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Introduction

A conference on algebraic K-theory was held at the Battelle
Seattle Research Center from August 28 to September 8, 1972, with the joint
support of the National Science Foundation and the Battelle Memorial Institute,
The present volume consists mainly of papers presented at, or stimulated by,
that conference, plus some closely related papers by mathematicians who did
not attend the conference but who have kindly consented to publish their work
here, In addition there are several papers devoted to surveys of subjects
treated at the conference, and to the formulation of open research problems.
It was our intention thus to present a reasonably comprehensive documentation
of the current research in algebraic K-theory, and, if possible, to give this
research a greater coherence than it has heretofore enjoyed. It was particularly
grati_fying to see the latter aim largely achieved already in the course of

preparing these Proceedings.

Algebraic K-theory has two quite different historical roots both
in geometry, The first is concerned with certain topological obstruction
groups, like the Whitehead groups, and the L-groups of surgery theory., Their
computation, which is in principle an algebraic problem about group rings,
is one of the original missions of algebraic K-theory. It remains a rich source

of new problems and ideas, and an excellent proving ground for new techniques.

The second historical source of algebraic K-theory, from which the
subject draws its name, is Grothendieck's proof of the Riemann-Roch theorem,
and the topological K-theory of Atiyah-Hirzebruch, which has the same point
of departure, Starting from the analogy between projective modules and vector
bundles one is led to seek a K-theory for rings analogous to that of
Atiyah~Hirzebruch for spaces., This enterprise made, at first, only very
limited progress, In the few years preceding this conference, however, several
interesting definitions of higher K-groups were proposed; the relations

between them were far from clear.

Meanwhile the detailed study of Kl and K2 had revealed some beautiful
arithmetic phenomena within the classical groups. This contact with algebraic

number theory had become a major impulse in the subject as well as a theme for



v

conjectures about the significance of the higher K-groups.

More recently there have appeared definitions and potential

applications of higher XK-theory in the framework of algebraic geometry,

As this brief account suggests, a large number of mathematicians,
with quite different motivations and technical backgrounds, had become
interested in aspects of algebraic K-theory, It was not altogether apparent
whether the assembling of these efforts under one rubric was litte more than
an accident of nomenclature, In any case it seemed desireable to gather these
mathematicians, some of whom had no other occasion for serious technical
contact, in a congenial and relaxed setting, and to leave much of what would
ensu. e to mathematical and human chemistry. A consensus of those who were
present is that the experiment was enormously successful. Testimony to this
is the fact that many of the important new results in these volumes were proved
in the few months following the conference, growing out of collaborative

efforts and discussions begun there.

One major conclusion of this research is that all of the higher

's for n £2 coinecide, Thus, in

K-theories which give the "classical” Kn
some sense, the subject of higher algebraic K-theory "exists'j an assertion

some had begun to depair of making., Moreover one now has, thanks largely to
the extraordinary work of Quillen, some very effective tools for calculating

higher K-groups in interesting cases,

The papers that follow are somewhat loosely organized under the
headings: 1. Higher K-theories; II. "Classical' algebraic K-theory, and
connections with arithmetic; and III. Hermitian K-theories and geometric
applications. Certain papers, as their titles indicate, contain collections
of research problems. The reader should be warned, however, that because of
the vigorous activity ensu-ing the conference, some of the research problems
posed below are in fact resolved elsewhere in these volumes. The editional
effort necessary to eliminate such instances would have cost an excessive

delay in publication.

I am extremely grateful to the following participants who contributed



to the preparation of the survey and research problem articles:
S. Bloch, J, Coates, Keith Dennis, S. Gersten, M. Karoubi, M.P., Murthy,

Ted Petrie, L. Roberts, J. Shaneson, M. Stein, and R. Swan.

On behalf of the participants 1 express our thanks to the National
Science Foundation and the Battelle Memorial Institute for their generous
financial support. For the splendid facilities and setting of the Battelle
Seattle Research Center, and for the efficient and considerate services of
its staff, the conference participants were uniformly enthusiastic in their

praise and gratitude.

Finally, I wish to thank Kate March of Columbia University
for her invaluable secretarial and administrative assistance
in organizing the conference, and Robert Martin of Columbia
University for his aid in editing these Proceedings.

H. Bass

Paris, April, 1973
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A. THE FUNCTORS KO AND K.]




Some problems in "classical"

algebraic K-theorvy

Hyman Bass

By "classical" we refer to guestions about projective
modules and their automorphism groups, and, in particular,
about KO and Kl' In many instances the gquestions can naturally
be posed for K, for all n > 0.* When this was the case I have
not hesitated to do so, with the result that the discussion below

inevitably overlaps with the problem sections on K, (Dennis-

2
Stein [D-S8}) and on higher K-theory (Gersten [Ger 1}).

The problems are integrated into the text, which furnishes
some relevant background. They are designated with Roman
numerals, (1), (II),..., (XXV).

I am greatly indebted to several people for their
comments and criticisms in drafting this list of problems.

I wish particularly to thank M. Pavaman Murthy, Leslie

Roberts, Tony Geramita, and David Eisenbud.

*Unless the contrary is indicated Kn here will always denote

the functors Kn of Quillen [Q2].
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8l1. Serre's problem

Efforts to answer the following question of Serre, posed
in his 1955 paper FAC ([Ser 1}, p. 243) have generated many
of the theorems and problems in algebraic K-theory. Because
of its pedigree, and because much that follows consists of
variations on the theme of Serre's problem, it seems a good

place to begin.

(I) Serre's problem (on projective modules over polynomial

rings). Let A = k[tl,...,td], a polynomial ring in 4

variables over a field k. Let P be a finitely generated

projective A-module of rank r. Is P free? I.e. is

x

P isomorphic to A”?

The moral impulse behind this question arises from the
interpretation of P as (the module of sections of) a vector
bundle on affine n~space kn, which should behave like a
"contractible" space, and hence have only trivial bundles.

To the author's knowledge no confirmed example is yet known
for. which the answer to (I) is negative.* On the other hand,

few people seem willing to vouch with great conviction for an

*
See, however, the discussion in (7.3) below, in connection
with Segre's paper [Segq].



affirmative response. Some have suggested that the answer
may vary with k.
The answer to (I) is known to be affirmative in the

following cases:

d<1 (all r) - A is principal.
d = 2 {(all r) - Seshadri's theorem [Sesh].
r = 1 (all d) - A is factorial

This follows from a theorem of

t

r > d
Grothendieck plus stability theorems

(see [Ba 4], Cor. {(22.4)).

The first unsettled cases are d = 3, ¥ = 2 or 3. We remark

here that if d = 3 and r = 3 then P = A ® P' for some P' of
rank 2 (see [Ba 2)]. The analogue of this is not known for
d =4, r =4,

Criteria for solving Serre's problem (sometimes in
special cases) are discussed below in (4.1), problem (IX):
in (4.2), Murthy's proposition; in (5.4), problem (XIV);
in (5.5}, both of the propositions; in (7.3), problem (XX);

and in (8.2), problem (XXI)d e
>



82 Homotopy properties of the functors Kn

2.1. Homotopy functors

Let F Dbe any functor from rings to abelian groups.
If A is a ring and t is an indeterminate then the inclusion

A > A[t] and retraction A[t] » A {(t#+ 0) induces a decomposition

F(a[t]) = F(A) @ NF{3).

We call Fa homotopy functor if NF(A) = 0 for all A. 1In

general there is a largest quotient F of F which is a

homotopy functor, defined by

- €17¢o
F(A) = Coker(F(A[t]) ———>F(a))

where €, Aft] » A is the retraction defined by gi(t) = i
(i = 0,1). All morphisms of F into a homotopy functor factor
through F (see [Sw 1}, Lem. (4.2)).

For example the functors Ki_v of Karoubi-Villamayor
[K-V] are homotopy functors for n > 1, whereas Kg.v = K, is
not a homotopy functor. Moreover Sharma and Strooker [S-S]

. KK—V,

have shown, curiously enough, that the exact sequence of N s

associated to a short exact sequence of rings (wihtout unit)

does not remain exact in general if KO is replaced by RO'



Let n Dbe an integer > 1.

(II)n Does Gersten's spectral sequence ([Ger 2], Thm. 3.12)

induce an isomorphism ﬁn-——% Kﬁ—v?

The answer to (II)n is affirmative for n = 1 and, in certain

cases, for n = 2 (see Swan [Sw 1], Thm. 4.3).

2.2 (Laurent) Kn—regular rings

Let F as above be a functor from rings to abelian
groups., Let A Dbe a ring and let tl,tz,...,tn,... be
indeterminantes. We say A is F-regular if NF(A[tl,...,tn]) =0

for all n » 0. We say A 1is Laurent F-regular if

-1
1

aft),t ,...,tnt;l] is F-regular for all n » 0.”

Motivation and examples

(1) A ring A is called right regqular if (i) A is
right neotherian, and (ii) hdA(M) < » for all finitely generated

right A-modules M. {Here hdA(M) denotes the projective

*

This terminology relates to some others as follows: Karoubi's
"Ke-regular" [K1} is our "Laurent Kg~regular," and Gersten's
"R-semiregular" is our "Ko—regular." Similarly, putting

Pn(A) = tl e tn'A[tl,...,tn}, we would propose calling a
ring homomorphism A > B a fibration if, as in Gersten [Ger 3],
GL(PnA) -> GL(PRB) is surjective for all n > 0, and a Laurent

-l 1] > B[tl,t'l

fibration if Aft,,t]1, ... t €7 y ,...,tn,t;l] is

a fibration for all n > 0.



homological dimension of M.) Theorems of Hilbert (cf. [Ba 1],
Ch XII, Thm. 2.2) imply that both conditions (i) and (ii) on
A are inherited by A{t] and A[t,t-l], t an indeterminate.
Further, results of Quillen [Qz], Thm. 11 and [Q3]
establish that a right regular ring is Laurent Kn—regular for
all n. (The cases n = 0,1 are treated, for example, in
[Ba 1], Ch. XII.]

The essential point about right regularity, in deducing
results of the above type, is that the category H(A), of
right A-modules having finite resolutions by finitely generated
projective A-modules, be an abelian subcategory of the category
of all A-modules, i.e. that it be stable under kernels, cokernels,
etc. This condition, weaker than right regularity, is equivalent
to the following: (i') A is right coherent (i.e. every finitely
generated right ideal is finitely presented), and (ii') hdAM <
for all finitely presented right A-modules M. One might call

such a ring {right) coherently reqular {(cf. [wald]l, p. 3).

Unfortunately the analogue of Hilbert's Basis Theorem fails
for coherent rings. Soublin ([Soub], Prop. 18} has even given
a commutative coherent A for which A[t] is not coherent,

and whose global dimension is finite if one assumes a weak

form of the continuum hypothesis. One might thus call a

stably right

10



coherent* if, (i") A[t ,tn] is right coherent for all

-
n > 0, and stably (right) coherently regular if A[tl""’tn]

is right coherent-regular for all n » 0. The results of Quillen
([Q 2] and [Q 3]) suggest that a stably right coherently
regular ring is Kn-regular for all n » C. *+*

Interesting examples of such rings are furnished by
[C-L-L]}, where it is shown that a free product A a B is right
coherent whenever R 1is right noetherian and A and B are
"split" R—rinés which are free as left R-modules. This implies
the stable right coherence of the ring R[G] over R of a free
group or monoid G. Since gl dim (R{G]) < gl dim (R) + 1,
such rings will also be stably right coherently regular

whenever gl dim (R) < w.

{(2) Karoubi ([XK 1}, Part III) has shown that if A
is Laurent Koaregular then so also are TA (the path ring),
(A (the loop ring), CA ({the cone),and SA {(the suspension).

(See [K 1] for these notations.)

(3) That Laurent Ko-rggularity is stronger than

KO reqularity may be seen from the following example. Let
A Dbe a reduced commutative noetherian ring of dimension one
whose integral closure A is a finitely generated A-module.

Let C = annA(K/A), the conductor ideal. Consider the conditions

*
Gersten [Ger 1, pProb. 24] uses the term "super-coherent.(”

* %

(Added in proof): This has recently been established by
Gersten, "Homology of the linear group of free algebras,”
Theorem 2.10 (to appear).

11
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(a) A/C has zero nil radical

and
(b) h, (a)y - hy (a/c) = ho(i) - ho(l-\/c), where, for

a commutative noetherian ring B we denote by ho (B) the number
of connected components of spec(B). It follows from Bass-

Murthy ([B-M], Thm. 8.1) that

A is Ko—regular &> (a) holds

and

A is Laurent K -regular <& (a) and (b) hold.
In case A = Zn with ¢ a finite abelian group of order m
then ([B-M], Thm. 8.10) (a) holds iff m is square free, and

{b) holds iff m is a prime power., Thus if m is square free and

not a prime the ring Zmis Ko—regular but not Laurent Ko—regular.

(4) One has a natural decomposition

1

K (AlL,t77]) = K (8) @ K _,(8) & 2(8)

for any ring A and n > 1 (cf. [Ger 3], Thm. (2.9)). From
it one deduces a similar decomposition

-1
NKn(A[t,t 1) = NKn(A) P NKn_l(A) ® N 2 (7).

In particular

12
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-1
NK_(A[t,t77]) =0 = NK _,(8) =0,
and so

Laurent Kn—reqplarity of A implies

Laurent Kn l-regularitz of A,

In connection with the term ?(A) above it is conjecturally

explained in [Ger 1], Prob. 3.

(5) If J is a nilpotent ideal in A then KO(A) -> KO(A/J)
is an isomorphism ([{Ba 1}, Ch. IX, Prop. 1.3} so NKO(A) > NKO(A/J)
is likewise an isomorphism. It follows easily that A is

(Laurent) K -regular if and only if A/J is so. The analogous

0

assertions for K1 fail in general. 1In particular A = Z/4%

is Laurent K_-regular, but not K

5 -regular. Apparently no

1

converse example is known, so we ask:

(I1I1) Does Kl—rqgularity imply Ko-regularity?

More specifically does NKl(A) = 0 imply

NKO(A) = 07?2

This question can be formulated more precisely, as

follows: Define f: K (a[t]) - Kl(A[t,t—l]) by

£[P] = [P[t-l], t'lP[t_l]]' By considering localisation sequence

13
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KAL) —> KrA[t,t_l] __E;>BbA ® Nil (a)

A,

(cf£. [Ba 1], Ch. XII) we find that dE[P] = [P,] € K,

where P0 = [P/Pt]. Further f 1is compatible with the
augmentations t =¥ 1 on A[t,t_l] and on A[t]. It follows that,

in the decomposition

-1
KALE ] = KA & N.K

1 AEBN_KA@KA

1 1 0

the image of £ 1lies in N+K1A & KOA and that f decomposes

as

- L -
f=1I1d® £': KbA[t} = KA ® N+KOA-—%>KbA B N+K

0 f

whence a natural homomorphism

£ NK A —> NKA.

Moreover £ is injective if and only if £' is injective.
In question (III) we may ask, more precisely, whether f'
is injective.
(6) Murthy and Pedrini ([M-P}, Cor. 3.4)) have shown that
if A is an affine ring over a field k then A is X -

0

regular in each of the following cases:

14
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. n

(i) a-= k[X,Y,Z]/(X - Yz)
(ii) A 1is the homogeneous coordinate ring of an
1 . n
" in Ek.

(iii) Xk is algebraically closed and A is the coordinate

arithmetically normal embedding of B

ring of a surface X Dbirationally equivalent to a
ruled surface of genus > 0, and such that X has

only rational singularities.

They conjecture that A might be K_~reqular whenever A is

0
the coordinate ring of an affine normal surface having only

rational singularities. Further, Murthy has asked to:

(Iv) Find an example of a noetherian integral domain

A which is factorial (or even only normal) for

which NK,(A) # 0.

In a related vein he asks:

(v) Suppose A = ‘ An is a graded normal integral
n>0

domain finitely generated (as algebra) over a

field k = Aj. Is K (a) =22

0"
Murthy remarks that Pic(ad) = 0 (cf [Mur 1], Lemma 5.1). Further,

put A = 1l a so that the question above asks whether
+ n>0 n

of A m A [t,t7Y] = a[t,t™}] we find
1 A, 2o

KO(A,A+) = 0. Taking K

15
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. -1 -1
K,(A,A ) embedded in K, (A[t,t” 7], A [t,t7 ]). If
char(k) = p > 0 it follows from [Ba 1}, Ch.XII, Cor. 5.3 that
the latter group is p-primary, and hence likewise for
A).
K, (A,A,)
Conceivably it is reasonable in (V) to require only that
A be regular, and then ask whether KO(AO) -> KO(A) is an

0

isomorphism,

(7) Traverso [Trav] showed that a reduced commutative
noetherian ring A is Pic-regular if and only if it is "semi-
normal.® This, and criteria for Laurent Pic-regularity, are

discussed in Pedrini's article [Ped].

The following question was raised by Sharma and Strooker

in [5-8], in the case n = 0:

(VI)n Does NK (&) 0 imply that NK_(A[t]) = 02
l.e., if Kn(A)‘-—§ Kn(A[tl]) is an isomor-

phism, does it follow that Kn(A)—{>Kn(A[t1,t2])

is an isomorphism?

Affirming this (for all A) means that NKn(A) = 0 suffices for
Kn-regularity of A.
The analogous question for Pic¢ (in place of Kn) of

commutative noetherian rings has an affirmative response [Trav}.

16
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83 Free algebras and free products

3.1 Free algebras (cf. Gersten [Ger 1], Prob. 8}
Here we formulate theorems of Gersten and Stallings
about Ko and Kl’ and discuss analogues for Kn'
Let R be a ommutative ring. If R » A is an R-algebra
with augmentation A > R we denote its augmentation ideal by
A%, If F is a functor from rings to abelian groups the maps
R 2 A furnish a natural decomposition F(A) = F(R) @ Fa(A)
for augmented R-algebras A. We shall discuss the functors
ab K ().
If M is an R-module its tensor algebra TR(M) is augmented

x)

viaM~—+> 0. IfM=R , the free R-module on a set , then
TR(M) is R{X}, the free (i.e. non commutative polynomial)
algebra on the set X.

Let F be a functor as above. We say R 1is F-freely
regular if Fa(R{X}) = 0 for all sets X. If F commutes wWith
filtered inductive limits (as do all Kn's) then the above
condition implies that Fa(TR(M)) = 0 whenever M is a filtered

inductive limit of free R-modules. According to D. Lazard

[Laz] such inductive limits are precisely the flat R-modules.

17
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THEOREM {Gersten): If NKl(R) = 0 then R is Kl-freely regular.

This can be found in {Ger 4] or [Ba 1], Ch.XII, Cor. (5.5).

COROLLARY: Let M be a flat R-module.

(a) If R is K,~-regular then KI(R) > K, (T (M)

is an isomorphism and TR(M) is Kl—regular.
(b) If R{t,t™%) is K -regular then K; (R) > K, (T, (M))

is an isomorphism and TR(M) is Ki—regular for i = 0,1.

{¢) If R is Laurent Kl-regular then TR(M) is Laurent

Ki-regular for i = 0,1.

The corollary follows by applying the theorem after the
base changes R > R[t] - R{t,t-l], using the fact that the
tensor algebra commutes with base change, and with the aid
of the natural decomposition Kl(A[t,t-l}) = KI(A) ® Ky (a) @ 2(n)

for any ring A.

(VII)n Let R be a commutative regular ring.

Is R then Kn—freely regulaxr? * More

generally, is it true that R is Kn—freelz

regular whenever R is Kn—re ular?

Gersten's theorem affirms this for n = 0,1. Further
Gersten {([Ger 1], Prob. 8) has announced that (VII)n holds for

all n when R = Z. (Cf. the remarks in (2.2), example (1)

* (ndded in proof): This has recently been established by
Gersten, "Homology of the linear group of free algebras,"

Theorem 2,10 (to appear).

18
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above.)

3.2 Free products (cf.Gersten [Ger 1], Prob. 24)

Let A and B be augmented R-—algebras. 1In their
free product A ﬁ B the subalgebra (with unit) generated by
.Aa ®R B? can be identified, as Stallings [Stal] has pointed
out, with the tensor algebra 'I‘R(Aa o Ba) (cf. [Ba 1],
Ch. IV, B5).

Let F be a functor from rings to abelian groups. The

—_— * * . . . »
maps A2 A R B and Bé_>A R B furnish a split epimorphism
F(a x B) —> F(a) » F7(B)

whose kernel contains the image of

Fa(TR(Aa B 8%Y)) — r?@a % B).

We shall say R 1is F-freely additive if the sequence

FH(1, (A% g BY) > (A & B) —>F7(A) @ F7(B) —> 0

is exact for all augmented R~algebras A, B. The following is

immediate from the definitions.

PROPOSITION: Suppose F commutes with filtered inductive

limits and that R is F-freely regular and F-freely additive.

Let A, B be augmented R-algebras such that Aa ®R Ba is a flat

19
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R~module. Then Fa(A ; B) > Fa(A) ® (B) is an isomorphism.

THEOREM: (Stallings [Stall; c£. also [Ba 1}, Ch.XII, Thm. 111.)

Every commutative ring R is F-freely additive for F = K

l’

and hence also for F = NKl, K., HK

0 07"

The last assertion follows from the first using the base

changes R » R[t] -» R[t,t-l], the commutativity of free products
-1

with base change, and the usual decomposition of Kl(c[t,t 1)

for the various rings C above.

COROLLARY: Let R be Laurent K,-regular (e.g. a regqular ring).

1

Let A, B be augmented R-algebras such that a? ®R Ba is a flat

R-module. Then A § B is {Laurent) Ki—regulax if and only if

A and B are (Laurent) Ki-regplar, for i = 0,1.
Indeed the hypotheses make available the theorem and

proposition above, whence NKi(A * B) = NKi(A) D NKi(B) and

R
similarly after the base changes R - R[t] ~ R{t,t“l], etc.

(VIII)n Is every commutative ring R Kn-freelz

additive? If not is this at least true

when R is Kn—regular, or even regular?

To allow for rings like group rings z[Gl ﬁ G2] of amalga-
mated free products (cf. [Wald]) one may allow the ring R to be
non commutative, and require only that the augmentation A-Bbea

homomorphism of R-bimodules.Then analogous questions canbe proved.

20
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84 Proijective Aft]-modules

4.1 Extended A[t]-modules

Let A be a ring and t an indeterminate. Right
A[t) -modules M which are isomorphic to modules of the

form MG{t] =M 24 Alt}, for some A-module My will be called

(4]
extended:; note then that M determines M_ because MO = M/Mt.

o
Motivated by Serre's problem one is led to ask for general
conditions on A which imply that every finitely generated
projective right A[t]-module is extended. A necessary condition
clearly is that KO(A) - KO(A[t]) be an isomorphism, i.e. that

NKO(A) = 0. This occurs, for example, if A 1is right regular.

In the converse direction we ask:

(IX) f A is a commutative regular ring

is every finitely generated projective

Af[t] -module extended?

Since an affirmative solution to this problem implies an
affirmative solution to Serre's problem, it is perhaps most
prudent to approach it by seeking a counterexample.

The need for commutativity is illustrated by the following
example, taken from Ojanguren and Sridharan ([0~-8], Prop. 1}.

Let D be a non commutative division ring, or, more generally,
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any ring for which free modules have invariant basis number
and which contains units a, b such that ¢ = ab - ba is a unit.
Let A = D[x,v], a polynomial ring in two variables. The

homomorphism p: A2 -+ A, p(f,g) = (x + a)f - (v + b)g, sends

i

o (v + b, x + a}) to pl{a) = ¢, so Az = gA ®» P, where

P

[

Ker(p). It is shown in [0~8] that P is not free. It
projects isomorphically (in either coordinate) to a right ideal
in A. On the other hand D[x] is a principal right ideal

domain, so all projective right D[x]-modules are free.

Examples. The following are examples where every finitely
generated projective A[t]-module is known to be extended:
(1) A is a Dedekind domain. More generally, let A
be a reduced* commutative noetherian ring of dimension one
whose integral closure A is finite over A. Let
C = annA(ﬁ/A), the conductor. Then projective A[t]~modules are
extended » A/C is reduced. (CEf. [B-M], Cor. 9.2).
(2) A is a regular local ring of dimension ¢ 2
{(cf. [Bar] and [Mur 2]1).
(3) A = k[n], the algebra over a field %k of a free
non commutative monoid on group w (cf. [Ba 3], or [Ba 1],

Ch. IV, Cor. 6.4; to apply these results here one views

*Recall that "reduced" means "with zero nil radical." This assump~
tion is not restrictive since, if J is a nilpotent ideal, the
base change & - A/J induces a bijection on isomorphism classes

of projective modules (cf. [Ba 1], Ch. III, Prop. 2.12).
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Alt] as k[t]{n]).

4.2 The Horrocks criterion

Let A be a ring. The Laurent polynomial ring A[t,t—l]

contains both A{t] and A[t—l]. Let P Dbe a finitely generated
projective right, A[t]-module. We shall say that "P extends
to alocally free sheaf on El(A)" if there is a finitely

generated projective right A[t_l]—module P' and an isomorphism

—l ~
P o Alt,t "] =P' @& 1

Alt] A[tT]

are, el

of A[t,t-l]-modules. In case P 1is extended, say P = Po[t],
t hen one can use Po[t_l] for P' above. Horrocks [Hor] studied

the converse condition:

If P 1Is a finitely generated
projective right A[t]-module

Hor (A): which extends to a locally
free sheaf on El(A) then

P = Py[t], where Py = P/Pt.

He established Hor (A) whenever A 1is a commutative noetherian
local ring. This was used to show that projective A[t]-modules

are free when A is regular local of dimension 2 (see [Hor],
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when A contains a field, and [Mur 2] for the general case).
In [Ba 1), Ch. XII, Cor. (7.6) it is shown that, for any ring
A, Hor (A) is “stably" true, i.e. P and Po[t] in the
definition must be “stably isomorphic." This implies they are
isomorphic if A is commutative and P has rank 1 (cf.

[B-M], Thm. (6.3)).

(X) Does Hor (A) hold for every

commutative noetherian ring A?

An affirmative response would solve Serre's problem, as

the following new result communicated by Murthy, illustrates.

PROPOSITION (Murthy): Let kX be a field and t an indeterminate.

Let A be a k-algebra. Assume Hor (A) and that finitely generated

projective (k(t) 2 A) -modules are free. Then finitely generated

projective A[t)-modules are free.

This follows immediately from the:

LEMMA (Murthy): Let A be any ring, and let f be a central

monic polvnomial in A{t]. Let P .be a finitely generated

projective right A[t]-module such that P[1l/f] is free over

A[t,1/f]. Then P extends to a locally free sheaf on El(A).
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Proof of the Lemma. Let n = deg(f) and write £(t) = tng(t-l).

Since f is monic t“l and g(t_l) generate the unit ideal in
A[t'l] . Moreover A[t,t"l,l/f] = A[t'l,t,l/g] . Since

P[1/f] (=P ®

Alt] P{t,1/£f}) is A[t,1/f]-free we can "glue"

P[t—l] with a free A[t-l,l/g]-module (they are isomorphic over
A[t,t_l,l/g]) to form a projective A[t—l]-module P' such that

~

P'[t] = P[t_l], whence the lemma.
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85 Stability and indecomposable projective modules

5.1 Terminology

Let A be a commutative* ring. The space spec(A) of
prime ideals of A contains the subspace max(A) of maximal
ideals; such spaces have dimensions measured by lengths of
chains of irreducible closed sets, and we write dim(A) = dim spec(d).

We have a (split) exact sequence
0 —> K, (&) —> K (&) > 1 (8) —> 0

where HO(A) is the ring of locally constant functions spec(A)
-+ Z, and vhere, for a finitely generated projective module P,
rk (P} sends'g € spec{A) to the rank of the free A -module Py .

& 7

There is further a natural epimorphism
det: ?&0 (A) ~—> Pic(A)

induced by sending P to the rth exterior power of P, where
r = rk{P).
For each integer r > 0 let gr(A) denote the set of

isomorphism classes (P) of finitely generated projective A-modules

*Many of the problems and results discussed below have interesting
non commutative versions; we restrict attention to commutative
rings only for ease of exposition. The references cited treat

the more general setting.
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P of constant rank r. Define

- PR
s .: P _(3) > £r+1(A)

sr(P) = (P @ A),

and

t_: =Pr(A) —> K, (A)

r

x
€ (P) = [P] - [A7].
One checks easily that the maps tr induce a bijection
lin (b, (8),s,) —> K, (2)
r

The following notions furnish a measure of the rapidity with
which this limit is achieved. We define

(i) surj K.-range (A)

0

(i) inj K -range (a)

(iii) stable Ko—range(A)
(iv}) ind proj(Aa)

(v) stable ind proj(ad)

to be the least integer n » 0, or « if none such exists,
such that
(i) s is surjective for all r > n
(ii) s is injective for all r > n

(iii) tr is surjective for all r > n
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(iv) Every finitely generated projective A-module
is isomorphic to a direct sum of modules of
rank < n.
(v) Every finitely generated projective A-module is
stably isomorphic to a direct sum of modules of
rank < n,
respectively. Recall that finitely generated projective A
modules P and P’ are called "stably isomorphic" if
Po A" TP @A for some m» 0, i.e. if [P] = [P'] in K (A).
Thus condition {v) is equivalent to

(v'} The image of tr additively generates

QO(A) for r > n.

we further put

Ko-range(A) = max (surj Ko-range(A}, inj Ko—range(A)).
The following inequalities are immediate.
Ko-range(A)
L N
surj K.~range (A) inj K_-range (3)
0 0
by R
stable Ko-range(A) ind proj(3a)
N 74

stable ind proj(a)

Remarks: (1} The choice of inegualities in the above

definitions was made so that the Kc-stability theorem (see
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(5.2) below) reduces to the assertion that K -range{(d} < d

0

when A is commutative and max (A) is a noetherian space of
dimension d.

(2) The quantity surj K. ~range(A) was considered in

0
[B-M]} and in [G~R], where it is called "Serre dim(A)," and in
[L-M], where it is called the “"projective modulus of A."
(3) Evidently the following are equivalent:
{a} surj K0~range(A) = 0.
(b) Finitely generated projective A-modules of
constant rank are free
{c) Ko-range(A) = 0,
{4} For dimension one we have the following eguivalent
conditions (cf. [Ba 1], Ch. IX, Prop. (3.7) and Cor (3.8)):

(a) surj K.-range(d) < 1

0
(b} {xk(P), det(P)) € HO(A) x Pic{a) is a complete

isomorphism invariant for finitely generated
projective A-modules.

(c) K,-range (A) < 1.

Further, stable Ko—range(A) < 1 if and only if deg: EO(A) > Pic{A}

is an isomorphism.

5.2 The K,.-stability theorem

0

The basic Ko-stability theorem {for commutative rings)

is the following.
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THEOREM (see [Ba 1], Ch. IV, Cor. (2.7) and Cor. (3.5)):

If max(A) is a finite union of noetherian spaces of dimensgions

< d then

Ko-range(A} < d.

COROLLARY (cf. [Ba 4], Them. 22.1): Let A be a commutative

neotherian ring of dimension d. Suppose that A 1is

Ko-regular {(e.g. that A is regular). If P is a finitely

generated projective A[tl,..,tn]—module of rank > d + n then

P = PO Ry A{tl,...,tn}, where PO = P/(tl,...,tn)P.

Since KO(A) > KO(A{tl,...,tn}) is an isomorphism (by

K.,-regularity) P is stably isomorphic to P

0 ? A[tl,...,tn].

0 A

Since dim max(A[tl,...,tn]) =d+ n <« rank P the theorem

implies that inj Ko-range (Alt .,tn}) < rank P, whence

17°°
"stably isomorphic" implies "isomorphic."
In case dim (A/rad A) < d it suffices, for the conclusion

of the corollary, that rank P > (d + n) (cf. [Ba 4], Cor. 22.4).

COROLLARY : £f k 1is a field then proijective k[tl,...,tn]-

———

modules of rank > n are free.

These results suggest that, for fixed A, projective
modules are easiest to handle when their ranks are large.

This principle is born out by the fact that, if spec(d) is
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connected and A has only finitely many minimal primes then
every non finitely generated projective A-module is free!
{cf. [Ba 5}).

For a universal bound the d in the stability theorem is
reasonably efficient, as the following examples show (see

[G-R] and [Ger 2]): Given d » 1 let A, denote the even degree

d

2 2
part of R[to,...,td]/(t0 +oo0t b

q- 1), with respect to its

natural grading mod 2. Then dim Ad = dim max (Ad) = gl. dim (Ad)

= d. Interpreting Ad as the ring of polybomial functions

on real projective d-space Eg, there is an invertible Ad—module

L corresponding to the canonical line bundle on E:.

A simple
consideration of Stiefel-Whitney classes shows that L ®...® L

(d terms) is not even stably isomorphic to a module of the form
A ® P. There is further a projective Ad-module Td corresponding
to the tangent bundle to Ig, and Td is indecomposable for even
d (see [Gera], Thm. 5). Thus ind proj(Ad) = d for even d.
Further examples can be found in [Sw 2].

To my knowledge, however, the examples in the literature

do not yet completely respond to the following problem.

(XI)d Given d > 2, exhibit a commutative

noetherian ring A of dimension d, and

a finitely generated projective A-module
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P of rank d, such that P is not

even stably isomorphic to a module

of the form P' » P" with P' and P"

of rank < d. 1In other words find

an A as above such that stable

ind Eroj(A) = d.

If A is an affine algebra over a field %k the response to
(XI)d might depend on Xk, for example by being different for
k =R or €.

The discussions that follow are concerned with possible
strengthening of the inequalities implied by the stability

t heorem in special circumstances.

5.3 Indecomposable projective modules

A, Geramita has asked in [Gera] whether (ind proj (a),
surj Ko-range(A)) can take any pair (i,s) of values for which

1l <ix<s (cf. also [G-R], 87). In particular he has asked:

(XII)d Given d > 2, does there exist a

commutative noetherian ring A of

global dimension d such that

surj Ko-range () = d and

ind proj (A) < d?
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Murthy [Mur 1] has investigated questions germane to
this in the following special setting: Let Xk be an algebrai-
cally closed field. Let A Dbe the affine ring of a non
singular algebraic surface V over k. Thus A 1is a
regular ring of dimension 2. Murthy asks (c¢f., [Mur 1],

Remark 5.5):
(X111) Is ind proj (a) < 172

The answer is negative if we drop the assumption that k is

algebraically closed, as the familiar example

R[X,y,Z]/(x2 + y2 + z2 - 1) and the indecomposable A-module

A

P

A%/A-(x,y,z) show. Murthy has remarked that if Vv is a
product of two curves then stable ind proj (A) < 1, while the
theorem below shows that stable Ko—range (A) = 2 if both curves
have genus »> 0. Thus if (XIII) is affirmative in the latter
case, one has the example sought by (XII)Z.

For rings A as above the stability theorem implies
that Ko-range {3} < 2. Murthy {([Mur 1], Thm. (3.2)} shows that
Ko—range (3) <1 if V is birationally equivalent to a ruled

surface (= (a curve) X El). Results of Mumford [Mum] suggest

that the converse may also be true.
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5.4 Improved stability for polynomial rings

The qguestions here were first raised in [B-M], 8%. They
have recently been reconsidered and generalized by Evans and
Eisenbud [E-Ei] (see also 87 below).

Let A Dbe a commutative neotherian ring, and let n

be an integer > 1.

(XIV)n Is K -range (A[t

0 ..,tn)) < dim A?

1’
When A is a field this question is eqQuivalent to Serre's
problem (I}.
Put d = dim A and P_ = A[t_,...,t ]. Then dim P
n 1 n n
= dim max (Pn) = d + n, even though one might well have

dim max (A) < d (e.g. when d > 0 and A is local). The question

(XIV)n naturally separates into two parts:

3 - ?
(XIV)n:surj ds surj Ko-range (Pn) < dz
(XIV)n,inj 1s inj K -range (Pn) < d?

One can further ask the less stringent question

(Xv)n Is stable Ko-range (Pn) < d?

Murthy has even asked whether one might replace d by 1 when

A is a local ring, in the above questions. Of course (Xv)n,
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even in Murthy's strengthened form, has an affirmative response
whenever A 1is Ko~regular, and the discussion in B2 describes

an abundance of Ko~regular rings. The results quoted below
affirm (XIV)n and (XV)n in other interesting but still gquite special

cases.

THEOREM: Suppose dim (A/rad A) < d. Then Ko—range (Pn)
<d+n - 1.

This affirms (XIV)l and (XV)l for A as in the theorem.
The theorem is a corollary of the stability theorem since
max(Pn) is the union of the closed set F consisting of
maximal ideals containing rad A (so that F = max

({a/rad) [t ..,tn}) has dimension < d + n) and the open

1’
complement which also has dimension < d + n. (cf. [Ba 1],

Ch. IV, Remark after Cor. 2.7.) This result has been generalized

by Evans-Eisenbud in [E-E 1].

THEOREM ([B-M], Thms. 7.8 and 9.1). Suppose that d < 1 and

that the integral closure of Ared= A/nil rad (A) is a finitely

generated A-module. Let B denote either Pn or Ln

-1 -1
Dseeat Lt

A{tl,t
(a) stable Ko-range (B) <1

{b) We have Koy-range (B) < 1 if either n = 1, or n = 2
and A is semi-local.

Part (a) affirms (Xv)n, and part (b) affirms (XIV)n for
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A and n as in (a), resp. (b). It is very likely, but
apparently not yet known, whether (XIV)1 has an affirmative
response whenever d < 1, i.e. without some assumption like

the finite generation of the integral closure of Ared

5.5 The use of bilinear forms

Let A Dbe a commutative ring. Let P be a finitely
generated projective A-module, and let L be an invertible
A-module. It is observed in [Ba 2], Prop. 4.1, that if
P » L admits a non singular alternating bilinear form then
P has a direct summand isomorphic to L¥* = HomA(L,A). It follows,

in particular that

PROPOSITION: P ® A = 2" . P ¥ P' @ A for some P'.

Combining this with the second corollary of the stability

theorem above (in (5.2) } we obtain:

COROLLARY: If %k is a field and if n > 1 is an integer then

a projective k[tl,...,t2n l]—module of rank 2n-1 has a free

direct summand of rank 1, whence surj K_-range (k[tl,...,

t2n-l])

0
< 2n - 2.

To treat Serre's problem in three varxriables one can

further use symplectic K-theory (see [Ba 6}) as follows.
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PROPOSITION: Let A be a commutative noetherian ring of

dimension < 3. If KO(A)-EE§Z is an isomorphism then

(a) surj Ko-range (A) < 2; and

(b) All finitely generated projective A-modules are

self-dual.

r
If further KSpO(A)-E§ZZ is an isomorphism then

(c¢) All finitely generated projective A-modules are

free if and only if Sp4(A) acts transitively on

. . 4
the set of unimodular elements in A’.

See [Ba 6] for the notation.

Proof: Let P be a projective A-module of rank r. Then

hypotheses and the K.-stability theorem imply P 1is free if

0

r > 3. The proposition above then implies, if r = 3, that

2. Then det(P) = AZP

ne

P A ® P', whence (a). Suppose r

]

]

in Pic(A) .is+ trivial because §O(A) 0. It follows then from

[Ba 2], Prop. 4.4 that P admits a non singular alternating
form h. 1In particular P = P*, whence (b). The symplectic
module (P,h) is stably hyperbolic if KSpO(A) E 2Z, so it
follows from the symplectic stability theorem ([Ba 6] Ch. IV,
Cor. 4.15) that (P,h) , H(p) = H(Az) = H(A) , H(A). If an
element ¢ of Sp4(A) carries the orthogonal complement of

~

(P,h) to a standard hyperbolic plane then (P,h) = H(A) so

P = Az. Such a ¢ exists provided Sp4(A) acts transitively
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on unimodular elements in A4 (Cf. [Ba 6], Ch. I, Cor. 5.6),
whence one implication of (¢). Conversely if A 1is any com-
mutative ring for which all projective modules are free then
all symplectic modules are hyperbolic, clearly, and so szn(A)
acts transitively on unimodular elements in A2n for all n.
Thus the proposition is proved.

The above proposition applies notably in the following
case: Suppose A = B[t] where B is a regular ring of
dimension 2 for which all projective modules are free. Then
all symplectic B-modules are hyperbolic also. Further
KO(B) E KO(A) and, according to Karoubi [K 2], if 2 is invertible

~.

in B, we also have KSpO(B) > KSpO(A).

Thus, if k is a field of characteristic # 2 the special

case (I)3 - of Serre's problem is equivalent to the problem:
s

L} o t
(1 )3,r IfA =X [tl 2t3] does Sp4(A) act
transitively on unimodular elements

. 4
in A ?

Another influence of bilinear forms on the structure of
projective modules is given by the following consequence of

[Ba 2], Cor. 5.2.

PROPOSITION: Let A be a factorial ring in which 2 is a

sgquare. Let P be a projective A-module of rank 2. Then
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P is free if and only if P supports a non singular symmetric

bilinear form.

This applies notably when A = k[tl,...,tn] with k an

algebraically closed field of characteristic # 2.

5.6 Lissner-Moore extensions

There is another situation where the surj Ko—range can

be significantly improved. It is an algebraic analogue,
discovered by Lissner and Moore {[L-M], of the fact in topology
that the stable range for complex vector bundles is half that
for real vector bundles. We indicate here an abstraction of
their arguments. (Another has been given by Simis [Sim].)
A Triple (AO,A,B) consisting of a commutative ring AO,

a commutative Ao-algebra A, and an element 6§ € A, will be

called a Lissner-Moore extension of degree d

(1) l,e,...,ad-l is a free basis of A as Aj-module.
and
(ii) Ifb=a + a g +...+ a ed_l with all a. ¢ A
4] 1 d-1 i 0’
and if ad 1 is invertible in AO, then b |is

invertible in A.

Example. If A = Ao[e] is a field extension of degree d of

a field AO then (AO,A,e) is a Lissner-Moore extension of degree
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d. We shall see less trivial examples below.

THEQREM: Let (AO,A,e) be a Lissner-Moore extension of degree

d. Then

1
surj K. -range (A4) <3 {surj K, -range (AO))

0 0

COROLLARY. If surj K_-range (AO) < d then projective A-modules

0

of constant rank are free.

The proof of the theorem is based on the lemma below.

If M, N are A-modules let M N, denote the underlying

0’ 70

A_-modules {restriction of scalars). Suppose f_ € Hom, (M, ,N }.
0 0 AO 0’70
Define f: M > N by

Lamnl > .
- i b]
f{m) = ZJ di+j+1 87 £,(e7m),
i,320
itj<d-1

where the ¢, € AO are defined by the eguation

Cy * Cy 8 te.t C ed"l + ed = 0,

0 d-1

whose existence (and uniqueness) results from {i) above.

Allowing ourselves to put scalars on the right in N we have

d=-1 d-=lwi
(*) £ = ) () e £,(07m) 6%,
i=0  4=0
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so that the coefficient of 8d-l is Jjust fo {m) .

LEMMA: Assuming only condition (i) above, the map f: M » N

is A-linear.

Evidently £ |is Ao—linear, so we need only check that

f{am) = pf{m) for m € M.

< i j+1
f{em) = L ci+j+le fo(e m)
i, j=0
it+jgd-1
d-1
T .
: j+1 u v
L 541 £, (e m)} + { Z ey’ £, (8 m)).
3=0 u,v>0
utved
Similarly
gf(m) = c ei+l £ (Djm)
i+3+1 0
i,32>0
i+j<d-1
d-1
i+l u v
= () epa @) ¢ ) o 8% g6
i= u,v>0
u+v<d
d-1
) i+l _ _
Since 'io ci+1e fo(m) = -c, fo(m) = fo(—com)
d-1 . c-1 .
= £ {2 c. 93+l m) = & e, . F (eﬁ'lm) the lemma follows.
o] =0 j+1 =0 Jj+1°0

Remark. If fo is already A-linear then one can check that
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£ =9'(e)£f,, where @'(8) = £ hc s .
h>1

Proof of theorem. Let P be a projective A-module of rank r,

and suppose surj Ko—range (AO) = n, Assuming r > g we must

show that there is an x ¢ P and an A-linear map f£f: P » A such
that £(x) is invertible. Since A is free of rank 4 over

A0 the projective Ao-module PO has rank rd » n. By hypothesis

P »A CA

therefore there is an x € P and an A_-linear map fO: 0 0

0
such that fo(x) = 1l. Let f: P > A be the corresponding A-linear

map constructed above. Since fO(P) c A_ the formula (*) above

0
shows that
d-1
£f(x) = a0 + ale L T ad—le
with a, € AO and a1 = fo(x) = 1, whence,by condition (ii)

(in the definition of Lissner-Moore extension), f(x) is
invertible.

Starting from a Lissner-Moore extension (AO,A,e) as above,
we can (following the ideas of [L-M]) construct new ones as

follows. Let B, be a commutative Ao—algebra, and put

o]
d-1 | .
B = B0 N A, so that 1,9,...,8 is a Bo-bas1s of B. We
(o]

can identify Hoon-alg(BO’AO) with

X = {x € Hom

A_alg(B,A)lx(Bo) c AO}

If x e X and b € B write b(x) in place of the usual x(b). Fix

any non empty subset Y of X and put

42



40

w
[

= {bo € Bojbo(y) is invertible in A, for all y € Y}

0

n
it

{b e Blb(y) is invertible in A for all y € Y}

_ -1 a -1
Put Cy = By[S;"] and ¢ = B[S ].

PROPOSITION: We have C = B[Sal] and (C,,C,8) is a Lissner-

Moore extension of degree d.

For the first assertion we need only show that if b € S

then b is invertible in B[Sal]. Since B[Sgl is a free

BO[Sal]~module with basis 1,8,...,85 % the invertibility of
{multiplication by) b in B{Sal} is equivalent to that of its

determinant, N(b) € BG{Sgl]. Now N(b) = N {b) € B, and

2
B/BO 0

if v € ¥ we have N (b} {v) (b{y)) clearly. By the

= N
B/BO A/A0

assumption that b € S, the element b{y) is invertible in A,

whence NA/A
0
(b) € 8
0
We now show that (CO,C,e) is a Lissner-Moore extension.

(b(y)) is invertible in AO (for all y € Y), whence

N , whence N(b) is invertible in BO[Sgl], as claimed.

B/B 0

Condition (i) has already been observed above. To verify (ii)

-1 ith b, € C, and

suppose given ¢ = b 0

0 + blg +ooot bd—ls

bd 1 invertible in CO. We must show that ¢ is invertible in

€. After multiplying by an element 0of S we may further assume

0
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all bi € BO so ¢c € B. Ify €Y then c(y) = bo(y)
d-1

+ bl(y)e S bd_l(y)s and bd_l(y} is invertible in A

0
Hence c(y) is invertible in A by condition (ii) for (AO,A,e).
Thus ¢ € S, s0 ¢ is invertible in C = B[S-I], whence the

proposition.

To illustrate how these results are applied (as in [L-M]
consider the case (AO,A,e) =(R,c,f:1), and let BO be the
affine ring of some real algebraic variety, say of dimension
n, whose real points may be identified with X. Then
B=4G gn BO maps to the ring €(X) of complex valued functions
on X, and {taking Y above to be all of X) the set §
consists of those b € B which vanish nowhere on X. It
follows from the theorem and proposition above that surj Ko—
range (B[S-l}) 5'3, whereas dim max (B[S~l]) = n in general
{cf. {L-M]). As a special case one may take B = R[tl,...,tn},
in which case S consists of real polynomials in n variables

with no real zeros, e.g. 1 + {(a sum of squares).
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g6 Knvstabilitz

6.1 Formulation of the problem

Our discussion here overlaps somewhat with Gersten's
{[Ger 1], Prob. 2).

Let A be a ring. Let n Dbe an integer > 3. Then
the normal subgroup En(A) of GLn(A) generated by all elementary
matrices is perfect. Let fn: BGLn(A) -> BGL:(A) be the

acyclic map such that Ker nl(fn) = Eé(A). Then we have maps

+ +
s,: BGL (A) —> BGL . (A)

1
and

+ +
t : BGL_(a) ——> BGL (A) ,

, . . . . +
the latter inducing an isomorphism lim (BGL:(A),sn) - BGL (A).
n
In analogy with 85, we say
(i) surj Ki—range (d) < n

(i1} inj Ki—range (A < n
(iii) stable Ki-range (3) < n
if
(i) ni(sr) is surjective for r > n
{(ii) ni(sr) is injective for r > n
{iii) ni(tr) is surjective for r > n,

respectively. By suitably modifying the above constructions
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one should be able to extend these definitions to the cases
n=1o0r 2 as well as n > 3. Then the least n for which the
above condition holds defines the corresponding quantity, and

we put

Ki—range(A) = mas (surj Ki—range (a), inj Ki—range (a))

The Kl—stability theorem for commutative rings is:

THEOREM (see [Ba 1], Ch. V , and Wasserstein [Was]):

Let A be a commutative ring such that max (A) is a noetherian

space, Then

Kl-range (A) < dim max (A) + 1

Moreover the surjective K_-stability theorem of Dennis implies:

2

THEOREM (Dennis [Den]): With A as above we have

surj K,-range (A) < dim max (&) + 2.

2

It seems reasonable to conjecture, for i > 2:

(XVI)i If A is a commutative noetherian

ring dim max (A) = d_then

Ki—range (A) <d + i

If a theorem of this type can be established then it would be

natural to seek refinements in special cases along the lines of
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the discussion in 85 for i = 0. At the moment (XVI)i seens

rather difficult for large i, though Quillen's results in

[Q 4] give some evidence for it in case A 1is a Dedekind ring.
An alternative, and perhaps more natural, formulation of

the stability problem for higher K-functors has been given by

Wagoner in [Wag].

6.2 A comparison with topological stability

In topology one has K " (X) = %O(snX), so one deducee a
K “-stability theorem for X by applying the Ko-stability
theorem to S™X. One can imitate this argument using the
Nobile~Villamayor suspension SA of a ring A. It is defined

by the cartesian square

SA ~—---——-‘—"> At}
P
A —’—"‘&‘—'~>A X A

*
where p({a) = {a,a) and p{f) = (£(0)},£f(1}). Since p is
surjective we can apply Milnor's fibre product theorem

(cf. [Ba 1], Ch. IX, Thm. (5.1)). It yields the following

*
In subsequent terminology this has become the "loop ring"”
(0A, augmented by the "unit" A.
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parametrization of the set Gn of isomorphism classes of

projective SA-modules P such that P @ A= A" and

SA
~ n
P @, Alt] T A[t] : Let GL_(A[t]) act on GL (A) by

B« a=p5(0) ap()t

for a € GLn(A) and B € GLn(A[t]). Then there is a natural

bijection
G, — GLn (a) /GLn (altl)

where the quotient is by the action * above. Note that this

quotient factors through the quotient group
GL_(A)}/U_(A)

where Un(A) denotes the subgroup (which is normal) in GLn(A)
generated by all unipotent matrices I + vy € GLn(A). (We
simply use B = I + tv to see this.) Since Un(A) contains
En(A) the sets above are quotients of the sets GLn(A)/En(A)
which converge to Kl(A).

Suppose now that A is commutative. Since the inverse
image of maximal ideals by p and A are again maximal it

results from ({Ba 1}, Ch. IX, Prop. 5.11) that
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max (SA) &——————  max A[t]

mafo) & max (A X A)

ig cartesian in the category of topological spaces. It follows

that max (SA) is noetherian, and that
dim max (A[t]) = dim A[t] = 1 + dim A.

Thus we conclude from the Ko-stability theorem for SA: If

A 1is noetherian of dimension d then the maps

S,* GLn(A)/GLn(A[t]) — GL ., (A)/GI_.rx+l (aft])

are surjective for n > d + 1 and injective for n > d + 1.

This is weaker than the known Kl-stability theorem above
in two respects: (i) the guotient GLn(a)/GLn(A[t]) is smaller
than GLn(A)/En(A); and (ii) d = dim A is larger, in general,
than dim max (A). On the other hand the above arguments
presumably give a stability theorem similar to that above

for the higher X-functors of Karoubi~Villamayor. We have not

attempted to articulate it precisely.
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87 Efficient generation of noetherian modules and ideals

7.1 Basic elements and stability theorems

The stability theorems for projective modules have been
extended in various ways to non projective modules. Recently
Eisenbud and Evans [E-Ei] have given a coherent and systematic
treatment of these results, and raised some questions analogous
to some of those in BS above. We shall summarize here some
of these results and questions, referring the reader to
Eisenbud-Evans for more details and references.

Let A be a commutative noetherian ring. Let M be

a finitely generated A-module. We define

u {A,M) = the least cardinal of a generating set of M.

If x ¢ M and if % € spec (A) we say x 1is y -basic in M
if M(Aq ,(M/Ax)g/) < u(Ag ’MX’). By Nakayama's lemma this

7
is equivalent to the condition: x £ g M?g. We call x Dbasic
in M (resp., M-basic) if x is ¢/ ~basic for all g{ (resp.,

— &F

for all g,e supp (M)).
Remarks.

(1) ([E~El], Lem. 1l). If M is projective then x

is basic if and only if X is unimodular in M, i.e. x
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generates a free direct summand of rank 1.
(2) (cf [E-El}, proof of Cor. 7). Suppose I is an
ideal in A and M =1I2... I (n terms). Say
X ==(a1,...,an) € M and put I0 = Aal 4ot Aan c I. Then
(a) x is M-~basic,
is equivalent to,
(b) Iof & C(f IC,# for all g containing armA(I),
and implies
(c) ﬁ;= JIo
In view of (1) the following result generalizes Serre's

theorem (that surj K ~range (A} < dim max (A)).

0

THEOREM (Eisenbud-Evans [E-E 1], Thm. A): If . (Aé/( ,Még) >

dim max (A) for all ? then M contains a basic element.

Actually a stronger result is proved, from which, among

others, the following corollaries are deduced.
COROLLARY 1 (Forster-~Swan) :

(A,M) LAy ,M,) + di (a/9))
] Sétssri:; R A A

COROLLARY 2: Let I be an ideal of A. Put d = dim max(A/armA(I)).

{a) _];_fQu,(A%,I?) < m for all g then
p(A,I) < max {d + 1, m + dim max (A/I})

(b) There exist (d+l) elements a € I such that

NEEEFLY
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putting I' = Aay +...+ Aa,, we have Ig’ & ylf

for all g; containing annA(I) . In particular
Ji = /1.

Part (b) sharpens slightly a classical theorem of

Kronecker.

7.2 Conjectural improvements for polynomial rings

Let A be a commutative noetherian ring of dimension d.

We assume that A is a polvnomial ring over some other ring

{in at least one variable). In (5.4) we have asked in

particulars:

(XIV):L Is K -range(A) < d4?

0

In view of their theorem above, Eisenbud-Evans strengthen the

condition "surj K.-range (A) <« d" part of (X:CV):L in conjec~

0
turing [E-E 3]:

(Xvino) If M 1is a finitely generated

A-module such that (Afﬁ ’MSZ) > d

for all 3@ then M contains a

basic element.

The following corollary of (XVII) has been proved:
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THEOREM ([E-E 2]: f I is an ideal in A there exist d

elements Byseee,By € I such that, putting I' = Aa +...+ Aa

d l d}

1 3 .
we have Igﬂ & Ig; for all ? containing annA(I). In
particular [T* = (I.
Eisenbud~Evans further conjecture the following sharpening

of the Forster-Swan Theorem (Cor. 1 above).

{(Xviii) Let M be a finitely

generated A-module. Then

p(Aa,M) = ngax " (Ag, Ngj)+ dim max (A/bp’))

where ﬁ’ ranges over all primes

for which dim max (A/%) < d.

They show in [E-E 3] that (XVIII) is valid if M is a
projective module of rank one. They also establish their
conjectures in the following case, related to the theorem in

{5.4) above.

THEOREM ([E-E 3]).: Suppose A = B[t ..,tn] with n > 0 and

1"
B semi-local of dimension » 0. Then (le)l, {(XVII) and (XVIII)

are all affirmed.

In the case of ideals (XVIII) has the following consequence
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as one checks easily.

PROPOSITION: Let I Dbe an ideal in A. Put m(I) = ng W (éf’ﬁg}.

Then (XVIII) for I implies that
p(a,I) ¢ max (d,m(I) + dim max (A/I)).

£f I is a maximal ideal then (XVIII) for I is equivalent to

the condition y (A,I}) < max (d,m(I)).

Some very interesting special cases of (XVIII) have been
verified in a sharper form, by Murthy (cf. [Mur 3] and [Mur 1],

Prop. (4.1)).

THEOREM (Murthy): Let A be a commutative noetherian ring of

global dimension d. Assume either d = 2 and Ko-range (8} < 1,

or d = 3 and RO(A) = 0. Then an unmixed ideal of A locally

generated by m elements can globally be generated by

m+ {(d - 2) elements.

Remarks. (1) Murthy's hypotheses are inherited by rings of
fractions (of the same dimension as A).

(2) The case d = 2 applies notably when A = D[t]with
D a Dedekind domain. 1In the case d = 2 the theorem implies

that every prime ideal can be generated by ¢ 2 elements.
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7.3 Complete intersections in affine 3-space

Let a = k{tl,tz,t3}, a polynomial ring in 3 variables
over a field . Let ﬁﬁ be a prime ideal of A such that
A/éﬁ is a Dedekind domain, and hence the affine ring of a
non singular irreducible algebraic curve C in affine 3-space
k3.

According to Murthy's theorem in(7.2) above,éx_ can be
generated by < 3 elements. In general j{ cannot be generated

by 2 elements, however, but the following classical problem is

still open:

(X1X) Is ? the radical of an ideal

with < 2 generators, i.e. is C

a set theoretic complete intersection

i k3?

—

We also have the related question posed by Serre [Ser 3]:

(xx) Suppose k is algebraically closed

and that C has genus 0 or 1. Is

31 then generated by two elements,

i.e. is C then an ideal theoretic

complete intersection?

Serre points out that the answer to (XX) is affirmative provided
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that all projective A-modules of rank 2 are free (in which case
all projective A-modules are free, by the results quoted in
81).

Segre in [Seg] claims to furnish a negative solution to
(XX), and consequently also to Serre's problem (1)3’2.
However, Abyankhar has indicated there are some serious
deficiencies both in the statements of Segre's results, and in
his method of proof. According to Abyankhar's testimony
one should not regard [Seg] as essentially altering the open

status of (XX).
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§8 Symmetric and affine algebras

8.1 Cancellation for affine varieties

Murthy has raised the following general question about

affine varieties X, Y over a field k:

~

(1) Does X x k = ¥ x k imply X = ¥?

He has obtained partial affirmative results when X is a
non singular surface and %k 1is algebraically closed of
characteristic zero.

The cases when Y 1is an affine space x* has some formal
resemblance to Serre's problem (cf. (8.3) below). Murthy
remarks that these cases would be solved affirmatively if k

has the property:

Any algebraic action of the
torus (k*)s on the affine
(2),

r .
r-space k is equivalent

to a linear action.

For then the variety of fixed points would again be an affine
space. Since X X 0 is the variety of fixed points of the

obvious action of k* on X X k we thus conclude that
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R ~ r
X xk =k 4 x ¥ x", provided (2), _,, holds. This approach
3
to problem (1) is suggested by a result of Byalinicki-Birula

[B-B] which establishes (2) for all r.
r,r+l

In case k = ¢ and Y = Gz a problem related to (1) has
been treated by Ramanujam [Ram].
If in problem (1), we denote the affine algebras of X,

Y by A,B, respectively, we can rephrase (l) as follows:

~

(1) Does A[t] = B{t] imply A = B?

Here t 1is an indeterminate, and the isomorphisms are of
k-algebras. Problem (1') motivates the notions discussed next

in (8.2).

8.2 Invariance of the coefficient algebras in polvnomial

algebras.

Let k Dbe a commutative ring. Let A Dbe a k-algebra.
We assume all k-algebras here to be commutative, though much
of the discussion applies without this restriction (cf. [B-R]},

for example). One says the k-algebra A is n-invariant if
Alt ,...,t ] = Blty, eest ] —> a = B,

whenever B 1is a k-algebra. Here t ..,tn are indeterminates,

L

and "=" signifies k~algebra isomorphism.
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(XXI)d,r Suppose k = ko{sl,...,sd] is

a polynomial algebra in d

variables over a field ko.
Let A = k[tl,...,tr] be a

polynomial algebra in r

variables over k. Is the

k~algebra A n-~invariant

for all n » 072

We shall see below in (8.3) Remark (2), that an affirmative
solution to (XXI)d r implies an affirmative solution to Serre's
3

problem (I)d e
3

Many interesting examples of %; A for which A is
n-invariant for all n » 0 can be found in [A-H~E] as well as
the several references cited in that paper. In most of their

examples A has relative Krull dimension one over k.

8.3 Symmetric algebras (cf. [Hoch])

As above, let k be a commutative ring. Let P Dbe
a k-module and Sk{P} its symmetric algebra. The kernel of the
augmentation ey Sk(P) >k eP(P) = 0, will be denoted J(P).
Evidently the module J(P)/J(P)2 over Sk(P)/J(P) = k is canonically

isomorphic to P itself. Let e: Sk(P) > k be any other
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augmentation, and put J = Ker(e). The k-algebra endomorphism

a of Sk(P) defined by a(p) = p - e(p) for p € P is an automor-
phism (with inverse induced by p+v p + e(p) for p € P). Clearly
a{J(P)) < J, whence a(J(P)) = J. It follows that J/J2 and
J(P)/J(P)2 = P are isomorphic k-modules. This observation

immediately implies:

PROPOSITION: Let P and Q De k-modules. Then Sk(P) = Sk(Q)

~

(as k-algebras) « P = Q (as k-modules) .

Let P and F be k-modules. We have

~

Sk(P ®F) = Sk(P) % Sk(F) = SSk(P) (Sk(P) Ry F).

If F is free with basis tl,...,tn then Sk(F) = k[tl,...,tn],

the polynomial algebra, and similarly Sk(P @ F) = Sk(P)[tl,...,tn].

COROLLARY: Let P, Q be k-modules. Assume the k-algebra

Sk(Q) is n-invariant. Then

P@anQ@knréP;Q.

For in view of the above remarks an isomorphism

n~

Pk 0 » k" leads to a k-algebra isomorphism Sk(P){tl,...,t ]

n

Sk(Q)[tl"°°’tn]’ whence Sk(P) = Sk(Q) if Sk(Q) is n-

invariant, and so, by the Proposition, P = Q.
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~ XN
=k whereas

Remarks. (1) Suppose Q = X and P @ kn
P Z x*. Then the argument above shows that k{tl,...,tr]
is not n-invariant. This is the observation used by Hochster
[Hoch] to produce algebras which are not n-invariant.

(2) suppose k = kyls ,...,8,1, Q = k', and A = 5, (@)
= k[tl,...,tr] as in (XXI)d,r' Let P be a projective
k-module of rank r. Then it follows from the results cited

in (5.2) (Corollary to the K

O—stability theorem) that

Pok"TQ0@k” ifn>d - 1r. Thus it follows from the
corollary above that P = x° provided that A is n~invariant.

This explains the relationship (XXI)d . to Serre's problem

(Ié,r'
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89 Finiteness guestions

9.1 Rings of finite type

If A 1is a right noetherian ring then Gn(A) = Kn(Mod £(a)),
the Quillen K -group of the category Mod f(A) of finitely generated
r ight A-modules (cf. [Q. 2] or [Q 3]}). There is a canonical
"Cartan" homomorphism Kn(A) > Gn(A) which is an isomorphism
if A is right regular (loc. cit.)

We ask here whether the groups Gn(A) are finitely generated*

under reasonable finiteness assumptions on A.

(XXII)n Let A be a finitely generated

commutative Z-algebra. Is

Gn(A) finitely generated?

(XXIII) Is GO(A) finitely generated

whenever A is a finitely

generated commutative

R-algebra, where R is

either & or a field finitely

generated (as a field) over

its prime field?

*
More generally, we might ask if they are "F-finitely generated,"
i.e. whether F & Gn(A) is a finitely generated F-module, for

F=08,8,...
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(XXIV)m Let A be a {not necessarily

commutative) ring finitely

generated as a Z-module. Are

Gn(A) and Kn(A) finitely

generated? Is the kernel of

Kn(A) -» Gn(A) a torsion group?

x1XvV A ini i N

( )n(>0) Let be a finite ring. Is
Kn(A} finite?

Remarks

(1) Orders

The most far reaching result toward (XXII)n and (XXIV)n
is Quillen'’s theorem that Gn(A) is finitely generated when A
is the ring of integers in a number field [Q 4]. This relies
on work of Borel and Serre on the cohomology of arithmetic
groups, which Borel earlier used to calculate Q@ ® Kn(A).
Analogues of the Borel-Serre results in characteristic p > 0
would yield the analogue of Quillen's theorem for maximal
orders in global fields of characteristic p, though one might
here only expect finite generation modulo p-~torsion.

(2) rinite rings

If A is a finite ring then Kn(A) is finite for n » O

when A is semi-simple. This reduces, using Morita theorems,
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to the case of finite fields, where the finite group Kn(Eq)

are known explicitly [0 1]. If A is not necessarily semi-
simple then Gn(A) is finite for n > 0, since Quillen's devissage
theorem ({Q 2] or [Q 3}) implies that Gn(A) = Gn(A/rad a)

= Kn(A/rad A). The finiteness of Kn(A) would follow if one

had reasonable stability theorems for Kn (cf. 86), as one does

for n £ 2. Another approach would be to obtain good control

of the kernel of Kn(A) > Kn(A/J) whenever J is a nilpotent ideal

in a ring A.

(3) Use of devissage and localization in (XXII)n

Let A be a commutative finitely generated Z-algebra.
Quillen's devissage theorem implies that A -~ Ared = A/{nil rad a)
induces isomorphisms Gn(Ared) -> Gn(A)' Thus {(for problem
{XX1I)) we may assume A is reduced. We can then further find
a non division of zero s in A such that A[%] is a finite
product of regular integral domains; this follows from

"Closedness of the singular locus." Quillen’'s localisation and

devissage theorems then yield a long exact sequence
1
cee =36 (A/sA) n__%Gn(A) %GH(A['S—]) ———}Gn“l (B/sB) —> ...

Since dim {A/sA) < dim A, and since the groups Gn(A) are
finitely generated when A is finite, we can argue by

induction on dim (A) and so reduce (XXII)n to the case where
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A 1is a regular integral domain. In this case we further have
Kn(A) 5 Gn(A)' Thus (XXII)n is equivalent to:
(XXII')n Is Kn(A) finitely generated

when A is a regular integral

domain finitely generated as

a T-algebra?

{4) The Mordell-Weil Theorem {cf. [Rog])

It implies that if A is a normal integral domain

finitely generated as a Z-algebra then Pic(A) is finitely

~

generated. If further dim (A) < 1 then KO(A) 2 ®» Pic(Ad)

is finitely generated. Combining this with the remarks in (3)
above one deduces {cf. [Ba 1}, Ch. XIII, Cor (3.2)) that
(XXIII)n has an affirmative solution if dim (A) < 1. A

procedure for attacking (XXIII)n by induction on dim (A)

is suggested by Roguette's proof of the Mordel-Weil Theorem [Roq].

9.2 A PID with SKl # 0
Examples showing why problem (XXIII} is formulated only

for G and not Gn(n > 0) or Kn(n > 0) are given in [Ba 1},

O)

Ch. XIII, §3. The constructions used theré also furnish the

following example of a principal ideal domain B with

SKl(B) # 0 and not even finitely generated. This responds to

a guestion raised by Swan [ {(Sw 3], p. 203].
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Let k Dbe a field finitely generated over its prime
field. Let A Dbe the coordinate ring of an absolutely
irreducible anu smooth affine curve C of genus g > 0 over
k. If k’ is a k~algebra put Ak' = A gk k*. Mordell-wWeil
implies that Pic(A) is finitely generated. Removing a finite
number of points from ¢ we may therefore further impose that
Pic(d) = 0, so A is a PID. It follows then that B = Ak(t)

is likewise a PID, where t is an indeterminate. Now we have

from [Ba 1}, Ch. XIII, Cor (3.4) an exact segquence

SK, (&) —> SK; (B) —> iX—LPiC By xy? — 0

where k{x) ranges over all residue class fields of k{t]. Since
g > 0 the groups Pic (Ak(x)) are # 0 for infinitely many

*
k{x)'s , whence le(B) is not finitely generated.

{9.3) Rational varieties

Let k be an algebraically closed field and A the

*Pic(Ak(x)) is essentially J(k(x))/(TJ(k(x)) N ) where J(k")

denotes k'-rational points on the Jacobian J of the complete
non-singular curve containing C, and where T denotes the
subgroup generated by the (finite number of)points at infinity.
If k is the algebraic closure of k then the torsion of J(X)
looks like that of (@/Z)2Y9 except for p-torsion (p = char(k));
thus J(k') effectively grows in size as k' approaches k.
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coordinate ring of an affine variety X over k. It is
unreasonable to expect KO(A) to be finitely generated unless
X is almost rational. Even this does not suffice, as the

following example of Murthy shows (cf. [Mur 1], sec. 6).

Example. Let £ ¢ B = k[t tn] define a non-singular

Ry
hyper-surface in k. Put A = B[x,y] = A[X,Y¥]/(XY~-f). Then
A{x_l] = B[x,x“l} {Laurent polynocmials) and A/xA = (B/fB)[y],
so A is regular and "birationally equivalent® to

1

Blx,x ] = k[tl,...,tn,x,x-l]. Moreover Pic (A) = 0, whereas

~

KO(A) = KO(B/fB). For a suitable choice of f one can make

KO(B/fB) extremely large, whence likewise for KO(A).

Presumably varieties admitting cell decomposition,
e.g. linear algebraic groups, can be shown to have finitely
generated Ko‘s, {cf. {Jb]). Do their Kn's have any similar

finiteness properties?

67



65

References

[A-H-E] S.8. Abyankhar,
W. Heinzer, and
P. Eakin On the uniqueness of the coefficient
ring in a polynomial ring, Jour.
Alg. 23 (1972) 310-342.

[Ba 1] H., Bass Algebraic K-theory, W. A. Benjamin,
New York, (1968).

[Ba 2} H, Bass Modules which support non singular
forms, Jour. Alg. 13 (1969) 246-252.

[Ba 3] H. Bass Projective modules over free groups
are free, Jour. Alg. 1(1964) 367~373.

{Ba 4] H. Bass K-theory and stable algebra, Publ.
IHES no. 22 (1964) 5-60.

[Ba 5] H. Bass Big projective modules are free,
I1l. Jour. Math., 7(1963) 24-31.

[Ba 6] H. Bass Unitary algebraic K-theory, these
Proceedings.

[B~H-S] H. Bass, A. Heller

and R.G. Swan The Whitehead group of a polynomial
extension, Publ. IHES no. 22 (1964)
61=75.
[B-M] H. Bass and
M.P. Murthy Grothendieck groups and Picard

groups of abelian group rings, Ann.
Math. 86 {1967) l6-73.

[B-R] J.W. Brewer and
E.A. Rutter Isomorphic polynomial rings, Arch.
Math. XXII1, (1972) 484-488.
[B-B] A. Bialynicki-
Birula Remarks on the action of an algebraic

torus on kI, Bull. Acad. Polon.
Sci. 14 (19e66) 177-181.

68



[C-L-L]

[Den]

[D-s]

[En]

[E-E1]

[E-E2]

[E-E3]

[Gera]

[G-R]

[Ger 1]

{Ger 2]

K.G. Chou, K.Y.
Lam,and E.L.Luft

R. K. Dennis

R.K. Dennis, and
M. Stein,

S. Endo

D. Eisenbud and
G. Evans

D, Eisenbud and
G.Evans

D. Eisenbud and
G. Evans

A. Geramita

A. Geramita and
L. Roberts

S. Gersten

5. Gersten

66

On free products of rings and the
coherence property, these Proceedings.

Surjective stability for Kz, {to
appear) .

The functor K,: A survey of computa-
tions and problems, these Proceedings.

Projective modules over polynomial
rings, Jour. Math. Soc. Japan 15
(1963) 339-352.

Generating modules efficiently:
theorems from algebraic K-theory,
Jour. Alg. (to appear).

Every algebraic set in n-space is
the intersection of n hypersurfaces
(to appear).

Three conjectures about modules
over polynomial rings,

Projective modules as sums of ideals,
Queen's Univ. Preprint 1969-48.

Algebraic vector bundles on projec-
tive space, Inventiones math.
10{(1970) 298-304.

Problems about higher K-functors,
these Proceedings.

The relationship between the K-theory

of Quillen and the K-~theory of
Karoubi-Villamayor, (to appear).

69



[Ger 3]

[{Ger 4]

[Ger 5]

{Hoch]

[Hor]

[Jo]

[K1]

(k2]

[K-v]

[Laz]

[L-M]

J.~P. Jouanolou

M.
Q.

D,
N.

Gersten

Gersten

Gersten

Hochster

. Horrocks

Karoubi

. Karoubi

Karoubi and
villamayor

Lazard,

Lissner and
Moore

67

Higher K-theory of rings, these
Proceedings.

Whitehead groups of free associative
algebras, Bull. Amer. Math. Soc.
71{(1965) 157-159.

On class groups of free products,
Ann Math. 87 (1968) 392-398,

Konuniqueness of coefficient rings
in polynomial rings, (to appear).

Projective modules over an extended
local ring, Proc. Land. Math. Soc.
14 (1964) 714-718.

Quelques calculs en K-theorie des
schemes, these Proceedings.

La periodicite de Bott en K-theorie
generale, Ann. Sci. Ec. Norm. Sup.
4(1971) 63-95.

Periodicte de la K-theorie hermi-
tienne. Les theories eVn et nUe,

C.R. Acad. Sci. Paris t. 273 (1971)
802-805.

K-theorie algebrique et K-therie
topologique, Math. Scand. 28 (1971)
265=307.

Autour de la platitude, Bull. Soc.
Math. de France 97(1969) 81-128.

Projective modules over certain
rings of quotients of affine rings,
Jour. Alg. 15 (1970) 72-80.

70



[Mum]

[Mur® 1}

[Mur 2]

[Mur 3}

[Mur 4]}

(M-P]

[0-8]

[Ped]

fQ 1}

[Q. 2]

[Q 3]

[Q 4}

D. Mumford

M.P. Murthy

M.P. Murthy

M.P, Murthy

M.P. Murthy

M.P. Murthy and

C. Pedrini

Ojamguren and
Sridharan,

C. Pedrini

D. Quillen

D, Quillen

D. Quillen

D. Quillen

Rational equivalence of O-cycles
on surface, Jour. Math. Kyoto
Univ. 9 (1969) 195-204.

Projective modules over a class
of polynomial rings, Math. Zeit.
88 (1965) 184-189.

Vector bundles over affine surfaces
birationally equivalent to a ruled
surface, Ann. Math. 89 (1969)
242-253.

Projective A[x]-modules, Jour. Lond.
Math. Soc. 41(1966) 453-456.

Generators for certain ideals in
regular rings of dimension three,
(197 ) 179-184.

Ky and K; of polynomial rings,
these Proceedings.

Cancellation of Azumaya algebras,
Jour. Alg. 18 (1971) 501-505.

On the Kg of certain polynomial
extensions, these Proceedings.

On the cohomology and K-theory of
the general linear group over a
finite field, Ann. Math (to appear).

Higher K-theory for categories with
exact sequences, "New developments
in topology," Oxford.

Hicher Algebraic K-theory I,
these Proceedings.

Finite generation of the groups K, for
rings of algebraic integers,
these Proceedings.

71



[Ram}

[Rog]

[Seq)

[Ser 1]

[Ser 2]

[Ser 3]

[Sesh]

[s-5]

[8im]

[Soub]

C.P. Ramanujam

P. Roguette

B. Segre

J.=P. Serre

J.=P. Serre

J.=P. Serre

C.5. Seshadri

P.K. Sharma and

J. Strooker

A, Simis

J.~P. Soublin

69

A topological Characterisation of
the affine plane as an algebraic
variety, Ann. Math. 94 (1971)
69-~88.

Some fundamental theorems on
abelian function fields, Proc.
Internat, Cong. of Math., Edinburgh
1958) .

Intersezioni complete di due
ipersuperficie algebriche in uno
spazio affine, et non estendibilita
di un theorema di Seshadri, Rev.
Roum. Math Pures et Appl. 9 (1970)
1527-1534.

Faisceaux algebraiques coherents,
Ann. Math. 61 (1955) 197-278.

Modules projectifs et espaces
fibres a fibre vectorielle, Sein
Dubreil no. 23 (1957/58).

Sur les modules projectifs, Sein
Dubreil no. 2 (1960/61).

Triviality of vector bundles over
the affine space Kz, Proc. Natl.
Acad. Sci. USA 44(1958) 456-~458.

On a question of Swan in algebraic

K-theory, (to appear).

Projective modules of certain rings
and the existence of cyclic basis,

Queens Univ. Prepring no. 1970-18.

Anneaux et modules coherents,
Jour. Alg. 15(1970) 455-472.

72



70

[stal) J. Stallings Whitehead torsion of free products,
Ann. Math 82(1965) 354-363,

[Sw 1] R.G. Swan Some relations between higher K-
functors, Jour Alg. 21(1972) 113-136.

[sw 2] R.G. Swan Vector bundles and projective modules,
Trans, Amer. Math. Soc. (105)
(1962) 264-277.

[Sw 3] R. G. Swan Algebraic K-theory, Springer Lecture
Notes 76, Berlin (1968).

[wWag] J. Wagoner Buildings, stratifications, and
higher K-theory, these Proceedings.

[Trav] Traverso Semi-normality and Picard groups,
Ann. Scuola Norm. Sup. Pisa XXIV
(1970) 585-595.

[Wald] F. Waldhausen Whitehead groups of generalized
free products, these Proceedings.

[Was] L.N. Wasserstein On the stabilisation of the general

linear group over a ring, Math USSR
Sbornik 8 (1969) No. 3, 383-400.

73



COMPARISON OF ALGEBRAIC AND TOPOLOGICAL K~THEQRY

L. Roberts

Let X Dbe a quasiprojective algebraic variety over
the complex numbers C , and let XC denote the closed
points of X , with topology induced by the usual topology
on C .(By variety over a fieldF;e mean scheme of finite
type over F ). To an algebraic vector bundle (locally
free sheaf of finite type) on X we can associate a con-

tinuous complex vector bundle on Xc . This gives a ring

homomorphism
¢x : Ka(X) + K(XC)

where K_ = denotes the Grothendieck group of algebraic
vector bundles and exact sequences while K(XC) is the
Grothendieck group of complex topological vector bundles

on X . The problem is to try to understand this homo-
morphism, with the hope that this will help in computing
either Ka(X) or K(XC) . The homomorphism ¢y has been
studied by J.P. Jouanolou in [8], [7], especially in the
cases where X is the complement of a smooth complete
intersection in Pg » or an affine or projective quadric.
It is not an isomorphism in general.

The corresponding problem with real varieties does
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not seem to have been studied as much. If X is a quasi-
projective non~-singular algebraic variety of dimension

n over the real numbers R , then the set XR of real
points is either empty or an n dimensional real manifold.

In the latter case one can define a homomorphism
¢X : Ka(X) he KO(XR) .

If X is projective this homomorphism cannot be injective

since on X there are line bundles of infinite order

(under ® ) but on Xp every line bundle is of order 2.

If X is affine, say X = Spec A , then ¢y can be

obtained as follows: restriction gives a homomorphism

A CR(XR) s Where CR = real valued continuous functions.

This gives a homomorphism Ka(X) = KO(A) - KO(CR(XR)) = KO(XR) .

Some examples are the following: If A = R[X .,Xn]/

02"
(x2+...4x2-1)  then X = S" . TFossum has proved in [3]
that ¢X is surjective. It is known that ¢X is an
isomorphism for n < 4% , but if n > & it is not known
whether ¢X is an isomorphism or not. If A = even part
of RIXy,...,X 1/(x2+...4x2-1) then xp = RP" and it is
proved in [5] that ¢y is an isomorphism for all n
except if n £ 6,7 or 8 mod 8 . If n = 6,7 or 8
¢X is also an isomorphism, but the cases n > 13 ,
n 6,7,8 are not known.

One can try complexifying the real case. For example,

if X = Spec A 1is affine, then restriction gives a homo-
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morphism A 8z C + CC(XR) where CC = complex valued
continuous functions. This gives a homomorphism

K(ABLC) + K(Xp) . If A= R[xo,...,xn]/<xg+...x;‘:-1)

this was shown to be an isomorphism in [3] and if A = even
part of R[xo,...,xn]/(xg+...+xi-1) it was shown to be an
isomorphism in [5]., However, in the first case {(Spec Ao

is of the same homotopy type as s™ and in the second

(Spec A)C is of the same homotopy type as rRP" | so

both are reduced to a special case of the problem considered
by Jouanolou.

If one is allowed to change the algebraic ring much
better results have been obtained. Again let X be an
affine variety over the reals, X = Spec A . 1In [2] it is
proved that if XR is compact and S C A 1is the
multiplicative set of all elements that vanish nowhere on
X » then the map XO(AS) > KO(XR) is a monomorphism but
not necessarily a surjection. In [8] it is proved that if
one starts with the compact real n-dimensional manifold M ,
then there exists a non-singular n-dimensional affine
variety X = Spec A such that M is isomorphic to a connected
component of Xp and the homomorphisms KO(AS) + KO0(M) and
K (A8.C) » K(M) are isomorphisms. The rings Ag are no
longer algebras of finite type over R , and these results
do not seem to help compute Ky€a) .

If the real variety X has no real points, Ka(X)
is still defined, but few examples seem to be known. One
could try extending scalars to C , as in [12], but the

2-torsion gets lost.
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One can also consider the relationship between
isomorphism classes of algebraic and topological vector
bundles. This was done for 82 in [9]. It follows easily
from {91 and [10] that the homomorphism

2

9 C{XG,X XZJ/(X§+X1*X§-1) - CC(SZ} induces a bijection

1°
on isomorphism classes of projective modules of finite
type, and from [9] that the homomorphism
R[XO,Xl,le/(Xg+X§+X§-1) - CR(SQ) induces a surjection on
isomorphism classes. It does not seem to be known if the
latter is a bijection. A similar problem for the L-holed
torus is considered in [1], but the corresponding problem for
other spaces such as s™ s n >3 does not seem to have
been considered.

