSU and E = MSp, taking advantage of knowledge
of H∗(MSU) and MSp∗(MSU) to compute πj(MSp) for 0 ≤ j ≤ 19 [93].
Again this method was discarded because David Segal had computed up
to dimension thirty-one via the Adams spectral sequence and in [54] these
computations were pushed to dimension one hundred.

In 1978 Stan Kochman and I studied the Atiyah-Hirzebruch spectral se-
quence method in the case where X = BSp and E∗ is stable homotopy
[49]. An extra ingredient was added in this paper; namely we exploited the
Landweber-Novikov operations to study differentials. This improvement is
shared by the case when X = BP and E∗ is stable homotopy, capitalising
on the spareness of H∗(BP ) and using Quillen operations to compute the
differentials. The result of this method is a computer-assisted calculation of
the stable stems up to dimension sixty-four with particular emphasis on the
two-primary part [50].

From ([92] Theorem 3.2.11) we have the following result.

Theorem 2.3.
For the range t− s ≤ 13 and s ≤ 7 the group Exts,tA (Z/2,Z/2) is generated

as an F2-vector-space by the elements listed in the following table. Only the
non-zero groups and elements are tabulated, the vertical coordinate is s and
the horizontal is t− s.

7 h7
0 P (h2

1)
6 h6

0 P (h2
1) P (h0h2)

5 h5
0 P (h1) P (h2)

4 h4
0 h3

0h3 h1c0
3 h3

0 h3
1 h2

0h3 c0 h2
1h3

2 h2
0 h2

1 h0h2 h2
2 h0h3 h1h3

1 h0 h1 h2 h3

0 1
0 1 2 3 6 7 8 9 10 11
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There are no generators for t − s = 12, 13 and the only generators in this
range with s > 7 are powers of h0.

Inspecting this table one sees that there can be no differentials in this range
and we obtain the following table of values for the 2-Sylow subgroups of the
stable stems πSn (S0)⊗ Z2.

Corollary 2.4.
For n ≤ 13 the non-zero groups πSn (S0) ⊗ Z2 are given by the following

table.

n 0 1 2 3 6 7 8 9 10 11
πn(S

0)⊗ Z2 Z2 Z/2 Z/2 Z/8 Z/2 Z/16 (Z/2)2 (Z/2)3 Z/2 Z/8

For more recent computational details the reader is referred to [16], [17],
[48], [49], [50], [51], [52], [53], [54], [55] and [56]. For example, according to
[50], the 2-Sylow subgroup of πS62(S

0) is Z/2⊕Z/2⊕Z/4 with an element of
Arf-Kervaire invariant one denoted by A[62, 1] having order two.

3. Framed manifolds and stable homotopy groups

Definition 3.1. Let Mn be a compact C∞ manifold without boundary and
let i : Mn −→ Rn+r be an embedding. The normal bundle of i, denoted by
ν(M, i), is the quotient of the pullback of the tangent bundle of Rn+r by the
sub-bundle given by the tangent bundle of M

ν(M, i) =
i∗τ(Rn+r)

τ(M)

so that ν(M, i) is an r-dimensional real vector bundle over Mn. If we give
τ(Rn+r) = Rn+r×Rn+r the Riemannian metric obtained from the usual inner
product in Euclidean space the total space of the normal bundle ν(M, i)
may be identified with the orthogonal complement of τ(M) in i∗τ(Rn+r).
That is, the fibre at z ∈ M may be identified with the subspace of vectors
(z, x) ∈ Rn+r × Rn+r such that x is orthogonal to i∗τ(M)z where i∗ is the
induced embedding of τ(M) into τ(Rn+r).

Lemma 3.2.
If r is sufficiently large (depending only on n) and i1, i2 : Mn −→ Rn+r are

two embeddings then ν(M, i1) is trivial (i.e. ν(M, i1) ∼= M × Rr) if and only
if ν(M, i2) is trivial.

Definition 3.3. Let ξ be a vector bundle over a compact manifold M en-
dowed with a Riemannian metric on the fibres. Then the Thom space is
defined to be the quotient of the unit disc bundle D(ξ) of ξ with the unit
sphere bundle S(ξ) collapsed to a point. Hence

T (ξ) =
D(ξ)

S(ξ)

is a compact topological space with a basepoint given by the image of S(ξ).
6



If M admits an embedding with a trivial normal bundle, as in Lemma
3.2, we say that M has a stably trivial normal bundle. Write M+ for the
disjoint union of M and a disjoint base-point. Then there is a canonical
homeomorphism

T (M × Rr) ∼= Σr(M+)

between the Thom space of the trivial r-dimensional vector bundle and the
r-fold suspension of M+, (Sr × (M+))/(Sr ∨ (M+)) = Sr ∧ (M+).

3.4. The Pontrjagin-Thom construction
Suppose that Mn is a manifold as in Definition 3.1 together with a choice

of trivialisation of normal bundle ν(M, i). This choice gives a choice of home-
omorphism

T (ν(M, i)) ∼= Σr(M+).

Such a homeomorhism is called a framing of (M, i). Now consider the em-
bedding i : Mn −→ Rn+r and identify the (n + r)-dimensional sphere Sn+r

with the one-point compactification Rn+r ⋃{∞}. The Pontrjagin-Thom con-
struction is the map

Sn+r −→ T (ν(M, i))

given by collapsing the complement of the interior of the unit disc bundle
D(ν(M, i)) to the point corresponding to S(ν(M, i)) and by mapping each
point of D(ν(M, i)) to itself.

Identifying the r-dimensional sphere with the r-fold suspension ΣrS0 of
the zero-dimensional sphere (i.e. two points, one the basepoint) the map
which collapses M to the non-basepoint yields a basepoint preserving map
Σr(M+) −→ Sr.

Therefore, starting from a framed manifold Mn, the Pontrjagin-Thom con-
struction yields a based map

Sn+r −→ T (ν(M, i)) ∼= Σr(M+) −→ Sr,

whose homotopy class defines an element of πn+r(S
r).

3.5. Framed Cobordism
Two n-dimensional manifolds without boundary are called cobordant if

their disjoint union is the boundary of some (n + 1)-dimensional manifold.
The first description of this equivalence relation was due to Henri Poincaré
([84], see §5 Homologies). This paper of Poincaré is universally considered to
be the origin of algebraic topology. His concept of homology is basically the
same as that of cobordism as later developed by Lev Pontrjagin ([85], [86]),
René Thom [108] and others [105].

The notion of cobordism can be applied to manifolds with a specific addi-
tional structure on their stable normal bundle (ν(Mn, i) for an embedding of
codimension r >> n). In particular one can define the equivalence relation
of framed cobordism between n-dimensional manifolds with chosen framings
of their stable normal bundle. This yields a graded ring of framed cobor-
dism classes Ωfr

∗ where the elements in Ωfr
n are equivalence classes of compact
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framed n-manifolds without boundary. The sum is induced by disjoint union
and the ring multiplication by cartesian product of manifolds.

More generally one may extend the framed cobordism relation to maps of
the form f : Mn −→ X where Mn is a compact framed manifold without
boundary andX is a fixed topological space. From such a map the Pontrjagin-
Thom construction yields

Sn+r −→ T (ν(M, i)) ∼= Σr(M+) −→ Σr(X+)

whose homotopy class defines an element of πn+r(Σ
r(X+)).

The cobordism of maps f yields a graded ring of framed cobordism classes
Ωfr
∗ (X). The Pontrjagin-Thom element associated to f does not depend solely

on its class in Ωfr
n(X) but the image of f in the stable homotopy group

πSn ((X+)) = lim
→
r

πn+r(Σ
r(X+)),

where the limit is taken over the iterated suspension map, depends only on
the framed cobordism class of f . Incidentally, once one chooses a basepoint in
X, in the stable homotopy category of §4.1 there is a stable homotopy equiv-
alence of the form X+ ' X ∨ S0 and therefore a non-canonical isomorphism
πS∗ (X+) ∼= πS∗ (X)⊕ πS∗ (S0).

Pontrjagin ([85], [86]) was the first to study stable homotopy groups by
means of framed cobordism classes, via the following result, which is proved
in ([105] pp.18-23):

Theorem 3.6.
The construction of §3.5 induces an isomorphism of graded rings of the

form

P : Ωfr
∗

∼=−→ πS∗ (S0)

where the ring multiplication in πS∗ (S0) is given by smash product of maps.
More generally the construction of §3.5 induces an isomorphism of graded

groups of the form

P : Ωfr
∗ (X)

∼=−→ πS∗ (X+).

4. The classical stable homotopy category

4.1. In this section we shall give a thumb-nail sketch of the stable homotopy
category. Since we shall only be concerned with classical problems concern-
ing homotopy groups we shall only need the most basic model of a stable
homotopy category.

The notion of a spectrum was originally due to Lima [59] and was formalised
and published in [110]. A spectrum E is a sequence of base-pointed spaces
and base-point preserving maps (indexed by the positive integers)

E : {εn : ΣEn −→ En+1}
8



from the suspension of the n-th space En to the (n + 1)-th space of E. An
Ω-spectrum is the same type of data but given in terms of the adjoint maps

E : {adj(εn) : En −→ ΩEn+1}
from the n-th space to the based loops on En+1. One requires that the
connectivity of the adj(εn)’s increases with n. In many examples the adj(εn)’s
are homotopy equivalences which are often the identity map.