In a similar vein, let T be the tangent bundle to
s . Then the maximum rank of a free direct summand of T
is known topologically, and it is shown in [4] that this
number arises algebraically, even over Z{XO,..,,anf
(X§+...+Xi—l) . Topological results are also used to

obtain non-stable algebraic results in [11], where universal

stably free projectives are discussed.
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APPLICATIONS ALGEBRIQUES DU

TORE DANS LA SPHERE ET DE_S° xsY paws gF*d

par Jean-Louis LODAY

La sphére 5" est l'ensemble des éléments x = (xo,x1,...,xn) de

Rn'H tels que ix}e = xi +x§ +eeat xi = 1. Une application algébrique de

E':PXSq dans SPTY est 1a donnée de p+q+ 1 polynémes Po'P1”"'Pp+q en
(p+1) + (q+1) variables xc’,...,xp H yo,...,yq et a coefficients réels tels
p+q
que I P~2i (%,v) = 1 dé&s que |x|=1 et |yl=1.
i=o

L'étude du cup-produit en X-théorie topologique (cf.[5]) nous
améne tout naturellement & la question suivante : existe-t-il une applica-
tion algébrique de S1 )(S1 dans 52 de degré un ?

Le but de cet article est d'étudier plus généralement l'existence

Txvoxs’

d'applications algébriques de prsq dans gP*l ou de ’I‘n=S
dans S" de degré donné.

On rappelle que les classes d'homotopie d'applications continues
d'une variété topologique orientable M de dimension n dans s? sont clas-
sifiées par leur degré k€2 (cf.[6]).

Dans le paragraphe 1 on montre que toute application algébrique de
prsq dans S,N'q pour p et ¢ impairs et de ™ dans s® pour n=2
est homotope & une application constante. Ces résultats sont des applications
de la K-théorie algébrique. Dans le paragraphe 2 on exhibe plusieurs applica-
tions algébriques de prSq dans SP*? non homotopiquement trivialesg, Ces

résultats ont été annoncés partiellement dans [4].
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. e . 1 P
1. -~ Soit X 1la variété algébrique affine de Rn+ définie par les poly-

némes P sPysecesP de R{xo,...,xn]. On note G(X) 1'anneau quotient de

k
C[xo,....xn] par l'idéal engendré par les polyndmes Po""'Pk . On dési-
gnera par C(X) 1'anneau des fonctions continues définies sur X & valeurs
dang C. L'homomorphisme d'anneaux de G(X) dans C(X) qui, & la classe

d'un polynSme Q dans G(X} fait correspondre sa fonction polyndme, sera

noté w(X) ou w s'il n'y a pas d'ambiguité.

THEOREME 1. - Toute application algébrique du tore ™ dans la sphére st

£: T —>s® (nz22)

est homotope & une application constante,

DEMONSTRATION. - Soit £ wune application algébrique de T dans 87, Elle
induit deux homomorphismes d'anneaux : l'un £, de G(s") dans G(T%) et

l'autre £ _ de c(s™) dans C(T"). Le diagramme (1) est commitatif,

w(s™)

a(s™) c(s™)
£, £t (1
G,(Tn) w(T) C(Tn)

o
a) Cas n pair (n=2p). Soit R un anneau unitaire. X (R) est le groupe

de Grothendieck de la catégorie des R-modules projectifs de type fini. On pose
~o o -3
X (R) = Coker(x°(z} —»K°(®}).

Appliquons le foncteur X° au diagramme { 1}). On obtient le diagramme (2).

’I“("‘(S?P) __@:_.m; 'f('°(52p)
a t
* *
£ £1 (2)

~0 2P =% 2P
Ka(’l’ ) —— Kt(‘l‘ )

ok 1l'on a posé 'i(';(x) = %°(G(x)) et 'ﬁ:(x) = ¥°(C(X)) pour toute variété
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algébrique X. Le groupe 'I‘C';(X) est isomorphe am groupe de Grothendieck

de la catégorie des fibrés vectoriels complexes sur l'espace topologique X.
* .

Les lemmes 2 et 3 montreront que 1'homomorphisme ft est nul, On en déduira

par le lemme 4 que le degré de £ est nul.

LEMME 2. ~ L'homomorphisme ¥ : ”Ef;(szp) -—;’T(',Z(SZP) est surjectif,

DEMONSTRATION. - Le groupe ?';(521)) est isomorphe & Z . Par conséquent il

nous suffit dlexhiber un élément de i‘;(SZP) dont l'image est un générateur

de 'ic’:(szp). Soit C, , 1l'algebre de Clifford de ¢™71 runi de la forme

quadratique xi-x-x? Fosat xi . C:m.1 est isomorphe & une sous-algébre de

l'algébre des matrices d'un certain espace vectoriel de dimension k., On

. 1
note 30,61,...,€n les images dans Cn+1 des vecteurs de base de ™', on

identifie € 1€ sveesC 3 des kxk -matrices & coefficients complexes.
Ainsi

= x €, X, +, e_x ~id
q (eoo+ toew b€ X )

11

IR

définit un projecteur (quq) dtun G(Sn) -module libre de dimension Xk .
L'image de q est un G(Sn)-—module projectif de type fini qu'on note M(q).
Le projecteur q peut aussi &tre considéré comme un endomorphisme d'un
(‘,(Sn)—module libre de dimension k., Il définit alors un C(Sn) -module pro-
jectif de type fini M'(q) image de M{q) par w(s").

Dans le cas de la sphére $° on sait (Cf. par exemple [2]) que

la classe dans ?("’(82) du projecteur

q-l ~-1+:'cO X1+1X2-l 1OX*O1X+ le_ 1 0
22 |x, - ix, -1-x 2 \lo-1]° |1 o' |4 oo 2 0 1

~ ~o, 2
est un générateur de K°(SZ). Le cup-produit d'un générateur q, de X°(5%)

2p+2

par un générateur 4, de f°(82p) est un générateur de K (S ). Le cal-

cul explicite du cup-produit par la Fformule domnée dans [5 ] théoréme 3,
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permet de montrer que si on écrit

=1 2
6y, =73 (eoxo+e1x1+e2x2-1), , XE8
et q =1 (e'x' + €!x' 4i0s + €1_x! -1) x1€52P
2p 2 oo 171 2pep 7

2

et si on identifie S f\szp avec 32p+2

alors q,w dpp {cup-produit}
s'écrit

1)

,_.1. Voot 1 [T ] H -
q2uq2?_. 5 (€o® R €2®eo x) +1®e1 x} Feeot1® 2 x2p+2

2p+2

avec xX"€S D'oti le résultat par récurrence.

REMARQUE. - R. FOSSUM a montré que w*(SZn) est aussi injectif et donc un

isomorphisme, (Cf£. [3] Proposition 3.1.).

LEMME 3. - Le groupe X (G(T")) = 'f;(Tn) est nul pour nz1,

n 2 2 2 2
DEMON . - G(T ' Ty e -
ONSTRATION G(T") est 1l'anneau C[x1,x2,...,x2n]/(x1+x2 Trees® q+% 1

. . n
Posons uy =X, . +ix,, pour k=T,...,n ; (i=/=1). G(T") est alors cano-
-1

] ,...,un,u;1]. R étant un anneau

niquement isomorphe & 1'anneau C[u1,u
noethérien régulier ?’(R[t,tql} est isomorphe & X (R} d‘'aprés un théo-
réme de Grothendieck (Cf.[1]7p.636). En appliquant n»n fois ce théoréme 2

1'anneau G(T") on en déduit :

'i;(rn) - Fo(C) -l 0

LEMME 4. - Soit X une variété topologique de dimension 2p et f£: X ———>S2

une application continue. Si 1'homomorphisme £¥: io(SZP) > ’fo(X) est nul,

alors l'application £ est de degré zéro,

DEMONSTRATION, ~ Dans le diagramme commutatif (3) Ch désigne le caractére

de Chern :

82

)

P



2p .
Z = KO(SZP) Ch{s™") Hpalr(SEP,‘D} ~q

£* H(¢£) (3)

EO(X) ChiX Epalr(X,Q)

L *homomorphisme Ch(szp) induit l'inclusion naturelle de Z dans Q et
H(f) est la multiplication par le degré de f. L'homomorphisme £* étant mul
par hypothése, on en déduit que le degré de f est zéro.

Terminons la démonstration du cas a) du théoréme 1. Dans le dia-
gramme (2) le groupe 'f;(TEP) est nul (Lemme 3), et 1'homomorphisme w*(szp)
est surjectif (Lemme 2), donc ft:f* est nul. Le degré de f est alors nul
{Lemme 4) et par le théoréme de Hopf £ est homotope 2 une application cons-
tante,

b) Cas n impair : On applique le foncteur K, de Bass {ce.[1]}

au diagramme (1). On obtient le diagramme commutatif (4) :
(%) ————s (Y
£ £ (4)
(%) ———— ()

ol 1'on a posé K:(X) = K1(G(X)} et K:(x} = K1(C(X)) .
~1 P .
Notons X (X) = [X,6L(C)] 1le groupe de X-théorie topologique.
On a une surjection naturelle de K: (X) dans £ (X) ; d'ot le nouveau

diagramme commutatif (5) :

-7 w* -1/.0
k() ————— x(sY)
* *
fa £ (5)

(") ———— )
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Les lemmes 5 et 6 montreront que 1'homomorphisme f* est nul. On en dédui-

ra par le lemme 7 que le degré de f est zéro.

LEMME 5. - L'homomorphisme o : K:(Sn) — K—1(Sn) est surjectif,

DEMONSTRATION. - Si n est pair X (8%)=0. Si n est impair X '(s%)
est isomorphe & Z. Par conséquent il nous suffit d'exhiber un élément de
K: (Sn) dont l'image par o® soit un générateur de K~1(Sn). soit ¢

2

l'algébre de Clifford de ¢" muni de la forme quadratique —-xf -xg... - X .

c? est isomorphe & une sous-algébre de End(Ck). Notons e TEELN les

1
images dans ¢® des vecteurs de base de C. On identifie EEERLN a des
matrices a coefficients complexes.

Notons o 1'automorphisme d'un G(Sn)—module libre de dimension

k défini par

. n
0. = 1id. X+ €. X, Fee.+ ©_X_, X €8
X o} 11 nn

Cet automorphisme définit un élément de K;1(Sn). On peut aussi

le considérer comme une application continue :

a: st —>aL(c)

X > g
X

La classe d'homotopie de « est un élément [o] de [Sn,GL(C)]

i}

K_1(Sn). On montre que [a@] engendre K_1(Sn) comme dans le lemme 2 .

LEMME 6. - L'homomorphisme £ : K_1(Sn) ——>K_1(Tn) induit par 1'applica-

tion algébrique f£: ™ 5% (nz= 2) est nul.

DEMONSTRATION. - Le groupe K:(Tn) est isomorphe & K;1(Tn—1)®'f;(lp_1)@K_1(S1)
C'est une conséquence immédiate du théoréme suivant 4l & Bass, Heller et
Swan : pour tout anneau régulier A, K1(A|:t,t-1]) est isomorphe &

K1(A) ® X°(A). De méme en K - théorie topologique le groupe ! (T") est
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. s - - ~ -1 1,1
isomorphe & X 1(Tn 1) e (M ye ¥ (s').
On va montrer que £* est mul en prouvant la nullité des trois

homomorphismes
- ~ - - - - -1 -1 0
st — ), s —= @), e s,

i}  L'homomorphisme K: (Tn) —>K_1(Tn) est la somme directe des

homomorphismes

- — - - i~ - ~ - - 1
K;(Tn Y s Ty, K;(Tn e ® ™Y et z—>1 5"~z

(cf£. Bass [1]p.750 et 751). L'homomorphisme composé
~1,en, W 1.0, £*¥ _-1,..n ~zo . el
Ka(S)-——>K(S)--—>K(T)—>>K(T )

se factorise & travers f;(Tn-1). Or on a vu que ce groupe est nul (lemme 3),

n-‘l)

¥ . , ~1 n o FPRs
donc 1'homomorphisme composé Ka (87) ——> E°(T est nul. D'ou

K_T(Sn) —-.—>’I~('°(Tn“1) est nul puisque o* est surjectif (lemme 5).

ii) L’homomorphisme composé K_T(Sn) — K_1(Tn) —> K—1(Tn_1) est nul

car il est induit par l'application composée Tn_‘]‘-%’ Tn--->sn, qui est

IS

homotope & une application constante.

iii} L'homomorphisme composé K-1(Sn) e (Th) ~m2> K—1(S1) est nul
car il est induit par l'application composée S‘]C—-éTn __1’;‘_>sn qui est homo-

topiquement triviale si n=22 .

Le théoréme 1 pour n impair résulte alors du lemme suivant :

LEMME 7. - Soit f une application contimue T° —>8" (n=2p+1) telle que

1 'homomorphisme induit K-i(sn) ——->K-1(Tn) soit nul, alors £ est homotope

a4 une application constante.

DEMONSTRATION. -~ Comme dans le lemme 4 on compare cet homomorphisme 2 celui
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que f induit en cohomologie rationnelle. Ce qui donne le diagramme commuta-—

tif (6)

Ch impair

Z =~ K_1(Sn) 3y | (Sn;“)) =Q

£* H(E) (6)
K-? (Tn) Ch : Himpair(Tn,Q)

La fléche horizontale supérieure induit 1l'inclusion naturelle de
Z dans Q, donc 1l'homomorphisme H(f) induit par £ en cohomologie ra-
tionelle est nul. En dimension n c¢et homomorphisme est la multiplication
par le degré de £ ; on a donc deg(f)=0 .

Le théoréme 1 peut se généraliser partiellement :

THEOREME 8, - Soit X une variété algébrique affine sans singularités de Rk

compacte et orientable en tant que variété topologique. Si la dimension de

X est impaire (dim X = 2n-1), alors toute application algébrique

1
£:18 XX w—m 821’1 est homotope 2 une application constante.

DEMONSTRATION. - On considére le diagramme commutatif (7)
~oa2N ~o /. 2N
B
k2 (s77) Ko (s™)

* *
fa ft (7)

oo, 1 ~o,
[
Ka(S X X) Kt(S xX)

Le groupe ?;(51 XX) est isomorphe 2 %‘2(81/\ X)® 'I‘('E(X) . Par un théoréme de
Grothendieck déja cité ([11]p.636) T(:(S1 X X) est isomorphe a 'i(';(x) et
1 *homomorphisme (n“'(s1 XX) est simplement 0 & w*(X).

Le diagramme (7) se décompose en les diagrammes commutatifs (8)

et (9).
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T(:(SZn) —_— 'k':(szn) 'i:(SZn) —_s K:2(521'1)
(8) (9)
LEx ——® 0o —— % (s'Ax)

i) L'homomorphisme 'K‘g(szn) —> 'f:(x) est nul car il est induit par

l'application homotopiquement triviale

£
X —>38' xx —»gé?

ii) L'homomorphisme 'k-:(SZn) — 'f:(S1A X) est nul car sa composition
avec l'homomorphisme surjectif w*(Szn) est nulle,
Donc ~ ~
f*t‘ : K;(s?‘“) _— K:(S1X X)

est nul et, par le lemme 4, f est de degré zéro.

THEOREME 9. - 5i p et q sont impairs toute application algébrique de

SPXSq dans sP*¢ est homotope & une application constante.

DEMONSTRATION.~ Elle est du méme type que celle du théoréme 1 cas a).
Soit f: SPXSq —> 57" e application algébrique. Le diagramme (10) est

commutatif :

%o P+Q
~ w (S ~
K;(Sp+q) (s K:(Sp+q)
* *
£ £ (10)

'f;(sp x8Y) — 5 'f:(sp xs9)

Supposons que 'I\C';(prsq) =0, On en déduit alors que 1'homomor-

(Sp+q) (Sp+q)

- * .
phisme fto w¥* est nul, Comme p+g est pair o est sur-

jectif (Lemme 2) et donc f::f:(sp+q) --->Y<':(spxsq) est nul. Du lemme 4
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on déduit que f est de degré zéro., Il nous reste a démontrer le lemme

suivant :

LEMME 10. - Le groupe i;(spxsq) est nul lorsque p et q sont impairs.

DEMONSTRATION. - Ce lemme est un corollaire du résultat suivant dd a
Jouanolou [3]: soit Q@ une quadrique lisse sur € (ici Q=5%) et X une

variété quasi-projective lisse sur € (ici X=Sp) telle que
w*(X) :Tc’;(x) ——}'f;(x)

soit un isomorphisme.

Alors la suite
0 w-> 'I?;(XXQ) — T(’Z(XXQ) — KIC'W(X) > 0

est exacte, w*(Sq) est un isomorphisme par la proposition 3.1 de [3].
Dans notre cas particulier la fléche 'IZ;(XXQ) -—‘“»'KET(X) est un iso-

morphisme de Z dans 2Z, d'ol le résultat énoncé.

2. - Applications algébriques de prsq dans Sp+q nen homotopiquement

triviales.

DEFINITION., - On appelle multiplication orthogonale toute application bi-

linéaire F:kaRz —> K" telle que |F(x,y)i = \xllyl .

+...+x2—1 =0 et
1 n

Considérons la sphére st d*équation x§+x2
de point-base {*} = (1,04+..,0). Si on pose x(; = ‘l-—xO son équation

devient x'2+ x2+...+x2-2x’ =0,
o 1 n [¢]

LEMME 11. - Soit F:RPY) %« R*—> R une multiplication orthogonale,

l'application algébrique f£: sPxs? wos sP*Y gerinie par :
(%,7) »-> 2
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1
] — - ¥ t
2 =%
1 .
z\j =Exiyc’) J=TyeeeyP o
1 .
zp+i=-2-F.x(x(;,xj,...,xp;y1,...,yq) i=1yees,9

est de degré un.

DEMONSTRATION. - L'application £ envoie sPvs? sur 1e point~base de
Sp+q . De plus par restriction £ définit un homéomorphisme de
sPx 89« sPvs? sur sP*I_{x}, car 1'application bilinéaire F est

non dégénérée, Un point quelconque de sPrd_ {*} a donc un seul antécé-

dent ; on en conclut que f est une application de degré un.

THEOREME 12, - Il existe une application algébrique de degré un de prsq

gP*d

dans pour tout couple d'entiers (p,q) tels que

q=2a.16b.(2c+1) 0<as3, b20, <¢=20

ps2%i8p-1

DEMONSTRATION. -~ Gréce au lemme précédent il nous suffit de montrer qu'il
existe une multiplication orthogonale de RP+1 xRY dans RY. on sait
qu'il en existe pour les couples d'entiers (p,q) satisfaisant aux condi-

tions du théoréme (Cf. par exemple [2 ] p.156).

Exemple : La multiplication dang C définit une forme de Hopf de

—_— R2 d'oll une application algébrique de S1 xS»2 dans 53 , de

degré un :

z, =—;~ (1+xo+yo—xoyo)
Zy =5 % (1-7,)

z, =-21- ((1-x )y, =%, 5,)
by = 7;.' Gegyge (=x)y,) o

89
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COROLLAIRE 13. - Si en plus des conditions du théoréme précédent p+q est

impair il existe une application algébrique de sPxs? gans sP* ge degré

quelconque.,

DEMONSTRATION .- BEtant donnée une application algébrique de degré un de
prsq dans Sp+q, il suffit de la composer avec une application algébrique
P+q p+q X . . P
de § dans S de degré n pour obtenir une application algébrique de

P q p+q . ~ . . .
5" xS dang S de degré n. Or Wood a montré que si k est impair
toute classe d'homotopie d'applications continues de Sk dans lui-méme peut

&tre représentée par une application algébrique (Cf. {71 ).

THEOREME 14. - 81 p (ou q) est pair, il existe une application de degré

deux de SPXSq dans SNci .

DEMONSTRATION. - On considére 1'application algébrique f£: 8P xs% —s gP*d

définie par f(xc’,...,xp ; yo,...,yq) = (xoyo, %, yo""'xpyo’y’l””’yq)'

L'image réciproque d'un point N de gh*d est, en général, composée de
deux points M et M', Il suffit donc (Confer par exemple Milnor [61]) de
regarder si f conserve ou non l'orientation en M et en M'. Considérons

le diagramme suivant :

sPys? —— £ 5 gP¥

N

sPxs?

ou S(XO'-t'rxp ; yc’---qu) = ('xor---y'xpr “"yov +Y1,---,+Yq)oCe diagramme
est commutatif, L'application s échange les points M et M', et son

(-1)%*

degré est . Donc si q est pair £ conserve l'orientation en M
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et en M'. Le degré de f est donc 1+1 =2,

Ces deux théorémes d'existence et le théoréme 1 ne permettent pas
de répondre dans tous les cag & la question posée dans 1l'introduction.
Notamment on ne sait pas s'il existe une application algébrique de 82 x52

dans 84 de degré un.

BIBLTOGRAFHIE
[1] H. mass Algebraic K-theory, Benjamin, 1968.
[2] ©D. HUSEMOLLER Fibre bundles, Mac Graw Hill, 1966.
[3] J.P. JOUANOLOU Comparaison des K-théories algébrique et topolo-

gique de quelquesvariétés algébriques, Comptes
Rendus & 1l'Académie des Sciences, Paris 272, 1373-
1375, 1971.

[4] J.L. LoDAY Applications algébriques du tore dans la sphére,
Comptes Rendus a l'Académie des Sciences, Paris,
272, 578-581, 1971,

[5) J.L. LODAY Structures multiplicatives en K-théorie, Comptes
Rendus a 1'Académie des Sciences, Paris, 274,
884-887,1972.

[6] J.Ww. MILNOR Topology from the differential view-point,
’ University Press of Virginia, 1965.

(7] J. woop Polynomial maps from spheres to spheres, Inven-
tiores Mathematicae, 5, 163-168,1968.

Nov. 1972

91



1
On the K of certain polynomial extensions *

by Claudio Pedrini

Introduction
It is a well known result of Grothendieck that,if A is a left regular ring and T a
finetely generated free abelian monoid,then the inclusion K (A) —> K (A[T]) is an
isomorphisme

In this paper we give sufficient conditions for the isomorphism above for certain
classes of non-regular commutative rings: in §2 we consider the case of a ring A
which is gotten from a regular ring B by glueing two distinct prime ideals Py and P,
(for the definition see §1) and prove that NKO(A) ~ PJKl (B/plﬂ p2) (theorem 9).This
implies that,if V is an affine non-singular variety and W the variety obtained from
V by glueing together two irreducible non-singular subvarieties, which meet transver
sally at every point, then K_(A) KO(A[T]), where A = k[W].(Proposition 2).
I §3 we state an analogous result in the case A is gotten from a regular ring B by
glueing one prime to itself via an automorphism (theorem 10): as a consequence ofthis
theorem (Corollary 3) we see that if V is an affine non singular variety and W the
variety obtained from V by glueing a non-singular curve to itself then KO(A)EKO(ALT])-
§4 contains some results which have been obtained jointly with M.Pavaman Murthy.The
main result of this section is Corollary 5: if A is a commutative ring containing an

algebraically closed field k and K_(A)

i

Ko(k(t)GQkA) then K (&) = K _(A[t]). Using
this we show that, if A = k[x,y,z}, 2 = xy, then K _(4) > KO(A{TJ)SJZ.

An interesting open problem is to find necessary and sufficient conditions for
the isomorphism K (A) = KO(A{T})and relate these conditions,when A is the coordina-
te ring of an affine va riety V, with the singularities of V. The correspon=~
ding problem of the isomorphisms PicA = PicA[T] and Pica x PicA[T,T—l] has been
considered by several authors : we record here some of the known results in this
direction. C.Traverso (see[11]) has given a definition of seminormal rings (see §1
for more details) and has shown that a ring is seminormal iff PicA = PicA[Tl. In
case A satisfies (82) then it is seminormal iff %/; = b where b is the conductor
from the integral closure A to A (see 3 ,Prop.7.12). Salmon (see [10]) has proved
that the coordinate ring of a simple algebraic plane curve C is seminormal iff C has

at most nodes. His result can be extended to curves in 3-space:such a curve is semi-

(*) This research was supported by C.N.R.
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normal iff it has at most nodes or triple points with linearly indipendent tangents.
No general result of this to type is known in higher dimension; Bombieri fmpublished)
has proved that a surface in IP3,which has only ordinary singularities (i.e. it is a
generic projection of a non singular surface in higher projective space) is seminormal.
A different geometric characterization of '"weakly normal" rings (a class containing
the class of seminormal rings and equal to the latter when the base field has charac-
teristic o) has been given by Andreotti-Bombieri (see [1]).A stronger condition than
seminormality (but,in general,not equivalent to normality) is the isomorphism PicA =

PicA ET,T-l] « Bass=Murthy (see{:3] sthe8.1) proved necessary and sufficient condi-
tions for the isomorphism above,when dimA = 1. If A is the coordinate ring of an
irreducible curve C over on algebraically closed field then Pic A 2Pic A{T,T-l] iff
C is non singular (see[7],th.1). This theorem does not extend to higher dimensional
varieties; in §1 (theorems 6 and 8) we recall some results on the isomorphism Pic A =

Pic A{T,T-ll,when A is obtained from a normal ring by glueing one or two primese.

My thanks are due to H.Bass and M.Pavaman Murthy for many helpful suggestions.

1+ In this section we recall some definitions and results which will be used later on.
Our notations will be consistent with those in[2].All rings will always be commutative
with identity,and all modules unitary.

Let A be a commutative ring, E(A) the category of finetely generated projective
A-modules with“product’ @ (in the sense of 2 ,chap.VII),Pic A the category of finetely
generated projective modules of rank 1, with product ®A: we will always denote
Ki(g(A))= KA i= 0,1 and Ko(fi_g_ A) = Pic A. By KZA we will denote the Milnor's group
iees the kernel of the homomorphism $t(A) — GL(A), where St(A) is the Steinberg
group (cfr.[5],§5).

Let t be an indeterminate over A,A[t] the polynomial ring.The augmentation A{f~>A
is a left inverse for the inclusion ACA[t]. Therefore if F:{rings)—>(abelian groups)
is a functor we have :

F(Aft]) = F(A) ® Ker (F(A[t]) — F(A))
We will denote by NF  the following functor.:

NF(A) = Ker (F(Alt]) —> F(a))
so that we have

F(A[t]) = F(A) © NFA
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T will always denote a finetely generated free abelian monoid,A[Tﬂthe polynomial
-1
ring and AlT,T Jthe group ring AG, where G is the free abelian group on the genera-~

tors of Te.

Theorem 1 : Let

—

Now we state a result of Milnor on cartesian squares:
—
f

A
A
2 N

be a cartesian square of ring homomorphismss. Then : a) if f1 or fz is surjective there

is the following exact Mayer-Vietoris sequence

> K (A - nH = - > K A
KA (A @K (A) K (A1) KA DK (4) S K, (8) o

b) if all the homomorphisms are surjective the exact sequence above can be extended

to the following :

—> K _(A &K > Ay K A —> A > L. K _A' .
Kph KA SR (AR (MDA K (A) §K (A) J

Moreover in case a) we ha¥e an exact sequence

- -> 1y > - —> NK_A!
MK A NR (A) @ NK (4,) MK, (A7) MK A = MK (A) DMK, () JA

and in case b)e
NK_A —>NK_(A NK_ (A _)—> 1y > NK (A) > NK (A) ®NK (A)) = «eo> NK A'
2 2( 1) ® 2( 2) NK2(A ) 1( ) 1( 1) 1( 2) e
Proof :The first part of the theorem is proved in[jlpp.ZS and 55: for the last part
note that, if t is an indeterminate,then the diagram

Alt]—> Al[t]
£ 1 [tl

Azfﬂ'w arle]

is again a cartesian square. Therefore we have an epimorphism of exact Mayer-Vietoris
sequences

K1<Afc1)—> K, (a,(c]) @K (a,kD K (arle]) 2 K (AL]D) ->K°<A1€c]) O (ALeD —K (A'le])

! i Lo

> —> :
Kl(A) Kl(Al) ® K_i(A) *ﬁKl(A’)'?KO(A) -?KD(AI) @KO(Az) K, (A")

£
where the vertical arrowsare induced by the argumentation Aft] —> A. Since ¢ i=id.,
where i= A% A[t],all the vertical arrows split and we get an exact sequence of

kernels,i.e«0f the groups NKi. In case b) both the Mayer=Vietoris sequences can be

extended to the groups K2 and so does the sequence of kernels. qeeede
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The following are known results on the vanishing of the groups NK, .
i

Proposition 1 (see[a],Corollary 7.3): Let A be a ring and T a finetely generated

free abelian monoids. Then the following conditions are equivalent,for i = 0,1 3

(a) MK, A =0
(b) K, (8) = K, (alTl)
(c) Ki(A) = Ki(A[X]) where X is an indeterminate over A.
The next is a well known result of Grothendieck for i = 0, while the case i = 1 is

due to Bass=Heller-Swan :

Theorem 2:(see[2],4.3 and 5.4) Let A be regular: then NKiA =0 for i = 0,1 »

Theorem 2 can be extended to KZ’ thanks to a recent result of D.Quillen (actually
Quillen's result is valid for all his higher Ki's) :

Theorem 3 : ([9]): Let A be regular and T a finetely genmerated free abelian monoid .

Then KZ(A): KZ(A[T]_).
The following definition of seminormality and the characterization given in theorem 4,
are due to Traverso ([11]).
Let A ¢ B be rings such that B is integral over A. We define the seminormalization
of Ain B to be the following ring :
+ .
B A= xeB/xeAp+ Rad(Bp), A4 p:’SpecA}
(where Rad means the Jacobson radical). If A = BA, A is said to be seminormal in Bj
if B coincideswith the integral closure A of A in its total quotient ring and A = BA,
then A is said to be seminormal.

Theorem & : ([11],3+6) : Let A be a reduced noetherian ring such that A is finite

over A. Then the canonical homomorphism PicA —> PicA[T| is an isomorphism if and

only if A is seminormal.

Now we recall (see[S]) how given a ring B and two prime ideals Pl,P2 we can define

a ring A in such a way that the conductor from B to A is pln p2,B is integral over A
and A is seminormal in B.

Let B be a ring p P, two digtinct primes of B,y :B/pL - B/p2 an isomorphism

2
such that P (p1+p2/p1) = (p1+ pz,'pz). Then \1) induces an automorphism
\F :B/p1+p2(——> B/p1+p2- Let A be the ring

A ={xeB/x(p,) = Y (x(p,))
where x(pi) in the image of x in B/pi (i=1,2)+ We say that A is gotten from B by
gluenig p1 and p2, E‘P .

Theorem 5 : ([8],Teorema 1): Let B be a noetherian ring and A the ring gotten from
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B by glueing twodistinct prime ideals pl,p2 via an is isomorphism \13 such that x{:

the identitye Then :

a) B is integral over A

b) B is finite over A
¢) A is noetherian

d) A is seminormal in B

e) The inclusion A/(plr\ p2) - B/pi is an isomorphism (i=1,2)

Moreover if B is integrally closed and p, is of height » 1 (i=1,2) then B coincides
1

with the integral closure of A.

The theorem above shows that, given an affine normal variety V and two irreducible
subvarieties Vl and V2 of codimension ) 1, isomorphic under an isomorphsm \F which

induces the identity on V_n Vz, we can glue Vl and V2 together and get a variety W

1
whose normalization is V « W is always seminormal, hence PicA = PicA[T] if A is the
coordinate ring of W. The following theorem gives a necessary and sufficient condi-

-1
tion for the isomorphism PicAx Pica[T,T '] .

Theorem 6 :([8],Teorema 6): Let B be a normal ring,and A the ring gotten from B by

gluenig p1 and pz via on isomorphism ‘P such that L{) is the identity. Then the follo-

wing conditions are equivalents

(i) PicA = pica{T,T™})
(ii) p1+ P, # B
On analogous construction can be given in the case of a prime p and an automorphism
of BIp tmore precisely if B is a ring, p a prime ideal of B, \P an automorphism of
B|p we define
a={beB/ P(® =5 J

to be the ring gotten from B by glueing p via \f .

We say that tf) is locallz finite if,for every x«B/p, there exists a positive
integer n(x) such that \P ) (x) = x »
Then we have the following result :

Theorem 7. ({8},prop.9) : Let B be a noetherian reduced ring, p a prime ideal of B

of height 1,\F a locally finite automorphism of B[p « Let A be the ring gotten from

B by glueing p. Then

a) B is integral over A

b) A is seminormal in B

Moreover if B is integrally closed then B coincideswith the integral closure of A.
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Theorem 8. ((8],Teorema 7): Let k be a field, B a finitely generated normal kealgebra,

p a prime ideal of height 1, \F a locally finite k~automorphism of ij.

Let A be the ring gotten from B by glueing p. Then if B/p is normal we have

Pica = Pica[T,T ']

2. In this section we give sufficient conditions for NK_A = O in the case A is gotten

from a regular domain B by glueing two distinct primes pl,pz.

Theorem 9: Let B be a noetherian regular ring and A the ring gotten from B by glucing

two distinct primes Py and p2 via an isomorphism\.f) such that “P is the identitye.

Then there is a canonical isomorphism :

NK 4 = NKi(B!pln pz)
Proof : By theorem 5,B is integral and finite over A and the ideal b = pl-n P, is the
conductore. Therefore the following diagram
s n
l
AJ;b —> B|b
is a cartesian square and so we get an exact sequence (theorem 1

NK A = NKI(B) ® NKl(AIb)—> NKl(B,'b)—>NK°(A>~>NK°(B) ® NK,(4]b) —> NK_(B]b)

Since B is regular we have (cfr.the2): NK B = NKIB

and B]pi is regular. This implies: NK_(A[b)= NKl(A!b)

0. By theorem 50,e) A,!b:B] Pi

O.

So we get
MK (B[b) = NK,(A)
where the isomorphism is induced by the connecting homomorphism :
Kl(Blb[T_]) —> K (A[T]) of the Mayer-Vietoris sequence.

qseede

Corollary 1 : Under the same bypothesis of theorem 9,assume either p1+p2= B or

B/(p1+ pz) is regular. Then NK (A) = 0, i.e. K (&)=~ K (A[T])

Proof : If p1+ P, B, then B‘(plf\ p2) X B{p1 & B]pz « Since B/Pi is regular (i=1,2),
=0 . + =0 .
NKl(B/Pi) 0 « Hence N1<1(B/p1 p2) 0
By theorem 9 we deduce NK (A) =0 .
Now assume p

+ P, # B and B/p1+ P, regular. In the cartesian square:

B/(pln p,) —>3Bfp,

1

—_—
B/p2 B/pl-i-p2

all the homomorphisms are surjective. There is the following exact sequenceftheorem 1)
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had 1 > > ~“*NK, (B &
NKz(B/plnpz) NKZ(B/pl) @NKZ(prz} K, (B/p ypy) NKi(B/P{‘PZ) 1( /Pl) NKI(BIPZ)
Since B/Pi is regular NKl(B/pi)= 0 (i=1,2). Moreover the regularity of B/Pi and

B/pl+p implies (see theorem 3).

2
B = NK_(B/p_) = NK_(B/p +p ) = O
NK,(B/p ) ,(B/p,) ,(B/P Fp)
Therefore the exact sequence above yields
NK, (B =0
l(fplnpz)
From theorem 9 we get NK (4) =0 .
qeesde

The following proposition gives a geometric application of corollary 1.

Proposition 2 : Let V be an irreducible affine non singular variety, V1 and V2 two

distinct irreducible non singular sub-varieties of V such that there exists an iso-

morphism ¢ between Vl and V2 which induces the identity on Vln VZ. Suppose either

V = v
Vinvs eV,

coordinate ring of the variety W obtained by gluenig V1 and V2 via »f swe have

and V2 meet transversally atevery point of Vln V2. Then if A is the

K (A[T]) = K (4)
Proof: Let B = k[ V] be the coordinate ring of V, pl=3(V1),Pzz 3(\1’2). Then B,B/pl
and B/p2 are all regular. By theorem 9 :
A) = NK (B
NK, (A) (Blpnp,)
IEV.NnV_ =¢ then p

12 1

if Vlr\ V2 # @ and Vl’VZ meet transversally at every point of Vlr\ V2

every maximal ideal p of B containing Py and P, the local ring (B/prlﬁ-ijz)P=B§/(pl+p2)Bp

+ P, = B ,hence, by corollary 1, NK (A) = O.

s then for

is regular. Hence pr1+ P, is regular and by corollary 1, NK (&) =0 . Gaeede
Examples ¢ 1) Let k be a field, V the affine plane over k,Vl the X-axis and \l'2 the
Y-axise Define the isomorphism kP:V1—> V2 by sending (X,0) into (0,Y)s Then the
_ variety W obtained by glueing Vl and V2 ig the following surface :
Y3 + 22 - XY¥YZ =20
The singular locus of W in the X-axis, i.e. the intersection with the plane Y = 0.
The coordinate ring of W is
A= k[X,Y,Z]/(YB'*'ZZ-XYZ) = k{x,v,2] = k{u + v, uv, uzvj
where u,v are indeterminates over ke We claim that
K (&)= K (AT )=Z
By proposition 2 it is enough to show that KO(A)’—*Z « Since V is the normalization

of W (cfrs the5 )we have A = k[u,v]}and the ideal b = (uv,uzv)A = (uv)A is the con~

ductore. In the exact Mayer-Vietoris sequence:
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KA =K (4) @K (a/b) K, (B/b)=>K 8 =K (&) ®K,(a/b) —>K (A/b)
we have:
K, (&) =Z , K (A/b) =Z
K, (&/b) =K (k[u,v]/(uv)) =7 + Pic(&/b) =4
K (@) =K (klu,v]) =K (k) = K*
K, (4/b) = K
Now we compute Kl(K/b) = Kl(k[u,v]/(uv)) « From the cartesian square of surjective
homoftorphi sms
klu,v1/(uv) — k[u]
l
k[v] - k
we deduce the following exact sequence :
Kz(k[u,v]/(uv))-r Kz(k[uﬂ B Kz(k[v])%xz(k)a Kl(k[u,v]/(uv)‘ﬂ(fk[u]) @Kl(k[vl > Kl(k)

Since k is regular,by theorem 31K2(k'{u] )= Kz(k[v} )= Kz(k) « The exact sequence
above yields

0 ‘éKl(k[u,vl/(uv)) D k* @& k¥ ~rk¥ >0

Therefore Kl(k[u,\ﬂ /(uv))= k*, and the Mayer-Vietoris sequence becomes

K (8 I @ kv ~ex K (8) >Z 6L > 1

From this we get KO(A)ZZ .

In the case k is algebraically closed it is actually possible to show that every
projective A-module is free: this follows from[6]th.3s1 and from the fact that
PicA = 0.

2) The following example shows that proposition 2 fails if Vl and V2 don't meet
transversally. Let k be a field of characteristic # 2, B = k[X,Y],pf(Y-XZ),P/2=(Y)-
Define the isomorphism \F: Blp1 —'7B/p2 by \P(x)= X, ‘f(y) =0 . (learly ‘5 is the
identity on B/p + p2 k]_X Y]/(¥,X")s The ring gotten from B by gluenig P, and p, via
\F is A = k[X, Y(X -Y) Y (X -Y)j We want to compute NK (pr op, } and show it does
not vanishs this will imply,by theorem 9, NK A # 0 .
NKZ(B/plnp‘z)ﬁNKzﬁﬁ'p’l) 63NKZ(B/pz)-‘?NKZ(,B/p1+p2)—‘>NK1(B/p1n‘p2)—>NK1(B/p1) ] NKl(B/pz)
B/pi is regular (i=1,2),hence NKl(B/bi)= NKZ(B/p'i)= 0 (see the3). Therefore
NKl(B/(pln Pz))?—’NKz(B/pl'*‘ pz)- Now we compute NKz(B/p‘1+ pz) : we have B/(pl'f‘pz):
k[X}/(Xz) = k[{¢],with 22=0. By a result of Van der Kallen (see[12]),for any com~
mutative ring R, such that 1/2tR,there is a canonical isomorphism:

K &LeD) = K (R) @Ql
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Ql -
where R/2 denotes the module of differentials of A,as a Z ~algebra.
Therefore we have, since Kz(k) ~ KZ(kET])(see the3) :
. 1
K (kitl)=K_(k @Q
2( eh 2( ) /2

- r 1 1
K (efe){Th = k_(k[1]) &Sl ~x ) ol
2( eth z(k{ he lrl gy 2( ) ktﬂ/z
From the isomorphisms above we get:
- 1
k = -
MK (k1) thﬂ(k
Ot : ; . T .

where k(Yk is the module of differentials of kl_T] as a k~algebra, ie.e. the free
abelian group on dtl"”’dtn’ if T is generated by tl""’tn'

In conclusion
1

K, (A[T]) = K (&) QQk[T]/k

We can actually compute K (A) and show :
; 1
K, () = 7. an/Z .

To do this observe that B = k[X,Y]is the integral closure of A, b = plr\ p2 the
conductor and A/b = k[X], B/b = k[X,Y}/(Y (XZ-Y)).

Hence PicB= Pic(A/b) = 0,Pic{Bfb)=k (as an additive group)and U(A[b)= U(B/b)= k*.
These equalities imply PicA = O. Moreover we have: K, (B)= K (a/b) =Z s
Kl(B)z k* and Kl(A/b) = k¥, Write

K (= H (&) 8K (A)=Z &K (a)
where 'f(o(A) is the kernmel of the rank (see[2]p«459). Then we have the following
commutative diagram with exact rows and columns (see(2],(5.12) :
O O
0 — SKl(B/b) — 8K (A) />0
0 — KI(B/b) —> K (&) —M*> 0
k* _— 0 —> 0
ol
So we are left prove SKl(B/b):-_ kg In the Mayer~Vietoris sequence:
K(B p,.)* K(B @K (B K + > e ;'8 p.)—
£B[pop, )™ K(B[p ) @K, (B/p,)>K(B[p +p )FK (B[P aP)) K(Blp ) &K (B[p))
YK _(Bfp,+ —> ...
((B/pFp)
we have 3

K (Bfp.) = K, (B[p,)= K (k) ; K, (Bfp+p,)

. ot
Kz(kC&]) = Kz(k) + k/z

k¥ @k »

Kl(B/pl) = Kl(B/p2)= K ; KI(B/p1+ pz) Kl(k[ij)

Hence we get the isomorphism
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1
K (B[b) = k¥ @ Q kj2

which implies,stnce U(B/b) = k¥, SK (B/b)= ..Qi/
z

3¢ In this section we compute NK (A) in the case A is gotten from a regular domain
B byglieing a non-zero prime ideal p wvia an automorphism \{J of B/p.

We will always assume \f is locally finite so that B is integral over A and A is
seminormal in B (cfr. the7)

Theorem 10 : Let B be a noetherian regular ring ,p an non-zero prime ideal of B

and \1) a locally finite automorphism of Bfp « Assume B/p is regular. Then we have

a canonical isomorphism s

NK A = NK {(ap)

vwhere A is the ring gotten from B by glueing p via Y .

Proof: Since p is the conductor from B to A we have the following cartesian square:
A —» B
]
Alp — Bfp
and so we get an exact sequence {theorem 1)
NK A—7NK, (B) @ NKl(A/p)'—)NKl(B/p)ﬁNKOA—’NKOB ® NK_(A/p) —> NK_(B/p)
Since B and Bfp are regular, NKi(B)= NKi(B/p) =0, 1i=0,1. Therefore the exact
sequence above yields NK A = NK_(4/p)
qeeede
Remark : Under the assumptions of theorem 10,A[/p is not necessarly regular.
Let B = k[X,Y,Z], p = (2), P k[X,¥]? k(X,¥] defined by PEO= =X, P0)= -Y.
Then A = k[Xz,Yz,X,Y,Z,XZ,YZ], Alp= k[Xz,Yz,XY]: therefore Afp is not regular.
Now we want to apply theorem 9 in the case p has codimension 1. To do this we
need the following lemma :

Lemma 1 ¢ Let R be an integral domain, L its field of fractions, R the integral

closure of R in L + Let G be a locally finite group of operators on R and let

S=Rc=txeR/g(x) =x , VgeG}s « Then
5=®°

where S is the integral closure of § in its field of fractiomse. In particular, if

R is normal, then S is also normal

G -
Proof: Let K be the field of fractions of § : then G acts on L and L = K (cfre L‘\‘],

- G = =G ,
ps34)e Let x e¢K be integral over S: then x €K n R = (L) N R = (R) . Conversely, if
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X é(ﬁ)c then x is integral over R : since R is integral over § (cfre[41,pe33), x is
integral over S and xeLG= Ko Therefore x €5 .
qeeede

Gorollary 3 : Let V be a non-singular affine variety and C an irreducible non~singu~

lar curve on V. Let P be an automorphism of finite order of C and let W be the va-

riety gotten from V by glueing C via \r? sThen NK A = 0,if A is the coordinate ring
of W. ‘
Proof : Let B =k[V], p = :)(C), B' = B/p, A" = Afp. Let n-be the order of \F and
G = 21, ‘f, \{)2,-00, \?n-ij. Then the group G acts on B, is finite and A' = (B')G- Sine
ce B' is regular it is also normale. By lemma 1 A' is normal: therefore A' is the
coordinate ring of a normal curve, hence non=-singular. This implies A' is regular o
By theorem 10 NK A = 0 .

qeeeds

Corollary 4 : Let k be a field of characteristic # 2 and let A = k[x,y,z'l with

xy =z= 0. Then K (&) = X (A[TH)=Z
Proof : Evidently A= k{XZ,Y,XYI « Let B = k{X,Y] s p = (¥) and define an automor-
phism \f of Bfp = k[X] by KP(X) = <X , Then A is the ring gotten from B by glueing
p via \fJ and B is the integral closure of A, Thus we have the following exact Mayer-
Vietoris sequence @
K1A —eKl(B) 69K1(A/p) —>K1(B/p) 2K () »K_(B) ®K_(a/p) 2K (B[P)
where Afp = k[:XZJ s Blp= k\:X]. Computing K _(A) in the exact sequence above we get
K,(A)x Z . By corollary 3 NK,(A) =0 , hence K (A) = KO(A[T]) .

qeeade

We conclude this gection with an example of a glueing over a singular curve(a
case where corollary 3 does not apply), such that K (A) # KO(A[T]) .

Let k be a field of characteristic not 2 and let B = k(X,¥], p = (X3-Y2) : then
B/p ~ k[sz,sgj where s is an indeterminate over ke« Define an automorphism \f of Bfp
by ".f)(s) = =5 + The ring A gotten from B by glueing p is the following (cfr. (81,83

A = k[x,yz,y(x3-yz)]
and B is its normalizations. A is the coordinate ring of a surface,whose singular
locus is the curve Y = X3 of the plane Z = 0 . We claim NK A # O : more precisely
we want to show

NK A NKl(k[sz,SBJ) #0 .

From the cartesian square :
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A —> B

Lo

Afp > B/p

we get, as usual, the following exact sequence.
NKIA-7NK (Alp) @NKIB—>NI( (B/p) INK, A"7NK (A/p) & NK_(B) P NK, (B/p).

Now we have : Afp = k{s |, Bfp _k{:s ,s} Thus

NK_B = NK, (A/p) = 1i=0,1.

So we have an 1somorphlsm NK A = NK (kE; s S ]), and we are left to show NK4R # 0,
where R = kLs s S ] Let R = k[s] be the integral closure of R,b = (s s )R— (HR
the conductor. Consider the split epimorphism of exact sequences induced by the

augmentation (see [5], §6)
KZ(R/b[T] )-7K1(R[T], brR{T]) -?Kl(R[T] ) Kl(R/b[T])—»KO(R[T], bR[T] )= K, (R[T])
l= | | )= | |

K2(be) — KI(R,b) — Kl(R) —’>K1(R,!b) — K, (R,b) -3 K (R)
where the indicated isomorphisms are a consequence of the regularity of R/b (th.2
and 3).

Let G = Ker(KI(R[T],bR[T]) —éxl(a,b)) : then from the diagram above

0> G NKlR
So if we show G # 0 we are dones. In the commutative diagram

K, R(T], BRITD) — & &1, ®R[T))

l

K, (R,b) — Kl(i ,b)
the orizontal maps are epimorphismse. For since GL(R,b) and GL(R,b) both consist of
matrices R € GL(i) such that I «X and I =~ 0§-1 have coordinates in b, we have
GL(R,b) = GL(R,b)s Thus the map

G "’"Ker(Kl(ﬁ'{T},b R{TD —éxiﬁl,i) =H
is an epimorphisms. So it is enough to show the group H does not vanish. From the

split epimorphism of exact sequences

K (BRI —7 K (K/bLT]) - K (K[Tl b R[T]) —2K (RLT]) — e

= | | /=

KZ(R) — Kz(R-/b) — KR, b) — KR —7 .
we deduce,since R is regular (cfr.theorem 3)

NK2(§/b)’: H
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- . ) 2 O
Now Rfb=k{&] ,with &£°= 0 and ,by[12], NKz(k fed) = 2 # 0.

4. In this section we prove a sufficient condition (Corollary 5),for NK A = 0,in the
case A is a commutative ring containing an algebraically closed field.

As a corollary of this result we prove (Proposition 5) K (A)= X (A[TD= Z if
A =k[x,y,2] ,zn= xy « Note that k[x,y,z] is normal but not regular,while all the
examples considered in the previous sections were seminormal but not normal. The
results of this section have been obtained jointly with M.P. Murthy.

Lemma 2 ¢ Let A be a ring, t an indeterminate over A and a an element of A. Then the

canonical homomorphism

K (A[t]) —> K (At (t-a)" D)

is injective

Proof: Let s = twa $ then s is an indeterminate over A and A[t,(t-a)_1]=A[s,s-1].
Let T be the infinite cyclic group with generator s, T+ the submonoid generated by
5-1. Then the inclusions f+: A[I+] < A[T] induce a homomorphism

- (£,f_)
£ K (A1) ®% AT )——>x altD

and the following sequence
_ £
0 =K (&) 2K (A[L,]D 6K (A[T) — K (A[r)
is exact ([27],Corollary 7.6). Thus £+>and f are both monomorphismse
Since A{T;} = als] , A[t] = A{s,s-ll our assertion follows
qeeasde

Lemma 3 : Let k be a field, A a ring containing k and t an indeterminate over A: if

- .
Mis a Aft]-module such that g(t)M = 0, g(t)e kit],then there exist submodules

Nl,...,Nn of M with the following properties :

1) M = Nlea...eBNh

2) g, (t)N, =0 (1¢i¢h)
where gi(t)e kit] and gi(t)/g(t) .

s, Sy
Proof: Let g(t)“"p () ...p (t) be the decomposition of g(t) into distinct irre=-

ducible factors in k[t] Let Nj = f (t)M where f, (t)= i pJ(t) -Clearly the

N's verify 2) with gi(t) Py () % . Since gecede (f pf ,.f?,f ) =1 in k{t] we have

i 2

fi(t)A[t]= Aft]
1

i
and
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N +N_+ eas +N =M
1 2 h
Feeatx, =0 iplyi =o.
Let xieNi be such that X 'h(h 0 ; multiplying by fi(t) we get fi(t)xi 0
On the other hand,since xiC-Ni,gi(t)xi =0 .Nowged (fi’gi)= 1 in k[t], hence
fi(t:) and gi(t) generate the unit ideal in A t « This implies :
nn = Aft]
ANDy X~ AL
ieee X, =0 . qeecede

Proposition 3: Let k be a field, A a ring containing k and t an indeterminate over

A . Set : k(t) ®kA = k(t)A « Then the map,induced by A —>k(t )A :
K, (4) T K (k(t)A)

is a monomorphism .

Proof:let P , Q be elements of K (A) such that 8 ([P]) = ([aD). We want to

show [P)=[Q] . We have :Y_P ®Ak(t)A1= Q @Ak(t)A in K (k(t)A). Since P and Q are

both finitely generated there exists a non~zero polynomial f(t)€ k{t] such that:
e @t 1] =[a %A[t,f-]‘.\]

in KO(A[t,f-ll). Let n be a positive integer and let g(t)ck{t] be monic and such

that geceds (g,£) = 1 ¢ Then we have

Ale, £/ e) = Al) /(o)

Tensoring by A[t,f-l:‘/(g) gives:
[2s,arcl/ @] = [o garl/@ ]

Since Alt]/g(t) is a free A-module of rank n the equality above yields :n[P]= nl_Q]
in K (A)e But n is an arbitrary positive integer : hence[P]=[Q_] . qeesde

Theorem 10 : Let k be an algebraically closed field and let A be a ring containing

ke Set : k(t) A = k(t) ®kA,where t is an indeterminate over A. Then the homomorphism
K (AtD) —> K (k(£)a)

is_injective
Proof: Let § = {f(t)/f(t)e k{t]~- 0} : sisa moltiplicative set of non-zero divisors
in Alt] and k(t)A = A[t]s.

The homomorphism A[t]—> A[t]s induces the following exact sequence (see [3],th.
Lo4)

Kl(k(t)A) “QKO(ES(A[t])l)A) K (A[t]) =K (k(t)a)
where gS(AI'_t])1 denotes the category of A[t] -modules which have a finite resolution
of length <1 by modules in £(A),and are annihilated by some element of S. We need

to show Im A = 0.

Let Megs (A[t])l,g(t)M = 0 with g(t)e¢ k{t]-(0) monic. Since k is algebraically
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s
closed there exist ajseeesa distinct in k,such that g(t)= (t-al) o ees .(t-ar)
By lemma 3 we can find submodules Nl,.-.,N of M such that:
r s,
=N, B ees BN ; (tea) " N=0 (1¢i<r)
1 r i i
Let eij (15j¢ hi) be a set of generators of Ni (1¢i4¢r) and let F be a free

T
module,of rank m = z{; h son the set ie 3 Set P =Ker f where f is the surjection

i=1
F —> M} since hd, M &€1,P is projective. Now define Fi (1 ¢i ¢r) to be a free module
on e, seesse ., and let £ :F —>N . Then F =® (F,), and P = Ker f = @ (Ker £ ).

it 1hi i i i i i
This implies Pi = Ker fi is projective and
o—-’->P —-—95 -~—>N — 0

is a projective resolution of N .« So N 3 H (ALt]) where S i(t a; ) /n )O\S

In the exact sequence,relative to the locallzatlon A{t]—* (A};]) = AL; (t-a ) ]
d; 5 -
K, afe, (- 2 D7) =@ AED D K GED KAl e ]
1 r
we have :Im Ji: 0 (lemma 2).80 it is enough to show: A (M)= 2 J;([Ni]) in KO(A[51).
JitN]is defined to be CP-X-[E‘] (see [31],th.4.4) and we havézl

ADeD = D[] = 2 (PL (] ) = 3 S -

i=1 i=1 qeeeds
No we put together proposition 3 and theorem 10 to get our desired result om N K A

Corollary 5 :Let k be an algebraically closed field,A a ring containing k and t an

indeterminate over A. Assume K _(A) —>K_(k(t)A) is surjective. Then NK,(A) = 0.

Proof: From the commutative triangle :
f
A > k(t)A
g h
ATt}
where g is the inclusion Ac Alt] ,we get

K, (£)
K (&) ———> K (k(t)A)

i+
Ko(gx /Ko(h)
K (AL
By our hypothesis and prop.3 K, of is an isomorphism. From theorem 10 we deduce
K,(h) is injective. Since the diagram above commutes, K,(g) is surjective hence an
isomorphisme
qeeede

Now we record a result in {6] (corollary 5.3),based upon a theorem of Bass-Murthy
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(see [3],prop.9.6).

Proposition 4. Let K be a field and let A = K{x,y,i],zn= xy. Then any projective

A-module is free.
Proof : For any non=-zero element a ¢K (y-a)A is an invertible prime ideal and
Af(y-a)= K[z]. This implies (y-a) is a special prime ideal (seef6],§1 ;A/(y-a)
is generalized euclidean in the terminology of [2],p-197). Let S be the special
multiplicative set of ideals generated by the primes (y-a),aéK%— Evidently

1

S A = (K[Y,z])s

o
where S, is the multiplicative set of A generated by the elements (y-a).
R=K[Y,Z] is regular of dimension 2 and every projective R -module is free :therefo-
re every projective module over R_ = S-lA is free (see[3],lemma 9.8).

By a resylt of Bass=Murthy (whizh uses an argument of Seshadri)(see {51,prop.9.6)
every projective A-module is a direct sum of a free A-module and a projective module
of rank 1. Moreover A is normal and can be made into a graded ring by attaching sui
table positive degrees to x and y : thus PicA = O (see [6],lemma 5.1).

So every projective A-module is free.

- n
Proposition 5 : Let k be an algebraically closed field and let A = ka,y,z],z =XV

Then, if T is a finetely generated free abelian monoid :
K, (&) =K (A[TD=7,

Proof : Let t be an indeterminate over A and let K = k(t) .

Then :
- b1}
k(t) @&A = k(A = k(t) [ x,y,2)= K{x,y,2], z = xy =
By proposition 4, every projective A ~module is free and every projective k(t)a-

module is free. Hence

I

K, (k(£)a) =K ()]

0 and this is equivalent to our statement (see

I

By Gorollary 5, we have NK A
prope1).
qeeeds
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KO AND Kl OF POLYNOMIAL RINGS

M, PAVAMAN MURTHY and CLAUDIO PEDRINI

Introduction. Let A be a ring and fe A[x] a monic polynomial with central
coefficients. In §1, we show that the natural map Ki(A[x]) - Ki(A[x, 1/£]) is in-
jective for i=0,1 (see Th.l. 3). In§2, we apply this to obtain some information
about K0 and K1 of affine algebras over 'big' algebraically closed fields, For
example, we show that for such an algebra A4, SK1 (A) 1is of finite rank implies
that KO(A) is a torsion group. In §3, using Th.1.3, we produce examples of non-
regular normal rings A with KO(A) = KO(A[Xl sees ,xn]).

In this paper, we consider only rings with unit element and finitely generated
modules over them. We use freely the notation and results of [1], notably that of
Ch.XIl, For a ring A and fe centre(A), we denote by Af the ring of quotients

2
Ag with S= {1,£,£7,...} and U(A) denotes the group of units of A.
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§1. Let ¥ be a functor from rings to abelian groups with the following property:
for any ring homomorphism i:A - B which makes B a free A-module of rank n,

there exists a homomorphism (‘norm') F(B) = F(A) such that NB/A F(i) is

NB/A:
multiplication by n,

Lemma 1.1, Let F be as above and A a ring, Let he A[X] be a monic
polynomial with coefficients in the centre of A,

(a) The map F(i):F(A) -~ F(A[X, 1)) is injective (i = inclusion A CA[X, 1/A]).
(b) Let F commute with direct limits, Let k be a field and A a k -algebra,
Then the natural map F(A) - F(A@kk(}()) is injective,

Proof. (b) easily follows from (a), We prove {a). Let h be of degree n.
Since A[X]/(h-1) and A[X]/(Xh-1) are A-free of rank n and n+l respectively,
the natural maps A —i—>A[X, 1A} — A[X]/(h-1) and A -SA{X,l/h] —3> A[X]/(Xh-1)
and the existence of 'norm' map for F implies that kerF(i) has both n-torsion

and (n+l)-torsion. Hence ker F(i) = 0,
Remark, The lemma above applies notably to Ki’ i=0,1,2,

Lemma 1.2, Let A be a ring and a,b ¢ A be non-zero~-divisors contained

in the center of A, Let Aa + Ab = A, Then the natural map

ker(KlA *KlAab) - ker{KlAaL - KlAab)

is surjective.

Proof. For re Centre(A), let K (Hr) denote the Grothendieck group of

0
finitely generated A-modules M with finite projective resolutions by finitely

generated projective A-modules and M, = 0. Then by [1, p.494, Th.6.3], we have

the following commutative diagram with vertical rows exact,
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| I
KlAa KlAab
—_— K
KIA 1A
The map KII-';Ia - Klgab is injective. In fact, since Aa + Ab = A, we have a split

exact sequence 0 — Kog - Kogab - KOI:Ib -+ 0. Now the proof of the lemmma

a

is immediate,

Theorem 1.3, Let A be a ring and fe A[X] a monic polynomial with
coefficients in the centre of A. Then
K (AX]) = K(A[X,1/£)
is injective for i=0,1.

Proof, Since Kl is a contracted functor with LK1 = KO [1, Ch,XII], it is
-1
sufficient to prove the theorem for i=1., Let = X"+ an_lxn +... age. We

write f= g(X_l)-X-n, where g(X-l) =1+a_ 1x'1 +... +aox'n. Let

a e ker(Kl(A[X]) - Kl (A[X,1/4])) and o' the image of @ under the natural map

). Clearly o' ¢ ker(K (arx,x" 1 -»KI(A[X,X"I,l/f]).

-1

K (alx]) - K, (A[X, X

But A[X,X'l,l/f] = A[x'l,l/x'lg(x'l)]. Also A[x'l]x +A[X'1]g(x"1) =

A[X_l] and le,g(X-l) are non-zero-divisors in A[X-l]. Hence by Lemma 1.2,
-1 -1 -1 -1
ker(K (A[X™"]) = K (A[X"",1/X" g(x 7))
) -1 -1 -1 -1
~ xerl (alxx)) =k (ax 71 /x e )
is surjective, Therefore there is a Pe Kl(A[X-l]) such that B'= o', where '

-1 -
is the image of B under the natural map KI(A[X - K, (A[x l,X]). Since K,

is a contracted functor this implies a e K1 (A) (we identify Kl(A) as a subgroup
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of Kl(A[X]). Hence o ¢ ker(Kl(A) - Kl(A[X, 1/¢])). Now by Lemma 1,1, & = 0.

This finishes the proof of Theorem 1, 3.

Corollary 1.4. Let k be a field and A a k-algebra. The natural map
Ki(A{Xl sees ,Xn]) - Ki{A®kk(Xl seess Xn}) is injective for i= 0,1,
Proof, By induction, we are reduced to the case n =1, Since

KAA® k(X)) = lm K (aA[X,1 , the corollary follows from Theorem 1, 3.
((AB ) = m K (ALK 16D y

Corollary 1.5 Let k be a field and A a k-algebra and fe k[X]. Then
K, (X, 1£]) ~ K,(AQ k(X))
is injective (i = 0,1).
Proof. It is sufficient to prove that for g e k[X], the map
Ki(A[X, 1A]) -+ Ki(A[X,l/fg]) is injective. Also, we may assume f does not

divide g so that f,g generate the unit-ideal in A[X]. Then by Lemma 1.2,
ker(K (A[X]) —~ K (A[X,1/fg])) ~ ker(K (A[X, 14]) - K, (A[X, 1/£g]))

is surjective, But by Theorem 1.3,

K (A[X]) = K. (A[X,1/g])

is injective., This proves Corollary 1, 5.

Remark 1.6. Let F be a functor from rings to abelian grow s, We write

NF(A) = ker{F(A[X]) —}5:-1» F(A)) and LF(A) = Coker(F(A[X]) @ F(A[X'l]) -

1

F(A[X,X "])). Using the fact that LlN‘]Kl are contracted functors and L, N

commute [1,p. 661, Prop, 7,2}, it is easy to see by induction on i+j that Theorem

1.3 and its corollaries remain valid for functors LlNJKl. Alsoc they remain valid

for SK1 and %’O (ﬁO(A) = ker(KO(A) Tank, {continuous functions from Spec A

to 2z)).
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Remark 1.7, With the hypotheses and notation as in Theorem 1.3 we do not know
if the Im(Ki(A[X]) - Ki(A[X, 1/f])) is a direct summand of Ki(A[X, 1/f) (i=0,1).
Also we do not know a good interpretation for Coker(Ki(A[X]) - Ki(A[X, 1/£])). But
we have the following

Proposition 1.8, Let A be a ring and apareeesa elements contained in the
centre of A. Suppose that i # j implies a;- a.j is a unit in A, Let

r
m,
g= ] (X-a,) ] with m, >0 for all j. Then there is a natural split exact
j=1

sequence
0~ K (A[X]) ~ K(A[X,1/g]) = (LK/(a)" @ (NK(a)" = o0,

so that

r+l

K (A[X,1/g]) & K (a) @ (NK;(4))" @ (LK (A)" .

(Here i=0orl).

Proof, Again since Kl is a contracted functor with LKl = KO’ it is suf-

ficient to prove the proposition for i =1, The hypothesis on a, means that X-ai

and X-a.j generate a unit-ideal in A[X] for i# j. Hence

Ko AXD) ¥ 32w (g (XD

Since by [1, p. 654, Prop. 6. 4], KO(E—__I (A[X]) = KO(A) ® nil(A), we have

(X-a.)

J

have, KO(I;I (A[X]) = (KO(A) ® nil(A))". We have exact sequences
-8

K (AIXD) > K (AIK,1/g) = K5 (AKD) & (K,A©nil A)°

“ %
3, '
K AfX] - K A[X,1/X-a ] s x (H (A[XD))® K A @®nil A
1 1 j 0 —X_aj 0
By [1,p. 666,Prop.7.5] we have hj:KOAe nil(A) - Kl(A[X, l/X-aj]) such that

1
d,0h, = (K/A @ nil(A)). Let p; denote the j-th projection (K,(4) ® nil(A))" -
: r
KA ® nil A, Define h: (K (A) @ nil(a))* - K AlX,1/g] by h= @0 Bio . -
j=1
It is easy to verify {writing explicitly the maps 8 and Bj) that BJ_ = pj03°<pj .

This implies that 9°h = identity.
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Corollary 1,9, Let k be an algebraically closed field and A a k-algebra.

If fe k[X] has r distinct roots, then

K, (AIX,1/1]) & K, (8) © (il(a)" @ (,(a)"

r+l

K (A[X,1/1]) = K (8) @ (NK ()" @ (LKO(A))r .

Remark 1,10, It is easy to see that with the hypothesis as in Corollary 1.9,
Ki(A[X, 1/£]) is a direct summand of Ki(A @k k(X)) , i=0,1. Also

Ki(A®k(X)) = Ki(A[X]) e = Ma ,
aek

where each Ma. &5 NKi(A) o LKi(A), (i=0,1).
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§2. KO and Kl of affine algebras over big algebraically closed-fields

Throughout this section k denotes an algebraically closed field of infinite
transcendence degree over its prime field, We apply Theorem 1.3 to obtain some
information about Ki (i= 0,1} of affine algebras over k. Let A be a finitely
generated commutative algebra over k, We write

A~ KT 0oy T ]
TG

Let K be the algebraic closure of k(Xl, ooy Xn) and let ¥ be a sub-field of k,
finitely generated field over the prime field containing all the coefficients of

fl, [ ’fr' Since k 1is of infinite transcendence degree over its prime field, there
is an F-isomorphism o:k =~ K which clearly extends to an isomorphism

k[Tl,...,
(fl,...,

ST ]
177 T,
N T ~A®kK.
1 r

T A=®

T 1 K[T
fr)

Proposition 2.1, Let A and k be as above, Let F denote SKl,rI\()O or
LlNJK1 (iz0, j=0). If F(A) is of finite rank, then NF(A) and LF(A) are

torsion groups.
Proof, By Corollary 1,5 and Remark 1.6,

F(A[X,X_l

D) = F(AQ k(X))
k
is injective, Let K denote the algebraic closure of k{X). Then
ker(F(A ®kk(X)) - F(A (&(K)) is torsion, (This is easily seen using the 'norm!'
1
)

F(A) @ NF{A) ® NF(A) @ LF(A). Since A®kK ~ A {see above) and F(A) is of

map.) Hence ker(F(A[X,X-l)) - F(AQ(K)) is torsion. But F{A[X,X

14

finite rank, we see that NF(A) and LF(A) are torsion groups.
Teking F = SK, and using LSK, = %’0 [1,p.673, Cor. 7.9] we get

~
Corollary 2. 2, SKl(A) finite rank implies KO(A) is a torsion group.
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Corollary 2.3.% NKi(A) torsion m=> Ki<A[Xl’ e ,Xn])
~ Ki(A) © torsion
Vo, (i=0,1).
In particular, Ki(A) ~ Ki(A[X]) = Ki(A[Xl, ce ,Xn]) ~ Ki(A) ® torsion (i=0,1).

Proof, This follows from Proposition 2.1 immediately, since NKi(A) =0

and K (A[X,,....X ])= (1 +N)nKi(A) [1,p. 663, Cor. 7.3].
Corollary 2, 4. KO(A) finite rank => KOA[XL’ cee ’Xn] S KO(A) & torsion.

Examples 2.5, a) Let A= C[t%,t°]. It is well known that ‘EO(A) ~ Pic(A) = C.

Hence by Corollary 2.2, SKl(A) is of infinite rank, This was first observed by
M., I, Krusemeyer in his Utrecht-thesis.
b} Let k be an algebraically closed field of infinite transcendence degree
= .2

over its prime field. Let Char(k) # 2 and An = k[xo, P ,xn], i% % = i,

n even, It is well known that R‘O(An) & Z, Hence by Corollary 2. 2, SKI(An) is
of infinite rank, Using (Quillen's localization exact sequence for higher K's, it is
not hard to show that Ki(An) =~ Ki(k) & Ki(k) if n is even and Ki(An) ~ Ki(k) if

n is odd, (for all i>0),
One can generalize the example a) into the following:

Proposition 2. 5, Liet A be the co-ordinate ring of a reduced irreducible

affine curve C over an algebraically closed field k of infinite transcendence
degree over @ Thenthe following conditions are equivalent.
1. SKl (Ay=0.

2) SK,(A) is of finite rank ,

1
3} A mk[X,1/f] for some fe k[X].

*This corollary was inspired by the following question of J.R.Stroocker:

If K A ’ i
o ...,/KOA [X], does it follow that KOA :.\J/KOA[Xl,...,Xn]?
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Proof. 1) => 2) is trivial and 3) => 1) is well-known. We prove
2) = 3). By Corollary 2,2, 2)=> Pic(A) is torsion. Let A be the integral

closure of A and I the conductor between A and A. Then we have the exact

sequence [1,p.481, Th.5,3]
U(A) ® U(A/T) = U(A/I) -~ Pic A - PicA - 0

Hence Pic A is torsion. This implies Pic A =0 and A is the coordinate ring of
a normal rational curve. Hence A =~ k[X,1/f] for some f¢ k[X], Also

Pic A ® Coker(U(A) ® U(A/I) = U(A/1)). Since U(X)/k* is finitely generated and
Pic A is of finite rank, it follows that U(A/I)/U{A/I) is of finite rank. It is easy
to see that U(A/I)/U(A/I) has a finite filtration with successive quotients iso-
morphic to k or k¥, Hence U(A/1)/U(A/I) is of infinite rank or zero. Hence
U(A/1) = U(A/I). For ac A, thereis a X\ ¢ k such that the class of X +a is a

unit in A/I.  Thus X +a and hence ac A, i.e. A= A, Hence AR k[X, 1/1].
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§3, KO of polynomial extensions

Lemma 3.1, Let k be a field and A a k-algebra, If the map

Ki(A) - Ki(A &(k(xl sere ’Xn)) is an isomorphism, then Ki(A) A Ki(A[X1 seves Xn])

Proof., Let i: Ki(A) - Ki(A[Xl’ . 'XnD and U Ki(A[Xl’ . ,Xn]} -
Ki(A &(k(}(1 yeeoy Xn)) denote the natural maps induced by corresponding inclu-
sions, By Corollary 1.4, ¢ is injective, Hence (oj is an isomorphism implies

that j is an isomorphism,

Proposition 3.2, 1) Let k be a field and A = kfx, v, z], zn =xy., Then

every projective A-module is free,

2) Let k be a field and A the homogeneous coordimte ring of an arith-
metically normal embedding of ]Pli into some IPE, i.e., A is a graded normal
ring over k with Proj(A) Proj(k[to,tl]). Then every projective A-module is
free,

3) Let A be the coordinate ring of a normal affine surface X (over an
algebraically closed field k) birationally equivalent to C X ]Pl , where C 1is com-
plete non-~singular curve of positive genus, Suppose X has only rational singu-
larities. Then every projective A-module is a direct sum of a free module and an
ideal,

To prove Proposition 3.1, we need the following

Lemma 3.2, Let A be a Noetherian domain of dimension < 2, Let
F € Max{A) {Max{A} = maximal ideal spectrum of A) be a closed set of dimen-
sion £ 1. Suppose for every M ¢ Max(A) -F, there exists an invertible prime ideal
P C M suchthat A/P is a principal ideal domain with SLn(A/P) = En(A/P) for
all n, Then every projective A-module is a direct sum of a free A~-module and an
ideal,

{For proof of Lemma 3,2 see [5, Th. 3.1.)
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Proof of Proposition 3. 2. 1) This is essentially proved in [3, Cor, 5.3].

We reproduce the proof for the sake of completeness, Take F = V(x) in
Lemma 3,2. Let M be a maximal ideal of A with x ,( M and Mn k[x] = k[x],
f an irreducible polynomial in k{x]. Then A/fA = k{2)[Y, Z]/(ZZ— oY) & k(a)[Y],
where @ is a root of f, Hence by Lemma 3. 2, every projective A-module is a
direct sum of a free module and an ideal. Since A is a graded normal ring (with
degz =1, degx=1, degy=n-1) over k, we have Pic (A) =0 [3, Lemma 5.1].
Hence every projective A-module is free.

2) Let A= k[xo, R ,xn] be a graded normal ring with
Proj{A) = Proj(k[to, £ ). In Lemma 3.2, take F = V(xo). Let M be a maximal
ideal such that , ¢ M. Let Mn k[xo] = k[xolf, f being an irreducible poly-

nomial in k[xo]. Then

Afl/x,] EN
A/fA = ——>_ = B[x,1 )8 ———® B,
fin = — g g/ 10 & 52~ @
3} x
where B = k["x- seees ;{2 ]. But Spec B = Proj(A) - V(xo) is an affine open sub~
0 0

set of IPll(. Hence B mk[t,1/p] for some p e k[t]. Hence A/fA = k{a)t,1/pl.
The rest of the proof is as in 1),

3) Let P -+« P be the singular points of X. Since P,,...,P  are

1’ 1 r
rational singularities (for generalities on rational singularities see [2]}) there is a
non-singular surface X' and a proper birational morphism m: X' =X such that
all the components of 1_1(Pi) are rational curves and = induces an isomorphism
- 5 -
X! - 1r (Pi) ~ X - {Pl, v, Pr}. Let X be a complete non-singular sur-
i=1
. a4 1
face containing X' as an open set. Since X is birationally equivalentto CX P,

Since genus C > 1, it is easy to see by considering the albanese variety of X that

we have a commutative diagram
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C><IP1 ——3 X

where p is the projection onthe first factor € is a surjective morphism and f
a birational transformation. Since the components of ‘w-l(Pi) are rational curves,
we have G(wul(Pi)} = Qi’ a point in C. Since f is birational, there is an open
set V€ C such that Qi;/‘v', 1<i<r and e'l(v) ~ VX P
We identify X - {Pl’ e, Pr} as an open subset of X and set

U= e'l(v) N X -{Pl,...,Pr}). Since e'l(v)n _—

{Pl’ vevs Pr} = §, for every
x ¢ U, the curve r = 9-1(9(}{» N U is closed in X and does not pass through

i
Pl’ .o 'Pr' Also Fx is isomorphic to an open subset of ", Hence taking

F =X-U in Lemma 3.1, we see that every projective A-module is a direct sum-

mand of a free module and an ideal,

Remark 3.3, It is easy to see that the arguments in 3) remain valid for any base
change L D k. Hence we get that every projective A ®kL-module is isomorphic

to a direct sum of a free-module and an ideal.

Corollary 3.4. Let A be as in 1),2) or 3) of Proposition 3.2. Then
KO(A) ~ KO(A[XI’ e ,Xn}), for all n.
Proof. By Proposition 3, 2 and Remark 3.3, KO(A) ] KO(A ®kL) for any

field extension L/k, Hence Corollary 3,4 follows from Lemma 3.1.

Remark 3.5. We do not know any example of a normal ring A such that
KO(A) o KO(A[X]). Corollary 3,4 suggests the following conjecture,
Conjecture: Let A be the coordinate ring of an affine normal surface having

only rational singularities. Then KO(A) ~ .KO(A[X1 yees ,Xn]).
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BASE CHANGE FOR K0 OF ALGEBRAIC VARIETIES

Leslie Roberts

We consider the effect of a finite normal change of base

field on the Grothendieck group X, of an algebraic variety. This

0
is first done in the affine case and generalized to schemes. I have
tried to give proofs that are valid for K1 and other groups as
well. The essential idea is that the group be defined in term of a
category of modules and satisfy certain reasonable properties, rather
than merely be a functor from rings to abelian groups. This approach
works well with a normal separable extension, but with inseparable
extension I had to use special properties of KO and Kl

Some of the material here is contained in [13]. Throughout,

Z = integers, R = real numbers, Q = rational numbers, C = complex

numbers. All schemes are separated.

1. Normal Separable Extensions

let T be a field, and A a commutative algebra over F .
If K is an extension field of F , set B = A @F K , and
f: A+ B the inclusion f(a) = a 8 1 . In this section we assume
that K is a finite normal separable extension of F , and consider
inseparable extensions later. Let G be the Galois group of K
over F , and [K:Fl]=n . The group G acts on B by aladi) =
a®alr) for weG , e XK . If M is a B~module, we define
the B-module Ma(aeG) by (i) M, =M as an abelian group
(ii) be*m = u-l(b)m . Here + denotes the B-action on Mu . If
o denotes the ring homomorphism a: B » B defined above, then
-1

% *
Ma =a (M) = (a "),M , where o denotes extension of scalars
by means of ¢ , and (u'l)* denotes restriction of scalars by
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™! . This terminology agrees with that of Bourbaki [4], but not

with that of Milnor [11], p. 137.
If N is an A-module, and M is a B-module, then we have
the following:
(1) £,
() f'r, 00

"

nN (direct sum of n copies)

m

4 M .

aeG o
The first is obvious. To prove (2) , let K = F(u) , where u
has minimal polynomial g . We have B = A[X1/(g(X)) , and

B ®, B = BI[X1/(g(X)) = nueG B[(X]1/(X~alu)) = naeG B, » where

B, = B[X1/(X-a(u)) = B . There are two homomorphisms fl: B+ B 8, B

defined by fl(b) = b®1 , and f2: B»B®&, B defined by

A
fz(b) =18b , If LN B EA B + B denotes projection onto the
th - - * -
a factor,*then Ty, = 1p and m £ =a . Therefore f f,(M)=
= (f2)*(fl) (M) = Qaee M, as required. Note that both (1) and

(2} are natural.
In order to prove (2), B need only be a commutative
Galois extension of A .
Now let XF be a scheme over T , and XK = XF xSpecF
Spec X . Let f: X, - X

K F
Then G acts as a group of automorphism of Xy ( o acting via

be projection onto the first factor.

1 xa). If M is a quasicoherent sheaf on XK , Write

*
Ma = a (M) . This is consistent with the terminology of §1.

Suppose XP = kéeI Xi , Where Xi = Spec Ri 1s an open covering
- 1] I_ - "l
of X . Then X = Léel X, , where X; = Spec(R,8.K) = f (Xi)

is an open covering of X by affines. Over each of the affine

X
open sets Xi we have (2), with compatibility on overlaps by
naturality of (2). Therefore we have

1 Fl -
(2) ££,00 28 oM
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for any quasicoherent sheaf M on X

0f course we have

%
(1) £,8 (0

J1H

nN

for N any quasicoherent sheaf on XF s, for KX any field

extension of degree n .
1] 1
The isomorphisms in (1 ) and (2 ) are natural so we have a

%
natural equivalence between the functors f f, and z, , and

e g ¢

%
between f*f’ and n . By the sum of two functors fl and f2

we mean (fl+f2}(M) = fl(M) ® fz(M) for an object M , and
(fl+f2)(6) = fl(S) ® £,(8) for a morphism 8 .
If XF is projective over F , the Krull-Schmidt Theorem

holds for coherent sheaves on ¥ [2]. If M and N are coherent

F
%* 1 -
f N then (1 ) implies that nM Z nN

"

*
sheaves on X s and f M

3
#*
By the Krull-Schmidt theorem M # N . Therefore f is an injection

on isomorphism classes.

2. The Grothendieck Groups

Define an admissible subcategory C of an abelian category
A as on page 388 of [3] (except that condition (d) might not be
needed). Let K be a "functor" that assigns to C an abelian
group K(C) . That is, if f: C + g' is an exact admissible functor
in the sense of [3] page 389, then a homomorphism T: K(C) » 5(9')
is defined such that I = 1 and gf = g ¥ (with equivalent
functors inducing the same homomorphism). Furthermore, if f and
g are two exact admissible functors from C to Q' , 80 is f + g,
and we assume that f + g = T+ g . To simplify the notation I
will usually omit the

Now let F be a field, K a normal separable extension of
degree n , XF a4 noetherian scheme over F

, and
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XK = XPXFK as in §1. Let A De the category of coherent sheaves

t
on Xp > A  the category of coherent sheaves on X, C the

t
category of locally free sheaves of finite type on XF s and C

the category of locally free sheaves of finite type on XK . Then

* '
f is an exact admissible functor from A to A  that takes C

' ) '
to C , and f, is an exact admissible functor taking C into

* '
€ . Also the o (o0eG) are exact admissible functors from A
t

' t
to A mapping C into itself. If X is as above then (1)

]
and (2 ) yield equalities

”~~
+
A d
*h
%
Hh
*

"
™~
Q

of endomorphisms of K(A) (or K(C)) and g(g') (or g(g'))

respectively. I have written simply o instead of o . G acts
¥ ¥
as a group of automorphisms of K(A ) and K(C ) .

In particular, X can be the Grothendieck groups KO or

1 @as defined in [3], page 389, and perhaps also the groups Ki as

K
defined by Quillen in [12]. For example, Ko(é) = K'(XF) »
Ko(é') = K.(Xy) and the homomorphisms fg: K.(Xp) + K.(Xp) and
f?K.(XF) + K.(X,) induced by the functors f, and £ respectively
satisfy (3) and (&) ., If K.(XK)G is the subgroup of K.(XK)
consisting of elements fixed by G then f* maps K‘(XF) into
K.(XK)G . Equations (3) and (4) say that the kernel and cokernel
of f* are killed by n .

By using C and g' in place of A and é’ we get
corresponding statementsabout K'(Xr) = KG(E) and K'(XK) = KO(Q‘) .
If X, = Spec A is affine, then Ki(g) is denoted Ki(A) , and

K.(A) 1is denoted 6,(A) in [3] , i=0,1 .
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3. The inseparable case

First assume that K 1is a purely inseparable extension of

F of degree p , that is char F = p > 0 , and KX = F(B8) where

where B8P e F , BE¢F . Let A and B be as in §1. Then
B = A[X1/(XP-a) , and B @, B = BIX]1/(XP-a) = BI[X1/(X-a)P . We have
a homomorphism g: B @A B =+ B defined by factoring out the nilpotent

ideal (X-8) , and two homomorphisms f1sf,: B> B9, B defined
as before. If M 1is a projective B-module of finite type, then

%
£F, (M)

#*
(fz)*(fl) (M) . On the other hand gf, = gf, = 1l » so

% * * * * .
g (fl) g (f2) . But g is a bijection on isomorphism
classes, by proposition 2.12, page 90 of [3]. Therefore

% - * ] & - ® -
(£) (M) = (£,0 (M), so £ £, (M) = (fz)*(fl) (M) 2 (f2)*(f2) (M) =

2 pM . This isomorphism is not natural (at least, not obviously

*
so} but we still have f f, = p on KO(B) . TFor the Gi case

. 3 * * - -
(i=0,1) we still have f f, = (fz)*(fl) . From gf1 = gf2 = lB
we get (fl)*g* = (fz)*g* = 1 ., By proposition 2.3, page u45u of

(31, gu: 6;(B) » G,(B 8, B) is an isomorphism. Therefore
(£1)y = (£,), and f*f* = (fl)*(fl)* = p (as endomorphisms of
Gi(B))

We can now put these results together to handle the case
of an arbitrary normal extension F< K of degree n . We can

write F<C H< K where H 1is purely inseparable over F of

degree pd , and K 1is a separable extension of H . If
i: A+ A ®F H and 3j: A EF H-> A @F K are induced by the

* *
inclusions of fields and f = ji then we have f f, = (i) (ji), =
JE LR, . d,®, . L®, d
J A ii, = p 3 Jg in KO R GO and Gl cases (i i, = p

since G can be obtained by adjoining pth roots, one at a time).
* *

If M 1is projective of finite type then f f (M) = pdj JM .

The field H 1is fixed under any automorphism of K over F and

restriction gives an isomorphism G = Gal(K/F) + Gal(X/H) . Thus
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we have proved

*
(5) £ f,(M) = pd ®.cc Mo (M projectige of
finite type).
*
() fr,=p"1 @ (for K,,G6, and G;)

The following example shows that (5) is false if M is
not assumed to be projective. Let A = K , where K/F is purely
inseparable with [K:F]l = p . Then B = X 8. K . If M is a
B-module, f4(M) 1is a free A-module, since A is a field. There-
fore f*f*(M) is a free B-module. If f*f*(M) 2 pM then M is
projective. But there are B-modules of finite type which are not
projective.

If the extension K/F is normal but not separable, the
proof of (6) seems to work in the scheme case for Ko(é') and

t
K,(A) , but I do not know if the analogues of (5) and (6) hold

in the K' case, the problem being the lack of naturality in (§).

4., Some examples

Let 8 be a graded ring in positive degrees, and let
X = Proj S . A homogeneous ideal I € S defines a closed sub-
scheme Y = Proj(S/I) of X . If I is generated by a homogeneous
element f , then X - Y = D _(f) is affine, D,(f) = Spec S(f) s
where S(f) is the degree zero part of S¢g . Proj and its
properties are discussed in [9] , §2.

If n = 2r is even, write P? = Proj K[Ul’vl”"’ur’vr’T] ,

and let Wy (or WQ if it is necessary to specify n ) be the

closed subscheme defined by E§ Uivi + T2 . That is,

=1

= s r 2
WK = Proj KEUl’vl""Ur’vr’T3/(£i=1 Uivi+T } . In Wx s

- 2
D+(Ul) = Spec K[vl,uz,vz,...u ,vr,t]/(vl#2§=2 u,v.+t%) , where

r
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u; = Ui/Ul s V3= Vi/Ul » t=T/U; . The v, can be
n-l

eliminated, so D*(Ul) = Spec K[uz,vz,.,.ur,vr,t] = Ay

space over K of dimension n -1 . If we let Wi be the closed

= affine

subscheme defined by the homogeneous ideal (Ul,...,Ui) s

1 <i<r , then we have W = WOlej.Wz'_'D-H W 2DouW, .

As above it is seen that W, - W, = A;'l (1<i<r) . The schemes
i-1 i -
wi (0<i<r-1) are all integral, and wr = Proj K[Vl,...vr,T]/(Tz),
. . . -1
80 (wr)red = Proj K[vl""’vr] = Py .

In a similar manner, if n = 2r - 1 is odd, write
n _ .
Pi = Proj K[U1’V1""’Ur’er and let W, be the closed subscheme

defined by 2§=1 U;V; . That is, W = Proj S , where

K
- r
S = K(Ul,Vl,...Ur,Vr]/(Zi=1 Uivi) . If we let W, be the closed

subscheme of WK defined by the homogeneous ideal (Ul”"’ui)

- _ . aR-i
then we have WK = WODWI oD ...Dwr . We have wi-l Wi AI( s

1<i<r . The schemes W, are all reduced, all are integral except
r-1
1 K -

Let X be a noetherian scheme over X with an ample

W > and W = Proj K[V

1 SV =P

invertible sheaf, and let Y be a closed subscheme such that
X -Y = AE . Then we have an exact sequence 0 =+ K.(Y) = K.{(X) +
Z+ 0 . This follows from the exact sequence in §5 of [12]. Part

of this exact sequence is
G (X) Bx G (X-Y) » K.(¥) » K.(X) » K.(X-Y) = 0

where G, 1is a group defined by Quillen in (121, G (X-Y) =

G1<A§) = G;(K) , and g is split by the homomorphism f*: GI(K) »>
Gl(X) induced by the structure morphism f: X + Spec K . There-~
fore g 1is onto, and since K.(X-Y) = K.(A?) = Z , we have the
required short exact sequence. To get g onto, the field K

could have been replaced by any commutative noetherian ring, as
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long as X 1s of finite tor-dimension over K (this assumption is
necessary in order to define the homomorphism f* }. We could also
have used corollary 5.7, p. 428 of [3], as was done in [13]. The
exact sequence 0 »+ K.(Y) + K.(X) + Z + 0 can be split by sending

le?Z to [OX] ,» the class in K.(X) of the structure sheaf

OX . By proposition 3.3 p. 402 of [3], there is an isomorphism
K'(wr)red -> K.(wr) . Therefore K.(WK) is free abelian of rank
2r , with basis egseve€y ¢ 5 f15...f  , where e, = [Owi] » and
fi corresponds to a linear subspace of codimension i - 1 in PE_l
s (wr)red

Let VF (or V; if it is necessary to specify n ) be a
closed subscheme of P? which is defined by a homogeneous poly-
nomial g of degree 2 , and suppose that there exists a finite
normal extension K of F such that VK = VFXFK is isomorphic to
WK . We have an exact sequence

n n
K'(VF) hd K'(PF) - K'(PF-VF) + 0

By the corollary p. 299 of [8], rank K.(PR-Vp) = 1 . Rank K.(PD) =
n+ 1 . Therefore rank K'(VF) >n . Also, by (l')

rank K'(VF) < rank K.(VK) . If n 1is even we have proved that

rank K.(VK) = n . Therefore rank K.(VF) = rank K'(VK) =n ,

or equivalently, every element of G = Gal(K/F) acts trivially on
K.(VK) . Therefore we need consider only odd n . If n is odd,
rank K.(VK) =n+ 1l , so rank K'(VP) = n 1if some element of

G = Gal(K/F) acts non-trivially on K.(VK) , and rank K.(VF) =n + 1

otherwise.
If char F # 2 we may assume g = i (a S?+b.T?)
’ i=1 iTi Titi
(n+l=2r) , where ai’bi # 0 and the Si’Ti are n + 1 indetermin-
ants defining the homogeneous co-ordinate ring of P? . Then we can

obtain a suitable (separable) extension K by adjoining to F a

129



finite number of square roots a; /T:S;77§£ . In X we can make
the change of variable Ui = ai(si—aiTi) and Vi = Si + aiTi , 80
that g = X§=l Uivi . The effect of an automorphism ¢ of K over
F 1is to interchange o and -ag for i eI , where I is some
subset of the integers from 1 to r . That is G(Ui) = aiVi and
o(Vi) = (l/ai)Ui if 1 eI . The automorphism u of Wy defined

by u(Ui) = aiUi . u(Vi) = (l/ai)Vi induces the identity on
K.(NK) because it leaves fixed the homogeneous ideals defining the
basis for K.(WK) . Therefore the automorphism of K'(WK)
produced by o is the same as that produced by interchanging Ui
and Vi s 1eI

If char F = 2 , we may assume g = Z§=l aiS§ + SiTi + biTi
by [1] . Then a suitable (separable) extension X can be
obtained by adjoining to F the roots of the polynomials aix2 + x +
bi » and as above an automorphism of K over T will produce the
same automorphism of K.(WK) as interchanging U, and Vi for

ieI , I defined as above.

Let tj be the automorphism of WK defined by interchanging

&
Uj and Vj , and Tj = tj » the automorphism induced by tj on
Ko(We) . I claim that rj(ei) = e, , 0Ogizr-1 , and
tj(fi) = fi s 2<i<r . This was proved in [13] by using the ring

structure on K.(WK) (=K'(wK)). However, one can also give the
following more elementary proof. For 2<i<r , we have fi = {OY] s
where Y 1is the closed subscheme defined by the homogeneous ideal
(Ul""Ur’vj’vk2”"vki_2) , where the integers j’kZ""ki-z
are all distinct. The ideal is fixed by tj s SO rj(fi) = fi .
2<i<r . Similarly Tj(ei) = e; if i <3 ., Write

- r . .
S = K[Ul’vl""ur’vr]/(zi=l U;V;) as before. If j <i , set
I = (Up,...U0) , J= (UpsenesUs_g5UsypsennsUs) 5 and
R
I = (Ul""Uj-l’vj’uj+l""ui) . We have the following exact

sequences of graded S~modules:

130



10

0 —=J —=+I>1I/3 ~0

H 1
0 =J —>I->1/3~>20

Ui
0 —S/J —2— 10 =+ 0

V. ,
0+8/J —=—> I /J+ 0

~ ~1
From this it follows that in K.(WK) , [11 =1[1 1 as in [9],

page 30), and therefore e. = 1.e. . Now we consider f Let

i jTi 1"

T2 (U e Uy 5UsygsenU) 5 T o= (Uhe,U)
]

I = (Up,...,U VisUspqsenU)) 5 L= (U

3-1773773 1t
Yl’YQ’Ya’Yu be the closed subschemes defined respectively by these

U_,V.,) and let
r’i

¥ 1
homegeneous ideals. We have IN I =J ,and I+ I =1L

There is an exact sequence of graded S-modules
1
0 +S/J+S/IT &3/T ~S/L+0

and hence (applying ~) an exact segquence

1 2 3 L
But [0Y2] =f, [OYa] =z Tj(fl) s [OYMJ = f, , and an
argument similar to that used to prove that Tj(ei) = e for j<i
shows that [OY13 =e ., - Therefore we have T.(fl) e -
fl + f2 . Thus the Tj are all equal, say Tj =T . There-

fore ¢ £ G = Gal(K/F) acts trivially on K°(WK) if o acts as
an even number of transpositions, and non-trivially if o acts as
an odd number of transpositions.

As an example, let F = R and let VRC: P; be defined
g P xg , K=C sothat G = 7/27Z . We may make the

following table:

by X
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11

number of action of n
rank K.(Wg) transpositions G rank K.(Vp)
n even n ————— trivial n
nzl mod b n+l odd non-trivial n
n=3 mod H n+l even trivial n+l

We can also give some affine examples. Suppose that

2 2
= +
char F # 2, and that An F[XO""’Xn-lj/(aOXD+'"+an-lxn—1 an) .
where a; 0 a; € F . We can adjoin a finite number of square
roots (including v~I ) to T to obtain K so that
. 2 2 .
A, 8 K 2 K[XO,...,xn_ll/(x0+...+xn_l-1) =B, . By fe] , p. 252,

KO(Bn) =Z®72 if n is odd and Z if n 1is even. Therefore, if

n is even, rank KO(An) =1 , and if n is odd, rank KO(An) is

either 1 or 2 . Suppose n is odd. Spec An is the open subset
n o_ . 2 2
D,(X ) of Vp = Proj F[XG,...,Xn]/(aOXD+...+aan) . Furthermore,
vix x = v 2wl where W2 is as reviously defined If every
F'F K K K p ’

element of G = Gal(K/F) produces an even number of transpositions,
then G acts trivially on K.(VE) , and hence also acts trivially
on KO(Bn) . In this case rank KO(An) = 2 ., If some element

of G produces an odd number of transpositions, then G acts

P n n-1 _ . 2
non-trivially on K.(VK) . If VF = Proj F[XO,...,Xn_l]/(aOX0+..
2 n-1 ~ .,n-1 . .
..+an_an_l) then VK = WK (if X has been made big enough).

n-1
X

we have an exact sequence of free abelian groups

G aets trivially on X.(V ) since n - 1 is even. Therefore

> 2 n-1 n
0 image K.(VK ) K.(VK) i KO(Bn) + 0 .

The first homomorphism is obtained from the inclusion V2_1(: Vz
The group G acts as an automorphism of this exact sequence,

trivially on image K.(Vﬁ—l) , and non-trivially on K.(VE) . From
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this, using the fact that G is finite and the groups are free
abelian, it is readily seen that G acts non-trivially on KO(Bn)
Therefore, in this case rank KO(An) = 1

Some examples are as follows:

- 2 2
(1) Let A, = R[X ..,Xn]/(XO+...+Xn+l) . Then rank

0°*

KO(An) =2 if n =2 mod 4% , and vrank KO(An) = 1 otherwise.
_ 2 2
(2) Let A = R[XO,...,Xn]/(XO+...+Xn—1) . Then rank
KO(An) =2 if n = 0 mod 4 and rank KO(An) = 1 otherwise, This

proves that tﬁe homomorphism KD(An)—e K0(S™) considered in [7] is
an isomorphism mod torsion, since the groups have the same rank and
Fossum has shown that the map is onto. (The kernel is of course
killed by 2 ).

- 2 2
(3) Let Arl = QX .,Xn]/(XO+...+Xn-2) . Then rank

0
KO(An) =1 for all n since the 2 always makes an odd number of
transpositions possible.

I have not been able to say anything in general about the

2-torsion part of K.(V?) . The cokernel of f : K‘(VF) > K.(VK)G

(VKEWK) also seems difficult to compute, but at least it is clearly
finitely generated. Examples in [13] show that the cokernel can be

non-zero.

5. Further remarks on Kl

A Brauer-Severi variety is a variety over a field T which

becomes isomorphic to P;_l after a finite separable extension
K/F . There is a bijection between Brauer-Severi varieties of

dimension n - 1 and central simple algebras over F of rank n? .

The quadrics w% considered in section 4 are examples, with n = 2

In [13] I proved that Kl(wi) = Kl(F) ® Kl(D) , where D 1is the
central simple algebra corresponding to w% . Quillen has obtained

the same result, using the definition of Kl proposed in [12].
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Gersten has shown, however, that if X 1is a complete elliptic

curve over C , there is a naturally occuring homomorphism

K (X) > K¥(X)  (Q denoting Quillen's definition) which is onto but

not injective.
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ON FREE PRODUCT OF RINGS AND THE COHERENCE PROPERTY

K, G. Choo, K, Y, Lam and E. Luft

§1., Introduction

A unital ring R is said to be (right) coherent, if every homomorphism
f: Y > Rm of (right) R-modules has finitely generated kernel, Standard
references for such rings are Chase [3], Bourbaki [2] and Soublin [7]. Of
course, any right Noetherian ring is right coherent, but there are important
examples of coherent rings which are not Noetherian. Indeed the integral

group ring of a non-cyclic free group is one such example.

The importance of coherence in Algebraic K-theory can be traced back to

the following (cf. [1]) :

Proposition {1.1) If R is a coherent ring of finite right global

dimension, then the inclusion map R » R[t] induces an isomorphism

Kl(R) > Kl(R{t}), where R[t] denotes the polynomial ring over R.

This proposition has been used by various people [1], [5] in computing

the K-groups of polynomial extensions.

The purpose of this paper 1s, roughly, to establish the coherence property
for the free product of two coherent rings. The precise statement is given in
Theorem 2.1. This tleorem can be applied to yield certain vanishing theorems

of Whitehead groups and projective class groups, see [4].

Supported by the National Research Council of Canada, Grant Nos. A7562, A4029.
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It should be pointed out that Waldhausen in [9] established, among other
things, that if two groups G and B have coherent group rings, then so
does the almagamated product € *o H, where C 1is a common subgroup with
Noetherian group ring, Waldhausen's proof depends heavily on his machinery
of "surgeries" and "Mayer-Vietoris presentations” of chain complexes. Our
proof of Theorem 2.1 is a drastic simplification of his ideas, and at the same

time constitutes an extension of these ideas from group rings to arbitrary rings.

§2, Statement of the Main Theorem

Let R be a unital ring. By a R-ring we mean a unital ring A containing

R as subring, such that there is an augmentation homomorphism €y F A+ R

satisfying eA(r) =r for all r in R. We call A = Ker € the augmentation

€
0~—>T\—>A<Ti>a~—>0.
i

If A and B are R-rings, then we can form their free product over R,
denoted by A *2 B . A good description of this free product can be found in

Stallings [7]. We only record that, as bimodule over R,
(1) A4 B=ROAGLEO®ABOGDAOGABAOEAB O ...

where BB is an abbreviation for A @R B, etc. The multiplication in this

free product can be illustrated by the following typical examples : if a, € A,

Bj ¢ B, then

(al "] 81)<a2 @ 82) = 86, Qa, @ B,c ABAB ,

%

(al Q Bl & otz)(a3 2] 82) = 0oy ® Bl [} (a2a3) 2] 826 ABAB *
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The main purpose of thils paper is to prove :

Theorem (2.1) TLet R be a right Noetherian ring. Let A, B be right
coherent R-rings such that the augmentation ideals A, B are free as left

R-modules. Then the free product A *p B is right coherent.

Corollary (2,2) If R is a right Noetherian ring and X 1s a set, then

the free ring R{X} generated by X over R is right coherent.

This corollary is an immediate consequence of Theorem 2.1 when X is a
finite set. If X is infinite, we can use a direct limit argument to complete

the proof. Compare [2, p.63].

§3, Some Technical Lemmas

We begin with some notations and terminology. A homomorphism f£: R > g™
of right R-modules can be represented by an associated m x n matrix Q over
R, such that it maps a colum vector x ¢ R® to Qx € B" . We call Q a
(right) coherent matrix if its "solution space" { x | Qx = 0 } is finmitely

generated as right R-module. If Ql (resp. Qz) is the matrix obtained from

*
Q by an elementary row {(resp. column) operation( ), and if Q3 is the
Q.0
extended matrix ==—3---1 , then the following lemma is easy to prove :
01
i

Lemma (3.1) For each 1, Qi is coherent if and only if @ is coherent.

Another easy lemma is :

(*) In performing an elementary operation, we multiply rows by scalars from

the left, and columns by scalars from the right.
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Lemma (3.2) Let A' be a ring containing A such that A' is free
when considered as a left A-module., If ( is a right coherent matrix over

A, then it is also right coherent when considered as a matrix over A' .

Let A, B be R-rings as in Theorem 2.1. Let us fix left bases {ai}

iel’
{Bj}jeJ for the (left) R-modules A and B . Then {ai a Bj}iel,jaJ form
a left bases of AB , 'In this way, we can assign a left basis to each direct

summand of A *p B appearing in the right hand side of (1). Furthermore, each

basis element w has an obviously defined length lw] . For example, [1! =0,

lai f ij =2, etec. If w=1, or if w = oy 1 Bj # ... , then we say that

w 1s a basis element of A-type. Similarly, we can define a basis element of

B-type.

Consider now the following diagram of natural inclusions of right modules:

Am
T n m
R ///;7 (A *r B) =D ,

\N\\E§ n

B

vhere for brevity we have used D to denote the free product A *r B . Our

next lemma is the key step towards the proof of Theorem 2.1 :

Lemma (3.3) Let M, be a submodule of D" generated by certain elements

in Am, and let MB be another submodule of D" generated by certain elements

m . m
in B . Let K = (MA + MB) M R . Then

2) (MA + KDy N (MB + K.D) = KD,

where K.D denotes the right D-module generated by K .
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Proof : It suffices to show that an arbitrary element d in the left
hand side of (2) belongs to the right hand side. Let Mz (resp. M;) be the

A-submodule of A" (resp. B-submodule of Bm) generated by the same set of

A A

MB = M;-D . Considering d as an element in " = g QR,D’ we can express it

elements which by hypothesis generate MA (resp. MB)' Then M, = M°.D and

uniquely as

(3 d=73, c,w, ,

with each ¢, ¢ Rm, and each v, a left basis element of D, satisfying

[N

lel 3_Iw2I z’fw3l > ... >0 . On the other hand, by considering " as

A"a D oras 3" @ D, we can express d uniquely in each case as

A B
&) d=17ZI, a,u, ,
b A
or
(5) d = Xk bkvk R

respectively, where aj £ MZ + K-A, bk € M% + K.B; is a basis element of

b

B-type and v,

k is a basis element of A-type.

We now assert c; e K for each 1 . Without loss of generality, we can

suppose W, 1s a basis element of B-type. Then, in the expression (4), there

1

. Let's say j =1 so that u, = wy. We

must be a i such that uj =W 1
claim that eq = ay . For this purpose, observe that a; € A" = g™ QR A, so
that one can write
= v (1]
ay cl + Zl clam
where ci, CE ¢ R" and oy is a left basis element of A for each &. If

CE“R 8 w, must appear in the expression (3),

is of maximal length. Hence all cz =0 so

CZ # 0 for some &, then

contradicting the fact that vy
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e At = o . .
that a [ cy, implying ¢, eM +K AC M, + MB . S8ince ¢y is

1 1 A
already in Rm, this proves ¢ € K . By repeating the same argument to
d - clwl , we deduce inductively that ci € K for all i. Hence d ¢ KD ,

as 1s to be proved .,

§4, Proof of Theorem 2.1.

It suffices to show that any rectangular matrix Q over D is (right)

coherent. By Lemma 3.1, we can first change Q by elementary row and column
[Q!O
operations, or by extensions of the type Q t—>|-——t-~- , until finally Q
takes the following form : ot
Q=191 91,
where QA’ QB are mX p and m X g matrices over A and B respectively,

with p + q = n, for some integers m and n . (This procedure is known as

"Higman's trick™).

Let Byy cevs ap be the column vectors of QA. and bl, PN bq be those
of Qp . Let M,, M, be D-submodules of D" generated by {al, cees ap} and
{bl, cees bq} respectively. If f : D" - D" is the homomorphism associated

with Q, then we have the following presentation of MA + MB :
n f
(6) 0 —> ker f&~—> D —> M, ot My > 0.
Our objective is to show that ker £ dis a finitely generated D-module.

Let X = Q1 +¥) N R" . Since R 1is right Noetherian, K is finitely
generated over R, say, by elements Cys wees C_E R® . We use these elements
as column vectors to form an m X r matrix QR’ and consider the m x (ptrt+q)

matrix
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e "~ i) I - ] s
Notice that the two submatrices QA { QA i QR 1 and QB [ QR ! QB ] of Q
have entries entirely in A and B respectively, and are hence right coherent
over D according to Lemma 3.2.
Since K C MA + MB’ the column vectors of Q still generate MA + Mﬁ .
if ¥ Dn+r + b" is the homomorphism associated with §, then we have

another presentation of MA + MB :
%)) o—a-ker‘ft—~>1)“+ri~>MA+MB—>0.

Applying Schanuel's lemma [6, Theorem 3.41] to (6) and (7), we obtain

nt+r 3 = n

ker £ D ker £ D

so that ker f is finitely generated over D if and only if ker f is. To

see the fipite generation of ker 7, let

(xl, ey X

- Zys eees Zis Yys o cees yq) € ker T ,

wvhich is to say that Xy Zys Yj are elments in D satisfying

(8) ax; + ot ax, + clzl +a.otcz o+ blyl + ...+ bqu =0 .

Write d = —(blyl + ...+ bqu) . Then (8) implies that d dis an element in

(MA + K:D) N (M; + K-D), and so d ¢ K:D by Lemma 3.3. Thus

C)) d=c¢ + .., + '

1
z e z
171 r’r 3

for some zi, veey z; in D . From (8) and (9), we easily obtain
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~z! 2 =
10) a;x) + ...+ apxp + cl(zl zl) + ... + cr(zr zr) o,
and
' 1 =
(11} ezt c 2yt blyl P bqu g .
Now, since (xl, veey xp, Zys e 2o Yy eees yq) can be written as
(12} (xl, veey Xp’ zl—zi, vees zr-z;, 0, +..y 0)

+ (0, ..., O, zi, v, z;, Vys vees yq) 3

and since 5A and QB are right coherent matrices over D , we easily conclude
from (10), (11) and (12) that ker £ 1is a finitely generated D-module, thereby

completing the proof.

University of British Columbia
Vancouver 8, B. C.

Canada
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WHITEHEAD GROUPS OF FREE PRODUCTS

by A.J.Casson

introduction

We use the notation of Milnor's survey [4]. Stallings [5]
has shown that, if A and B are augmented algebras, then (under certain
conditions) K1(A*B) = K1(A)gBK1(B). We aim to generalise this result
to deal with free products with amalgamation.

Given rings 4,B,C and homomorphisms a:C—A, B:C—B, we
construct a group K1(a,B) which fits into an exact sequence

£, (C)—> K, (4) ®K, (B) — K, (a,p) ——>K,(C) —> K, (4) @K (B) .

We say that a subring C of A is pure if 4 admits a
decomposition A = C®4' as C~bimodule. (For example, if A is a group
ring Z[G] and E is a subgroup of G, then Z[B] is pure in 2[G].)
Suppose C is also pure in a ring B = C@®B'. Then one can form the
amalgamated free product A*CB ; 1t contains the ftensor algebra
T = TC(A’GDGB') of the C-bimodule A'QDCB'. We construct a homomorphism

G:Kj(a,ﬁ)——~9K1(A*CB)
(where a:C-*4, B:C—B are the inclusions) and our main result
(Theorem 2) states that

KT(T)®K1(a,5)——>K1 {A*CB)
is surjective. If A'®,B' is a "free" C-bimodule (that is, a direct
sum of copies of C), then

:'Lm(K1 (7)) < im(9)
80 O is already surjective (Theorem 3). It would be interesting to
know whether 8 is actually an isomorphism in this case. When applied
to a group ring A = Z[G*EH] = ZLG]*Z[E]ZLH] the freeness hypothesis
in Theorem 3 is satisfied if G and H are generated by E together with

the respective centralizers of E, but not apparently in general. One
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can thus obtain (from Theorem 3) the vanishing of the Whitehead groups
of groups built up from infinite cyclic groups by finitely many direct
and free products (and even "central amalgamations", i.e. those of the
type GxpH with B central in G and in H.)

I am very grateful to L.Siebenmann, F.Waldhausen and
C.T.C.Wall for conversations which stimulated my interest in this

question.

§1. Generalities

Let A,B,C be rings with 1 and let a:C—A, B:C—B be ring
homomorphisms respecting 1. Define a group K1(a,ﬁ) as follows.
A triple (P,X,Y) consists of a finitely generated projective right
C-module P, an A-basis X = (X1""’Xn) of P®,A and a B-basis
Y = (y1,...,yn) of P®,B. lote that X,Y are required to have the same
number of elements. The gum of two triples is defined by

(P,X,Y)®(P',X',Y') = (P®P',XdX',Y®Y') .
For each integer n > O there is a standard triple
5, = (¢, 2%®1,,2"®1p)

where Z" denotes the standard C-basis of C".

Triples (P,X,Y),(P',X',Y') are equivalent if there exist
a C-isomorphism Y:P—»P' and elements M,N in the commutator subgroups
of AutA(PQQCA),AutB(PQDCB) respectively such that

X'=(Y®1QMX, Y'=(Y®1QNY.
Iriples (P,X,Y),(P',X',Y') are stably equivalent if there exist
integers r,r' such that (P,X,Y)Gasr is equivalent to (P',X',Y')GBSr, .
It is easily checked that equivalence and stable equivalence are
equivalence relations. Moreover, if 6,8' are the stable equivalence
classes of (P,X,Y),(P',X',Y'), then the stable equivalence class &+8'

depends only on 6 and &',
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Lemma 1 Stable equivalence classes of triples form an Abelian

group K, (a,p).
Proof. Addition is clearly associative and commutative. 41l standard
triples are stably equivalent, and represent the zerc element of
K1(a,B). It remains to produce an inverse for the class (P,X,Y). There
is a finitely generated projective C-module P' such that P®P’ z o
for some m. If X,Y each have n elements, then (P'®C™M)® .4,
(p'® cM)® CB are free on m generators, with bases X',Y'. Then
(P,X,V)® (P'® C,X',Y') is equivalent to (C',X",Y") for some bases
X", Y" and r = m + n. Let M,N be the unique elements of AutA(Ar),
AutB(Br) such that

X

M(ZT®1,) , T" = NZT®1y) .
Let
o= (2T, =N (ET®Ry)

then

(6%, %", Y@ (07, %%, v%) = (¢ZF, (u@n") (2@ 1,), (NN ') (z%%1 )
But M®M ', N®N"' belong to the commutator subgroups of Aut,(A°T),
AutB(B2r) respectively, so (C%,X",Y")@(C¥,X*,Y*) is equivalent to Sope
Therefore (P'@® C™,x',Y')®(cF,X*,Y*) represents an inverse to (P,X,Y),

as required,

Theorem | There is an exact sequence

K, (015K, (4) @K, (B)—bs K, (a,p) 2 K (0)—> K, ()@ Ky (B).
Proof. First we define the maps. For r = 0,1 let

1= a,®&f Kr(c)_)Kr(A)@Kr(B) .

If (P,X,Y) is a triple and X,Y each have n elements, let P - c?
represent O(P,X,Y). If R € K1(A),l>€ K1(B), then for large n there
exist M € AutA(An), N € AutB(Bn) representing | ,» respectively.
Let (Cn,M(ZnQD1A),N(ZnQ§1B)) represent j(p®r )}, It is not hard to
show that j,0 are well-defined homomorphisms, and that the composites

i0, 93, ji are zero.
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Let o € K,(C) be such that i(o) = 0, 80 a,(0) = O and
Bx(0) = O. Then o is represented by P — C", where P is a finitely
generated projective C-module and n > 0. Since a,(¢) = 0 and B,(0) =0,
there is an integer r such that (Pecr)®CA, (PEBCr)®CB are both free
on n+r generators. Let X,Y be bases of (P@®CFH)® o (P@Cr)®cB, each
containing n+r elements. Then 3(P€BCr,X,Y) is represented by
P&C” - ¢™T, 50 o = O(P®CT,X,Y). This proves exactness at KO(C).

If 9(P,X,Y) = O and X,Y each have n elements, then there is
n+r

113

an integer r such that P®CT = ¢ . Therefore (P,X,Y)® S, is in the

image of j, 80 the sequence is exact at K1(a,B).

Suppose pE K1(A),D€ K1(B) are such that j(p®v) = 0. Let
M€ AutA(An), N € AutB(Bn) represent M ,» respectively. Then
(Cn,M(Zn®1A),N(Zn®1B)) is stably equivalent to Sn’ 50 there is an
integer r such that (C™7T, (M eBIr)(z““‘®1A),(N@Ir)(zn”(z‘g 15)) is

n+r ,n+r >N+

equivalent to (C ,Z ®1,,4 ®1B). There exist a C-isomorphism

n+r n+r

Y:C —C and elements M',N' in the commutator subgroups of

n+r
AutA(A

+
),AutB(Bn r) respectively, such that
n+r _ n+r
(M@Ir)(z ®1A) = (Y®1A)M'(Z ®1A) ,
n+r _ SN+
(N®I ) (27 ®13) = (Y1) (27 ®15) .
Therefore p,» are represented by Y®1A, Y®1B respectively, so p®w

belongs to the image of i. This completes the proof of exactness.

Suppose now that R is a ring with 1 and that ¢:A —R,
V:B—R are homomorphisms respecting 1 such that ga = ¥p. Define a
map 0:K1(a,6)——>K1 (R) as follows. If (P,X,Y) is a triple, then X®1R
is an R-basis of (P@CA)®AR = P®,R. Similarly, Y® 1, is an R-basis
of PQ‘Z)CR having the same number of elements as X®1R. Let 6(P,X,Y) be

represented by the unique automorphism of P‘X\CR carrying X®1R onto

Y®1R. It is easy to check that € is a well-defined homomorphism,
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Now we give a way of recognising elements in the image of 6.
Let us identify Gn®cA, Cn®CB, ¢"® R with A", B", R" respectively
by making the standard bases correspond.

Lemma 2 Let P,Q be right C-submodules of c?M yith ¢ - P@®Q. Let

MA:An-—>A2n, MB:Bn———aan be monomorphisms such that im(MA) = PQQCA,

im(MB) = Q®CB. Then
_ . n 2n
M= (M®1)®M®1;) : R*®R® — 5 R

represents an element in the image of ©.

Proof. Define N :A"@®a" — (P®A)@4" by N, (u,v) = Myu + v , and
define Ny:(P® B)®B" — B by Ny(x,y) = x + Myy. Then N,, Ny are
isomorphisms with M = (NBQb1R)(NAQb1R). Take X = NA(Z2n8)1A) as basis
of (POCH)® A and Y = N7 (2%"@1) as basis of (P@C")® B. Then
(8;'® 1) (,'® 1) is the automorphism taking X to Y ; but this
represents the same element of K1(R) as (NX1®)1R)(N£1QD1R) = u! .

Therefore M represents —G(PGBCn,X,Y), and the lemma is proved.

§2. Free products with amalgamation

Let A be a ring with t. A subring C of 4 is called pure
if it contains 1A and there is a C-bimodule homomorphism E:A-—*C
with 8|c = 1. Let A,B be rings with 1, each containing C as a pure
subring. Cohn [2] gives the following description of the free product

with amalgamation A*CB .
Let A' = ker(e:A——4 C), B' = ker(p:B—>C), so i' and B'

are C-bimodules. Following Stallings|[5], we consider the semigroup G

2

on two generators a,b with relations a“ = a, b2 = b. If Y € G, let

IYI denote the number of symbols in the reduced word for Y. Define a
. _ _ . s
C-bimodule R, for each Y € G by Ry = C, Ry = R, Qa' if |val > |v|

and Ry = Ry ®.B' if [Yo| > |Y|. Let R =

R, as a C-bimodule, so
Yo veg Y ’
R=Caoadp® (B'®CA')GB(A'®CB')@(A'®CB'®OA')€B.... .

To make R into a ring, it suffices to define associative and

148



distributive products Ty g ¢ RYGQCRé-——a-R. We do this by induction
14
on [y + [8] .

If |¥6] = |Y] + |6], et = be the inclusion map

Y,6
a— 3 . — 1]
RY®CR6 = R.Y{)CR. Define "aa A'® A" — A = C@A'CR by
multiplication in A, and similarly define %, .. Suppose ve] < |y|+1s}
b4
s0 Y = Y'x, 8§ = x6' with x = a or band [Y'| < |v|, |6'| < |6]. Then
R.YQDOR6 = Ry,G>ORbeCRx6§CR6, , and Ty 6 is already constructed, so

we may define KY 5 by the following diagram.
H

*y,8
2
Ry 1® R ® R B R, R

1%, @1 1@%y, 5

(RY.®CRX®CR6,)®(RY,®CR6,) =R @(RY,®CR6,)

Y'x6!
Clearly nY,é is distributive; an inductive proof that xY,é is
associative is not too hard. One can also show that R has the
universal mapping property which characterises free products with
amalgamation. If 8 is a ring and £:4—S, q:B‘“—*S are ring
homomorphisms such that §[, = q[c , then there is a unique ring
homomorphism &:R—> S with &= §{, , = §|B . We shall define Ax B to
be R.

is a subring of R, isomorphic to the

L= =]
Observe that E% R n
n=0 (ab)

tensor ring T(A'®B') of the C-bimodule A'® B'. Let V= 2. R

yeg Y2’

W= 2 Ry, ; these are both C-bimodules, and R = C@V@W.
YEG

We shall often use the relations
AVCC®V , BV =V , 4l = W , BUCCDV ,
Observe also that

V=4 @(W®CA') , W o= B‘GB(V@CB') .
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§3%, Main theorem

Let 4,B be rings with 1, each containing C as a pure
subring, and let a:C -4, B:C~>B be the inclusion maps. Then the
inclusions @3A—>A%B, ¥:B—>A*.B define a map @:Kf(a,5)~——*K1(A*CB).
The inclusion A:T(A'QDCB')-w~aA*CB induces a map

A*:K1(T(A'®>CB'))—-+ Ki(A*GB) .

Theorem 2 K1(A*CB) is generated by the images of K1(a,ﬁ)
and K, (T(A'® ,B")).

Proof. Let v be any element of K,(A*CB}- By Higman's trick (explained
in [5,84]), T is represented by some invertible (nx n) matrix T, + Ty,
where TA, TB have entries in A,B respectively. Now make the further

simplification

TA + TB 0 TA + TB 0 TA -TB
TA + Ty~ ~

o 1 1 1 \| 1

n n n n

T -
B
Write M, My for the (2n X n) matrices( \, > respectively, and

i
\}n 11’1

let M = ( MA My ). Then M is an invertible (2nX 2n) matrix

representing v, and MA’ MB have entries in A, B respectively. Let

1
i
the inverse N of M be partitioned as (\ 2> , where N1, I° are (nx 2n)
N
matrices.

Recall that, in the notation of §2,

A*CB =R =Cl®VOVW .

Write

RN e R
N* = Wy + NV + Ny (i=1,2)

where Né, N%, N; have entries in C,V,V respectively. Let

E=Mn

- 2
Ao+ MANV + MBNV

L

i}

T
1‘~LBNC + MBN‘«I + M{«.NW .
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Lemnma 3 K,L have entries in C and

K+L=1,K=X,1°=1, XK =1K=0 .

Proof.

n!
K+ L= (N M) 2) =

1 1 . . 1
M,Ng, My, MiNG have entries in C®V, and M N2, MNZ, M N have
entries in C®W, But K + L has entries in ¢, so K,L both have entries
in C.

The equation M = 1 implies that

1 1, _ v . 2u .
KMy =1, NMy=0, KM =0, NWp =1,
Therefore
Nk ul o+ N
c v
VE =\ o2 | = 2 ’
N°K NV
1 1 1 1 1 2 2. 2 _ 12
s0 NCK + NVK + NWK = NC + NV , and NCK + NVL + NwK = NV .
But K has entries in € ; it follows that
1 1 1 1 1
NCK = NC , NVK = NV y NwX =0,
2. _ 2, _ 42 2y _
NGK =0, NgK = NG, NX =0 .

2

Therefore NK° = NK ; since N is invertible, K2 = K., It follows that

2 = L , KL = IX = 0, as required.

Now write V = A'ﬁ5(wq§cA') and N% = Nﬁ. + N;A, (1 =1,2),
where Ni, R N;A, have entries in A' , WQbCA‘ respectively. Similarly

. i i i
write W = B'@ (V®B'), N = Ng, + Ny, .+ Let
1

1
E = MA(NG + NA

; 2 .2
V), T o= M(NE 4 HS,) .

Lemma 4 KX~ E , L - P have entries in A' , B! respectively, and

B° =EK=E , Ki =K , &M, = M, ,

A A
2 !
Fr=FL=F, LF=L, FMB =My .
Proof. By definition of E, X - E has entries in A. But
1 2 -2
K~E= MANWA' + MBNWA’ + MEhA, ,

and all terms on the right have entries in A'GB(WQDCA‘) . Therefore
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K-E has entries in 4'.

1 1 1
ot NA’ + Nw

1 1 : . . 1 1,. .
But N\M N MA have entries in C®A', and NWA'MA , NWMA have entries

' 1 = _
(W o FHIM, = WM =1,

ca ? A
in (W@CA')GBW. Therefore
1 1 _ .
(NC + NA')MA =13
it follows that EMA = MA and E2 = E. The argument used in Lemma 3 to
prove NéK = Né also proves NL.K = NL, , so BK = E, Similarly, L - F
has entries in B' and F2 =FL =F, FMB = MB . It remains to prove
that KB = K and 1F = L,
Observe that R = (C@W)@C(C@ux') = (C@W)%CA . Thus

2

R*" = (c@W)?"® 4 (as O-bimodule), and the columns of K - E are in

Wy BHa
H = MBcneeMw2nc (cow)°n ,

02n®cA'. The columns of M N1A' + M2, 4 MBNi, are in H®gA', where

Now LC2PCH and K¢2PC MACn®MV2n. But
R = mcPemve MR - L CPencte et MW,

2n _ Czn(\H

so K’ H = {0}. Since C°® = XC?P@Lc?™, it foliows that LC
Moreover, H = LCzn@{Hn(XcanBWan)}. So all the inclusion maps in the
diagram

L¢P —— 5 |

|

¢t —— (cawW)®
are split; it follows that K - E has columns in
(H®A) N (M@ A") = (16 R a' IR
But L|LR2n =1, s0 L(K~E) =K - E . Therefore KE = E - LE = K ,

Similarly LF = L, so Lemma 4 is proved.

Since EK = E and KE = K, kerE = kerK. Since EMA = MA and

E =M (N} +Nl,), icB = inM, . Similarly, kerF = kerl and imF = imly.

A
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Lemma 5 E + F is invertible, and represents an element in the image
of K;(T(A’éch')).
Proof. Since (E+ M)k =E , (E+ F)L=F ,
(8 + F)R®POER?® 4 FRZ® = MR™ + MR" = RO" |
If u € ker(E + F), then Bu + Fu = 0 with Bu € M,R", Fu € MzR". It
follows that Bu = Fu = 0, so u € kerE nkerF = kerKnkerL = {0}.
Therefore E + F is invertible.
Now (1 + B -~ X)L =L and K(1 + E-K) =X, so 1 +E -~ X is an
elementary matrix. Similarly 1 + F - L is an elementary matrix. Since
E-0f=(r-1%=0,
E+F=(1+B-K0-((E-KF-L))0 +P-1L).
Therefore 1 + (E - K)(F - L) is invertible; since its entries lie in
T(A'GDCB'), E + F represents an element in the image of Kq(T(A'QDCB')),

as required. (Recall that a similar trick was used in [5].)

Now (E + F)( MA MB Y = ( EM, FMB ) =M.

Let P = KC°® |, q = 1¢%® ; then 2R

= P®Q as right C-modules., Since
(KM, )" = (KB)A®® = 42" = P®.4 , (LM )B* = Q®,B ,
A C B C
lemma 2 shows that ( KMA LMB ) represents an element in the image of
K1(a,B). Therefore the element T represented by M is in the group
generated by the images of K1(a,B) and K1(T(A’Q§CB')). This completes

the proof of Theorem 2.

Bass [1] has defined Nil(C) to be the cokernel of the map
K1(C)———>Kﬁ(c[t}) induced by inclusion. Stallings [5] uses a method
of Gersten [3] to prove the following result.

Theorem If A‘QDCB’ is a direct limit of free C-bimodules, and Nil{(C) = O,

then the map K1(C)-—-9K1(T(A’8)CB'}) is surjective.

(Here, "free C-bimodule" means the direct sum of copies of C).
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Theorem If A'@.B' is a direct limit of free C-bimodules, and
== C

Nil(C) = O, then 6:K1(a,6)———>K1(A*cB) is surjective.
Proof. Observe that the image of the map
K1 (¢) — 111 (T(A" ®CB' D) —*K1 (A*CB)
is already contained in the image of ©. Theorem 3 now follows

immediately from Theorem 2 and the Theorem of Gersten and Stallings.
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WHITEHEAD GROUPS OF GENERALIZED FREE PRODUCTS

Friedhelm Waldhausen

The purpose of these notes is to describe a splitting theorem for the White-
head group. Its application is in vanishing theorems of the sort that Wh(G)

= 0 if G is a classical knot or link group.

An example of such a link group is the group with generators a, b, c,

and relators

[a,{b,c_ljj s [b,[cga—i:}] s {Cs[aab—i:{]
where [x,y] denotes the commutator xyx-iy-l. This group may look complicated,

but it happens to be the group of one of the simplest links (the 'Borromean

rings').

It is not their presentations that make knot groups tractable, What
makes them tractable is the fact that they can be built up out of nothing
by iterating a construction that I call *‘generalized free product'. As this
construction (or at least the motivation to look at it) is of topological

origin, I will start by giving the topology flavored description.

Let X be a 'nice' topological space, e.g., a CW complex (or, if the
reader prefers, a simplicial complex, or even a smooth manifold; all that
matters for our purpose, is the global picture), and let Y be a closed 'nice’
subspace, e,ge., a subcomplex. We assume Y is hicollared in X, this means
there exists an open embedding i: YXR = X (where R is the euclidean line)
so that i(¥Yx0) = Y. We do not ask that Y be connected, in fact, Y may have

infinitely many components.
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A recipe says that in this situation, the fundamental groupoid of X

can be calculated as the colimit of certain other groupoids.

Now assume that for every component Yj of Y, the inclusion induced

homomorphism of fundamental groups, T Y. = ﬁix, is a monomorphism. Then the

173

diagram obtained is called a generalized free product (gefep.) structure

on ﬁlx.

Let us denote X, i € I, the components of X - Y, and Yj, j €J, the

components of Y. The groups ﬂixi are called the building blocks of the g.sfape.
structure, and the groups ﬂin are called the amalgamations. For the sake of
uniform notation, we write
= 17 = ™ A = hl .
G 1x + B Uiel 1Xi ' L'jEJ 1YJ !

where 'U' denotes the sum ('disjoint union') in the category of groupoids.

As Yj locally dissects X, we may pick one of its sides (arbitrarily,
but forever) and denote it 'left', and the other one 'right'. There are in-
jections of groups {(well-determined up to inner automorphisms)

1,: 1LY, M X . 4 3 LY, 2T X .
3 1YJ 1"1(5) & it 1 1°r(j) *

Let F be a functor from groups to abelian groups which sends inner
automorphisms to identities. Letting
= 'Z, m
F(B) =yep FUT X))
and similarly with F(A), we have well defined maps F(1): F(A) = F(B),

F(r): F(A) - F(B), and F(1): F(B) - F(G), satisfying F(1)eF(1) = F(1)eF(r).

Examples of such functors F are
(1) HO(G), the integral homology in dimension O
(2) KO(RG), the projective class group of the group algebra of G over R,
and in particular, KO(G): = KO(ZG)

~

(3) KO(G) = coker(Ho(G) - KO(G))

(&) zZ, & H1(G}

(5) K, (RG)

{6) Wh{(G) = coker(Zz@Hi(G) - Kl(G)) , this map being induced from

GL(Z,1) X G = GL(2G,1)
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We can now formulate the splitting theorem,

Proposition. There is an abelian group % and a map & so that the following

sequence is exact
Wh(a) 12°TRy wn(B) —‘%y Wh(c) -2 0 € K, () RN i&’o(B)

There is a similar sequence for the unreduced functors; the one with
integral coefficients maps onto the one given, and the kernel is the Mayer
Vietoris sequence of homology (as indicated in (3) and (6)). One can continue

the sequence to the right (by Bass' 'contracted functor' argument).

The splitting theorem contains as special cases both the splitting
theorem for a free product of groups, and the Kiinneth formula for extensions
of the integers,

In order to deduce vanishing results from the splitting theorem, one
uses the five lemma and some a priori information about the vanishing of the
exotic term J. The trick here is not to work with an individual group G, but
‘with the totality of groups GXF, where F is a free abelian group. One can
thus exploit the fact that Eb(G xF) is a direct summand of Wh(GxF xZ) =
Wh(Gx F'). The trick works well since a g.f.p. structure on G (with building
blocks B and amalgamation A, say) induces a g.f.p. structure on G xF (with

building blocks BxF and amalgamation A xF, and the obvious maps).

The next proposition describes such a vanishing result for the

exotic term.

Proposition. In order that % = 0 , it is sufficient that for any component

Aj of A, the group algebra ZAj be regular coherent.

Note that no condition is asked of the building blocks or the structure
maps. In the case of the more general splitting theorem with R coefficients,

one would correspondingly ask that RAj be regular coherent.

(A ring is called coherent if its finitely presented modules form an
abelian category; it is called regular coherent if, in addition, each

finitely presented module has a finite dimensional projective resolution).
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The sort of arguments used in deriving the splitting theorem , also

gives information on this type of structure of rings:

Proposition. Let G have a ge.f.p. structure with building blocks B and
amalgamations A. For RG to be regular coherent, it is sufficient that the
group algebras RBi be regular coherent and that the group algebras RAj be

regular noetherian.

The proposition says, for example, if G is a free group, or a 2-mani-

fold group, then ZG is regular coherent,

1 will now indicate how g.f.p. structures occur in nature, This
necessitates the notion of iterated g.f.pe. structure. The main point in the

definition is an appropriate transfinite recursion.
Notationally, it is convenient to introduce classes of groups, Cm )
?

indexed by pairs of non~negative integers in lexicographical ordering. Each
class contains the preceding ones. We abbreviate

c =U ¢ , c=U ¢ .
m n myn m m

Definition. (1) CO ) contains only the trivial group
’

(2) G € C if and only if G has a g.f.p. structure with all building
blocks, B, and all amalgamations, A, in Cm, for some fixed m
{(3) if G €C , then G € C, if and only if
all B, € Ch.pe for some fixed n, and

L

all A, € C
J m~1

(4) if G €C_, then G €¢C if and only if all B, € C
n men 1 m

(here C
) m,

yn-1 -1

) .

is to be interpreted as Cm 1

Examples. (1) cm,n is closed under taking subgroups.

(2) C is closed under extensions. (Proof: Let 1 = ker(p) = F ; G > 1 be
exact, with ker{(p), G € C, Let G € Cm,n' The proof is by induction on {(m,n).
Let G have a gefeps structure with building blocks Bi’ and amalgamations Aj'

Then F has a ge.feps structure with building blocks p-l(Bi) and amalgamations

-1
p (Aj). }
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(The assertions under (1) and (2) will be obvious from the definition of

gefeps structure to be given in the next section).

(3) ¢, =¢ is the class of free groups.
1% %10
(4) 1f M is a closed 2-manifold other than the projective plane, then
™ € .
M S0
(5) There is a large class of 3~dimensional manifolds (e.g., all compact
submanifolds of the 3~sphere) whose fundamental groups are in C_ (and even

3

in Cz if the manifold has non-empty boundary), however, the 'n' may be quite
large.

(6) A one-relator-group is in C, if (and only if) the relator is not a
proper power., This can be checked from Magnus' analysis of these groups
(note that the groups encountered on the way as building blocks, need not

be one-relator-groups). Consequently, if G is a one-relator-group, and its

relator is not a proper power, then Wh(G) = ﬁO(G) = 0.

To conclude this section, we exploit the geometric picture to see
that the general type of g.f.p. structure can be reduced, in a sense, to two
rather special types. For, let X and Y be as in the beginning. We can break
X at Y, and can then reconstruct X, by glueing, one by one, at the components

of Y, and eventually taking a direct limit,

Each of the steps in the above procedure corresponds to a gefep.
structure in which (by abuse of the old notation) the subspace Y is connected.

There are two cases left, according to whether X - ¥ is connected or not.

Denote by G, A, B (resp. Bl’ Ba) the fundamental groups of X, Y, and

X-Y (or its components), respectively.

In the case where X - Y has two components , G is the pushout in the

diagram
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In a classical terminology, G is the 'free product of B, and B

1 20 amalgamated

at A ' | G = B1 *A B2 in customary notation.

There is yet another description available, namely G is also the

pushout in the category of groupoids in the diagram

U U
A A — B1 B2

! !

AXI —» G

Here 'U! is the sum in the category of groupoids, and I is the connected

groupoid with two vertices and trivial vertex groups.

In the case where X - Y is connected, let a, g : A 2 B denote the
two inclusion maps. Then G is the pushout in the category of groupoids in

the diagram

A classical terminology is not available for this construction. Logicians
have used it to construct groups with weird properties (unsolvable word
problem, etc.). They sometimes refer to it (and also to a more general con-
struction) as the 'Higman-Neumann~Neumann-Britton-extension', cf. Miller's
book. It can be checked, incidentally, that for quite a few of the weird

groups in this book, our method shows their Whitehead group is trivial.
An explicit description of G is this. Let T be a free cyclic group,

with generator t, Then G is isomorphic to the quotient of the free product

B * T by the normal subgroup generated by
tala) t™1 (ga))”t, a €a.
In the next section, I will give the definition of g.f.p. structures
which is the most useful one to actually work with. The subsequent section

is mostly devoted to a discussion of the exotic term in the splitting

theorems In the final section, some indication of proof is given for the
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splitting theorem itself.

Up to reformulation of some parts, essentially all of the present ma-
terial has been taken from a preliminary report which was issued in fall '69
in mimeographed form. I have not included here the full proof of the splitting
theorem, as I doubt if those details have any relevance to the conjecture

described in the appendix.

2. Generalized free product structures, revisited.

Let the spaces X and Y be as in the preceding section. Denote X the
universal covering space of X, and Y the induced covering space over Y.
Identify G (= wlx) to the covering translation group of X, acting from the

right.

The subspace Y induces on X a certain decomposition whose nerve is a
graph, ', on which G acts. By a 'graph' we mean here a certain combinatorial
. . . . . I-O I"l .
device, consisting of its set of vertices, s, set of segments, , and in-
cidence relations (finitial vertex' and 'terminal vertex' of a segment, de-
noted vi(s) and vt(s}, respectively). The eclements of ° correspond to the

components of X - Y, and the orbits TO/G correspond to the components of
X ~ Y, Similarly, the elements of fl correspond to the components of Y, and

the orbits Ti/G correspond to the components of Y.

As the realization |I'| of T can be embedded as a retract inm X, [ must

be a tree (i.e., the l-complex |T| is connected and simply connected).

Another property is obtained from the 'two-sidedness' of Y in X,
namely the action of G on T preserves local orientations. By this we mean
. 1 . . s ias
if ¢ €G and s €T, then (s)g = s implies that g preserves the initial
vertex of s. Consequently we can assume the segments of I' are oriented in

such a way that G preserves all orientations. We now define
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Definition. A generalized free product structure on a group G consists of a

tree I and an action (from the right) of G on T, preserving local orientat-

ions.

Remarks. (1) This is of course equivalent to our original definition. To
recover that one, we need only construct Eilenberg-MacLane spaces K(Gs,i) and
K(Gv,l) (corresponding to the stability groups of segments and vertices, one
for each orbit), construct mapping cylinders and glue as prescribed by the

quotient graph I'/G. Since for the component ¥, of Y, the map T, Y =~ 1 X

[¢] 170 1

is a monomorphism, ﬂiY is indeed detected as the stability group of a cer-

o
tain segment.

(2) By our definition of g.f.p. structure, the 'set of g.f.p. structures on
a group' is a certain contravariant functor, indeed a sum of representable
ones., There is no corresponding assertion if we restrict attention to the two
special types of g.f.p. structure considered at the end of the previous

section.

We will now analyse g.f.p. structures a bit. By a basic tree in T we
shall mean a subtree with the property that its set of vertices contains one
and only one representative of every orbit TO/G. A basic tree exists, e.g.,
one can lift a maximal tree from !/G. We choose a basic tree and keep it

fixed henceforth, it will be denoted Tﬁ.

A segment in I’ is called non-recurrent if it is equivalent, under the
action of G, to a segment in T$ (this notion depends on the choice of the
basic tree, in general). Otherwise, it will be called recurrent. There exists
a basic set of recurrent segments, denoted P:. This means, Ti contains one
and only one representative of any orbit of recurrent segments, and if
s € r:, then the initial vertex of s is in Fﬁ (the terminal vertex of s is
then necessarily not in F$). We fix a group element, denoted ts’ with the

-1 . . .
property that ts carries the terminal vertex of s into I,.

$
The element ts just described, acts necessarily without fixed points

on I'. This can easily be seen from the existence of the distance function
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on I’ which associates to any pair of vertices the number of segments in a

shortest path joining them.
ID 1 sz
if x € or x €I, we let G denote the stability group of x,

G = {g€6 ] (x)g=x1

The condition involved in the definition of a g.f.ps structure, is equivalent
to: For any segment s, and its end points vi(s) and vt(s), we have the

relation of stability groups

Gvi(S) a th(S) = s

We let I; denote the tree whose set of segments is

1 1 1 -1 1
I‘£=I‘$UI‘rU§(s)ts iséI‘rg.

For any subtree A of [, and any vertex v of 4, we let 0Y(v) denote the set of
those segments in A which are incident to v. Then clearly, for any v € To,

1 s . :
the set I (v) is in one-one correspondence to the union of cosets
U a6 s €T,
s s* v’ £
From this follows by an inductive argument involving distance, that G

is generated by

1
G, v €& fg y and bt s €T .

3

3. Modules over generalized free product structures.

The central notion is that of a certain diagram which I call a

r-object, and which I will now describe, after some preliminaries.

Following the notation set up before, we denote building blocks of the

gsfepe structure the groupoid

and amalgamation the groupoid
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A=U 6 , serturt,
s s $ r

Let ModR be the category of modules over the group algebra RGv’

G

v
where R is some fixed ring with unit. We define ModB to be the restricted
product

Mod, = Xv Mod

y v & Ig [

RG
v
and similarly

1 1
= € U
ModA ><s MOdRGS s S Yﬁ T} .

If M € Mod_, then M ®, G is defined: If, say, M= X_M_, M/ € Mod

B‘l

RG_ !
o v
v € I$ , thén

RG , v €19

M®BG=67VM g -

v th
v
It is clear from the definition that, as an abelian group, M 85 G is a direct

sum, indexed by all of IO,

Me 6= Dwu , ver?,
B v v

If g € G is such that (vo)g = v, where e € fg, we can write

¥We can also consider Mv as a module over RGV.

Similarly, if N € Mod,, then N ®, G is defined, and there is a direct

sum decomposition of abelian groups,
1
N® G= O N , s €T,
A s s

Definition. A I'-object consists of modules N € Mod, and M € Moa

A B? and a map

over G,
. ~
1: M @b G N @h G
satisfying: if (for any v and s) the restriction of 1 to Mv has a non-zero
projection to Ns’ then the segment s is incident to the vertex v.

A map of T-objects is a pair of maps, one in ModB and one in Mod so

AS

that the obvious diagram commutes. The resulting category is abelian since
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the functors 8%6 and 836 are exact,
Dually, a [*-object consists of modules, and a map
«
M 8% G N 8k G

satisfying the same sort of condition. The duality functor Hom, .( ,RG) maps

RG
T-objects to [*~objects, and vice-versa (however, in order to stay with right

modules, we may have to replace the coefficient ring by its opposite).

We can be somewhat more explicit about the structure map
. -
1: M 8@ G N 8% G

in a I-object. Let us write

for the composition

M- &M, > D N, > N .

v vt Tv! st 's! s
, v € rg, s € r;; and

for fixed v, those components assemble to an {arbitrary) RG_-map

Then 1 is of course determined by its components tv s
’

M @SNS, s €THy) .

v

Definition. A I'~module is a I'-object t1: M 8% G 2N @i G satisfying that t is

an isomorphism. The resulting category is denoted Modr; it is abelian.

A T-module is called elementary if N is finitely generated projective
R s s IO ¥ B
and, in addition, at most one of the component maps %  _, V € g S € Ié, is
s

not the zero map; this 1v s must then itself be an isomorphism.
1

A T-module is called triangular if it has a finite filtration with

elementary subquotients.

We denote KO(MOdT’R) the class group of those objects in Modr which
are made up of finitely generated projective modules, the relations coming
from all exact sequences (not just split ones). Using elementary l-modules,

we obtain a map

i: K (RA) © KO(RA) - Ko(Modr,R)
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which is a split injection by an argument below (the construction of the
modules denoted P(s,v)). The cokernel of j is denoted T, This is the T that
appears in the splitting theorem. The definition of R is related to maps
which are 'nilpotent! if this term is taken in a suitable sense. The vanish-
ing theorem for T will come in in somewhat disguised form: under the hypo~
thesis that RA is regular coherent, the proposition below implies that the

above map j is an isomorphism.

We now proceed to the analysis of I-modules. Let s be a segment of T,
and v a vertex incident to s. Define I; o to be the maximal subtree of T
]
which contains v but not s. Given s, there are two such trees, Ts v.(s)
V.
i
T .
and s,vt(s)

Given M € Mod then M 8% G, considered as a module over RGs’ splits

B’
naturally as a direct sum

E(S,vi(S)) & E(S,vt(s))
where, as an abelian group,

ﬁ(S,vi(S)) = 6% Mo, v € I2,,vi(5)

Similarly, if N € ModA, then N 81 G, considered as a module over RGS,
splits as
N(s,v,(s)) & N © N(s,vt(S))
where, as an abelian group,

. o . 1
N(s,vi(s)) = 6%‘ Ns' , st € rs,vi(s) R

If now t: M @b G”N® Gisa T-module, then
1(§(S,vi(s))) < N(S,vi(s)) ® N
and
T (s,v (5))) € Tils,v, (s)) .
Whence the canonical splitting
N, = P(s,vi(s)) & P(s,vt(s))
where P(s,vi(s)) = Im(ﬁ(s,vi(s)) - ﬁ(s,vi(s)) & N, 2 Ns)

~ ker(ﬁ(s,vi(s)) - ﬁks,vi(s))) ’
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and analogously with P(s,vt(s)).

On the other hand, if v is a fixed vertex, and s a segment incident
to v, let us denote Tv,s the maximal subtree of [ which is incident to s, but
does not contain v. We have rv's = TS‘G where v is the other end point of s.
As before, let us denote Ti(v) the set of segments of [ which are incident

1 s
to v. Let rrep(v) denote a set of representatives for the quotient set

Tl(v)/Gv; e.g., if v € Tg, then Tz(v) is such a set of representatives,

Given M € Mod_, then M ®, G, considered as a module over RG , splits

B’
naturally as a direct sum
M & & Mlv,s), s €T (v)
v s rep
where, as RGv-module,

M(v,s) = M(s,v) ®RG5 RG_

E(s,;) is defined as above, and Vv is the other end point of s.
Similarly, if N € ModA, then N 8& G, considered as a module over RGV,
splits as

o =, . 1
S ®R‘35 RG, & WG N(s,¥) ®RGS RG, , s €T (v) .

If again 1: M ® G~ N® G is a T'-module, we can write | as a map

of RGv-modules in the form
WYY o k . @'i" e
Mv € é&% Ms,v) gth RGv ” qé Ns @th RGV &g Ns,v) gth RGv !

s €T (v) .
rep
Now the restriction to the second summand is of a type considered before.
Hence we obtain a map
& <& v > 4 =
M T P(s,v) 8%65 RG dg Ns gth RG_

. o ~
&, pis,v) ®RGs RG, A EES P(s,¥) ®RGS RG

whose restriction to the second summand is the obvious identity. Therefore

the restriction to the first summand is the sum of an isomorphism

. ST
Kv. Mv Qé P(s,v) Qth RGv
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and some map

. -3 v
lv- Mv G% P(s,v) @th RGv .

For fixed s € ' (v), the composition A ok "1 induces an RG ~map
rep v v v

: . = 1
P(s,v) 8hss RG, &2, P(s?,v) @th RG , s' € rrep(v)

which in turn is determined by the induced RGs—map

. , = 1
ps,v: Pis,v) =~ 8;‘ Pis*,v) Qth RG , s € T;ep(v).

The target of this latter map is in fact slightly smaller since the composit-
ion of My o with the projection to P(s,v) is zero (inspection of the defin-
i

itions shows that this composition can be factored through M(s,v)).
The map now reads

~ ral ~
3 ~3 [23) 1
Vo.v P(s,v) P(s,v) ®RGS RG_ EBS, P(s',V) ®RG5 RG_

st € rjep(v) , st £s

A
where RGv(s) is the summand in the canonical splitting of RGs—bi-modules

A
RG_ = RG_ 9 RG (s) .
v s v

It is clear now that there is an (exact) functor
: X -
F ModA ModA ModA X ModA
which depends only on the g.f.p. structure {(in particular it does not depend
on the choice of the sets Tiep(v)) so that the collection of maps
1 1
€ uT
vs,v s S r$ !

assembles to a map

vi P 2 F(P)

where the first component of P € ModAX ModA is given by the collection
P(s,v.(s))}, s € T1 U Ti.
vy s P r

The original I'-module is determined by the pair (P,V). Conversely,
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a necessary and sufficient condition for (P,V) to arise from a l'-module, is

that the map V be nilpotent in the following sense.

Define a filtration O = Po (o P1 T eee © Pj C eee © P by the rule

Pj+1

v irp.)) .
J

Then we call V nilpotent if U Pj =P .

Remark. If the ge.f.p. structure comes from a product with the integers (so
that we are in the situation of the classical Kiinneth formula) then a nil-

potent V in our sense is just a pair of nilpotent maps in the usual sense.

We will not prove here that V is nilpotent as this follows directly
from the lemma below. We note the following interpretation of V. If x € P(s,v)
then x € P1 (the first term of the filtration) if and only if there exists

y € M_ so that 1(y) = xa

Given V: Q = F(Q), it is convenient to consider a more general type of

filtration, 0 © Q1 C ees © Qj C 4ee © Q, which we call a nil-filtration if
. C F(Q, d .= .
V(QJ+1) (QJ) , and U QJ Q

We say it is of finite length, q, if Qq = Q, and we say it is finitely

generated, if all the Qj are.

The filtration originally derived from a l-module, denoted .. C Pj (SR
above, will certainly be of finite length if N is finitely generated, but it
need not itself be finitely generated. It is clear nevertheless that there
exists some finitely generated nil-filtration which is a subfiltration of the

original one, and is of the same length.

We will now describe our resolution argument. Let .. & Qj < 4 be a
finitely generated nilfiltration of length q, associated to a T-module. Pick

finitely generated projectives Uj in ModAx ModA, and surjections
u. - Q. j == 1 .
3 5 ! Jd

Then we can find maps uj: Uj - F(Uj 1) so that the diagranms
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u; 2 R )
l |

Q. = F(Q. )
J J=

1

commute, Define a filtration O C V1 C ees © Vq = V, by

V, = U_® ... U, .
i 1 1

It is a nil-filtration for the map

vi:V 2 F(V), v=2ZL.u,.
J 3J

This map is associated to a certain triangular [-module in which the A-module
is V, considered as an A-module via ¥: ModAx ModA. Furthermore there is a
surjection of [-modules, compatible with the surjection of nil-filtrations,
Vj - Qj' Define ., © Wj C .. to be the kernel filtration, it is a nil-
filtration for the map w = vlw, where W = Wq. If Q1 was projective to begin

with, we could have chosen V_ = Q

1 and the new filtration would be of

11
shorter length.

Now assume the amalgamation A is coherent, and Q is finitely presented.
Then, as fop ModA is an abelian category, it follows that Qj and Wj are

finitely presented. Therefore we can repeat our construction using the

filtration Wj .

On iterating the procedure we are building up, in particular, a
projective resolution of Q1. Therefore, if A is regular coherent, we can
eventually reduce the length of the filtration, and so, by induction on

this length, we have proved:

Proposition. If A is regular coherent, then any finitely presented T-module

has a resolution by triangular [-modules.

(By abuse of language, we have called a T-module 'finitely presented!
if the A-module involved is., Note that the main interest of the proposition

is in the case where this A-module is actually projective).

Above we referred to the following lemma. The above application of the
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lemma just exploits the obvious fact that a nil-filtration does exist for a
triangular I'-module. The lemma says that there are as many maps from triang-

ular [-modules as we can expect at all.

Lemma. Let t: M @, G ? N ® G be any T-object.

1
(1) Let y € Ne» s €T, and y € Im(1). Then y is in the image of some map

from a triangular I'-module,

{(2) Let x € M, v € T°, Then x is in the image of some map from a triangular
T~module.

[¢]
Proof., Ad {(1). Let y = Zv 1(zv) vz, € Mo,V (S

y where & is some
finite subtree of I'. The sought for triangular ['-module is made up of rank-one
free modules over the appropriate rings. There is one basis element for each
vertex and segment in A, and there is an additional basis element for the
segment s. Each of the components of the structure map is an 'identity' (i.e.,
it sends the basis element to the basis element), and there is one such for

each incidence relation in A, and one additional one into the extracomponent.

The definition of the map is automatic.

Ad (2). This follows from (1) by the same sort of splicing argument.

4. Mayer Vietoris presentations of G-modules.

Let L be a G-module (more precisely, an RG-module). A left Mayer

Vietoris presentation of L is a short exact sequence

-> - - -
o) L M @h G N Sk G o]
the right part of which is a I-object, as defined in the previous section.

Dually, a right Mayer Vietoris presentation is a short exact sequence

0O 2 N Qk G ? M @% G > L 7 o

invelving a I*-object.
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A left or right Mayer Vietoris presentation is called f.g.p. if all
the modules involved are finitely generated projective. F.g.p. left and right

Mayer Vietoris presentations are interchanged by the duality map HomR ( ,RG)

G
(with the usual proviso on the coefficient ring R). Hence it is sufficient to

concentrate on either one. For us this will be the left Mayer Vietoris pre-

sentations, abbreviated MV presentations henceforth,

Remark. The concept of MV presentation is an axiomatization of a Mayer
Vietoris type situation that occurs if one looks at chain complexes in the

universal cover of a pair X,Y as considered in the introductory section.

Namely, if L is a chain complex over G = nix, then *subdividing at Y !

produces an MV presentation of chain complexes
- - - -
0o L M B G 7 N ®, G o .

After the subdivision, L will have been replaced (up to a dimension shift) by
the mapping cone C(1). And the Mayer Vietoris sequence of chain complexes
that one is accustomed to read off, now appears as the right Mayer Vietoris

presentation which is the sequence of cones
o - c(11) - C(Iz) 2 c(t)y ? o
where 11 is the trivial inclusion O 2 N @k G, and

1, - o
2 M @b G N 8% G N Qh G

is the map whose components are 1i and 1t in the canonical sum decomposition
of 1, The B-structures on the two copies of N 8% G come, respectively, from
the two natural maps A - B. The proposition below is the 'subdivision lemma'

that one would naturally expect.

We will now verify that there exist quite a few MV presentations, and
maps thereof. Our main tool will be certain 'standard' MV presentations,
defined for a free G-module; part of the data will be a basis of the G-module,
in the description we will assume that it has cardinality one. (Inspection

shows that the construction below can actually be carried through for any
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G-module equipped with a reduction to ModA). In describing free modules of
the type M 8@ G, it is sometimes convenient to use a basis which does not

come from ModB.

Definition. Let F be a free G-module, with basis element f. Let A be a

finite subtree of I, Then the standard MV presentation of F,f, associated

to 4, is the following
(1) M 8% G is the free G-module on basis elements ﬁv, v €20
(2) N ®, G is the free G-module on basis elements ﬁs, s € !

{(3) the G-structure on M 8% G is such that Ev generates a free RGv-module;

similarly with N Qh G
(k) the structure map #: F 2 M 8, G is given by t(f) = Zv ﬁv , v € NG
(5) the structure map t: M 8b G 2 N 8% G is given in terms of its compo~

nents 1 : M 2 N by
V,sS v s

i (m)=n , if v =v,(s), the initial vertex
VeSS Vv s i
1 m = «n i = i
v s(mv) n_, if v vt(s), the terminal vertex
1 (m.) =0, if v is not incident to s

(6) in order to describe the reduction of M ®; G to Mod i.e., to define M,

B‘l
we must pick representatives of cosets for the various inclusions involved

in the g.f.p. structure, so we assume this has been done once and forever.

It is crucial here that we need only choose representatives of cosets for the
inclusions of amalgamation groups in building block groups, and the elements
denoted ts in section 2, and that this choice determines representatives of
all the cosets in G (this statement is the general version of the existence
of the usual normal form for an element of a free product with amalgamation,
it is easily proved by the use of the distance function on T). 1In particular
then, we have picked for every v € 8% an x, € G so that (v)xv“1 € Tg , the

basic tree. By definition now, M is the B-module whose component at v' € Ig

-1

) : . -1
is the direct sum ei,Mv-xv , taken over those v € t° for which (v)xv =v',
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In terms of the basis elements m = & +X (which live in M), we could

now redefine HX(f) = T m ex
v v v

(7) +the reduction of N @k G to ModA is described similarly.,

Before proceding, let us note that for any MV presentation (or even

T-object), there is a canonical decomposition

where ti is defined so that its non-zero components are those lv s for which
k]

v = vi(s), the initial vertex (this decomposition was used in the remark

above). For the standard MV presentation just described, we have the import-

ant property

L) =T n,, s €41

5

Proposition. Let 0 > L 7> M' 8% G ? N! ®A G ? O be any MV presentation. Let
F be the free G-module on the basis element f, and let g: F > L be any G-map.
Then for suitable A, the standard MV presentation of F,f, associated to 4,
admits a map of MV presentations, inducing g. Moreover, this map is uniquely

determined by g.
Proof. By definition, M' @h G is a direct sum

o
@va'r@RGv RG , v €T .

Let §v denote the projection of #H'sg to M; @hG RG. Then we can write
v

gv(f) = ZW aW.xW

where a_ € Mly ox € G is a representative of a coset G;\G as chosen before,
and v € ro runs through the vertices with (w)xw—l = v, From this formula
and the fact that

#(f) =% mex , w€E a° ,
W oW W

it is clear that the required B-map can be defined as soon as the finite
tree A has been chosen so large that it contains all the vertices w for

which a, £ O.
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Next we define the required A-map, 9y directly, by decomposing
similarly the map
1'% t, : - []
H Hiu g F N 8% G

using

t.((£)) =% R =% nex , s €4,
1 s s s s s

The sum decompositions involved in our construction were canonical, and it is

now easily seen that the maps g, are compatible as required. We record

9B1 QA
the uniqueness part in a separate lemma.

Lemma. If in the above proposition, g is the zero map, then gB and 9, must

be zero maps, too.

Proof. It is enough to treat 9y Since the source MV presentation is stand-
ard, we have
t.(n(£)) = T_n_ex
i s s

s i

and on application to this element of the map 9, ® G, no cancellation is

possible between the individual summands.

I will now indicate how the splitting theorem can be obtained. Follow-
ing Whitehead's original treatment, a torsion element can be represented by
a based free acyclic chain complex. The relations come from certain short

exact sequences, called elementary expansions.

Using our machinery of MV presentations, we can now say that any chain
complex over G comes, via the forgetful map, from a chain complex of MV pre-
sentations (with bases suitably). And we can also say what, in the framework

of MV presentations, corresponds to elementary expansions.

Technically, the analysis boils down to situations which are blown up
versions of the following simple prototype. If we have a chain complex which
on the G-level (i.e., apply the forgetful map to ModG) is acyclic, there is
still no reason that it be acyclic on the A-level (a I'-module is an example

for this). So we can try to make it acyclic on the A-level as well, using
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simple operations, The details are standard and there are no surprises: one
just goes on killing homology groups, working up in dimension. It turns out

that there is a global obstruction, and this gives the connecting map.
To illustrate the technique, we prove

Proposition. Let G have a gu.f.p. structure with building blocks B and

amalgamation A.

(1) 1f gl.dim.ModA % n-1, and gl.dim.ModB = n, then gl.dim.ModG < N
(2) If the building blocks are coherent, and the amalgamations noetherian,

then G is coherent.

Proof., Ad (1). Let L. be a free (n-1)-dimensional resolution of
coker{L, - LO). By the subdivision lemma, there is a complex of standard
MV presentations over L.,

0 2 L. ? M, & 6 > N ®, 6 > 0o .

Since no conditions had to be met in dimension O, we can assume NO = Q. Now
the last lemma of the previous section tells us that we can add a triangular

T-module (or maybe a big sum of such) to the 2-chains to kill
-
Im(H, (M. & G) H (N. ®, G))

and hence HI(M' @% G)s Again it tells us that we can kill Hz(N. G% G), and so

on. But once we killed H (N. 8, G), we know that (using H, (N, ®, G) =

-2

H, (N.) ®, G etc.) ker(Nn >N 2) must be projective since we resolved

-1

Hl(N')' Similarly, ker(Mn SM 2) is projective, and we are done.

-1

Ad (2). By a bit of diagram chasing, the assertion is reduced to proving

that ker(L1 - LO) is finitely generated once Ly and L_ are finitely generated

O
free RG-modules. Again the subdivision lemma gives us a map of standard MV
presentations over L1 - LO' We regard it as a complex in dimensions 1 and O,
and can assume as before that No = 0. Arguing as before, we can introduce

a big sum of triangular [-modules into the Z2-chains in order to kill

Im(Hl(M. = G) = Hi(N. xk G)) .
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This time we would like to have N2 finitely generated. But Im(N2 - Nl) is
finitely generated by the noetherian hypothesis. Therefore some finite part
of the big sum is already sufficient for our purpose. We have achieved now
that the sequence

Hy(N. ®, 6) = H (L) = H (M. 8 6)
is short exact. But the base changes are exact. So the extreme terms can be
rewritten HQ(N.) @ G and Hl(M') 8% G, respectively. So they are finitely

generated by the coherence hypothesis, and we are done.

5. Appendix.

Let K(C) denote Quillen's K-theory associated to the category-with-
exact-sequences C. Here C is assumed to be equivalent to a small category,
and, by definition, K(C) & (homotopy equivalent to) ( Q'(C), the loop space
of the nerve of the category Q'(C), where Q'(C) is small and equivalent to
Q(c), and Q(C) is constructed from certain diagrams in C, involving the

notions of 'admissible monomorphism' and 'admissible epimorphism'.

If MV denotes the category of MV presentations over a g.f.p. structure
{of a group G, with building blocks B, and amalgamations A), we define Q{MV)

by the rule

(1) an identity map is admissible if all the modules involved in the object

are finitely generated projective
{2) an epimorphism is admissible if its source and target are
(3) a monomorphism is admissible if its source, target, and cokernel are.
Similarly, we define Q(Modr).
There is a natural embedding
K(Modp) = K(MV)

whose composition with the natural projection, induced from the forgetful map,
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K(MV) = K(Mod.)

is trivial.
There is evidence that the following should be true
Conjecture 1. The sequence
K(Modp) = K(MV) ~ K(Mod.)

has the homotopy type of a fibration, or equivalently, the long sequence of

homotopy groups is exact.

(It is not conjectured that the map K(MV) - E(ModG) is locally fiber
homotopy trivial: indeed this is almost certainly not the case. Similarly

below).

For the amalgamation A, define

E(ModA) = ><j E(ModAj) ’

the restricted product (the direct limit over the finite products) over the

component groups. Similarly with §(ModB).

There is a natural embedding

K(Moay) = K(Mv)
so that the composition with the natural projection

KMY) > K(Moa,)
is trivial. The latter map has a section (in fact, there are three obvious
such).
Conjecture 2. The seguence

K(Moay) =~ K(MV) > K(Mod,)

is a homotopy fibration. Consequently

kK(My) = K(Mod,) x K(Mody) .

From the retraction MOdT -2 Modﬁ><ModA, we can conclude that

K(Moap) = K(Mod,) X K(Mod,) X N ,
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defining N. (And ﬂbﬁ = M, our old exotic term). Combining conjectures 1 and 2,

and noting that two terms cancel, we obtain

Conjecture 3. There is a homotopy fibration

K(Mod,) x N = K(Moday) = K(Mod)) .

Concerning the exotic space N, there is the vanishing
Conjecture 4 If A is regular coherent, then N is contractible.

Conjecture 4 happens to be true, for under the regular coherence
hypothesis, we can replace in the definitions of both §(ModAx'ModA) and
E(Modr), respectively, finitely generated projectives by finitely presented
modules, and can then conclude that the two spaces are equivalent., This uses
the resolution of Temodules by triangular ones, and Quillen's theorems on

reduction by resolution and devissage, respectively.
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Introduction

The theory of induced representations took its origin in the work of Frobenius on
complex representationtheory as a tool to relate problems, concerning complex
characters of a given group, e.g. their decomposition into irreducibel characters,
with the corresponding question for one or several of its subgroups. A classical
example for the utility of this approach is for instance the orginal proof of the
Frobeniustheorem (see [38],§63), but of course there is a wide range of further good
examples in that direction., Still a rather different point of view emerged from
E.Artin's idea, to consider induced representations on the level of virtual
representations (i.e. generalized characters), where he was able to prove, that a
certain multiple of any rational generalized character is a sum of characters, which
are induced from generalized characters of cyclic subgroups, and to use this fact in
an essential way in his study of generalized L-functions (cf. [1]). The next miles-—
tone in that direction was - no doubt - the paper of R. Brauver " On Artin's L-series
with general group characters" ([3]), which - based on an improvement of Artin's
inductiontheorem - solved quite a number of classical problems in a surprisingly
simple way and - at the same time - stimulated a series of further investigations

in that direction by Roquette ([31]), Berman ([2}), Witt ([36]), probably several
others and Brauer himself. The next essential step was probabiy taken by R. Swan,
who — elaborating on the ideas and techniques of R-Brauer - used this technique

very successfully in his study of Grothendieck- and classgroups of integral
representations (e.g. [341 and [35}). The wide range of possible further exploitation
of these ideas then led T.Y. Lam (see [28}) to a first attempt of an axiomatic
formulation of the techniques, in which way induced representations, especially the
Frobenius-reciprocity-law were used in-the study of the structure of "virtual

representations" in various situations, i.e. of various Grothendieckgroups and -rings.

The usefullness of this axiomatic approach was demonstrated not only by a number of
new and important examples (e.g. the Whiteheadgroup of a finite group) in T.Y. Lam's
thesis itself and several other papers in that direction, but also for instance by
its surprising use, made by W. Scharlau (cf.[32],[33]) to simplify considerably the
proofs of several theorems concerning the structure of the Wittring of quadratic
forms.

Still - further investigations in that direction and especiallykhe central rdle of
the Mackey—-theorems (cf.[71, §44, p.323-27) in J.A. Greens study of modular
representations (cf. [211,[22]) suggested a modification of T.Y. Lam's approach,
taking into account not only the Frobenius-reciprocity—law, but also the Mackey~-
subgroup—theorem, which resulted in two rather similar approaches to an axiomatic
treatment of induction-theory, one developed by J.A. Green in [23]and [241, the
other one by myself ([13],[14],[161).
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The first part of this paper now contains a new version of my own axiomatic
theory: As before it is based on the notion of Mackey-functors, but whereas in Be]
the approach took its bearing from the theory of Burnsiderings, this time I have
tried to develop the theory using its close relations to tertain aspects of relative
homological algebra.