A function f : E −→ F of degree r, according to ([6] p.140) in the stable
homotopy category, is a family of based-maps {fn : En −→ Fn−r} which
satisfy the following relations for all n

fn+1 · εn = φn−r · Σfn : ΣEn −→ Fn−r+1

or equivalently

Ωfn+1 · adj(εn) = adj(φn−r) · fn : En −→ ΩFn−r+1

where F = {φn : ΣFn −→ Fn+1}. A morphism f : E −→ F of degree r
is the stable homotopy class of a function f . We shall not need the precise
definition of this equivalence relation on functions; suffice to say that that
[E,F ]r, the stable homotopy classes of morphisms from E to F of degree r
in the stable homotopy category, form an abelian group. Summing over all
degrees we obtain a graded abelian group [E,F ]∗.

If X and Y are two spaces with base-points the smash product X ∧ Y
is the product with the two “axes” collapsed to a base-point. Forming the
smash product spectrum E∧F of two spectra E and F is technically far from
straightforward although a serviceable attempt is made in ([6] pp.158-190).
Essentially the smash product E ∧ F has an s-th space which is constructed
from the smash products of the spaces En ∧ Fs−n. For our purposes we
shall need only the most basic notions of ring space and module spectra
over ring spectra which are all the obvious translations of the notions of
commutative rings and modules over them. However, one must bear in mind
that a commutative ring spectrum is a generalisation of a graded commutative
ring so that the map which involves switching En ∧ Em to Em ∧ En carries
with it the sign (−1)mn (see [6] pp.158-190)!

Example 4.2. (i) The category of topological spaces with base points is
included into the stable homotopy category by means of the suspension spec-
trum Σ∞X. If X is a based space we define

(Σ∞X)0 = X, (Σ∞X)1 = ΣX, (Σ∞X)2 = Σ2X, . . .

with each εn being the identity map.

(ii) The fundamental suspension spectrum is the sphere spectrum Σ∞S0

where S0 = {0, 1} with 0 as base-point. Since S0 ∧ S0 = S0 the suspension
spectrum Σ∞S0 is a commutative ring spectrum. Since S0 ∧X = X for any
based space every spectrum is canonically a module spectrum over the sphere
spectrum.
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(iii) If Π is an abelian group then the Eilenberg-Maclane space K(Π, n) is
characterised up to homotopy equivalence by the property that

πi(K(Π, n)) ∼=


Π if i = n,

0 otherwise.

Therefore ΩK(Π, n+1) ' K(Π, n) and we may define the singular homology
spectrum or Eilenberg-Maclane spectrum HΠ by

(HΠ)n = K(Π, n)

for n ≥ 0. We shall be particularly interested in the case of singular homology
modulo 2 HZ/2 which is also a commutative ring spectrum, because it is
easy to construct non-trivial maps of the form K(Z/2,m) ∧ K(Z/2, n) −→
K(Z/2,m+ n) by means of obstruction theory.

(iv) Every reasonable topological group G has a classifying space BG such
that homotopy classes of maps from W to BG correspond to the equivalence
classes of principle G-bundles over W . In particular, this is true for G = U ,
the infinite unitary group. Homotopy classes of maps from a space X into
Z×BU , whose base-point lies in the component {0} ×BU , classify complex
vector bundles onX (see [12] or [38]). The tensor product of the reduced Hopf
line bundle on S2 with the universal bundle gives a map ε : S2∧(Z×BU) −→
Z×BU and the Bott Periodicity Theorem states that ([12] , [38]) the adjoint
gives a homotopy equivalence

adj(ε) : Z×BU
'−→ Ω2(Z×BU).

This gives rise to the KU-spectrum or complex periodic K-theory spectrum
defined for n ≥ 0 by

KU2n = Z×BU and KU2n+1 = Σ(Z×BU).

Homotopy classes of maps from a space X into Z×BO classify real vector
bundles on X (see [12] or [38]). The real Bott Periodicity Theorem is a
homotopy equivalence given by the adjoint of a map, similar to the one in
the unitary case, of the form

ε : S8 ∧ (Z×BO) −→ Z×BO

which, in a similar manner, yields a spectrum KO whose 8n-th spaces are
each equal to Z×BO.

(v) A connective spectrum E is one which satisfies

πr(E) = [Σ∞Sr, E]0 = [Σ∞S0, E]r = 0

for r < n0 for some integer n0. Unitary and orthogonal connective K-theories,
denoted respectively by bu and bo, are examples of connective spectra with
n0 = 0 ([6] Part III §16).

For m ≥ 0 let (Z×BU)(2m,∞) denote a space equipped with a map

(Z×BU)(2m,∞) −→ Z×BU
10



which induces an isomorphism on homotopy groups

πr((Z×BU)(2m,∞))
∼=−→ πr(Z×BU)

for all r ≥ 2m and such that πr((Z × BU)(2m,∞)) = 0 for all r < 2m.
These spaces are constructed using obstruction theory and are unique up to
homotopy equivalence. In particular there is a homotopy equivalence

(Z×BU)(2m,∞) ' Ω2(Z×BU)(2m+ 2,∞)

which yields a spectrum bu given by

bu2m = (Z×BU)(2m,∞) and bu2m+1 = Σbu2m.

The spectrum bo is constructed in a similar manner with

bo8m = (Z×BO)(8m,∞).

In addition one constructs closely related spectra bso and bspin from BSO =
(Z×BO)(2,∞) and BSpin = (Z×BO)(3,∞).

There are canonical maps of spectra bu −→ KU and bo −→ KO which
induce isomorphisms on homotopy groups in dimensions greater than or equal
to zero. These are maps of ring spectra. Similarly we have canonical maps
of spectra of the form bspin −→ bso −→ bo.

(vi) The cobordism spectra ([6] p.135) are constructed from Thom spaces
(see [105] and Definition 3.3).

For example, let ξn denote the universal n-dimensional vector bundle over
BO(n) and let MO(n) be its Thom space. The pull-back of ξn+1 via the
canonical map BO(n) −→ BO(n+ 1) is the vector bundle direct sum ξn ⊕ 1
where 1 denotes the one-dimensional trivial bundle. The Thom space of ξn⊕1
is homeomorphic to ΣMO(n) which yields a map

εn : ΣMO(n) −→MO(n+ 1)

and a resulting spectrum MO with MOn = MO(n).
Replacing real vector bundles by complex ones gives MU with

ε2n : Σ2MU(n) −→MU(n+ 1) = MU2n+2 and MU2n+1 = ΣMU(n).

There are similar constructions associated to the families of classical Lie
groups MSO, MSpin and MSp, where MSp4n = MSp(n). These cobordism
spectra are all connective spectra which are commutative ring spectra by
means of the maps (for example, MO(m)∧MO(n) −→MO(m+n)) induced
by direct sum of matrices in the classical groups.

(vii) The following type of non-connective spectrum was introduced in
[96]. Suppose that X is a homotopy commutative H-space and B ∈ πi(X)
or B ∈ πSi (X) = πi(Σ

∞X). Let X+ denote the union of X with a disjoint
base-point. Then there is a stable homotopy equivalence of the form

Σ∞X+ ' Σ∞X ∨ Σ∞S0,
11



the wedge sum of the suspension spectra of X and S0. Hence B ∈ πi(Σ∞X+)
and the multiplication in X induces (X×X)+

∼= X+∧X+ −→ X+ and thence

ε : Σ∞Si ∧X+
B∧1−→ Σ∞X+ ∧X+ −→ Σ∞X+.

This data defines a spectrum Σ∞X+[1/B] in which the i-th space is equal
to X+. This spectrum will, by construction, be stable homotopy equivalent
(via the map ε) to its own i-th suspension. In particular if B is the generator
of π2(CP∞) or π2(BU) the resulting spectra Σ∞CP∞+ [1/B] and Σ∞BU+[1/B]
will have this type of stable homotopy periodicity of period 2.

In Example (iv) we met KU which has periodicity of period 2 and if we
add a countable number of copies of MU together we may define

PMU = ∨∞n>−∞ Σ2nMU

which also has periodicity of period 2. The following result is proved in ([96],
[97]).

Theorem 4.3.
There are stable homotopy equivalences of the form

Σ∞CP∞+ [1/B] ' KU

and
Σ∞BU+[1/B] ' PMU.

Example 4.4. Here are some ways to make new spectra from old.

(i) Given two spectra E and F we can form the smash product spectrum
E ∧ F . We shall have quite a lot to say about the cases where E and F
are various connective K-theory spectra yielding examples such as bu ∧ bu,
bo∧ bo and bu∧ bo. Each of these spectra is a left module spectrum over the
left-hand factor and a right module over the right-hand one. For example the
left bu-module structure on bu ∧ bo is given by the map of spectra

bu ∧ (bu ∧ bo) = (bu ∧ bu) ∧ bo m∧1−→ bu ∧ bo
where m : bu ∧ bu −→ bu is the multiplication in the ring spectrum bu.

(ii) Suppose that E is a spectrum and G is an abelian group. The Moore
spectrum of type G ([6] p.200, [92] p. 54) MG is a connective spectrum char-
acterised by the following conditions on its homotopy and homology groups

πr(MG) = [Σ∞S0,MG]r = 0 for r < 0,

π0(MG) ∼= G and

Hr(MG; Z) = πr(MG ∧ HZ) = 0 for r > 0.

The spectrum E ∧ MG is referred to as E with coefficients in G. For
example E ∧Σ∞RP2 is the double suspension of E with coefficients in Z/2.