Thus 5?9%L§%8§% outline of some basic notions and constructions of relative homolo-
gical algebra, put in a way, which is convenient for our later purposes. Especially
we define a co-, resp. contravariant functor M from a category A with finite products
into an abelian category B to be X-projective, resp. X-injective for some object

X in A, if the canonical natural transformation MX > My M(XxY) - M),

resp. M ~» MX: M(Y) +~ M(YxX) is split-surjective, resp. split-injective (with

MX(Y)'= M(XxY) of course for any object Y in A), which turns out to be the proper
definition to understand the homological significance of the Amitsur-complex,
associated with X (Prop. 1.2). Additionally-generalizing¥concept of J.A. Green - one

can define vertices of such functors under appropriate assumptions on A.

An example to have in mind is the following: Let G be a finite group and A the cate-—
gory G of finite G-sets. Let M be a ZG-module and define MM(S) = HomG(S,M) the
set=abelian group of G-maps from S to M for any G-set S, thus

MM(G/U) =M = {m ¢ Mlum = m for any u e U} for U < G.

MM is in an obvious way a contravariant functor on G and one can show, that it is
S-injective, if and only if M is relatively U-injective for U={U ¢ GISU % ¢} in the
sense of [12], i.e. M is a direct summand in P2 ® M = D (M[U)U > ¢,

Ueld 2U Uel
Moreover one can also make MM a covariant functor by associating to any G-map
9: 8§ > T between two G-sets S and T the map
o : Hom (S,4) + Hom (T, M): £ » o (£) with o (£) (1) = I, £(s), tcT and again

segp " (t)

one has MM S~projective as a covariant functor if and only if M is relatively
U-projective for U={U ¢ G|SU 1 @) in the sense of H%]. But by Gaschiitz-Higman
U-projectivity of M is equivalent to U-injectivity. To obtain something equivalent
in the abstract theory we then define bi-functors in §2 as a pair of functors
M=(M*,M*) from A to B, one contravariant, the other one covariant, which coincide
on the objects: M, (X) = M*(X) = M(X).
To develop some relative homological algebra of bifunctors analogously to the theory
of co- or contravariant functors in §!, one has to restrict oneself to such - so to
say "admissible'" - bi-functors M, for which the family of maps
MX - M: M*(XXY) - M*(Y) as well as the family of maps M -+ MX: M, (Y) > M, (XxY) are
natural transformations of bi-functors. This is indeed the case, if M satisfies the
"Mackey-property" for pull-back-diagramms as defined in the beginning of §2, i.e. if

M is a "Pre-Mackey-functor", and for such bi-functors X-projectivity is indeed
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equivalent to X-injectivity.

Things get more interesting once one starts to consider also pairings of bi-functors,
which allows to introduce an axiomatic formulation of the Frobenius-reeiprocity-law.
Especially considering such pre-Mackey-functors G with an "inner composition", i.e.
a pairing G x G +~ G, such that Gy becomes a contravariant functor into the category
of rings with a unit, which I tend to call "pre-Green-functors" and which are
studied in §3, one can articulate the basic formal connection between induction-
theory- and the special form of relative homological algebra developed before:
Theorem 1: A pre-Green-functor ( is X-projective, if and only if the covariant map
G*(X) - G*(o) ("e" the final object in A) is surjective.

This connects especially on a rather abstract levegand in a surprisingly simple and
obvious way the notions of defectbases and vertices, both introduced by J.A. Green
(see [M],[12] and [3]).

Only in §4 we begin to put further restrictions on A, so as to be able to develop
the theory of Burnsiderings and to connect it with the theory of”Mackey—functorsZ
i.e. pre-Mackey-functors, whose contravariant part transforms finite sums into
products. More precisely it is shown, that for any "based category" A one can define
the "Burnside-functor" Q-being a canonically defined Mackey-functor from A into the
category of abelian groups-,which plays more or less the same rdle in the category
of all such Mackey-functors as the integers in the category of abelian groups
(actually this is just the special case one gets for A the (based) category of
finite sets).

Thus any information about Q@ immeciately implies corresponding and sometimes rather
basic results for any Mackey-functor M, defined on A. This is illustrated in some
detail in Theorem 2 and 3 and their Corollaries, which deal with the computation of
the defect base (vertex) of certaidGreen-functors (i.e. pre-Green-functors, whose
underlying pre-Mackey-functor actually is a Mackey-functor)associated with Q.

In §5 finally the relation with G-functors as defined and studied by J.A. Green in
23] and [4] is explained and a number of consequences is stated. §5 and Part I
closes with a reformulation of the transfer-—theorem of J.A. Green (see [23],[24]) in
the language of pre-Mackey-functors.

Part I altogether thus could be considered as a general framework for induction-
theory, mainly concerned with the wealth of formal consequences, which can be drawn
once some kind of induction-theorem is established. Consequently the second part of
this paper is concerned with developing certain methods on how to prove induction-
theorems in the frame work of equivarianﬁK—Theory with a rather general type of
"coefficients" (§6-§8), giving detailed applications for linear representations (§9),
where the "coefficients" are just finitely generated, projective R-modules for some
commutative ring R with a unit, and only prospects of further applications (§10),
but leaving it mostly to the reader, to draw all the consequences explicitly, which

can be drawn according to Part I.
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There may be special interest in the way’composition in a category is defined in
§6yand in further applications of the technique of "multiplicative induction",
which playAP central rSle in §8.

It just should be mentioned, that "equivariant K-Theordes" and its derivatives are
not the only field, in which the general abstract nonsense of Part I can make sense,
but that relative cohomology of G-modules, equivariant Homology-theories (see [%],
g, [@]), caloiscohomology (see W] ) and perhaps still further theories can make

profitable use of this language.
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Part 1

Inductiontheory and Homological Algebra

§1 On relative homological algebra in functor-categories.

The material of this section is basically well known. Indications of proofs, when
given, are just for the convenience of the reader. Let A be a small category with
finite products, especially a final object e ¢ |A] (JA| the class of objects in A)
and let B be an abelian category. With [A®,B], resp. [A,B] we denote the abelian
category of contravariant, resp. covariant functors from A to B. For an object

X e |A] and M ¢|[A°,B]]|, resp. | [A,B]| define Mg: A > B: Y M (Y x X). One has an
obvious natural transformation M +;MX, resp. MX + M, more generally X v My defines a

contravariant functor A *'Eﬁo,gj, resp. a covariant functor A > EA,B]. A sequence

¢! 1y
MY > M 2 M'* 1is said to X-split (at M) if the associated sequence
¢| ¢ll
v X X "y 3 : : : : [ ' (RN
MX MX - MX splits (i.e. if their exist P': MX > MX and y'': MX - MX
: T ] [R] tr _
with ¢X Yo+ Y ¢X = IdMX).

Lemma 1.1: (a) O~ M - MX (resp. MX + M+~ 0) is X-split.
(b) If M' > M » M'' is X-split and Y ¢ |A| with ¥X (i.e. Homy (Y,X)% @),
then it is Y-split (since MY is a direct summand in MXXY = (MX)Y)'

Proposition I.1: Let ¥ e[[AO,B}I and X ¢ |A|. Then the following statements are

equivalent: (i) 0> M - MX splits
(ii) There exists a contravariant functor N: AfX > B (A/X the category
of objects over X, i.e. of morphisms into X), such that M is a
direct summand in F: A - AJX ¥ B, where A > A/X is defined by

Y+~ Y x X/X (right-adjoint to the forgetfull functor A/X = A).

(iii) For any diagramm O -+ M' - M'' with an X-split line one has a
o
M

morphism M'' > M, which makes the diagramm commutative.
(iv) Any X-split sequence 0 » M > M' splits.
In this case we call M X-injective. One has corresponding statements for covariant

functors, defining X-projectivity.

Corollary 1: MX is X-injective (X-projective).

Corollary 2: If M is X-injective (-projective) and Y ¢ |A|, X< Y, then ¥ is Y-injec~
tive (-projective).

Corollary 3: If X,Y ¢ iA|, then ¥ is X- and Y-injective(-projective), if and only if
it is X x Y-injective (-~projective).

Especially if any set of % -equivalence-classes (X&Y <=> X<Y and Y<X) of objects

in A contains minimal elements {i.e. if any sequence Xl “ X, ¢ . in A finally
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contains only<-equivalent objects), e.g. if there are only finitely many
“#-equivalence-classes, then there exists for any M an object X-unique up to
Fr-equivalence-such that ¥ is Y-injective (Y-projective) for some Y e|A| if and only
if X < Y. Any such object may be called a vertex of M (cf. @ﬂ s @4, Bﬂ). Roughly
speaking inductiontheory can be understood as one possibel method of computing verti-
ces of various functors M by extending such functors to bi-functors as will be seen
in the next sections. But before let us put together some basic facts on the homolo-
gical algebra, associated to X~injectivity, resp. X-projectivity.

By the above statements we have for any M elEAO,B]| an X-split map intg?ﬁ-injective
functor 0 » M ~+ MX and thus we can always construct resolutions, whose cohomology-~
"groups' are denoted by H; (M), resp. by H§ (M,Y) if evaluated at some Y elA],

(nz 0,

Correspondingly one has for any ¥ e][A,S]l homology-"groups" Hi (M}, resp. Hﬁ ,Y).
Canonical resolutions are given by

Proposition 1.2 (Amitsur): TFor any X EEA§ consider the semisimplicial complex in A:

i
s
<« <+ < . n+l
Am (X): X ;ﬁ XxX &« XxXxX o e (with Am (X)n =X and Am (X,$):
+ . o
X b Xm.*'1 for any ¢: {0, ...,m} = {0, ...,n} given by the commutativity of

n+l Xm+1 ,

X —
\(%(u) / m
X

L the projection onto the u~th factor, u = 0,...,m). Applying ¥ e\[AO,B][ to this

complex, one gets a complex of X~injective functors:

1 2 n
3 3
Am X,M): O > M, > Mo -~ M3 > ..., al= b (—1“) M (pn) together with an
X X X =0 \Y

augmentation M » M, such that the augmented complex is X-split. Thus

. iy X .
H; (M) = Ke 3" }/Im 3'. One has corresponding statements for covariant functors

A+ B.

To prove, that the augmented complex is X-split, one has to observe that

o *’MX - (MX}X - (MXZ)X = ..., is just Am (X,M) with precisely the last face-operator

missing everywhere. Thus one can use the corresponding degeneracy-operators, to con~
struct a homotopy from zero to the identity on this complex, which proves, that it is
X-split everywhere.

We give some applications

Proposition 1.3: If ¥ is X~injective, then 0 + M > MX - MXZ > ... 1s exact every-

where. If M is X-projective, then ... sz > Mo+ M0 is exact everywhere.
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Corollary 1: If 0 ~» M1 > M2 - M3 + ... is a sequence of X-injective contravariant
functors from A to B, which is exact at any Y<X, then it is exact. Correspondingly
any sequence .,. > M3 > M2 - Ml + 0 of X-projective covariant functors, which is

exact at any Y<X, is exact.

Corollary 2: If M is X-injective, then M(e) is isomorphic to the difference kernel
of the two maps from M(X) to M(XxX), thus it is determined by its behavior on X
and XxX.(This is precisely the point, why one wants to prove X-injectivity: it
allows to reduce the computation of M(e) to the computation of M(X), M(XxX) and the
two maps from M(X) to M(XXX).)

Proposition 1.4: Let O ~ M' - ¥ = M''> O be a sequence of functors from A to B,

which is exact at every Y< X. Then one has a long exact sequence
o ' o 0 ' 1 '
O»HX(M)—>HX(M)—>HX(M)—>HX(M)—>.....

resp. ... > Y @'y > K ey > #E an - KE ) o,

Remark: The general constructions of homological algebra would only give such long
exact sequences for X-split exact sequences O > M' > M -~ M'' > 0,

Proposition 1.5: Let X,Y e|A] with Y<X and M ¢|[A®,B]|, resp. ¢|[A,B]|. Then one

has a spectral sequence

P59 _ P 44 — yP*q 2 _ KoY —
E, Hy (y @n) = Hy “(n), resp. Ep’q Hp (Hq o) = H§+q(M).

Proof: Consider the diagramm

“ 2 <
X xY « X" xY bl
4 4
xxv: £ x2xy? T o,
-~
+44 44

Applying M one gets a double-complex. One of its two spectral sequences collapses by
Prop. 1.2, giving the (co-) homology of the total complex, the other one is just the
one mentioned.

Corollary: If Y,X e‘A| and o, B: Y > X two morphisms, then both induce the same ho-
momorphisms H}i( ™) -~ H; M) (rc.asp. Hz oy - HEi( (M)), especially any endomorphism
X+ X indu(':es the iflentity on H; M), resp. H}i( (M) and any o: Y > X a canonical iso-
morphism H}l( ™) - H; M), resp. Hz ™) > H)i( (M), whenever Y<X.

Proposition 1.6: Let M, N, L s[ I:AO,BJ| with B the category k-mod of k-left-modules
for a commutative ring k with 1 € k (or any abelian category with an internal tensor-
product) and let <,>: M x N > [ be a pairing, i.e. a family of k-bilinear maps

<>yt MX) x NX) > LX) (X e|A]) such that for any a: Y + X one has
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a(<a,b>x) = <a(a),a(b)>Y (a € MX), b € N(X)). Then this pairinginduces pairings

<> HE o x K > T (aa > 0.

p+l) X N(Xq+]) into the double-

complex L(Xp+l X Xq+]) and thus a pairing from H§QW) X H;(N) into the cohomology of

Proof: <,> induces a map from the double-complex M(X

the associated total complex of the latter, which by prop. 1.4 is just H§+q(L). (An
explicit isomorphism of course is induced by the wsual map.

[¢] L(Xp+1 X Xq+1) > L(Xp+q+]), whose components come from mapping the first p+l
p+q~n

factors onto the first p+1 factors and the last g+l factorsonto the last q+l factors.)

Remark: There is no equivalent statement for covariant functors in this setting.
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§2 Homological algebra of bifunctors

A bifunctor M: A > B from a category A to a category B is defined to be a pair of
functors (My,M*) from A to B, such that Mx is contravariant, M*% is covariant and
both coincide on the objects: thus for any X £|A| we have one object
Ma(X) gggf(x) =: M(X) s}Bf and for any morphism o:Y » X in A we have two morphisms
ST
M(Y) £ M(X). A natural transformation 9: ¥ > ¥ of bifunctors is a family of
a®

morphisms eX: M(X) + N(X), such that 6 is a natural transformation as well for M
as for M#*,

Obviously if A is small, then we have the category Bi(A,B) of bifunctors from A to
B, which asjusual inherits most of thefusual formal properties of B, e.g. Bi(A,B) is

abelian if B is so.

Now assume A to be small and to contain finite products, For any X e[A| and any
M ¢ Bi(A,B) again one has MX e Bi(A,B) (MX(Y) =:M(XxY)), and one can also define
X-split sequences M' - M » M"' as sequences, for which M% -> MX - Mi' splits, but

since generally neither of the two families
p(M
prt M~ MX: M(Y) — M(¥xX)

and .
b P (0)*
P MX - M: MXXY) — M(Y)

(p(¥): ¥ x X > Y the projection) are natural transformations of bi-functors, we
cannot develop a relative homological algebra of arbitrary bi-functors similarly to
the above theory of co— or contravariant functors. Thus we restrict ourselves to the

more convenient class of pre~-Mackey-functors: a bi-functor M: A + B is called a

pre-Mackey~functor, if for any pull-back-diagramm ®
Y - Yy
7} by
Y, -+ X
1 ¢

KA
%

in A the diagramm  M(Y) 2 M(Yz) commutes .
T f os
M(x)) 9w
A first consequence of this definition is

Lemma 2.1: If a: Y » X is a monomorphism in A and M: A > B a pre-Mackey-functor,
then M,{(a) e M*(a): M(Y) > M(Y) is the identity. Especially if « is an isomorphism,
then Mx(a™) = Mt(a).
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Proof: Just apply M to the pull-back-diagramm 1d
Y - Y .
Idl la
Y —» X
a

Now for pre-Mackey-functors we have indeed natural transformations of bi-functors

M MX’ MX + M or more generally: Any pre~Mackey-functor M: A > B defines a pre-
Mackey-functor from A into the full subcategory Bi'(A,B) of pre-Mackey-functors in
Bi(A,B) by X » My, (a:Y > X) » (ag: My > My, oMy > M),

Moreover for B abelian O + M » MX and MX + M » 0 are both X-split and any X-split
sequence M' » M > M'' of pre-Mackey-functors is also Y-split for any Y e|A] with

Y<X,

We can define M ¢|Bi’'(A,B)| to be X~injective, if O - M + My splits, and X-projec-
tive, if MX > M > 0 splits, and have - analogously to Prop. 1.1 - all the equivalent
conditions' for X-injectivity, resp. X-projectivity now in the category of pre-Mackey-

functors. Especially M, is both X-injective and X-projective for any M ¢|Bi'(A,B)].

But then both X—inject?vity and X-projectivity of M are equivalent to M being a di-
rect summand in My, thus a pre-Mackey-functor is X-injective if and only if it is
X-projective, which generalizes a well known result of Gaschiitz-Higman

(see [, B8], [¥], [a).

Therefore we will only use the term "X-projective', but keep in mind, that for

pre-Mackey-functors this means "X-injective" as well.

As before we get, that any X-projective pre-Mackey-functor M is also Y-projective
for any Y e|A| with XY, and that M is X~ and Y-projective, i1f and only if it is

X X Y-projective. Especially we can again define the vertex of a pre-Mackey-functor
as the smallest X e|A| - with respect to "<" and thus up to-¥ -—equivalence - such
that M is X-projective, whenever such an X exists (e.g. A contains only finitely
many * -equivalence-classes).

Again 0 >~ M - MX - MxZ > vve. and ... > sz > MX +~ M > 0 are X-split and thus
(without the augmentation) can be used to define (and perhaps compute) the

(co-) homology''groups" H; M) and Hﬁ (M) for any M ¢|Bi'(A,B)]|.

We have H; (M)=H§ M)=0 (n > 0) and H; (M)=M=H§ (M) whenever M is X-projective.

Moreover we can splice together the two complexes to just one doubly-infinite complex

37! 30 ol
el > MXZ — My — My — Myp > oen

NS

M

with 3% (n 2 1) as in §1 for M, 3° the composition MX > M > MX and 3 " (n 2 1) as

9n in §1 for M*, We define H; M) = Xe Bn+1/1m 3" (n & 2) to be the Tate—cohomology
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of M. Obviously H; @y = H}’; @) and
-n~1 X
HX“ (1) = H. () for n > O,
30
wheras for n = O the map 3° induces a map H}; Wy - H; {M) and
Alen = ke, A2 @) = coke (2.
One can characterize Q; (M) also as the cokernel of the natural map H; (MX) - H; ),
since in the diagramm M > MX > My
4 4 +
My > My (g2

the lower left horizontal arrow maps MX

Again any sequence O > M' » M + M''> 0 of pre-Mackey-functors from A to B, which is

isomorphically onto H; (Mx) .

exact on any- Y< X, gives rise to a long exact sequence.
o Ry > 1R an > HE D - A2ty > ... and we have H} () = O whenever ¥
is X-projective. Thus if ¥ ¢ Bi'(A,B) and
Ke(y » M) =2 ' A > B: Yo Kef (ox0) B M(D)),
Coke ( - My)=: M'': A > B: ¥» Coke (M(Y) PE yxx)), (p: X x ¥ + Y the projection)

then H; )y = R;H(M') = ﬁ;—I(M"), i.e. we can shift dimensions as usal in Tate-co-

homology.

The spectral sequences from §1 of course now have pre-Mackey-functors as term when-
ever applied to a pre—Mackey-functor ¥, and again any morphism o: X > X induces the
identity on ;i'; .

Finally to define cup-products of pre-Mackey-functors we first have to define
pairings: so assume B=m (as in §1) and let M, N, L: A > ﬂ be three bi-func—
tors. A pairing <,>: M x ¥ »~ L is then a family:

<>y M(X) x N(X) » L(X) (X ¢|A]) of k-bilinear maps, such that for any a: ¥ + X in

A ve have o)y (a,by) = <ag(a),ax(b)> (a e MX), b e VX)),

(P2) o* (<az(a),b>y) = <a,a®(b)>y (2 ¢ M(X), b e N (Y},

(P3) aof (<a,ax(b)>y) = <a¥(a),b>, (a e M(¥), b e N(X)).

)

Remark: (P2) and (P3) can be considered as some kind of an axiomatic Frobenius-reci-
procity-law (see [9], R3] ....).

A straight-forward consequence of these definitions is

Lemma 2.2 (cf.[8]): Let <,>: M x ¥ > L be a pairing of bi-functors M, N, L: A+k-mod

and a: Y > X a morphism in A, For any bi-functor X:A -+ k-mod write

KaX = Ke{agx X(X) » X(Y)) and I X = Im{o¥*: X(¥) » X(X).
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Then one has: < KM, N(X) >y

in

tal
=3

™~

< M(X), KN >X

i
Q?Q
t

A

IuM, N(X) )X & IaL’

A
n
i
[l

-

M(X), IaN >X

<KM, IN>=<IN, KM>=0.
o o X o o

Now let M, N, L: A + k-mod be pre-Mackey-functors and <,>: M X N ~ L a pairing of

bifunctors.

Proposition 2.1: For any X e|A| one has an indwced pairing of bifunctors

M x NX -> LX (and of course Mk x N - LX) defined by M(Y) X N(¥xX) » L(¥xX):

(a,b) » < p,(Y) (a),b *yox with p(Y): ¥YxX > Y the projection. For any morphism

a: Z + X one has commutative diagramms:

Mx N, > LX’ M x NZ > LZ

X
lIqu* la* iIdxa* 1&*
M x NZ - LZ M x NX - LX

Proof: direct verification.

An immediate consequence is

Proposition 2.2: The induced pairings Hp M) x Hq W) ~ Hp+q(L ) as defiped in §1

actually are pairings of bi-functors.

Especially for p = O one gets pairings Ho M) x Hq ) - Hq (L) and one checks
easily, that there are corresponding Well deflned pairings H My x H &y - HX {L}.
(Just extend the obvious pairing ¥ X H (N) > H (L) to H QV))

But for a: X -+ e and q + 0 we have Hq (N )y = q (NX) 0, thus

K@(H?( wyy = H;} wy, Ka(Hq my = Hq (M) and therefore by Lemma 2.2

X . o .
< Ia(H§ o), H§ M) » =< IaH§ wy, Hq (N) > =0, i.e. the above pairing induces

well defined pairings of o o 5 q X
HX M) = HX ) Ia(HX (M)) with HX &, resp.Hq (¢

into H% (L), resp. H§ ).

Using dimension-shifting together with Prop. 2.1 (or any other appropriate technique)
this can be generalized to

Proposition 2.3: Any pairing ¥ x N » I of pre-Mackey-functors A > k-mod induces
pairingéﬁg M) x ﬁ§ ) - Q§+Q(L) {p,q ¢ %), which have all}sual properties of

cup~products for Tate-cohomology=-groups.
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Remark: It might be a usefull exercise for the reader to show, that already to get

a well defined cup-product of zero-dimensional Tate-cohomology

O 0o e}

HX ™) x HX @ - HX €]
one is forced to define pairings of bi-functors using the properties (P2) and (P3)
(together with (P1), the multiplicativity of the contravariant part of course)

instead of postulating analogously to (P1) multiplicativity of the covariant part as

well.
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§3 pre-Green—functors

At first let A be an arbitrary category. Following T.Y., Lam (see @@) we define a
Frobenius-functor F: A -+ k-mod to be a bi-functor together with a pairing

ma
F x F + F, such that for any X e\Ai the k—bilinearvg(x) x F(X) » F(X)makes F(X) into
F(X) e F(X) and with a*(lF(X)) = lF(Y)
A left, resp. right F-module M is a bi-functor A » k-mod together with a pairing

a k~algebra with a unit 1 for any a:Y » X inA

FxM->M, resp. M x F ~ M, such that for any X s|A| M(X) becomes a left, resp.
right unitary F(X)-module.

Lemma 3.1 (T.Y. Lam): Let F: A > k-mod be a Frobenius-functor, ¥ a left (or right)

F-module and a: Y - X a morphism in A.
(a) KaM and IaM are F(X)-submodules of M(X), especially IaF = a%(F(Y)) is a two-
sided ideal in F(X).
(b) If a®*(F(Y)) = F(X), then a%: M(Y) » M(X) is split-surjective
Especially
(1) M) =0 => M(X) =0
(ii) If-8: M > N is a natural transformation of F-médules(i.e. compatibel with
%} M(X) » N(X) is surjective (resp. split-
surjective, injective, split-injective or bijective) if 8y is so.
(iii) If M' > M > M'' is a sequence of F-modules, then ¥'(X) » M(X) + M''(X)

is (split-) exact, if M'(Y) > M(Y) » M''(Y) is so.

the F-module-structure), then ©

Proof:(a) follows immediately from Lemma 2.23 a right inverse of a%: M(Y) » M(X) is

given by a: ME) > MY): xb roap(x) with r € F(Y) such that a%(r) = since

Py

a*(a(x)) = a¥*(rag(x)) = oa®(r)x = l x=x.

Now assume A to contain finite products. We define a pre-Green-functor G: A ~ k-mod
to be a Frobenius-functor, which is a pre-Mackey-functor as well. A G-module is then
also supposed to be a pre-Mackey-functor, too. In this case we can interpret the
surjectivity-condition in Lemma 3.1 (b), as f3llows:
Theorem I: Let G: A + k-mod be a pre-Green-functor and X e|A|. Then the following
statements are equivalggzj_
(i) The natural map G(X) -+ G(®) (associated to X ~ @) is surjective

(ii) G is X-projective

(iii) Any G-module M is X-projective.
Proof: (iii) - (ii) »> (i) is trivial; for (i) » (iii), i.e. to comstruct a splitting
map M ﬁ-MX one just uses the maps &Y: M(Y) » M(YxX) as defined in the proof of
Lemma 3.1 with oyt ¥ X X > Y the projection and with r = re= By
of 1 ¢ G(®) taken in G(X) and BY: Y x X = X the other projection.

*(rl) for a fixed

preimage T,

Remark: This theorem states the essential connection between inductiontheory and

(relative) homological algebra and perhaps - in a rather formal way - the real motive
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for proving induction-theorems: one just wants to prove X-injectivity of certain
contravariant functors M: A® + k-mod and may do so by 1. extending M to a pre-
m——
Mackey-functor, 2. constructing a pre-Green—Functor G , which acts unitary on ¥,

and 3. proving the surjectivity of G(X) ~ G(®), i.e. an inductiontheorem for G,

Corollary l:Let G: A + k-mod be a pre—Green—functor, ¥ a G-module and Xe]A| with
GX) -~ G(8) surjective.—;;;;‘ﬁ; (M) = 0 for all n ¢ & and the augmented Amitsur-com—
plexes 0 > M > MX +»Mk2 > and ...*> MXZ 4~MX + M+ 0 are split-exact.

It should be remarked, that for G and  as in Cor. | and X an arbitrary object in A
one also has pairings H§ G) x H; ™) -~ H§+q(M) (p,q 2 0) and

PGy x fa M) - Q§+qow}, (p,q € 2) especially for ¥ = G and p = ¢ = O one gets,
that H;(G) and é;(G) are pre-Green—-functors, H;(M) and ﬁ;(M) are modules with respect
to these pre-Green-functors respectively, and the natural transformations

G- H;(G) - H;(G} are natural transformations of pre~Green-functors and thus make
H;(G) and Q;(G) into "G-algebras"”, whenever G is commutative.

EspeciallyAall Hg@%) and ﬁggw) are G-modules. Moreover the "grad?d cohomology-rings"
H%(G) and H§(G) are''graded pre-Green-functors' and H§(M), resp, H§(M) is a graded

H§(6)~, resp. Q§(G) -module.

Corollary 2 (cf. Green, 2%) 1f ¢: A > k-mod is a pre-Green—functor and X,Y elAl,
then G(X) > G(#) and G(Y) ~ G(#) are surjective if and only if G(XxY) - G(®) is sur-
jective.

A direct proof for this may also be based on considering the pull-back-diagramm

9
XxY — Y

vl by

X — ¢

and either using the argument: "¢%: G(X) »> (G(#) surjective <= there exists
x € G(X) with ¢%(x) = ey = o™ W:(IG“)) = P (9*(x))

= 3% (Te(x)) € Im 0% = o%: G(XxY) 9 G(Y) is surjective™ or the "Mackey-tensor—pro-

duct~theorem":

Lemma 3.2: If <,>: ¥ x ¥ ~ L is a pairing of pre-Mackey-functors A » k-mod,

&
—

r<
N

Y
v !
Y

P
<

1

ol

a pull back with ¢o¥ = Yod = q: Y ~ X, a ¢ M(Yl), b e N(Y¥y), then
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<p¥(a), pr(b)>y = a® (<¥z(a),ex(b)>y) .

Proof: <¢*(a),w*(b)>x = ¢*(<a,¢ﬁ¢*(b)>Yl) = ¢*(<3,T*¢*(b)>Y{) = ¢RVE (<P (a) , 05 (b))
= 0% (<2, (a),0x(b)>y) .

Remark: Lemma 3.2 shows, that "G(X) »> G{e) and G(Y) »> G(e) <= G(XxY) »> G(e}"

holds already if G is a pre-Mackey-functor with an arbitrary inner composition

G x G + G such that G(e) x G(e) » G(e) is surjective.

Thus if any set of objects in A contains minimal objects with respect to <, one can
again find for any such G an object X s[Al such that G(Y) »> G(e) 1is surjective for
some Y s}AI if and only if X~ Y. Following Green, @ﬂ we may call any such object a
defect-object for G and get, that for a pre-Green—functor G defect-objects and

vertices coincide. In the following we will follow Green, @ﬂ'(instead of Green,@ﬂ)

and mainly use the term 'defect-object' for pre-Green-functors.
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§4 Mackey-functors

Let A and B at first be arbitrary categories. A Mackey—functor M: A ~ B is a pre-
Mackey—functor with the additional property, that M; transforms finite suméQA into
finite products in B. Of course for a small A we have the full subcategory

Mec(A,B) of Mackey-functors in Bi'(A,B) e Bi(A,B) which again is abelian if B is.

For B = k-mod we define Green—functors G: A > B to be pre-Green-functors, which are
also Mackey-functors.

We want to study Green- and Mackey-functors A » k-mod on categories A satiffying the
following properties:

(M1) A is small, contains finite sums ("XuY"), products ("XxY") and pullbacks,
especially an initial object 4 ¢|A| and a final object o e|A].

(M2) The two squares in a commutative diagramm X'— Z' «——Y' are

boobod

X —XuY +—Y
pull backs if and only if the upper line represents Z' as a sum of X' and Y'.

Lemma 4.1: Let A satisfy (M1) and (M2). Then

(a) X—l-cl X and X +—¢ are
wl | b
X— XY Xu¥+—Y
pull-backs

(b) The natural map(Z x X>U(2 X Y) > Z X (XUY)

is an isomorphism.

(c) The category A/X of morphisms into X satisfies (MI) and (M2) for any
X e|Al.
Proof: (a): Choose X' = Z' = X, Y' = ¢ in (M2).

(b) : Choose X' = ZxX, Y' = IxY, Z'=Zx(XuY) in (M2).

(¢): Direct verification.

Next we have

Lemma 4.2: If A satiesfies (MI) and (M2) and if M: A > B is a Mackey-functor into an
abelian category B, then M* transforms finite sums into finite sums.

Proof: Since M, transforms finite sums into finite products, we have M($) = 0. Thus

applying M to the diagramms in Lemma 4.1 we get a diagramm

M(X) % Lﬂ/\/ M(Y)
l MEUY) l

1d 1d
¢ (X)A/zﬁ T M

201



20

v
with zero-diagonals , ¥ . Since B is abelian and

My x My: M(XY) » M(X) x M(Y) an isomorphism, this implies, that
MY @ ME: M(X) & M(Y) +~ M(XuY) is an isomorphism as well,

Now let us observe, that because of Lemma 4.1, (b) the isomorphism-classes of ob-
jects in A form a halfring ¢ (A) with respect to sum and product with @
representing 0 ¢ (' (A) and e representing 1 ¢ ¥ (A). Let Q(A) be the associated
Grothendieck-ring, Since by Lemma 4.1, {(c) A/X satisfies (M1} and (M2) for any

X e}A| we can also define Q(X) = Q(A/X).

Since any morphism o: Y + X induces functors ay: A/X + A/Y:

@ foea,x

X
additive, the first oné even multiplicative, we get induced maps

ax: O(X) > (), of: Q(Y) > 9X).

One verifies easily:

Y > Y) and of: A/Y > A/X: (2 §+ Yy w» (2 EE X), both of which are
o

Proposition 4.1: The above definitions make Q: A » Z-mod and thus also
k . .
Q7 = kv§>9: A + k-mod into a commutative Green-functor.

We call @ the Burnside-functor, associated to A. Note that 1 can happen,

_ . o™ %)
for instance if A is the category of at most countable sets.

Still one can prove:

Proposition 4.2: Any Mackey-functor M: A » k-mod is in a natural way a k@@0-module
T z

and any Green-functor G: A » k-mod a k@Q~algebra. The action of k(%ﬂ on M is
—_— %

induced by 95 (X) x M(X) > M(X): (Z ~E X,a) » g% (Bx(a)).

Especially the action of 9 on & is just multiplication.
Proof: Lemma 4.2 guarantees linearity with resprct to 8. (P2) follows just from
functoriality, (P1yand (P3) from the fact, that M is a pre-Mackey-functor, applied
to the pullback
Y, x Z > Z
tog (B) ¥B

Y + X
o

In case ]G(.)= OG(.) this just says, that any Mackey-functor M: A - k-mod is
identically zero. To make a more proper use of the Burnside-functor we have to
impose some further restrictions on A, which allow to get some more information on
Q.

For a start just let us observe, that for an indecomposable object 2 gIA\, i.e. an

object with "Z = Z}UZ2 = Zl=¢ or Z2 = ¢", the natural map
HomA(Z,X)\;HgmA(Z,Y) - HomA(Z,XuY) is an isomorphism by (M1). Since anyway

HomA(Z,X)xHomA(Z,Y) -> HomA(Z,XxY) is an isomorphism, the assumption, that HomA(Z,X)
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is finite for any X, implies, that we have a well defined ringhomomorphism:

9,1 Q(A) ~ Z: X v EHomA(z,x)

.

Morover if Z' is another such object and 9,701 then especially Z<Z'<Z (evaluate
at Z and Z'!); thus if we assume that any endomorphism of Z and 2' is adAutemorphism,
we get Z =z Z',

These considerations lead to the following definition: a category Aﬁs a based cate—

gory, if it satisfies (M1) and (M2) and moreover:

(M3) There is precisely a finite number of isomorphismclasses of indecomposahle ob-
jects in A and any object in A is isomorphic to finite sum of indecomposable objects.
M4y 1f Z2,Z2° s%A} are indecomposable, then HomA(Z,Z‘) is finite and

EndA(Z) = AutA(Z).

Any set T of representatives of the isomorphism-classes of indecomposable objects

in A is called a basis of A, Observe that by (M4) Z=<Z'<2Z for Z,2'cT implies

Z=Z', thus Z=2', if T contains precisely one object out of any isomorphismclass of
indecomposable objects.

Moreover already by (M3) we have for any X,Y g|A[: "X=<Y" <= "Z<X implies Z<Y

for all Z ¢ T", especially one has at most 2 ~equivalence-classes in A.

Thus any pre-Mackey-functor M: A > B has a vertex and especially any pre~Green-
functor G: A > k-mod a defect—object X.
Moreover the-®-equivalence-class of X is uniquely determined by the finite set

D(G) = {ZeT|2<X}, which is then also called the defect-set of G.

Examples: The category of finite sets is based with basis just the final object. If
A and A' is based, then also A x A'. If A is based with basis T and X e|A|, then
A/X is based with basis T/X = {¢: Z > X|Z ¢ T,p ¢ Homy (2,X)} (modulo isomorphisms in
A/X). For any finite group G the category G of finite left G-sets is based with
basis T = {G/U|U s G} (modulo isomorphisms); more generally: if A is based and G

finite, then the category of G-objects in A is based.

Now let A be based with basis T. Let Z[ff@ihe free abelian group generated by T and

Z2*[7]€2[T] the free abelian semigroup generated by T. Then one has a commutative
diagramm: Z+[T] N Z[T]
‘L ‘L —IT(PZ
ar(h) — o)y 28 TT z=a4)
zeT
The vertical arrows are surjective by (M3). Since all pgare different ringhomomor-

phisms into Z by (M4), they are linearly indepedent over Z. Thus the image of

TT- 9, has Z-rank preciseiy |T| = rkzﬁ(A),which implies, that all arrows must be
ZeT

injective.
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This proves

Proposition 4,3: Let A be a based category with basis T. Then

(a) Q*(A), resp. 2(A) is a free abelian semigroup, resp. group with basis repre-
sented by T and 27(A) maps injectively into Q(A), i.e. XuY¥ = X'U¥ => X =~ X',

(b) TT- 0, QA > TT' Z =) is injective and has finite cokernel.
ZeT

{c) In other words: for ¥ £ n, Z and X'= £ n' Z we have
Z Z
ZeT 2eT

X = X' <= QZ(X)=mZ(X') for all Z ¢ T <= nZ=né for all z ¢ T.

Remark: For A = G this last statement is a well known theorem of Burnside,

Since TIT¢Z: QA > (A is injective, we may identify Q(A) with its image in a(A),
ZeT

which itsself can be identified with the integral closure of Q(A) in its total
quotientring. Since 2(A) is finite, it has a well-defined exponent JAfe N, which we

define to be the Artin=-index of A; thus n-Q(A)cQ(A) <= [|A]| divides n.

Proposition 4.4: For a finite group G one has ﬂéﬂ = ﬁGE.

Proof: An easy inductionargument with respect to |U| (UsG) shows, that for any UsG
s ¢G/V )=0 for G/V$G/U, using the fact,
that @G/U(G/U)~]Aut(G/U)!—(N (U) :U) divides @GJV(G/U) for any V<G. Thus

) €0(Gh On the other hand if x ¢ Q(G) with @G/U(x)—o for all U G; U + E,
. Thus [1&]=]c].

there exists x€ Q(é) with mG/U(x )—|G|

then x=n-G/E for some n ¢ Z and wG/E(x)=n-

For details see [6], § 5 . More generally |A| is the smallest common multiple of
}Aut(z)[, Z e T, if all maps Z > Z'(Z,Z'cT) are surjective.
Theorem 2: If A is a based category and M: A > k-mod a Mackey-functor, then |A]

annihilates all cohomology-groups ﬁ;(M,Y) (X,Y e]A]). Especially
(1) Al * M(Y) SRe (M(Y) = M(XxY))+Im(M(XxY) = M(Y)) and

@) |
Proof: Since the canonical map M(Y) - H (M,Y) has kernel precisely the right side of
(1) and since H Q% Y) =+ ¥(Y) has image prec1se1y Re (M(Y) » MEXxD)INImM(XXY) + M(Y%

(1) and (2) are indeed corollaries of [|A]: H“UW) 0. On the other hand by Prop. 4.2
it is enough to show, that ||A||") = 0 in HO (Q,o), which of course follows from
A1 Ip ey € Ke@(®) > () + Im(@(x) + g(.)). But obviously

= Re(2(®) > 2(X)) = {x ¢ 2(8)]9,(x) = 0 for all Z ¢ T with Z—<X} and

I = Im(R(X) +~ Q(8)) = { & n

ZeT ,2<4X

Zlne 2} = {x ¢ Q(o)|mz(x) =0 for all Z ¢ T with

Z Z

Z%X} (the last equation holds, since x = & n, Z & Q(®) and mz(x) = 0 for all
ZeT

Z ¢ T with Z-X implies n, =0 for all Z-KX, -otherwise choose a Z, £ T with

ZoHKX, n, = 0 and Z, maximal with respect to=£, then 0y (x)=nz' ¢y (Z) + 0, a
) 0 o % °
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contradication).
Now consider e = (BZ)ZETS Q2(A) with e, = 0 for Z<4X and e, = 1 for z< X, £ = l-e,
Then [|A|}-e, = Q(#) by definition of |A] and thus JAj-e e I, JAlf e &

by the above remarks, [Albe + JAl-£ ¢ T + K, q.e.d.

ew”
Remark: As shown below, Theorem 2 can be considered as a generalization of Artin's
inductiontheorem as well as of the fact, that ]GI annihilates all cohomology-groups
QH(G,M), Ma 2G~modg&f;j§g; assume ﬂAﬁ-lk to be invertibel in k. Then (1) and (2) in
Thm 2 imply M = Ke (¥ +~MX) @ Im(MX > M), especially M(Y) » M(¥xX) is injective for
some Y e|A] if and only if M(¥YxX) + M(Y) is surjective.

As a first consequence we get

Corollary 1: If [All-k =k, G: A » k-mod a Green—functor and ¥ a G-module, such that
M(e) is a faithfull G(e)-module. Then the following statements are equivalent:
(i) M is X-projective

(ii) MX) »> M(e) is surjective

(iii)M(e) = M(X) is injective

(iv) G(e) = G(X) is injective

(v) G(X) »> G(e) is surjective

(vi) G is X-projective

Proof: (i) = (ii) => (iii) = (@{v) = (v) = (vi) = (i).

This implies especially that Qk/Ke(Qk > Q;) = Im(Qk > Q§) is X-projective

{choose ¥ = Q;, G = Im(Qk - Q;)!).

Thus we get:

Corolliary 2: If i

statements are equivalent:

A['k =k and M: A » k-mod a Mackey-functor, then the following

(i) M is X-projective
(ii) M(XxY) » M(Y) is surjective for all Y e|A]
(1i1) M(Y) & M(XxY) is injective for all Y ¢lA]|.
J

Especially any subfunctor and any quotient functor of an X-projective Mackey-functor
M: A > k-mod is X-projective.

Proof: (i) = (ii) <= (iii) is clear. (iii) = (i) holds, since (iii) implies, that
M as an Qk-module even is an Q /Ke(Q > Q )—module, which is an X-projective
Green—-functor. (iii) holds any subfunctor of M, if it holds for ¥, (ii) holds for
any quotient—functor of ¥, if it holds for M.

Especially Im{(¥ -+ N ) and H (V) are X-nro;ectlve as subfunctors of N for any
Mackey~functor ¥N: A > k:mgd_and Im(N »> ) and H (¥} are X—progectlve as quotients

of N,. Also a Green—functor G: A > k-mod {g X-projective,if and only if the image of

Qk in G is X-proiective, which illuminates nerhaps a bit the réle of permutation-

k

revresentations (the image of © in G!) in inductiontheory.

Corollary 3 (cf Conlon ﬂﬁ]): Assume HAH'k = k and let M: A » k-mod be a Mackey—
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functor.
Let T be a bais of A and define M=: (i, » )n [\ Ke( i)
2'eT,2'42
for any Z ¢ T. Then ¥ = & Mz.
ZeT
MZ can be characterized as the largest Z-projective subfunctor of M, all of whose
Z'-projective subfunctors are zerc for 2'-<Z(Z,2'eT).

For a Green—functor G: A > k-mod one has G= ?T—GZ as a direct product of Green-—

functors. zel
Proof: By definition of HAH and because |Al‘k = k one has

o) = ke a(A) = ke 2(A) = 1T k.

ZeT
Thus one has a set eZ(ZeT) of pairwise orthogonal idempotents in Qk(A)= Qk(o)
with I e, = 1. The statements then follow from MZ(Y) =e, Y‘M(Y) for any Y elA|
ZeT

(i.e. MZ = ei'M).

In the rest of this section we want to compute the defectset of Im(Qk > Q;)without
any additional assunption of kand state some important consequences. For this
purpose one has to consider primeideals psQ(A) = Q(e).

By Cohen-Seidenberg any p< Q{A)can be lifted to some ﬁﬁé(A)= TT'Z and thus is of the
ZeT
form p=p(Z,p)={x ¢ Q(A)|¢Z(x)50 mod p} for p=char Q(A)/p. (O or a prime).

More explicitly let Z € T be a minimal element (w.r.t.<), such that Z ¢ »
{since l=lép such minimal elements always existl).

Since Z x X = @Z(X)-Z + I
2'eT,2'g2

Z x X 29 (X)-Z mod p,thus dividing by 2 ¢ p: X = 9,(X)+1 mod p and p = p(z,p)

., Z' (apply ¢, to both sides) one gets

with p=char /p. Moreover we have Z<X for all X with X ¢ 'p, especially Z is the
smallest object in T with Z ¢ p and therefore uniquely determined by p. One can
also characterize Z as the only element in T with p = p(Z,p) and @Z(Z) i 0 mod p
(p= char Q/p), since theSéFwo properties at least hol Z and on the other hand
p=p(T,p) and @T(T) # 0 mod p for some T ¢ T implies @Z(T) = ¢T(T) # 0 mod p and
@T(Z) = %(2} i 0 mod p, i.e. Z<T4Z and therfore Z=T.

Thus for any T ¢ T and any characteristic p we have a unique element Tp e T with
p(T,p) = p(T_,p) and o, (T.) ¥ 0 mod p. Obviously p(T,p) = p(T',p) <= T_ = T'
P I,'p P p
<= Pq = Oqr mod p and T,=T, since @T(T) + a.

Proposition 4.5: For a finite group G,A = G and T = G/U ¢ T for some subgroup USG

n
one has Tp=G/V with V maximal such that U<V<G and vP ¢ U for all v € V and an
appropriate power p" of p (e.g. the p-part of [G]).

n
Proof (see also [9] and [, §5 ): Since vP ¢ U for all v ¢ V, we have a sequence

of subgroups
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oo 3 Uy =V  with LA normal in Up with p-power-

index (u=1,...,m). But this implies Py (8) = pU (S) mod p for all G-sets S, thus
u-1 u

p(U,p)=p (Ul,p)=...=p(Ul sP)=p(V,p). On the other hand ¢V(G/V)=(NG(V):V)$O(p), since
n
V is maximal with VP eU, thus gP ¢ V for some g € NG(V) implies g ¢ V.

Theorem 3: Let A be a based category with basis T, X e|A][, o5 A k-mod the Burn-—
side-functor. Then

D(Im(Qk - Q;)) = {TPIT e T, T<X, prk % k} (where p runs through all possible
characteristics).

Proof: Let K;

Fo) = K 4T

Ke(Qk(o) > Qk(X)) and I$ = Im(Qk(Y) > Qk(o)). Then we have to show
if and only if Tp% Y for all Tp ¢ T with T<X and pok # k.

But nk(o) + K§ + I$ i

K; + IYQIM. Let peQ(e) be the preimage of m with respect to the canonical map
Q(e) = Qk(o) and p=char Qk(o)/m=char (@) /p, thus p-k % k.

Now KXE p if and only if p=p(T,p) for some T <X (even KX= M\ p(T,0), see above)
T<4X
and I,€p(T,p) if and only if TpﬁiY. Thus K§ + Ig + Qk(o) if and only if there exists

T< X and p with pek % k, such that TﬁK Y, q.e.d..

f and only if there exists some maximal ideal n1gnk(o) with

Now define X(k) to be the sum of all Tp with T ¢ T, T<X and p*k % k, thus X(k) is a
defect-object of Im(Qk > Q;).
Then we have:

Corollafz 1: For any Mackey-functor M: A > Z-mod we have

Q.
[l M(0) e Re (o) + (X)) + Im(M(X(Kk)) + M(e)) (with [A] =TT p P if JAlTT p P
pe k=k

1
Proof: Let Z' = Z[;|p—k=k Je @ and M' = %'@ M. Then Thm 3 implies

M'(e) = Re(M'(0) » M' (X)) + ImM' (X(k)) > M'(e)), since X(k) = X(Z'). This together
with Thm 2 implies the result.

Corollary 2: Let G,G': A > k-mod be Green—functors with G' X-projective, and

®: G >~ G' a homomorphism (natural transformation) of Green-functors, such that
Ke(8,: G(#) + G'(8))n In(25(e) > G(e)) cRad(G(e)) (e.g. k=2, G' = Q@G and all

torsion~elements in G(e) nilpotent), then G is X(k)-projective.

k ko _k . k k
P : = = I .
roof: We have Q (o) KX+IX(k)’ thus IQk(o) x+y with x € KX’ y € X (k)
Applying the canonical map Qk + G we get 1 = X%y, with

G(e) 1
x| € Ke(G(o) » G(X)) nIn(2 (e) » G(0)) and y, ¢ IM(G(X(K)) + G(o)).

But Ke(G(e) + G(X))=Ke(G(e) > G'(8)), since G' is X-projective, thus X, € Rad (G(e))
and v,= I -x; is a unit in G(e), which implies the surjectivity of G(X(k)) » G(e),

i.e. the X(k)-projectivity of G.

I still want to give another application of our despriction of primeideals in Q(e):
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so let p=p(T,p) € Q(e) be a primeideal.

Since any Mackey-functor M: A -+ Z-mod is an Q-module, thus any M(X) an Q(e)-module
via the canonical ring-homomorphism Q(e) ~ Q(X), we can form the localization Mp(X)
and check easily, that this way we get a "localized" Mackey-functor A + Z_-mod

1
(Zp= Z ['q‘{q + P ]) , especially Gp is a Green-functor for any Green-functor G.

-pro-

Proposition 4.6(cf. 6], [2]): T, is a defect-object of Qp, thus any Mp is T,

jective,

Proof: We have Qp(X) -+ Qp(o) surjective

<=> there exists Y<X with Y ¢ p
<= there exists Y<X with o, (¥) $ 0(p)
P

<= Tp-: X, q.e.d.
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§5 Mackey~functors and G-functors

In this section I want to discuss the relations of the above theory and J.A. Green's
axiomatic representationtheory as given in [23. So let € be a finite group and

A = G the category of (left finite) G-sets. In @ﬂ Green defines the subgroup—cate-~
gory &§(G) of G, whose objects are just the subgroups H,F,... with morphisms

Hom gy (H,F)=1 (,2,F) [geC, g™ Hig <F ).

§(G
One has a natural functor n: §(G) - G: Hv G/4, (H,g,F) v (ng: G/H » G/F with
ng(x*H)=x+g+F (which is well defined if g"lﬂgsF!).

Now let M: G~ k—mod be a Mackey~-functor and consider Mo n: 6(G) »k-mod. One checks
easily, that Mo n satisfies the axioms Gl - G4 in @3], p44 (with R = Mypo n and
T = M%on), thus any Mackey-functor M determines a G-functor "with zero multipli-

cation'.

We note, that M is uniquely determined by Men, since any G-set S is a disjointunigl)
of

n
transitive G-sets of type G/H: 8= \UJ G/Hi and thus
2y
n * n m
M(8) = M(G/H;) = Mo n(H;), and any map UG/lli +\‘j,G/F1- uniquely composed out of
i=1 i=1 T =1 =
J maps

m n m
)€ V G/F,, thus M(\JG/H;) s M(\J G/F;) uniquely determined by
3=1 i=1 j=1

n. G;’Hi v G/F,
J

85 (i

M*O n(Hi,gi,Fj (i)) and M o n(Hi’gi’Fj (i)) (i=1,...,n).

Now assume M is given together with a pairing M x ¥ = M which satisfies (P2) and
(P3). Then Mo n can be considered as a functor into "Ak" (the category of k-modules
P together with a k-bilinear pairing P x P +~ P, see [25_[, p.43)and (P2) and (P3) just
assure the validity of G5, i.e. make Mo n a G—functor in the sense of [29], whereas
additionally (P1) assures, that Me n 1is a multiplicative G-functor.

This leads to

Proposition 5.1: Restricting Mackey-functors from G to §(G) via n{resp. Mackey—func-—

tors with an inner composition satisfying (P2) and (P3) [and (Pl)])sets up a one-one
correspondence between isomorphy-classes of (such) Mackey-functorsand G-functors
with zero-multiplication (resp.[multiplicative] G~functors) .

Proof: One just has to check, that any such G-functor is of the type Men for some
such Mackey~functor M, which follows easily from the axioms Gl - G4, resp. G5 along
the same lines as the fact, that Mo n already determines M.

As an application one gets from Prop.4.4, Prop.4.5, Thm 2 and 3:

Theorem 4: Let G be a finite group, U a set of subgroups of G and M: §(G) ~ Z-mod a

G~functor.
Then
@ el MGy e T mU) > M@©G)) + M Ke((G) » MI)).

Uel vel
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(BY If 7 is a set of primes, HHU ={V<GlexNgV,Uelandpenwith V/Na

G
p-group and N g U} and {Gl=lc[ﬂ'|G|ﬂ, the decomposition of |Glinto its 7- and

n'-part, then ]G]“,-M(G)ex ImMV) = M(G)) + /1) Ke(M(G) » M{D)).
VeHwU vell

There is-a similar correspondence between triples of Mackey-functor M,N,L together
with a pairing M x ¥ » L and G-systems as defined by J.A. Green in 24, §2.
One can also identify Green—functors G: é'+ k-mod with such multiplicative G-func-
tors G'=G o n on 6{G), for which multiplication makes the k-modules G'(H) (H = G)
into rings(even k-algebras!) with a unit, such that restriction sends units onto
units. We call such G-functors also Green-functors, defined on 6(G).
For any G-functor G': §(G) - Ak with a surjective bilinear pairing
G'(G) x G'(G) »(G'(G) J.A. Green has defined its defect-basis as the smallest set
D(G') of subgroups of G, which is subconjugately closed (i.e. gV g—l z U for some
geG, VsG, UeDE@G" implies V e D(G')), such that ¢he inductionmap

T G'(U) -~ G'(G) is surjective. Thus if G'=G e n for some Green—functor
UeD(G")
G: G~ k-mod, if X is a defect-object of G and T = {G/H|H & G} a basis of é
(modulo isomorphisms), then D(G') = {U g G]XU # @} (with XU ={xeX|uwx = x for all
wel)) = (U < 6[G/U e DB}, D(G) = {G/U{U ¢ D(G')} and G is Y-projective for some
Y s}é} if and only if ¥Y + @ for all U e D(G").
Thus as an application of the results of §4 we get:

Proposition 5.2: Let G': &G ~ Z=mod be a Green-functor and assume
4 &-mod

(i) all torsionelements in G'(G) are nilpotent {(e.g. G'(G) is torsionfreel).
{(ii) The product of the restriction-maps Q& G’ (G) »W Q@G (C) is injec-
tive. C5G,C cyclic
Then the defect-set of G' is contained in the set of hyperelementary subgroups,
i.e. subgroups H with a cyclic normal subgroup C ¢ H and H/C a p-group for some p.
More generally if 7 is a set of primes, Z“=Z[j%ﬂq ¢ n] and if

(i)' all m~torsionelements in G'(G) are nilpotent,

(ii)' the product of the restriction-maps Q& G'(G) + || @& G'(C) is injective for
ceC
some set C of subgroups of G,then the defect-set of an G' is contained in

G
ch = {H < Glex. NaH, penand C ¢ C with H/N a p-group and N < C}.

Proof: By Cor. 1 to Thm. 2 the defect-set of Q® G' is contained in

C={C' 5 Glex. C ¢ C with C' g C}, thus by Cor. 2 to Thm. 3 and by Prop. 4.5
2 & G' has a defect-set contained in HWC.

As an application one gets for instance Swan's induction-theorem:

For a commutative ring A let X(G,A) be the Grothendieckring of finitely generated
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A-projective AG-modules with respect to exact sequences. Then restriction and

induction of modules defines a Green—~functor-structure on X{-,A): $C ~ Z-mod and

one has D(QeX(~,A))<c{C £ G|C cyclic}, D(X(-,A))ec {H < G|H hyperelementary}.

Proof: Since X(~,A) is an X(-,Z)-module one may assume w.l.o.g. A = Z.

But then all torsion-elements in X(G,%Z) are nilpotent {see [ég, ) and

Q8 X(G,Z) ~ Q@ X(G,q) (see E&S] ), which maps injectively into _H_ Qe X(C,Q),
C<G,C cyelic

since a QG-module is determined by its character, thus a fortiori by its restriction

to cyelic subgroups. (Later we will come along still another proof of this last

fact, which doesn't even use character-theory).

Using Thm 4 we can also get the wellknown more precise statements on the cokernel of

the induction map =T X(C,A) » X(G,A): if A is a field, injectivity of the
C<G, C cyclic
restriction maps X(G,A) +arr X(G,A) together with Thm 4, (A) immediately
C<G,C cyclic

*X(G,A)e Im( T X{(C,A) » X(G,A)).
C<G,C cycelic

implies Artin's Inductiontheorem |G

In general we may as well restrict again to A=Z, in which case we even know, that
any two torsion-elements in X(G,Z) amnihilate each other (see Bﬂ, §41). Since

n+! ¢ Im( I X{C,z) ~ X{(G,2)) for some n ¢ N, we know that any element in
C<G,C eyclic
M Ke(X(G,2) -~ X(C,2)) is a torsion-element (annihilated by n).
C<G,C cyclic

By Thm 4 we have |G|+1=x+y with x ¢ Im( § X(C,%) - X(G,2))=I and
¥ e {\Ke(X(G,2) » X(C,2)) = K.

Thus we get at first:

!Gf2'1=(x+y) (x+y)=x2+2xy e 1 @ince y2=@, which is due to Swan.

Moreover we get, that any torsionelement z £ X(G,Z) is annihilated by
|Gl+g.c.m.{order of z)¢ in X(C,2)[C s G,C cyclic}, not only by }G[2 g.cm. {...} as
would follow just from Swan's result. Especially if z is a virtual permutation-
representation, i.e. in the image of Q(G) + X(G,Z), we have [Gl-z=O.

For G abelian I can show that even z=8¢%%lds; for arbitrary G its seems to be an
interesting question as to wether or not the image Q2(G) in X(G,Z) contains torsion-
elements.

With similar arguments one can show, that any element t in the projective class-

in CO(C,Z)EC £ G,C cyelicl}.

group C,(G,2) is annihilated by [G|+g.c.m. {order of t

Ic
Moreover one always can replace |G| by the Artinindex A(G) of G as defined by

T.Y. Lam in bﬂ in these considerations.

To indicate just one further application let A=F, a field of characteristic p % 0.

We know by Brauer, that X(G,¥) is torsion-free and that X(G,E) +<TTi X{C,¥) with
CeC 1
P
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C , the set of p-regular cyclic subgroups is injective, thus the inductionmap

z Z[%]@X(H,F) - Z[%]@ X(G,F) 1is surjective. But since |H| is prime to p
HeH ,C_,

P P
for H ¢ Hp'cp' , the image of the inductionmap X(H,F) - X(G,F) is contained in the
ideal of ¥G-projective modules (the image of the Cartan-map) thus the above formula
implies, that the Cartan-map has a p-torsion-~cokernel.
Now let G: G - k-mod be an X-projective Green~functor and M: G~ k-mod a G-module.
Putting D = {H < GIXH + #} (2 D(G')) we know that restriction maps M(e) = Mo n(G)

injectively into TI-Mo n{H) = ¥( \JJG/H) and that the image is precisely the
HeD HeD

differencekernel of the two maps

M/ G/ S M(\J G/B x O/ G/H) defined by the two projections. In the
HeD HeD HeD

terminology of G-functors this is equivalent to

-1
Mon(G) = {(XH)HED € ED Mo n(H)]ng*(le)-:tz whenever g H, gng} =

where D stands for the full subcategory of G with objects just in D.
As an example let us consider G=A,, the alternating group on 4 elements, with

subgroups V4 g A4, the Klein-four-group, A, s A, and E < Ay

3 4
If M: G » k-mod is (G/V4u G/A4) projective, then we have a pull-back of restriction-

maps
Mo n{Aa) > Mo n(a

} }

Mo n(VA)A3 + Mo n(E),

3)

i.e. the value of Me n on A4 is completely determined by the behaviour of Yo n on
its proper subgroups.

I want to point out, that this way - using not only an axiomatic formulation of the
Frobenius—reciprocity—law(as T.Y, Lam did), but also of the Mackey-subgroup-theorem
és already done by J.A. Green)as well - we do not only get "upper*bounds", i.e.
conclusions like "M e n(G) is zero or finite or finitely genmerated, if all Mo n(H),
H £ D are so', but we get an explicit description of Mo n(G) in terms of the

Mo n(H), H ¢ D and the way, the subgroups in D are imbedded into G. In some way this
generalizes Brauer's characterization of generalized characters by their restric-
tions to elementary subgroups. Thus our theory can be used for instance for the
explicit calculation of the Whiteheadgroup or some Wallgroups of a finite group G,
once these groups are known for all hyperelementary subgroups of G tegether with the
way, they restrict to each other, and the way, G act#on them by conjugation,

Let us just remark, that there is still another way to apply our techniques: if M is

a covariant functor on the category of commutative rings (or any appropriate sub-~
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category) into the category of abelian groups (or any abelian category), it may
sometimes be possible to extend this functor to a bi-functor, defined on some sub-
category (e.g. étale R-algebras with étale morphisms) by using some kind of norm- or
trace—construction. Generally such a functor then turns out to be a Mackey-functor
(on the dual category of affine spectrums,of course!) and proving it to be R, -pro-

jective for some R-algebra R, can lead to rather interesting results on M, for

instance its Galois-(or Amitlur—)cohomology. E.g. see BQ, App A & B and @@ for the
case of Wittrings.

Finally let us shortly discuss the transfer-theorem of Green (c£[23], p 61). This can
be done even in the context of pre-Mackey-functors: So let A be a categroy with fi-
nite products and pull-backs and M: A > B a pre-Mackey-functor into an abelian cate-
gory B,

By Lemma 2.1 we have for any injective morphism a«: ¥ » X in A the formula

() thus if z: X > Y is a left-inverse of a(i.e cu=IdY), we get

=a;Q*=Idy, i.e. o¥zg, mod Ke .

o
3

Especially if o: Y -+ X is any morphism and if we consider a;=Id, x a: ¥ + Y x X, we

Y
get a, = @iix mod Ke LA (with oilXTZ : T1 X T2 - Ti the projection onto Ti),thus
1
. IxX % L UXKE L YxX R YxX _ X ¥ % IxK .
applying Oy ve get of=g. afzey cOy x = 0. w0 mod oy (Ke al*).
&
(/\
Y — IxX ——3 X ; in other words
YxX
*x
TxX
W\
d v p.
v N4
T—y~ o
‘e

we have a commutative diagramm

Im a* € Im @E{XX e M
n ¥ N
xX %
MX) — M(») — M) /og (Ke o ,).

Now let Z e|Albe a further object with a map B: Z + X and consider the diagramm of

pull-backs
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YxZ
— X
k//}/////// \\\\\\¥\\\J
YXZ YxZ
x %
P N
Y YXXXZ Z
o /
\\\\\?\\\A é/////////// \\\\\\\\i . ]
X XxZ
\\\\\\\\\\\i <f///////////
X
YXZ
y & Z
\-A ] /
We claim
. X YxZ® YXX* XxZ*
(1) 0gulo, " (Ke v D) 20y (Ke ay) + 0y (Ke B8),)
and
(ii) o® o gXZN(Ke Y*)9-¢§XZW(K6 Bla)-

YXZ_ XXZ , YXXXZ

Proof: (ii) follows immediately from o 0y =0x (o xZ uz) and the above pull-back-
diagramm,
. X YxZ* YXXXZ%  YxXxZ _ YXXxZ®
(i) from 0gx (0, (Ke vx)) = oy Oynzi (Ke Yz) = oy az(Ke vz) modulo
YxXx2*
by (Ke ayy).
YXXxZ® % . b b3 5 i1
But o XXX oF (Re v.) = a¥ wYxZ (Ke YJ.)Q_[DXXZ (Xe le) by (ii) and
X 2 o Y w» X
YXXXZ% _ YxX*® YXXxZ* YxX*
Oy (Ke uzﬁ) = 9% Pyyx (Ke az*)g 0y (Ke al*). Thus alltogether we get a

commutative diagramm of well defined surjective maps:

214



33

{o® M(Y)) + 8%(M(2))} % *
mxz (Re v,) + B*ngz (Ke v,)}

"natural indusion in M(X)"

1 -l oo
Loy X0t + 0¥ () )
”(Df;':"
TxX# XxZ%
Ly (Ke ap) + gy (Ke B0}
.
§; X
" "
¢.*

Y* VA
{oo (M) + o Mz} &
¢ ¢ /ofxz (Re v,)

Let us just note, that the surjectivity of these three maps implies, that all are

isomorphisms in case the upper right map is.

Especially for Y=Z, a=f symmetry implies, that in each term the summands conicide,

thus one gets the simplified diagramm:
M =t (D)) ool (Re v,)

zpatural indusion in M(X)"=n
Sy

an _¥YxX*
u(px =l M3‘(9X (M(XXY)%XX*
. 1 ® (Ke o, )
X 1%
_‘7']
n X "_
v Yo M2
Y
My=ogq (M(D) _“yoyn
0, (Re vy)

,which for A=é, X=G/H, Y=G/D with D<H and G/D=Y $ G/H=X the natural map gD + gH and
M any Mackey-functor on ¢ just is the first part of the transfertheorem of Green.
The other parts deal with multiplication, which can always be replaced by pairings
M x N> L (see also @ﬂ, §2). The results then are, that such a pairing induces
pairings Mi X IVi - Li of the corresponding terms in the above triangel taken for
M,V and L respectively, which are compatibel with the maps in the triangel (i.e.

these maps are multiplicative), and that M1 x NV, > Ll vanishes on Ke uy x Nl and

1
M1 x Ke Vs whereas M2 X Nz > L2 vanishes on Ke Uy X N2 and M2 x Ke Voo
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Part II

Representations of finite groups and KG—theories

§6 Distributive categories

In §4 we have considered categories A satisfying the properties (M1) and (M2) and
shown, that the isomorphism-classes of objects in such a category formfeommutative
half-ring Q+(A), with addition and multiplication in Q+(A) defined by categorical
sum and product. If one wants to define something similar for - say - the category
P(k) of finitely generated, projective k-modules (k comm. with 1 ¢ k as above) of
course one has to replace the categorical product, which in this case cnipncides with
the categorical sum, by the tensorproduct over k, to define multiplication. And in
case one wants to consider the category L(k) of k-lattices, i.e.of finitely
generated, projective k-modules M together with a nonsingular symmetric bilinear
form f: M x M » k, one has neither categorical sum nor product, but still can define
a half-ring-structure on the set of isomorphism-classes of k-lattices using ortho-
gonal sum and tensorproduct.

To handle all three cases at the same time one may define the concept of a distri-
butive category as a category C together with two "compositions', which behave-say-
like direct sum and tensorproduct in P(k).

Because later on we will have to take "sum" and "product" of any finite family
(Xi\i e I) of objects in C, indexed by an arbitrary finite set I, it seems appropic
ate to define such a "composition" as a covariant functor I, (resp. II) from the
category F(C) of finite families (Xiii e I) of objects in C (with morphisms

(Xi\i e I) » (Yj|j € J)) pairs consisting of a bijective map u: I » J and a family

(@i: Xi - Yu(i)|i € I) of morphisms in C and obvious compositions) back into C, such

that in case I contains exactly one element, e.g. I={io}, X; =X one has
o

Z(Xi]i e I)=X indeoendentiyﬁf I, i.e. for u:l - J,io w»jo and ¢iO;Id :Xio=X > X. =X

X i

one has Z(u,(mi{i € I))=Idx:X -+ X.
Associativity then can be expressed as saying, that one has a natural equivalence

between the two functors from F(F(C)) into C, defined by F(F(C)) ~ F(C) ¥ C:
(X5 e Ij)lj e J) v (Xlli e JL=1) » z(x1|1 ¢ L) and
jed -

F . . . . . .
FEOYE ro) L Cli e 1Dl e D v Glie 1] e D> B lie1,)|jen)

Associativity especially implies, that for X0=Z(Xi|i e @) one has a natural isomor-
phism Z(X,,X) = I(X,X)) = X (X ¢|C]) (with DX, V)=:2(X, {1 ¢ I) with

I={1,2}, X =X, X,=Y!), i.e. X, is a "natural object" w.r.t. I.

(+)

Now we define a category C or rather a category C together with two associative
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compositions I,NI: F({) » C to be distributive, if we have a functorial isomorphism
I (X,¥),2) = $(i(X,2),0(Y,2)).

Here "functoriality' shall mean to imply, that for any finite family (Xili e I) and
any map u: I+ J (J finite set, u not necessarily bijective) we have a natural iso-
morphism H(Z(Xi]i € u_l(j))|j e J) = E(H(XY(j)|j € J)]y £ I') with T the (possibly

empty!) set of sections (i.e. right-inverses) y:J » I of u:l - J.

Of course any category A with (M1) and (M2) as well as P(k) or L(k) are distributive
as explained above. Moreover if  is distributive and A any small category, then the
category of (covariant) functors from A to C is distributive as well. All our examp~-
les arise essentially that way from the above three cases, thus a reader who (as
myself) does not like the above rather abstract and involved definitions might just
restrict himself to those cases.

Anyway we can associate to any small category C with just one associative compositi-
on I its "Grothendieckgroup" K(C) = K(C,I): the universal abelian group associated
with the abelian semigroup K+(C) of isomorphism-classes EX] of objects ¥ in C with
addition defined by X(i.e. [X]+[Y]=: [zx,1)]).

If moreover there exists a second associative composition T on C, such C wieh £ and
1 becomes a distributive category, then we can use Il to define a multiplication on
R(C) by [XJe[YJ=: [ﬂ(X,Y)J, such that K(C)=K(C,I,N) becomes a commutative ring with
a unit (represented by Xl=H(Xi|i e BN,
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§7 Construction of KG-theories.

Now let G be a finite group and S a finite G-set. To S we associate the category s,
whose objects are precisely the element in S with morphisms

[s,s']s = {(g,s,8') |geG, gs=s'} (s,s'eS) and obvious composition of morphisms,

e.g. g=gég is just the category usually associated with the group G. Now let C be a
small category at first with just one composition I and consider the category [§,C}
of covariant functors from § to C. An object ¢ e][8 C]{ will also be called a
"G-equivariant C-bundle over §", since it associates to any s € S=I§l the fiber
z(s) = g ¢|C| and to any g ¢ ¢ a morphism Ly > Cgs with compositions compatibel
with the group-structure.
Especially for S = @ = G/G the category E;ég, Cl is just the category of "G-objects
in C".
For any G-map ¢: 5 - T between finite G-sets we have obviously an associated functor
¢: §+ T and thus a functor g,: [Z,C] > [g,C], defined by ¢ » ryp. Moreover we can
also define a functor @#{g,C] -+ [g,él, which maps any G-equivar;ant C~bundle z over
s
correspondingly defined G-actions and so on. (In other words: ¢%: [g,@} > [z,é] is
defined as the composition of E§,C] > EZ,F(C)I: v (gs!s 3 qJ—l(t))teT and the

S onto the C-bundle 9% {(g)=r' over T with fibers cé =3(z |s ¢ m—l(t)) (t € T) and

functor {Z,F(C)j > [Z,CI, induced by I. It is easily checked, that this way one de-
fines sémething like a Mackey~functor on é, the category of finite G-sets, with va-
lues in the ""category of categories with an associative composition', especially

9, and ¢* commute (the latter one at least up to canonical isomorphisms) with the
associative composition defined on [§,C] and [E,C] by I.
Thus taking Grothedieckgroups we get a Mackey~functor
KG(-,C): é > Z-mod: S » KG(S,C)=:K([§,C1) which defines K

cients.

G—theory on é with C-coeffi-
If moreover C is distributive with respect to I and a further associative composi-~
tion I, then 1 induces a multiplicative structure, which makes KG(S,C) to a
commutative ring with a unit and KG(—,C) to a Green—functor. (Proofs for these facts
are straight-forward and left to the reader).

Now let H be another finite group and 6: H + G a group-homomorphism. Restricting the
action of G on a G-set S, resp. on a G-equivariant C-bundle 7 over $ to H via 6 de-
fines a functor 0: G > H S+ S!H, resp. a natural transformation of Green-functors
from KG G -+ Z-mod to KHO e G + H > Z-mod.

Especially if H g G, T an H-set and C x T _the induced G—set (defined as set of
H-orbits {(g,t) in 6 x T w.r.t. the H—agtlon hig,t)= {gh ht), heH, geG, teT), we get

a homomerphism KG(GXT,C) > KH(GXT] ,C) ~ KH(T,C), where the second map is defined by
H g "

the H-map T -+ GxT: t - (e,t) (e the trivial element in G); e.g. for T= H/U for some
H
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U £ H we have GXT = G/U and the above homomorphism is just the obvious map
H

KG(G/U,C) > KH(H/U,C), defined by restricting a C-bundle over G/U to H/U and the
action of G to H at the same time, i.e., by the obvious functor H/U » G/U

Lemma 7.1: The above homomorphism KG(GXT,C) > KH(T,C) is an isomorphism.
H

Proof: W.l.o.g. we may restrict to T=H/U a transitive G-set and because of the
commutative triangel KH(H/U,C)

KG(G/U,O\\g |
K, (u/u,0)

even to H = U. But in this case it is obvious, that J/U + G/ is an equivalence of
categories (any object gU in G/U is isomorphic to U ¢ Im(lgigl - |£zl!), which has
the same endo-(-auto-)morphisms in U/U and G/U !), thus f%,q - [UJ_lJ_,CJ is an
equivalence of categories.

Remark: of course I +~ GxT 1is always an equivalence of categories, thus
_Ho

|exT,C| — |2,C] as well for arbitrary H-sets T. Especially for C the category of
H

finite sets one can identify on the one hand [§,C] (S a G-set) with the category
G/S of G-sets over S, on the other hand for S=G/U one has a natural equivalence of
GéU,Cl with [U[U,C] x U, thus we have also a natural equivalence between the cate-

gory of G-sets over G/U and the category of U-sets.

One may formalize the above considerations by introducing the concept of a universal
family of (Mackey - or) Green-functors as a family of Green—functors GG:G -+ k-mod,
one for each finite group G, together with natural transformations of Green-func-

tors: ee: GG > GHé, one for any grouphomomorphism 68: H » G, such that

%1471 8010, %)° ©o,207 6 GU/IBL’: Gy9,8, for any 6,: H > G,
68,

y

U
65: U > H and GG(G/U)-—+ GU(G/U|U) > GU(U/U) an isomorphism for any imbedding
L, U > G.

In other words G is determined by its values G(U) = GU(U/U) together with the maps
Gx(8): G(G) »~ G(H), defined for any 8: H > G, and the maps G*(LU): G(U) » G(G) de-

fined for any injective homomorphism ., : U + G, which are such that G restricted to

U
the subgroupcategory &G of any finite group G becomes a Green—-functor on §G.

It should be remarked , that whereas the second description might be simpler to
work with the first one i1s generally more easily verified, as in the case of

KG—theories. Anyway we have
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Proposition 7.1: Any small distributive category C defines a universal family of
Green—functors K.(-,C): G > Z-mod, such that K (6/6,0) =: K(6,0) = K([/G,C]) is

the Grothendieckring of G-objects in C.
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§8 Defect-groups of KG—functors.

Again let C be a small distributive category. We want to determine the defect-basis
of the associated Green-functors KG(-,C). Of course this will be impossible without
additional assumptions on C. But still we can prove a general result on these defect
bases, which will be rather helpfull in the explicit determination for various cate-
gories C later on.

At first we have

Proposition 8.1: Let G be duniversal family of Green—functors with values in k-mod

(as defined in §7). Define D'(G) to be the class of all finite groups H, such that

H/H is contained in the defect-set of GH(i.e. such that I G, (H/U) » GH(H/H) is not

ugp O
surjective, resp. such that GH(S) - GH(.) is surjective if and only if
sP-{seS|hs=s for all h e H} % ¢).

T’gen (1) D(G,) = {6/U|ex.HeD' (G) with UsH<G}, i.e. D(GY)={U<G|ex.HeD'(G) with
UgH<G}.

(ii) D'(G) is closed with respect to epimorphic images, i.e. if 6: H » H' is sur-
jective and H ¢ D'(G), thenH' ¢ D'(G).

Proof: (i) To show D'(GG)Q {U < Glex. H e D'(G) with U g H < G},

i.e. I G(H) = 2 GG(G/H) > GG(G/G) = G(G) surjective, we use induc-—
H<G,HeD' (G) HgG,HeD' (G)
tion w.r.t. |G|: For |G|=1 or more generally for G ¢ D'(G) surjectivity obviously

holds. For G ¢ D'(G) one has by definition of D'(G) a surjective map

£ G(U) »G(G) and for U g G, thus |U| < [G| one has I G(H) » G(U), thus
UgG H<U,HeD' (G)
we get I I G(H) » G(G) which implies G(H) = I G_(6/H)
UsG  H<U,HeD' (G) H<G,HeD' (§) H<G,HeD' (6) C

» G, (6/6) = G(6).

On the other hand,if = GG(G/V)-* GG(G/G) is surjective for some set D of subgroups

VeD
ofaglAwe have to show, that for any H < G with H ¢ D'(G) there exists V € D with
H< v, ie. G/ 4 4.

But restricting the above formula to H via §; we get a diagramm
H

2 G.(G/V) = G.(\JG/V) — G.(G/G)
VeD G 6 VeD ¢

]

G.(\JG/V]| )y— G, (H/H)
HVeD H H

Since 6, maps the unit IG in Gg(G/G) onto the unit 1y in Gy(H/H) and the upper ar-
‘H

row is surjective, we see, that 1, is contained in the image of the lower arrow,

B
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which on the other hand is an ideal, thus the lower arrow is surjective.

By definition of D'(G) and because H ¢ D'(G) this implies ({N G/V)H % @, q.e.d.
VeD

(ii) For any 6: H + H' and any H'-set S consider the diagramm

GHY(S> had GH'(H'/H')

lee lee

Gyl — G (H/H)

Again surjectivity of the upper arrow implies surjectivity of the lower arrow. Thus
if H e D'(G) and 8 surjective we get: Gy (8) » Gy (H'/H') == GH(SiIi-» G (B/H)

H

1 1
=> (SEH)H 40 = st 4 ¢, since st =(s] by the surjectivity of 6.

)
We now define a universal family of Green-functors G to be saturated, if D'(@) is
also closed with respect to subgroups.

In this case the first part of Prop. 8.}. can be written even in the form

D(Gé} = {H < G{H ¢ D'(G)}, but what is more important: whemever we have an explicit
inductiontheorem for one particular group € we immediately get induction theorems
for all groups G' which contain G as a "section" (i.e. G=V/U for some UsVs<G'), e.g.

if we can exhibit for G=V, (the Klein 4-group) elements x,., € GG(G/U) for any

Ug V, = G such that the sum of the induced elements ’
b 6/u>6/e 1, then we have an induction-theorem for any group with a non-

U,gv4

ceyclic 2-Sylow-subgroup.

Unfortunately universal families of Green-functors are mot nessarily saturated. Thus
it is worthwhile to realize, that we still have:

Theorem 5: Let C = (C,Z,I1) be a distributive category and KG(—,C) the associated

universal Green—functor. Then kaaKG(~,C) is saturated for any k.

We write Dk(C) for D' (k®K(~.C)).

Proof: For any universal Green-functor G define G(G) = G(G)/Im(X G(U) - G(G)), thus
—_— UgG
G(G) % 0 <= G ¢ D'(G). Now consider G = K(-,C). We have to show

k@G(H) = k@G(H) % 0 = k@G(G) 4+ 0 whenever H < G and for that purpose it is

encugh to construct a ringhomomorphism G(H) »-EQES.

At first let us interpret G(H) = K (H/H,C) as K,(G/H,C) = K({g;ggcj).

To the map ¢: G/H > G/G we have associated already two functors: 9,1 G/G C] - BELQ,C]
and g% = @%3 {g;g;C] > EQLQQCJ, for the second ome using the composition I in C.

Thus we can as well define another functor @ﬁ: Eﬁﬁéﬁ] - Eé;;C], which asseciates
to any G-equivariant C-bundle ¢ over G/H the G-object (i.e. G-equivariant C-bundle
over G/G) T(g) = H(Cx\x ¢ G/H) (note that [ can be considered as a G-object in

F(C), that N(z) is a G-object in C).
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This functor defines a NMl-multiplicative map from isomorphy~classes in [G/H,C| into

isomorphy-classes in [GZG,C], thus we get a diagramm

K} (H/H,C) = Kg(G/H,C)—~+ KZ(G!G,C)

} }

K, (H/H,C) K. (6/G,0)
Ky (B/E,C)  -oe K, (6/6,)
Our claim now is, that the lower arrow ..... exists as a ringhomomorphism.

This follows obviocusly from
Lemma 8.1: (a) For any two bundles gl and cz over G/H we have

e ) = 1) 1) medulo 1Lk (G/0,0 + Ko(6/6,0) .

(b) Whenever E=¢§(C) for some C-bundle [ over some G-set S with S =¢
with respect to some G-map ¢: $ - G/H (e.g. S=G/V ~ G/H with VgH<G),
then M(¥) ¢ Im(U<G G(G!U,C) - KG(G/G,C)).

Proof: At first let us remark, that I(n lteT) el=Im( 2. K.(6/U,C) ~ K.(G/G,())
whenever n is a G~equ1var1ant C~bundle over T w1th TG @ mﬁ;@ we have

net,?y) - n(z(cx,gx)lx ¢ G/H) = Z(H(gz(x)ix ¢ G/W) |o ¢ Hom(G/H,{1,2})) with
Hom(G/H,{1,2}) the G-set of all maps from G/H into {1,2} - identified with the set
of all sections of the projection G/H x {1,2} ~ G/H. Here we may consider

a(x) —equl ; -~
H(cx [x € G/H)aeﬁom(G/H,{I,Z}) as a G-equivariant C-bundle over Hom(G/H,{!,2}).

But Hom(G/H,{1,2}) is a disjoint union of T1=Hom(G/H,{l})zG/G, T2=Hom(G/H,{2})=G/G
and T={a ¢ Hom(G/H,{1, 2})[@ not constant}, thus TG—¢, and the above bundle restric-
ted to T has flber just TM(zY) (i= 1 ,2). Thus Z(H(ca(x)]x € G/H) |a & Hom(G/H,{1,2}))
= Z(H(g ) H(c )) mod I, since by € =@ ©(~) applied to any bundle over T is contained
in I.