(iii) Sometimes one wishes to concentrate on a limited aspect of a spectrum
E such as, for example, the p-primary part of the homotopy groups. This
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can often be accomplished using the notions of localisation and completion of
spaces or spectra. This appeared first in Alex Zabrodsky’s method of “mixing
homotopy types” [111] which he used to construct non-standard H-spaces. I
first encountered this technique in the mimeographed MIT notes of Dennis
Sullivan on geometric topology, part of which eventually appeared in [106].
Localisation of spectra and calculus of fractions is mentioned in Adams’ book
[6] but the final picture was first accomplished correctly by Pete Bousfield in
[18].

Localisation (sometimes called completion) is related to the spectra with co-
efficients discussed in (ii). For example, p-local (or alternatively p-complete)
connective K-theories are the subject of [64] (see also [7]) and frequently
agree with connective K-theories with coefficients in the p-adic integers when
applied to finite spectra.

(iv) Suppose that f : E −→ F is a map of spectra of degree zero (if the
degree is not zero then suspend or desuspend F ). Then there is a mapping
cone spectrum Cf called the cofibre of f which sits in a sequence of maps of
spectra which generalise the Puppe sequence in the homotopy of spaces [103]

. . . −→ Σ−1Cf −→ E
f−→ F −→ Cf −→ ΣE

Σf−→ ΣF −→ ΣCf −→ . . .

in which the spectrum to the right of any map is its mapping cone spectrum.
This sequence gives rise to long exact homotopy sequences and homology
sequences [6] some of which we shall examine in detail later, particularly in
relation to j-theories and K-theory e-invariants defined via Adams operations
(as defined in [3], for example).

The spectrum Σ−1Cf will sometimes be called the fibre spectrum of f .
One may construct new spectra from old as the fibre spectra of maps.

For example there is a self-map of MUZp – MU with p-adic coefficients –
called the Quillen idempotent [90] (see also [6] Part II). The mapping cone of
this homotopy idempotent is the Brown-Peterson spectrum BP ([92], [100]).
There is one such spectrum for each prime.

When connective K-theory, say bu, is inflicted with coefficients in which
p is invertible then there is a self-map ψp called the p-th Adams operation.
The fibre of ψp− 1 is an example of a J-theory. For example we shall be very
interested in

ju = Fibre(ψ3 − 1 : buZ2 −→ buZ2).

Here Zp denotes the p-adic integers. We could replace buZ2 by 2-localised bu
in the sense of [18].

The spectrum jo is defined in a similar manner as ([13], see also [101]
Chapter Seven)

jo = Fibre(ψ3 − 1 : boZ2 −→ bspinZ2).
13



In [100] one encounters 2-adic big J-theory and J ′-theory which are defined
by the fibre sequences

J
π−→ BP

ψ3−1−→ BP
π1−→ ΣJ

and

J ′
π′−→ BP ∧BP ψ3∧ψ3−1−→ BP ∧BP π′1−→ ΣJ ′.

Here ψ3 in BP is induced by the Adams operation ψ3 on MU∗(−; Z2), which
commutes with the Quillen idempotent which defines the summand BP .

(v) One may construct new spectra from old by means of the representabil-
ity theorem of Ed Brown Jr. which states that any reasonable generalised
cohomology theory (see Definition 4.5) is representable in the stable homo-
topy category by (i.e. is given by maps into) a unique spectrum. Therefore
any procedure, algebraic or otherwise, on a generalised cohomology theory
and having sufficient naturality and exactness properties to result in a new
generalised cohomology theory results in a new spectrum in the stable homo-
topy category.

This will be particularly important when we come to the new spectrum
which is used in [34].

The fundamental example is the spectrum BP in the category of p-local
spectra. As we shall see in Theorem 4.7 the spectrum MU is intimately
related to the universal formal group. Accordingly when p-localised there is
an idempotent of MU which corresponds to a result of Cartier concerning
the universal p-adic formal group and BP is the resulting stable homotopy
analogue. The homotopy of BP is given by π∗(BP ) = Zp[v1, v2, v3, . . . ] where
vn ∈ π2pn−2(BP ).

The En-spectra were discovered by Jack Morava [92]. There is one for
each positive integer n and for each prime p and they are obtained from BP .
The homotopy π∗(En) is obtained from π∗(BP ) by first inverting vn and
annihilating the higher-dimensional generators, then completing with respect
to the ideal In = (p, v1, . . . , vn−1) and finally adjoining the (pn − 1)-th roots
of unity. For reasons of local class field theory Jonathan Lubin and John Tate
[60] introduced π∗(En) and showed that it classifies liftings to Artinian rings
of the Honda formal group law Fn over Fpn .

The En’s are not merely ring spectra. They have a lot of additional struc-
ture going by the name of an E∞-ring structure. A bunch of otherMU -related
spectra may be found in ([31] p.124).

It will come as no surprise to learn that the classical stable homotopy
category may be extended to handle spectra with group actions. Brushing
the technicalities aside, it should be noted that result of Mike Hopkins and
Haynes Miller ([31] p.126) shows that En is a G spectrum where G is the
Morava stabiliser group. In [34] the important motivation for the method
comes, I believe, from the study G-spectra acted upon by finite subgroups of
Morava stabiliser groups [33].
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Definition 4.5. Generalised homology and cohomology theories
We shall need the stable homotopy category because it is the correct place

in which to study homology and cohomology of spaces and, more generally,
spectra. Generalised homology and cohomology theories originate in [110].

If E and X are spectra then we define the E-homology groups of X ([6]
p.196) by

En(X) = [Σ∞S0, E ∧X]n
and write E∗(X) for the graded group given by the direct sum over n of the
En(X)’s. Sometimes we shall denote E∗(Σ

∞S0) by π∗(E), the homotopy of
E.

We define the E-cohomology groups of X by

En(X) = [X,E]−n

and we write E∗(X) for the graded group given by the E-cohomology groups.

Example 4.6. Here are some tried and true homology and cohomology the-
ories associated with some of the spectra from Example 4.2.

(i) The graded cohomology algebra given by the mod 2 Eilenberg-Maclane
spectrum is isomorphic to the mod 2 Steenrod algebra (see §5.1)

(HZ/2)∗(HZ/2) = [HZ/2,HZ/2]−∗ ∼= A
where the product in A corresponds to composition of maps of spectra. The
graded mod 2 homology is a Hopf algebra isomorphic to the dual Steenrod
algebra

π∗(HZ/2 ∧ HZ/2) ∼= A∗.

(ii) The complex cobordism theories MU∗ and MU∗ became very impor-
tant with the discovery by Daniel Quillen of a connection, described in detail
in ([6] Part II) between formal group laws and π∗(MU).

Theorem 4.7. ([74], [90]; see also ([6] p.79))
(i) π∗(MU) is isomorphic to a graded polynomial algebra on generators in

dimensions 2, 4, 6, 8, . . . .

(ii) Let L denote Lazard’s ring ([6] p.56) associated to the universal formal
group law over the integers. Then there is a canonical isomorphism of graded
rings

θ : L
∼=−→ π∗(MU).

Theorem 4.7(i) is proved using the classical mod p Adams spectral se-
quences. Theorem 4.7(ii) is suggested by the fact that the multiplication on
CP∞ gives rise to a formal group law

π∗(MU)[[x]] = MU∗(CP∞) −→MU∗(CP∞ × CP∞) = π∗(MU)[[x1, x2]]

with coefficients in π∗(MU).
Since Quillen’s original discovery this theme has developed considerably

and details may be found in [92] (see also [57], [58], [89], [61], [37]).
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5. Cohomology operations

Every cohomology theory has a ring of stable operations given by its en-
domorphisms in the stable homotopy category. These algebras of operations
are important in the construction of Adams spectral sequences, which are the
backbone of the proof in [34] and, indeed, throughout stable homotopy theory
[101]. Since we should pause to see how Frank Adams constructed the first
such spectral sequence [1] we must begin by recalling the (mod 2) algebra of
operations discovered by Norman Steenrod.

5.1. The Steenrod Algebra Modulo 2
Let H∗(X,A; Z/2) denote singular cohomology of the pair of topological

spaces A ⊆ X ([103], [104], [32]). The modulo 2 Steenrod operations are
denoted by Sqi for i ≥ 0 which are characterised by the following axioms
([104] p.2):

(i) For all n ≥ 0

Sqi : Hn(X,A; Z/2) −→ Hn+i(X,A; Z/2)

is a natural homomorphism.

(ii) Sq0 is the identity homomorphism.

(iii) If deg(x) = n then Sqn(x) = x2.

(iv) If i > deg(x) then Sqi(x) = 0.

(v) The Cartan formula holds

Sqk(xy) =
k∑
i=0

Sqi(x)Sqk−i(y).

(vi) Sq1 is the Bockstein homomorphism associated to the coefficient se-
quence

. . . −→ Hn(X,A; Z/4) −→ Hn(X,A; Z/2)
Sq1−→ Hn+1(X,A; Z/2) −→ . . . .

(vii) The Adem relations hold. If 0 < a < 2b then

SqaSqb =
[a/2]∑
j=0

 b− 1− j

a− 2j

 Sqa+b−jSqj

where [y] denotes the greatest integer less than or equal to y and

 m

k

 =

m!
k!(m−k)! is the usual binomial coefficient (modulo 2).

(viii) If δ : Hn(A; Z/2) −→ Hn+1(X,A; Z/2) is the coboundary homomor-
phism from the long exact cohomology sequence of the pair (X,A) then, for
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all i ≥ 0,
δSqi = Sqiδ.

Example 5.2. Real projective space RPn
The cohomology ring of real projective n-spaces is

H∗(RPn; Z/2) ∼= Z/2[x]/(xn+1) where deg(x) = 1. By induction, the axioms
of §5.1 imply that ([104] Lemma 2.4)

Sqi(xk) =

 k

i

 xk+i.

Definition 5.3. The Steenrod algebra A
LetM be the graded F2 vector space with basis {Sq0 = 1, Sq1, Sq2, Sq3, . . . }

with deg(Sqi) = i. Let T (M) denote the tensor algebra of M . It is a
connnected, graded F2-algebra.

The modulo 2 Steenrod algebra, denoted by A, is defined to be the quotient
of T (M) by the two-sided ideal generated by the Adem relations, if 0 < a <
2b,

Sqa ⊗ Sqb =
[a/2]∑
j=0

 b− 1− j

a− 2j

 Sqa+b−j ⊗ Sqj.

A finite sequence of non-negative integers I = (i1, i2, . . . , ik) is defined to
have length k, written l(I) = k and moment m(I) =

∑k
s=1 sis. A sequence

I is called admissible if i1 ≥ 1 and is−1 ≥ 2is for 2 ≤ s ≤ k. Write SqI =
Sqi1Sqi2 . . . Sqik . Then Sq0 and all the SqI with I admissible are called the
admissible monomials of A. The following result is proved by induction on
the moment function m(I).

Theorem 5.4. ([104] Chapter I, Theorem 3.1)
The admissible monomials form an F2-basis for the Steenrod algebra A.

Definition 5.5. Let A be a graded F2-algebra with a unit η : F2 −→ A and
a co-unit ε : A −→ F2. Therefore ε · η = 1. These homomorphisms preserve
degree when F2 is placed in degree zero.

Then A is a Hopf algebra if:

(i) There is a comultiplication map

ψ : A −→ A⊗ A

which is a map of graded algebras when A ⊗ A is endowed with the algebra
multiplication (a⊗ a′) · (b⊗ b′) = ab⊗ a′b′ and

(ii) Identifying A ∼= A⊗ F2
∼= F2 ⊗ A

1 = (1⊗ ε) · ψ = ψ · (1⊗ ε) : A −→ A.

The comultiplication is associative if

(ψ ⊗ 1) · ψ = (1⊗ ψ) · ψ : A −→ A⊗ A⊗ A.

It is commutative if ψ = T · ψ where T (a⊗ a′) = a′ ⊗ a for all a, a′ ∈ A.
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Theorem 5.6. ([104] Chapter II, Theorems 1.1 and 1.2)
The map of generators

ψ(Sqk) =
k∑
i=0

Sqi ⊗ Sqk−i

extends to a map of graded F2-algebras

ψ : A −→ A⊗A
making A into a Hopf algebra with a commutative, associative comultiplica-
tion.

Definition 5.7. Let A∗ denote the dual vector space to A whose degree n
subspace is A∗n = HomF2(An,F2). Let

< −,− >: A∗ ×A −→ F2

denote the evaluation pairing < f, a >= f(a).
Let Mk = SqIk where Ik = (2k−1, 2k−2, . . . , 2, 1) for any strictly positive

integer k. This is an admissible monomial. Define ξk ∈ A∗2k−1 by the following
formulae for < ξk,m > where m runs through all admissible monomials:

< ξk,m >=


1 if m = Mk,

0 otherwise.

The dual of a commutative coalgebra is a commutative algebra whose multi-
plication ψ∗ is the dual of the comultiplication ψ. Similarly the dual of a Hopf
algebra over F2 is again an F2-Hopf algebra. The following result describes
the Hopf algebra A∗.

Theorem 5.8. ([104] Chapter II, Theorems 2.2 and 2.3, [72])
The F2-Hopf algebra A∗ is isomorphic to the polynomial algebra

F2[ξ1, ξ2, ξ3, . . . , ξk, . . . ] with comultiplication given by

φ∗(ξk) =
k∑
i=0

ξ2i

k−i ⊗ ξi.

6. The classical Adams spectral sequence

6.1. Now, as promised, here is a sketch of the mod 2 classical Adams spec-
tral sequence which was first constructed in [1] in order to calculate the stable
homotopy groups of spaces. Its generalisation to other cohomology theories
can be very technical to construct but this one gives Adams’ basic clever idea
– namely, to realise by means of maps of spectra the chain complexes which
occur in homological algebra. The complete background to the construction
in that level of generality is described in the book [80]. The construction be-
comes easier when set up in the stable homotopy category and this is described
in ([92] Chapter 3). The construction of an Adams spectral sequence based
on a generalised homology theory was initiated in the case of MU by Novikov
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[82]. These generalised spectral sequences are discussed and explained in [6]
and [92].

6.2. Mod 2 Adams resolutions
Let X be a connective spectrum such that (HZ/2)∗(X) – which we shall

often write asH∗(X; Z/2) – has finite type. This means that eachHn(X; Z/2)
is a finite dimensional F2-vector space. Also H∗(X; Z/2) is a left module
over the mod 2 Steenrod algebra A. Therefore one may apply the standard
constructions of graded homological algebra ([35], [62]) to form the Ext-groups

Exts,tA (H∗(X; Z/2),Z/2).

In order to construct his spectral sequence Frank Adams imitated the ho-
mological algebra construction using spaces – in particular, mod 2 Eilenberg-
Maclane spaces.

A (mod 2 classical) Adams resolution is a diagram of maps of spectra of
the following form

X0 = X-
g0

X1-
g1

X2-
g2

X3-
g3

X4-
g4· · ·

?

f0

?

f1

?

f2

?

f3

?

f4

K0K1K2K3K4

in which each Ks is a wedge of copies of suspensions of the Eilenberg-Maclane
spectrum HZ/2, each homomorphism

f ∗s : H∗(Ks; Z/2) −→ H∗(Xs; Z/2)

is surjective and each

Xs+1
gs−→ Xs

fs−→ Ks

is a fibring of spectra (that is, Xs+1 is the fibre of fs).
By Example 4.6(i) each H∗(Ks; Z/2) is a free A-module and the long exact

mod 2 cohomology sequences split into short exact sequences which splice
together to give a free A-resolution of H∗(X; Z/2)

. . . −→ H∗(Σ2K2; Z/2) −→ H∗(ΣK1; Z/2)

−→ H∗(K0; Z/2) −→ H∗(X0; Z/2) −→ 0.

The long exact homotopy sequences of the fibrings of spectra take the form

. . . −→ π∗(Xs+1) −→ π∗(Xs) −→ π∗(Ks) −→ π∗−1(Xs+1) −→ . . .
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which may be woven together to give an exact couple, which is one of the
standard inputs to produce a spectral sequence [69]. In this case the spec-
tral sequence is called the mod 2 Adams spectral sequence and satisfies the
following properties.

Theorem 6.3.
Let X be a connective spectrum such that X is of finite type. Then there

is a convergent spectral sequence of the form

Es,t
2 = Exts,tA (H∗(X; Z/2),Z/2) =⇒ πt−s(X)⊗ Z2

with differentials dr : Es,t
r −→ Es+r,t+r−1

r .

Remark 6.4. In Theorem 6.3 the condition that X is of finite type is the
spectrum analogue (see [6]) of a space being a CW complex with a finite
number of cells in each dimension. It implies that H∗(X; Z/2) has finite
type, but not conversely. Typical useful finite type examples are finite smash
products of connective K-theory spectra and suspension spectra of finite CW
complexes.

7. Homology operations

The approach to non-existence results concerning the Arf-Kervaire invari-
ant used in [8] requires us to know a little about some formulae, one of which
is due to Jorgen Tornehave and me [102], for the invariant in terms of mod 2
cohomology. In order to be able to sketch this, and several other reformula-
tions of the problem, requires the introduction of the Dyer-Lashof algebra of
homology operations – a sort of dual animal to the Steenrod algebra of §5.3.

Definition 7.1. A based space X0 is an infinite loopspace if there exists a
sequence of based spaces X1, X2, X3, . . . such that Xi = ΩXi+1, the space of
loops in Xi+1, which begin and end at the base-point, for each i ≥ 0. A map
of infinite loopspaces is defined in the obvious manner.

The principal example of an infinite loopspace is the space
QX = lim→

n
ΩnΣnX, the limit over n of the space of based maps of the

n-sphere into the n-fold suspension of X, ΣnX.
Numerous other examples of infinite loopspaces occur throughout topology

– for example, the classifying spaces for topological and algebraic K-theory
(see [64], [7], [63]).

The mod p homology of an infinite loop space admits an algebra of ho-
mology operations which complement the operations on homology given by
the duals of the Steenrod operations. The homology operations form a Hopf
algebra which is usually called the Dyer-Lashof algebra after the paper [28].
However, the operations originated in the work of Araki and Kudo [10] (see
also [81]).