(b) We have T (%) = H(m"(;)) L (N(z v(x )Ix € G/H)IY e T) Wlth T' the G-set of all

sections y: G/H » 8§ of ¢: S > G/H. Since 5 =¢f we have T “¢ and thus H(mﬂ(C))EI

Now to prove induction-theorems for k@>KG(—,C} we just have to compute Dk(C) and we
know, that this class of finite groups is closed with respect to epimorphic images
and subgroups. In the next section we will show, how this fact can be used to
reduce the proof of rather general inductiontheorems to the consideration of rather

special and simple cases.
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§9 Applications to linear representations

We start with the purely group-theoretic
Lemma 9.1: Let D be a class of finite groups, which is closed with respect to
epimorphic images and subgroups, and let p be a prime. If the elementary abeliam
group of order p2:Zp X Zp and any nonabelian group of order psq with qlp—l another
prime is not contained in D, then any group in D has a cyclic p-Sylow-subgroup and isg
p-nilpotent.

Proof: If G ¢ D and G_ 2 p-Sylowsubgroup of G, then any factorgroup of Gp is in D,
But Zp X Zp é D. Thus GP is cyclic. If G would not be p-nilpotent, then by a well-
known transferargument there would exists an element g £ G with g ¢ NG(Gp), but

g & CG(GP); since the p-part of g is necessarily contained in GPG CG(GP), we may

even assume g to be p-regular and then as well g% ¢ C

G

(Gp) for some prime q + P.
But then with Gpu= <h> the group <h,g>/<hP,g%> is non abelian of order p q with q|p-1

a contradiction to: G € D =% <h,g> ¢ D = <h,g>/<hP,g% ¢ D.

This Lemma will be used together with
Lemma 9.2: If p*R=R for some prime p and some commutative ring R with ! ¢ R, then

DQ(P(R))a:DQ(R) contains neiter Zp x Z. nor any non abelian group of order p-q with

P
qlp-1.
Proof: Let us first fix some notations: For U £ G and N an RU-module we write
NU*G for the induced RG-module RG® N, i.e. the RG-module, which is induced from

RU
G-equivariant P(R)-bundle GyN over G/U; for a G-set S we write R{S] for the asso-

ciated permutation representation, i.e. the RG-module which is induced from the
trivial G-equivariant P(R)~bundle R x S$/S over S. Thus R[G/U];RU+G, where R=R[U/U]
is the trivial RU-module., Now Lemma 9.2 is a more or less direct consequence of the
more explicit

Lemma 9.2': a) If pR=R, G=prZ and if Uo,...,Up are the p+! subgroups of ofder p in

G, thenR_0.....0 R, @ i{[ciém r[G/u;] -
p times i=o
(Here R of course means the trivial RG-module, representing 1 in K(G,R)}
b) Let R=Z(p,z) with £ ¢ € a primitive pth root of unity and let G be the semidirect
product Zp ‘® A with A=Aut(Zp) cyclic of ordeF p-1.
Let R be R considered as a Zp“module with?z{ﬁgkr (r e R,i € Fp and the elements
z=z; € Zp indexed by the elements i ¢ Fp, such that Zi'Zj=Zi+j)» Then
R[c/a] =R @ P ~ €

Lemma 9.2', a) shows directly, that p-1 is induced from proper subgroups,

K(Zp x ZpR)

thus Z, x Z, ¢ DQ(R).

To get also H=ZpG)Z ¢ DQ(R) whenever Zq < A= Aut(Zp), we restrict the RG-isomor-
. » q
phism in Lemma 9.2, b) to R'H (R'=2[p], B=Z ®Zq s G=Z,®A), to get
R'8$ .8 R @ NgH o PpR for some appropriate R'Zq—module N and R‘Zp—module M,

321
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which shows that in this case (p-1)-1 is induced from proper subgroups;thus

K(H,R")
H ¢ DQ(R'). The same holds then for any R'-algebra, i.e. for any ring, in which p is
invertibel.

Proof of Lemma 9.2"': a): Quite generally let us define for any finite group G,G-setS

and ring R:IRES] = 1[8] = Re(R[S] > R), where R[S] + R is defined by sv 1(s ¢ §).
Then psR=R implies

R[6/E] = re1[G/E], R[6/U;] = ReI[G/U;]
and it is enough to show

1[6/E] ;ige 1{c/ug].

An explicit isomorphism is given by first restricting the canonical maps

R[G/E] - R[?/Ui]: gEwv gUj to I[...I and then taking their product, its inverse by
the su? of the restriction to I[...| of the maps R[C/Ui] + R[G/E]:

gUi"’*'l; L x+E,

xegUy
b) We also index the elements in A by the elements in Fz: a=aj(jer,j%O), such
that a?l zj a; = aj(zi) =z
R[G/A] has an R-basis x; = z;A(i € Fp) such that zj Xj = X;,., 8§ Xj = X ..
Consider yj = 2 290 x; (5 ¢ Fy).
1efp

since the determinant I i....1

te® e T @l - s

| C??}'E(pwl)z osi<jep~1

p-1

invertibel in R(p= || (1~z") is a unit in R!), the set {yj!j € FP} is also an

i=1
R-basis of R[GiAl. But ztyj=c3tyj,atyjzyjt, thus Rys is a trivial RG-Module, where-
as the sub-R-modules Ryj(j = Fz) are blocks of imprimitivity with Zp being the

stabilizer-subgroup of the first (and - being normal - of any) block and Ry1|Z = R,
P

thus R{?/&] 28 Ry; 2RO R%p G, q.e.d.

jeFp
As a consequence of Lemma 9.1, 9.2 and Theorem 5 we get
Proposition 9.1(cf. [§],[0]): If any prime p is invertibel in R, i.e, if R is a
@-algebra, then DQ(R)Q C={H[H cyelic}., If any prime except one, say t, is invertibel
in R, e.g. R is a local ring with residue-class—characteristic %, then
DQ(R)§-01={Hl§ cyclic mod ¥}, where a group H is called cyclic mod ¥, if the 1-Sylow-

subgroup Hy is normal in H and H/H; cyclic.

Proof: If p-R=R for any p, then any group in D, (R) is p-nilpotent and has a cyclic

¢

p-Sylow-subgroup for any p, thus it is nilpotent with only cyclic Sylow-subgroups,

thus it is cyclic.
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If psR=R for any p + 1, then any group H in DQ(R) has a normal p-complement for any
P + t, thus the intersection of all these normal p-~complements, i.e. the t~Sylow—
subgroup H; of H is normal. Moreover H/HI is p-nilpotent with a cyclic p-Sylow-sub~
group for any p| ]H/Hkl , thus by the above argument it is cyclic,

To get also results for arbitrary R one has to use

Lemma 9.3: If R is a Dedekindring, then D R) = %/Dk(Rm), where m runs through all

maximal ideals in R and k is an arbitrary commutative ring with 1 € k as above.

Remark: Actually the proof below is valid for any Priiferring R, i.e. any ring, for
which any finitely generated torsionfree R-module is projective. I do not know,
wether the above statement is true for amy R, but its analog with P(R) replaced by
the also distributive category P'(R) if finitely presented R-modules is true, i.e.
for D' (ke K(-,P'(R)), which is a bit more technical to prove. On the other hand - as
we will see below - the computation of Dk(R) can anyway always more or less be redu-
ced to Dedekindrings R.
Proof: Obviously Dk(Rm)g Dk(R) for any M, since KG(—,Rm) is a KG(—,R)—algebra. Now
assume G ¢ D, (R), but G é\n{'Dk(Rm}. For any m we thus have elements

vV -+ G

L%y (with xv > 6 the image of
Vs

xy € k@K(V,Rm) v £ G), such that 1k0 K(G,Rm)=

x € G(V) in G(G) with respect to the inductionmap: G(V) - G(G) (V < G) for any uni-
versal Greem—functor G). Since only finitely many R V-modules and only finitely many

isomorphisms are involved in this equation, it is obvious, that it can be realized
already in a finite subextension of R in Rm’ thus we can find an element 8, € Rm,

such that the above situation can be realized already over

R _ . ..
{Sz}nem} Rsm, especially G é Dk(RSm). Thus it is enough to show, that the set

s={s ¢ R|ls = 0 or G & Dk(Rs)} is an ideal in R - since sy e 4 would imply s4&m for
all m, thus 4 = R=21] and G 4; Dk(R), a contradiction, So assume s,t € 4. W.l.0.g. we

may assume s + t + O and even s + t = 1, since RSG (Rs-l-t)i N Rt{— (Rsﬂ:)_t_ . Now we
use S+t S+t

Lemma 9.4: Let C& R be a multiplicatively closed subset of a Dedekindring R with

0 4: C and RC the associated ring of C-quotients of R. Let icé k@ K(G,R) be the ideal,
generated by {EVI]—[NI e k@ K(G,R)| there exists ¢: M~ N and ¢: N + M with

e = c-IdN, Py = c-IdM for some ¢ e C}. Then the canonical map

k@ K(G,R) ~ k&K(G,RC): M - D{Ca M| induces an isomorphism

ke K(G,R)/ic = k@ K(G,R.}.

Proof: Obviously i, is in the kernel of k@K(G,R) — k@K(G,RC). To construct an in-

verse of k@ K(G,R)‘;iC > k@& K(G,RC) choose for any finitely generated RC—projective
R.G-module M' a finitely generated R-projective RG-module M with ROM 2 M', which
is possible, since R is a Dedekindring, and define k@ K(G,RC) + kg K(G,R)/iC by
M > M) + ics which is welldefined, since R.®@M = R ®N easily implies

[MJ—ENI € ic, and obviously is an inverse.
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Using this Lemma we get, that there exist elements XysYy € ke K(V,R) (V H G) with

x=1 - I xv*cein = i
v {s"|neW} s

VG

and

y=1 ~ Z yV+Gein =i
vse v {t%|new} ‘¢

Multiplying we get xsy = 1 —- T z:; > 6 € is-it for appropriate z, € k @ K(V,R) and
V;G
thus our result {(i.e. G 4: Dk(RS), G 4: Dk(Rt) and s + t = | implies G é Dk(R)) follows

from

Lemma 9.5: If Cy» Cyc R are multiplicatively closed subsets of R and c R+c,R=R for

2
any ¢. ¢ C,, ¢, ¢ C,, then i_ - i, =0,
1 | 2’ €y ¢y
Proof: If [Mv]-[:NVI € 1CV with maps 0,° M\) > N\), \U\): Nv -+ Mv’
177272

from MieM, & N & N, into MeN, 8 NeoH,, given by the matrix

fpvwv = cv-Ide, \bvcpv = c Id.M\)(c\)eC\}) and I8 #r,¢ =1, then we have an isomorphism

IdMle ?y wla rIIsz
9@ Ty, Bt

whose inverse is given by

3
T2 ® Yy V@ Ty,

q)l @ Isz -IdN ]@ apz .

Thus (M, ]-[N, D) (M, ]-[N,]) = 0, g.e.d.

As an application we get
Proposition 9.2 (cf. [6] ,E@): For any commutative ring R with 1 ¢ R we have

DQ(R) = \iCla{H{H cyclic mod T for some characteristic % with IR % R}l).
tR+R

Proof: Define R' = ZI_—%«|p-R=R] . Then R' is a Dedekindring and R an R'-algebra, thus

Da®)& DQ(R')QLr_iDQ(R'm) .

Moreover D (R' )& Cl,i=char R'/m by Prop. 9.1 and t=char R'/m obviously implies
Iy ¢ =C={"B|H cyclic }!
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(R)e UC

1R' 4 R', thus IR % R, so we get Dy
aa%x

For the opposite inclusion, i.e. CléeD (R) whenever 1-R + R choose a maximal ideal

Q

meR with char R/m=%, resp. with arbitrary residue-class—characteristic if 1=0. In

any case we have DQ(R/m)€~D (R) and thus it is enough to show Cle DQ(R), whenever R

Q

is a field of characteristic %, So let G be cyclic mod 1, G1 its 1-Sylow=-subgroup
(resp. E, if t=0) and G=G3 « <g> for some appropriate g ¢ G. We construct a non-zero

linear map K(G,R) » €, which vanishes on Im( £ K(V,R) » K(G,R)) (and thus proves
VgG
(EQDQ(R)), by associating to any RG-module M with a direct decomposition

n
M= @ Ml into indecomposable RG-modules tﬁ%@y& {g) of the Brauer-charaetersl) of g

M;
on thgse direct summands M , which have the vertex G1 in the sense of Green, &ﬂ .8,

Uu-+¢G

are not a direct summand in any N with U g N any RU-module.

1’
This is well defined and additive by the Krull-.-Remak -Schmidt~Theorem, nonzero since

the trivial RG-module R is mapped onto | and vanishes on any M, which is induced from
a proper subgroup V: if M=NV > for some RV-module N, which w.l.0.g. may be assumed
to be 1ndecomposab1e, then either the vertex of N and thus the vertex of any inde—

composabl eﬁof h is properly contained in G and thus O—Z& {g), an empty sum, or

G1 < Vand N is a direct summand in N?I 1l for some 1ndecomposab1e RGt-module N1

with vertex G& and then any indecomposable summand M., of M, restricted to G, is iso-

1
morphic to a direct sum of copies of G-conjugates of N

1

1 and thus has vertex Gl,too,
in which case we get
){g (&) = xyl&) =0

i

I (8) = I
My

since Gy £V 5 G implies g ¢ v,

To get results on Dk(R) for arbitrary k, especially k=%, let us first observe
Lemma 9.6(G. Segal): Let K be an arbitrary {i.e. not necessarily special) i-ring
=1l 0 = x,..0.
Then any torsion-element in K is nilpotent.
Proof: At first let us state:
(%) If K is a A-ring and x ¢ XK,

then

A (mx) = -«——— T(x v

(1 seesd ) Iq!

where thensum is tgken over all (n+l)~tupels (jo,...,jn) of non negative integers

jv with I jv=m, I v jy=n.

v=p V=0
This is a straight-forward consequence of the formula An(x+y)=2 Aa(x)kb(y).
a+b=n
m!
Especlally if m=n=p for some prime p, then, -— '$ 0(p) if and only if

jo!
) Taken w.r.t. some fixed imbeddingof the roots of unity in some algebraic closure
T of R into € .
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t t
jo=j2=...=jm=0, j=m, thus AP (ptx)=xp + py for some appropriate y ¢ K. Thus if

ptx=0 and if we assume by induction, that all z ¢ K with pt—lz=0 are nil-
potent (t 2 1), then
ty

t t - t
0=x-AP (ptx)=xp +1+ p x-y=xp ]+ z with pt 1-z=0, thus (xP +

r1=(—z)n=0 for some

)

appropiate n ¢ K. But if any p-torsion-element in K is nilpotent for any p, then of

course any torsion-element is nilpotent, too, q.e.d.

Now it is net difficult to check, that exterior powers define a A-ring-structure on

any K(G,R) for any R (which isn't special unless |G

»R=R, by the way), thus as an
application of the results of Part I together with Prop. 9.2 we get

Proposition 9.3: Let k and R be two commutative rings with a unit. Then

Dk(R)gz{H+H q-hyperelementary mod ¥ for some q with gk + k and some t with %R + R},
where H being gq-hyperelementary mod t means, that there exists a normal series

E 4N <N, 9dHwith N

1 ; an i-group, N21Nl cyclic and H/N2 a gq-group.

2
It is natural to expect even better upper bounds for Dk(R), once one makes additional
assumptions on the existence of roots of unity in R. The following result for in-
stance generalizes Brauer's classical inductiontheorem for complex characterss:

Proposition 9.4: If R contains a primitive pth root of unity ¢ (i.e. R is Z[t]-alge—
th

bra with ¢ € € a primitive p  root of unity) and H ¢ Dk(R), then there exists a

normal series E g N, ¢ N, ¢ H as in Prop. 9.3 with the additional condition, that

1
H/N2 acts trivial on the p-part of NZ/NI'
Proof: R is an R'-algebra now with R'=Z[§,%|r~R=R, r e Nl, a Dedekind-ring. Thus

He Dk(R)g Dk(R') =\W(Dk(R&)’ so we may already assume R to be a local Dedekind-ring

with residue-class-characteristic t (possibly Q). Thus H has a normal series
EgN 9N, 9aH with N, an t-group (i.e. N, =E for 1=0), N2/N1 cyclic and H/N2 a
q-group for some q with qk % k. If t = p or q = p, we may put any possible p-part
of NZ/NI into N1 or H/N2 and thus can assume NZ/NI p-regular, in which case our
statement is trivial. If 1t + p + q, we use, that Dk(R) is closed with respect to
subgroups and quotients, so if H/N2 does not act trivially on the p-part of NZ/NI
we may even assume H to be nonabelian of oxder peq with q|p-1. But the isomorphism
in Lemma 9.2', b) of course holds for any Z(%;;)—algebra, thus especially for a

local ring R of residue-class—characteristic t $ p, and restricting this isemorphism

to B=Z ®Z, < Z.® A we get R[H/Z] = R 0 Rop " H g g®p T H
S
el times
q

thus 1 ¢ K(H,R) is induced from proper subgroups and H i D(R), a fortiori H é Dk(R),
a contradiction.

Proposition 9.4 implies, that for a finite group G and a ring R, which contains a
pth root of unity for any prime p dividing [G], ke>KG(—,R) has a defect-basis con-

tained in CE (G) = {H < G|H q-elementary mod t for some characteristic q with
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q*k 4 k and some characteristic 1 with 1R % R}, where a group H is called

q-elementary mod 1, if the %-Sylow-subgroup H, of H is normal and H/HI a direct pro-

4
duct of a cyclic group and a q-group. For ¢ = 0 or ¥ = 0 a g-group, resp. an i-group
is always the trivial group. We show a little bit more precise:

Proposition 9.5: Let G be a finite group and R a commutative ring with 1 € R, such

that for any prime p dividing [G|the ring R contains a primitive pth—root of unity.
Then the defect-basis of ka:KG(-,R): G > k-mod is precisely Ci(G) (for any commuta-
tive ring k with 1 ¢ k).

Proof: We have to show, that for any subgroup H ¢ CE(G) of G we have

kmsizﬁjia + 0; thus if H is gq-elementary mod 1 with gk + k, IR % R and w.l.0.8.

q‘% t unless q = ¥ = O we may already assume k and R to be algebraically closed
fields of characteristic q and t respectively and it will be enough, to-construct

a nonzero linear map K(H,R) 1 k, which vanishes on Im( £ K(V,R) - K(H,R). So let

H1 be the ¥-Sylow-subgroup of H. By our assumption §€H¥§g§~ﬁ1 9 B and

H/H1 H Hq % <g> for some appropriate g ¢ H of order say n. Choose a fixed isomorphism
of the group of nth—roots of unity in R onto the same group in k ((n,q)=(n,l)=1!), so
that for any RH-module M we have a well defined Brauer character XM(g) with values

in k. Now define again x(M) = E'XMi(g), where M = ? M; is a decomposition of M into
indecomposable RH-modules and the sum Z'XMi(g) is taken over all M; with vertex Hy.

¥ is nonzero, since it maps the trivial representation onto !, but it vanishes on

any M = & My = Nv > H if V 4+ H, since otherwise N must have vertex Hy, especially

Hy 2 V,in which case all M; have vertex H;y (as above, since H& is normal in H!),

thus Z’xMi(g) = XM(g) = O unless also g £ V, in which case xy(g) = (H:V)xy{(g), since
Hq acts trivial on <g>. But then again yy{g) = 0, since (H:V) is a power of g, thus

zero in k, unless H = V, which was excluded.

One can also generalize the induction—theorems of Berman-Witt as follows:

For any pair of primes p and q consider the gq-Sylow-subgroup Aq of A=Aut(Zp)

= Gal(Q(Lp): Q) (gp € € a primitive pth root of unity). Since A is cyclic (of order
p-1), we have A=Aquq| with both factors cyclic. Thus for any ring R we have a
unique smallest subgroup A(p,q,R) of Aq, such that there exists a ring-homomorphism

Z(CP)A(quﬁR) X Aq'

cyclic for g = 0, resp. has a cyclic normal subgroup N ¢ H with H/N a q-group, such

> R. We define a group H to be (R,q)~hyperelementary, if it is

that for any p dividing \N| the action of H/N on N/NP = Zp -~ defining a homomorphism
H/N ~ Aqﬁ A-maps H/N into A(p,q,R) for q # O.
We define H to be (R,q)-hyperelementary mod 1 for some characteristic 1, if it has

a normal i-group Nl 4 H (for ¥ = O this means N, = E), such that H/N1 is (R,q) hyper-

]
elementary .

Then we have finally:

Theprem 6: For R and k commutative rings with a unit one has Dk(R}c;{HIH (R,q)~hyper-

elementary mod 1 for some characteristics q and ¥ with 2R % R, gk % k}.
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Proof: Assume H ¢ Dk(R), then H ¢ Dk(Rm) for some maximal ideal m and thus we have

a normal series E 9 N, ¢ N, ¢ H with N, an t-group for i=char R/m, NZ/NI cyclic,

1 2
H/Nz a q-group for some characteristic q with qk % k and w.l.0.g. [NZ/Nl! prime to

T and q. Assume p divides |N /le Then we have a homomorphism
A(P,Q,R) X Aqv R) X A

- A(p,q, .
2!(”,2p + Ry, and thus H ¢ Dk(Z(E,r,p) q"), so w.l.0.8.

Alp,q,R) x Aq!

1
= Z{—
CH) '
Now if H/N is not (R,q)~hyperelementary, it is easy to construct a surjective

homomorphlsm H/N »L,®Z i with qu < AqGA Aut(Z ) !Z 1[-q , but
qu#A(p,q,R), thus qu %.—A(p,q,R) X Aq,=BQ A, Since Dk(R) is closed w.r.t. epimorphic

images, we may therefore assume

= ZP® Zqi £ G = Zp@A ,Z i4¢B < A and R = Z% zp]B‘ Now consider the isomorphism

R'[G/A] 2z R'® R'ZP > ¢ as constructed in Lemma 9.2', b)with R'=Z —,;pl w1th A -lsR'
@ ¢ R'[G] @ &Rr' (G e ¥ ) an R'~-basis of R', resp. R'Zp ¢ this was glven

R [zP]

Y378

explicitly by yJ. w» z;ﬁjl x; (j e Fp) with X, = zi*A e R’ [:G/A] an R'-basis of
ieF
p

R! EG/AJ. We now define an action of B on R'[G/A], R' and i'zpj G, which is compati-

bel with this isomorphism, commutes with the action of G and satisfies

B (rm)=R(r) - B (m) for B e BeAut(Q(z)): @, reR', me R'[G/A], resp. ¢ R',

resp. ¢ R'Zp 7 €. for 2 ¢ B and m= Z r;x; we define 8(m) = I B8(r;) xj, for
1€§‘P 1er
' oyl > G L.
m=1r.y, e R of course B(m) = B(x)-y, and for m = ¢ r. ¥y € R'7P finally
jeF
P

B(m) = I B(ri) yj g (identifying B € Bg A with the corresponding element in
jer ’

¥¥ 2 A), Then we get for the B-invariant elements an R'B[G] -, i.e. RG-isomorphism

®' /AP @)% e @ 7 %2, put obviously ®'[6/A])% = R[C/A] and (R")B=R.
Moreover (R'Z > G)B—{ I T yj|8(rj)=rj.6,8 € B} can be decomposed into blocks
Je¥”
P
of imprimitivity
~'Z -+ G, B { PR
(R'“p Y= & {3 T yj[B(rj)=r. B’B ¢ B}, such that the stabilizer-
aBeA/B jeabel I
; .. ,Z + G B .
group of the first one is just Zp@B G, Thus (R Y~ is of the form

MZP©B > ¢ for some RrZ @B]-module M (actually M={ Z r

3
ieB
an R[Z ® B]~module isomorphic to R considered as an REZ @Bl—module by first

restricting the R’ [jzpl-actmn to RLZPI and then extendlng it to an R[ZP@BI-action

y5l8Cry) = x; gi8 € B} is

by using the Galois-group-action of B on R', an explicit isomorphism being given by
P
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R o MpOB G

n

r-lv» I j(r)°yj), thus we get: Rﬁ?/A]
jeB
Restricting this to H = ZPG}qu#Zp@B we get

R(_H;"Zqii =R & sz®<qumB> > H for some p® (Zqi A B)-module N, thus

le L K(V,R)V»H and B ¢ D(R)QDk(R), a contradiction, which proves the theorem.

V<H

#*
Remark: The inclusion in Thm 6 actually is an equality, if R is a field or a complete
discrete valuation-ring, which can be proved, using similar ideas"vl{n the proofs of
Prop. 9.2 and Prop. 9.5. But I do not know, wether it is an equality for arbitrary -
or, what is essentially the same, for any local-Dedekindring R. Even if this is not
the most important question, it might give some more insight into the structure of
RG-modules for R a local, but not necessarily complete Dedekindring, to try to deter-—

mine Dk(R) precisely for such R.

As a final application I want to prove a result, which I understand happens to be
usefull in the study of conjugation of maximal tori in algebraic groups over not
necessarily algebraically closed fields (see Bﬂ): For any G-set S (G and S finite,

of course) let I[S] = Ke(z[S] + &: s» 1) and J[S] = Coke (Zz + 2[S]: 1% I s).
seS

Proposition 9.6: For a finite group G the following statements are equivalent:

(1) G is cyclic mod p for some prime p;

(ii) G ¢ DQ(Z};

(iii) The homomorphism Q(G) ~ K(G,2): S v #[S] is injective;
(iv) For any two G-sets S, T we have “z[S] = 2[T] <= s & 1"
(v) For any two G-sets S,T we have "I[S] = I[T] <= § = T";
(vi) For any two G-sets S5,T we have "J[S] = J[T] <= s = T".

Proof: (i) <= (ii) is contained in Prop. 9.2;(ii) = (iii): Assume

x = ZnUG/U e 2(G) has image O in K(G,Z). We have to show cpv(x) = 0 for all V < G.
But restricting to V in case V # G we have w.l.0.g. V = G (using that any subgroup
of G is again cyclic mod p, resp. contained in DQ(Z)). But nG=<pG(x) + 0 would imply
e lk.2) © E k(W,H)Y 7 C, thus ¢ ¢ Dq
the fact (Probp. 4.3),that two G-sets represent the same element in Q(G), if and only

(2), q.e.d..(iii) == (iv) is obvious, using

if they are isomorphic.

(iv) = (ii): Assume G § Dg(®). By Cor.%o Thm 2 (§4) this implies

G/C & D(In(Ren ~ Q&K (-,2))), thus we have n ¢ ¥ and G-sets § and T with

s = 1% = ¢, such that Z[G/G s ....UG/GUS] and 3[T] represent the same element in
n times

Q @KG(—,Z). So the result follows from the wellknown

Lemma 9.7: If two ZG-modules M and N represent the same element in Q@ K(G,Z), then

there exist natural numbers r and s with

No...8N & M®...8M = NO...ON
r-times s—times r+s times
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Proof: Since they represent the same element in Q@ K(G,Z), they do so for any

localization Zp of Z and its completlon Z . But over Zp the Krull-Remak -Schmidt

Theorem then implies Z

p® M=z Zp@ N and thlS in turn by a wellknown density-argument
Zp® M=z Zpe)N, thus for any p we have ZG-homomorphisms op: M > N,wp: N> M with
QPwP = cP'IdN, wpwp = cpIdM for some cp € % with (p,cp) = 1, Moreover using the

same density-argument with respect to a finite number of primes (i.e. some kind of
weak approximation, resp. the chinese remainder theorem) we can make c_ relatively
prime to any given finite number of primes. Thus starting with some c = ¢, We can
find some c' prime to ¢, so that there exists homomorphisms

9,0't M > N3 ,9": N> M w' oY = c*Idy, o'y' = c'Idy, Yo = c*Idy, ¥'e’ = c'Idy.

But then the "diagonal” M— N & N is split-injective, a left inverse being given

dyed'y!'
by N® N —> M with dc + d'c¢' = 1, thus we have N @ N = M @ M' for some ZG-module
M', But again the Krull-Remak -Schmidt-Theorem implies 4p® M' = ZP8>M = Zp@)N, so
using the same argument we can find M" with M @ M" =z M' & N and so on
M giehmo u® 2w o n (r e W, thus w; 0...0q 0 M)
T+ r

(r)  y(r+s)

But now the Jordan-Zassenhaus-Theorem implies M fodsome natural numbers
r,s and thus

N®...8N = M®...8M & M
2.

Tr+s+ r+s

(r+s) _

».,_ﬁ@ ueM ): ve. M@Nﬁ,_,/

Remark: Another way, to prove this implication would have been to consider only
permutationrepresentations and their Grothendieck-rings with respect to various
coefficient-rings R. Since all the basic constructions map permutationrepresentations
allways onto permutationrepresentations and since the basic isomorphisms in Lemma

9.2 are also those of permutationrespresentations (one has to check this for

H = Zp®Zg: here one has the explicit isomorphism

20...82 © ZM z[}l/ ..0z[H/2,] @ z[H/z. 03 [H/2_].),
o 2T o [les el

q q

one gets again that the defectgroups of the Grothendieckring of permutationrepre-
sentations over %, tensored with @, are cyclic mod p, thus for any other group G ome
allways has G-sets S,T,X with SG=TG=¢, but
alg/eu.;.06/6 059X = 2[TGX] for some n e N.

n
(v) <= (vi) 1is obvious, since I[}] and J[SI are Z-duals for each other.
(v) = (iv): For any G-set S we have an isomorphism Z[S]—; I[SlJG/GI: s » s-G/G.
Thus z[S] & #[T] = 1[s3G/G] = I[T LG/G] ™M s46/6 = TLG/E = 8 = T.
(iv) = (v): By (iv) <= (i) we know that G is cyclic mod p. We use induction on G,

so for I[Sl = I[EI we get S|U = T!U for all U g G, especially wU(S) = mU(T), U g G.

If morover ¢G(S) = ¢G(T) = 0, we get S 2 T by Propu431f¢G(S) % 0 + @G(T), we have
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S % S'UG/G, T = T'UG/G and get 2[s'] = I[s] = I[T] = 2[T'], thus §' £ T', § = T.

n

So there remains the case @G(S) + o, @G(T) = 0,

Since wU(T) = mU(S) 2 wG(S) >0 for any U g G, we get g.c.d. {(G:U)|TU*¢} = | un-—
less G is a p-group. But Z[T] + %Z:t » | maps the G-invariant part of ZEfI onto

the ideal, generated by (G:Gt) (t € T,6, = {g ¢ Glgt = t}), which contains
{(G:U)[TU 4 ¢}. Thus if G is not a p-group, the map Z[T] ~ Z is split-surjective,
i.e. we have Z[T] = z@1[T] = 281[s] = z[s] (ig)T =z S, g.e.d., resp. a contradiction
to ¢ (T) = 0 % 9. (S).

For G a p-group, let U be a maximal subgroup, thus U is normal of index p. We get

0 < @G(S) = @U(S) = @U(T) = @G(T) = 0(p), thus if $ = S'UG/G, then @G(S') > 0 and
I{S] % 2[S'] contains a direct summand isomorphic to Z. So it remains to show:

If G is a p-group, T a G-set and mG(T) = 0, then IEﬁ} contains no direct summand
isomorphic to Z. But this follows from pn_l- ﬁo(G,I[fI) = 0 and

#°(G,2) = 2/p2, if |c|
o=t (¢,2) ~ 8°(¢,1[T])

sy n-i . .
annihilated by p" ', if T =Y G/Uj and U; § G(by o (T) = O

pn, the first fact following from
®(6,2[1h, ®°(,z[1h=e 1°,z[c/u;D=6 B°(v;,2)
1 1

n
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§10 Prospects of further applications

In this last section of this paper I want to indicate several further possible
applications of the above methods. Detailed versions will appear elsewhere.

At first we may try to study the equivariant K-theory associated to the distributive
category L(R) of "R-lattices'": the objectsin L (R) are pairs (M,f), where M is a
finitely generated, projective R—module and f: M x M >~ R a nonsingular symmetric,
bilinear form on M (where nonsingularity means, that the associated map

f:M3 HomRéi,R): E(m) (m') = f(m,m') is an isomorphism), the morphisms

9:(M,£) > (M',£') R-linear maps from M to M' with f(m|,my)=£'(p(my),0(my)). As
allready observed in §6 this category is distributive with respect to orthogonal
sum and tensor product.

Analogously to P(R) one has

Theorem 7: a) DQ(L(R)) [¥: DYQ@ K(—,L(R)))] = {HIH cyclic mod p for some character=-
istic p with pR % R}

b) Dk(L(R))Q{H!H g~hyperelementary mod p for some characteristics p and q with

PR % R, qK # k},

Outline of proof: a) implies obviously b), since we may assume w.l.0.g. ke @ and

then use - as before in the linear case - the fact, that exterior powers of R-latti-
ces define a A-ring-structure on K(G,L(R)), thus torsion-elements are nilpotent and
we can use Prop. 5.2'.

So it remains to prove a) and this is done just as in the linear case: At first one
proves, that Zp X Zp and Zp@)Zq(qu_Aut(Zp)) are not contained in DQ(L(R)) whenever
PR = R, using similar isomorphisms as in Lemma 9.2', which establishes the result
for local rings. For arbitrary R again one can at first replace R by

R'=ZE%]pR=R12 Qy thus w.l.0.g. Re€Q and then has to delocalize, which can be done
essentially as in the linear case, only the isomorphism constructed in the proof of
Lemma 9.5 has to be replaced by the following observation:

Lemma 10.1: Let (Mz,fz), (MY,fT) (v=1,...,n) be RG-lattices (R any commutative

ring with 1 ¢ R) and assume that for any v e{1,...,n} there exists
v, oV VooV, Y v .
e M0 - Ml’ Pyt M1 - Mo’ c, € R and ever with

v v v
o » m M

VY VL U\ oV, v, VY v
Q)] fo(mo’wl(ml)) = fl(wo(mo),ml) for all m € M X 1

vy _ 2 vv _ 2
@ 919, = S IdMg’ Q)m - Sy IdMY’

o 2
(3) £ (~-1)%V c, = 1.

v=]

(An RG-lattice of course is a G-object in L(R).)

Then one has an RG-Isomorphism

e M, 7% M
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n
where o, resp. 8 runs through all maps a,8: {1],...,n} » K with ¢ . o) =0,
'\)=

n
resp. £ B{(v) =1 and

v=1 M = é ( (1)“(\’)5\) 3
o < e’ o(v)
resp. n
- B(vie
Mg ®< (v D NEMSSE
given by 1 N
Ma 2 Xa(1)® "'®Xa(n) -
n
o ol -1 k < k+1 <0
kil( DX y® B 2 2 k=12 ®a ) Fa) ) ®Xa e ® %% m)

with n = I a(i) + a(k)ek-
1<k

This together with the fact, that for R¢ Q any element in R is a sum or difference

of finitely many squares in RG{3r=a%+...+ai - b% —...-bi) allows then to

delocalize (i.e. to prove DQ(R) =¥# DQ(Rm))’ establishing the theorem.

Remark: Especially for Rg @ it may make sense, to consider the distributive subgate-
gory L+{R) of positive definite R-lattices.
Here ome can show the perhaps surprising result D (L (R)) =D (L(R)), whenever

R + 2, whereas D (L (2)) is the class of all flnlte groups.

Finally I want to discuss relative KG-theorles: Let G be a fixed finite group and
S and T G-sets.

A sequence O -~ Ty ™Gy + 0 of P(R)-bundles over S is called T-split, if the

t3

restricted sequence 0 -~ T x 5y T X

L 7 T x Ly > 0 over T x S is split. Define

K (S,R; T) = K (S,R) ,_, _ L
G G <z, c2+53\0 > g > Ly > Ty 0 T-split>,

One verifies easily, that restriction and induction are well-defined on KG(-,R;T),
thus K.(~,R;T) is a Green-functor. Especially for T = G/E the ring

KG(G/U,R;G/E) is just the Grothendieck~ring GO(R,U) of RU-modules as defined by
Swan. One can apply the above methods to compute the defect-sets of K,(-,R;T) and
this way get simple proofs (cf.@ﬂ) of the results announced in B{], Bﬂ and Bé],
which will be done in some detail and together with applications on the structure of

the relative Grothendieckgroups in another paper.

Finally one may also define relative K -theories with coefficients in L(R). Of course

G
one cannot use exact sequences. Instead - exploiting an idea of D.Quillen (cf. [3¥],
§5) - one can define a "T-Quillenpair” (z,£) to be a G-equivariant L(R)-bundle z
over some G-set S together with an P(R)~subbundle &, such that the exact sequence

O+ g z/g » 0 of P(R)-bundles is T-split and furthermore any fiber of & is an
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isotropic submodule in the corresponding fiber in ¢, i.e.ggg‘L . One may then define

UG(S,R;T) = KG(S,L(R))/IT with I the ideal generated by

T
<;—£J'/E}—H-(E) | (z,£) a T-Quillenpair over S> with g4/t the obvious well defined (!)
G-equivariant L(R)-bundle and H(£) the "hyperbolic" L(R)-bundle, associated to E.
It should be remarked, that in general even IG/G+0, i.e.U,(S,R;6/0) % K. (5,L(R)) ,
but IG/U=O if 2*R=R and (G:U)-R=R. ‘

I guess, that corresponding inductiontheorems hold as in the linear case. In the
most important special case T=G/E, which especially applies to the computation of

L-groups, they are allready proved and have been announced in Bﬂ
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THE FUNCTOR KZ: A SURVEY OF COMPUTATIONS AND PROBLEMS

R. Keith Dennis® and Michael R. Stein®

In the past few years there has been a great deal of research on
the functor K, and it would appear that now is an appropriate time
to give a survey of these results. Several different definitions have
been proposed for K2 and it is now known that those given by
Gersten-~-Swan, Keune, Milnor, Strooker-Villamayor, and Quillen all
agree (see [41] and [94]). It is also known that these agree with
that of Karoubi-Villamayor if the ring in question is regular [73].
However, we give only Milnor's definition as it easily adapts to
define "unstable” K,'s and as many results of a computational nature
have been derived with it.

The first section of this paper gives a brief list of known
properties and computations of K2 with references for further
information. The second section gives a list of research problems,
and the final section is a bibliography. We would like to take this
opportunity to thank everyone who sent suggestions and research
problems. Any changes or omissions in the problems reflect the

interests and prejudices of the authors.

1. Partially supported by NSF-GP-25600
2, Partially supported by NSF-GP-28915
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PROPERTIES AND COMPUTATIONS OF K2

All rings are associative with 1. If R 1is a ring, R* denotes

its group of units. If G 1is a group and O, T € G, we write

[T,0] = ro7 L=t

If ¢ 1is finite, |G| denctes its order. The rational integers
are denoted by Z, the rational numbers by @, and a finite field

with q elements by F Hi(G) = Hi(G;g) will denote the i-th

q°
homology group of G with coefficients in 7 where G acts trivally

on Z.
NN

For n » 2 we denote by E(n,R) the subgroup of the general
linear group GL(n,R) generated by the elementary matrices Eij(r),
r ¢ R. The Steinberg group, St{n,R), is the group with generators

xij(r), where r ¢ R and 1i,j are distinet integers between 1 and

n, subject to the Steinberg relations

(R1) xij(r)xij(s) = Xij(r+s)
1 if 1i#4, JAKk
(RE) [xij(r)’xk,g(s>} =
xiL(rs) if 1 #£4, J=k
{R3) wi‘j(u)xji(r)wij(u)'1 = xij(-uru) for any unit u
where Wij(u) = xij(u)xji(-upl)xij(u).

It should be noted that for n =2, {R2) is vacuous and for n 2.3,
(R3) 1is a consequence of (R1} and (R2). As the generators Eij{r)
of E(n,R) satisfy relations analogous to (R1) - {R3), there is a

surjective homomorphism 8t(n,R) —== E(n,R) defined by

Koo (1) bmm Eij(r). We define X,(n,R) to be the kernel of this

1 2
homomorphism. For every n 2.2, there 1s a commutative diagram

with exact rows
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l——>K2(n,R) ——= St(n,R) —== E(n,R) —==1

| | ¢

19K2(n+1,R) —== 3t (n+l,R) —= E{(n+l,R) —==1

where the vertical maps are defined by sending the generators xij(r)
and Eij(r) in the top row to the element of the same name in the
bottom row. Passing to the direct limit as n = « yields the
definitions

St(R) = 1lim St(n,R)

->

E(R) = lim E(n,R)

>

KQ(R) = lim Kg(n,R)

>

It is clear from the definitions that the sequence

(%) 1—==K

»(R) —==5t(R) E(R) 1

is exact. It should be noted that St(n,R) and K2(n,R) are

denoted St(A _,,R) and L(A _,,

In the following o will denote a pair of indices ij, i # J, and

R), respectively, in [88] and [89].

-a, the reversed pair, Ji.

1. Central extensions and homology.

In [69, §5] it is shown that KQ(R) is precisely the center of

the Steinberg group St(R). The extension (*) above is a universal

central extension and it follows that KE(R) = HQ(E(R)) ([561; [92]).

2. The exact sequence of an ideal.

Iet I be a 2-sided ideal in the ring R. Then there 1s an

exact sequence

Kg(I)Q-K R)QKE(R/I)‘—;'K I)—== ..

2! 1 (

(see [69, 86] for a definition of KE(I) and a proof).
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3. The Mayer-Vietoris exact sequence.

(a) If the commutative square of surjective ring homomorphisms
R R
S IS

is cartesian, there is an exact sequence

— == R!

-— gt
Ky(R) === K,(8) ® K, (R") —=K,(8') —=K;(R) —= -
[69, p. 55].

(b) Let R Ybe a commutative noetherian regular ring and let

(f,g) = R. Then

R Kg(ng) —= Kg(R) — Kg(Rf) @ KQ(Rg) ——Ea-Kl(ng) —_— .
is exact [41, Theorem 2.19].
(c) Let R —==R!' =1 Ti be an inclusion of rings with the maps

R ~€§h~Ti surjective. If I 1is a 2-sided ideal of R' contained
in R, the square of part (a) is cartesian for § = R/I and
St = R'/I. Moreover, if the term KQ(R) is deleted, the sequence

in part (a) is exact [1].

4. The exact seguence of a localization.

If A 1is a Dedekind domain with fraction field ¥, then there

is an exact seguence

——a-_l_m__[Kg(A/m) K, (4) K (F) —== | ¥, (a/m) Ky (R)
m

where m runs over the set of maximal ideals of A [73].

A simple example of the use of this sequence is mentioned in
Problem 17 of the second section: If S 1s an arbitrary set of
rational primes and 4g 1s the localizatien of Z at the monoild

generated by S, then
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Ko(zg) ® {21} @ | | (2/02)
pesS

5. The product structure.

If A is a commutative ring there are pairings (see [41, §2],

[69, ¢8])

Ki(A) X Kj(A) — Ki+j(A)

such that x.y = (—l)l+Jy.X for x € Ki(A), y € KJ(A). In particular,
under this product KO(A) becomes a commutative ring and Ki(A)
becomes a KO(A)-module. It should be noted that the map is not

surjective in general.

6. The transfer homomorphism.

If f: R—= S 1is an inclusion of rings and S is a finitely
generated projective module over R, there is a transfer homomorphism
£% 1 Ki(S) —_— Ki(R)

(see (69, §14] and [l41, $2]). Moreover, if the rings are commutative

the projection formula

P*(xef (v)) = (£%(x))ey
is valid for Xx € Ki(S), y € Kj(R). Here - denotes the product given
in 5 and f, is the homomorphism from Ki(R) to Ki(S) induced by
f. If S 1is a free R-module of rank n over R, then £¥f, is

multiplication by n. In case R and S are local fields, the

transfer homomorphism is surjective for i = 2 [69, Corollary A.15].

7. Differential "symbols".

If A 1is a commutative ring and Qi/z denotes the second exterior
power of the module of absolute differentials QA/Z’ there is a
Ly
homomorphism

. 2
Ep(a) —= af

247



[40, Remark 6 in §7). 1In case A is a field, this agrees with Tate's

differential symbol

da db
{a,b}‘%" ?/\-15—
{104, p. 202] (see 9 and 11 below).

8. Technical computations in St(n,R).

A large number of formulas, normal forms and other computational
conveniences are now avallable for the Steinberg group. We only give
two examples and the reader is advised to consult [25], [27],

(69, $¢5, 9, 10, 12], [77, §1], [82], [86], [88], [89], [ic0], [105],

and [107] for further information.

(a) For any z e St(n,R) define I(z) to be the minimal number of
indices involved in any expression for z. Assume I(z)<{ n and

the image of z in E(n,R) can be written as PD where P is a
permutation matrix corresponding to the permutation w and

D = diag(vl,...,vn) is a diagonal matrix. Then

4

z x,.(r) 277 = x 3

W(i),w(j)(virv

for any Xij(r) € St(n,R) [25]. It easily follows that the image of
Kg(n,R) in St{(m+1,R) is central and hence that KE(R) is in the

center of St(R).

(b) Let R be an arbitrary ring. Then every element of St{(R} can
be represented as a product LPL'U where L,L' are products of

elements of the form Xij(r) with 1> j, U is a product of elements

i
generated by the elements wij(l). This was proved by R. Sharpe

of the form x.j(r) with i< j, and P 1s in the subgroup of St(R)

using an argument similar to that in [77, $5] (see Problem 25 below).

9. Elements of K,(n,R).

{a) For units wu,v of R, define
w_{u) = x_(u)x (-u'l)x {(u)
a a e a
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w_(u)w(-1)

o) = ¥,

by, (uv)h, () ~th (v) T

1

{u,v}a

If u and v commute then {u,v}q € Kg(n,R) and lies in the center
of St(n,R) for any n. If n)» 3, it follows from the formula in

8 (a) that this element does not depend on a. Deleting the a, we
obtain the Steinberg symbol {u,v}. If R is a commutative ring and
n ) 3, these symbols satisfy the identities listed below. For n = 2

more complicated identities exist (see [67], [88]).

It

(s1)  A{uv,w} = {u,w} {v,w}

fu,vw} = {u,v} {u,w}
(s2)  {u,wv} = {v,u}7t
{83y {u,-u} =1

(s4) fu,1-ul = 1

(s5) {v, 1 - pgv} = {_ %_ =av . %-. - qu} {_ 1 ~pv 1 - pq_v}
(S6) % 1 ~gr 1 - pqr} {
1l - P L P

s
. . . 1 .
(7) uy ’ 1+ ayy } _ £ ’ + qz
' 1+ av;_y 1+ av;_q 1+ qzj-_l 1+ qza._:L

e
it
o
x

“
T
i}
Qg
1<)
=

(UL

1
[ 1
il
B (]
hQ

“
!__I
1{1

R
]

1
’_l

i=1 J=1
where g, Uppeer sUgsVyse. .V € R and Yo = 2o = 0,
k k
AN - : -
Vi = 4:,ui’ Zy = vj with Vg = Zy-
i=1 J=1

In a1l of the above identities, it is assumed that the elements
involved are all defined (i.e. 1 -u, 1 -pq, 1+ ay;» ete.

are all units). Proofs of (S1) - (S4) can be found in [69, p. T4]
and proofs of the others can be found in [27, §1]. These identities
are not independent. For example, if u and 1 - u are both units,

then (S3) 1is a consequence of (S1)}) and (S4). In case R 1is local
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all of the identities of (87) are consequences of the identity where

s =1t =2 together with (S1) - (S4) [27, Proposition 1.5].

(b} Let a, b € R be any two elements such that I1+ab ¢ R*. For

each a, define

1
)

H (a,b) = x_a(-b(l+ab)' xa(a)x_a(b)xa(-(l+ab)"1a)

and set

Ca,bp = H_(a,b)h_(1+ab) T,

If a and b commute, then <a,b>a € Ke(n,R) for all n and for
ny 3 <a,b>a is a central element that does not depend on a. We

denote it simply <a,by. If R 1is a commutative ring and n 2_3, the

following identities hold:

(H1) <a, = {-b,-ap"1

1+ac

(#2) Latb,c> =<a,e <b’lfac> {l+(aﬁb)c’ l+ac}

<a,b+c> - <a,b> <j%.5,c> {l-kab’ l+i,ab+C)}

2
(83)  Carb,o> = Ca,0> <b,& (pe,i2 {-1,1+ac) {l“ﬁ?)‘% %i%ﬁi}

2
Ca,orcdd> = <a,b) <a,&> (Fp, 5 (L+ab,-1) {iizg, 1+§Taazcg}

g4y <{a,bcy {(b,ac> {c,ab)> = 1
{a,bey =<ab,cy {ac,b)
As in part (a), it is assumed that the elements above are all

defined. Proofs of these identities can be found in [90,

Proposition 1.1].

(c) These elements of St(n,R) are related to each other and to

other elements defined in the literature as follows:

(1) <La,»
{a,b

[}

{-a,1+ab} if a e R*

{1+ab,b} if b e R¥

i
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S
(ii) If ab = 0, then <a,bp = c(a,b) where c(a,b) was
defined by Swan in [100, §6].

(1i1i) The generators given by Van der Kallen [105] are

related to these elements as follows:

£ (a,b) = {ae,pe> = {1+ae,l+be}

i

Ha(a,b) = <{b,ae> ha(l+abe) the Ha(b,ae) defined above

i

Na(a,b) = {b,ae> {abe,abe) = {b,aey {lt+abe,l+abe}.

(d) Conn [18] and Silvester [83] defined the concepts "R is universal
for GEn" and "R is quagi-universal for GEn”‘ These definitions

are statements that GEn(R) (the subgroup of GL(n,R) generated by
E(n,R) together with the diagonal matrices) has a certain presentation.
Let W(R) be the subgroup of R* generated by the elements of the
form (l+ab)(l+ba)™h for ltab e RX. Let V_(R) be the subgroup of
R* generated by all elements u € R* such that diag(u,l,...,l) is
in E(n,R). It is shown in [25] that the definitions mentioned above

are related to Kg(n,R) as follows:

(i) If n)» 2, R is universal for GE, if and only if
Kz(n,R) is contained in the subgroup of St(n,R) generated
by the elements h (u), u € R*, and Vn(R) = [R*,R¥]

(the commutator subgroup of R¥). If R is commutative
and n2 2, then R is universal for GE, if and only if

Ke(n,R) is generated by the Steinberg symbols.

(ii) If n» 3, R is quasi-universal for GE, if and
only if Kg(n,R) is contained in the subgroup of St(n,R)
generated by the elements Ha(a,b) and VD(R) = W(R). If
R is commutative and n 2'3, then R is quasi-universal
for GE, if and only if X,(n,R) is generated by the
elements <a,b).
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10. Complete sets of generators for K, (n,R).

2

(a) (i) The Steinberg symbols generate K2(n,R) for n) 3 if R
is a commutative semi-local ring [90, Theorem 2.7].
{i1) The Steinberg symbol {-1,-1} generates Kg(n,g) for all
nd> 2 (69, §10].

(b) In this section only, if J is an ideal of R let K2(n,J) be

defined by the exact sequence
1 —== Kg(n,J) — Kg(n;, R) —=K,(n,R/J).

If J 1is an ideal contained in the Jacobson radical of the commutative
ring R, then Kg(n,J) is generated by the elements <a,¢>, a € R,

g € J, for all n» 3 [90, Theorem 2.1]. Note that if R is

additively generated by its units, then it follows from (H2) and

{¢) (1) of 9 that Kg(n,J} is actually generated by Steinberg symbols
of the form {u,1+q}, ueR*, g € J, a result proved earlier by Stein [89)

Let R = W, (F. ) dencte the ring of Witt vectors of length two

2 wqg
q = pn. The preceding result together with the technigues

I

over Eq,
of [27] yield the following: KE(R[X]) is an elementary abelian
p-group of countably infinite rank. It should be noted that if p is
odd all Steinberg symbols in Kz(R[X]) are trivial. This gives an
example of a ring where KQ(R[X]) is not isomorphic to KE(R)

[90, Theorem 2.8].

11. K for fields.

2

Matsumoto [67] (ef. [69, §%11, 12]) proved that K, of a field F

2
is presented by the generators {u,v}, u,v €eF*, subject to the
relations (S1) and (S4) (given in 9 (a) above). If a symbol is

defined to be a bimultiplicative function

(, ): F¥* x Fx —== (
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taking values in an abelian group C and which satisfies (u,l-u) = 1,

then Matsumoto's theorem can be rephrased to say that the function
[, }: F* x F* —==K,(F)

is the universal symbol. Thus any symbol ( , ) defines a homcomorphism
from KE(F) to C. Examples of such symbols are the tame symbol
[69, p. 98], the power norm residue symbol [69, $§15], the norm
residue symbol [69, p. 151], and the differential symbol of Tate
[104, p. 202].

Matsumoto's presentation of K2(F) yields many properties»and
computations of K2(F):

(1) ¥

5 of a finite field is trivial [91,3.3] (cf. [69, p. 78]).

(ii) 1If ™ - a splits into linear factors for all a € F,

then X,(F) is uniquely divisible by m. Hence K, of an

o
algebraically closed field is a torsion free divisible group,

X of a perfect field of characteristic p » 0 is uniquely

2
p-divisible, and the only torsion in K2 of the real numbers

is 2-torsion (in fact, just {-1,-1}) [5, (1.2)].

(i11)  K,(Q) = {x1} @ | [(z/p2z)* [69, p. 101].
P

(iv) Ky(F(X)) = Ky(F) @ _L_l(F[X]/g)* [69, p. 106].
Y]

(v) If F is a local field and Mg denotes the group of
roots of unity in F, then Moore [70] (cf. [69, Theorem A.14])
has proved that K2(F) Do Mg where D 1is a divisible
group. Let q be the order of the residue field of F.

Jd. Carroll has proved that D 1is uniquely p-divisible if

p does not divide ¢q(g-1) (see Problem 12 in the next section).

12. X, for some local rings.

If A 1is a discrete valuation ring or a homomorphic image thereof,
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then K2(A) and K,(n,A) for n 2> 3 are presented by the generators
{u,v}, u,v € A*, subject to the relations (S1) - (S7) [27, Theorems
2.3, 2.5].

If A 1is a discrete valuation ring with field of fractions F

and residue field Kk, then there is an exact sequence

1 ——%—KE(A) —_— Kg(F) — Kl(_}_;_) —_—1

[27, Theorem 2.2] which is split exact if A 1is complete. In case
F is a local field and k has characteristic p, it follows that
K2(A) ~D® “p where D is the group given in 11 (v) and Hp is the
p-component of the roots of unity in F.

Let A Dbe a discrete valuation ring with finite residue field
of characteristic p and whose maximal ideal P 1is generated by
the element m. Write p = wr® for some w ¢ A¥ (let e = » in
case A has characteristic p). Then K2(A/Pm) is a cyclic p-group

of order pt where
t = m 1 }
€ P-T| o,r]
with pr denoting the order of the p-component of the roots of unity
in the completion of A in the P-adic topology [27, Theorem 4.3].
(For any real number x and any integer r > O, [x][o r] denotes
- b

the nearest integer in the interval [0,r] +to the largest integer

{ x.) Moreover, KQ(A/Pm) is generated by any symbol of the form

{ 1+u, l+w4'l}

where 4 = 5%% and u is any unit of A for which there is no

solution 2z to the congruence

uE wz + zP mod P.
In particular, any finite local principal ideal ring is the homomorphic
image of a discrete valuation ring in a local field [27, §4] and hence

its K2 can be computed by the above formula. For example, if
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n
H]

wm(gq) denotes the ring of Witt vectors of length m over Eq’ qa=0D
then

(1) Kg(gq[x]/(xm)) =1 forall m) 1

(ii) Kg(wm(gq)) 1 if p is odd or if m= 1

(111)  Ky(W (F,))

Z/2Z if p=2 and m) 2.

a
13. K, for some radical ideals.
Let A be a commutative ring and let Afe], 62 = 0, denote

the dual numbers over A. Then Van der Kallen [105] has given a
presentation for the kernel of the map Ke(A[e]) —_— K2(A) induced
by er==0. If 2 is an invertible element of A, then this kernel
is isomorphic to the module of absolute differentials QA/& (see [105]
for a presentation in the general case). It should be noted that
Van der Kallen's generators and relations are special consequences
of those given in 9 above.

Using Van der Xallen's result together with a result of Stein
(see 10 (b) above), it is possible to compute K2 of some other

rings. For example, if F 1is a perfect field of characteristic

p > 0 (including p = 2), then

2 2 ~
Ko (F[X,Y]/(X°,XY,¥Y°)) = K (F) ® FF

where F' denotes the additive group of F. It then follows that

k
.. ~ A+
KE(F[Xl,...,Xm]/(XiXJ.I all 1,3)) R K, (F) ® (F)
where k 1s the binomial coefficient (2) . It should be noted that

the generators not coming from KE(F) are of the form {l+Xi,l+qu],
i# J, ue?PF. If u# 0, these generators are non-trivial. Taking

F a finite field, this answers a question of Swan [100, the end of §6].

14, Stability results.

We now make a list of some of the properties of the groups K2(n,R)
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and St(n,R) and describe how they vary with n.

(a) Hl(St(n,R)) is trivial if n» 3 or if n= 2 and the

elements ug-l, u € R¥, generate the unit ideal [88, (4.4)].

(b)  Hy(St(n,R)) 1is trivial if n 5; if n=4 and u°-1,

u € R¥, generate the unit ideal; or if n =2, 3 and R is a K
algebra over a field K such that card(K) > 5, card (K) £ 9
[88, (5.3) and following remarks].

(c) If R is a ring which satisfies the stable range condition SRm

(see H. Bass, Algebraic K-Theory, p. 231), then

(i) The homomorphisms K,(n,R) ———€E>1K2(n+l,R) are surjective

!

2
for all n ) ml,

(i1) K,(n,R) is in the center of St(n,R) for all ny m2,

(1ii) The central extension

1 —a-Kg(n,R) -—= 3t(n,R) —= E(n,R) —=>1
is a universal central extension for all n.Z_max(m+2,5),
(iv) Kg(n,R) = HE(E(n,R)) for all n ) max(m+2,5).

These results can be strengthened under special hypotheses on R

(see [24], [25] and 15 %below). These maps are known to be isomorphisms

in only a few cases:
(1) R=% and n) 3 [69, §10].
(ii) R is a field and n ) 3 (see 11 above).

(ill) R 1is a discrete valuation ring or a homomorphic image

thereof and n » 3 (see 12 above).

(iv) R is any semi-simple artinian ring or the polynomial ring

in one indeterminant over such and n > 3 (see [24] and [25]).

(v) A few other simple cases can be derived from Van der Kallen's
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theorem which actually implies that the groups K2(n,(e)) (as defined
in 10 (b) above) are all isomorphic for n » 3. Since K,(n,(€))
is a direct summand of Kz(n,A[e]), the maps will be isomorphisms

if and only if the corresponding maps are isomorphisms on the

complementary summand Ke(n,A).

15. Rings of algebraic integers.
If O is the ring of integers in an algebraic number field F,

then the maps

K5(n,0) —== K,(n+1,0) —==K,(Q)
are surjective for all n ) 3 (see [24], [25]). It thus follows from
a result of Garland [34] that KQ(Q) is a finite group (in fact, that
K2(n,g) is finite for n » T). Several other proofs of this result
are now known. In particular, Quillen's localization exact sequence

[73] yields

1] —= Kz(g) —— Kz(F) —7‘—;- 'IE'I'('—Q/E)* —_— ]

and hence K2(g) = Ker N which is known to be finite by Garland [34].

An explicit computation of KQ(Q) is known in very few cases.
If O 1is the ring of integers in a Euclidean quadratic imaginary
number field Q(d), then Tate (unpublished computation)has shown that,
KQ(Q) is trivial unless d = -7 1in which case it is cyclic of order
2 generated by the symbol {-1,-1}.

The results given in 12 above allow one to compute K2 of

any proper homomorphic image of a ring of integers 0O since K2
preserves finite products and since Q modulo a power of any maximal
ideal is a finite local principal ideal ring. This computation,
the exact sequence associated to an ideal, and the computation of
SKl(g,g) by Bass-Milnor-Serre combine to give an estimate on the
order of Ke(g). If F has more than one real embedding, the

reciprocity uniqueness exact sequence of Moore [70, Theorem 7.4]
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(cf. [69, Theorem 16.1]) gives a better estimate on the order of K(Q):
If F, denotes the completion of F with respect to v and w(K)
denotes the roots of unity in the field K, the sequence

Ko(F) —== | u(m) —= u@) —=1
v

is exact, where the sum is taken over all discrete or real archimedean
valuations v. It is conjectured ([6], [65], [104]) that the order

of the group KE(Q) is given by an explicit formula involving the
zeta function of F. This has been proved in some cases by Coates

and Lichtenbaum [17]. It should be noted that the analogous formula

in the case of function fields has been proved [104, p. 206].

16. Free rings and polynomial extensions.

(a) Let X Dbe any set and let F <{X> be the free associative
algebra over the division ring F. Then K, (F () = K2(F) [82].
Using this result and a generalization of Quillen's localization
exact sequence, Swan was able to prove that K2(g~<x>) = Kz(g).
This result is also true if Z 1s replaced by any left noetherian

ring of finite global dimension (and 2 by i) [41, Theorem 2.8].

(b) If R is any regular ring, then Quillen [73, Theorem 11] has

shown that

Ky(R[X]) = K,(R),

and Ko (RIX,X1]) = Ky(R) @ Ky (R).
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PROBLEMS ON K>

We have restricted this list of research problems to those which
are only concerned with K2. As there are many interesting problems
dealing with the relationships of K2 to other areas of mathematics
a brief list of references appears at the end of this section. The
conjectures of Lichtenbaum do not appear as they are discussed
elsewhere in this volume [65]. It should be noted that several of
the problems appearing below are special cases of those considered
for higher K-functors [42].

We would like. to thank H. Bass, S. Bloch, S. U. Chase, J. N.
Graham, A. E. Hatcher, S. Lichtenbaum, R. W. Sharpe, R. G. Swan and
J. Tate for suggesting problems. Any problems not attributed to one

of the aforementioned are due to the authors of this note.

Problem 1. Is the "fundamental theorem of K-theory" valid for the
functor K2? As a discussion of this problem for the functors Kh
appears in [42, Problem 3], we confine our remarks to the case

where R 1is a commutative ring. Let C denote the kernel of the

map KQ(R[X])-——E-'KQ(R) given by X = 0. If the product map
[69, p. 67] Kl(R[X]) X Kl(R[X])-——E— KE(R[X]) is surjective,

it follows from [95, Theoreml6l] that C is generated by the
symbols {A, I + XN} where A 1is any element of GL(R[X]) and
N 1is a nilpotent matrix with entries in R. Is it true that C is

generated by these symbols for any commutative ring R?

Problem 2. Keeping the notation of the previous problem, we now
assume that R has prime characteristic p. 1Is every element of

C p-torsion? An affirmative answer to the last question of the
previous problem would imply an affirmative answer to this question

as the symbols of Milnor are bimultiplicative. (s.u.c.)
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Problem 3. Do Milnor's elements a%p (o, B commutating elements of
E(A); see [69, p. 63]) generate KE(A) for any ring A? Equivalently,
given a central extension 1 -—3= C —== S -== R(A) == 1 such that
commuting elements of E(A) 1ift to commuting elements of S, 1s the

extension trivial? (H.B.)

Problem 4. Let R be a ring which satisfies the stable range condition
SRm (see H. Bass, Algebraic K-Theory, p. 231). Prove that the maps

K2(n,R) —_— Ke(n+l,R) —_— KQ(R)

are isomorphisms for n > m+l. Is this true for n = m+1? It is known

that the maps are surjective for n > m+2 [25].

Problem 5. For each integer n > 3 give an example of a ring for
which the map Kg(n,R).—e- K2(n+l,R) is not surjective. Do there
exlst rings for which this map is not injective? The case n = 2

is quite different from n > 3 as information about the multiplicative
structure of R is not reflected in the structure of St(2,R). The
ring of integers Z gives an example where the map is not injective

for n=2 [69, p. 82]. 1In fact, R = Z[.,/~I7] 1is an example for

which the map is neither injective nor surjective for n = 2.

Problem 6. For each integer n > 3, 1s there an example of a ring for
which K2(n,R) is not contained in the center of St(n,R)? Such a

ring will have the property that Kg(n,R) —== K,(n+1,R) is not

2
injective as the image of K2(n,R) in St(n+l,R) is always central
(see [25] or [69, the proof of Theorem 5.1]). For n = 2,

R =F,x Fp 7/6Z give examples [90, Appendix].

Problem 7. If R 1is a Euclidean ring, the maps K2(n,R) — Ke(n+1,R)
are surjective for all n > 3 [23], [25]. 1Is the map
K2(2,R) — K2(3,R) surjective? The answer is "yes" in case R

is Z, the ring of integers in a Euclldean quadratic imaginary
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number field, or F[X].

Problem 8. ILet F be a field. Quillen [73, Theorem 11] has proven
that KQ(F) = KQ(F[Xl,..,Xm]). How large must n be in order that

Ka(n,F) —_— K2(n,F[Xl,...,Xm]) be an isomorphism? For m = 1,
using the results of Silvester [82] it can be shown that these

maps are isomorphisms for n > 2 [25].

Problem 9. Let F be a field of characteristic p > 0. Does KQ(F)
have any p-torsion? If F 1is perfecth(F) has no p-torsion as it is
uniquely p-divisible [5, (1.4)]. It should be noted that if K2(F)
has no p-torsion, then the same is true for any pure transcendental
extension of F in view of the exact sequence

1 — K,(F) —= K,(F(X)) —éJ_EJ_(F[X]/E)'—é 1

[69, p. 106]. (s.u.c.)

Problem 10. If F 1is a subfield of L which is algebraically

closed in L, 1is the homomorphism K2(F) ——E-—KE(L) injective?
An interesting special case of this is the following: Let QO be
a ring of integers in the number field K and let p be a prime
of Q0. Now take F to be the henselization of K at p and L

to be the completion of K at p. (s.L.)

Problem 11. Let F be a field with a primitive p-th root of unity ¢.
of order p

Is every element of K2(F)/\of the form {a,(} for some a e F?

If not, find conditions on F so that this will be true. This result

holds for many fields if p = 2 by a result of Tate [104, Theorem 6]

(ef. [6]). (s.L.)

Problem 12. Let F be a local field. By a theorem of Moore [69,
Theorem All] K2(F) = D @ up where pp 1is the group of roots of
unity in F and D 1is a divisible group. Is:. D uniquely divisible?
J. Carroll has proved that KE(F) is uniquely p-divisible provided
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that p does not divide q(q-1) where q 1s the order of the residue
field. A computation of Tate based on the solution of the previous
problem for p = 2 gives the result for the 2-adic numbers 92'

(3.7.)

Problem 13. Are the relations (S1) - (S7) 1listed in the previous
section sufficient to present K2 of a local ring? In view of
[27, Lemma 2.4), it suffices to find a presentation for a local
domain since any local ring is the homomorphic image of a local
domain. 1In fact, it is possible to further assume that the ring is

a noetherian unique factorization domain.

Problem 14. Let A be a discrete valuation ring with field of
fractions F. In [27] (S1) - (S7) were shown to give a presentation
for KQ(A) by showing that they forced the map KQ(A) e K2(F) to
be injective. Is thls map injective for any local domain A? If not,

is it injective if A 1is also regular?

Problem 15. If the last question has an affirmative answer when A

1s regular, does it follow that

K,(a) = mKQ(AE)
where the intersection is taken over all primes of height 1 ¢
(s.B.)
Problem 16. If J 1is an ideal contained in the radical of the
commutative ring R, it is known that the elements {a,q>, a € R,
q € J, generate K2(n,J) for all n > 3. Do the relations

(H1) - (H4) given in the first section suffice to present Kg(n,J)?

Problem 17. Let S be an arbitrary collection of rational primes
and let Z, denote Z 1localized at the monoid generated by S.
It follows from the exact sequence of Quillen [73] that

1] —=- K2(gs) —_—— K2(g) —>_1_)_;_SI>_ (g/pg)* —_—1

262



21

is exact as KQ(Z/PZ) is trivial. If S 1is the set of all primes,
a result of Tate [69, Theorem 11.6] shows that the sequence is split
exact and it follows that the sequence is split exact for any set of

primes S. Hence K2(ZS) < {x1l @ .L_L(Z/pz)*. Tate's argument
pes

also shows that there is an exact sequence

1 —=K,(F[X]) —== K (F(X)) —= J_L(F[X]/}_g)*—-—-> 1.
P

If S 1is now an arbitrary set of primes from F[X], 1s it true that
11 *
1 —== K,(F[X]g) —= K, (F(X)) —== S (F[Xl/p) —==1
B

is exact?

Problem 18. Let F = K((t)) be the field of Laurent series over a
field K. If F has the (t) - adic topology, J. Graham [U4L], [45]

has constructed a continuous symbol

F* x F* —==K,(K) @ K* ® ag[[t]]

where the first two factors have the discrete topology and where
QK[[t]] (the module of formal power series over the module of
absolute differentials QK) has the (t) - adic topology. If K
has characteristic O, the above symbol is universal for continuous
symbols with values in the projective 1limit of discrete groups.

Pind the universal continuous symbol in case the characteristic of

K 1is non-zero. (J.N.G.)
Problem 19. Let A be a commutative ring. Compute K2 of the
ring R = A[X)/(X®). As there is a split exact sequence

1] —==K —e—KE(R) —_— KQ(A) —_—= ],

it suffices to compute the kernel (assuming KQ(A) to be known).
If n =2, this has been done by van der Kallen [105] for any
commutative ring. If A = F 1is a field, a presentation for this

group can be found for any n as it was for n =2 in [27].
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In the case F has characteristic O, Graham [44] has identified
the kernel as the direct sum of n-1 coples of the absolute

differentials QF.

Problem 20. What is the relation between KQ(R) and K2(R/I) where

I 1s a nilpotent ideal? Note that the previous problem is a specilal

case of this question. In particular, if I 1is any abelian group,

make I a ring by 12 = 0 and adjoin a unit getting 1t = Zx1I

with the obvious multiplication. Compute K2(I+) (ef. [42, Problem 22]).
(R.G.5.)

Problem 21. Let QO Dbe the ring of integers in an algebraic number
field F. The exact sequence

1 —== K,(0) —= K,(F) S _l_l_(g/g)*——a 1
D

due to Quillen [73, Theorem 8] shows that the computations of Ker A
by Coates and Lichtenbaum [17] sometimes give the precise order of
Kg(g). In particular, they obtain the following:

F = Q(vII) Ik, ()] = 28
F = Q(/iF) |k,(Q)| = 4o
= Q(J/I9) Ix,(Q)] = 76.

As all symbols in Kg(g) for a real quadratic field are generated

by {e,-1} and {-1,-1} where ¢ is the fundamental unit, it is

clear that KE(Q) is not generated by symbols. Explicitly exhibit

the generators of Ke(g). It is known that the maps

K2(n,g) ——Er-Ke(n+l,g) are surjective for n > 3 but are not surjective
in general for n = 2 [25], [27, Theorem 5.3]. In particular,

examples of elements that lie in K2(3,g) but not in Ke(z,g) would

be interesting.

Problem 22. Let 7 be a finite group. Can the results of Garland [34]

be extended to prove that Kz(gv) is a finite group? Is Whg(r)
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(a certain quotient of K2(Zw); see [48], [50], [108]) a finite group?
A character on 7T will induce a homomorphism Ke(gr) —%E-Kz(g(g))

for some root of unity ¢. By completing g(g) at an appropriate
prime and then applying the norm residue symbol, Milnor (unpublished)
was able to show that for 7 ecyclic of order 20, Whe(v) and Ke(gy)
have at least 5 elements. An equivalent computation based on the
results of [27] was made by Dennis (also unpublighed) for w7 cyclic
of order 21. 1In this case it follows that the£:Rat least 7 elements.
This method fails to detect any elements of Whe(v) if 7 1is cyclic
of prime-power order. Is Wh,(7m) trivial in this case? (A.E.H.)

Problem 23. Can generators and relations for K2 of a divisilon ring

be given as in Matsumoto's presentation for K2 of a field? (R.G.S.)

Problem 24. Compute K, of a finite ring. (R.G.S.)

Problem 25. Can Sharpe's LPLU form in the Steinberg group (see the
first section) be used to compute Ke? The analogous normal form
for unitary K2 can be used to make such computations [79].

(R.W.S.)

Related Areas of Interest

(1) The functors K, defined for fields by Milnor are intimately

related to K Several problems concerning them are discussed in

X
this volume [5], [33] (see also [31], [32], [841]).

(2) It is possible to define functors analogous to K2 by using groups
other than the elementary group. Many of the questions asked above for

K can also be asked for these functors. The interested reader should

2
consult [27], [52], [53], [581, [59], [67], [771, [79], [85], [86],
[88], [89], and [90]. It is known [671, [27] that all of the K,-like
functors defined by using a non-symplectic Chevalley group agree for
fields and discrete valuation rings. Is this true for all rings?
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K, OF RADICAL IDEALS AND SEMI-LOCAL RINGS REVISITED

Michael R. Stein® and R. Keith Dennis?

Quite general surjective stability theorems are now known for the
functor K2 [D]. These imply, in particular, that for a semi-local

ring R, the maps

K, (n,R) —== K2(n+l, R) —== K2(R)

Al
are surjective for all n ) 2. This special case was first proved
for most commutative semi-local rings by showing that Ke(n,R) was
generated by the Steinberg symbols {u,v}R, u,v € R* [St2, Theorem
2.13]. This method had the advantage of exhibiting an explicit set
of generators for K2(R), but suffered from the restriction that it
was necessary to assume that R was additively generated by its
group of units, R¥.

In this note we shall outline a method of constructing elements
of KQ(R) for any commutative ring R which in the semi-local case
provides a set of generators for K2(R) and removes the restriction
mentioned above. In the case of commutative semi-local rings which
are generated by their units, these new generators are related in an
explicit way to Steinberg symbols, but in the general case they
provide elements of K2(R) which need not be products of such
symbols. Moreover, these elements satisfy certain identities

analogous to those satisfied by Steinberg symbols which allow one to

1. Partially supported by NSF-GP-28915.
2. Partially supported by NSF-GP-25600.
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compute effectively with them. In particular, we will show that for
a commutative semi-local ring R, Ke(n,R) is always generated by
Steinberg symbols when n 2_3. This settles certain outstanding
cases of finding generators and relations for SLn of a semi-local
ring which were left open in [Si2] and [St2, Corollary 2.14].
However, we have been unable to decide the one remaining case, namely
under what conditions will K2(2,R) be generated by symbols when R
has one residue class with exactly 2 elements.

The construction and theorems which we present in this note are
not peculiar to K2, but are valid for any of the functors L(%, )

introduced in [Stl], provided that & is a non-symplectic root

system with only one root length and the Chevalley group in question
is assumed to be universal (see [Stl, (3.3)] and [St2, Notation and
Terminology]). The interested reader may make the necessary transla-
tions according to the usual dictionary.

Throughout this note, R is a commutative ring with 1,
a,B denote pairs of indices ij, 1 ¢{ i, j¢{ n, and =-a,-f denote
the reversed pairs Ji. Unexplained notation and terminology is

that of [D-S, Section 0].
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1. The elements <(a,b> and some relations they satisfy.

Let a,b € R by any two elements such that 1l4+ab € R*¥. For

each pair of indices a, define

H_(a,b) = x__(-b(L+ab)"L)x_(a)x_, (b)x, (- (L+ab) La)

- -Q

and set

(ot = Ha(a,b)ha(l+ab)-l.

Clearly for all n> 2, {a,b> € K,(n,R), and it follows
a

o
immediately from the definition that

x_(a)

(1) x_,(p)

-Q

X (a)x_a(b)xa(-a)

Q

x_,,(b(1+ab)"1)¢a, 1> h_(1+ab)x_(-a®b(1+ab)™1).

1.1 PROPOSITION. For all n 3 3, the elements <a,b)  are

independent of the pair of indices o and satisfy the following

relations:
(H1) <&, ={=b,-a>" "
(H2) <(a,b> = {-a,l+ab} if a € R*

{a,b) = {l+ab,b} if b e R*

(H3) {a+b, > = <a’d><b’l+aé> {1+1i;2) , l+ac}
, S {Hab, l_+§Lb+_cz}

{a,b+c> =<a,bX l+i.b

1+ab

(HY)  Catb, > = (8, b, O Trass iig > (-1, 1+ac) {“ﬁg‘c’)c, }133}

2
l+ab 1+a(b+c)
(a0 = o - i i (avan, o) (28, Lenloie)]

(85) <a,bcd{b,acd{c,atd =
{a,bcd = ab,cH{ac, b
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Since n ) 3, it follows from any one of [Mi, the proof of
Theorem 5.7], [D] or {[Stl, Theorem 5.1] that (a,@>a is central
in St(n,R) for any a. 1In particular, if o = (1j) and B is any
other pair of indices, we may find (since n ) 3) a w e St(n,R) such
that ®(w) = PD is the product of a permutation matrix P carrying
o to B and a diagonal matrix D = diag(vl,...,vn) with

vy =y = 1 (cf. [Mi, Corollary 9.4]). It is then clear that

<a, By, =wa, B>, W =Ca,,,

which proves the first statement of the Proposition.

Identities (H1)-(H5) are proved using the centrality of <a,b,
Equation (1), and the usual Steinberg relations and their consequences
([st1, (3.8)], [Mi, Corollary 9.4]). Moreover it is clear that
either of the parts of (H2)-(H5) can be deduced immediately from the
other part using (H1).

To prove (H1l) we evaluate the extreme left and right sides of the

equalities

(-D)

@ x_ d) = x_ (b)) "% x(a) x (-a)

% (-b) -
= x_,(b) (:'“ xa(-a€> x,(-a)

using Equation (1). Identity (H2) is an immediate consequence of
[St2, Proposition 2.7c]. To prove the first statement of (H3), we
evaluate the two sides of

xa(a+b) ) xa(b)xa(a)

x_,(c) = x_, c),

and the second part of (H4) is proved by similarly evaluating

xa(a)x-a(b+c) x,(a)

(x_g(p)x_,(c))

{a)
= Fol® x_q(b xC"(a)x_m(c).
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Finally, (H5) is proved by evaluating the Philip Hall identity
Vix, 1yt 21] 21y, (278, %11 ¥z, (x7L,y)) = 1

as In [Sw, Lemma 7.7] or [ D-S, Proposition 1.1] with x = xlz(-a),

y = x23(-b), z = x3l(-c), and then applying (H1).

REMARKS. 1. For n = 2, the elements <a,ﬁ>a are not necessarily
central in St(n,R) as is shown in the Appendix. It is still
possible to carry through the computations indicated in the proof of
Proposition 1.1, but is not clear what value the more complicated
identitites thus proved have. An example of such a calculation can be
found in the next section (Lemma 2.3).

2. There are many other identities satisfied by the elements <a,b>
which may be deduced from Proposition 1.1. Here are some examples.

(a) If ab =0, (H5) implies
{a,bcd = ac,bd>.
(b) If ab =0 and 1l+a,l+b € R*¥, (H2) and (H3) imply

{1+a, 1+b} {1+a(b+1), 1+b}

= {a, b+l
= {8a,b.
(¢) It follows from (H1l), (H2) and (H5) that
{a,{b,8> = {l+ab,-1}.
(d) Equating the second parts of (H3) and (H4), then applying
{H5) and (H2) yields

a -a°b
{Trap @ = & XTI @
Applying (H1l) to this, then replacing a,b and c¢ by their negatives

and interchanging a and c¢ yields

CarmSy = <o, ey
’1+bc:> - 4 *TI+ac) (1+bcC)

(e) Let ay,...,a € R and set a =Tla,, Qi = I a,. Then if

AL d
l+a 1is a unit,
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n
121 & 8> =<1,8 = {-1,1+a}

which follows by induction from (H1), (H2) and (H5).
(£) Let gq,8p,...,8,b,...,0, € R Define y, = zy = O;
k k

Ve = Z 845 Z) = bj' Then if Vg = 2¢ and if 1+qyi, 1+qz . € R*,
i=1 j=1 J

i=1,...,8, j=1,...,t, we have

s l+qy
I <oy (o MWy
i=1 AYi.7’ i1

t q 1+qz‘j
J=1 < J? l+qzj_1> l+qzj_1’ +qu_l

These identities are all consequences of the special case s =1, t = 2
(that is, of (H3)). Moreover if 815+++,8g,b1,...,b € R*, replacing
each of them and q by their negatives yilelds the (s,t)-identities

of [D-S, Proposition 1.5].

3. The generators given by Van der Kallen [V] for K2(R[e],(€))

are related to the elements <(a,by as follows:

fij(a.,b) = {ae,bed> = {l+ae, 1+be}

Ha(a,b) = <b,ad>ha(l+abe)

Na(a,b) = (b, acdlabé,abed = {b,acd{1l+abe,l+abe}.
It is easy to derive Van der Kallen's relations from this list and
Proposition 1l.1. Van der Kallen, of course, proves the deep result
that these relations suffice to present KQ(R[e],(e)). In Section 2
we will show that if J 1is an ideal contained in the radical of
some commutative ring R, KQ(R,J) is generated by the elements
{a,d, a € R, q € J. Based on the evidence of Van der Kallen's
theorem and the results of [D-S, Section 2], we conjecture
that the relations of Proposition 1.1 suffice to present K2(R,J)

in the general case.
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2. Surjective stability for radical ideals and semi-local rings.

Suppose J 1is an ideal in the Jacobson radical of the commuta-
tive ring R. Since 1+q € R* for every q € J, we may define for

any n» 3 a pairing

{, DR X J———>K2(n,J)

by (a,q)+—== <{a,q>. The subgroup of Kg(n,J) generated by the image
of this pairing will be denoted by Dn(J). We extend this definition
to the case n = 2 by letting DQ(J) be the subgroup of K2(2,J)
generated by all (a,d}a and <a,d>_a, a=(12), aeR, q € J.

The main results of this section are the following Theorem and

Corollary.

2.1 THEOREM. Let J be an ideal contained in the Jacobson radical

of the commutative ring R. Then Dn(J) = Ke(n,J) for all n ) 2,

and consequently the maps

K2(n,J) —_— K2(n+1,J) —_— K2(J)
are surjective for all n > 2.