We shall be concerned only with homology modulo 2. Most importantly,
the map induced on mod 2 homology by an infinite loopspace map commutes
with the Dyer-Lashof operations.
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7.2. The Dyer-Lashof algebra modulo 2
Let H∗(X; Z/2) denote the singular homology modulo 2 of an infinite

loopspace X. Hence H∗(X; Z/2) is an F2-Hopf algebra.
(i) For each n ≥ 0 there is a linear map

Qn : H∗(X; Z/2) −→ H∗+n(X; Z/2)

which is natural for maps of infinite loopspaces.
(ii) Q0 is the identity map.
(iii) If deg(x) = n then Qn(x) = x2.
(iv) If deg(x) > n then Qn(x) = 0.
(v) The Kudo transgression theorem holds:

Qnσ∗ = σ∗Q
n

where σ∗ : H̃∗(ΩX; Z/2) −→ H∗+1(X,Z/2) is the homology suspension map.
(v) The multiplicative Cartan formula holds:

Qn(xy) =
n∑
r=0

Qr(x)Qn−r(y).

(vi) The comultiplicative Cartan formula holds:

ψ(Qn(x)) =
n∑
r=0

Qr(x′)⊗Qn−r(x′′)

where the comultiplication is given by ψ(x) =
∑

x′ ⊗ x′′.
(vii) If χ : H∗(X; Z/2) −→ H∗(X; Z/2) is the canonical anti-automorphism

of the Hopf algebra [75] then

χ ·Qn = Qn · χ.
(viii) The Adem relations hold:

Qr ·Qs =
∑
i

 i− 1

2i− r

Qr+s−i ·Qi

if r > 2s.
(ix) Let Sqr∗ : H∗(X; Z/2) −→ H∗−i(X; Z/2) denote the dual of the Steen-

rod operation Sqr of §5.1. Then the Nishida relations hold:

Sqr∗ ·Qs =
∑
i

 s− r

r − 2i

Qs−r+i · Sqi∗.

Definition 7.3. As with Steenrod operations in Definition 5.3 the Adem re-
lations for iterated Dyer-Lashof operations lead to the notation of an admis-
sible iterated operation. The element Qi1Qi2 . . . Qis(x) is called an admissible
iterated Dyer-Lashof operation if the sequence I = (i1, i2, . . . , is) satisfies
ij ≤ 2ij+1 for 1 ≤ j ≤ s − 1 and iu > iu+1 + iu+2 + . . . + is + deg(x) for
1 ≤ u ≤ s.

The weight of QI is defined to be 2s.
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Applications of the Dyer-Lashof operations may be found, for example, in
([48], [26], [63]). Here are a couple.

7.4. The Kahn-Priddy theorem
The motivation for the Kahn-Priddy theorem comes from the classical J-

homomorphism [3], which we shall encounter later (see §9.1) in connection
with exotic spheres.

Let O∞(R) = lim→
m
Om(R) denote the infinite orthogonal group given by

the direct limit of the orthogonal groups of n×n matrices X with real entries
and satisfying X = Xtr, the transpose of X [5]. There is a very important,
classical homomorphism – the stable J-homomorphism [3] – of the form

J : πr(O∞(R)) −→ πSr (S0) = πr(Σ
∞S0)

as a consequence of the fact that an n× n orthogonal matrix yields a contin-
uous homeomorphism of Sn−1. George Whitehead observed that J factorised
through an even more stable J-homomorphism

J ′ : πSr (O∞(R)) = πr(Σ
∞O∞(R)) −→ πSr (S0) = πr(Σ

∞S0)

and conjectured that J ′ is surjective when r > 0. Independently, on the
basis of calculations, Mark Mahowald conjectured that πr(Σ

∞RP∞) maps
surjectively onto the 2-primary part of πr(Σ

∞S0) via the composition of J ′

with the well-known map

πr(Σ
∞RP∞) −→ πr(Σ

∞O∞(R))

resulting from sending a line in projective space to the orthogonal reflection
in its orthogonal hyperplane. Maholwald’s conjecture was proved by Dan
Kahn and Stewart Priddy ([41]; see also [42], [43] and [5]).

The proof uses a construction called the transfer in stable homotopy to-
gether with a carefully analysis of its effect when transformed into a map
between the infinite loopspaces QRP∞ and Q0S

0, the component of maps of
degree zero in QS0. The point is that there are isomorphisms

π∗(Σ
∞RP∞) ∼= π∗(QRP∞) and π∗(Σ

∞S0) ∼= π∗(QS
0)

in positive dimensions. Mahowald’s surjectivity conjecture follows by putting
f equal to the J-homomorphism map in the following result. A proof in which
the transfer map is replaced by the quadratic part of the Snaith splitting is
given in ([101] §1.5.10).

Theorem 7.5. (The Kahn-Priddy theorem [41])
Let f : RP∞ −→ Q0S

0 be any map which induces an isomorphism on π1

and let
f̃ : QRP∞ −→ Q0S

0

denote the canonical infinite loopspace map which extends f . Then the com-
posite

Q0S
0 transfer−→ QRP∞ f̃−→ Q0S

0

is a 2-local homotopy equivalence.
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7.6. Hurewicz images in homology modulo 2
Let H∗(W ; Z/2) denote the singular homology modulo 2 of the space W

and let
< −,− >: H∗(W ; Z/2)⊗H∗(W ; Z/2) −→ Z/2

denote the canonical non-singular pairing ([6], [103], [32]). The dual Steenrod
operation Sqt∗ is the homology operation

Sqt∗ : Hn(W ; Z/2) −→ Hn−t(W ; Z/2)

characterised by the equation < Sqt∗(a), α >=< a, Sqt(α) > for all a ∈
H∗(W ; Z/2) and α ∈ H∗(W ; Z/2).

Denote by H∗(W ; Z/2)A the A-annihilated submodule

H∗(W ; Z/2)A∗ = {x ∈ H∗(W ; Z/2) | Sqn∗ (x) = 0 for all n > 0}.
Similarly we define the Steenrod annihilated submodule MA for quotients and
submodules M of homology which have well-defined actions induced by the
Sqt∗’s. In particular, H∗(QX; Z/2) is a Hopf algebra with an action by the
Sqt∗’s and we have QH∗(QX; Z/2)A and PH∗(QX; Z/2)A, the A-annihilated
indecomposables and primitives respectively. The latter is of interest because
the Hurewicz image of a homotopy class in πr(QX) ∼= πr(Σ

∞X) must lie in
PHr(QX; Z/2)A and the primitives are related to the decomposables by a
short exact sequence [75].

The following result is proved using the properties listed in §7.2.

Theorem 7.7. ([102])
Let Y = QX = lim→

n
ΩnΣnX with X a connected CW complex. Then the

A-annihilated decomposables QH∗(Y ; Z/2)A satisfy:
(i) For n ≥ 2

QH2n−2(Y ; Z/2)A ∼= H2n−2(X; Z/2)A.

(ii) For n ≥ 2

QH2n−1(Y ; Z/2)A ∼= H2n−1(X; Z/2)A ⊕Q2n−1

(H2n−1−1(X; Z/2))

where Qi denotes the i-th homology operation on H∗(Y ; Z/2) ([10], [26], [28]).

Example 7.8.
(i) If M is a connected closed compact (2n−2)-dimensional manifold then

QH2n−2(QM ; Z/2)A is either zero or Z/2 generated by the fundamental class
of M , denoted by [M ].

(ii) Let 0 6= bj ∈ Hj(RP∞; Z/2) so that

Sqa∗(bj) =

 j − a

a

 bj−a.

Therefore QH2n−2(QRP∞; Z/2)A = 0 for n ≥ 2. Also

QH2n−1(QRP∞; Z/2)A ∼= Z/2〈b2n−1−1〉 ⊕ Z/2〈Q2n−2

(b2n−2−1)〉
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because

 2m − 1− a

a

 ≡ 0 (modulo 2).

(iii) Let O(2) denote the orthogonal group of 2× 2 real matrices W satis-
fying WW tr = I, where W tr is the transpose, and let D8 denote the dihedral

subgroup of order eight generated by

 0 1

1 0

 and the diagonal matrices.

The inclusion of the diagonal matrices gives a chain of groups

Z/2× Z/2 ⊂ D8 ⊂ O(2).

The homology modulo 2 of these groups is well-known (see [87], [88], [99]).
Write bi ∗bj for the image of bi⊗bj ∈ Hi+j(RP∞×RP∞; Z/2) in Hi+j(G; Z/2)
for G = D8 or G = O(2). From Theorem 7.7 one can show that

H2n−2(BG; Z/2)A = Z/2〈b2n−1−1 ∗ b2n−1−1〉
when G = D8 or G = O(2). Hence

QH2n−2(QBG; Z/2)A ∼= Z/2〈b2n−1−1 ∗ b2n−1−1〉
in these cases.

Example 7.9. (82; [101] Chapter Two)
(i) Let X = RP∞ and let Nm(x1, x2, . . . ) denote the m-th Newton poly-

nomial in variables x1, x2, . . . . From Example 7.8(ii) and the Milnor-Moore
short exact sequence one can show that

PH2n−2(QRP∞; Z/2)A = Z/2〈(N2n−1−1)
2 + (Q2n−2

N2n−2−1)
2〉.

(ii) From Example 7.8(iii) one can make similar calculations in the case
when X = BD8 or X = BO(2).

8. The Arf-Kervaire invariant one problem

Definition 8.1. The Arf invariant of a quadratic form
Let V be a finite dimensional vector space over the field F2 of two elements.

A quadratic form is a function q : V −→ F2 such that q(0) = 0 and

q(x+ y)− q(x)− q(y) = (x, y)

is F2-bilinear (and, of course, symmetric). Notice that (x, x) = 0 so that
(−,−) is a symplectic bilinear form. Hence dim(V ) = 2n and to say that q
is non-singular means that there is an F2-basis of V , {a1, . . . , an, b1, . . . , bn}
say, such that (ai, bj) = 0 if i 6= j, (ai, bi) = 1 and (ai, aj) = 0 = (bi, bj)
otherwise.

In this case the Arf invariant of q is defined to be

c(q) =
n∑
i=1

q(ai)q(bi) ∈ F2.
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Theorem 8.2. (Arf [11], see also [20] p.52 and [94] p.340)
The invariant c(q) is independent of the choice of basis and two quadratic

forms on V are equivalent if and only if their Arf invariants coincide.

8.3. The Arf-Kervaire invariant of a framed manifold
Michel Kervaire [44] defined an F2-valued invariant for compact, (2l − 2)-

connnected (4l − 2)-manifolds which are almost parallelisable and smooth
in the complement of a point. Bill Browder [19] extended this definition to
any framed, closed (4l − 2)-manifold where, as in §3.4, a framing of M is a

homeomorphism t : T (ν)
∼=−→ ΣN(M+), M+ is the disjoint union of M and

a basepoint and ν is the normal bundle of an embedding of M into R4l−2+N

and T (ν) = D(ν)/S(ν) is the Thom space of the normal bundle.
Browder also showed that the Arf invariant of a framed manifold was trivial

unless l = 2s for some s. He did this by relating the Arf invariant of M to its
class in the stable homotopy of spheres and the associated Adams spectral
sequence.

Recall from Theorem 3.6 that the famous Pontrjagin-Thom construction
forms the map

S4l−2+N ∼= R4l−2+N/(∞)
collapse−→ D(ν)/S(ν) ∼= ΣN(M+)

collapse−→ SN

which yields an isomorphism between framed cobordism classes of (4l − 2)-
manifolds and the (4l− 2)-th stable homotopy group of spheres, πS4l−2(S

0) =
π4l−2(Σ

∞S0).
Here is Bill Browder’s definition, which was simplified by Ed Brown Jr.

[21]. Given a framed manifold M2k and a ∈ Hk(M ; Z/2) ∼= [M+, K(Z/2, k)]
we compose with the Pontrjagin-Thom map to obtain an element of

π2k+N(ΣNK(Z/2, k)) ∼= F2.

This is a non-singular quadratic form qM,t on Hk(M ; Z/2), depending on t,
and the Arf-Kervaire invariant of (M, t) is c(qM,t) ∈ F2.

Example 8.4. A Lie group has trivial tangent bundle so is frameable. There
are framings of S1×S1, S3×S3 and S7×S7 which have Arf invariant one. As
we shall see, there is an elegant way to prove the existence of a framed M30

of Arf invariant one (see Corollary 8.9). Also in terms of πS62(S
0) a framed

manifold of Arf invariant one has been confirmed by the computer calculations
of Stan Kochman [50] and there are also long calculations of Michael Barratt,
John Jones and Mark Mahowald [13] asserting the existence in dimension 62.
That is the current extent of existence results.

8.5. Equivalent formulations
(i) As above, we write QS0 for the infinite loopspace lim→

n
ΩnSn, the

limit over n of the space of based maps from Sn to itself. The components of
this space are all homotopy equivalent, because it is an H-space, and there
is one for each integer. The integer d is the degree of all the maps in the
d-th component QdS

0. The component with d = 1 is written SG, which has
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an H-space structure coming from composition of maps. Also SG is impor-
tant in geometric topology because BSG classifies stable spherical fibrations
and surgery on manifolds starts with the Spivak normal bundle, which is a
spherical fibration.

Here is a description of the Arf-Kervaire invariant of a framed manifold
represented as θ ∈ π4k+2(Σ

∞S0). We may form the adjoint, which is a map
adj(θ) : S4k+2 −→ Q0S

0. Adding a map of degree one yields Q0S
0 ' SG and

we may compose with the maps to SG/SO and thence to G/Top. These are
two of the important spaces which feature in the transformation of geometric
surgery theory [20] into homotopy theoretic terms [63]. However, famous work
of Dennis Sullivan, part of his proof of the Hauptvermutung, shows that, at
the prime 2,

G/Top '
∏
k

K(Z(2), 4k)×K(Z/2, 4k + 2).

Projecting toK(Z/2, 4k+2) yields an element of π4k+2(K(Z/2, 4k+2)) ∼= Z/2
which is the Arf-Kervaire invariant of θ. We shall need this description later
(see Theorem 8.6).

(ii) The Kahn-Priddy Theorem yields a split surjection of the form

πm(Σ∞RP∞) −→ πm(Σ∞S0)⊗ Z2

for m > 0 – where Z2 denotes the 2-adic integers. Suppose that
Θ : Σ∞S2n+1−2 −→ Σ∞RP∞ is a map whose mapping cone is denoted by
Cone(Θ). Furthermore [20] the image of [Θ] ∈ π2n+1−2(Σ

∞RP∞) under the
Kahn-Priddy map has non-trivial Arf-Kervaire invariant if and only if the
Steenrod operation ([100], [104])

Sq2n

: H2n−1(Cone(Θ); Z/2) ∼= Z/2 −→ H2n+1−1(Cone(Θ); Z/2)

is non-trivial.
Briefly, the reason for this is as follows. It is known that the splitting

map in the Kahn-Priddy theorem (the transfer) lowers the Adams spectral
sequence filtration [40]. The criterion used in [19] is that an element in the
stable homotopy of spheres has Arf-Kervaire invariant one if and only if it
is represented by h2

2n−1 on the s = 2 line of the Adams spectral sequence
(see Theorem 2.3 and Theorem 9.3). These elements are in filtration two and
therefore [Θ] ∈ π2n+1−2(Σ

∞RP∞) must be in filtration two, one or zero in
the Adams spectral sequence for RP∞. One finds that two is impossible and
it is easy to show that the filtration cannot be zero, since this would mean
that the Hurewicz image of [Θ] in H∗(RP∞; Z/2) is non-zero. In order to be
in filtration one [Θ] has to be detected by a primary Steenrod operation on
the mod 2 homology of its mapping cone and since the Steenrod algebra is
generated by the Sq2i

’s one of these must detect [Θ]. The only possibility is
Sq2n

.
A different, more detailed explanation is given in [30].

(iii) Here are some results from [102] (see also [101] Chapter Two).
26



By Theorem 3.6 a stable homotopy class in π2n−2(Σ
∞BO) may be consid-

ered as a pair (M,E) where M is a frameable (2n − 2)-manifold and E is a
virtual vector bundle on M . Theorems 8.7 and 8.8 use splittings constructed
in [88] and [96] together with Dyer-Lashof operations and Steenrod operations
in mod 2 homology of QX.

Let bi ∈ Hi(RP∞; Z/2) be a generator then there is an algebra isomorphism
H∗(BO; Z/2) ∼= Z/2[b1, b2, b3, . . . ] where the algebra multiplication is denoted
by x ∗ y.

The next result follows from Example 7.9(i). This is because the ad-

joint S2n+1−2 −→ Q0S
0 ' SG of a stable homotopy class having non-trivial

Arf-Kervaire invariant must have a non-trivial mod 2 Hurewicz image by
§8.5(i), and the Example 7.9(i) shows that there is only one possible non-zero
Hurewicz image.

Theorem 8.6.
Let θ ∈ π2n+1−2(Σ

∞RP∞) have adjoint adj(θ) : S2n+1−2 −→ QRP∞. Let
λ ∈ Z/2 denote the Arf-Kervaire invariant of the image of θ under the Kahn-
Priddy map of Theorem 7.5. Then the mod 2 Hurewicz image of adj(θ)

is equal to λ · (N2n−1−1)
2 + (Q2n−2

N2n−2−1)
2 ∈ H2n+1−2(QRP∞; Z/2) in the

notation of Example 7.9(i).

The next two results are proved is a similar manner. The formula in The-
orem 8.8 will reappear in §10.3 where we discuss Pyotr Akhmetiev’s bordism
of immersions approach to non-existence of framed manifolds of Arf-Kervaire
invariant one ([8]; see also [9]).

Theorem 8.7.
For n ≥ 3 there exists a framed (2n − 2)-manifold with a non-zero Arf-

Kervaire invariant if and only if there exists a stable homotopy class in
(M2n−2, E) ∈ π2n−2(Σ

∞BO) whose mod 2 Hurewicz image is equal to
b2n−1−1 ∗ b2n−1−1 ∈ H2n−2(BO; Z/2). In other words, b2n−1−1 ∗ b2n−1−1 is stably
spherical.

Theorem 8.8.
In Theorem 8.7 let Arf(M2n−2, E) ∈ Z/2 denote the Arf-Kervaire in-

variant of the framed (2n − 2)-manifold whose existence is asserted. Then

Arf(M2n−2, E) =< [M ], w2(E)2n−1−1 >, where [M ] is the mod 2 fundamental
class of M and w2 is the second Stiefel-Whitney class.

It is very simple to construct, via a balanced product method, a 30-
dimensional manifold M30 with a 4-dimensional real vector bundle E over
it such that < [M ], w2(E)2n−1−1 >≡ 1 (mod 2) ([102]; [101] Chapter Two).

Corollary 8.9.
There exists a framed 30-manifold with non-trivial Arf invariant.