2.2 COROLLARY. Let R Dbe a commutative semi-local ring. If n 2 3,

K2(n,R) is generated by the elements <a,b>, a,b € R, 1+ab € R*.

Moreover, (2,R) 1is normally generated by the elements <a,b,.,
Soreover e oy the e_oments 12

<a,ﬁ>21. Consequently, for all n » 2, the maps
K2(n,R) —_— K2(n+1,R) —_— KQ(R)
are surjective.

The proofs of these two results are almost exactly the same as
those of [St2, Theorems 2.5 and 2.13]. We define
U;(J) = the subgroup of St(n,J) generated by all xij(q),
qed, 1>,
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U_(J) = the subgroup of St(n,J) generated by all xiJ(q),
qed, 14,
the subgroup of St(n,J) generated by all ha(l+q),

H,(3)

q e Jd,
and set

Mn(J) = Un(J)Dn(J)Hn(J)Un(J)-
According to [Mi, Lemma 9.14] the projection map St(n,J)—éa-Eh(J)
restricts to an isomorphism on each of U;(J) and Un(J). Moreover

it follows exactly as in [St2, Theorem 2.3b] that

M, (J) A Ky(n,J) =D, (J).

Thus to complete the proof of Theorem 2.1, it will suffice to prove
that Mn(J) = St(n,J).

It is clear, however, that Mh(J) c st(n,J); moreover
xa(q) € Mn(J) for each q € J and all ao. Thus it will suffice to
show that Mn(J) is a normal subgroup of St(n,R) (since
St(n,J) = Ker(St(n,R) —= St(n,R/J)) is the smallest such normal sub-
group). The proof now proceeds by a series of reductions as in [St2,
Theorem 2.5]. The only possible source of difficulty occurs when
n = 2, for then (a,ﬁ}a is not necessarily central. We first deal

with this problem.

2.3 LEMMA. DE(J) is a normal subgroup of St(2,R).

let a, b €e R and write a = (12). We begin by using Equation

(1) to compute the two sides of the equality

xa(a+b) xa(b)xa(a)

x_g(a) = x_g(a),

taking care not to assume that the elements (a,d}a are central in

St(n,R). After simplifying the resulting equation, we obtain
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<b§1 + §a+b2q>

+aq 2 5
a(1+(a+b) ) q(l +aq)

1+aq) ’ (l+(a+b)52

b, 1———> <a+b,q> {l+ f;‘g)q 5 l+aq} .
a

For ¢, d €e R, p € J, the above equation allows us to show that

%ol e ny)

provided that we can solve the equations

o - b(1+(ath)q)

1+aq ’

2
d = a§1+!a+b2g2 ,

(1 +aq)2

>
1+
p=—$——9-qu 2

(1 + (a+b)q)
for some a,b € R,,q € J. It is easily checked that

_d(1+(d-c)p)? )

(1 +dp)
p = c(l+ (d-c)p)
1 +dp
c p(1+dp)®
(1 +(a-c)p)

satisfy the above equations:. Moreover a simple computation shows that

1
wa( )(a,q>c1{-1,l+a.q]_(1 = <-a,—q>_a

Since the elements xa(c), wa(l) generate St(2,R), this completes

the proof of the lemma.
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We now outline the series of reductions which prove Theorem 2.1.

(2.4)If the set Mn(J) is normalized by St(n,R), then Mh(J) is a
normal subgroup of St(n,R) (proof as in [St2, proof of

Proposition 2.10]).

(2.5)The set Mn(J) is normalized by St(n,R) if and only if

x,(a)

x_ (@) € M ()

-Q
for all o and all a € R, q € J (proof as in [St2, Lemma 2.6]).
(2.6)Equation (1) holds; i.e.

xa(a)X_a(Q) e M (7).

Let us now pass to the proof of Corollary 2.2. We now take J
to be the whole Jacobson radical of our semi-local ring R and we
consider R = R/J, a finite product of fields. We see from the proof
of [St2, Theorem 2.13] that Ké(n,?) is generated by the Steinberg
symbols {T,¥} together with all conjugates of the elements (if
n = 2)

[xa(o,...,Ei,...,O),x_ (o,...,Ej,...,o)], i#£3,

a

where Ek occurs in the k-th factor of R and the component in all

other factors is 0. Since

1+ (o,...,E.,...,o)(o,...,Eﬁ,...,o) =1,

it follows immediately from the definition that these additional
generators are conjugates of the elements <§,E>a for a,b € R.

Thus K2(n,R) is generated by the conjugates of the elements
<§’E>ta’ a,b ¢ R, 1+ab € R*. But units in R can be lifted to units

of R; hence the Corollary follows from the Theorem and the exact

sequence
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1 —= K,(n,J) —= K,(n,R) —== Ke(n,ﬁ) — 1.

2

"normally" cannot

REMARK. In the Appendix it is shown that the word.
be deleted from the statement of the Corollary in case R has two or
more F, factors. If R is local or R has no F, factors,

on Me

K2(2,R) is actually generated by Steinberg symbols [St2, Theorem 2.13].

We will now give two applications of these results. The first is
to the problem of finding generators and relations for SLn(R) = En(R)
when R 1s a commutative semi-local ring. Partial solutions to this
problem were given by Silvester [Si2] in terms of the concepts
"universal and quasi-universal for GE,» n > 2"; a partial solution
simultaneously was found in [St2, Theorem 2.14] as a Corollary to work
on K2(R). The connection between these two papers is given succinctly
by the result of [D] that for commutative rings R, the statement
"R 1is universal for GE,, n > 2 (resp. quasi-universal for GE,»

n ) 3)" is equivalent to the statement "K2(n,R) is generated by
Steinberg symbols (resp. by the elements <a,b>, a,b € R, l+ab € R¥)."
For commutative semi-local rings R, with R = R/J, the situation

until now may be conveniently summarized in the following table:

R has 2 or more F,
R is no E2 factor 1 §2 factor factors
quasi-universal Yes Yes Yes
for GE ,n > 2{[si2, Theorem 14] [[Si2,Theorem 14]|[Si2, Theorem 14]
Yes Yes
universa¥>for [Si2, Theorem 14}, |[Si2, Theorem 14] ?
GE , n2 3 [St2,Corollary [St2,Corollary
n 5.14] 2:14] (See below)
Yes 4] 0 No 28]
universal for [Si2, Theorem 14], ’ . Si,Corollary
GE2 [St2,Corollary (ngaﬁpgzngix’ Eseé Appendix,
2.14] P Example 1)
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We will now show that, in fact, all commutative semi-local rings
are universal for GE, n 2 3. Thus there is only one outstanding
case: Is a semi-local ring R such that X has exactly one direct
factor isomorphic to pFE’ universal for GE2? We do not know the
answer in general; however, J. Silvester has proved that ,g/ﬁgais not

universal for GE2. A proof of this appears in the Appendix, Example 2.

2.7 THEOREM. Let R be a commutative semi-local ring and let J be

an ideal contained in the Jacobson radical J(R) of R. Then for all

n) 3, K2(n,J) and Ké(n,R) are generated by Steinberg symbols.

Since Ke(n,R/J(R)) is generated by symbols for all n ) 3
[st2, Theorem 2.13], it will suffice to prove that K2(n,J) is
generated by symbols. According to Theorem 2.1, K2(n,J) is generated
by the elements <a,Q>, a € R, 9 € J. It follows from Proposition 1.1
and the remarks following it that modulo the subgroup of Kz(n,J)

generated by symbols, the following identities hold:

1) <a,® =1 if a € R¥ (H2)
2) <a+b,d =<a, byl (13)
3) <ab,® =<a,b<{b,ad (15)

can?
b o> = <o e
= <b, &< ab%, {rragirreEy <P D

(Remark 2d and (H5))

Moreover, it follows from 1) and 2) that if u € R¥,

5) <atu,® =<a,®
and that if p € J(R),

6) <p,® =<(1+)-1,9

{1+p, Q><‘1:T_R'§Tp‘)'a >

1.

i

it
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It then follows from 2), 4) and 6) that
7) <a+b,® =<a,P<b, .

Let us now write R/J(R) = gg X S, where S is a product of fields

all different from .Eg' Then given any a € R, there exist units

Upseeerly € R¥*¥, such that

—_—_ k
afuy +...Fu, = (x,0) € Fy x S.

Hence it follows from 5) that K2(n,J) modulo symbols is generated
by the elements
{a,,a € R, & = (x,0), q € J.
But if a = (x,0) € Eg X S, we must have 2a = 22 +3 = 0; that is
8) 2a € J(R),
9) a+a e J(R).
It then follows from 6), 7) and 8) that
1 =<{2a,a®
= <a,ad>2.
On the other hand, it follows from 9), 6), 7) and 3) that
1= <a2+a,d>
= 2%, <8,

= Ca,ad Xa, .
Thus
Ka,ad>"1)?

=]

{a,

for all generators of K2(n,J) modulo the symbols, and K2(n,J) is

generated by symbols, as asserted.

293



-14-

Let Wp(Fg) denote the ring of Witt vectors of length two over

the finite field gh, q = pn. The second application of Theorem 2.1
is

2.8 THEOREM. Let p be a rational prime and let R = We(Eq)’ q = p™.

=]

The R[X]) is an elementary abelian p-group of countably infinite
=en is an J ot N

rank.

It follows from results of Silvester [Sil] and Steinberg [Stb,
3.3] that K2(gq[x]) = Ka(gq) = 1. Hence if J = rad R[X] = pR[X], we

deduce from the exact sequence

1 —= X, (R[X],J) —== K, (R[X]) —== Ke(}i'q[x])
and Thecrem 2.1 that K2(R[X]) is generated by the elements

{f,p,f,g € R[X], g £ J.

If p 1is odd, note first that any symbol of the form

o = {l+ap,14pp} is trivial, since by (a) and (b) of Remark 2 in §1

o = {1+opp,1+p} = {14p, 1+app}
which implies 02 = 1. But clearly of = 1l as well.
It follows, therefore, from (b) and (H4) that we may assume
f £ J, and that
1 =<pf,p> =<£,p>P.

Thus KE(R[X]) is generated by the elements

<f:p@3f.~g € R[X]:fxg f J,

each of which has order p.

If p = 2, K2(R[X]) is generated by

{f,2®

af,28> = {1+2f,1+2¢} = {-1,1+2rg}
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for f,g € R[X], f,g £ J. It is clear that the elements <2f,2g> have

order 2. However we also have by (B4)

{-1,1+2rg} = <or,28>

= (£, 28>°(-1,1+2rg)}

which shows that (f,2g>2 = 1. Thus KE(R[X]) is an elementary

abelian p-group in this case as well.

)

For a given finite field ‘Eq, we choose an element u € We(gq

for which there is no solution 2z € Eq to the congruence

-u = -z +2°

mod p.
To complete the proof we will show that the infinite set of generators

kg 1
{uX,pX D, k; =p-1

are non-trivial and distinct from each other, using the techniques of

[D-8].
Write A = W(Eq), the ring of infinite Witt vectors over Eq’
and let Aj = A[Cj], where Cj is a primitive pith root of unity.

Then
AJ. = A[X]/ (@ J(x)) = A[Y]/(& J.(3(+1))
P p

where & J.(X) is the usual cyclotomic polynomial. Since @ J.(Y+1)

P
is an Eisenstein polynomial, it follows from [S, Chapitre 1,
Proposition 17] that Aj is a discrete valuation ring for all J 2_1,

whose maximal ideal 1s generated by Wj = gj-l. We define

ey = pj,'l(p—l)
P .
ry =gt = ¥

and set
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We define a homomorphism
A[X] —a= Ay = A[CJ]

by sending X to WJ = Cd-l' This induces a homomorphism
R[X] = A[X]/p°A[x] —== R,
which in turn induces a map

¥5:Ky (RIX]) —== K, (Ry)
such that

’l’:j (<U.X, pX“> ) = <U~1TJ,pTT? .

e, k

Since p = wjr. J  for some wj = -] mod vJ, we see that prJ i

=0

J
if j< i. 1In particular,

k
¥ Kupx D) =1 for 3¢ 1.

However if J = i+4l,
ki ki
‘l'j(<uX,pX >) =<U.1T'J,pTTJ- >
Ky
= {l+uvj,l+pvj }
( rj-l
= tl+ur,,l-m.
qu, TJ .
r.-
= {1- J
{1 u1rJ.,l+'1rj }

which is different from 1 by [D-S, Theorems 3.8e and 4.37.

REMARKS. 1. 1In particular, taking gq = p this shows that

KE(R[X]) is an elementary abelian p-group of countably infinite rank
in case R = g/pgg.

2. If R 1is a left regular ring, Quillen [Q,Theorem 11] has shown

that the map KQ(R) ——e-Ke(R[X]) is an isomorphism. The rings of
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the preceding theorem give examples for which Ké(R)-——i-K2(R[X])
is not an isomorphism. These rings are not regular as their residue

fields have infinite projective dimension.
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Appendix: Non Steinberg symbols in Kg(n,R)

It was shown by Cohn [C2] that for 4 # -1, -3, the rings of
integers in the Euclidean imaginary quadratic number fields
QWd) are not universal for GE,, i.e. the K2(2, ) of these rings
are not generated by Steinberg symbols. In a similar vein, Silvester

[Si2, Corollary 28] has shown that the element

<(1,0), (0,1)>, € Ky(2,Fy XE,)

is not expressible as a product of Steinberg symbols.
Recall that the Steinberg group, St(2,R), is the group with

generators xlg(r), le(r), r € R, subject to the relations

xa(r)xa(s) = xa(r+s)

1

w_(u)x (r)wa(u)- = xa(—uru)

a -Q

where wa(u) = xa(u)x_ x (u) for any unit u of R and
a = (12), (21). If R and S are rings and f: R—== S is an
additive homomorphism which also satisfies

(1) f£(1) =1,

(i1) f(uru) = fF(u)f(r)f(u), r € R, u € R*,

then f 1induces a homomorphism

f*: St(2,R) —== St(2,8)

defined by x,(r)b==x_(f(r)). 1f £(uv)=£(w) £(v),u,v ¢ R¥, then

f*({,u’v}a) = {f(u),v f(V)}a

and hence f*(K2(2,R)) c K,(2,8) if R 4is universal for GE, (i.e.

2
K,(2,R) 1is generated by the elements {u,v}a). In this case, f

also induces a map

E,(R) —= E,(5)

o
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That the analogous result for the elements <a,E>a is not true will
be exploited below in Example 1. The first example is a variation on
Silvester's proof that 'Ez XEQ is not universal for GE2 [si2,
Corollary 28]. The second example is an adaptation of Silvester's

proofl that Z/6Z 1is not universal for GE,.

EXAMPLE 1. Let jh = fé[x] be the field with four elements which is
obtained from ‘jé by adjoining an element x with l+x+x2 = 0.

We define

by Or—a=0, 1+==1, (1,0) == x and (0,1) === 1+x. It is clear
that f is an additive homomorphism which satisfies conditions (i)
and (ii). Let h denote the composition of the map induced by f

followed by the projection to E2(EM):
St (2, FXF,) —= 5t(2,F)) —== E,(Fy)-

The elements <(O,1),(1,0)>ia and < (1,0), (0,1)> are the only

+Q
non-trivial elements of the form (a,ﬁ}ia in St(e,gg XEE). A

computation yields
thlb(LODa)=(§ l??==&
P10, (0,20) =(1, 1) =

(< (0,1), (1,0)>_,)

I
o
-

K (1,0), (0,1)>_,)

]
>

Now letting C = AB we see that A3 =2 = (AC)3 = 1. It thus
follows that A and B generate a subgroup of E2(§4) isomorphic
to the alternating group A, [C~M, p.134]. As E2(§4) = PSL(2,4)

is a simple group of order 60 and as h 1is surjective, it follows

1. Private correspondence.
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that the elements <(O,1),(1,0))ia, ((1,0),(O,l)>*a do not generate
a normal subgroup of St(2,§2X§2).
If R is any commutative semi-local ring for which R has 2

or more }52 factors, there is a surjective homomorphism

St(2,R) —== st(e,_g2 xgz)
and it follows that the subgroup of St(2,R) generated by the
elements (a,ﬁ}ia is not normal as 1its image in St(2,§2 x§2) is
not a normal subgroup. In particular, the elements <a,ﬁ>a are

not central.

EXAMPLE 2. Let 8 = eiw/6 be a primitive 12-th root of unity. Then

there is a homomorphism
St (2,2/6z) ——== GLE(g)

defined by

1 -ie
x_q(l) = o o2

(ef. [Cx, p.112]). Letting R, = xa(-l) and R = xa(-l)x_a(l),
it is easy to check that St(2,2/6Z) has the presentation

6 _ 3 _ 2
Rl-l,R-(RRl)
(see [Cx, 831, [C-M, pp. 73-78]). Hence the center of St(2,g/6§) is

generated by the element R = (RRl)2 = wa(—l)2 [Cx, p-101].

Under the given homomorphism every element of the center, including
L
L(-1)

However, the element <3,2>a does not vanish under this homomorphism.

the only symbol {-1’-l}a =W = {-1,-1}:&, becomes trivial.

Hence (3,2)  1is not central and Z/6Z is not universal for GE,.

Using the computations of Miller [M] it is possible to show that the
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subgroup of St(2,z/6Z) generated by all elements of the form
(a,ﬁ}ta is normal. 1In fact, this subgraup is generated by the
three elements f—l,-l}a, <3,2>a and <2,3>a, a = (12).

For all n ) 2, examples of rings of algebraic integers 9 for
which Ke(n,g) is not generated by Steinberg symbols can be
constructed as in [D-S, Section 5, Example].

Suppose Q 1is the ring of integers in an algebraic number field
F and let € be some unit of Q. Suppose further that
¢-1 = ab, a,b ¢ 0*. Then we may form the element <{a,b>. The
techniques of [D-S] often allow one to pass modulo some ideal of Q
to show that <(a,b> 1s non-trivial and has order divisible by some
integer m. The final step of the argument is to show that in
Ke(n,g) there are no Steinberg symbols whose orders are divisible
by m.

It should be noted that the elements <{a,b) all exist in

K,(2,R). Hence they do not account for the appearance in K2(3,R)

o
of elements which do not come from K2(2,R) [D-S, Theorem 5.3].
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Variations on Milnor's Computation of XK, Z

*
J. E. Humphreys

Milnor's computation of KZZ [4, §10] yields an explicit finite
presentation of SL(n,Z), n > 2. (Z denotes the rational integers,

R the field of real numbers.) The method,based on a lemma of
Silvester, involves finding the kernel of the canonical map

St{n,Zz} -~ SL{n,Z), where St(n,Z) is the Steinberg group. This is
simpler than the earlier approach of Nielsen and Magnus [2], although
the ideas are similar. The kernel in question is Z (resp.: Z/2Z) when
n = 2 (resp. n > 2), and in fact arises from the restriction to
SL(n,Z) of the universal topological covering St(n,R) =+ SL{(n,R).

In this note we sketch an analogous argument for arbitrary
Chevalley groups other than Gy: full details will appear elsewhere.
In the case of Siegel's modular group Sp{2n,2Z) {(n > 2}, the result
is simpler than those obtained by Klingen and by Birman {[l] ({(moreover,
the latter author has pointed out that [1l] rests in part on an erron-~
eous argument in one of her sources).

G will denote a simply connected Chevalley group scheme over 2z
of simple type, ¢ its (irreducible) root system (e.g., G = SLn)' For
background material consult [5, §3] and [3, No. 2]. If A is any
commutative ring with 1, E(%,3) denotes the elementary subgroup of
G(A), generated by unipotents ea(t) (o« € ¢, £t € A). When A = Z or
A = field, it is known that E(¢,A) = G(A) {(cf. [3, Thm. 12.7]). Let
St(%,A) be the Steinberg group, generated by elements Xa(t) (oo € 9,
t € A), subject to the usual relations, and let Tyt St($,A) + E(9,A)
be the canonical epimorphism.

Theorem. Let ¢ be not of type G,- Ker m, is central in

St(?®,Z}), and is generated by the symbol {-1,-1} = (Xa(l)x-a(_l)xa(l))4’

*
Research supported by ¥SF -GP-28536.
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where o is any fixed long root. Moreover, Ker T, =z (resp. 2/2%)

when ¢ is of symplectic type C, , & > 1 (resp. when ¢ is non-

L
symplectic).
Corollary. Let rank ¢ > 2. Then G(Z) is generated by the
ea(l) (o € ¢) subject only to the commutator relations [5, (3.7)]
1

and the relation (ea(l) e_a{l)— ea(l))4 = 1, a any fixed long root.

(For & of type Gy this is probably true, but some details

remain to be checked.)

As in the special case G = SLn , the proof amounts to showing

that the middle vertical arrow in the following diagram is injective:

1 + Ker L St(®,R} +~ G(R) =+ 1

+ * 4

1 + Rer T, > 5t(%,2) » G(2) » 1

This in turn rests upon showing that Ker T, comes from the (general-
ized) Weyl group, as Ker Te does. Denote by W the subgroup of
St{¢,Z) generated by the elements Xa(l) X~a(-l) Xa(l) (o € 9).

The proof of the theorem involves a reduction of rank, as
follows. G has at least one "basic representation" [3, No. 2] (which
in the case G = SLn can be taken to be the standard representation),
containing an "admissible" lattice L on which G{(Z) acts. Since the
nonzero weights all occur with multiplicity one, there is an almost
canonical basis for L, relative to which the action of ea(t) (t € 2)
can be described very explicitly. Let the first basis vector v be
of highest weight. The stabilizer of the line through vt is a para-
bolic subgroup P = (G'H) U of G, with unipotent radical U, reductive
part G'H, and semisimple part G'. The basic representation can be
chosen so that G' is again of simple type {(i.e., has irreducible root
system ¢'), e.g., for G = 8L_ , G' = SL,_1- Since G' is in any case

n

simply connected and of smaller rank than G, induction can be used,
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starting either with the trivial group (rank 0) or the known case
G = sL, (rank 1).

The action of G(Z) on L {(written on the right for convenience)
induces an action of St(9%,Z), via m,. For v € L, let lvl be the sum
of absolute values of the coordinates of v relative to our chosen

basis, e.qg., Ivtl = 1. Then the key lemma (analogous to Silvester's

lemma [4, 10.6]) is the following:

Lemma. Each g € St(9,2Z) can be written as gl"'grw , Where
. +
w € W, each g; is a generator x (+ 1), and "v+-gl" < v 919, 1

< eee < Uvteg gl

We apply this lemma to an element g € Ker T for which all

g 7
terms become equal to 1 = Hv+-gﬂ. By further manipulation (using
commutator relations) g can be forced, modulo a factor in W N Ker My o
into the canonical image of St(¢',Z) in St(9,Z), where by induction
we have an element of the image of the analogous group W', which in
turn lies in W. From this we obtain Ker m, € W; in particular, Ker m,
is central. The proof is now easily completed by means of [3, Thm.
6.3].

Problems. (1) Devise a more conceptual proof that the canoni-
cal map St(¢,Z) = St(¢,R) is injective.

(2) Treat rings of algebraic integers other than Z. The fact

(observed by Dennis and Stein) that K, of such a ring need not be

generated by symbols seems to present a serious obstacle.

Remark. After formulating the above approach I learned of the
1966 U.C.L.A. thesis written by W. P. Wardlaw, "Defining relations for
integrally parametrized Chevalley groups,” in which essentially the
same presentations are obtained (in cases other than G2). However, in
treating types B, C, F4 , Wardlaw first reduces the problem to Sp(4,2)

and then appeals to the same faulty reference used by Birman [1].
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DECOMPOSITION FORMULA OF LAURENT EXTENSION

IN ALGEBRAIC K~THEORY AND THE ROLE OF

CODIMENSION 1 SUBMANIFOLD IN TOPOLOGY

Wu-chung Hsiang

Fine Hall
Princeton University
Princeton, N. J.

I. Introduction. Let A be a ring with 1 . Knm (n € 2) was introduced in

[1] [9] {le]. Suppose that t is an indeterminate. We have the ring of finite
1

Laurent series A [t,t_ ] . Following [1] [10] [21], we have the decomposition
formula (L

(1) KAE,t ] =Km +K & +N1&A .

n n n-1 n
K A is naturally embedded in K A [t ,t—l;...;t ,t_1] as a direct summand and
n-s n 171 s s
the original definition of K_sm” s=1,2.... was gotten from this embedding [1].
m . m . 1

Now, suppose that A = ZﬂlM with M a manifold. Let S denote the

circle and let Ak[t,t—ll be identified as 21 Mm X Sl with t identified to

1

a preferred generator of ﬂlsl . There are geometric interpretations for Kﬂm
for n=0, 1,2 [22] [14] [11] and there is also a geometric interpretation of the
decomposition formula (1) for n=1 [7].

(2) of the note, we shall give a description of Nil A

In the first part 2

and identify this description with the geometric obstruction to a codim 1 isotopy

problem. We recast a geometric version of a Quillen's theorem that Nil A =0

for A left regular [17].
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In the second part, we discuss some joint work with Douglas R. Anderson(3).

Let X = s°M" be the s-fold suspension of a closed manifold M" (m>5)  such that
Mm is not a homology sphere. Let é% = s°M -5~ ' z?= ss-l be the regular

set and the singular set respectively. Suppose that are two triangulations

Tl,Tz
of X such that the induced triangulations on C%Z and j§> are combinatorial.
Let f£:X » X be a homeomorphism of X onto itself. We say that £ 1is an 'isotopic

isomorphism' from T to T if £ is (topologically) isotopic to a PL homeo~

1 2
morphism g . We shall describe sequences of elements in
K“2+1A freensnenanenaan ,Klﬁs {2=t, t-1,...,1, and t<s-1)

as different level of obstructions to 'isotopic isomorphism'. In particular, if

ﬂlmm is a torsion-free solvable group, then Hauptvermutung for X is practically

true. Roughly speaking, we view Tl B T2 as cowbinatorial compactification of

s m .
R x M and these sequences of elements are different level of obstructions to

. s-1 s m
make f isotopically isomorphic when we add different pieces of S to R X M.

The order of the sequence will exactly correspond to the iterated formula of (1) as

we adjoin the indeterminates t ot This result gives an explanation of

g 9

the counter-examples to Hauptvermutung [15] [20].

IT. Nil A and Codim 1 Isotopy.
—A

In this section, we shall give an algebraic description of NileA and

interpret it as the obstruction to a codim 1 isotopy problem. Let us first define

1) (2)
*

a category CkLilzm. . Let C, , C be two chain complexes and let

f:cil) > sz) be a degree-~l chain map. We can form the mapping cylinder of £

[4,p.159] M(f) with M(f), = cél) ® céz) and Bf(x(l), L B R YAt P

+ 8(2)x(2)) . Suppose that f(i): Cii) —_—

C£l+l) (i=0, 1,..., N-1) are degree
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~1 chain maps with f(l+l)- f(l) = 0 . In an obvious way, we can form the mapping

tower M=M(f(°),..., f(an)) .

An object in "723'.12& is an acyclic finite dimensional free chain complex

over A

d d
>C2_1 [P

d
. — O —— ()
: 0 >CQ’ >Cl °

satisfying the following conditions:

(A) There is a filtration of subcomplexes

o CcC cMC .. C M oMM _g

* *

(i-1) (1)

(2 such that both C, ana c{M/cH a1, 040 are free

chain complexes over A .

(B) There are degree-1 chain maps

g@ W G o, e

— C*

such that f(l_H) . f(l) = 0 and the mapping tower M is acyclic.

We can define morphisms and exact sequences in% ilzm in the usual way. A 'trivial

object’ in 92112& is a chain complex

O ———— &
G ~ 2-1

(3) with o C o C .... C e, Coc, C....

ceen C ™o, C oD ¢

* *

and £3) 2 5 (3=0,...,8-1) .

An ‘elementary object' inY ilzm is a chain complex

(142} ~ d (i+1) a
CJL = M N > CIL-]_ = R > O
<]
(i+1) o d (1) &
O_>C2+l = B :\.‘>C$l = A
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satisfying the following conditions:

@ o C o C . C C.,Ei) - C;{i) C C(i+l) - {C(i"l-l)

* 2+l !
(4) céi) ® cé“’l) , céil)} C el o C ¥
e C M Co D
(B) f(j) =0 for j # i and

(1) (i)

i
Hi
-
+
[

I

Let us denote the Grothendieck group of the isomorphism classes of the
objects of ‘%_ilzm with respect to the exact sequences modulo the subgroup

generated by trivial objects and elementary objects by Nil ZIJA .

Theorem 2.1 Let A = Zn be the integral group ring of a finitely

presented group © . Then,

-1 .
{a) KZA {ft,t 7] = 1<2}A + Klm +2N112.§ ;

(B} for A is {(left) regular, Nilzm = 017}

H

© Nil,a et > Nil

In particular, if & = Z(% 5 X 23) , then Nil 2(m) is not finitely generated.
p

Actually, we do not need the assumption that M is a group ring at all,
but since we are only interested in the geometric interpretations of Theorem 2.1,
L. . m .
we leave it in. Let us now consider an orientable closed manifold M (m>5) with
. mo 1 1 . , -1
nlM =7 . Identify anM %3 (37 = the circle) with A[t,t 7] such that ¢t
is a preferrred generator of 7 S1 C wle x Sl . Let us now follow the geometric

1

interpretation of K2A {t,tal] . For £ ¢ sz (t,t-l] , there is a generic map

M xst x T x T —E 5 T x1



.
satisfying the following conditions:
(a) F}Mm x 8' x 3(I x I) has no critical point.
(5) (B) Fle x §' x 0 x I is the standard projection onto the last factor.
(C) The graphic of F has no vertical tangent.

We refer to [11] for details. F determines a pseudo-isotopy

(6) £M x Sl X I > M X 51 x I

such that £|M" x Sl x 0 =1id . £ induces a psuedo-isctopy of a codim 1 embedding
m m 1

(7) g:M xp xI——>M x8 x1I

. m , X
with g{M x po X 0 = id where po denotes the base point of Sl . Then, the

component n  of & in Nilzm‘ of the decomposition (1) has the following
geometric interpretation: With possibly adding a second obstruction which is of
order 2 {12}, n is the obstruction to finding an embedding

1

" > M" x 5T x I

(8) h:M XPOXI

isotopic to g of ({7) such that

m —
(9) n(M xPoxI)(\mepoxI_(b

For such an embedding ¢ , the corresponding object § & qz_ilzm
(i.e., N is a representative of n) may be constructed as follows. Let

(10 g M xRx T —— ™ x st x1

be the infinitely cyclic covering space of o® x Sl x I corresponding to the
subgroup ﬂlbp of nle x S1 such that M" x P, x I is lifted to M x 0 x I
Let us lift g(Mm X P, * I) into M x R x I such that

t’lg(MmXpox D C o' x (==,00 xT and g xp_ xD NN x (0,1) xI#s ,

where t denotes the preferred generator of the covering transformation of (10).
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N tas . N m m
There is a large positive integer N such that t g(M x p, % 0C 8 x (0, x I

N-1
but t g(IJ“XpOXI)([ M x (0,®) x I . Let

(1) L= o x 0,1 x D A (trEW® x (-=,0] x D)

for i=0,1,..., N . {See Figure 1.)

Figure 1.

put
R =L UM xoxI
o] [o]
Rl=(L1—tLo)umeoxI
(12) :
Ry = (T t4,_) U M xo0x1

Ryyp =M % [0,11 xT .
Let us now consider the chain complex
(13) c, =c, " x [0,1] xI, M xOx1I;a)
with the filtration

(14) e - C (R, M x0xI;a)

m
i=0,...., N¥1 . (The chain complexes are gotten from the handles on M x O x I}.

313



Let us consider the composite map

(1) 'C(i)—C(R MxOXI-A)——-*——>
(15) £ o B A ! a
L)
Ce(tR,, M x 1 x I ; B) ———>
i
CufRi 1y M X0 XTI ;A
i=0,...,8-1 . It is easy to see that the mapping tower is acyclic. Therefore,

it is an object n of L?Zilzm‘ . The trivial object is essentially represented by
an h-cobordism on M x O x I inside of M x [0,1) x I . The geometric model of

an elementary object may be described as follows. Add a complementary pair of

L+ : .
h(l L (1) to M"x0x1I . Drag h(l+l) in the direction of t

i+ s
and let it go across M x 1 x I such that the tip of h(l b is trivially embedded

handles , h

in a ball contained in the translated region of the cobordism. (See Figure 2).

DD,_._. ST oo %(:C)Dt gi.,)

Figure 2.

Using these geometric interpretations, we see that different representatives of n
are gotten from isotopies of g with possibly adding elements of second ob-

structions of [12]. From these observations, we may deduce (A) of Theorem 2.1.

Let us now indicate a geometric proof of (B) of Theorem 2.1. We can use
the geometric models for trivial objects and elementary objects to perform isotopy
of g . After a finite number such isotopies with possibly adding second ob-

structions of [12], we may assume that Ri is gotten from Ri— by adding k-1 ,

1
k , k+1 handles. We may assume that 3 < k~1 and k+l << m/2 without loss of

generality. We can actually write
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(16) R, = R, U s, , T, =R, N s,

(i=1,...,N+1) where Ti is a codim 1 submanifold of Mm x [0,1] x I separating

R, from S, . Set S =R . We have
i-1 i fe) o
17 = cees .
(17) R, =S  Up 8 Ug S, U UT. s,
1 2 i
Put
b scs, s, N xoxI;A
* R Rt T '

(18)
g, =c(r, , T, N M x0xI;R)
1 i

There are monomorphic chain mappings

p(1) . Eil) > Dil)

(19)
(1) (1) (i-1)

A : B —> D,

of degree O . We can use o(l) and A(l) to form the Meyer-Vietoris sum of
(i-1) (1) . (1) s

D, and D, in the usual way, and C_ becomes the repeated Meyer-Vietoris
sum of DiO),....,Dil) along Eil),....,Eil) . Under the assumption 3 < k-1 and

m
k + 1 << /2 , we may assume that the homomorphisms

v w ) > 1y (e
(20)
v By o —s Hy )
(i=0,...,N) are monomorphic for j < m/2 where u(iZV(i) are induced by

inclusions. After some diagram chasing, we find that

(a) Hj(Dfi)) =0 for M/2 > 5 % k-1,k

where O < i < N and 3 < k-1, k+l << M2

(0), _ M, _
(B H _, (O, ") =0 , HI({D/ ) =0
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Let us now consider the following inclusion

i-3,(3)
*

(22) g3 p__ Dii) ® tD,Ei'l) @ .... 0t

o)

. & .... @8 tl—JDij) denotes a suitable mapping tower which may

(j < i) where

be identified with the chain complex of

(23) (5., U £S5, . U.o.o Ut 35, , 5, n M xo0x1).
i i-1 3j i

Consider the filtration

(24) 0C xer k¥ L Crer kPP C Ll C Hk_l(D,Ei))

We can use the geometric model of the elementary object to exchange cycles
-1 . -1
Dil ) Dil) . The effect is killing some element of ker K(l':L ) at

of to

: i i-1
the expenses of possibly creating elements in Hk(Dil)) and Hk+l(D£l )) . When

we apply this procedure successively and carefully and denote the new chain

complexes by D'il) , we would have
() Hj(D‘il))= 0 for T >3 % kk+l
where O <1 <N ;
(0) (N)
[ — ' = .
(B) H (D',") =0 and H (07 =03
) There is a filtrated free modules
(1,i~1 (i,3)
(25) o C PV ™Y L..CF
with F(l'j)/F(l’j-l) free and there are short exact sequences
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o) P o) o]

| | |

0 C ker x* i D 0 ker k@I CL C Hk(D',Ei))
| ! |

o C P 0 JWD ¢
J J !

0 C xer VY 0 ker kLl C Hk_l(D,fi))
! | |

O cesens O rresos O

=

where K'(l'J) is defined as K(l'J) Next, we observe that we may
move the indices %k , k+l1 back to k-1 , k¥ with all the properties of (25)
retained.
i
Since B is (left) regular, we can finally eliminate all H*(Df ))

Modifying by 'trivial objects' , we would have (B) of Theorem 2.1.

Let us now indicate a geometric construction of the embedding
Ni12A C: Nilzm.[t,t-l] . (It was pointed out to me by A. Hatcher that one can
construct NiliA C Nili+lm.[t,t“l] directly from [10]). Let £ be an element

11 . Following [10] [211,

in NilA . Consider the embedding Nil B C KB [t ,t)
s . -1 -1 -1 s
there is an embedding KlA Itltl 1 C szs[tl,tl ,tz,tz 1 and let us denote its
s 2 - 1
image by £ . Using £ , there is a pseudo-isopotopy on M x Si X Sl such that
) e 1 1 \
tl ’ t2 are identified to the preferred generators of ﬂlsl ' “152 respectively.

Using the geometric interpretation of Nil, at the beginning of this section and the

2

interpretation of Nill[7], we see that é has non-trivial component in

. -1 : : -1 :
Nllzm [tz,t2 ] and Nllln C Nllzm.[tz,tz 1 . By [3], & is not generally

3
finitely generated for A (commutative) Noetherian and A = 2Z(Z 2 X B ) (p odd)

P
is such an exampile.
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IIT. _g_im‘ and obstructions to Hauptvermutung of iterated suspensions of a

manifold.

In this section, we shall discuss some joint work with Douglas R. Anderson.
o ) ) ) s m
Let (m > 5) be a closed manifold which is not a homology sphere. Let X = S'M

(m > 5, s + 5) be the s-fold suspension of Mm . Then, ¥ is a topological

- -1
s® 1 is the singular set and 6? =x-¢g°

stratified space with 2 strata : E? =
is the regular set. For any triangulation of X , Q? is always a subcomplex and
it also induces an infinite triangulation on ﬂ? . We say that a triangulation

T on X is 'admissible' if the induced triangulations of T on é? and ¢? are
combinatorial. We shall only consider admissible triangulations and when we say
'triangulation’ we shall always mcan 'admissible triangulation'. Let T 0T, be

two triangulations of X and let
(26) fi:X——>X

be a homeomorphism of X onto itself. We say that f is an 'isotopic isomorphism'
from Ty to Ty if f is topologically isotopic to a PL homeomorphism g from
T to T ; i.e. g 1is an isomorphism from a subdivision of 1 , to a sub-
division of T, - The obvious necessary conditions for f to be an 'isotopic

isomorphism' are:

(A) The induced triangulations Tl| 3; ' 12|23 are isotopically

(27)
isomorphic. Since s # 5, this is always true.

(B) The induced triangulations T1| 6?, T2|/3/ are e-isotopic. According

. . 3
to Kirby-Siebenmann, this depends on an obstruction in H ¢6);zz)

We shall always assume that the obstruction of (27,B) vanishes. By (27,3),

we shall also assume that f identifies the triangulation of Tl|Ss—l with that
of T, Ssﬁl where Ss--1 = ?? , and f is ©PL from the induced (infinite) tri-
angulation Tl|j% to that of T2|4z . For notational simplicity, we shall
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assume that Tilss-l are triangulated into cubes instead of simplices. We shall
study the obstructions to extending f to a isotopically isomorphic PL homeo-
morphism of fl@/ to QU {Ds-l} U oeeee U {Dg} assuming that we have the
extension to ALJ {Us_l} U covo U {[:]“l} where Di denotes an ith
dimensional cube in the triangulation Tllss = r2iss-l . So, the obstructions may
be viewed as the obstacles to making f compatible with the fitting in of the

cubes according to the triangulations T and T, - We shall discuss the
obstruction to extending fiéi to ?i U {[:}s—l} with a little detail but only
sketch briefly the obstruction to extending f'éi U {[:]S—l} U oees {[:]Z+l} to
fl&i U {[:]s"l} U...ooU {[J*% . We shall publish a detailed proof with further

results in this direction on a future occasion.

Let Ds_l be a cube of the top dimension of the triangulation

'r1|ss—l = r2|ss_l . Let us first identify [:Is_l with the standard cube

ILx ... x I in B with I, = [-1, 1] (i=l,...,s-1) . Denote the variable
4

: . . 1

in Ii by ti . Let us consider the hyperplanes defined by ti =t Z -2-3- and
i=1

1

- -1 .
ti =0 of Rs . These hyperplanes together cut Int Ds into a lattice.

(See Figure 3 for s-1 = 2).

Figure 3
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We next identify the induced lattice structure of Int [:]s—l with the gtandard
%

lattice structure of RS‘l by making to hyperplane defined by ti = Z JL
j=1 27
correspondi to th e e
ponding to the standard hyperplane (tl. 'ti—l'g’ti+l' 'ts—l) and the
hyperplane ti =0 to itself. Let Nl ’ N2 be spindle neighborhoods of [js_l
with respect to the triangulations Tl ' T2 respectively. There are natural
projections
s~1
oy oy —— 1%
(28)
s=-1
P, t N, > L1
gotten from T, , T respectively. ILet us call the inverse images of the hyper-

1 2

planes in [:ls-l hyperplanes in Nl , N2 and dencte the inverse image of the
hyperplane corresponding to ti =2 (i=1l,...,s-1) of Rs—l by

Pt

1 l+l,..;,ts_l) respectively.

N L 22

garrcrrteny) o NolE et

L . s-2 1
Nj(tl,...,ti_l,i,ti+l,....ts_l) {(3=1,2} are PL homeomorphic to (M? x R } x R

{3=1,2) where M‘;(j=1,z) denotes the link of [ 5% in T (3=1,2) respectively,
and the positive direction of R1 corresponds to the compactification of /ﬁy

by [:]s—l . See Figure 4 for s-1 = 1).

M W,

A
/ i’ \ "/T AN

ot ot

Figure 4

R . . -1
We can also give sequences of hyperplanes in Nj (j=1,2) parallel to [:IS

corresponding to (M? x Rs-2) x % for L e 2 C Rl . See Figure 5 for s-1 = 1)
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N 14=)2)

'
\\%‘ gu[p%‘..};‘ane Conusr@nc’jv;«j +o
(?1; X,RA‘a) X
2

-
% —

]

O

Figure 5

Using these hyperplanes, we have sequences of spindle neighborhoods with respect to

T, {i=1,2)
i

(29)

such that N?lib N for <k, U Ni =N, and N N;.J.= 57t G=1,2)

* I=1 =4

Using the fact that f|fi is e-isotopic to a PL homeomorphism, we may assume

that
9:9} f‘ﬂf is PL (with respect to the induced infinite triangulations
Tlif? and lef% Yo
i i i+l i+l
caeses f N PN
{30) (B) NZ e (Nl) < N2 c £( 1 } <
. L T RPEY LN UPPREPPL Y
C £ (6 enent, o 8mloty paeenst )
Conyleaennty ooty et ) C QY (B pnnty (08,
tyagreeetey) Connn

for -» < g < @

Let us now consider the opposite sides of [:Is_l as pairs of ideal points

e(tl,...,ti_l,hw,ti+l,...,ts_l) and e(tl,...,—w,...,t ) . There are {s~1)

R X 1
such pairs. There is also a pair €0 € corresponding to the direction R of
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the compactification by [:]s-l and the sequence of embeddings of (30,B).

Let us now apply the operation of "gluing" to these pairs of ideal points
[19]1{5]. We see that Ng (i=1,2) are glued together to give us manifolds PL
homeomorphic to (MT x Ts—2) X (j,*) (i=1,2 and 3=1,2,..... ) . By (30,B),
f induces PL embeddings

e CMY T ey C e x 1T K (5e)

(31) C Mg x Ts_l x (+1,) C f(MT x Ts_l X (J+1,=))
C ...
for j=1,2,..., and the embeddings are proper in the direction toward « . So we
have an h-cobordism
(32) W, Ml x 5 & (j+%0, £0r) x 571« (j+1+%») for 3=1,2....

The hyperplanes of (30,C) are glued together to become codimension 1 subtori of

M x TS_l x (j+%0 and of f(MT x TS—l x (j+l+%0) . Their intersections give us
. Lo m s-1 P m , 1
nests of codim 1 subtori in M2 x T x (3+§0 and f(Ml X (3+1+3# respectively.

When we take a finite cover of Wj corresponding to a normal subgroup of nle

which contains ﬂlMg = nl(f(MT)) , the nests of subtori 1lift to nests of subtori
in the covering It is not all that difficult to see that the PL homeomorphism
f|&{ may be isotopically extended to a PL homeomorp hism to ﬂ? U £:]s—l if

and only if there is a finite cover of the above such that the lifted h-cobordism

becomes an s-cobordism.

Let us now recall the fundamental decomposition formula of [1,Chap.XII] .

set zm M"

1 =R ., We have
-1 -1
KB [t, £ ... R Ty
s-1 s-1
= KA +7 tK B 4ot T £y eeeety KB
i=1 LR 1 £
(33) il+i2+?.+i2
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+ ... +EE ...

1520t Kgpp B

mod Nil groups

where ti PN ti means 'applying the projection operator L of [l] in the
1 2

directions ti ,...,ti successively' . If we consider W‘hl as a quotient
1 2
group Kl , we have a decomposition formula corresponding to (33). But we shall

abuse our language for simplicity and consider Kl as Whl . Let us observe

-1
't

-1
that T(Wj) € Kl& [ R 2 a1l

10t o1 ] are all egual for 3j=1,2,.. . Denote it by

T(W), and decompose into the components

s-1

s-1
a' +) tal+ ...+ ) t, ee..t, a
i=1 11 i i ll lR, ll.. 12
1700707
i4i 4. ¥,
(34) 1'72 i,
-s+2
P SN
+ b toy

according to (33). For different cubes of the top dimension, we take disjoint
spindle neighborhoods and apply our procedure separately. The obstructions to
extending to these different cubes are not independent, but actually satisfy a

'cycle condition'.

Now, suppose that we have extended our PL homeomorphism to

(35) ﬁ Ut vt O

Let [:]E be an 2-dim cube in SS_l . We can find relative spindle neighbor-

hoods of [:12 with respect to T T, and apply a relative version of the

above construction. Then we may use a decomposition formula

-1 -1
KA [tl,tl Feved tl,tnj
2
= + ocieesas + t. ....t, K P2
(36) KA+ ] ot KA 1 g Koge1
i=1
mod Nil groups
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of [1, Chap.XII] again such that the total obstruction to extending f to
-1 o+ L

(37) Ko @M v .. v T v O

isotopically is an element

(38) a' 4] a0 F eeeeeinns FE .. t
11

corresponding to (37). For different £-dim cubes, the obstruction is again

related by a 'cycle condition'. Let us summarize it into the following theorem.

Theorem 3.1 Let Tl , 12 be two (admissible)triangulations of X and let

£f: X > X be a homeomorphism of X onto itself such that f|ﬂi7 is a properly
isotopic isomorphism of Tl\é{ to 12|fe . Suppose that f extends to an
- +
isotopic isomorphism from Tl|&< U ([]°® o v {[:]2 1) to
s-1 2+1 2 : s-1
T2|§< VAT Y v u {7 Let [J" be an &-dim cube of s .

Then, the obstruction to extending f to an isotopic isomorphism to

ﬁu Y v v O v Ot

is an element of the form of (38) in the decomposition (37). (Moreover, the

obstructions to extending to different %-dim cubes satisfy a 'cycle condition').

Following from [6], we have the following corollary.

Corollary 3.2 Suppose that nle is a torsion-free solvable group. Let

T, + T be two {admissible) triangulations of X , and let £ : X

1 2 > be a

homeomorphism. Then, the only obstruction to making of f isctopically isomorphic

lies in H3(0{;Z2)
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Footnotes

- +_ A
(1) For n=1, we actually have Nillm = NilIH\ ® Nillm with Nillm = Nillm

See [1] [6] for details. Cf. Theorem 2.1l.

(2) I am grateful to R. Sharpe for many useful discussions about this part of

the paper.

(3) We are grateful to R. Edwards for many useful discussions about this part of

the paper.
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Pseudo-Isotopy and K2

Allen E. Hatcher

This paper is a brief expository account of an application of the
functor K2 to a problem in differential topology, the so-called pseudo-
isotopy problem. TIn fact, with a little hindsight one can see that the
geometric problem completely determines Kg. Attempting to turn hindsight to
foresight, I propose at the end of the paper a definition of higher Kn's
which may be sultable for higher-order pseudo-isotopy problems.

Qur starting point is the h-cobordism theorem for smooth manifolds.
Recall that an h-cobordism is a {connected) compact manifold W whose boundary
is the disjoint union of two closed manifolds M and M' such that each in-
clusion M €W and M' « W is a homotopy equivalence. Thus W looks homo-
topically like the product of M or M’ with the closed interval I = [0,1].
Recall also the definition of the Whitehead group Whl(nlM) as KlZ[KlM]

modulo 1X 1 matrices (o) for o ¢ + m,M cX& [Ith].

1

h-Cobordism Theorem. Provided the dimension of W is at least six, W is

diffeomorphic to M X I if and only if an obstruction T(W,M) ¢ Whl(ﬁlM}

venishes. Moreover, for a given M of dimension at least five each

T € Whl(nlM) is realized as the obstruction T(W,M) for some h-cobordism W.
Having settled the existence question for product structures on W, one

i3

asks sbout uniqueness: If F W —> M X I sre two diffeocmorphisms, can

¥t
Fl be isotoped (i.e., connected by a path of such diffeocmorphisms) to FZ?

Since we are not interested in the internal structure of M we may as well assume
F)[M = B [M. Then FeF;" belongs to (M) = {diffeomorphisms F: MX T —> M X T
such that F[M X {0} = identity)}, the topological group of "pseudo-isotopies”

on M, and the uniqueness problem becomes to compute nO#D(M).

Pseudo-Isotopy Theorem. There is a homomorphism

B‘ZOP(M} — > Wn, (1 M) © Wh (W7, X M)
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which is surjective if dim M > 5 and injective if dim M > 7.

To define Wh2<1t) for a group m we use the definition of KZZ[rt] as the
kernel of the natural map @:St{(Z [x])} —> GL{Z[x]) which takes the Steinberg
generator X; j to the elementary matrix e?.j for @ ¢ Zln] and 1 £ 3. In

st(Z=]) let Wx be the subgroup generated by the words
-1

6 _ 0 -0 O

Wiy T KggX gq KypO et e

Definition. Why(n) = Kz%[n]/Ke% [7] N wx.

If n is abelian, so that Milnor's symbol pairing is defined, then KQ%[K] N Wn
is just the subgroup of K % [n] generated by the symbols {o,1} for

g,T € i 1Y

Here is & list of computations of Wh2 groups :

WhEﬂ
0 Milnor [M1]
free o] Gersten [Ge]
free gbelian 0 Quilien [@]
G R Z WhG 6 Wh,G & (7) Wagoner [Wi]
finite finite Garland[Ga), Dennis [D]
Zyg, at least 5 elements Milnor [M2]

Recent work of Dennis and Stein should produce more examples like the last
one.

Although the rest of this paper will be about the th invariant, for
completeness we will now give the definition of Whl(:th;Zg X 1:2M). Let

the group % act on the abelian group I', denoted 8’ for a ¢l and 0 ¢ n.

x . M with the usual action of

In the case at hand n = sth and I = 22 >

T, on A, and the trivial action on222 , the integers mod 2. Giving I' trivial
multiplication, form the group ring T{n]. This is an ideal in the twisted

product I'[x] X % [n], with the twisting given by o(at) = 2%,

Proposition. Kl(I’[n] X % [#],T{x]) = P[=]/(ac - aTrcT'l).
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3.

Definition-Corollary. Whl(n;l") NF[K]/(SO-BTTGT-l,b‘l). Here (X,y,+«+)

denotes the additive subgroup generated by the elements x,y, .-
0ddly enough, the ideal I'[x] is of the sort concocted by Swan [S] to
show the failure of excision for the relative Kl functor. Thus

K, (Fx] XZ[1],0[x]) ~ [x] may not equal K,(I[x] X Z&[x],T[x]).

Remarks. The pseudo-isotopy theorem was proved first when M is simply-connected
by Cerf [C], who showed in fact that KOP(M) =0 if dim M > 5 and

zth = 0. The W’h2 obstruction was discovered independently by J. B. Wagoner

[W2] and myself [HL], after which I went on to compute the second obstruction.
A write-up of the whole theorem will appear in [H-W] and [H2]. For an ex-

position of matters relating to the second obstruction, see [H3].

Defining the Wh2 Invariant

An h-cobordism W is a product M X I if and only if there exists a smooth
map (W,M,M') — (I,0,1) having no critical points. This functional approach
carries over to the pseudo-isotopy theorem. Let g= {smooth maps
(M x I,M x {0}, X {1}) —> (I,0,1)} and let& c G be the subspace of maps
with no critical points. It is not hard to see that
ﬂk_lp(M) ~ ﬂk-lé = nk(gjg) for k > 1. Thus, computing the homotopy groups
of ‘p(M) is parametrized h-cobordism theory.

The main technique for computing nk(g,/g), as in so many other places
in geometric topology, is "transversality" or "general position". One
approximates a given problem by a "generic" problem, reads off some algebraic
data from this generic problem, and then factors the data by the generic
changes which result from passing from one generic approximation to another.
(For example, an early application of this method was the identification of
the stable homotopy groups of spheres with framed cobordism.)

A single function £ : W —> T is generic if and only if it is a morse
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L.
function, i.e., has only nondegenerate critical points. With the aid of a
"gradient-like vector field" for f, the algebraic data one gets from T is a
certain exact chain complex over Zin],n = W o= M, which is free with a
{finite) basis in one-to-one correspondence with the critical points of f.
Moreover, after some preliminary geometric modification of f we can assume
that this based exact chain complex is non-zero only in two dimensions 1 and
i+ 1, and hence can be identified with en invertible matrix A over Z{x].

To get an invariant of W we must consider a different choice of f.

This can always be connected to f by a generic path f,, O 5 t S 1, which
also involves only the two dimensions i and i + 1, and so that the associated
matrix A changes only in the following three ways:
(1) Left (right) multiplication by an elementary matrix egk, U et W,
corresponding to a "handle addition™, i.e., an isolated trajectory of the
gradient-like vector field connecting two critical points of dimension i

(respectively, i+l).

A0
o1

of a complementary pair of nondegenerate critical points of dimension i and

{2) Stebilizing the standsrd way A —> ( ) , corresponding to the "birth"
i+ 1.
(3) Destabilizing in a non-standard way by cancelling a row and column of A
which consist of zeros except for an entry o ¢ + n where the row and column
meet. This corresponds to the "death" of a critical point pair.

A convenient way of visualizing & one-parameter family is by its graphic,
which is the set

{(t,ft(xb[x is a critical point of ft}'
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For example:

141 < Dbirth

t . > death

t handle addition

L 4

In view of (1) and (2) we should first consider A as lying in
Kl%[n]. Then to account for (3) we should factor out further by matrices
in PD = {(permutation) X (diagonal with entries in + n)} @ GL(Z[x]). The
resulting quotient of Kl%[ﬁ] is Just Whl(ﬂ), according to (a) of the following

easy lemma.

Lemma. (2) PDx = (W) X (4m), where (i) denotes the set of 1 X 1 matrices

(o) for o ¢ + x.
(p) o(wn) = PDx NE(Z[x]).
Thus the class of A in Whl(ﬁ) is an invariant of the h-cobordism W.
This is usually proved by identifying this class with the Whitehead torsion
of the pair (W,M), which is an invariant of the underlying cell structure of
W. However, with the present approach we are all set to define the Wh2
invariant.

If the generic path f, : M X I —= T has £ and fl without critical

t 0

points, then the product I of the elementary matrices in (1) sbove, taken

in order as t goes from O to 1, is a matrix in PD=x. (We can imagine =11 the
stabilizations in (2) as occurring first, before the type (1) changes, and

all the destabilizations in (3) as occurring last.) Part (b) of the preceding

lemma implies that such representations of metrices in PDx as products of

elementeary matrices, modulo the Steinberg relations and multiplication by
-1
o -0 0O
products ejkekj ejk for o € + «, form the group Whe(ﬁ)- The element of

th(ﬂ) determined by the product I is by definition the Wh2 invariant of ft'
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To show that this association gives rise to a well-defined map
nl(é;jé;) — Whg(ﬂ) we look at a generic deformation of f, through a
second parsmeter. Again we can do preliminary geometric work permitting
us to restrict to critical points of dimension i and i+l throughout the
two-parameter femily, so it suffices to examine the possible changes
in the product . These are of two types.

(I) The Steinberg relations within . These correspond to cancelling or

introducing a pair of consecutive handle additions (the relation

e?#eii = 1, which for an integral group ring is the only interesting case
of the relation e?ke?k = e?ib) snd permuting two consecutive handle additions

(the relation for a commutator {e?k,e:m] when k # for §j #m). Actually
there is another kind of relation coming from an exchange of i/i handle
sdditions for i+l/i+l hsndle additions. To state this for an arbitrary

b
. . . B 1n _
ring R with identity, let (ajk) = E e. o € E(R) have an entry a, =0

nn
and let % ¢ R.

Lemma (Exchange Relation). The relation

n Xaﬁk

s

a, X b b
Tn®n kfm

I e.%m il erns - Qe
ifed n ‘mn n
is a consequence of the Steinberg relations.
This is a rather interesting relation. Teking (ajk) = I, for example,

it shows that KE(R) is the center of St(R). Also, the Steinberg commutator

relations are special cases of the exchange relation.

(II) Multiplying I by en element of ¢(Wr). This corresponds directly to

changes in the graphic of ft of the following sort:

— e ———— or ==

i
and somewhat less directly to a change:

T e T <

—-—”/_\



The geometric changes in (I) and (II) are the only changes in the
one-parameter family ft which affect I in any significant way. So we

have in fact a well-defined map nl(éZ:é;) S Whg(n).

Higher Kn’s and More Parameters

O " 1" "t 1 Y
In the preceding, K1 appears as nOGL and K2 as anL. There is an
easy way to make this precise which works for any ring R with identity.
Consider the cover [apr'l] of GL(R) by cosets apr-l where
® ¢ GL(R), T is the subgroup of (upper) triangular matrices having ones on
the diagonal, and p ranges over the permutstion matrices in GL(R).
Define a simplicial structure ai(R) on GL(R) by saying that an n-simplex
of Ei(R) is a set of n+l elements of GL(R) lying in one of the cosets
apTp™l. Tt is not hard to see that x 3L(R) ~ KR and 7.00L(R) ~ K.R.
0 St 1 KR

Tentatively then we make the following:
PO ST N
Definition. KR = nn_lGL(R) for n > 1.

I. A. Volodin [V] has also given a definition of algebraic K-theory
which seems to be equivalent to this definition But the real precedence
belongs to Cerf who in [C] considered a space homotopy equivalent to
31(Z) (the nerve of the cover {apr-l}, in fact), although he did not call
ite homotopy groups the K-theory of % . TFor more on this K-theory see the
paper of Wagoner in these proceedings.

The definition of @f(R) is based on the behavior of k-parameter families
of Morse functions f:M X I —> I (with gradient-like vector fields) for
which "all the action is restricted to critical points of a single dimension
i," for example by the requirement that f(x) equal a constant ey for each
critical point X of dimension j # i. I would consider the definition of K8

above less tentative if dropping this "single dimension" restriction lead
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to a space  homotopy equivalent to ai(R). One would also like to drop
the requirement that f have only nondegenerate critical points, since this
is what must be done to compute nk(é;:a?). This should correspond to

passing from K Z[n] to the as yet undefined groups "Wh,(x)."
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SUSPENSION, AUTOMORPHISMS, AND DIVISION ALGEBRAS

B. Harris and J. Stasheff

Brown University, Temple University
and
The Institute for Advanced Study

The Bott suspension map Wi(GL(C)/GL(R)) hd Wi+l(GL(H)/GL(C))
and in fact all the suspension isomorphisms leading to the periocdicity
of order 8 in real K~theory can be obtained from the following data:
let RCSCT be rings, ¢ an automorphism of § which is the
identity on R and is inner in T: i.e., oO(s) = jsj_l for all
s € 8, where j is an element of T in the centralizer of R, The
Bott maps use Clifford algebras for R, S, T: for example R C ¢ C H,
o(z) =z = jzj t

For general R, S8, T, 0 one would like to define homomorphisms
E: Ki(S,R) - Ki+l(T’S)’ where Ki(S,R) for instance is the (i~1)
homotopy group of the fibre of the map BGL(R)+ e BGL(S)+ so that

these groups fit into a long exact sequence:
> K, (R) * K,(8) > K, (S R}é-> K, ,{(R}.
i i it i-1

We will give a somewhat weaker construction, namely homomorphisms

L,q, giving a commutative diagram

- Ki(R) - Ki(S) e Ki(S,R)

VI VI A
Ki+l(T) ” Ki+l(T’s)—~> Ki(s)

such that 8L = 0, - 1 (0 the given automorphism). In the first

part of this paper we construct I and give some examples of its non-

triviality. 1In the second part, which is only rather loosely related
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to the first, we make some computations involving K2 where R 1is a
local field, T a central division algebra over R and § a splitt-

ing field.

I. Construction of g, and I.

For any ring R the space BGL(R)+ may be defined as
2B ( g BGLn(R)), where nge BGLn(R) is a (topological) monoid under
the "Whitney sum" operation induced by the inclusions GLm(R)

x GLn(R) - GLm+n(R)’ and B( )} denotes classifying space, I denotes
loop space. The groups Ki(R) are defined to be ﬂi(BGL(R)+) for

i > 0. To define a map of BGL(R)+ it suffices to define a monoid
homomorphism of g BGLn(R) (with respect to the Whitney sum opera-
tion). We may also consider BGLn(R) as the classifying space of a
category (the group GLn(R)), as in [3].

Dencte by i the inclusion GLn(S) > GLn(T), o the auto-
morphism of GLn(S) induced by that of S, and J conjugation by
jIn in GLn(T). We have a commutative diagram

6L, (S) —— GL_(T)

J
GLn(T)

ieg
which may be regarded as exhibiting jIn as a natural transformation
between the functors i and ic from GLn(S) to GLn(T). It is
clear that these functors and transformations preserve Whitney sum.
According to [3] we thus have an induced homotopy ht: BGLn(S)
- BGLn(T) which at t =0 and t =1 1lies in BGLn(S). Because of
the proper behavior for Whitney sums we also have a homotopy
hy: BGL(S)" » BGL(T)¥, which has image in BGL(5) at t = 0,1; in

+ I R S

+ .
fact ho = i and hz = i o0 (i ,0 induced by 1,0 on BGL(S)+).

o+ ~

Furthermore, the restrictions of h ,h; to BGL(R)+ are just the
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map BGL(R)+ > BGL(T)+ induced by the inclusion R + T. However, we

+
have not shown that the homotopy is constant on BGL(R) . We may

form the space BGL(T)+/BGL(S)+ which fits into the fibration
sequence
+ it + + +
BGL({8) ——= BGL(T) -— BGL(T) /BGL(S) — B(II BGL (8))

n
— B(xg BGLn(T)).

The homotopy h: may be multiplied by the map Xx & i+(x)-l, as
BGL(T)+ is an H~-space: thus let ¢t: BGL(S)+ > BGL(T)+
1

b () = hf__(x)i*(x)'

then ¢0 is a map into the base point and ¢l(x) is the map

1 1

x = ot (x)x 1 i+(o+(x))i+(x)- . ¢, gives us a map 7: Ben(syt

- Q(BGL(T)+/BGL(S)+) which composed with the natural map

aBeL(T) t/BeL(s) ") + BoL(s)t

1

is the map previously used by E. Cartan and §. Lang x c+(x)x_ of

BGL(S)+ into itself. ¢ restricted to the image of BGL(R)+ de=-

t

fines a map ¢ of this space into BGL(T)+. The map X b cf"(x)x"1

of BGL(S)+ into itself takes the image of BGL(R)+ into a point and

further factors through a map q: BGL(S)+/BGL(R)+ > BGL(S)+. {g may

be described also by saying that a point in BGL(S)+/BGL(R)+ is a

path « in B(g BGLn(S)} from the base point to a point in

B(g BGLn(R)) if this latter is regarded as a subspace. Then gq(w)

is the closed path consisting of o{w) followed by the inverse of ).
We now have the needed maps I,q, if we let I on Ki(S) be

defined by ¢, and on K;(R) by ¢.
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As the first example consider finite fields Eq CF r with
Frobenius automorphism ¢ on o o(x) = x%. Let R = Fq C s

=F r CT=F r-G: here G is the group generated by ¢, and F r'G

q q g
is the "twisted group algebra" {I x.9| x ¢ F ¢t 9 € G} with multi-
q
plication defined by gx = g(x)-:g. F G is a "trivial crossed
q

product” and is isomorphic to the ring Mr(Fq) of r x r matrices

over Fq. The homomorphism i,: K_(F r) > K, {(F. _-G) may be identified

*° r
g
with the corestriction or transfer u*: K, (F ) » Ky (F,), where
q
u: Fq - B r is the inclusion. The results of Quillen [2] on the
q

groups K*(Fq) show that we have exact rows in the diagram:

Us

0 - K2n~l(Fq) _—~)K2n-l(F r) - KZn--l(iF r’Fq) — 0
g q
iE Iz iq* *
u
0 KZn(th,u?qr) R KZH_ILqu) s Kzn_l([Fq) ~ 0

Further, from Quillen's computation of the groups and the effect of
04+ we deduce that I is surjective and its kernel is Imu,. I

thus induces an isomorphism E: K (F r,Fq) - Kzn(Fq,F

g q

2n-1 ) as

r
discussed in the introduction.

As another example (discussed in more detail in the second part
of this paper), let R = F, a local field with residue field Fq and
P a prime distinct from the characteristic of Fq such that p
does not divide g - 1. Let r be a positive integer such that P
divides qr - 1, and let E be the unramified extension of F of

degree r. E is cyclic Galois over F with generating automorphism

¢ that induces o(x) = x9 on F v’ the residue field of E.
4

Finally, let 8 = E, T = a central division algebra of degree r2

over F. The groups KzF, K2E are the direct sum of a divisible
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subgroup and the group of roots of unity up(F), respectively u(E).

Now consider the p-primary subgroup u(E)(p) which is a direct
summand of K2E. The map o, - 1 on KZE induces the automorphism
g-1

X =+ X on u(E)(p) {since (p,g-1) = 1.} The factorization

Op = 1 = 3I:

KZ(F) — KZ(E) — KZ(E,F) — 0

AN

lz 0.1 lq*

3
Ky (D,E) —— K, (E)

shows that I maps Wu(E) isomorphically onto a direct summand of

(p)
K5 (D,E).

II. K2 of local division algebras.

Let F Dbe a local field, namely the completion of a global field

with respect to a discrete valuation., Let D be a finite dimensional
division algebra over F with center F - in short a central division
algebra over F (see [4]). It is natural to compare K2(D) and

Kz(F). We prove:

Theorem. K2D has a direct summand isomorphic to KZF, under the

following additional assumption: if F has characteristic 0 and

residual characteristic p and if p divides [D: F] = n2 say

n = pmn', (p/n') =1 then we assume F contains the (pm)th roots of

th

unity and also that if p = 2, F contains the 4 roots of unity.

Proof. We will make considerable use of the transfer (or corestrict-
ion) homomorphism. Let u: F » D be the inclusion, and wu, the

corresponding homomorphism on K The inclusion wv: D - HomF(D,D}

2°
%

=M 2(F) induces u’: K,D > K,F. The composite
n
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u v: D > Hom,(D,D) > Hom (D ® D, D® D) =M ,(D) induces u,u*. The
D F F n2
inclusion D - M 2(D) is by means of the left action of D on the
n

right D-module D % D; however, every 2-sided D module (or D ® p°
2
module) is a direct sum of copies of D, so that D ? D = p° as

D® Do-module, and so D - M _(D) is equivalent to the diagonal

rl2
inclusion. Consequently, u,u* on K,D is multiplication by
n? = [D: F1. Similarly u*u, on K,F is multiplication by n2.
It is known that X,F = (divisible group) & u(F),

u(F) = group of roots of unity in F (a finite abelian group). Con-
sideration of wu,,u* shows easily that the maximal divisible

subgroups of K,F, K.D are isomorphic and KZD/(Max. div.) 1is a

2 2
torsion group which differs from KZF/(Max. div.) at most for the

primes dividing n.

Next, we consider the class of D in the Brauer group of F:

m m
this is an element of order n. If n = pll een prr then D= ® D,,

°, Ui
2m, i=1

Di central division algebras over F of degrees Py 1, For each i,
D=pD, ® Di, Di a central division algebra of degree (n:!L)2
relatively prime to p;- Let w;: Do~ D be the inclusion. We

i * * inlica-
claim WiWi;x on K,(D.,) and W, Wi on K, (D) are both multiplica

tion by (ni)2 which is prime to Pyt in fact wi*w; is given by

the inclusions D ~* HomD (b,D) HomD(D 38 D, D 68 D). The 2-sided D
i i i

A
module D 6& D=D ? D' is the direct sum of [D': F] copies of D,
i

which proves the statement about wi*w;, and the statement about
wgwi* is proved in a similar way.

Finally, let E be a Galois extension field of F of degree n,
i: F > E the inclusion. Then i%*i, is multiplication by n on

K,F, but i,i* on K,E is I 0,, G being the Galois group of E

gEQG
over F: this follows from the fact that E % E~> ®E (G copies

of E) givenby x ® y + (...,0(x)y,...) 1is an isomorphism of
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2~-gided E-modules, and the corresponding map of E into

HomE(E % E, E % E) = Mn(E) is equivalent to x +— diagonal matrix
{eeero{x),...). Suppose now that FCECD and E is a maximal
subfield of D; let j: E » D be the inclusion. Then the composite
inclusion E » D > Hom,(D,D) = M (E} is the same as the one just
considered above, since D is isomorphic to E % E as 2~sided

E-module. We thus have a commutative diagram (where N denotes

E/F
}: 0*):
oEG

We can now proceed to the proof of the theorem. We start by
considering p~primary components of the groups KZ/(Max. div.}), which
we will abbreviate as Kz( )/Div., where p 1is the residue
characteristic and P has characteristic 0. By using the transfer
to a division algebra factor, we may assume n = pm. The isomorphism
K2F/Div. + u(F) is given by the norm residue symbol. If E is a
Galois extension of F, we will need the fact that the following
diagram commutes if i denotes the inclusion F - E, and the vertical

map is the norm residue symbol:

L

E/F

uE ————--——>uE

We will assume this (presumably well-known fact) without proof. 1In

fact, although we do not need it, the following diagram commutes:
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2
} } }
g Veltel, HE : "E
\ Ny /

here {uE/uF{ is multiplication by the order of this group, this map
together with NE/F determining ¢.

We are assuming that the p-part of u is cyclic of order ph,

F
h >m, [D: F] = p2m' and h > 2 if p = 2. Let E be obtained from

F by adjoining the ph+m roots of unity. It is easy to show that E

is a cyclic Kummer extension of F of degree pm, and the p-part of

m+h . pm
uw{(E) has order p ; if ®w generates it so that w = [ generates

the p-part of u(F)} then the Galois group of E over F has generator,
h-m

s, s(w) = wzP .  Further NE/F(w) =¢ if p 1is odd, -z if p = 2.

Thus on the p-parts, NE/F:(HE}(p) - (UE)(p) has image (uF)(p) and
h h-m -1

kernel generated by wp = Cp = s{w)w ~, thus the kernel of NE/F

is the image of s, - 1 on KZE/(diV.). Consider now the following

commutative diagram, in which the rows are exact sequences of the

pairs (E,F), (D,E):

KZ(E) _— KZ(E'F) — 0

3 3
Ky (D,E) —— K,E — K,D
1*1 NE/F 13*
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We have j,(s,~l1) = 0 since s 1is induced by an inner automorphism
of D. It follows that 3, maps the cokernel of s, - 1 (or of q,)
isomorphically into KZD (considering p-primary parts of the groups
K2/(Div.)) and 3j* maps this subgroup isomorphically onto u(F)(p).
This gives the desired direct summand in KZ(D).

The remaining case, that of p-primary components where p is
distinct from the residue field characteristic, can be done in a
similar way but without any assumption on roots of unity. We choose

2

E to be the unramified extension of F of degree n, [D: F] = n"., 1If

the residue fields of F,E are Fq,F n and ¢, are generators of
q

n-1
/ z, the Frobenius automorphism is

F.,F’  such that w4 a-1 _

T g
s(w) = w% and N(@) = r. The rest of the proof is the same as in the
previous case, completing the proof of the theorem.

Note that the assumption on roots of unity only was used for
p-primary components if <char. F = 0, residue characteristic = p and
p divides [D: F].

The theorem is also valid with D,F replaced by their maximal
orders 6%, &., since K, ( 6}) is the direct summand of K, (F)
which is the kernel of the tame symbol, according to a theorem of
Dennis and Stein. In other words, K2( 6%) = (Divisible group)
® (U(F))(p) where p 1is the residue characteristic. The proof can
now be extracted from the preceding calculations.

It should be noted that the direct summand of KZ(D) isomorphic
to KZ(F) is not necessarily the image of wu,: K,F > K,D: in fact

2 2
this homomorphism can be zero modulo divisible subgroups.
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The Milnor ring of a global field

H. Bass and J. Tate

Introduction
The Milnor ring K_F =_1J_ KnF of a field F was introduced
(but not so christened) by MZ%gor in {8}. He showed there how
a discrete valuvation v on F with residue class field k(v)
gives rise to a homomorphism aV: K, F » K*k(v) of degree ~1 of
graded abelian groups. The basic result proved here is that if
F is a global field then the kernel of
K _F k=(a")_U_x X (v)
n T 7 - n-1 ’
where v ranges over all finite places of F, is a finitely
generated abelian group.
This “finiteness theorem” leads to a determination of
KnF for n > 3, viz. KnF = (Z/ZZ)rl, where ry is the number of
real places of F. The main step in proving this is the deter-
mination of Kn/pF = KnF/pKnF for all primes p and all n > 2.
If p # char(F} and if F contains the group B of pth roots
of unity then K2/pF is known from results of Tate [14]. From

this information one can compute Kn/pF for n > 3 by the argument

reproduced for p = 2 in Milnor [8]. The cases when up & F
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and when p = char (F) are then handled easily with the aid of
so called "transfer maps," N: K.E > K, F defined for finite field
extensions E/F. These have so far been defined only for Kn
with n € 2. Such transfer maps, with the properties necessary
for the above arguments, are constructed here for all n > 0.
Concerning the finitely generated group Ker(KzF 3 1_LK1k(vD,
the transfer arguments show that it is finite of order pere
to p if char(F) = p > 0. 1Indeed its structure has been
completely determined in this case by Tate (see [2] and [14]).
When F is a number field its finiteness follows from results
of Garland [5] and Dennis [4], and conjectures on its structure
and order have been formulated by Birch and Tate {cf. [13]
and [14]). These have been partially confirmed in special cases
by Coates {3], and spectacularly generalized by Lichtenbaum [7].
This paper consists of two chapters, the second one being
devoted to the finiteness theorem and its applications described
above. The finiteness theorem for K2 was among the results
announced in {1} and [13].
Chapter I contains some general remarks, partly of an
expository nature, on the Milnor ring of a general field. Much
of this is a review and retreatment of material in Milnor [8],

in particular the construction of the maps av. In 85 we use
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Milnor's description of K,k{(t) (a rational function field)

to construct the transfer maps. Some typical applications of

them are derived. 1In an appendix by the second named author,

Ker (A} is computed for the imaginary quadratic fields of

discriminants -3, -4, -7, -8, =11, and -15.
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Chapter 1
Some general remarks on the Milnor ring

81, Definition and first properties of K.F {cE. [8]).

Let F Dbe a field, and F° its multiplicative group.

In the tensor algebra T(F*) = il Tn(F') of the Z-module
n>0

P’ we denote the isomorphism F° > Tl(F') by ap> [a]. If

a # 0,1 then r, = [a}] » [1 - 2] € Tz(F'). The two sided ideal

R generated by such elements T, is graded, and we put

KF=T(F)/R=]] KF.

n>»0

The image of [a] € Tl(F') in KlF will be denoted 4(a)}. Thus

K,F is presented, as a ring, by generators L{a) (a € F') subject

to the relations:
(Rl) L(@ab) = g(a) + £(b)

(Rz) L(a)g(b) =0 if a+ b =1,

The identity -a = (1 - a)/(1 - a~}) implies that
(1) r,+r,.1= [a] & [-a]
for a # 0,1, whence

(R3) 4(a)s(~a) = 0O

for a € F', or, equivalently,
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(R} 2(@)? = g(a)s(-1)

The formula

(2) [ab] @ [-ab] = ([a]l=[-a) + [blel-b]) + ([a]=[b} + [b]e[al)

then further implies that

(R4) L(a)£(b) = -2(b)Yi(a).

Since KlF generates the graded ring K, F it follows ([8], Lemma

1.1) from (R4} that

(R&}K*F is anticommutative.

Further ([{8], Lemma 1.3) we have

(RS) z(al)...z(an) =0 if al+...+ a = loro

This is established by induction on n, the case n = 2 being

(Rz) and (R3).

(1.1) Remark. Suppose d: F° > A is a homomorphism into
the additive group of a ring A, and we wish to show that d
induces a homomorphism K., F ~» A (£(a) ¥ d(a)). We must verify
(Rz) for d, i.e. d{a)d(1l-a) = 0 for a # 0,1. If we know (R3)
for d then, by (1), we see that we are free to replace a by

a in verifying (Rz), and also to replace a by 1 - a, in
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view o

by (2)

have R

£ (R,).
Further, if we have (R4), then to verify (R3) it suffices,
, to do so when a ranges over a set of generators of F°.

Since R is generated by elements r, of degree 2, we

2

= 'I Rn with Rn = T PR Tq, where we write TF
n> p+g=n-2

for T°(F’). It follows that

T —> KyZ and 4: P —— K,F

are isomorphisms, and that, for n > 2, KnF is presented, as
abelian group, by generators z(al)...z(an) (al,...,an € F")

subject to the relations:

(Rl)n (al,...,an) > z(al)...z(an) is

a multilinear function
F'X...X F' —> K F:
and

(R z(al)...z(an) =0 if a; + a =1

2)n 141

for some i < n.

Thus the homomorphisms from KnF to a {multiplicative)
abelian group € are equivalent to multilinear functions
f: F'x...X F' » C of n variables on F' such that
f(al,...,an) = 1 if ai + ai = 1 for some i <« n. Such a

+1
function f will be called a (C-valued) n-symbol on F.
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The relations in K F derived above imply that f is anti-
symmetric and that f(al,...,an) =1 if ai+...+ aj = 1 or 0 for

some 1 < i< j<n,

(1.2) PROPOSITION. Let m be an integer > 1. Assume

that each polyvnomial o - a (a € F) splits into linear factors

in F(X); thus F" is divisible by m. Then KnF is uniquely

divisible by m for n > 2.

Consider the exact commutative diagram

0 —> R > o0 —3 K > 0
n n
m m m

0 — R —>T1 —>»k —>0

. . m . ,
where T" = T (F°) and K = KF. Ifwe show that (i) ™35 M is bi-
m
jective for np2, and (ii) Rn-> Rn is surjective, then the bijectivity
m
of Kn > Kn(for n>2) will follow from the Snake Lemma. Assertion

{i) results from:

If A and B are abelian groups

divisible by m then A ® B is

uniocuely divisible by m.

r
In fact let A = U Ker (A 2> A), the "m-primary part of A."
r>l
Clearly Am ® B=0 (B is divisible by m) so A ® B » (A/Am) ® B
is an isomorphism. Multiplication by m is an isomorphism

on A/Am, hence also on (A/Am) 2 B.
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To prove (ii), i.e. that Rn = z TpRqu is divisible
ptg=n~2
by m it suffices to treat the case n = 2, and even to show
m
that r_ € mR, for each a # 0,1. By hypothesis X -a= (X-bi)
1=l

m
where each bi € F, and b, = a. Then r, = [2]l®[1l-a] = [a]@[‘{]’(l-bi)]

=g [al9o2[l-b,] = }:[b[?]g[l-b.] =m(y r This completes the
i 1 i 1 1 :

)c
1 bi

proof of (1.2).

(1.3) COROLLARY. If F is algebraically closed then

K F is torsion free and divisible for n > 2.

(1.4) COROLLARY. If F 1is a perfect field of characteristic

p » O then K F is uniquely divisible by p for n > 2.
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82, n-Algebras.

4 i = ‘l j i b
The graded ring " n, is defined by

x = Z[X]/2XT[X] = Z[¢]

where X is an indeterminate with image ¢ (of degree 1)
in x. Thus ng = 2 and ®, = Ezsn for n > 1; u 1is the ring

of polynomials in a variable ¢ with constant term in Z

and higher degree terms in E, = I/27Z.

2
A graded ux-algebra is a graded ring A = ll An equipped
n>0

with a homomorphism y > A of graded rings, defined by ¢ > €, € Al,
such that €, € Center (A). We call A a u-Algebra if further
A1 generates A as a y-algebra and

2
(1) a” = ¢,a for all a € A,.

{2.1) EXAMPLE. Let F be a field. Then ux = K,F,
e » £(-1), gives K,F the structure of a w-~Algebra. Indeed
4 (~l) is central because K,F is anticommutative and 24(~1) =0,
and (1) above follows from relation (Ré) in Bl.

Other examples include A = A (M), the exterior algebra

of a Z-module M, with € = 0.
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(2.2) PROPOSITION. Let A Dbe a x-Algebra.

(a) A is anticommutative.

(b) If ¢, = O then the inclusion A, - A induces an

A 1

epimorphism A(Al) > A from the exterior algebra of the

Z-module Al'

{(c) If U0 is a finitely generated ideal contained in
= i i A,
A+ %31 An then some power of J lies in €p If further

Jc 2A then J is nilpotent.
(d) A is a nil ideal, i.e. its elements are all nilpotent,

if and only if €a is nilpotent.
To prove (a) it suffices to show that ab = -ba for a,b € Al.

This follows, using (1), from the calculation

¢, (ath) = (a+b)2 = a% + b% + ab + ba

cA(a+b) + (ab+ba).

Assertion (b) is immediate from the definition of a
n~Algebra. To prove the first part of (¢) we may pass to
A/gAA and then apply (b) in order to reduce to the case
A = A(Al). To show then that a finitely generated ideal
Jc A+ is nilpotent it suffices to treat the case J = EA for
some finitely generated subgroup E of Al’ since any J as
above is clearly contained in such an ideal EA. Since A is

anticommutative we have(E-A)n = En-A. If E has < n generators

then A™(E) = 0 and so (EA)™ = 0. This proves the first part
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of (c).
To prove the second part of (¢) we first note (as just

proved) that J% cAA for some n > 0. Now if J ¢ 2A then

Jn+l c 2¢AA = 0. This proves (c), and (d) is immediate from (c).