The idea of making the requisite framed manifold as a quotient of a bal-
anced product of a surface with (RP7)4 was used by John Jones in a highly
calculational manner to prove Corollary 8.9 [39].
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8.10. ju∗-theory reformulation
Now let bu denote 2-adic connective K-theory and define ju-theory by

means of the fibration ju −→ bu
ψ3−1−→ bu, as in Example 4.4(iv). Hence ju∗

is a generalised homology theory for which ju2n+1−2(RP∞) ∼= Z/2n+2. Recall

that, if ι ∈ ju2n+1−2(S
2n+1−2) ∼= Z2 is a choice of generator, the associated

ju-theory Hurewicz homomorphism

Hju : π2n+1−2(Σ
∞RP∞) −→ ju2n+1−2(RP∞) ∼= Z/2n+2

is defined by Hju([θ]) = θ∗(ι).
The following result was a conjecture of Barratt-Jones-Mahowald [13].

Theorem 8.11. ([47]; see also [100] and [101] Chapters Seven and Eight)
For n ≥ 1 the image of [Θ] ∈ π2n+1−2(Σ

∞RP∞) under the ju-theory
Hurewicz homomorphism

Hju([Θ]) ∈ ju2n+1−2(RP∞) ∼= Z/2n+2

is non-trivial if and only if Sq2n
is non-trivial on H2n−1(Cone(Θ); Z/2).

In any case, 2Hju([Θ]) = 0.

9. Exotic spheres, the J-homomorphism and the Arf-Kervaire
invariant

9.1. The story of the discovery of exotic differentiable structures on spheres
is one of the most elegant and important progressive leaps in the history
of differentiable topology – told originally in ([71]; [73]; [45]; [46]; see also
[15]). It is worth sketching here because of its relation to the Arf-Kervaire
invariant. The theme of the story is that it is not impossibly difficulty to
make differentiable manifolds which are homotopy equivalent to a sphere, the
hard part is to come up with invariants which ensure one has made an exotic
sphere.

Let Θk denote the group of diffeomorphism classes of smooth manifolds
Σk which are homotopy equivalent to Sk with group operation induced by
connected sum. In 1962 Steve Smale proved the Poincaré Conjecture in di-
mensions greater than or equal to five, which implies that Σk is actually
homeomorphic to Sk in these dimensions. An exotic sphere embeds into Eu-
clidean space with a framing on its normal bundle and, by the Theorem 3.6,
the Pontrjagin-Thom construction defines an element of πk(Σ

∞S0).
Two framings in the normal bundle of Σk differ by a map into SO so that

the above construction yields a homomorphism

τk : Θk −→ πk(Σ
∞S0)/(Im(J)

where J : πk(SO) −→ πk(Σ
∞S0) is the J-homomorphism introduced in §7.4.

An element in the kernel of τk is an exotic sphere which is the boundary of
a framed Mk+1 (see [71] for examples when k = 7) and an element in the
cokernel of τk is an exotic sphere which is not.

28



Suppose that Mn is a framed manifold which is either closed or has an
exotic sphere Σn−1 as boundary. By surgery [20] one may convert M , without
changing the boundary, into another framed manifold W n, framed cobordant
to the Mn, and which is approximately n/2-connected. When n is odd W n

will be either a Σn or a disc, whose boundary must be the ordinary sphere
Sn−1. This shows that τk is one-one when k is even and onto when k is
odd. The obstruction to surjectivity of τ4l may be shown to vanish using the
Hirzebruch signature theorem ([73] §2). Furthermore the kernel of τ4l−1 is a
large cyclic group which was computed in [46]; see also [45]).

The Arf-Kervaire invariant enters the story in order to determine the re-
maining behaviour of the τk’s which may be synopsised by the following,
surgery-based relation

Ker(τ4l+1)⊕ Coker(τ4l+2) ∼= Z/2.

The Arf-Kervaire invariant determines Coker(τ4l+2) in the following man-
ner. Suppose that M4l+2 is a framed manifold, whose boundary might be
an exotic Σ4l+1. Applying framed surgery we obtain a 2l-connected framed
manifold W 4l+2. The cup-product pairing

H2l+1(W ; Z/2)⊗H2l+1(W ; Z/2) −→ H4l+2(W,∂W ; Z/2)

which evaluates on the fundamental class to give a symmetric, non-singular
bilinear form

λ : H2l+1(W ; Z/2)⊗H2l+1(W ; Z/2) −→ Z/2.

There is a relation λ(x, y) = qW,t(x) + qW,t(y) + qW,t(x+ y) where qW,t is as in
§8.3. This relation, via surgery theory, yields the following result.

Theorem 9.2.
If there does not exist a framed manifold of dimension 4l + 2 with Arf-

Kervaire invariant congruent to 1 (mod 2) then τ4l+2 is surjective and
Ker(τ4l+1) ∼= Z/2.

In addition we have the following result due to Bill Browder [19] (see also
§9.4).

Theorem 9.3.
A framed 4l+ 2 manifold with non-trivial Arf-Kervaire invariant can exist

only when l = 2j−1−1 for some integer j. If it exists then it is represented in
the classical Adams spectral sequence of Theorem 6.3 by

h2
j ∈ Ext

2,2j+1

A (Z/2,Z/2).

9.4. Upper triangular technology, Browder’s Theorem and the Barratt-Jones-
Mahowald conjecture

Theorem 9.3 and Theorem 8.11 (i.e. the Barratt-Jones-Mahowald conjec-
ture [13]/Knapp’s Theorem [47]) are related by the UTT technique, which is
developed in [101].
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Let m be a positive integer and let Θ : Σ∞S8m−2 −→ Σ∞RP∞ be a mor-
phism in the 2-local stable homotopy category with mapping cone C(Θ).
From the long exact sequence, there is an isomorphism bu8m−1(C(Θ)) ∼=
Z/24m ⊕ Z2. Suppose that the Adams operation ψ3 on bu8m−1(C(Θ)) satis-

fies (ψ3 − 1)(0, 1) = (34m−1
2

, 0), which is equivalent to the ju-Hurewicz image
of Θ being non-zero and of order two in ju8m−2(RP∞). The Barratt-Jones-
Mahowald conjecture asserts that this is equivalent to the composition of Θ
with the Kahn-Priddy map having Arf-Kervaire invariant one.

Let F2n(Ω
2S3) denote the 2n-th filtration of the combinatorial model for

Ω2S3 ' W×S1. Let F2n(W ) denote the induced filtration on W and let B(n)
be the Thom spectrum of the canonical bundle induced by fn : Ω2S3 −→ BO,
where B(0) = S0 by convention. From [66] one has a left bu-module, 2-local
homotopy equivalence of the form1

∨n≥0bu ∧ Σ4nB(n)
'−→ bu ∧ bo.

Therefore (bu ∧ bo)∗(C(Θ)) ∼= ⊕n≥0 (bu∗(C(Θ) ∧ Σ4nB(n)).
For 1 ≤ k ≤ 2m− 1 and 4m ≥ 4k−α(k)+1 there are isomorphisms of the

form ([101] Chapter Eight §4)

bu8m−1(C(Θ) ∧ Σ4kB(k)) ∼= bu8m−1(RP∞ ∧ Σ4kB(k)) ∼= Vk ⊕ Z/24m−4k+α(k)

where Vk is a finite-dimensional F2-vector space consisting of elements which
are detected in mod 2 cohomology (i.e. in filtration zero, represented on the
s = 0 line) in the mod 2 Adams spectral sequence. The map 1 ∧ ψ3 ∧ 1 on
bu∧bo∧C(Θ) acts on the direct sum decomposition like the upper triangular
matrix 

1 1 0 0 0 . . .

0 9 1 0 0 . . .

0 0 92 1 0 . . .

0 0 0 93 1 . . .

...
...

...
...

...
...


.

In other words (1∧ψ3∧1)∗ sends the k-th summand to itself by multiplication
by 9k−1 and sends the (k − 1)-th summand to the (k − 2)-th by a map

(ιk,k−1)∗ : Vk ⊕ Z/24m−4k+α(k) −→ Vk−1 ⊕ Z/24m−4k+4+α(k−1)

1In [101] and related papers I consistently forgot what I had written in my 1998 Mc-
Master University notes “On bu∗(BD8)”. Namely, in the description of Mahowald’s result
I stated that Σ4nB(n) was equal to the decomposition factor F4n/F4n−1 in the Snaith
splitting of Ω2S3. Although this is rather embarrassing, I got the homology correct so that
the results remain correct upon replacing F4n/F4n−1 by Σ4nB(n) throughout!
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for 2 ≤ k ≤ 2m− 1 and 4m ≥ 4k − α(k) + 1. The right-hand component of
this map is injective on the summand Z/24m−4k+α(k) and annihilates Vk.

From these properties and the formula for ψ3(0, 1) on bu8m−1(C(Θ)) one
easily obtains a series of equations for the components of (η ∧ 1 ∧ 1)∗(0, 1)
where η : S0 −→ bu is the unit of bu-spectrum. Here we have used the
isomorphism bu8m−1(C(Θ)) ∼= bo8m−1(C(Θ)) since this group is the domain
of (η∧1∧1)∗. This series of equations is impossible unless m = 2q and in that
case the B(2q)-component of (η ∧ 1 ∧ 1)∗(0, 1) is a non-zero class in Adams
filtration zero (i.e. a non-zero mod 2 homology class). This last fact implies

that Sq2q+2
detects Θ on its mapping cone. Conversely the system of UTT

equations may be used to deduce the formula for ψ3(0, 1) from the non-zero
homology class in the B(2q)-component (see [101] Theorems 8.4.6 and 8.4.7).

This upper triangular technology argument simultaneously recovers Theo-
rem 9.3 and Theorem 8.11.

The UTT technique together with the discussion of §9.4 yields the following
results. The details are in my unpublished notes. Theorem 9.3(ii) is really
a result about lifting Arf-Kervaire invariant one elements to certain types of
elemet in π2n+1−2(Σ

∞BD8) because there is a splitting of Σ∞BD8 in which
Σ∞BPSL2F7 is one of the summands [79].

Theorem 9.5.
(i) When n ≥ 5 there does not exist Θ ∈ π2n+1−2(Σ

∞RP∞ ∧ RP∞) which
maps via

Σ∞RP∞ ∧ RP∞ H−→ Σ∞RP∞ KP−→ Σ∞S0

to an element having Arf-Kervaire invariant one. Here H is the Hopf con-
struction on the multiplication of RP∞ and KP is the Kahn-Priddy map.

(ii) When n ≥ 5 there does not exist Θ ∈ π2n+1−2(Σ
∞BPSL2F7) and a

map

Σ∞BPSL2F7 −→ Σ∞S0

mapping Θ to an element having Arf-Kervaire invariant one.

10. Non-existence results for the Arf-Kervaire invariant

10.1. Codimension one immersions and the Kervaire invariant one problem
The approach to non-existence results for the Arf-Kervaire invariant which

is used in [8] originated in [30] (see [29] for the oriented case).
Let i : Mn → Rn+1 be a self-transverse codimension one immersion of a

compact closed smooth manifold. A point of Rn+1 is an r-fold self-intersection
point of the immersion if it is the image under i of at least r distinct points
of M . Self-transversality implies that the set of r-fold intersection points is
the image under an immersion of an (n + 1 − r)-dimensional manifold. In
particular, the set of (n+1)-fold intersection points is a finite set whose order
will be denoted by θ(i), whose value mod 2 is a bordism invariant of the
self-transverse immersion.
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Suppose that ξ and ζ are k-dimensional real vector bundles. A bundle map
ξ −→ ζ is called a ζ-structure on ξ. If ζ is the k-plane bundle associated with
the universal G-bundle where G ⊂ O(k) then a ζ-structure is traditionally
called a G-structure. If ζ is the k-bundle over a point this is just a framing.
An immersion i : Mn → Rn+k of a compact closed smooth n-manifold will
be called a ζ-immersion if its normal bundle has been given a ζ-structure. If
such an immersion is self-transverse and n = km then the set of (m + 1)-
fold intersection points is a finite set of order θ(i) whose value mod 2 is a
bordism invariant of ζ-immersions. The bordism group ζ-immersions of closed
compact n-manifolds of codimension k is isomorphic to πn+k(Σ

∞T (ζ)), where
T (E) denotes the Thom space as in Defintion 3.3. This relates bordism of ζ-
immersions with the stable homotopy of RP∞, the Kahn-Priddy theorem and
the framed cobordism approach to the stable homotopy groups of spheres.

As for the Arf-Kervaire invariant we have the following result from ([30]
§1).

Theorem 10.2.
Suppose that n ≡ 1 (mod 4). Then θ(i) can be odd if and only if there

exists a framed (n+ 1)-manifold having Arf-Kervaire invariant one.

10.3. Akhmetiev’s approach ([8]; see also [9])
Suppose that n = 2l − 2 and that i : Mn−1 → Rn is a self-transverse

codimension one immersion of a compact closed smooth manifold. Let g :
Nn−2 → Rn be the associated self-transverse codimension two immersion of
the self-intersection submanifold. In Theorem 10.2 the Arf-Kervaire invariant
of the framed manifold, whose existence is asserted, is given ([8] Definition 1)
by the formula

Arf(i) =< [Nn−2], w2(ν)
n−2

2 >

where ν is the normal bundle of g. This formula is reminiscent of Theorem
8.8, from which it may presumably be deduced.

Armed with this formula the method of [8] considers bordism of self-
transverse immersions with equivariant ζ-structures. This amounts to study-
ing examples of equivariant stable homotopy groups. The groups involved are
the dihedral group of order eight and its products and iterated wreath prod-
ucts. Lifting the problem to these groups is analogous to the Kahn-Priddy
theorem which corresponds to lifting to self-transverse immersions with free
involution. Lifting to the dihedral case is presumably analogous to Stewart
Priddy’s proof that for i > 0 πi(Σ

∞BD8) split surjects onto πi(Σ
∞S0) [88].

Starting from the classification of singular points of generic maps RP s →
Rn in the range 4s < 3n [107] Akhmetiev gives a very technical geometric
argument to prove the equivariant self-transverse framed immersions (and
skew-framed immersions) cannot exist in high dimensions.
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The argument is sufficiently technical to be only accessible to dyed-in-the-
wool immersionistos. However, as a start, I recommend the simpler compan-
ion paper on the non-existence of framed manifolds having Hopf invariant one
[9] as preparatory reading.

Theorem 10.4. ([8] §6)
There exists an integer l0 such that for all l ≥ l0 the Arf-Kervaire invariant

given by the formula of §10.3 is trivial.

10.5. The Hill-Hopkins-Ravenel approach [34]
The main theorem of [34] is stronger than that of [9] and almost settles the

Arf-Kervaire invariant one problem entirely, leaving open only dimension 126.
For a number of reasons this approach has been the more highly publicised.
Although the details are very technical the strategy of [34] is quite conceptual
because it involves the classical Adams spectral sequence and its generalisa-
tions. To get the strategy the odd primary analogue by Doug Ravenel [91]
is a good source of preliminary reading. One should bare in mind that there
are many Adams-type spectral sequence, one for each reasonable generalised
homology theory. For example, the spectral sequences based on MU and
MSp have been used to study π∗(Σ

∞S0) but complete determination of these
has proved to be too complicated.

If Ω̃ is a G-spectrum for some finite group G there is a spectral sequence
of the form

Es,t
2 = Hs(G; πt(Ω̃)) =⇒ πt−s(Ω)

where Ω = Ω̃hG, the homotopy fixed point spectrum of Ω̃. In fact, there exist
examples where this spectral sequence is an Adams spectral sequence and
where G is a Morava stabiliser group of §4.4(v). This suggests the first step
in the strategy – to find a suitable Ω̃ whose homotopy fixed point spectral
sequence receives a map from the Adams-Novikov spectral sequence based on
MU .

The spectrum Ω̃ will be an E∞ spectrum with an action by the cyclic group
of order eight C8. Let MUR denote the spectrum MU with its natural C2-
involution. Then the four-fold smash product MUR ∧MUR ∧MUR ∧MUR
has a C8-action given by (a, b, c, d) 7→ (d, a, b, c), which gives a C8-spectrum
MU ((C8)). In the equivariant stable homotopy category one may suspend by
spheres SV , the one-point compactification of a real representation V . In the
stable category this suspension is invertible which defines suspension by S−V .
Set

Ω̃ = holim→
m
S−mlρC8 ∧MU ((C8))

where l is chosen suitably and ρC8 is the real regular representation of C8.
Then Ω̃ is an equivariant E∞-spectrum.

The relation of Ω̃ to MU leads to a map of spectral sequences from the
Adams-Novikov spectral sequence

Es,t
2 = Exts,tMU∗(MU)(MU∗,MU∗(Ω)) =⇒ πt−s(Ω)
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to the homotopy fixed point spectral sequence. Furthermore, a key property
of Ω̃ is that its homotopy fixed point spectrum and its actually fixed point
spectrum coincide, which makes the latter an easier spectral sequence in which
to compute. In particular, it is shown that πi(Ω) vanishes in the range i =
−3,−2,−1 and that πi(Ω) ∼= πi+256(Ω) for all i so that π2n+1−2(Ω) = 0 for all
n ≥ 7. The choice of the integer l enters in here in order to be able to obtain
the correct periodicity.

Modulo lots of tricky technicalities, the argument of [34] concludes as fol-
lows. Since, in the Adams-Novikov spectral sequence,

Ext0,2
n+1−2

MU∗(MU) = 0 = Ext1,2
n+1−1

MU∗(MU)

any element bn in the Adams-Novikov E2-term which represents the Arf-

Kervaire invariant one element must lie in Ext2,2
n+1

MU∗(MU). This is because a map
between spectral sequences can only increase the filtration of representatives
and, by Theorem 9.3, the Arf-Kervaire invariant one element is represented

by h2
n ∈ Ext2,2

n+1

A (Z/2,Z/2) in the classical Adams spectral sequence. The
map to the homotopy fixed point spectral sequence faithfully detects all such
possible bn’s. However Es,t

2 = 0 in the homotopy fixed point spectral sequence
for s ≤ 0 and t − s odd so that for n ≥ 7 the image of bn cannot be hit by
a differential dr with r ≥ 2. Since π2n+1−2(Ω) = 0 the image of bn must
be mapped non-trivially by some differential and therefore the same is true
for bn in the Adams-Novikov spectral sequence, which implies that bn cannot
represent a non-trivial Arf-Kervaire invariant one element.

Theorem 10.6. [34]
There can only exist an element Θn ∈ π2n+1−2(Σ

∞S0) having non-trivial
Arf-Kervaire invariant for n = 1, 2, 3, 4, 5 and 6.

This leaves just one unresolved case (see [101] page (viii)):

Conjecture 10.7. There is no element in π126(Σ
∞S0) having Arf-Kervaire

invariant equal to one.
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