Since 2A+ is a nil ideal, and since the ring A/2A+ is
commutative it is natural to call an ideal of A prime if
it is the inverse image of a prime ideal of A/2A+. In the

graded E,_ -algebra A/2A the set of homogeneous prime ideals not

2

containing (A/2A)+ is denoted Proj (A/2A).
Since A/A+ = AO is a quotient of T it is easy to determine

the prime ideals of A containing A+.

(2.3) PROPOSITION. Let A Dbe a x-Algebra. Let% be

2 graded prime ideal of A not containing A+. Then {f = 2A

+ (4g na)A, and A/(S; = w/2u = I,(e], 2 polynomial ring over

1‘2 in one variable. The map ? r> ?/22\ is a bijection from the

set of such prime ideals (g to Proj(A/2A).

Passing to A/2A+ we may assume 2A+ = 0, whence A 1is
commutative. We may further factor out (tg n Al)A to achieve
the condition % n Al = 0. Then the equation a(a - cA) =0

for a € A impliesthata-eAeignA =0 for any a # 0 in

1 1

Al' Since A+ fod (f there exists an a # 0 in Al, whence
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Al = 1‘23. It follows that 4 > A is surjective, with kernel a
graded ideal containing no power of ¢. It follows easily that

n/2ny for some integer n. Since 2¢ = 0 we have

1

A
2 € tg s thus A/tg is a quotient of 4/2x = !2[¢] by a graded
ideal containing no power of ¢. Clearly the only such ideal
is zero, so A/{f = Ez[e] .
Since all primes % as above contain 2A, they are precisely

the inverse images of the elements of Proj(A/23).

(2.4) PROPOSITION. Let A b a x-Algebra such that

A=

0 Z. The map p v (Ker(p) + 2B)/2A is a bijection from

Homn_Alg (A,x) to Proj(A/2a). The nil radical of A is given

2

s

nil(a) =m Ker(p)
P

where p varies over Homn-Alg (A,u).

If p: A > » then A/(Ker(p) + 2A) = u/2y = E,le¢] is an
integral domain, so Ker(p) + 2A is a graded-prime ideal of A
not containing A+. Conversely if ﬁg is such a prime ideal then

it follows easily from Prop. (2.3) and the fact that AO =2

~

that A/((.f n A+) w. Moreover this isomorphism is unique
since » has no non identity graded ring automorphisms. Therefore
L{? n A+ = Ker(p) for a unique w-Algebra homomorphism p: x> Xy

and 4? = Ker(p) + 2A by Prop.{(2.3).
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The nil radical of the graded ring A 1is the intersection
of the graded prime ideals. Those containing A+ intersect in

~

A+ since A/A+ Z. The others we have seen to be of the form
Ker(p) + 2A {(p: A » »), and (Ker(p) + 23a) n A+ = Ker(p). It

follows that nil(A) ={“\Ker(p).
p
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83. Real fields.

Let F be a field. An orderxing of F is a subset P
of F such that a,b € P = ab and a + b ¢ P, and such that F’
is the disjoint union of P and ~P. A field which admits an
ordering is called formally real.

Let p: K,F > 3 be a homomorphism of y~Algebras (see 82).
Put

Pp = {a ¢ F' l p(2(a)) = 0}.

(3.1) THEOREM. The map p + P is a bijection from
ille map p — 2
Homn_Alg(K*F,u) to the set of orderings of F.

In view of Prop. (2.4) this yields the:

(3.2) COROLLARY. If a ¢ FP' then 4(a) is nilpotent if and

only if a 4is positive under every ordering of F. Hence

(K*F)+ is a nil ideal if and only if F is not formally real.

— - — ——— o——

(3.3) Remark. It is known that the "totally positive”
elements of F’ are the sums of squares. In case
a = bi +o..4 bi one can prove the nilpotence of g (a) directly
as follows (cf. [8], Thm, 1.4): From (R5) one has
£(2) £(-b2) .. 4 (-B2) = 0. Since £(-b%) = £(-1) + 24(b) one
obtains the congruence modulo 2K, F, 0 = 4(a)4(-1)...4(~1)

= 2(@) 2 (-1 = 2(a)™?, whence £(2)™? = 4(a) " le(-1) = o,
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(3.4) Remark. From Prop. (2.4) we have a bijection

H (X F,u) Proj (K, F/2K,F), The latter has a natural

omu—Alg
topology in which closed sets consist of those primes containing
a given subset S of K*F/2K*F. Since these primes are generated
by their degree 1 components (c¢.f. Prop. (2.3)) one can restrict
attention to sets S of elements of degree 1. Pulling this
description back to Homn-Alg(K*F’u) and then, via Thm. (3.1},

to the set O(F) of orderings of F, we deduce a homeomorphism

O(F) ~» Proj(K*F/zx*F), where closed sets in O(PF) consist of all

orderings containing a given subset T c F'.

4

Proof of Thm. (3.1). Since the composite F' 3 K,F 8 E,e

is a surjection with kernel P = Pp and p{2(-1)) = ¢ we see that
F' = (+ 1) x P (direct product). To see that P is an ordering
it remains to show that if a,b ¢ P then a + b = ¢ ¢ P, Ve
have ¢ # 0 for otherwise a = ~b ¢ P n -P = #. From
2+ 2.1 ve conclude that (2(a) - 2(c)) (4(®) = £(c)) = oO.
Applying p we have pu(c))2 = 0, whence p{2{(c)) = 0 since
nil(x) = 0. Thus ¢ € P, as claimed.

Suppose now that P is a given ordering of F. Define

st F*" » 4 by s{(a) = 0 if a € P and s{a) = ¢ if -a € P. By well

known properties of orderings s is a homomorphism. Moreover
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s(a)s{(l-a) = 0 for a # 0,1 since a and 1 - a cannot both be
negative for P; otherwise 1 = a + (l1-a) € ~P. Thus s induces
a homomorphism p: K. F > » and evidently P = Pp. It is clear
that this construction is inverse to the map p P Pp above, thus

proving Theorem (3.1).
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84. Discrete valuations.

(4.1) Constructions on x-Algebras. Let A and B be

x-Algebras. Let A @z B denote the graded ring with _Ll_ A ®z Bq
p+a=n

in degree n, and with product defined by

deg(b)deg(a')

(a » b) (a' @ ') = (-1) aa' @ bb'

for homogeneous elements a,a‘' € A, b,b' ¢ B. The elements
acA ® b ~-ag eBb, for homogeneous a ¢ A and b ¢ B, generate
a graded ideal, modulo which we obtain a graded anticommutative

ring

with (A @ BY = T A ® B . The latter sum is not direct
* " pigen 4

since A ¢, ® B = A ® ¢ B 1is contained in (A
pAa a p B q

Ifc=a®l+12be (A2 B)l then
H

c2 = a2 1l +afb-afb+1l1ls b2 = eAa 21 +1e cBb = gC,

e Bq) n (Ap® B _.,).

p+l a+l

where ¢ = ¢, ® 1 =1 8 ¢_. Therefore putting ¢ = ¢ gives

A B A® B
"
A & B the structure of a x-Algebra. We shall understand A x%B

"

to denote this uy~Algebra, called the tensor product of A and

B. It is the coproduct of y-Algebras.

The free u-Algebra on a generator [ is the x~Algebra

W(I) = w[X]/ (X2 ~ eX)

where X is an indeterminate of degree 1 with image [ modulo

366



19
X2 - ¢X. Evidently u(l1) is a free x-module with basis 1, f.

For any u-Algebra A we put
A() = A ® w(l) = Ao Aq.

This is a free left (or right) A-module with basis 1,[:

A(n)p = A ® Ap-ln' If a + bJ] € A(n)p and c + dI] € A<H>q then

P

(a + bi) (e + 4p)

-1

ac + adf + (-1)q bepl + (—1)q bdn2

]

ac + (ad + (-1)Tbe + bde) I

We shall consider below the map a: A (1) - A,
3(a + b)) = b; it is an epimorphism of degree -1 of graded
abelian groups. It is also an antiderivation, in the following
sense: There are y-Algebra.retractions A,p: A{[]) > A defined

by A(§) = 0 and p () = ¢. Then for x,y € A(ll) we have
3(xy) = A®aly) + (-1 360

Writing x = a + b]] and y = ¢ + d}, this follows from the

formula derived above for xy.

(4.2) Discrete valuations. Let v be a discrete valuation

on a field F, i.e. an epimorphism v: F' > Z such that,

putting v(0) = «, we have v(a + b) > min(v(a),v(b)). Then
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& = O’V = {a | v(a) > 0} is a ring, the valuation ring of wv.
Choose a local parameter nm of v, i.e. m ¢ F~ and v(n) = 1.
Then F' is the direct product of & = Ker(v) and the infinite
cyclic group nz. In particular 2ll non zero ideals of O are
of the form m" o (n > 0} The unigue maximal ideal is n ©

and k = k(v) = & /n @ is called the residue class field of v.
The canonical map @ > k will be denoted a v &. It induces an

exact sequence of groups

1—3(1+70) 230>k -1

Define

d=d_: P\ —3 (KX (D)
d(uni) = 2(u) + in

for u e ®, i ¢ I.

(4.3) PROPOSITION. The homomorphism dn induces a

homomorphism
3_t KF =3 (KX ())(I)

of x-Algebras. The latter is surjective, and

Ker(3 ) = £(1 + n & )K,F.
m
If Up,e0e,u € ®° then

3 (4(uy)eeid(u)) = z(al)...z(an)
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3 (4(uy)eeitlu 1)a(m) = £(U) ... 2(Q )T

n-1

We must verify

(Rz) d(a) d(l-a) =0

for a # 0,1. If a € O then either 1 - a € & also and
d(a)d(i-a) = 4(2)4(I - 3a) =0or 1 -a £6® and a =1 so

d(a) = £(a) = 0. Thus (Rz) holds for a € . For any a we
have a € & or a—l €0, and if a ¢ ®thena € ® or 1 - a ¢ &°.

Hence, by Remark (l.1l), (Rz) will follow once we verify
(R3) d(a)d(-a) = 0,

Since (K,k)(I) is anticommutative it suffices to verify (R3)

for generators of F', so we may assume a € & or a = n. If

a € & then d(a)d(-a) = £(a)¢(-a) = 0. Finally d(n)d(~n)

= Q(4(~1) + [1) =Ne + 1° = 0. Thus 3 exists, and the formulas

in the Proposition are immediate since a" is an algebra homomorphism.
Ifael+n ®thana =1 so an(z(a» = 0. Hence

J=4( +n 0’)K*F c Ker(an). To show that this is an equality

denote by X the class modulo J of x ¢ K,F. Define

s: (K k) (m) - K*F/J by 4(a) » ZTET for a € ® and [+~ I?;T. Since

I is a free yx-Algebra generator we need only check, in order

to show that the definition of s is legitimate, that

s(£(2))s(4(I - 3)) =0 for a # 0,1 in k. If a € @ represents
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athen 1l -a ¢ @ and we have s(£4{(3))s(2(I - 3)) = 2(a) 2(l-a)
= g(a)e{l-a) = 0. The image of s contains L( ®') and £(n);

the latter generate K*F/J, S0 s 1is surjective. Further it is
clear that s(a"(x)) =% for x € 4( @) or x = () Thus s is

an inverse to the map K,F/J - (X, k) (1) induced by an' This
proves that J = Ker(a") and so completes the proof of Prop. (4.3).

We define Hlaps
a ’ - I K. F "—'—>K k‘v’

0
3 (x) = 3 (x) + 3 (x)I

(4.4) PROPOSITION. a: is an epimorphism of x-Algebras

with kernel Ker(an) + 4(m)K,F. I1f u € O thep

0
au"(/b(a))

20((a)) - v(a)£(d)
for a e F.

The first assertion is immediate from Prop. (4.3) and the

fact that, for any w-Algebra A, a + bl a is a y-Algebra

eipmorphism A(I) > A with kernel [IA([). If a = aonl
a u t(um) ' then ao(z(aa) = £(a.) while ao (2(a)) = g(a .t
n 0 urr 0

)

0
L(a

0) - ig(VW). This completes the proof of Prop. (4.4).

(4.5) PROPOSITION.

(a) av is an epimorphism of degree -1 of graded abelian

groups.
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(b)  one has Rer (3 ) = Z[L( 0')}, where Z[4( ©&)]

denotes the subring of K,F generated by 4( &').

(¢) Ifu u € & and a € F' then

1°°°° Th-l

d,(8(u)eeilu 1)4(a)) = g(u)) ..t )via)

(d) 3, depends only on v and not on .

(e) The following diagrams commute:

3 3
K, F — Kok K,F —_—T K,k
£ Il AXL £
F'——-;—} Z F'x F’ —7———T—€>k'
3
v
v (b)
=3 - v(a)v(b) a_ "
Here (a,b)V = ¢ where ¢ = (-1) bv(a)
(a) and (¢) are immediate from Prop. (4.3) and the

fact that an(L( o)) = ¢(x"). Part (d) follows from (c), which
characterizes av on generators L(ul)...z(un_l)z(a) of KnF in

terms of v alone.

It is clear from Prop. (4.3) that Ker(av) = Ker(an) + I[L(B)].
To prove (b) therefore it suffices to show that Ker(an)
= f(1+7 )K,F is contained in Z[Z(®)]. The elements 1 - um(u€®)
generate 1 + n®. We have 0 = f(l-um)f(um) = £ (l-um)f (m)+ (1-um) g (u),
whence the assertion.

To prove (e) let a = aoﬂa and b =rb01'rB € F° with
NS € 0. Then 3_(4(a)) = g(ao) + ofl S0 3 _(£(a)) = @ = v(a).
Further
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a_(2(a)2 (b))
n

il

(2(3,) + an) (4(By) + &m)

]

2(a) 4B ) + (436 - as(5y) + aBa(-1))n

v{b)

v(a)

a

O wo

vi{a)v(b) a
b

(see (4.1)). Ifc = (-1} (-1) then

o
oQ

ey = Lley)B - aﬁ(so) + ofe (-1}, so (e) is established, thus

completing the proof of Prop. (4.5).

(4.6) Remarks. There are x-Algebra homomorphisms
Mot K,F > K.k defined by A(4{un’)) = £(3) and p(4{un"))
= 2(u) + ie¢ for u € @ . Indeed A = a: and p = a?ﬂ (Prop.

(4.4)). It follows from the last part of (4.1) that
3, (xy) = A3 (v + (1T 5 6,y
v v v p\Yy

for x,y homogeneous elements of K,F.
If there is a splitting s: k¥ > & of av a it induces a
splitting (K k)(n) = K,F by 2(a) » 4(s(a)) and 11 » £(n).
Suppose F is complete with respect to the topology

defined by v. Then the exact sequence

l—31l+no) S50 —>k" —>1

splits. 1If char(k) = p > 0 moreover then 1 + n @ is uniquely
divisible by any integer m prime to p. It follows that

Ker(aﬁ) = 4(1 + 7 & )K,F is also divisible by m, whence:
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(4.7) COROLLARY. Suppose F is complete and char (k)

=p>0. Then if m 4is prime to p the homomorphism

K ,F/mK,F —3 (K, k/mK k) (1)

induced Qz'a“ is an isomorphism.

Let w be a discrete valuation on an extension field
E of F. Assume that ¢ v © B’w, whence a homomorphism
G'V > k(w). Either (i) this is injective, or (ii) it induces
2 homomorphism jw/v: k(v) » k{(w). Let m, be a local parameter
of v and put e = e(w/v) = w(nv). Thus wi{a) = v(a)e for
a ¢ F'. Then e = 0 in case (i) and e > 0 in case (ii).

In case (i) we have F' C B’w so the composite

3
K, F » K*E-—EyK*k(w) is zero.

(4.8) PROPOSITION. Suppose e = e(w/v) > 0. Then the

diagram
K F 23 K. E

K,k (v) =3 K k(W)
€ Jw/v

is commutative.

Let Upseees € G’v and a € F', Then by Prop. (4.5)

n-1
part (c) we have 3y (4(u))...4(u_ )i(a)) = ,z(Gl)....e(Gn_l)w(a)

=e 4(U)...alm vl = e 5 (2(y) ceegu 1) a(a).
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Since the elements E(ul)...z(un 1)z(a) as above generate KnF

this proves Prop. (4.8).
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§5. Rational function fields; the transfer NV: Kk(v) > K.k,

Let F = k{(t), the field of rational functions in a

variable t over a field k. Then

vw(f) = =deq(f)

is a discrete valuation of F, trivial on %, for which 1/t
is a local parameter. For each remaining discrete valuation
v on F, trivial on Xk, there is a unique monic irreducible
polynomial n,€ k{t] which is a local parameter for v, and
each monic irreducible polynomial so occurs. We have
k({v) = k[t]/(nv), and we put deg(v) = [k(v):k] = deg(nv). For
f € F' we have, by unique factorization,
v(f
(1) f = (l ! us ( ))'lead(f),
GV
L>
where lead (f) is the leading coefficient of £ if f € k[t],

and lead (f/q) = lead (f)/lead {(g) in general.

{5.1) THEOREM (thm. (2.3} of [8]). ZIThe homomorphisms av

yield a split exact sequence

3={(3_)
0 —> K,k ~> K,F —> Kk (v) — 0.

v#vw

The proof shows, more precisely, the following: Let

Us denote the subgroup of F' generated by all non zero polynomials
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of degree < d and put L = ZIL(Ud)}, the subring of K F generated

4
by z(Ud). Then aLd c !{ K,k{v) and 3 induces, foreach d » 0,
v#v

o e
—deg(v)<d
an isomorphism from Ld/Ld 1 to K*k(v).
vV

deg{v)=d
The proof uses the following useful fact (cf. Springer [12]):

(5.2) LEMMA, Ly is generated as a left (K, k)-module by

the elements z(nl)...l(nr) where the n. are monic irreducible

polynomials and 0 < deg(ﬂl)<...< deg(nr): in particular r < d.

It suffices to show that if n and n' are monic irreducible

polynomials of degree d then
] +
(2) Ly (4(mMe(n') © (Ly_ja(m) + Ly ,4(n").

For then L +

d-1 Ld lz(n), where w ranges over monic irredu-
T

cible polypomials of degree d, is a subring of K,F containing

and all such g(n), whence it equals L the lemma then

La-1 a’

follows by induction on d. To prove (2) write w = n' + £ with

deg(f) < d. If £ =20 then 4(mg(n') = 4(-1)4(n). If £#0

3

then from 1 = §~ + = we have (£(f) = £{(m}) {(&{n') ~ £(m)) = O,

h

whence £{(m)L(w') = 2(YL(n') - ()2 (m) + 2(=-1)4(m)
€ Ld_lz(n') + Ld_lz(n) .

Let x = z(ﬂl)...ﬁ(nr) be as in Lemma (5.2). Suppose
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deg(v) = d. Then it is clear that av(x) = 0 unless "r = "v’

in which case £(x) = 3(;1}...2(5r

-l}' Since ade = K*k(v)

we therefore obtain the:

(5.3) COROLLARY. Suppose deg(v) = d. Let a denote the

image of t in k(v) = k[t)/(nv). Then K k(a) is generated as

2 left (K,k)-module by the elements L(nl(a))z(nz(a))...z(ﬂr(a))

with each my a monic irreducible polynomial and

0 < deg(n,)<...< deg(n_) < d. In Earticular'JJWK.k(a) generates
1 ¥ _— i<d .

Kik(a) as a left (K ,k)-module.
This is of particular interest when d = 2, in which case
1 and Klk(a) generate the (K, k}-module K. k(a). For example
each element of Krk(a) is then a sum of elements z(al)...z(an_l}z(b)

with a,,...,a , € k¥' and b € k(o) .

-1

(5.4) The transfer NV:K*k(v) > K, k. The inclusions
k » k(t) and k » k(v) induce homomorphisms j:K. k = K k(t) and
jV: K,k = K*k(v) of y-Algebras. These permit us to view
K, k(t) and K*k(v) as (left or right) (K*k)—modules.

If ¢ € X' then v(c) = 0 for all valuations v in Thm.
{5.1). It follows that aV: K k() » K*k(v) is a homomorphism
of degree ~ 1 of graded (X k)-modules, and av vanishes in

JK, k. These remarks apply also to V. Since
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a=1{3 )
Kk () /3K k ———> | | K, k(v)

v%v°°

is an isomorphism of (K, k)-modules it follows that there is a
unique homomorphism N of degree 0 of graded (K, k) -modules making

the following diagram commutative:

3= ()
K k(t) > | l K,k (v)
v;év°°
(3) 3, N
-]
K*k(vm)( =3 K,k
00
We shall view joo as an identification and put NV = Id:

o0
K*k(vm) > K.k. For v # v, let NV denote the v-component of N.

Then the commutativity of (3) translates as follows:

(4) }:Nv(av(x)) = 0 for all x € K k(t).

v

Moreover the homomorphisms Nv: Knk(v) -> Knk are uniquely

characterized by (4) and the fact that Nv = Id. The fact

(-]
that the Nv are (K*k)-linear translates into

(5) N, (3, (x)y) = xN_(y) for x € Kk, y € Kk{v)

Taking vy = 1 ¢ Kok(v) this yields:
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(6) N, ° jv: K.k > Kk is multiplication by

Nv(l) € Kok = Z.

Finally Theorem (5.1) and diagram (3) furnish an exact sequence

. (3.) (N )
(7) 0 — Kk —5 K,F — Kk(v) —5Kk—>0
all v

(5.5) PROPOSITION. N : K k(v) =12 > Kk =1 is

multiplication by deg(v) = [k(v):k] = Nv(l). Hence

Nv ] 3,k Knk > Knk is multiplication by [k(v):k] for all n > O.

The last assertion follows from the first in view of (6)
above. To prove the first assertion we recall from Prop. (4.5)
part (e) that av(z(f)) = v(f) for £ € k(t)'. 1In view of the

uniqueness of the Nv's the first assertion is thus equivalent to:

(7) E: deg(v) v(f) = 0 for all f e k(t)"

v

Since vm(f) = w«deg(f) and, by (1), £ deg(v) v(f) = deg(f),
viv

(7) is indeed valid.

COROLLARY. Let j:k » L be a finite field extension of

degree 4 f k. Then Ker(j: K,k > K, L) is annihilated by d.

Moreover J induces an injection K, k/mK k - K, L/mK, L for all

m prime to d. f L is only an algebraic extension of k

then Ker(3j) is a torsion group.

The last assertion follows fromthe first one since K,L
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is the direct limit of K L' where L' varies over finite
sub=extensions of %k in L.

If L = k(v) as in Prop {5.5) the first assertions follow
from the last part of Prop (5.5). Any simple extension
L = k(a) is isomorphie to some k(v), whence the corollary in
this case. 1In general we write L/k as a finite tower of
simple extensions and note that the conclusions follow formally

for a tower if they hold in each layer.

(5.6} THEOREM. The following diagram commutes:

N
——_9
Klk(v) Klk

L 4

. .
k(v) uuﬁ;zzgjgz—ﬁA k

In view of Prop. (4.5) part (e) and the unigqueness property

of the Nv's Thm. (5.6) is eqguivalent to:

(5.6) ' THEOREM (Weil, CE. [1l], Ch. III, n°4). If

f,9 € k(t) " then

() Unk(v)/k(f,g)v = 1.

The left side of (8) is bimultiplicative in (f,q), and
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(f,f)V = (-1,f)v for all v. Hence it suffices to verify (8)
when f and ¢ are relatively prime polynomials in k[t].

In this case we have, since (f,g)v = 1 whenever v{(f) = v{g) = 0,

9 N £, = (£, - : A
( )U b (v) /x (e 9), = ( g)"m(v‘!g)LONk(v)/k(f'g)v) (V(f)>oNk(v)/k(f'g)v)

= £ g1
= (£,9), D,
o0
where
£ v
G =TT wyptEa, =TT 5 @) )
v(g)>0 g(av)=0
Let & Dbe an algebraic closure of k. 1In i{t] we can
write f = a(t~al).‘.(t-un) and g = b(t-Bl)...(t~ﬁm). We claim:
m m n
£
a0 & =Tl ewp=a"T1 TI @ -8).
9 3= j=1 i=1 1 J
The second equality is clear. To prove the first we may assume
g 1is constant, in which case both terms equal 1, or g = n

v

for some v. In the latter case we have (f;? = Nk(av)/k(f(av))’

where a, is the image of t in k(v) = k[t]/(nv). The images

of o, under the different embeddings of k(v) in k¥ are

m
Byse--sB,, Whence Nk(av)/k(f(av)) = §=§ f(Bj), as claimed.
m
It follows from (10) that {55{3?"1 = (-l)nm'z— . Since
g £ P
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v (f) = -n and v (g) = -m we have (£f,q) =(-1)nm 20 . In
o0 -] -] b-n

view of (9) this establishes (8), whence Thm. (5.6)"'.

{5.7) An inductive formula for Nv' Say [k(v) :k] = d.

Then by Cor. (5.3) K,k(v) is generated as a (K k)~module by

elements x Z(nl(av))...z(nr_l(av)) where a, is the image of

t in k{v)

k[t]/(nv) and where the n, are monic irreducible
polynomials, say n,o= ﬂvi, with 0 < deg(nl)<...< deg(ﬂr_l) < 0.
Put o=, and y = A(nl(t))...z(nr(t)); then av(y) = X, Hence

Nv(x) is a term in the equation

z N, (3, () = 0.

w

We have aw(y) = 0 unless w = some v, or v, and avi(y) =
(-n*~* x, where

(11 X, = £(ﬁl(ai))...z(ﬂi_l(ai))l(ﬁi+l(ai))-..E(ﬁr(ai))

and ai = uv . Since the ni are all monic one has
i

3, {y) = (-l)rdeg(nl)...deg(nr)z(—l)ral. It follows that

(12) N () = (-1)" ldeg (my) - - -deg (n ) s~y 5t

Since deg(vi) <d for it = 1,...,r-1 we can, in some sense,
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regard Nv as known by induction on d. Note that
i
Nv =1Id ifd =1, If @ = 2 then (12) determines Nv since

each ¥, € K.k(v.) and N
i 1l i v

. on Klk(vi) {(Thm. (5.6)).

=N
k(vi)/%

(5.8) Changing the constant field. Let L be an algebraic

field extension of %k, and put E = L{t). The valuations w
of E which are trivial on L each "lie over® some such
valuation v of F = k(t), a condition we shall denote by
writing w/v. The valuation W with local parameter t-l lies
over v.. If v # v _then

0 @0

_ e(w/v)

(13) ﬂ —l l us
w/v
is the factorization of n, € k{t] in L[t]. This yields the

embeddings jw/v: k{v) = k[t]/(nv) > k(w) = L{t}/(nw)~

PROPOSITION. The following is a commutative exact diagram

(2,) (N )
0 —> K,L ——> KL(t) —=> || Kok (W) —> KL-—> 0
A A vy p

1,/ 3506 /() %L(e(w/v) 3/ i

TE

0 —> K,k —> K,k (t) —-(—a-v—Té_lT’l_ K,k (v) W Kk —> 0

The commutativitiy of the left hand square is just the
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functionality of K,. That of the middle square follows from

the commutativity of the diagrams

?
K*L(t) -u————li-“4> K*k(w)
e (w/v) jw/v
R Xk (t) -————-a———-% K.k (v)
v

for each w/v (Prop. (4.8)). The rows are the exact seguences
of {(7) above for L and k, respectively. It follows therefore
that there is a unique homomorphism h:}{*k - KL which, in

place of jL/k’ will make the right hand square commute. In
particular, since v, is the only w 1lying over v and

e(wm/vw) = 1 the diagram

w
«©
Kew) = KL ————>K[L

commutes. But Nv and Nw are the identity maps, whence
00 o

h = jL/k' This proves the proposition.

(5.9) A problem. One would like to be able to define

a "transfer map"
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N =N i KL — Kk

for any finite field extension L/k. Beyond being a homomorphism

of degree zero of graded groups it should satisfy the following

conditions.

Tr 1) . The projection formula:

N{jx - y) =x » N{y)
for x € K.k, v € K, L.
Here j = jL/k‘ K,k > K, L is induced by ¥ » L, and Tr 1) can

be read as saying that N is a homomorphism of (K, k) -modules.

Taking v = 1 it implies that

{14) j e N: Kk —> K,k is multiplication by N(1} ¢ Kok = .

Tr 2). Functoriality: Nﬁ/k = Id and NL/k o NE/L = NE/k

if L/k and E/L are finite field extensions.

In view of {5.4) we might Ffurther require:

Tr 3). Regiprocity:

Y Ny e B ) =0

v

for all x € K,k (t).
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It would then follow from the uniqueness property of the Nv's

that Nk(v)/k = Nv for all v. Conversely this suggests a

method for defining the maps NL/k in general.

First suppose L = k(a), a simple extension, and put
m = Irr(t,o/k), the irreducible monic polynomial in k[t] of
which o is a root. Then n = m, for some v, whence a

k~isomorphism k(a) » k{(v), and a map Na

/k: K*k(a) > K.k obtained

from Nv: KXk(v) > K k.

IfL = k(al,...,an) we can put ki = k(al,...,ai) and
N =N o N peeec N
(al,...,an)/k al/k az/kl an/kn-l'

Note ((5.4), formula (S)) that each N satisfies Tr 1)

a/k

so it follows that each N does likewise. Further-

(al,...,an)/k

more N =Id4 if L = k.
(al,...,an)/k

The problem in general of course is to show that

N depends only on L/% and not on the choice of

= N
(al,...,an)/k

generating sequence (al,...,an). This is true on KO, where,

by Prop. (5.5), N is multiplication by [L:k], and on Kl’ where

by Theorem (5.6), N is the field norm N . For Ki(i > 2),

L/%
however, the invariance of N is not at all clear
(al,...,an)/k
already for n = 1. If this problem has an affirmative response

then functoriality (Tr 2)) follows immediately.
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The Na/y's have one naturality property which we may
deduce from Prop. (5.8): Suppose k(a) is a simple algebraic
extension of k and L/k is any algebraic extension. Then

L » k(a) modulo its radical is a product T L(ai) of simple
1 8 i

extensions L(ai) of L, where a, denotes the projection of a
into the factor L(ai). We have k(a) = k[t]/(n), where

m = Irr(t,a/k) = I ni"i in L(¢), and L(a,) = L{t]/(n,). Then
i
the diagram

W, )
i/L
WKL (@) —2

#L
(15) (e;-3,) TJ’

K,k (a) T;:—”—} K,k
Q,

commutes, where j = jL/k and ji = This furnishes

jL(ai)/k(a)'

a method for showing that N is independent of o, by induction

a/k
on degk(a) = [k{a) :kx]. For supporse k(a) = k(B) and
(L 2 k(B))/radical = [ L(Bi) as above. Then we have a diagram

1
analogous to (15) for B. If the degrees of the L(ai) = L(Bi)

over L are < [k(a):k] then we may assume inductively that

Na = N‘3 for all 1i. The commutativity of (15) and its
i/L i/L

analogue for B then implies that Na

- N
/X B/k
into Ker(j:K*k > K*L). By the Corollary to Prop. (5.5) Ker(3)

maps K,k (a)

is a torsion group; in fact it is killed by [L:k] when the latter
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is finite. Taking for L an algebraic closure of %k we

conclude: If k{a) = k then N and N agree modulo torsion.
1f k(a) = k(B) o/ a/x 29
It therefore suffices to show that, for each prime p,

the p-primary part of Im(Na - } is zero. To check this

/x T e/
we can take for L the fixed field in kX of a Sylow p-subgroup
of Gal(i/k). Here we take kK to be an algebraic closure of
k if p # char(k) and a separable closure if p = char (k).
Then L is a limit of finite extensions of %k of degrees
prime to p, so j:K.k » K,L is injective on p-torsion (Cor.
to Prop. {5.5)), and all finite extensions of L have p-power
degree. After replacing kX by L therefore, and using (15},
we reduce the problem to the following case:

Every finite extension of % 1is of degree a power of p.

In particular every irreducible polynomial of degree < p is
linear. It follows therefore from Cor. (5.3) that if [k(a):k] = p
then Kok(a) and Klk(a) generate K. k(a) as 2 (K,k)-module. By
Prop. (5.5) and Theorem (5.86) Na/k is characterized on K. and

0

on Kl independently of o. Hence we conclude from the projection

formula in this case that N = N

a/k B/k
It is not yet clear how to handle the case [k (a) :k] = pn

if k(a) = k(B).

with n > 1.
However the above arguments can be used to prove the following:

If transfer maps N (satisfying Tr 1) and Tr 2)) are defined so

E/F

1 = H i
that NE/F( ) [E:F] and K;E = KF NE/F corresponds to the field

theoretic norm E° «» F', then the NE}F'S are unigue.
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We conclude this section now with some simple
applications of the transfer maps.

Let F be a field and k., its prime field. The Kronecker

0

dimension §(F) of ¥ is tr. degk (F) if k
o
= @. The following result was proved

fl

0 Ip {p > 0) and

1 + tr deg, (F) if k
ko [¢]

more directly by Springer in {12}.

(5.10) PROPOSITION. If 1 < n < §(F) then the rank of the

abelian group K F is Card(F) .
We argue by induction on d = §(F). Ifd = 0 then F

is algebraic over a finite field, so KlF = F' is torsion, whence

KnF is torsion for all n > 1. {In fact KnF =0 for n » 2,
by Steinberg.)

If d =1 then F is algebraic over F. = @ or EP(t}.

1

Therefore F is countable, and F° contains F

.

1

torsion, is free abelian of infinite rank. (There are infinitely

which, modulo

many primes (Euclid).)

If d > 2 we can choose a subfield Fy of F of Kronecker

dimension 4 - 1 and a t € F transcendental over F such that

].’

F is algebraic over Fl(t)' Then since Fl is infinite, it is

easily seen that Card F, = Card Fl(t} = Card F. By Thm. {5.1)

1
we have an epimorphism KnFl(t) > }J Kn—lF1<v)’ and, by

induction, each Kn 1Fl(v) has rank equal to Card Fl(v)=Card F.

Thus KnFl(t) has rank » Card F. According to the Corollary
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to Prop. {5.5) the kernel of KnFl(t) > KnF is torsion, so
rank KnF > Card F. Finally the reverse inequality follows since

KnF is a auotient of F'=...9 F~ (n factors).

Question. It is tempting to conjecture that KnF is torsion
for n > §{(F). 'This is trivially so for d = 0. For d =1 it
is also true, thanks to a theorem of Garland [5] in the number

field case.

(5.11) PROPOSITION. Let m e an integer > l. Suppose

that for all finite extensions E of a field F we have

.

h
taj

al

bt

F o n > 2.

|
|

. .m . i e
= NE/F(E }+F . Then K F is divisible by m

Suppose X,v € K. F. Let j;: F > E be a finite extension.
Let N: K,BE » K.F be some transfer map as in (5.9). Suppose we

can find x',y' € K E such that

jx = mx , Y =Ny

Then we have x+y = X:Ny' N(jx-y') = N(mx'.y') = mN{(x'-y'), so

Xy = mN(x'-y') em K.F

We apply this now to x = g2(a), v = 2(b) with a,b ¢ F".

We wish to show that 2(a)s({b) ¢ szF. Choose E = F{a) with

a" = a. By hypothesis we can, after modifying b by an mth
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power, which is harmless, solve b = NE/F(B)' Then the calculation
above shows that 2(a)4{(b) = mN{z{a)£(B)). This shows that

K2F is divisible by m, so KnF is divisible by m for n > 2.

ey

{5.12) COROLLARY. f the norm is surjective in all finite

extensions of F then K F is a divisible group for all n » 2.

This applies notably to finite fields, where it yields

Steinberg's theorem:

KE =0 for all n > 2.

nag ——

It also applies to C1 (quasi-algebracially closed) fields,

examples of which are furnished by theorems of Tsen and Lang.

{5.13) PROPOSITION. Suppose char(F) = p > 0 and [F:Fp} = pd,

Then for n > 4,

P 'K F is divisible by p
and

denF is uniquely divisible by p.

This proposition applies notably to an algebraic function
field in d variables over a perfect field.
Let j: F » F, j(a) = aP, and let N: K,F > K,F be a

transfer map for j as in (5.9). Since j: K,F > K F is
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multiplication by p on KlF, it is multiplication bv pn on

KnF' On the other hand, N ¢ j is multiplication by [F:jF] = pd

(see (14) in (5,9)). Thus on KnF we have pd =N e =N o pn.

If n > d this gives pd =f o pd where £ =N o pn"d = pn“d ° N.

It follows that multiplication by p is invertible on denF
ifn>d.
d-1 . s .
To show that p KnF is divisible by p for n > d
consider an element x = z(al)...z(an) € KnF. It suffices to
show that pd~lx € pn“lKnF. Put E = Fl/p and b.l = ail/p € E.

Let N:K,E > K.F be a transfer map for j: F > E. Then

pd pd-—l
NE/F(bn) = bn = an so
d-1

p X = z(al)...z(an_l)L(NE/an)

N(3(atay).etla _))a(b))

n-1
=p N((B) .. a(b_)E(b))

This completes the proof of Prop. (5.13).
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Chapter II

The Milnor ring of a global field

81. A finiteness theorem.

Let F Dbe a global field, i.e. a finite extension of @
(a number field) or a finitely generated extension of trans-
cendence degree 1 over a finite field (a function field).
Let S00 denote the set or archimedean places of F. Thus
5 = g if F is a fiunction field; if F 4is a number field then

r r
Card S = r, + r, where R =g F Tr !l xala finite place can be

identified with a discrete valuation v of F, If S is a non empty

set of places containing S5, we put

A, = {a e F | v(a) > 0 for all v £ s},

the ring of "S-integers." It is a Dedekind ring,with field
of fractions F, whose maximal ideals P correspond to the places

v £ S so that k{v) = AS/P. We shall put

=
o}
]

S .
. [2(a))]

]

the subring of K,F

generated by ﬁ(Aé)
If v £ S the homomorphism 3,1 K,F - K,k(v}) of Ch. I, Prop.

{4.5) vanishes on KEF since AS is contained in the valuation

393



46

ring of v. Thus we have a homomorphism

S
3 = (3 )
K *F/Kfp Sn—S 1
v£S

The norm of a finite place v 1is defined to be N(v)
= Card k(v}). We can list the finite places of F,
M TACTAREFAATRER

so that N(vi) < N(vi+l) for all i. This done we put

S, = S, U {vl,...,vm}

Our main objective is the following theorem

(1L.1) THEOREM. For all sufficiently large m the

homomorphism g
m

3 = ()
K, F/KM f —————> a8 K,k (v)
vfsm

is an isomorphism.

This will be proved in £3-~5, The reason for calling it
a finiteness theorem is the next corollary, and its conseguences

drawn in 82.

{1.2) COROLLARY. For all n > 0 the kernel Hn of
S

fee]

2 7= ()

KnF > ! ! Kn_lk(v)
VES

oo
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is a finitely generated abeli an group.
S
- 2 7o K(v))
In fact Hn c Ln = Ker(Kan—.—> Kn—l v)}),
vtsm

and Thm. (1.1) says Ln is the nth degree term of the ring

Z[L(Aé }]. Hence Ln is a quotient of the n-fold tensor product
m

of Aé with itself. Since Aé is finitely generated (Dirichlet)
m n

it follows that Lrl and hence also Hn are finitely generated.

395



48

82, pApplications of the finiteness theorem.

As in 81, F is a global field. 1Its completion at a
place v is denoted Fv' The group of roots of unity in F
is denoted u(F).

We put
R
H = Ker(K E-~——~———}§ ! K Jk{v))
n n n-1
VES
o«
for each n » 0. By Cor. (1.4) H is a finitely generated
abelian group. Clearly HO = KOF =2. If k 1is a finite
field then Knk =0 for n > 2 (cf. Cor. (5.12) of Ch. I). It

follows that Hn = KnF for n > 3.

(2.1) THEOREM.

1) (Dirichlet) Hl is a finitely generated group of

rank r. + r2 - 1 and torsion subgroup isomorphic to u(F).

2) H, is a finitely generated group. If char(F) =p > 0

2.——
then H2 is finite and of order prime to p.
3) If n> 3 then H =K F and the natural homomorphism

K F e ! 1 K F /2K F_

v real

is an isomorphism. In particular

r
(z/21) *

K F =
n
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Remark . It follows from results of Garland [5] and

Dennis [4] that H, is finite also in the number field case.

2

Proof of 1). The map {av): KIF -> v&i Kok(v) is, by Prop.
(4.5) (part (e)) of Ch. I, equivalent to the map F‘mizé [1 z.
vE£S
Lo

The kernel is therefore Aé in the number field case, and the
[+
non zero constants, i.e. y(F), in the function field case. The

announced description of Aé follows from the Dirichlet Unit Theorem.

o
We next prove:
(1) If char (F) = p >0 and if
n > 2 then Hn is finite and of
order prime to p.
We know that Hn is finitely generated (Cor. (1.4}) so it
suffices to show that Hn is divisible by p. Consider the

exact seoguence

(2) 0 > I{n—-) K F ——;»_]_VL Kn_lk(v)

Since k(v) is a finite field of characteristic p and n > 2
the group Knvlk(v) is finite of order prime to p (for this is
true of Klk(v) = k{v) ‘). Hence the right hand term of (2) is
unigquely divisible by p. Since [F:Fp} = p it follows from

Prop. (5.13) of Ch. I that KnF is divisible by p. The exact
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secquence {(2) thus implies Hn is divisible by p, whence (1}.
Note that (1} also completes the proof of part 2) of

Theorem (2.1).

Proof of 3). For any prime p and field E we shall
put

K , E
n/p

KnE/pKnE
We propose to prove, for n > 3:
a If char (F) = then K F = 0.
) (F) = p n/p
b) Ifp # 2 and p # char(P) then Kn/pF = 0.

¢) If char(F) # 2 then KnF -> l } Kn/2Fv is a
v real

split epimorphism inducing an isomorphism

K F > ! I K F .

n/2 v real n/2°v
Since, as we noted above, Hn = KnF is a finitely generated
group, it is clear that a), b), and ¢) imply 3). Furthermore
a) follows from (1) above, 80 it remains only to prove b) and
¢). The proof below is an elaboration of the argument repro-
duced in the appendix of [8], which computes Kn/zF.

Suppose p # char(F). Let E = F(pp), the field obtained
by adjoining to F the group pp of pth roots of unity. Then

[EzF] =d < p -1s0 d is prime to p. It follows therefore

from the corollary to Prop. (5.5) of Ch. I that K F »> K B
Y p. {5.5) n/p n/p

398



51

is injective. Therefore to prove b} we may assume bp c F.
In case p = 2 this is automatic. Thus to prove both b) and c¢)
we may assume

c F
Hp

For each non complex place v of F let

[, ]v: F; X F; -> pp denote the pth power norm residue symbol

in Fv (see, e.g., [9], 815). Let dv: K FV > ko denote the

2/p
corresponding homomorphism; it is an isomorphism (Moore [10]).
The exactness of

{a)
v
3 K, , 6 F I | K, , F 0
< 2/p T s T2/pv T Mp T
complex
is classical, and can be deduced also from theorems of C. Moore

[10] (see also Milnor [9], Thm. A.14 and Thm. 16.1). 1In fact

it follows further from [14] that

4 0 ——%} K Fo— K F

) 2/p v‘LéLn 5 2/PV
complex

is exact. For Thm.2 of [14] permits one to replace Kz/pE

by Br(E)p ® bo for each field E above. Here Br(E)p
is the kernel of multiplication by p on the Brauer group
Br(E) of E. The exactness of {4) then results from the

Hasse prinicple, i.e. the injectivity of Br(F) »‘LLBr(FV).
v
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With the aid of the exact seguences (3) and (4) we shall
now compute K3/pF. It suffices to describe all homomorphisms
2 KéF - up. Put g(a,b,c) = ¢(f{(a)l(d)i(c)). For fixed c we
¢btain a 2-symbol (a,b) !~ w(a,b,c) with values in “p' The

exact sequences above then permit us to write

; e, (c)
Cb(a,bac) = Tr [a,b]v
v

where 0 < cv(c) < p and [I' signifies that v ranges Oover non
complex places. Further the ev(c)‘s are unique up to addition

of the same constant (modulo p) to each of them, i.e. modulo

-1
the product formula 7' [a,b]v = 1. Since gla,b,c) = gla,c,b)
. v

we also have, for b and c¢ fixed,

, -s,, (b)
C?(a;b)c) = I i [a)c]v
v

whence
4
[T tea1, =1,
v
s, (e) ¢ (b)
where dv = b c . Thus the idele d = (dv) is orthogonal

to all a € F' in the product formula. It follows therefore
from Weil ([15], Ch. XIII, 85, Prop. 8) that d = d ¢° for some
idele g and some d ¢ F’.

put B = F(6P,cP), Then, since d = bsV(C)cs" *) mod E‘"’p

for all v, we see that 4 is a pth power everywhere locally,
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and hence globally, in E. Kummer theory then implies that

£
"

r s . :
b"c® mod F'P for some integers r,s. Then we have

(5) br-cv(c) cs_‘v(b) € P‘p
v

for all v.

Claim. gv(c) = ¢w(c) for all finite v and w.

The fact that b < F implies that Card(F;/F;z) > pz

for all finite wv. Hence, given ¢, we can choose b outside
the cyclic group generated by ¢ modulo F;p and modulo Fép.
Then the condition (5) above for v and w implies that
gv(c) = rs= gw(c) mod p, whence ev(c) = ew(c), as claimed.

Now multiplying g(a,b,c¢) by 1 = (n'[a,b}v)—r we reduce
v

to the case ev(c) = 0 for all finite v, If all non complex
places are finite this shows that ¢ = 1, so K3/pF = 0, and hence

K F =0 for n > 3. This applies notably when F is a function

n/p
field and when F is a number field and p > 3: for in the latter
case, since pp # B, F must be totally imaginary. Note that

these conclusions imply b). They further imply in general that,
for n > 3, KhF is a finite 2-primary group.

It remains to treat the case when F is a number field

and p = 2. The arguments above then show that
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(6} K3/2 F o l‘ K3/2Fv is injective.

Let vl,...,vr denote the real places of F and put Fi =F .

v
1 i
Choose €ys-ec,€, € F° so that e, is negative in Fi and positive
1
in Fj for j # i. Then F' is generated by el,...,er together
1

with the totally positive elements of F'. Hence KnF is
generated additively by elements x = l(al)...z(an) where each
a, is either totally positive or eguals some e,. It is then

ar th i a, al e
clear that x goes to zero in anth unless all ; eaual e,

i.e. unless x = x, = z(eh)n = z(-l)n-lz{eh). It follows there~

fore from (6} that for n » 3 the element x 1lies in 2KnF unless

X = xh for some h.

We have K*/th = Ez[sh] where &, = th(-l), and X, maps

n . . .
to ¢, . Since 2x_ = 0 we obtain a section l | K

>
h h - F, > KF,

n/2

n
>
eh‘ Xh, of KnF > lll Kn

/2 Fi' It follows that

= @ . i i inj ~prima
K F (45. an2Fi) @ 2KHF Since K F is a finite 2«~primary
group for n > 3 we must further have 2KnF = 0. This proves

¢}, and so completes the proof of 3}, and of Thm. (2.1).
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83. Proof of the finiteness theorem: reduction to Lemma {3.%5).

Recall that F is a global field with archimedean places

- ) Wi ‘ ' W
s, and finiteplaces MACTASY with N{vl) < N(vl+ ) We put

1
_ Smrca_ . .
Sy = S, U {vl,...,vm} and K,™F)= z[z(ASm)] c K,F. It is clear

that Thm. (1.1) results from the following more precise statement.

(3.1) THEOREM. For all sufficiently large m

]

3
S v
+1
K*m (F)/K*m(F)——mil-ﬁ} KK(v_.)

is an isomorphism.
To prove this we fix an m whose (large)size will be

determined by the requirements of the arguments to follow. Put

S =8
w
V= Vil £S5
L] ot —
8' = 841 =S U {v}

Note that, for any finite place w,
weSs T NWw < N

wes &= Nw < N(v)

Put

i

k = k{v) = a/pP,
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where P is the maximal ideal such that AP is the valuation ring

of v. The natural map A, > k will be denoted a'> a.

(3.2) LEMMA. The following conditions on A and v

imply that
S'F/ S av X
K, F/K.F —2 K,
is an isomorphism:
a) The ideal P is principal; say P = nA.
b} The group (1 + P)" = Ker(U -~ k") is generated by
the elements 1 + a € U such that Aa = P,

¢) There is a subset E 0of U such that

cl) The map E X E X E > X° x k' sending
(a,b,c) to (b/a,c/2) is surjective.

c.) f e cFand e, =8, + e

1 2 3

Condition a) clearly implies that A

1
| SE— w—
' = A[n] and that

U = Aé, ig the direct product of U with the cyelic group
generated by n. Since v{(U) = 0 and v{n) = 1 it follows that

v induces an isomoxphism U'/U » Z. B t (see Ch, I, Prop. (4.5),
part e})) this last arrow is equivalent to aV: Ki'F/KiF > K k.

0

1
We now treat 3 :KS F/KSF » XK .k for n > 1. Denote the
v ' 'n n n-1
image modulo KEF of x € KiF by [x]. Then (Ch. I, Prop. (4.5),

part c)) the following diagram commutes for each n > 1:
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U X,..Xx U (n~1 factors)

a' sl

S ' S V
Kn F/KnF —V 5 Kn_lk

where a'(ul,...,un_l) = [L(ul)...z(un_l)z(n)] and

5'(ul,...,u

— = - ' i
n-l) = L(ul)...z(un_l). Both a' and B' are evidently

multilinear, so they induce homomorphisms o and B making the

diagram
Res.R

7\

St
KF/KF___---——-) K1k

n—

commutative. To prove that av is an isomorphism it therefore

suffices to show that:

(1) o is surijective

and
(ii) B 1is surjective and Ker(B) < Ker(a).
Proof of (i). As noted above U' = U X nz where
U' = Aé,. Since K,F is anticommutative and since ﬂ,(n)2 = 4(=1)2(m)

t
it follows that Ki F = Z[4(U')] is generated as a left (KEF)fmodﬁﬂe

]
by 1 and 4{n). In particular Ki F is generated additively by
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elements x = ﬁ(ul)...z(un) and y = L(ul)...z(un~l)z(n) with
Ugseeesuy € U. Since {x] = 0 and [y] € Im{a) it follows that

a is surjective,as claimed.

Proof of (ii). Conditions b) and cl) imply the exactness
of

1—> Ul"—9 U—> x' —>1

where Ul denotes the subgroup of U generated by all elements
1l - unm € U with u € U. It follows from this that B 1is

surjective and that Ker (B) is generated by elements X =1u, ®...8 u

1

of the following types: (I) u, = 1 - um with u ¢ U for some

-1

i < n-l; (II) Gi + u, =1 for some i < n - 2. It remains

i+l

to show that a(x) = 0 in each of these two cases.

Type (Il: al(x) = {s(ull...z(un_l)z(n)}. Put

nei+l

y = {(~1) z(ul)...z(ui ...,e(un so that

_1),
a{x}) = [y £(ui)£(n)}- We have 0 = £{(1 - unm)4{un) = £{(1 - unm}z(u)

4y

+ £(L - umlsln) = z(ui)z(u) + z(ui)z(ﬂ). Hence a{x) =
-{y z(ui)z(u)] = 0 because y z(ui)z(u) € KiF.

Now that a(x) = 0 for x of type (I) it follows that

* = ] '
(*) oc(u1 Rev R un—l) a(u1 2...9 un_l)

whenever Gj = G; (1l <j<n=-1)

Type (II): Assume Gi 4+ 1, . =1. condition ¢

i+l l)
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furnishes elements e e. ¢ E such that Gi = 52/51 and

17273

u = 53/51. In view of (*) above there is no loss in

i+l
assuming ui = ez/el and ui+l = e3/e1. We have then
e, + e, = e1 so

condition c2) implies that e, + ey = e, i.e. that

u, + Uiq T 1. It follows that z(ui)z(ui+1) =0, sox =0
and a(x) = 0.

This completes the proof of Lemma (3.2).

(3.3) Norms. Before going further we introduce some

additional notation. bput

A if F is a number field

A (s, = {v,}) if F 1is a function field
s 1 1

1
We define a multiplicative function N(¢) € @ for fractional
A_-ideals 0t of A so that, when e A_, N(O) = Card(Aw/OL).
Thus if Pw is the prime ideal of AOO corresponding to a finite
place w (# vy if F is a function field) then N(Pw)
= Card k(w) = N(w). If a ¢ F' we put N(a) = N(A a). If F

is a number field then N(a) (a)|. We agree to put

‘NF/GJ
N(0) = 0.

(3.4) LEMMA. Suppose we are given subsets D c A and

We (A _nu). put

pettg
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E={d~-da | d,d" eD, d#a'l.

Then A,v, and E satisfy conditions b) and c) of Lemma (3.2)

provided that D and W satisfy the following conditions:

1) (card D)> » N(v)2.
2) Ec U.

3) 1 €W and W generates U.

4) If es8,,€5,8, € E and w € W then

4

(i) N(el + e. + e3) < N(v)

2

(ii) N(eje, - eje,) < N(v) 2

(iii) N(e,w - e2) < N(v)z.

1

If A # A_ these conditions further imply condition a) of

Lemma (3.2)

The proof will be carried out in several steps.

4) (i) = c2) Since E = -E it follows from 4) (i) that

for eys€ 58, € E we have N(e1 - e, - e3) < N(v). But if

3 2
e, = e, + e, we have e - e, — ey € Pv, so the inequality above

is possible only if e - e, - ey = 0.

x, € k' we must solve

1) and 2) = cl) Given X, s Xy

X, = Ei/gl (i = 2,3) for e € E. Define

i 1°%2°€3
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L: A XA XA ——> k Xk

L{a,b,c) = (b - Exz, c - §x3).

Condition 1) implies that L can’'t be injective on D X D X D,

i.e. L(d) =1L(d") for some d = (d,,d,,d,) #4d' = (4, d), d})
inDXDxD, Pute=d -d' = (el,ez,e3) # (0,0,0). B8ince
L is additive we have L(e) = L(d) - L{d') =0, i.e. 52 = El xz

and 33 = El x3. Since e # 0 some e, # 0, so, by 2), some
Ei # 0. Since Xy s Xy # 0 it then follows that Ei £ 0 for all i,
whence e1€y5€5 € E., Clearly xj = ej/el (j = 2,3); this proves

cl) .

Claim 1,Conditions 3) and cl) imply
that (1 + P} = Ker(U »> }i') is generated

by its elements of the following types:

€1 %2

(1) {e,,e.,e_,e, € E)
e3 e4 1°72° 3" 4
e,w

(11) —-g;- (el,e2 €E, weW.

Let H Dbe the subgroup of (L + P)° generated by its
elements of types (I) and (II). If x,y € U write x ~ y if

X =y mod H. We must show that

(*) §=léx~l.
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If x is of type I or II this follows from the definition of

H. Condition Cl) implies each element nf k° 1is of the form

el/e2 with €58, € E. IfweWandw= el/e2 then w ~ el/e2
e_w
since P € H. Condition 3) asserts that 1 ¢ W and W
1

generates U. It follows thatfor any x € U we have

for suitable ei,ei €E (1 £i<n). We claim we can even take
n=1. For if n > 1 then cl) furnishes elements a,b,c ¢ E

such that EI/EI = b/a and 227;; = ¢/a. Hence

%1% &% % b ,
el = (e.b}(ae.)(zﬂ ~2 because the first two factors are
172 1 2
be,_ ... en
elements of type I in H. Thus x ~ EET____;T and we finish
R

by induction on n.
Now if x = el/ei and X = 1 then x is of type I in H
(with w = 1 € W) 80 x ~ 1, whence the claim.

Let U, denote the subgroup of U generated by all

1
elements 1 + a € U such that Aa = P, Note that Ul c (1 +92)°
and Ul = {1} unless P is principal. If P = An then
Un (1L + Un) generates U, .

1

Claim 2. Suppose a,b € Aw nu

satisfy a = b and N(a-b) < N(v)z.

Then a/b ¢ Ul'
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We may assume a # b, Then Aw(a-b) = c&.Pv for some ideal
OU with N{{l}) < N{(v}. It follows that for all prime divisors

p, of 0l we have N(w) < N(v), whence w € S. Thus (A = A and

a->b 4

. a
so A{a-b) = PVA = P, Finally = 1+ 5 1’

as claimed.

cl),3),4)(ii), and 4) (iii) = b). With the notation

above condition b) says that U, = (L + P)". Using claim 1
above it suffices to show that U1 contains the elements of
types I and II in that claim. In view of claim 2 condition 4)

{(ii) implies this for type I and 4) {(iii) does so for type II.

If A # A°° then b} = a). For A # A= U is infinite =

{1 +P)" # [(1}. In this case b) implies U, # {1) so there is

an 2 € A such that Aa = P; this is condition a).
The implications proved above together establish Lemma (3.4).
In view of Lemmas (3.2) and (3.4) we see that Theorem (3.1)

follows from:

{3.5) LEMMA. f m is sufficiently large then there exist

-

sets D and W satisfving conditions 1), 2), 3),_and 4) of

Lemma (3.4).

It will be convenient here to separate the arguments for

number fields and for function fields.
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§4. Proof of Lemma (3.5) for number fields.

(4.1) Absolute values. We keep the notation of 83 and

assume further that F 1is a number field, say [F:Q] = n = r, + 2r2.

If w e Sw then ] [w denotes the usual absolute value on

F =Ror € If w is p-adic then |

v denotes the absolute

l

value on FV normalized so that ]plw = p-l. We put

nw = [Fw: QWO] if w 1lies over the place wo in Q.

For any t > 0 we put

L, = {a ¢ Awl |a|w <t for all w ¢ Sw]
Clearly A = (_} L,. Further it is clear that L, = - L,  and
) t t t
>0
Lg e © Loy
(1)
Ls + Lt [on Ls+t
e
for s,t > 0. If a € F then N(a) = |N (a)] = | ‘ lal,~-
F/Q w
weS
1]
Since ¢ n = n we have
weS
(2]
(2) a € Lt ==-9 N(a) _<_ tn.

(4.2) PROPOSITION. There exist constants C,y > 0O depending

only on F such that if t > O satisfies
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5n/4 t3n/2

(3) C < 3% < N(v) <y

then D = L

t/2
and 4) of Lemma (3.4).

and W = L, 3/2 N U satisfy conditions 1), 2}, 3)
t

It is clear that this proposition implies Lemma (3.5).
In fact making m large is equivalent to making N(v) large,
and, for sufficiently large values of t we have 3nt5n/4 < Yt3n/2
so that a t satisfying (3) can be found provided that N(v)

is sufficiently large.

The rest of this 8 is devoted to the proof of Prop. (4.2}).

(4.3) parallelotopes: the constants C and y. We recall

some classical facts (see Lang, [6], Ch, V). If a = (aw) is

an idele of F we put

n
o = TT o | ¥,
w w
wi{a )
w
o) = P,

w£S
® wla )
a fractional Am-ideal of norm N{ M(a)) = I! N(w)
wh

-1
= ’rT- law‘w Y . Thus
wts”
(4) laf = foff - §¢OUa)) ™
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n
where “a”w = 1—T ]aw]ww . The parallelotope defined by o
wssoo
is

L{a) = {a € F| ja{w < la,l, for all w}.

For example if s > 0 then LS = L{a) where aw =8 if w € Soo

and o, = 1 otherwise. In this case ol = s". put
r r
B = 2 t (2m) 2
- 1/2
jal

where d 1is the discriminant of F. Then (Lang [6], Ch. Vv,

§2, Thm. 1)

(5} Card L{a) = Bna}} + O(iganl—l/n)

i

as |lall » ». Fix some constant c1 so that ClB > 1. Then (5)

implies that there is a constant 02 > 0 such that

card L(a) > Czluau whenever

(6) el > C,- 1In particular
-l n n
Card Ly > Cy s if s > Gy
Put
03 = max (Cl’cz)
(7) T=s ulwgs | Nw < c3}
UT = AT

Since UT is a finitely generated group there is an S > 0

such that
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Un is contained in the group

generated by L - {0}.

We can now introduce the constants C and y to be used

for Prop. (4.2):

4

5/4 n
/’C

(9) c max(3“(2nc2)

~3/2

i

(10) y = (27cy)

——

(4.4) LEMMA. Let OC# 0 be an ideal in A_. Put

t = (N(O‘L)'C3)l/n. Then there is an a2 # 0 in L, N o .

Writing Awa = OLL“ ,_the ideal Xyﬁ Aeo is in the ideal class

of 0‘L"1 and has norm N(f)’) < C,.

Choose an idéle o such that a, =t for w ¢ 5_ and
Jl{a) = JL. Then it is clear that Lt n L= L{a). Moreover

we have from (4) that | = " N({?{)'l =c, = max(cl,cz) . It

follows therefore from (6) that Card (Lt naoty > HGHCII

= CBCI1 > 1, whence the existence of a # 0 in L.n ar .- We

then have, by (2) N(Jr) c3 = t" > N(a) = N{JL)N( &), whence the

other assertions of the Lemma.
Since every ideal class of Aoo has an integral representative

of norm ¢ C_, it follows that A is principal,and hence A = A

3 S

is principal if S » T, for example if
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(11) Cy < N(v).

We record this conclusion

(12) condition (ll) implies

that A is principal.
(4.5) LEMMA. Assume (11) and

(13) sg < N(v).

Let t satisfy

(14) N(v) < Tt 372

3
Then W =1L N U contains 1 and generates U.
2060 t3/2 £ontains ana generates

n

N d
0 < N(v) an

The non zero elements of Ls have norm < s
0

hence belong to U. Since t3n/2

t3/2 > so 8¢ the group V generated by W contains that

> CBN(V) 2 N(v) > sg we have

generated by Ls -~ [0} which, by construction of g7 contains
0
the group UT' Recall from above that AT is principal. Moreover
condition (11) implies AT < A so that U is generated by UT
together with generators , of the principal ideals PwAT {(w e S=-T).
It remains therefore to find such generators T in W.
1/n

Let w € S - T and put r = (N(w)c3) . Then Lemma (4.4)

suppli es an element m, # 0 in Lr n Pw' We claim nwA and hence

T’
/n 3/2

n_ € U. Once this is shown, the inegqualities r < (N(V)C3)l < t

w
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(see (13)) further imply that n, € W, so the proof of Lemma (4.5)
will be complete.
. n
Put "wAm = Pw[7t. Since N(nw) <r = N(w)CB, we have

N(JD) < Cy, whence OtA, = A,, SO ™Ay = PA

o - Wi as claimed.

Proof of Prop. (4.2). With C = Max(sn(z“c2)5/4, Cys 5

3’
as in (9), and y = (anB)—3/2 as in (10), condition (3) of

Prop. (4.2) implies the following inequalities:

(a) C < N(v)
(b) 30 5% N
(c) N(v) < vy t3n/2

We shall prove Prop. (4.2) by deducing conditions 1), 2}, 3)

and 4) of Lemma (3.4) from (a), (b), and (c).

{a) and (e} = 1). We must show that (Card D)3/2 > N{v)

where D = Lt/2' Conditions (a) and (c¢) easily imply that

(t/2)n > Cz. It follows therefore from (6} that Card D > CIl(t/Z)n.

The latter dominates C;l(t/2)n = y2/3tn. Thus (a) and (c¢)

imply (Card D)3/2 > yt3n/2 > N{(v), which proves 1).

{(b) = 2). We must show that E = [d -~ d* ] 4,d' ¢ D, d # 4"}
is contained in U. It suffices to show that, for e € E,

< L, so N(e) < " which,

F Lo ©

N{e) < N{(v). In fact E Lt/2

by (b), is < N(v).
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{(a) and {c) = 3). Condition 3} is just the conclusion of

Lemma {4.5). The hypotheses of Lemma (4.5) are (11) and (13),
which both result from (a), and {(14), which is a consequence

of {c).

b) = 4). Let el,ez,eB,e4 € E Lt and w e Wc L

t3/2

Then x = e + e, + e, € L3t’ y = e.e €L and

€1%2 ~ ©3%4 2t

2 =ew-e_, €L It follows that

1 2 t5/2+t

5
N(x) < 3%, N(y) < "% , N{(z) < (t /2, g) "

Condition 4) follows therefore if we know that 37" < N(v),

n 2n
t

2 < N(v)z, and (ts/2 + t)n < N(v)z. The first two

inequalities are immediate from (b). Since (for t > 1) we have

ts/2 + t < (21:)5/2 the third inequality results also from (b).
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85. Proof of Lemma (3.5) for function fields.

{(5.1) Degrees. Let F be a function field with finite

constant field k = Iq, and genus ¢g. For each place w of F
we put

deg(w) = [k(w) :k]
so that

- qdeg(w)

N{w) = Card k{w).

Changing notation slightly from 83 we shall write v, in

place of v so that

l’
A = {a e F | w(a) >0 for all w # vw].
The place v has smallest possible degree.

dw = deg(vm).

The w's different from v, correspond to the prime ideals Pw of

Aw. We define deg((l) for a fractorial Am~idea1 JU so that
deg ({L
In particular this defines deg(aAm) for a € F*. If t € R we put

(1) Lt = {a € A ] a=0 or deg(aAm) < tdw}.

N that =U .
ote a Aoo £50 Lt

The notation v,S$,A = AS, U = AS’

.

s* =5 y {v}, ete.

retains the meaning given it in 83.
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(5.2) PROPOSITION. There is an integer s, € % depending

only on F suchthat if

(2) deg(v) > SOdoo

and if t € T satisfies

d

(3) 2 ta_ - %{q—l) + == < deg(v) < ';‘(tdm - (g = 1))

5
4 2

then D = Lt and W = Ls N U satisfy conditions 1), 2), 3) and 4)

of Lemma (3.4), where s _is defined by

3 1
(4) sa, =5 td_ -~ S(g-1) +d_.

oo

To deduce Lemma (3.5) from this proposition we need only
verify that, when N(v), or, equivalently, deg(v), is sufficiently
large, then a t € Z satisfying (3) can be found. Condition (3)

can be transformed into

(5 2degv) + (g-1) < ta < L(4deg(v) - 2a_+ (5 - 1)

Putting deg(v) = 6(g - 1) + 3doo + e condition (5) takes the form

2 4
(6) 5(g-1)+2dw+§e < td_ < 5(g—1)+2d°°+~5-e

Therefore there is a real solution for t as goon as e > 0,

i.e. as soon as deg {v) > 6{(g~1l) + 3dm. To obtain an integer
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solution, however, we require the difference, e, of the right

2
15

and left sides of (6) to be > da_, i.e. e 254, i,e.

(7) deg(v) > 6(g-1) + 1ld_.

Thus Prop. (5.2) implies:

(5.3) THEOREM. Assuming

(2) deg(v) > sod°°
and
(7) deg(v) > 6(g-1l) + lld°°

the homomorphism

St s
3, Ky F/KF — Kk(v)
is an isomorphism.

(5.4) Divisors and Riemann~Roch. The degree of a divisor

D=g% n W of F is ¥ nwdeg(w). The divisor (a) = & w(a)w
w w w

. . wia
of an a € F has degree zero. Since aAco = l i P (@) we see

w;évco
therefore that

(8) deg(aAm) = —vw(a)dOo

For any divisor D = ¢ n W
w

L (D)

{aeF | (a) »-D) u {0}

{aer | w(a) >-n, for all w}

is a k-module whose dimension
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JZ(D) = dln‘ﬁ{L (D) 3y

is finite, and zero if deg(D) < 0. Note that L(D)-L(D")
c L(D + D').
The Riemann-~Roch Theorem (see, for example, Serre [11],

Ch. II, noﬁ, Thm. 3) asserts that
(9) L{D) ~ 4(K-D) = deg(D) + 1 - g,

where K is the canonical divisor of F. Setting D = 0, and
noting that L(0) = %k, one finds that 4{(K) = g. Then taking

D = K one finds thag deg(K) = 2g -~ 2. It follows that:

One has £(D) > deg(DP) + 1 - g,

w—

(10)
with equality if deg(D) > 29 - 2.

It is known {(cf. [15], XIII, 12, Cor. of Thm. 12) that there
exists a divisor D of degree 1. Then (gD} > g+ 1 - g =1,
80 there is an a # 0 in L{gD). Then (a) + {(gD) is a positive
divisor of degree g, so there exists a place w (in its support)

’

of degree < g. It follows that

d < g.

o =
Let t € R have integral part [t]. Then it follows from

(1) and (8) that
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(11) L, = faen | v (a) 2 -t}
= {a ¢ A_ | vm(a) >-[t]}
= L{[t]ve)

Putting

Jlt = dlkat = z([t]vm),
it follows therefore from (9) and (10) that
(12) L, 2 [tld_+ 1 - g, with

equality if [t]d_ > 2(g-1).

(5.5) LEMMA. Let { # 0 be an ideal of A . Let s bhe

the least integer such that sdoo > deg((t) + g - 1. Then there

isana#0inL_ ndt. We then have an_ = Ot X-, where Xr is in
the ideal class of 0(,-1, and deg(fy) <g-1+4d.

Clearly L_ N 0t = L(D) where D = sv, - T nw with
w;év°°

& = l I P:w. We have deg(D) = sdoo - deg{t) > g - 1, so
wHv
o
£(D) > deg(D) + 1 - g > 0, whence the existence of a. We

then have sdoo > --vm(a)d‘>° = deg(aAw) = deg(0() + deg(Z}), so

deg (Kr) < sd_ - deg(M) < g -1+ d_. This proves the lemma.
We now introduce

T={Vm}U{w;£v°°|deg(w)sg-l+dm]
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kS
]

T {a e F | w(a) >0 for all w £ T}

UT = AT

The group UT is finitely generated so there is a constant

50 € T such that

(13) Un is contained in

the group generated

by L - {0}.
%0

This is the constant S5 which appears in Prop. (5.2) and Thm. (5.3).

Lemma (5.5) implies that AT is principal, and hence that

A is principal if T c S, for example if

(14) g-1+4d < deg(v).

We record this conclusion:

(15) Condition (14) implies

that A is principal.

(5.6) LEMMA. Assume

(2) sod°o < deg(v)
and
(14) g-1+4d_ < deg(v)

Let t € R satisfy
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(16) deg(v) <3 (td_ - (g - 1)

and define s by

3 1
(4) sd = z-td°° - 2(g - 1) + dw.

oo

Then W = Ls n U contains 1 and generates the group U.

Condition (14) implies that T < S, and A_ is principal.

T

Hence U is generated by UT together with elements Ty € AT

such that "wAT = PwAT one for each w € S = T. In view of (13)
it suffices therefore to show that (i) Ls - {0) c W, and

0
(ii) the elements U above can be chosen from W,

Proof of {i). 1If a € LS - {0} then deg(aAm) < sod°° < deg{v),

0
by (14), so a € U, It further follows from (16) and (4) that

(17) sd

2ea - (g-1) + (g-1) +a

v

deg(v) + g - 1 + dOo > deg(v)
so that s d <« sd , whence 2 ¢ L . Thus a ¢ L NU = W.
0 o o s s

Proof of (ii). Let w € S - T, and define s, € Z by the
inequalities

deg(w) + g - 1 < s d < deg(w) + g =-1+d.

Then Lemma {(5.5) furnishes an element T, # 0 in LS n Pw’ and
w
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nwAoo = PWO(, with deg{0L) < g - 1 + d_- The latter inequality

implies that GLAT = A, and so 7 A

= A . ix
T T Pw Since w € S we have

T
m, € U. Finally deg{nwAm) < swdoo < deg(w) + g - 1+4d_
< deg(v) + g -1+ d,<sd_, by (17). Thus M, € Ls nu =w,

so {(ii) is proved.

Proof of Prop. {(5.2). We assume (2), that t ¢ I satisfies

(3), and that s is defined by (4). Note that (3) is the

conjunction of

3
! — - -
(16) deg(V)<2(tdw (g - 1))
and of
d
5 1 o
(18) deg(v) > 'thoo - Z(g - 1) + )
Put D=L, E={d-d' |dd" eDandd#d'}=1_- (0],

and W = LS N U. We must verify the conditions of Lemma (3.5):
1) 3 dim D > 2 deg(v)
2) EcU
3) 1 €W and W generates U.
4) if €1s€,,€5,€, € E and w € ¥ then

() N(el + e, + e3) < N(v)

2

(ii) N(ele2 - e3e4) < N(v)2

(115) N(ew - e) < N2 .

16) ' » 1). We have dim D = zt. By Riemann~Roch (see (12))
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zt > tdoo + 1 - g, since t € Z. Thus 1) follows from (16)°'.

3) = 2). Comparing (16)' and (18) one obtains

t:do° > 5{(g - 1) + 2dm. This together with (18) yields
{(19) deg(v) > tdco + g -1+ dm.

Let e ¢ E ¢ Lt' Then deg(eAm) < tdoo so {19} implies deg(eAw)

< deg{v). Thus e ¢ U as claimed.

(2) and (3) = 3). By Lemma (5.6) above 3) results from

(2), (14), and (15). But (3) = (15 ' = (16), and (3) = (19),

as we saw above, and (19) = (14) clearly.

4y . i
3) = 4 Since ey + e, + ey € Lt’ e e,

€ L,t,

€3¢, € 1y

and ew + e, € Ls+t it suffices, in order to prove 4), to verify

(i) * tdco < deg{v)
(ii) ! 2tdoo < 2 degl{v)

(iid) (s+t)dm < 2 deg(v).

Now (i)' and (ii) ' follow from (19) which, as we've seen,

follows from (3). By (4) we have i(s + t)d = 2 td - L(g—l)
a 2 o0 4 o 4

53 , and (18) asserts this is < deg(v).

+

This completes the proof of Proposition (5.2).
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Appendix

by John Tate

In this appendix we compute the “tame kernel” HQF, i.e., the

kernel of the map
(s )
Kp ——— K (v),
for the first six imaginary quadratic fields F, i.e., those with
digcriminants d = -3,-4,-7,~8,-11, and -15, For these d's, the
result is that H,F = 0 for d 4 1 (mod 8), and H.F is of order 2,

2 2
generated by z(—l}z, for d = 1 {mod 8).

The proof of finite generation of H_F given in Ch. II gives a

2
method for computing generators for it in a finite number of steps,
but the number of steps is quite large because the actual value of
the m in Theorem 1.1 which one gets by the general methods of B4 is
large. But for the fields considered here one can use Euclidean

Algorithm type techniques to get a reasonably low value of m in

Theorem 1.1. For whatever value of m is obtained, we have

HF = Ker(x T —-————<—a—)————-> 11 x (v))
vES S0

and we can make a list of generators (approximately %mz of them) for
szF, and then try to find relations among them. If we find enough
relations, we are done {using the "wild" 2-adic Hilbert symbol to
show that ‘ﬁ(—l)2 # O when 2 splits, i.e., when d = 1 {mod 8)).
This is our approach, except that we guote a theoretical result,
Proposition 3 below, which can be used to cut down on the amount of

computation needed. However, except the last case, d = -15, we
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include computations which make Proposition 3 superfluous.

Our assumptions and notations are as in 83 of Ch. II. The first
result concerns an arbitrary global field F. Suppose the ideal P
is principal; say P = TA., We can then consider (for n = 2) the

commutative triangle on p. 58:

where a(u) = £(u)4(7) (mod K>

2(F)), and B8(u) = u{(mod M) for u € U,

the group of S-units.

Let Ul denote the subgroup of U generated by (1+7U0) N U.

Proposition 1: Suppose W, C, and G are subsets of U such

that
(1) wc CU1 and W generates U.
(2) cc © cu, and B(G) generates k°.

(3) 1€cﬂxerBCUl.

Then BV is bijective.

Since B(G) generates k', the map B is surjective. As proved

on pp. 58, 59, the map a is surjective, and Ul C Ker o C Ker B.

Hence it will suffice to show that Ul = Ker B. Since Ul < Ker B,

condition (3) implies cu, N Ker B © U,, and so we will be done if

we show U = CU.. By (1) this will follow if CU

1 is a subgroup of U.

1

= -1

Hence we are reduced to proving (cu.)(cu ccu,, i.e., cC T ccCU

1 1 1’

By induction from (2) we have c¢" cu, for n > O, hence we have
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only to show that for any ¢ € C there is an n such that c_l € GnUl.
Let ¢ € C. Choose gys+++»9, € G such that B{c)—l = B(gl)-"B(gn).
Choose c' € C such that cgl---gn € c'Ul. Then by construction,

c' € Ker B, so c' € Uy, and so c—l € g,°++9,U; as was to be shown.

Now suppose F is an imaginary gquadratic number field. Choosge
an embedding F © @, and for each a € F, let a denote the conjugate
— 2
of a, and |a| = (a3)¥? = (ya)¥

Na) its absolute value. Recall that

A, denotes the lattice of integers in F.

Lemma 1. Suppose a,b € U NA_ and J|a| + [b] < Nv. If

B{a) = B(b), then a = b (mod ul).

This is just a special case of Claim 2 on p. 63. For each

t>o0, let B = {a €ag|lal < t].

t
Proposition 2: Let r,s,t > 1. Suppose

{a) B_ N U generates U.
o (@) s +r < Nv,
{(p) B(B_ NU) = k".
s (e) s + st < Ny,
(c) B(BtﬂU) generates k°,

Then Bv is bijective.

Let W = Br nu, ¢= B nu, G = B, N U and apply Proposition

1. Given w € W, choose c € C with B(c) = B(w). Then w € cu,
by Lemma 1, because |c| + |w| < s+r < Nv. Given c € C, g € G, choose
c' €c with 8{c') = B{cg). Then cg € c'U, by Lemma 1, because
leg] + le'| < st + s < Nv. Given c¢ € C such that B(c) = 1, then

c € U, by Lemma 1, because le] + {1] < s+l < s + st < Nv.
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Let d Dbe the discriminant of F. The ring of integers A, 1is

a lattice in € with Z-base 1,0, where

-151:1- if 4 even,

2

% +-ij[:[~ if 4 odd.

ST
+
1

ST
+

he
[}

-

if 4 even,

4
Y:
% + g ;1 5 , if d odd.
Let B denote the distance from Y to Aoo‘ Then
dl+4 , if 4 even,

62 =

(d+1)2

1813 R if 4 odd.

As the following table indicates,

| -> ] -4 1-7]-8]-11]-151-19 ] -20 |

2 | 2} 3
1| 15| 19| 2

ot

there are five fields for which & < 1., These are the imaginary
quadratic fields in which the norm furnishes a Euclidean Algorithm,
i.e., in which, for given a,b € A, with D 4 O, there exists

q € Ay, such that l% - q‘ < 1, hence J|a - gb| < |b].
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Lemma 2. Suppose 6 < 1. Then 6v is bijective if either one

of the following two conditions holds

1/2 2 5
/ V2

1-8

(1) (nv)

> 1+ 5 and  (Nv)

)1/2

(ii) (Nv)l/2 > 1+ 5 and  (Nv > (1+|g|)8 for some

primitive root g €& A, for v.

1/2 1/2

Apply Proposition 2 with r = (Nv) s = B6(Nv) , and with

t = s (resp. t = |g|) in case (i) (resp. in case (ii)). Since F

is Euclidean, A, is a P.I.D. Let T be a prime element in Ay

corresponding to the place v. Then |T| = (Nv)l/z. Division by T

o

with remainder of absolute value < 8|7| = s shows that the residue
classes {mod M) are represented by elements of B, and any non-zero
element of By is in U, because s ¢ Im|, Also, U is generated by

roots of unity and by prime elements u; of A, such that |ui| <,

i.e., such that u, € B_.
i r

We are now ready to compute the tame kernel H2F for some

imaginary quadratic fields F with low discriminant. In several

cases, relatively little computation is needed to show that HEF

has no elements of odd order, whereas to analyse the 2-primary part
of H2F by the same direct methods is a more tedious job. Thus the

following fact saves some computational effort.
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Proposition 3: Suppose F is an imaginary quadratic field of

discriminant d, with [d] < 35. If 44 1 (mod 8), then H,(F) is
of odd order. If d =1 (mod 8), then the 2-primary part of HQ(F)

is of order 2, generated by z(-l)g, and is mapped isomorphically

onto the group (+1) by the "wild" Hilbert symbol at one of the

primes above 2.

Every ideal class of F contains an ideal of norm g\/T5T7§.
Hence, if |d}] < 27, or if d = -1 {med 3) and |d] < 75, then the
primes above 2 generate the ideal class group of F. We now show
that Proposition 3 holds even with the hypothesis |d| < 35 replaced
by the hypothesis that the primes above 2 generate a subgroup of odd

index in the ideal class group of F.

An element of order 2 in K F is of the form t{-1)2(a), with
a € F', and the a's for which #(-1)t{a) = O form a subgroup A of
F® in which (F')2 is of index 21+r2’ where r, is the number of
complex places of F. This much is true for any global field; for
a discussion, unfortunately without complete proofs, see
{14, pp. 209-211]. For 4(-1)Z(a) to be in the tame kernel is
equivalent to v(a) being even at all finite places v not above 2,
for at such a place we have BV(L(-l)z(a)) = (_1)v(a)' From our
hypothesis on the ideal class group, it follows that if £{-1)4{a)
is in the tame kernel, then a € UF'Q, where U is the group of

s{(2)-units, S{2) denoting the set of primes above 2. Thus the map

u+—> £(-1)£(u) is a homomorphism of U/U2 onto the group (HEF)E
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of elements of order 2 {or 1) in HQF, and its Kernel is of order
r,+r +m

. The order of U/U2 is 2 172 ) where r, is the number of

2l+-r2

real places above 2. Hence, under our hypothesis on the ideal class

1

_ r, o~
group, (H.F),. is of order 2 1 , for any global F.

2 )2

In case of an imaginary quadratic F, this order is Qm-l and

is 1 unless 2 splits, in which case it is 2, Suppose 2 splits
(i.e., d =1 (mod 8)), Then the completion of F at a prime above
2 is isomorphic to Qg, the field of 2-adic numbers, and the Hilbert

symbol on @, gives a homomorphism K —> (+1) carrying z(~l)2

2 T2
to -l. Thus, l(—l)2 # 0, and hence 2(-1)2 generates (H2F)2.
Moreover, since 2K2F is killed by the 2-adic Hilbert symbol, there
is no element x € KQF such that Z(—l)2 = 2x; in particular, the

2-primary part of H_.F has no element of order 4.

2

Remark: For d = -35, the situation is definitely different.
The elements -1,2,5 € F° are independent mod(F')2 so they cannot
all belong to the group A, in which (F')2 is of index 4. Of course
)2

2 € A. Hence, two of the three elements 4£(-1)°, 4(-1)4(5), and

£(-1)4(~5) are non-zero, and one of them is zero, in KF.

(Exercise: which one?). But those elements are in HQF. Hence
HF 4 0 for @ = =35, even though there is no wild local symbol
showing this; @( /-35) is a field with an "exotic" symbol. The

case d = ~35 is almost certainly the first such case occurring among

imaginary quadratic fields.
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Let us now treat some individual imaginary guadratic fields,

in order of increasing size of the discriminant, 4.
d= -3

Here the smallest value of Nv is 3, and § = l//?. By Lemma 2, Bv

is therefore bijective for every v, because

/3+1
o ~%§5 < /3.

B = _—
1+ /3 <\/§ and >

It follows that the tame kernel H2 is equal to K2OO and is

generated by L(C)Q, where { 1is a primitive 6-th root of unity,

_l) = —E(C)Q. Hence H_ = 0.

Since C+C“1 = 1, we have 0 = £{L)(¢ 5

d = -4

Here 5 = 1//2. By Lemma 2, BV is bijective for Nv > 2, because

after 2 the smallest value of Nv is 5, and

1+ 5= —iﬁZti < V@i, and ——3%5 = /2 ¢ /5 .
Y2 1-6

Hence the tame kernel H2 is generated by the following three
elements, each of which is 0.

2(1)2 = 2(-1)4(i) = 2(1%)8(4) = 24(1)°

L{(i)4(1-4) = 0
)2

4(1-i 2(-1)2(1-i) = 2(i°)2(1-1) = 24(i)2(1-i) = o.

[}

H = 0O,
Thus 2 O
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d= -7

In Q(/:?) the primes 3 and 5 are undecomposed. Hence the smallest
value of Nv after Nv = 2 is Nv = 7. Trivial calculation with

6 = 2/Y/7 shows 1+6 < /7 and 6/(1—52) < /7. Hence, by Lemma 2,

av is bijective for Nv > 2. There are two places v with Nv = 2,

corresponding to the prime elements

u = liézz“ and Te VT g

2 2 '

Hence the tame kernel H, is generated by the elements t(a)4(b) for

a and b running through the set {~1,u,u}. But z{u)t{u) = o,
because u+u = 1, and
2
)

o(-1)%, 2(w)? = 2(-1)2(u), anda  4(@)% = 2(-1)%(F)

are all killed by 2, since (-—l)2 = 1. This shows the tame kerhnel
H, is killed by 2, and is therefore of order 2, generated by E(-l)%

by Proposition 3. Of course the fact that H2 is not trivial follows

from the "wild" 2-adic Hilbert symbol; it is mainly to show that H2
is not of order greater than 2 that we are appealing to the
Proposition 3. However in this case it is not too difficult to give

a direct proof of the latter fact, as follows.
The eguation 1 = ~u-32 shows
0 = £(~u)t{~u®) = £(-1)° + 2(uw)2(-1) + 22(-u)2(u)
and since 24(-u)#(u) = 0, we conclude that

z(~1)2 = s{u)2(-1).
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Since ~142 = 1, we have
0 = 4{-1)2(2) = 2(=1)2(uW) = 2(-1)2(u) + 2(-1)2{Q)

and consequently

2(0)° = 2(-1)2(u) = £(-1)4(T) = &(@)°

and this element is equal to z(-l)2 by the preceding relation.

Thus, H, is indeed generated by one element.

2

da= -8

Here A, = Z[y-2]. A list of prime elements of A, in order

of non-decreasing norm begins

ul = /=2, u2 = 1 + /=2, u5 = 1 - /=2,

S8ince 5 and 7 are undecomposed, the next value of Nv is

11 = N{3+/-2). Using & = —zg , we find by Case (i) of Lemma 2
that SV is bijective for Nv > 12, and by Case {ii), with the
primitive root g = 2, that it is also bijective for Nv = 11.

Using Proposition 1 with the sets

W = {—l,ul} or {—l,ul,ug}
¢ = {1,-1}
G = {-1}

one can show that Bv is also bijective for Nv = 3, For example,
if 8 congists of SC‘D together with the two finite places corres-

ponding to the prime elements u, and u and i1f v is the place

1 27
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corresponding to u3 = T, then
U 1is generated by -1, ul, and us.
The set U, contains u, = 1+u 7 and -u, = l+u u,7, Hence, the
1 1 o 2 o'l
generators for U are clearly in CUl’ if ¢ = {1,-1}. And with
G = {-1} we have CG C cu, (even ¢G < C). Also

{Rer B) Nc = {1} c v,

It follows that H, is generated by the elements J&(-l)2 and

E(-l)t(ul). Consequently 2H, = O and we can use Proposition 3

to conclude that H2 = 0,

0f course, a direct proof can also be made, and we shall give
one below, For such computations we have found it convenient to

use a shorthand notation which we now explain. We let

-1 = uo’ul’uz’uj""

be a sequence of elements such that, for each m, the set

(ui), 0 ¢ i < m, generates the group of Sm-units, where §_

consists of v_,v.,.++.,v , the v. Dbeing a list of all finite
o’ 1 m i

places, with Nvi < Nvi+l as in 81, These generators ui determine

elements Z(ui)ﬁ(uj} in K.F which we abbreviate as follows,

2

(ij) = £(ui)£(uj) s and

(i) = (ii) = 4(u

We shall use without comment the obvious relations
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2(i) = o and (ji) = ~(ij) .
Sm
Thus, for each m, K2 (FP) is generated by the elements
(13) 1<i<jgm,
and
(1) 0gigdm,

the last m+l of which are of order 1 or 2.
For example, in @{ ,/-8), with

u, = -1, u, = /=2, u, = 1+/~2, uy = 1-/-2 ,...,

as above, we have shown via Propositions 1 and 2 that the tame

S

kernel H, is K21(F) and is therefore generated by (0) and (1).

From Proposition 3 we know that these elements are O, We now prove

this directly.

uy Uy = 1= (13} =0

uguy ot u, = 1= (2) + {12) = o, i.e., {(12) = (2)
2 . 77~y =~ 1

u  +uu s l= (o) + 2(1) = o, i.e., {(0)=0

uouguz2 + uou3u12 = 1=>(0) + (3) + (2) + {(23) + 2{12)-2(13) = O.

Combining this last relation with those previously obtained, we £find
(23) = (2) + (3)
Finally,

L AT (0) + (1) + (2) = (3) - (13) - (23) = o,

which, combined with what we had before, shows| (1) = O l,
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Incidentally, the relations we have just obtained show that
53,0 . So, .
K, (F) is generated by (2) and (3) and that K, (F) is generated by
(2). This gives another proof of the fact that Bv is bijective for

v o= v2,v3, i.e., for Nv = 3,

d= ~11
Here we can take
u = -1, u; = 1+ 2_11 s U, = l-ui = El’ uy = 2, uy = ls,,
u5 = 2--u1 = 54, ..
with
Nu = 1, Nul =3 = Nu,, Nu5 = 4 Nu, = 5 = Nus.

We claim av is bijective for every v! For Nv » 25 this follows from
Case (i) of Lemma 2, becaﬁse 5 = 3//11 and 5/(1-52) = J/99/% < 5.
The only values of Nv such that 5 ¢ Nv < 25 are Nv = 11 and Nv = 23,
Case (ii) of Lemma 2 handles these cases, because 2 (resp. -2) is a
primitive root for 11 (resp. 23) and 36 = /B81/11 < /1i. For

v = v_ with Nv = 5 we use Proposition 1 with

5

W= {uo,ul,u2,u3,uu}, C = {uoul,uo,l,ul}, G = {ul} .

We have W < CUl because the elements u2--uo = u3-u1 = u5 and

u-uu, = 2+ y~1l have norms 5 and 15 whose prime factorizations

involve only primes < 5 and one 5. Similarly, GC C CU, because

2
ul --u0 = uou5 has the same property. For v = v4 we just conjugate
the above, after dropping Uy from W, For v = v3 we use
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W= {uo,ul,ug}, C = {l,ul,uoug}, G = {ul}

and have only to observe that uf?—u u, = uu,, For v =v we use

o 2 o 3 27

Proposition 1 again, with
W= {uoiul}; C = {l:"l}: G = {—l}

and for v = vy the same, after dropping uy from W,

S
It follows that the tame kernel H, is K2°°(F) and is therefore

generated by E(—l)z, the element which is denoted by (0) in our

shorthand notation. Thus 2H2 = 0, and, by Proposition 3, H2 = O,

To show (0) = 0 directly is tedious, but it can be done as

follows:
uo uul%
1= 254 °2=>(4)=2(2z;) + (0) === 4(24) = 0
u u
2 2
o Uy
l=a']-:+a';:=§ (l)'l’):(l*)
Yo Yy
1= 25 4 == (34) = (24) - (23) + (3)
3 >

1=u0+u}"~=é (3) =o0

1= ulugwouB‘—%(?}) = -(13) + (1) + (2)
u u2 u u

1= 22+ 22 5 (23) = 2(13) - 2(12) + (0) + (2) + (3).
ul ul

Subtracting, we get 3{(13) = 2(12) + (0) + (1) + (3)

l=u +u, = (12) = o .



Simplifying, we have

u
b2 s 4(13) - 2(14) + 2(34) + (¥)

(34) = (24) - 2(13) + (2) + (0)
(4) = (14) = 2(24) + (0)
(23) = 2(13) + (2) + (o)
(3) =0
(12) = o
Finally,
0.2 2
1

is a relation which, together

d

Here the class number is
u = =1 u =l—‘t_——-—'_15 u
fo ’ 1 2 ’ 2

We claim that 4H2F = 0, and hence, by Proposition 3,

order 2, generated by Z(-l)2

u, +u,u" =1 == (1) + 2(12) = 0 == 4(12)

we have 4K;;F = 0 if S consists of the two primes of

prove our claim, by showing H2F c KQSF, we have only

Bv is bijective for Nv > 2.

TT:u
3 and

0,

Al5

(1) + (o)

with those already obtained, implies

2.

= 2,

For

d= -15

We take

U3

Since
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=
!

-1
{uo,ul,ugul I, €= {uo,l}, G = {uo}.

For Nv = 5, use T = uy and

=
1

{uo,ul,uz,uB}, C = {l,ul,uo,uoul}, G = {ul}.

After 5, the next values of Nv are 17,19,23,... and we look

for a general method to handle them.

Lemma 15.1. 1Let Q = (2,ul) be the prime ideal such that

NQ = 2 and (u = Q. Given any z € C, there exists an element

q € ¢ such that }z—q}2 < 8/5.
Indeed it is easy to see that the point 1 + 4£§l2 is
maximally distant from Q, and that its distance is B/5.

Lemma 15.2. f M is a non~principal ideal every residue

class {(mod M) is represented by an integer c such that Ne ¢ (4/5)8M.,

2
- a|” < 8rs.

a-bg is the

Let M= DR, Let a € Ay, Let g € Q0 such that ’

lea i3

ft

Then bg € M, and |a-bq|® < (8/5)[p]% = (4/5)MM, so e

desired representative of the residue class of a.

Using Proposition 2, with & = (4/5)Nv and NC 2Nv, we can
now show Bv bijective for all v with Nv > 5 such that the
corresponding prime ideal P is non-principal. Indeed, U is
generated by integers u such that |ul2 < 2Nv, because as we choose

= Q, P_,P, e

generators ul,u2,~~- corresponding to primes Pl = Q, 92 3Py

we can take u; such that (ui) = Py if P, is principal and such that

(ui) = QP, if P, is not principal. Condition (8) of Prop. 2 is
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satisfied if (lt\Zv)l/2 > (R/S)l/2 + 21/2, so for Nv > 10. Condition
(e) is satisfied with t = s for Nv > 20, For Nv = 17, we can take

t = 3, using the primitive root g = 3 for 17.

To treat the v corresponding to principal P we use

Lemma 15.3. If (b) is a principal ideal prime te Q, then

every residue class (mod (b)) is represented by an element c € Q

such that {cfe < (8/5)Mb.
The proof is the same as for the preceding lemma, but starting

with an a € Q.

Suppose v corresponds to a prime ideal P which is principal

in A, s8ay P = (). Let us try to apply Proposition 1 with

=
#

fu €un Amllul2 < 2Nv}

{c €0

(e}
i

lcl? < (8/5)wv]) .

As discussed above, W generates U. We will have W C CUl by

Lemma 1, if (/2 + /8/5) < VNV , so certainly if Nv > 16.

Also by Lemma 1, we will have C N Ker B Uy if 1 + /(8/5)Nv < Nv,
which holds for Nv > 4. To continue, we need a slight generalization

of Lemma 1.

Lemma M1. Let F be an imaginary quadratic field. Let M be

rh

an ideal in the ring of integers of F, the prime factorization of

which invelves only primes in §. Suppose a,b € U NM and

la] + Ib] < Nv(NM)l/e. 1£f B(a) = B(b), then a € bU, .
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Let P be the prime ideal corresponding to v. We have
a-b € MP and N(a-b) < ()a{+}b{)2 < (NP)QNM. Consequently
(a=b) = MPL where L is an ideal with NL < NP, whose prime factors
are therefore in 8. It follows that a-b = Tu with u € U, hence

{a/b) = 1 + mlu/p) € (1+U) NU < ;-

Using Lemma ML, we see that if g € U and Nv > (4/5)(fg|+1)2,

then gC C CU indeed, given any ¢ € C we can choose a c¢' € C such

13
that B8(c') = 8(gec), and then gc € c¢'U, by Lemma M1 because

ge-c' €Q and |gc| + |c'| < (lg}+1) /(8/5)8v < /2 Nv. This
takes care of the cases Nv = 19 and Nv = 31 because 2 (resp. 3) is
a primitive root for 19 (resp. 31). The remaining principal prime

ideals have Nv > 40 {the next two cases being Nv = 49,61}, and they

are all taken care of by the fact that 02 c CUl if Nv > 40, Let

€ C. Choose ¢ € C such that B8(2)B(c) = B(clcg). By

. 2
Lemma M1, with a = C1Cns b= 2c, M= Q , we conclude ©;% € 2cUl,

if Nv > 40; and we have seen just above (with g = 2}, that

01,02

<
2cU1 CUl.
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On the Quaternion Symbol Homomorphism
8p! k2F —s B(F)

Richard Elmen snd T. Y. Lam'

1. Introduction and terminology

In this short note, several sufficient conditions are

obtained for the map 8p in the title to be injective.

Throughout this work, F denotes a field of character-
istic not 2; B(F) denotes the Brauer group of F, and kF
denotes Milnor's K F modulo 2 (see [9]). The pairing

(a,b) +—> the quaternion algebra (aﬁb) (a,b e F=F-{0})

is c¢learly a Steinberg symbol Fx ?-w—aB(F), so it induces a
homomorphisn Bp: keF——e»B(F), by the universal property of

k-F. The following question then arises naturally:

Ql: 1Is By 2 monomorphism 7

After a slight reformulation, it will turn out that
Ql is completely equivalent to a question in the theory of
-quadratic forms over fields., Let W(F) be the Witt ring of
(non-singular) quadratic forms over F, and IF be the ideal
in W(F) consisting of all even-dimensional forms. In [9],
Milnor has shown that there exists a natural isomorphism

k2F = IEF/IBF. Under this isomorphism, a 'generator!

1). Supported by NSF Grant GP-2053%2 and the Alfred P. Sloan
Foundation.
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L{a){(p) e kS F (in the notation of [9]) corresponds to a coset
<l,~8,4~b,ab> + IaF. Here, the 4-dimensional form <l,-a,-b,ab>
is precisely the norm form of the gquaternion algebra QE§;1>,
and is a'2-fold Pfister form! in the terminoclogy of [5].
Recall that, in [5], we have introduced the notation <<ayyr v 98, >>

n
for the n-fold Pfister form ¢ = () <l,a;>. This notation will
i=1

be used freely in the sequel (though only for n < 3). Also,
following [21,[5], we shall always write ¢! for the 'pure sub-
form! of the Pfister form ¢; it is the unique form for which

<1>Lt @t = ¢,

From here on, we shall identify k,F with IEF/IEF, using
Milnor'!'s isomorphism mentioned above., Under this identifica-
tion, the map gp: IQF/IBF-~>B(F) is easily checked to be just
the 'Witt invariant! ¢ in [10]., Thus, Ql is completely equi-

valent to the following basic question investigated in [10]:

Q2:

a form qe 12F has Wittt invariant c(q) = 1 € B(F), does

Ll oy

follow that q € IJF ?

In this note, we obtain some evidence for the apparent
truth of QL and Q2. In Section 2, we establish a necessary
and sufficient condition for the sum of four 2~fold Pfister

forms to lie in I’F (Theorem 2,2), From this, we show that

five generators (Theorem 2.6). A consequence of this result

is Pfister's Satz 14 of [10] about Q2 (see Corollary 2.8).

The theorem is also applicable to local, global, and Ca-fields,
as well as fields F with tr. dp F <3 (Proposition 2.9), 1In
Section 3, we investigate the behaviour of the ideals I®

(mainly for n < 3) under a quadratic extension FcK = F(Va).
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It is shown that IF = O implies % = 0 {Corollary 3.5). This,

together with an inductive argument, shows that if IBF = Q

then gp is indeed injective (Theoren 3.10). It follows that,

for a field ¥, guadratic forms are classified by dimension,

discriminant, and the Hasse invariant iff IBF = 0, i,e. iff

four-dimensional forms of determinant 1 are all universal over

¥ (Theorem 3,11), In Section 4, we obtain some necessary con-

T
ditions for a = }{i E(ai)f(bi) to lie in ker (gF)-—-wnamely,
i=

we must have 2771 ¥ <<-a;,-b;>> ¢ I™FPF, and £(-1)¥"2.x=0 € k¥,
where t=2° (Theorem 4.1). In particular, if =12, k2F~>km+2F
is injective for all m 2 1, then 8p is indeed a monomorphism

(Corollary 4,2).

The beginning point of our investigation is the follow-
ing well-known result, which answers Ql affirmatively in case
every element in kEF is a sum of three generators. Our theo-
rems in Section 2 are, therefore, all generalizations of this

result.

“X: s
Theorem 1l.1. Suppose ]_Ti=l <——5%——i) = 1 <€B(F). Then,

(1) The form q = <<X, ,7,>>' | <=1><<x,,y,>>' is isotropic over F.
11 22

-X: 9=Y-
(2) <——5%——5>, 1<i<3, have a common splitting field I such that

[L:F:] s 20
(3) Zil L(-x)4(-3;) = 0 €kF.

This result was first proved by Pfister [10, P.124,Zusatz].
In [5,Theorem 6.,1(2)], we gave a slightly different proof.
Recently, a third proof using only the theory of algebras ap=-
peared in A.A, Albert's posthumous work [1]. For the sake of

completeness, we sketch below a quick proof of 1.l.
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Proof. Assume that q is anisotropic over F., Let K = F(V'XB)’
. 10N\ L (ZX . .
Since K = T sy 9 is clearly hyperbolic over

K (in particular, [K:F] = 2). By [11,P.52], we have g 2

<1,x3>»¢, where ¢ is a ternary form over F. ZEquating deter-
minants, we get ~1 = det q = x3e£P/F2, a contradiction to

[K:F] = 2, This proves (1), and (2), (3) follow immediately.
2. Sums of 4 or 5 Pfister forms

In this Section, we shall
(A) establish some criteria for the sum of four 2-fold Pfister
forms to lie in I’F (Theorem 2.2).
(B) show that, if every element in k,F is a sum of five gener-

ators, then Bp is injective (Theorem 2.6).

These results depend on the following lemma, which will

also be crucial for Section 3.

Lemma 2.1, If ¢ and t are 2-fold Pfister forms over F such that

q = @'l <-a>1! becomes isotropic over K = F(Va), then there

exist z,b,c,d €F such that ol <-a>1 & <<-a,z>>.L <b><<c,d>>.

Proof. CASE 1. q is isotropic over F.

In this case, ¢! and <a>t! represent some common element

~

c€F., Write ¢ = <<c,b>>, 1 ¥ <<ac,z>>, where b,z € F, Thus,

@ l<=a>r = <1,b,cb,-a,~az,~cz>1H ( H=hyperbolic plane)

we

<ly=a,z,~az>1 <b,~z,cb ,-cz>

"2

Kmd 22> 1 <b><<Le ,d>> where 4 = -bz,

CASE 2. g is anisotropic over F.

In this case, we must have [K:F] = 2, and, by [11,P.52],

~

q = <z><<-a>>i_ql, where zeIF, and Q4 is a 4-dimensional form
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over F. Bince det q = ~a, we have det q = 1, so we may write

a3 2 <b><<c,d>>, where b,c,d € F. We now conclude that

o

P Ll<=a>T = g L <<=a>> £ <<-a,z>> .| <b><Le,d>>, Q.E.D,

Theorem 2,2. Let 0y = <<Xy,73>>, 1<ich, and o=@y L <x3><p2_L

<-l>cp5_l_<y5>(p4. Then, the following statements are eguivalent:

(1) 6 = <b>.B ¢W(F), vhere be ¥, and B is a 3-fold Pfister
form over F.

(2) P10, Pz+y € 1’7,

(3) TTia (Tip) - 163, tee. (:’_‘LF"_LY)@(.'E%:&)

(‘Xa ) "&)8;("‘4 J ‘3'4)
F F

Proof. (1)=> (2) is trivial, since POtz = O (mod IBF).

ne

(2) =% (3). Identifying k,F with I°F/I°F after Milnor [9],
(2) implies that Z(-xl)é(-yl) + L (=x)4(~y5) = /f(-x5)f(-y5) +
Z(—x@[(-—;m)é k,F. Therefore, (3) follows by applying the
homomorphism gp: k,F —> B(F).

(3)==(1). Let X = F(\’-Xa)- Then, by (3), the K-algebra

X, 4= X535\ (X +=7,
(4%—1)69( & 2)@( e 4) splits. By Theorem 1.1, this

implies that, over K, tpl'_!_<x5>q>2' B (pl’_j_ <~1>¢,' is isotropic.

Therefore, by Lemma 2,1, there exists an F-isometry (pl_L <x§><p2

= <<x3,z>>_l_<b><<c ,d>>, where z,b,c,d e ¥, We have then

O = <b><<E,d>> + <Kx>>(<<E>> - <<yp>>) + <Y 5><<Ky 47, >>

= <D><C,d>> + <y5>(<<x4,y4>> - <<x§,—y3z>>)€ w(F).

- X2 =Ty\  [~Xz+T5Z
Applying gy and using (3), we get (_c_f\;d)@( 4; 4)(@( 5; 5)

= 1€B(F). Therefore, again by 1.1, we can write

<y5>(<<x4,y,+>> - <<x3,-y52.>>) as <b'><<e'!,d!>>, where b!,
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c!,d'e F. Repeating the same argument, we have (-cF,‘-d> o
- ! _
(c F,-dl) g <KC,4d>> = <e! yd!'>>, 50 0 = <b,b!><<c,d>> = <b>.§

€ W(¥), where B = <<bb!,c,d>>. Q.E.D.

Theorem 2.3. Let @; = <<X44F;>>, 1gig<5, and assume that

5 (X477 . .
ialTF /- 1¢B(F). Then, there exists an equation

(2.4) 0oL <30, _L<--l>q:'3 —L<y3>‘94 J_<-b><p5 = <<x5>>p. +q

in W(F), where b¢F, qe I°F, dim p = even < 4 and dim q = 8.

Proof. Let o = (pl_z_<x3><p2l<-l>cp3 _j_<y5>(pq_ (as in 2.2), and let
L= F(VIB). We have ]’T‘;l in’J'Vi) = 1€ B(L), so, by 2.2,

o, = <b>.f where b€ i, and B is a 3~fold Pfister form over L.
Observe that dim op = 16, and dim B = 8, By [11,P.52], we may
then write ¢ = <<x5>>y + q €eW(F), where v,q are forms over F,
with dim g = 8, dim v € 4. We may assume that v is even~dimen—
sional. [Indeed, suppose not {in particular dim vy £ 3). Write

q 2 <a>l ay» dim Q) = 7. Then, in W(¥),

[+]

KX>>Y + <ajaxg> + (<—ax5> + ql)

xS+ q

where ¥ = yil<a>, dim ¥y € 4, and q = <-ax5>_l_ql, dim g = 8 J.
<b>Lly,, dim y; = odd, b€ F. Then, in W(F),

ue

Write v

Q

- <1:>>q>5 <<x5>>(<b>_LYl) +q - <b><<x5,y5>>

<<x5>>p + q

where p = <-’oy5>_1_~(1 has even dimension £ 4. Since o, 95 and
<<x5>>u all belong to IaF, it follows that q€ I2F. QeE4D,

Lemma 2.5. Suppose a 2n~dimensional form n lies in IEF. Then,
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there exist 2-fold Pfister forms n.,--- Mg and scalars
Ne=

ayye-rs8y 3 €F such that q = Zi=1 <a;>n, € W(F).

Proof. Induction on n. We may assume n 2 2, since bthe case

n =1 is trivial. Write n = <a,b,c> 1lt, where a,b,ceF" and

"

dim v = 2n - 3. Thenn = niH = <a,b,c,abe> L (<-abe>Ll1) in
W(F). Since <a,b,c,abe> T <a><<ab,ac>>, and dim (<-abe>_L7)

= 2(n-1) , the induction proceeds. QeE.D.

Theorem 2.6, If o is a s of five generators in ng, and
gF(cx) = 1 €B(F), then o = O, In particular, if every element

in k2F is 2 sum of at most five generators,then 8p is injective.

. > .
Proof. Write « = Zi=l Z(-xi)é(-yi), 03 = <<xy,¥5>>, 1<K,
Then, we can apply the conclusion of Theorem 2.%. The 8-dim~
. 3
ensional form q there can be written as Zi:l <ai><<bi’°i>>’
according to Lemma 2.5, Reading the equation (2.4) in kF =
IaF/IBF, we see that a = Z(—xs)i(z) + Zi=lf(—bi)((-—ci)€ kF
for a suitable z€ F. Since o is now a sum of Jjust four gen~

erators, the desired conclusion follows from Theorem 2.2. Q.E.D.
Corollary 2.7. If |k,F| < 210, then g, is injective.

Proof. Every element of ng is a sum of 5 generators, by

[5,Corollary 5.71. Q.E.D.

Theorem 2,6 also includes the following result of Pfister:

< 12 such that q¢ I°F , and q has Witt invariant o(q) = 1€B(F).

Then q € I5F.

Proof. Let o be the element in k2F which corresponds to g under

453



8

the identification IZF/IBF = kyF. By Lemma 2,5, « is a sum of
five generators in k,F. Since gF(a) = ¢(q) = 1, Theorem 2.6

applies. Q.E.D,

For non-real fields F, let u(F) denote the maximum dimen~

gion of anisotropic (quadratic) forms over ¥, The above Cor-

ollary, therefore, implies that &p is injective for any non-

real field F with u(F) < 12. Explicit examples are: fields F

such that tr.d., F < 3, or tridep F g2 (both are Ca-fields).
q

We note also that Theorem 2,6 applies to fields like F =
Qp((tl))((t2))-——-every aeskzF is a sum of at most 4 generators.

For more examples, we record:

Proposition 2.9. Suppose F(Va) is a non-real field such that

u(F(Va)) < 8. Then, gp is injective. (This spplies,for
instance,t0 any field F with tr.d.p F < 3, on taking a = -1).

Proof. We claim that any anisotropic form w(EIeF can be
expressed as
(2.10) @ = % <X ><<=a, 7, >> L p € W(F)

o i i
where m > O, and p is some form (clearly in IEF) of dimension
£ 8. By Lemma 2,5, this implies that any element in ng is a
sum of four generators, and hence Theorem 2.2 applies. Since
u(F(Va)) < 8, we have an isometry ¢ T <<-a>>t Ly with dim g
< 8, by repeated applications of [11,P.52]. We may assume,
as in the proof of Theorem 2,3,that dim v = even. This proves

(2.10). Q.E.D.

Proposition 2,11, Suppose ¥ is a2 non-real field such that

u(F) < 8., Then Br(Va) is injective for all ac¥,
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Proof. By [7,Theorem 4.3], u(F(Va)) %«u(F) £ 12. Therefore,

the result follows from Corollary Z2.8.
%. Quadratic extensions

In this Section, we study the behaviour of the ideals i
under a quadratic extension X = F(Va)>F., Let r denote the
functorial map W(F) —> W(K), and let s, denote the transfer
map W(K) — W(F) induced by the P-linear functional s: K—> F
where s(1) = 0, s(¥a) = 1, We record the following two known

facts:

Proposition 3.1 (see [8,P.201]) If q is an anisotropic form

~

over F, then r*(q) is hyperbolic over K iff ¢ = <<-a>>-q; for

some form q, over F. If vy is any form over K, then s,(y) is

-~

hyperbolic over F iff v =¥ r*(q) for some form q over F. In

articular, the following sequence is exact:

4
0 —> <<=a>>W(F) —> W(F) —E 5 w(K) S ,w(F).

Theorem 3.2. (special case of [4,Theorem 42,9]) For any n > 1,

s, (I°K) < 177,

Putting together these results, we shall prove

Theorem 3.3. For any n » 1, we have a zerc sgeguence

>*
0 —> <<=a>>. 1% p 5 18 T, g _Sx 107,

= 1,2, this sequence is exact (I°F = W(F) by definition).

rxf
o
H
5]
1

= 3, it is exact except possibly at 1%,

}gi
5 |
B
)

Proof. The zero sequence is clear from 3.1 and 3.2 above. For

n = 1, the exactness follows trivially from 3,l. Suppose n = 2,
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and, say, q is an anisotropic form in IZF, r*(q) = 0. By 3.1,
q = <<---aa>>~ql for some form g, over F, If dinm a4y is odd, then
det q = det <<—a>>-ql = =a, contradicting g€ IaF. Consequently,
dim ay is even, and q € <<-a>>.IF, Next, suppose Y€ 12K and
s((¥) = 0. By 3.1, v ¥ <a),---,a, > for suitable ajeﬁ‘. Since
det v = (-1)™ over K, we must have (-—1)mal---a2n1 =1 or a,

up to square classes in P, In the first case, clearly
yer*(I2F). In the second case, y = r*(<aal,az,-n,agm>)

€ r*(I‘?F). Suppose now n = 3, and q is an anisotropic form in
IBF, r*(q) = o. Then, q ¥ <K-a>>.qq where dim qq = 2m for some
m. Write q; = <<(-1)2a>> + a5 in W(F), where d = det q; and
q2€I2F. Then q = <<-a,(-1)Td>> + <L=a>>.q, € 197 implies that
<<=a,(-1)%a>> ZE, by the Hauptsatz of [2]., Now we have ¢ =
<L=a>>e Qp € <<=a>>. IEF. QeELD,

Proposition 3.4. If Y€ I’K is 8-dimensional and s, (v) = O,

then there exists quBF such that r*(q) = vy. (In particular,

if X is non-real and u(K) < 8, then the sequence in 3.3 is

exact also for n = 3),

Proof. By the proof of 3.3, there exists an 8-dimensional form
q; € 1%F such that r*(ql) ¥ yv. According to Lemma 2.5, we may
write Q) = 24 <x;><<a;,bi>>, x;,a;,b; € P, 1<ig3. Let a =
<<ay 3By >> L <-a><<ay ,by>> L <e><<ay 2D3>>, where e €F is to be
specified. Since aQ = q (mod. IBF), we have r*(qz) = r*(ql)s o)
(mod I’K). Therefore, the form <<y yby>> 1 L<ma><<ay by

must become isotropic over K, by Theorem l.l. Using Lemma 2.1,
we may write g, = <<=a,77>> | <b><<e,a>> L <e><<az,bz>>, where
zl,b,c,dsﬁ'. Let e = -ab. Then, as before, <<c,d>>!_|

<-a><<a3,b3>>' becomes isotropic over K. Consequently,
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Qo B <<,z >> L <D><=a,2,5> L<t><<u, V> (2,,t,u,ve ),

This gives r*(qa) = <t><<u,v>> in W(K). But r*(qe) €I5K, 80
<t><<u,v>> = 0€ W(K), by [2]. In particular, r*(g,) = O.
Setting q = g - a5 € IBF, we then have r*(q) = r*(ql) = Y, as

required. 3.E.D,
Corollary %.5. If IF = O, then I’K = O.

Proof. If v is any 3-fold Pfister form over K, then, by Theo-
rem 3.2, s,(y)€ °F - 0. The Proposition above implies that
Yy = 0e9(X), Q.E.D.

Remark 3.6. Corollary 3.5 is peculiar to gquadratic exbensions.
In fact, take two fields FC F(o) where F is quadratically
closed but F(x) is not quadratically closed, Let E =
F((51))((4,)) and T = F(a)(($))((t,)} = E(x). Then, I’E = O,
but I°L # O.

Proposition 3.7. The following are equivalent:

(1) Z(a)-le—>k2F—r:—> koK is exact.
(2) 197 255 15k 3,13p is exact.

(1If either condition bolds, we shall say that the quadratic

extension K = F(Va)DF is exact).

Proof. (1)=»(2). Suppose s, (y) = O where Y€ IBK. Then there

exists quQF such that r*(q) = v, by 3.3. Identifying I‘?/I3
with k, after Milnor, (1) implies that q €<<-a>>.IF + IF.
Therefore, v = r¥(q) ¢ r*(IZ’F).

(2)=>(1). Suppose o €k F and r*(a) = 0. Let qéIEF be such
that its class in I°F/IOF corresponds to a. Then r*(q) € I°K.
Since s,r*(q) = 0, (2) implies that r*(q) = r*(ql) where
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qJ_EIBF. Thus, r*(q - ql) = 0, and so q - qy € <L=a>>«IF
by Theorem 3.3. Going back to k,, we get o« £(a)-k;F, since
q, € I°F, Q.E.D.

Qur interest in the notion of 'exactness'! stems from

the following properties:

Proposition 3.8. (1) If gp is injective, then any quadratic
extension K =F(Va) DF is exact. (2) Suppose K=F(Va)DF is exact.
Then, gy injective = g; injective. (3) If all quadratic

all fields F.

n
Proof. (1) For o = £§i €(ai)€(bi)€'k2F, consider the F-algebra

& (A 104
A= ) ( )" By the Wedderburn theorems, A Q'Mm(D) for
1=

some integer m and some F-central division algebra D. Suppose
r*(a) = O €k K. Then, D splits over K. This implies that

dimp D divides [K:F]2 = 4 (see, for instance, [12,Corollaire 2

o

of Théoreme 10]1). Therefore, either D ¥ F, or D = .fgﬁl for

some beF, If D = F, we have gF(a) =1, If D% a,b), we
F

have gF(a) = gF(f(a)é(b)). Since gp is injective by hypothesis,

we conclude, in either case, that aesf(a)-le.

(2) Take o€ ker(gy). Then r*(a) € ker(gy) = O. Since KDF
is exact, a = ¢(a){(b) for some b€ F. But then clearly a = O

in k2F .

(3) Suppose aesker(gF), where o is a sum of n generators in
k,F. Ve shall show, by induction on n (for all fields F)

that o = O€k,F. The case n = 1 is trivial, so we proceed to
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any n 2 2. Write a = £(a){(b) + ale k,F, where a' is a sum
of n-1 generators. We may assume that X = F(Va) is a quad-
ratic extension of F. Since gK(r*(a')) = 1, our inductive
hypothesis implies that r*(a') = O€k K., But KOF is exact
(by hypothesis), so a! = #(a)f(c) for some ce¢ ¥. We now have

a = {(a)f(ve), and clearly gp(a) = 1 => « = O, QeEeD.

Corollary 3.9. If every element of k,F is a sum of five

generators, then any quadratic extension XK = F(Va)DF is

exact.

Proof. Under the given hypothesis, we know that gp is indeed
injective, by Theorem 2.6, Thus, the desired conclusion

follows from part (1) of the Proposition, QeE.D,

Theorem 3.10. (1) If I°F
(2). For K = F(Va),if I’K

0, then gp is injective.

0, then gp is injective.

Proof. (1) By 3.5 and 3,7(2), all quadratic extensions KOF
are exact, and share the common property that I5K = Q. Thus,
(1) follows by repeating the same inductive proof in 3.8(3),
for the class of fields with IBF = 0, After proving (1),
(2) follows from 3.8(2). Q.E,D,

Theorem 3,11, 15F = 0 iff gquadratic forms over F are completely

classified by dimension, discriminant, and the Hasse invariant.

(The Hasse invariant of a quadratic form <@y yece s8>

85484

is defined to be the algebra class Q@ (-_——Q) in the
i<j F

Brauer group B(F) ).
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Prgof. By [6,Theorem 2,15], dimension and lilnor's total
Stiefel-Whitney class w classify quadratic forms over F iff
13F is torsion-free. Assume that IBF = O. Then, dimension,
Wy and w, classify quadratic forms (since wy =0 for i R
By %.10(1), W is equivalent to the Hasse invariant. This
proves the 'only if! part of the theorem. The 'if! part is

trivial and well-known. QeBeDe

Coroliary 3.12. If dimension, discriminant, and the Hasse

invariant classify quadratic forms over F, then they also

clagsify quadratic forms over any quadratic extension XDF.

Proof. Clear from 3.5 and 3.11.

Remark 3.13. By 3.6, we see that the last corollary is peculiar
to guadratic extensions. Ve also note the following example.
Let F = R((7))-++((3))5 K = €((57))-+-((t,)) = F(V=I). Then,
F is pythagorean; and, in particular, dimension and w classify
quadratic forms over F. However, if n » 3, 15K # 0 and W(X)

is torsion, so dimension and w do not suffice to classify

quadratic forms over K !

4, Necessary conditions for asEker(gF)

In this Section, we shall provide further sufficient
conditions for the map gy to be injective, The main result
is as follows.

Theorem 4,1. Suppose o = Zji:l Z(ai)l(bi)ezker(gy). Then,

r-l r R 4
(1) 2. §:i=l <<-a; ,-b >> € ITF,

(2) (-2 - 0€k,F, where t = 27,
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Corollary 4.2. &p is injective if either of the following holds:

(4) In W(F), 2x € 181y = x ¢ I"F whenever n > 3.

(B) For all m » 1, £(-1)™: kF— Kk  F is injective.

The main work in this section will be to establish 4.1(1).
This part (1) implies part (2), by the following argument with
Stiefel-Whitney classes (see [9]). Lifting (1) to the Witt-

A
A

Grothendieck ring W(¥), we have

2r+2

Zr (<=1> - <1>)TL.(<a.> - 1)(<b.> - 1) € IF+eF
i=1 ¢ i i 4

where IF denotes the augmentation ideal of \/N\'(F). Applying the
t@ Stiefel-Whitney class, t = 2r, we obtain, according %o
[9,Corollary 3.2], the equation é Z(.-l)t"2£(ai)£(bi)=oektF,
This is precisely 4.1(2).

The proof of #,1(l) will be based on the construction of
a 'trace form' on an arbitrary central simple algebra. For
any F-central simple algebra A, let Trd: A —> F denote the
reduced trace on A (see [3, 12,No.3]). We define the trace
form on A to be the pairing (a,b)— Trd(ab), which is easily

seen to be symmetric, bilinear, and non-degenerate. We shall

denote this pairing by < , >A'

Lemms 4.3, If A, B are F-central simple algebras, then

< s >0B is isometric to < , >A®< s >p

This follows easily by working over a common splitting
field for A, B, and observing that, for square matrices X, Y,

one has tr(X®Y) = tr(X).tr(Y).

Since we assume that P has characteristic not 2, the

symmetric bilinear form < , >, may be identified with its

461



16

associated quadratic form x +— <x,x> We shall need the

A.
explicit calculation of this quadratic form in two important

cases, as follows,

Lemma 4.4. (1) For A = (%’,ﬁ), <, >, ¥ <2><l,a,b,-ab>

A
= <2>.( 2 - <<=a,=b>> )€ W(F).

(2) For & = M (F), <, >, % n<1>J_.-ni§:l2.zH - n<l> € W(F).

The proofs are straightforward, and will be left to

the reader.

We are now ready to prove 4.1(1). By hypothesis, there

r 8. 4D
exists an F-algebra isomorphism (X ( lé 1>¥ Mn(F), for some
i=1

n. By a simple dimension count, we have 4T o n2, hence n = 2%,
Using the two preceding lemmas, we obtain an equation:
r

ﬂizl (2 - << ,=b;>>) = <2>T.2T<1> e W(F).
The RHS is just 27<1> since <2>.<1,1> ¥ <1,1>. Therefore, in
expanding this product, the first term 2¥<1> cancels. The
next term is & 2°°1. Zzi:l <<=a;,=bi>>.  If we multiply
s factors of the form <<—ai"bi>> and r-s factors of 2, the
resulting form lies in (IaF)s-(IF)r's = I*SF, Thus,

2r-1. ;%; <<"ai"bi>> = ( + terms with s > 2)¢ Ir+2F.

i=

Q.E.D.
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On The Torsion in K2 of Local Fields

Joseph E. Carroll

For all that follows let us assume that F is az local
field with finite residue field of order ¢g. Moore has

proved (c.f. Milnor, Introduction to Algebraic K-~-theorvy,

p. 175) that K2F is the direct product of a cyclic group
whose order is the same as the order of the group of roots
of 1 in F, and a divisible group which is the kernel of the
Hilbert symbol on F. John Tate has raised the question

(c.f. Proceedings of the International Congress of Mathe-

maticians, 1970, Vol. 1, p. 203) of whether or not the divi-

sible group is torsion free.

Let m be a fixed prime of F. 1In this paper we prove
that the map from the group of roots of 1 of order prime to
g to the torsion in K2F of order prime to ¢ given by

W {M,n} is an isomorphism onto. As an easy corollary, we

prove that the tame kernel in K_F, which contains the kernel

2
of the Hilbert symbol, has no non-trivial m-torsion for
(m,q) = 1.

I would like to thank Professor John Tate for making

many suggestions for smoothing out my proofs.
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Theorem 1l: Let 7T be a g-1 root of 1L in F. Let x ¢ F¥
and suppose (n,x)F = 1, where ( , )Fdenotes the tame symbol on

F. Then (7,x} =1 in KZF'

Proof: Let Ul denote the group of units in F congruent to

1 (mod m). Write x = n' (u where u ¢ Uy, ,;q'l =1

(%) = {qom ) {n,clin,u)

But u has a g-1 root in U and 1 = (n,x)F = nn so,

(%) = (S m o3 ety = (0

So we must show that {1,{} = 1 in K,F. To this end we prove:

Lemma l: Let E be any field and m a positive integer such
that E contains ppe the n® roots of 1. Let A be the
subgroup of K2E generated by elements of the form [nl,nz}
where NysMy € ppe Then if m 1is odd or 4im, A = 0. Otherwise

A is generated by {~1,-1}.

Proof: Let m = 2°s where s is odd and let 7 generate
: b _ .k
b 1f NysMy € uy We can write 7; =17, N, =0 -
j Kk ik
(nysm,0 = (07,1} = (n.M37%, so (n,n] generates A,

(n,m) = (n,-1) = {7, (-1)%} = (1°,-1} and

If t = 0, then (1°,-1) = (7",-1) =1
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If t

[
]

1, then {1°,-1) = (~1,-1}

t-1 t-1 t-1

If t » 2, then {1°,-1) = (7°,(1®% ) = (2% = (15,-1}2 =1

i}

We apply Lemma 1 to F wherem = g - 1. The only difficulty
in deducing Theorem 1
arises when 2]g-1 and 4yq-1. Suppose this is the case. If

F is a local function field over a finite field kx, {-1,-1} = 1

in K,k (since K

2 k = 0) so {«1,-1} =1 in K. F. If F is a

2

local number field, then we may assume F o Qp where

2

p = 3{mod 4). Therefore, to finish off Theorem 1, the

following lemma, which was proved by Alan Waterman, suffices:

Lemma 2 (Waterman): If p = 3 (mod 4), then {-1,-1} = 1 in

KZQP.

Proof: First we mimic the proof that KZEP = 0, Since the
norm map EPQ/:E) > Ep is surjective, we can find x,y ¢ T - {0}

such that

x2 + y2 =z -1(mod p)

Let ¢ be a p - 1 root of 1 in @p such that ¢ = x {(mod p).

Let y € @p such that YZ = »1—52 {by Hensel's Lemma there is

2

such a y). Then —gz— y =1, so [—;2,—y2] = 1 in KZQp' S0,

1= {"ng“‘yz}p_l/z = {('Cz)p-l/zx"'\{z} = {"l:_Yz] since E;;l—
is odd. But {-1,Y2} =1, so {-1,-1} = {-1,—y2}/{-1,y2} = 1

in szp-
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Now let us fix some more notation.
Let £ Dbe a fixed prime number with {4,g) = 1.
Let U Dbe the group of units of F.
Let C Dbe the group of roots of 1 of g-power order in F.

Let V Dbe the product of U, and the group of roots of 1 in

1
F  whose order is prime to 4.
If A is any abelian group and m 1is any positive integer,

let A be the kernel of the meh power map A > A.

&«
Let A(g) = uy Azn, the g-primary part of A.
n=0

Remark l: We have F¥* = nzcv ~ & X C XV, V is uniquely
divisible by 4. Since CV = U, if x ¢ F*, then x, 1 - x, or

1-xtecv.

Lemma 3: Let b ¢ C, w € V. Then {1 - bwz,w} =1 in KZF.

Proof: We divide the proof into. three cases:

Case (1), C # 0 and b does not generate C:

) h

t
Let ¢ € C such that ¢” = b, Let { be a primitive g

root of 1 in C. Then

L-1 .
(1 -pw'w) = (1 -chdwl = (1 (- ¢tew,w)
i=0
-1 . 4-1 . .
= 0 (1-¢loww) = 1 {¢c,1 - ¢tew)
i=0 i=0

This element is easily seen to be of the form {a,x} with

a€cC, x € F*, so to show that it is trivial, it suffices, by
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Theorem 1, to show that its tame symbol is 1. But

(1 - bw",w)F = 1, because w ¢ U, and if 1 - bw'e £ U, then

w € Ul.

Case (ii), C # 0 and b generates C:

Consider the extension field F(c) where cz = b. Let

T - denote the transfer homomorphism KzF(c) -+ K.F. Then

TF(c)/ 2

{1 - bwz,w]

I}
=z

F(l - aw),w} = Tr F({l - cw,w)})

F(c)/ F(c)/

TrF(C)/F({c,l - cwl})

It is, then, enough to show that {c¢,1 - cw} = 1 in KZF(C) and

as in case (i) we need only show that {1 - cw,w) = 1,

Flc)

and the reasoning is the same as in case (i).
Case (iii}, ¢ = 0, and so b = 1:

Consider the extension field F({) where ¢ is a primitive

zth root of 1.

p

In KZF(Q), {1l ~w",w} =1 by case (i). Therefore, in

K2F we have:

(1 - wh,wlF Q) :F] ({1 - whw)) =1

1

r () /7

g,wﬁ} = 1 in K,F and

But also, {1 =~ wz,w}z = {1 - w 2

1. Therefore, {1 - wz,w} = ] and this completes

]

(IF{g) :F], %)

the proof of Lemma 3.
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Theorem 2: Let M Dbe the subgroup of KzF consisting of all
elements of the form {a,x} where a € C and x € F* Then

(K,F) (2) = M.

Proof: First of all we wish to construct an endomorphism, B,
of K2F which is close to being an inverse of the zth~power

map. We treat the case of g = 2 slightly differently from that
of 4 odd. If x ¢ F* we can, by Remark 1, write uniquely

m
X =n av aecC, veyv

Define B: F¥ X F* ~» KZF by

I

B(nmav,nnbw) {n,(~l)mn(wmfvn)l/z}{v,wl/z} if 4 is odd

M2y 00 G2 iE g =2

B(nmav,nnbw) {ﬂ,(wm/v

We claim that B is a symbol. It is easy to see that B is
bimultiplicative. Also B(y,x}) = (B(x,y))-l because

(w,vl/z} {wl/z,vl/z}z = {wl/'e

N . . . . *
Since B is bimultiplicative, we have, for all x € F

B(L - %,%) B(L - x T, = s =X,

l-x

%) = B(-%,X)

Thus, by Remark 1, to show that B is a symbol we need only
show:
(a) B(l1 -~ bw,bw) = 1 for all beC; wev

(b) B{(~x,x) = 1 for all x e p¥

Let 1 - bw = nmav aecC, vev
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m/z] 1/2} _ {ﬂm

v,wl/z]

B(l - bw,bw) = B(n"av,n bw)

[ﬂ’w {V:w

1/3}

Now, by Theorem 1, {a,w 1, so

it

B(1 - bw,bw) = (n%,w %) (a,wt) = (fPav,w/4) = (1 - b, H)

it
—t

by Lemma 3.

Let x ¢ F*, Write x = " av.
Suppose, first, that 4 is odd. Then -1 € V, so we write

- = nma(-v) and

B{-x,x) B(nma(—V) ,nmav)

It

2
(o (1™ (0 ()™ Yy o oM

1]

[

2
{rm, (-7 +m}{—vl/£,vl/£}£ since 4 is odd

If 4 = 2, then -1 € C, so0 we write -x = nm(-a)v and

L}

B(-x,x) = B(n"(-a)v,n"av)

Y2y (6,91

{m, (V"™

[}

- o2 1722

1/2

[}

(v/2,.1)2

Thus B is a symbol, as claimed, and so induces a map B,

B: KF —> K F
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We claim that for all a ¢ K2F,

(B o 2)(@) m o(mod M)

Clearly it is enough to demonstrate the congruence for o an

arbitrary generator of K2F. Let x = nmav, y = nnbw. Suppose,

first, that g is odd.

m
B((X,yl}) = B(n"av,n fotwt)

B e 4({x,v})

(m, (=1) ™2 A /P4 0y g o)

{n,—l}mn{n,wm/vn](v,w} since £ is odd

A W (v (v, W)

il n
{n v,n W]

But [a,nnw]{nmav,b} €M so

[nmv,nnW][a,nnw}[nnav,b} (mod M)

(3‘2) ([X,Y})

]

{nmav,nnbw]

{x,y] as claimed.

If 4 = 2, the argument is exactly the same except that we must
mn
use the fact that {n,(-1) '} € M.
In order to use all this to prove the theorem we make
one more observation, namely that M c ker B, for if

a,b e C, w € V we have
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B((a,n™bw}) = B(n'al,nbw) = 1

Now we shall finish up. Of course (K2F)Lo = {1} €« M. Assume
inductively that (KzF)zr c M, and let a € (KZF)zr+l' Then

ot e (KZF)zr' Modulo M we can write

a = (Beyg)(a) = B(az) = 1 since a* e M.

8o o € M, and by mathematical induction (KzF)(z) c M. But
Mc (KZF}(z) trivially, so (KzF)(z) = M and Theorem 2 is
proved.

Now we shall examine M a little more closely. First,
we claim that every element of M 1is actually of the form
{a,n} where a ¢ C. Let {b,x) €¢ M where b ¢ C, X ¢ F*, Write

X = nnu with u ¢ U. Then

(b,x) = {b,n")(b,u} = (b",n){b,u)

it

But {b,u} = 1 by Theorem 1. In fact, the proof of Theorem 1

was essentially a proof that {b,u} = 1. 8o
n n
{b,x} = {b ,n} and, of course, b ¢ C.
We have a map s C > M
@ a —> {a,n}

which is onto by the above reasoning. It is also one to one,

since
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{am} =1l= 1= (a,m)y, = a

C is trivial for all ; except those dividing q - 1, so by
taking the direct sum over all £ noting C = F*(g) and

M= K2F(£), we get

Theorem 3: The map

*
p: (F )q_l —> KF
given by

8: 1 —> {(n,n}

is an isomorphism onto the torsion in K_F of order prime to q.

2

Corollary 1: The tame kernel in K,F has no non-trivial torsion

2
elements of order prime to qg.
Proof: Suppose o is tamely trivial and ™ = 1 where (m,q) = 1.

Since o = 1, a = [n,n} where nm

1, by Theorem 3, but then

1= (n,n)F = so a =1,

I
=
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CONTINUOUS SYMBOLS ON FIELDS OF FORMAL POWER SERIES

by

Jimmie Graham

1. Introduction

Let F = k((t)) denote the field of formal power series in one
indeterminant over an arbitrary field k, and let G be any abelian
group. A symbol on F with values in G is an antisymmetric, bi-
multiplicative function, b : Frx F* > G, that satisfies the follow-

ing identity V B #1 in F*¥ = F - {0}:

b(g,1-8) = 0. ()

It is well known that KZ(F) is the value group of the universal
symbol bF on F, i.e. every symbol on F factors uniquely through
: PR X FX
bF : F¥x F
a continuous symbol

> Kz(F) . The purpose of this paper is to construct

B: F* xF*

> K (k) @® k* @ Qk[[t]]

and to show that if char(k) = 0, then B is universal for a certain
class of continuous symbols on F, where S)k[[t]] denotes the group of
formal power series over the module of absolute differentials on k.

We first define symbols Ek and bt on F with values in Kz(k)
and k¥ respectively. For each integer n > 1, let U =1+ ekl [e]].
Then F* = k*‘(t)'Ul,

by t; and each B e F* can be uniquely written as B = xt"u with x

where (t) denotes the subgroup of F* generated

in k¥ neZ and u e Ul' We reserve the letters x,y and z for ele-
ments of k* and u,v and w for elements of Ul' One easily verifies
that any symbol d on %k can be extended to a symbol d on F by
defining

g(xtnu,ytmv) = d(x,y).
In particular, the universal symbol b, on k can be extended in this

k
way to a symbol Ek on F with values in Kz(k).
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Next we have the well known tame symbol on F, bt: F* x F* > k*

defined by n o nm o -m
bt(xt u,yt v) = (-1) yx .

Definition 1. For any abelian group G and any symbol b on F with
values in G define functions bl’ b2 and b3 from F*xF* to G as
follows:

bl(xtnu,ytmv) b(x,y)

b(t, -1y ™

bz(xtnu,ytmv)

b3(xtnu,ytmv) = b(xt™,v) + bu,yt™ + b(u,v)

It is easy to verify that each bi is a symbol on F with values in G,

and that

b = b1 + b2 + b3 . (2)
And moreover, it is clear that b1 factors through 3k (i.e. there
exists g ¢ Hom(Kz(k) , G) such that b1 = g°bk) and that b2 factors
through bt; and these factorizations are unique because %k and bt

generate their value groups.

We have now proved that every symbol b on F is a sum of three
symbols, b = b1 + b2 + b3 , and that gk and bt completely determine
b1 and b2, respectively. The remaining symbol, b3, lives on le F*
by definition, and the problem of completely describing all such symbols
on F has not yet been solved. 1In section 5 below we show that if b

satisfies a certain continuity condition, then b is completely

3
determined by some finite number of derivations on k. Then in section
6 we apply these results to compute K2 of certain rings of truncated

polynomials.

2. Continuous Symbols

Put the valuation topology on F* (i.e. take the subgroups Ul’UZ""

as a system of basic open neighbourhoods of 1 in F¥*) and let G be

any Hausdorff commutative topological group. We denote by SF(G) the

group of continuous symbols on F with values in G (i.e. b ¢ SF(G)

means that b : F*x F*

> G is both a symbol on F and a contin-
uous function) . Let R/Z denote the circle group with its usual

topology. It is well known that R/Z has no small subgroups, that is,
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there is a neighbourhood (nbd.) N of 0 in R/Z such that N con-

tains only one subgroup of R/Z, the trivial subgroup. Clearly, discrete

groups have no small subgroups. We show (lemma 1) that if b ¢ SF(G)

and G has no small subgroups, then b must vanish on some Umx F*.

For this result we require the fact that V x ¢ k¥ V n,m>1 and V ueUn
L-xt’u U (3

l-xtm n+m

. n
To prove this write u =148t ¢ U for some integral element
p B 0 g B

in F (i.e. 1+Bt ¢ Ul) and set w =1-xt" ¢ Um. Then
(1'Xtmu)w-1 = (W+xf3tm+n)w-1 = ].+crtm+n €U Lo where o = xPw

is integral. As an application of (3), assume b(Um,B) = {0} for some

1

gsymbol b and some B ¢ F*, Then for all =xek, ueU and 1<i<m
o <

bel-xt"lu,m = b1-xe™1p). (&)
Another useful consequence of (3) is
m-1
AP U (1-xt )U (5)

xek

From (5) it follows that if b(U_,B) = {0} for some B ¢ F*¥ and some
symbol b, snd if b(l-xt™1,8) =0 V x e k, then b(u_ B = to}.

Lemma 1. If G has no small subgroups and b ¢ SF(G), then 3 m>1
such that b(Um,F*) = 10} .

Proof. Fix arbitrary b ¢ SF(G) and choose a nbd. N of 0 in G
such that N contains only one subgroup of G. We first find m such
that b(Um,k*-(t)) = {0}. By continuity of b, there is a nbd. Uix Uj
of (1,1) in F*xF* such that b(Ui’Uj) € N since b(1l,1) = 0.
Fix arbitrary Vg € Uj and map Ui homomorphically into G via

u +—> b(u,v Then b(Ui’VO) is a subgroup of G contained in N,

).
0
so b(U,,v)) = fo} = b(Ui,Uj). Let n = max(i,j), then b(U ,U) = {ol.
Likewise, b(Ur,t) = {0} for some r>1 since b(l,t) =0. Take m =
max(2n,r) and note that b(Um,(t)) = {0}.

Now choose any v ¢ Um and any x ¢ k*, We may write v = 1+BtZn
for some integral B ¢ F and solve for u in 1-xt%

n
1-xt

v =

getting u =1- Bx']'tn + Btzn € Un' We have 0 = b(l- xtnu,xtnu)

= b(l—xtnu,xtn) + b(l-xtnu,u)
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n

= b LiX Y % £ 0 by (1) and fact that b(U ,u) = 1o}
1-xt n

= b(v,xtn) = b(v,x) + 0 gince v ¢ Um c Ur'

Hence, b(Um,k*) = {0} , so b(U_,k*-(t))

It remains to descend from b(Um,Um)

fo}.
{0} to b(Um,Ul) = {0}.

B

Choose any u ¢ Uul and any x € k¥. Then

0= b(l-xt"lu,xe™ Ly = b(1-xt™ lu,xt™ Y 4 b1 - xt™ Lu,u)
m-1
= b( L—'—-’i—_—lf’,xtm'l) +b(1-xtm‘l,u) by (1) and (&)
1-xt™
m-1
= 0+ b(l~-xt ,u) . by (3).

It follows from (5) that b(Um_l,u) = {0}. Keep u ¢ U, fixed and
repeat the computation:

2

0 = b(l-xt"2u,xt™2) + b(1-xt™ 2,0
m- 2
- xt - -
= B( L"—m—z—“ %™ 5 b1 - xt™ 2L by (1) and (&)
1~-x%t
m-2
= 0 + b(l-=xt ,u) . by (3).
Therefore, b(Umvz,u) = {0} by (5), and it is clear that we can repeat
this process until we arrive at b(Ul’“) = {0}, because 1-xt™ *u cU
1-xtm-i m

1-xt" 1y m- i
— Xt

implies that b( =
1-xt

) =0 for 1l<i<m.

Therefore, b(Ul’Um) = {0} since u ¢ Um wag arbitrary.

/]

We use this lemma in two ways. First, it guarantees that every
continuous symbol on F with values in any discrete group or in R/Z
must vanish on some Umx k*-(t) , and this will be explored in the next
section. The second application is the following corollary that states
that for certain gymbols b on F, the action of b on U, X F¥ is

1

completely determined by the action of b on le k¥-(t).

Corollary 1. 1f G is locally compact and b ¢ SF(G) vanishes on

U, x k*-(t) , then b(U,F%) = fo} .

Proof. Suppose b ¢ SF(G) vanishes on le k*.(t) but not on le F*,
say b(u,B) # 0 for some (u,R) € le F*. We use the well known fact

every locally compact group has enough characters, that is, there exists
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a continuous homomorphism g:G > R/Z such that g(b(u,R)) # 0.
Then gob ¢ SF(R/Z) vanigshes on some Ume* by the lemma, and we

can descend from gvb(Um,Ul) = {0} to gob(Ul,Ul) = {0} just as in
the proof of the lemma because gob(Ul,k*A(t)) = {0}. Hence,

g°b(Ul,F*) = {0}, contradicting the assumption that b{(u,B) # 0. p

3. Derivations On The Ground Field

Let Qk denote the module of absolute differentials on k, that
is, Qk is the k-module generated over k by elements dy V y e k
subject to the relations d(x+y) = dx + dy and d(xy) = xdy + ydx
¥V x,y e k. Let G be any abelian group and suppose that b is any
symbol on F with values in G that vanishes on Umx F* for some m>1.
We find that the action of b on Um' =x k* is completely determined by

L m~ 1

some derivation on k, and that the map =xdy +——> b(1l +xyt ,y) defines

a homomorphism Q Kk > G.

Keep b and m fixed, where b(Um,F*) = {01, and consider the homo-

morphism Um—1®Z k* > G defined on generators by sending uey
to b(u,y). By the condition on m, this map factors through

P + * +
(Um_llUm) ®Z k k ®Z k (see (5)), where k denotes the

additive group of k. We now have a homomorphism

gk ®) Kk > ¢ (6
defined by g(xey) = b(l +xtm.1,y)‘ There is also a homomorphism
h:k > ¢ defined by h(x) = b(1+xt™ 1,t™ !y | since b vanishes

on Umx(t). Note that b(Ul,-l) = {0} because U1 is 2-divisible
unless char(k) = 2, in which case -1 = 1. Therefore, V x ¢ k¥ we
have

1 m~1 1 m-1

0 = b(L+xt™ " ,-xt™") = b(L+xt™ " xt™ )

b(1+xt™ 1 %) + b1 +xe™ L™

g(xex) + h(x) .
It follows that ¥ x ¢ k*

g{xex) = -h(x) 7
From (7)), we have V x,y ¢ k*¥ such that x+y ¢ k¥

g((x+y) e (x+y)) = g(xex) +g(ysy) (8)
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Definition 2. Let Dk = (k+Q§"Z k*) / J where J denotes the

subgroup of the tensor product generated by all elements of the form

(x+y)e(x+y) - (xex) - (yey)

such that x,y and x+y ¢ k¥,

We denote generators of Dk by [x,y) and give this group a k-

module structure by defining z[x,y) =[zx,y) V¥ z,x ¢k and vy ¢ k*.
We verify that this action of k on Dk is well defined. If 2z # 0
we have z[x+y,x+7Yy)

= [zx+zy,x+y) = [2x+zy, E}fj—z—zy)
= [zx+zy,z2x+2y) - [zx+2zy,2)

= [zx,zx) + [2zy,zy) - [zx,2) - [zy,2)

= f[zx,x) + [zy,y) = zlx,x) + zly,y) .

Lemma 2. Dk == Qk (as k-modules)

Proof. The maps are [x,y) r—> x%y = %dy and xdy —> [xy,y).
W

et b and g be as in (6). Then g factors through Dk by (8)

giving a homomorphism g : D, > G defined by sending [x,y) to

b(1 +xtm-1,y). We therefore have a homomorphism

£ 0, > G (9
defined by f(xdy) = b(l+xyt™ !, y).

Suppose that f is trivial (for example, if Qy = 0) so that
b(1+2e™1y) =0 V 2,y e k. This implies that b(U,_, k%) = (0}
by (5), and that b(U_ ,t"™") = {0} by (5) and (7). Suppose
further that m-1 is prime to the characteristic of k (for example,
1 is (m-1) - divisible,
. | such that b(u,t) = b(v" Lt) = b(v,e™ 1) =

0. Hence, b(Um-l’t) = {0} 1in this case.

if char(k) =0 or if m< char(k) ). Then Um_

so VY uel dvevu
m- m-

Lemma 3. I1f b is any symbol on F that vanishes on Umx k*(t)

and on every pair (1 +xtm'1,y) 5 Um_ x k* , then b vanishes on

1
Um—lx k*-(tm-l). Moreover, if m~1 1is prime to char(k) or if
= i %
2 " 0, then b wvanishes on Um~1x k¥-(t) .
Proof. It remains to show that b(Um-l’t) = {0} 1in the case where

char(k) =p >0, p divides m-1, and Qk = (0, Then k 1is perfect
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because Qk = 0. Write m-1= psn, where s>0 and n is prime to p,

and choose any x ¢ k¥. Then 3 y ¢ k¥ such that yq = x, where q = ps,
and we have

0= b(l-xt",x) +b(l-xt",t™ = bl-xt", v +b(1-xt",th

be(1-xtM%, ) + b(1-xt™, ™

0+ b(l-xtn,tn) since (l-xtn)q e U

i

m-1"

This shows that b(l- xtn,t) has order dividing n, but its order also
divides pq because (l—xtn)pq € Um implies b((l—xtn)pq,t) =0
by hypothesis. Therefore, b(l-xtn,t) =0 V x ¢ k¥ since pgq and
n are relatively prime,

Now consider b(l-~ xtm-l,t) for arbitrary x € k*. Let yq = X
as above, and write b(L-xt™ L) = b((1-ytM%,t) = b(1- ye™,th
which equals 0 since b(l-ytn,t) =0 V y e k. Thus, 0 =
b(l-xt"16) V xek, so bU,_,.0) = 10} by ().

4. Russell's Continuous Tate Symbol

Let Qk[[t]] denote the group of formal power series over .
Then Qk[[t]] is the projective limit of the discrete groups
Qkf[t]] /tm'Qk[[tN . The purpose of this section is to construct a
symbol & € SF(Qk[[t]] ). We begin by extending the derivation

d:k —> Qk to a derivation D:F ——> Qk((t)) (= group of
formal Laurent series over Qk) via i 5
D( int )y = Z(dxi)t .
Denote a typical element of Qk((t)) by Z*\(J.tj and give this group

an F-module structure by defining

i j _ n
( int 3¢ zyjt Yy = 1yt
where 5 = ZIx.y ..
n 1'n-1 . i1
For each element B = intl ¢ F, let p' = Zixit € F be
the usual formal derivative of B. Note that V¥V B ,g ¢ F*, g' Do
lies in ¢ 10 [[t]] © a,((t). Define B o
-1
; Fhox F* .
by FxxF >t 0 [1t]]
by
- BDg _ gDB
e'd(Baa) 8 " 5 B

L]
The function &d is bimultiplicative because the maps S +r——> 1A and

2
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B > %@ are homomorphisms from F*; and Evd satisfies (1)
because (1-B)' = -pg' and D(1-8) = -DB.
To obtain a symbol & ¢ SF( ﬁk[[tﬂ Yy, we write Gd =

(&d)l + (Cvd)z + (Gd)3 as in (2), and set & = (&d)B. It is easy to
check that (&d)1 = 0 and that (E-d)z = febt , where f is defined

by f(x) = %%—:E = &d(t,x) .

From the definition of & , we have ?:(xtnu,ytmv.)

Gd(xtn,v) + &d(u,ytm) + l’:d(u,v)

?:(xtn,v) + %(u,ytm) +  &(u,v).

We compute B(xtn,v) as follows: write v = 1 + Zcit1 €U, -for
some r>1, and e, € k for i =1,2,..., then
Bxtt vy = LDV v (dme”
xtrl v v xtn
_ dx . r-1 “ e
= (nde - re =)t + (10)

Note that we have computed only the first coefficient of the power
series E(xtn,v). For future reference, we take n=0 and v = 1+2t’
in (10) to obtain
g(1+2t7,x) = rzi—xtr-l + e (11)
From (10) and the fact that &(u,v) ¢ Qk[[t]] VY u,ve U]. s
it follows that & takes values in Qk[[t]] ; and it is easy to show

that m+r-1
G(Um,Ur) c t -Qk[[t]]

so that € is continuous, i.e. & ¢ SF( Qk[[t]] ).

Assume for the moment that char(k) =0 and choose any element Ot

in Qk[[t]] . From (11) it follows that there is an element Ay
in Im(%) (= group generated by &(F*,F*)) such that ot - oy lies
in tl‘ Qk[[t]] (i.e. Ot and Oll have the same first coefficient).
By induction, V n>1 3 My, e, 00 € Im(%) such that
n
ot - (ze) e £ Szk[[t]] .  Therefore, & generates Qk[[t]]
i=1

topologically (i.e. generates a dense subgroup) when char(k) = 0.

Let k be arbitrary again and define, for each positive m prime

> and the symbol

to char(k), the projection hm: Qk[[t]] K

Em € SF( Qk) as follows:
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iy o L * x F* > o [It
hm( Tyt ) = Yoo 1 F*x F k[[ 11
lh
and E'm = hmo&. b ; m
k
From the definition of &m it follows that
6 (U 1 D) = {o} (12)
and V z,x ¢ k¥
am(1+zxt“‘,x) = zdx . (13)

Remark. For any field E, the Tate symbol on E with values in
N

Q E Q dx
X y

> 9, ((t) @ F
defined by B+ (DB,B') , and Peter Russell constructed the symbol

& (£)) @ F) with itself,

E ( = alternating product ) is defined by (x,7) - dx , dy )

In our case, F = k((t)) , we have a derivation F

4 by wedging this "continuous Omega' ( k(

5. Proofs Of Main Results

Recall our notation: F = k((t)) with k arbitrary; for each top-
ological group G, SF(G) denotes the group of continuous symbols on F
with values in G; and Homc( , ) denotes the group of continuous homo-

morphisms. Define
M, = K0 @ k@ a [lcll.

Then Mk is clearly a projective limit of discrete groups, and we have

the symbol
B

(®sb by e s (M) .

Theorem 1. If char(k) =0 and G is any projective limit of discrete

groups, then there is a natural isomorphism SF(G) = Homc(Mk ,G)

Proof. We first prove this for arbitrary discrete group G. Fix

arbitrary b ¢ SF(G) and write b = b1 + b2 + b3 as in (2). Then

b1 and b2 factor uniquely through Ek and bt , respectively, by

section 1 , so we must show that b factors uniquely through ® . This

3

factorization is unique if it exists because © generates a dense sub-

group of the Hausdorff topological group Qk[[t]] when char(k) = 0.
By lemma 1, 3 m>1 such that b(Um,F*) = {0} ; and b3 =0 if

ssu w1t > G by f(xdy) =

b(1l +xyt ,¥) as in (9) . By (13) we have V x,y e k¥

m=1. Assume m>1 and define f
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m-1 _
fm_ 1° &m-l (14+xyt ,Y) = fm_l(xdy) .
° : %

Therefore, fm—l (’m-l and b both vanish on Umx k*.(t) and agree
on all pairs (1+ztm-1,y) €U _,xk¥. It follows from lemma 3 that
- ° i %
the symbol (Db fm_1 t’m—l) vanishes on Um-lx k¥-(t) . If m>2
we apply the same reasoning to the symbol (b - fm—1° &m-l) € SF(G)
and obtain a homomorphism fm_2 HEY] K ——> G such that the symbol

- ° - ; %*. ;i
(b fm—l bm—l fm—2°e’m-2) vanishes on Um_zx k*.(t) . 1In this
way we construct fm—l’fm-z" .. ,f1 € Hom( § ® G) such that the
symbol m-1 m-1
b - 5 f.ob, = b - ( 2 feh, )ob

. i i . i i

i=1 i=1
vanishes on le k*-(t) .

Set w1
£ = 121 f£,oh, € Hom ( o, [l 6).

Then b - feb& vanishes on U x F* by corollary 1, so b3 = fob.

Now suppose that G is a projective limit of discrete groups

{Gi} ie1’ and choose arbitrary b ¢ SF(G)' For each i € I, the pro-
jection T : G

> Gi determines a continuous symbol b(l) = :riﬂb

with values in the discrete group G, . Hence, V i € I there exists
(1) _
g; € Homc( Mk , Gi) such that b = gi°B .

It is easy to verify that the following diagram commutes whenever
i>j in I. Hence, by the universal Mk 8 > G
property of projective limits, 3! g = \ .
T A
Llim gy ¢ My > G such that for J c
b

each i ¢ I, g; = ;08 To verify

now that b = geB, we check that the :iEh

components of b(B,o) and geB(B,s) agree V iel, V B,g € F*:

ni(b(B,c)) = b(i)(B,g) by definition of b(i)
= 8;°B(B,0) since p(D g;°B
= ﬂi(goB(ﬁ,g)) since g; = my°g

Therefore, b = geB.
o

In the first part of the proof of the theorem we needed char(k) =0
in order to guarantee existence of the symbols ﬂi Vi>1. Now, if
b is any symbol on F that vanishes on Umx F* for some m>1, then

char(k) > m will guarantee existence of l’,i , for 1<i<m, and it is
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> G such that b, = feb,

clear that we can again construct f: Qk 3

Also, it follows from the definition £
o lle]l ——> ¢

of h_,...,h that £ vanishes on
1 m-1
™ 1log [[t]], so that £ = Fex 7 F
k ’ m-17 m-1
where [ denotes the obvious map (see
adjacent triangle). Therefore, b3 Qk[[t]] / tm_l' Qk[[t]]

factors through n_ .ot , where ¢

m-1 m-1
denotes the natural projection. We record this in the following:

Corollary 2. If b 1is any symbol on F that vanishes on Umx F*
and if m<char(k) or if char(k) =0, then b factors uniquely

through ( bk , bt s T 1° & ).

The next result is a generalization of a theorem of Calvin Moore [M]
that states that SF(G) = Hom( k*,G) for every locally compact G
in case k is finite (i.e. the tame symbol is universal in this case) .

In general, ’Bk # 0 and does not factor through bt'

Theorem 2. For every field k and every locally compact G

SF(G) =  Hom( K2(k) ® k¥ ,6) Qk=0.

Proof. 1f 61 € SF( Qk) factors through (bk’bt) € SF( KZ(k) @ k*) ,
then ?sl =0 since (Ek,bt) vanishes on le F* . Hence, Qk =0
by (13) .

Conversely, suppose Qk =0. We first prove the assertion for

G =R/Z. Fix arbitrary b ¢ SF( R/Z) and choose smallest m>1 such
that b(Um,k*-(t)) = {0} (see lemma 1). If m=1, then b factors
through (Tak,bt) by section 1. On the other hand, if m>1, then b

vanishes on Um— x k*.-(t) by lemma 3 since Qk =0 implies (see (9))

1

that b wvanishes on all pairs (1 +xtm-1,y) € Um—lx k* , This contra-

dicts mimimality of m, so m=1. Therefore, every b ¢ SF( R/Z) must

vanish on le F* .

Now let G be any locally compact group, and choose any b ¢ SF(G)'
If b(u,B) # 0 for some (u,B) € le F*, then 3 g ¢ Homc( R/Z,G)
such that g(b(u,B)) # 0. But this contradicts the fact that the

symbol gob € SF( R/Z) must vanish on le F* . Therefore, b vanishes

on le F*, and if follows from section 1 that b factors through

(b, sb,) -
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6. K2 Of Rings Of Truncated Polynomials

Keith Dennis and Michael Stein have given presentations (i.e. gen-

erators and relations) for K, of the discrete valuation ring L =

2
k[[t]] and its homomorphic images L, = kel 7/ t™klt] , where m>1
and k is arbitrary. They prove [D-$;82] that the tame symbol on F =

k((t)) 1induces a split exact sequence

1 > KZ(L) <—g> KZ(F) > k¥ 1

and that, for each m>1, there is a natural surjection

8y KZ(L) R — KZ(Lm) defined by sending a typical generator

[xu,yvlL to a generator ixﬁ,yV}L of KZ(Lm)’ where T denotes the
m

obvious truncated power series.

Then dm = Smo o'obF is a symbol on F with values in KZ(Lm);
and dm vanishes on k*-(t) x k*-(t) b
% x B
because the tame symbol induced the FrxF > KZ(F)
above split exact sequence. This means dml lcr
_ _ S
that (dm)2 = 0, where dm = Kz(Lm) P K2(L)

(@), + @), +(d), asin (2).
Also, dm(Um’k*'Uz) = {0} by definition of 8, - We claim that d_

must also vanish on Um+1x {(t) . To prove this, we choose arbitrary
s
u = 1-!-(:31:rn 1 € Um+1 and use the following identity due to Dennis

and Stein (see the proof of Theorem 2.5 in [D-8] ) :

m
= _l#pt _u
bo(u,t) bol- T 1t

It follows from the defZ. of 5, that d (u,£) =d (-(1- o lLa-oh

since 1+[3tm s U € Um; and it is not difficult to show that every symbol
vanishes on all pairs (-B,B) € F* x F*, Hence, dm(Um+1,(t)) = {0}.

The following theorem was first proved in the case m=2 by Wilberd
Van Der Kallen [Vl. Dennis and Stein have also proved this result in this

case.

Theorem 3. If 1 <m < char(k), or if char(k) = 0, then

Ry(k[e] /t™k[e]) 2= k00 @ o le] /™ ha (e

k k
Proof. For brevity, we set A = Qk[t] /tmvl- Qk[t} , and b =
(bk,ﬁm_fb) € SF( Kz(k) ® A) since m is now fixed. From the above
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arguments it follows that dm vanishes on U F* and on Umx k*-Ul.
% = =

Then dm(Um,k (t)) {0} by lemma 3. Now, (dm)2 0, so dm factors

uniquely through b by corollary 2, say dm = fob , where

f: Kz(k) D A

Next we define a map KZ(L)

> KQ(Lm)’ We will show that f is an isomorphism.
> Kz(k) @ A by sending a
typical generator {xu,yv}L to b(xu,yv). 1t follows from the above

exact sequence that this map is a homomorphism. To define a map
g: KZ(Lm) —_— Kz(k) & A, we choose any generator {xﬁ,ﬁ}L of
Kz(lhﬁ and lift it to a generator ixu,yv}L € KZ(L) "

and define g(ixﬁ,yﬁ}L Y = b{xu,yv). The choice of u and v e U

1
doesn't matter because mb vanishes on Um x F* , Therefore, g is a
homomorphism.
To check that f and g are inverses, choose any {xﬁ,yﬁ?L
and compute: "
£og({xG,y9}, ) = E(b(xu,yv)) = d (xu,yv) = (x8,y7}
m m

Now Kz(k) @ A is clearly generated by elements b(xu,yv) (see (13)),

and we have

gof ( b(xu,yv) ) g(d (xu,yv)) = g((xﬁ,yﬁiL )

m

= b(xu,yv) .

Therefore, £ and g are inverses.

V4

Acknowledgements I wish to thank George Whaples for suggesting the
problem of computing continuous Ky of the quasi-finite field C((t)), and
John Labute for many helpful suggestions, including the identification

b, = Q k-
McGill University
Montreal
References
[D-s] K. Dennis and M. Stein, K2 0f Discrete Valuation Rings
(to appear)
(Ml C. Moore, Group Extensions Of p-adic And Adelic Linear Groups
Pubd. Meth. I.H.E.S. 35 (1969), 5- 74,
[vl W. Van Der Kallen, Le K, Des Nombres Duaux,

2
C. R. Acad. Sc. Paris (1971), 1204- 1207.

486



E. ARITHMETIC ASPECTS OF K-THEORY

487



Values of zeta-functions, étale cohomology,

and algebraic K-theory

by Stephen Lichtenbaunm

In this paper we give various conjectures expressing values of
zeta-functions in terms of the orders of étale cohomology groups and
algebraic K-groups, together with a description of the relationships
between the conjectures and some indication of why one might believe
them to be true. In order partly to make up for the great profusion
of conjectures that will occur at the end of this paper, we begin with
some results that are well-known and undeniably true.

Let F be an algebraic number field of finite degree n over
the rationals, with ring of integers C’F‘ We define the zeta-function

of F, {(F,s), tobe I 1 ;
% (we)

and can be extended to g function meromorphic in the whole plane, and

This series converges if Re(s) ) 1,

satisfying a simple functional equation which we shall now describe.
As usual, let Ty be the number of real places of F, r2 the num-

ber of complex places of F, d the discriminant of F, and define

8(F,s) = r(s/z)rl r(s)rg (aigi—)s/g C(F,s).

Then

3(F,s) = &(F,1-5). (1)

Also, the zeta-function is analytic except when s = 1, and has a

simple pole with residue given by

r
1 27) 2
2

lim(s-1)C(F,s) = 28 . 2

s>1 [a]

where h 1is the class number of F, w is the number of roots of
unity in F, and R 1is the regulator of F. For the purposes of com-

parison with analogues of the regulator which will occur in later
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conjectures, we recall its definition. Let +t = ot r, - 1. Then
the group of units of F 1is, by the Dirichlet unit theorem, a
finitely-generated abelian group U of rank ©, and we choose &

basis Uqsee for U modulo torsion. Pick any t infinite places

t
vy-.-vy, and define R to be |det(|u,l, )I. Then R is independent

of the choice of basis and of the one omi%ted infinite place.

We also recall a result of Siegel, [13, v.I, p. 545-546] to the
effect that if I 1is totally real and m 1is an odd positive integer,
then v—n(m+l)|d|l/2 ((F,mt1) is a rational number.

It is an immediate and well-known consequence of applying the
functional equation to Siegel's result that ((F,-m) is a non-zero
rational number if F 1s totally real and m is odd and positive.

It is only slightly less immediate that if we apply the functional

equation to the formula for the residue of the zeta-function at s = 1

we obtain the following result:

Propogition 1. The zeta-function Q(F,s) has a zero of corder
(rl+r2—l) at 8§ = 0, and we have the formula

-(ry+r,-1)

lim ¢ (F,s)s = -hR/w.

5>0

The details of the proof will appear in [9].

We are now faced with the problem of giving an interpretation of
the rational numbers ((F,-m). We begin with the special case m = 1.
In this case Birch and Tate ([1], [14]) have made a very striking
conjecture. We begin with some notation.

Let W denote the group of roots of unity in the algebraic
closure F of F, and G the Galois group of F over F. Then G
gects on W through an abelian guotient, and so we may define for any

integer m a new action of G on W by ¢ x x = ¢™«, where
{m
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Juxtaposition denotes the usual action. We define Wm to be W fto-

gether with this G-action, W_(F) to be wg

and w_(F) to be the
order of Wm(F). We can then state the Birch-Tate conjecture as

follows:

Conjecture 2. [Cp(-1)| = # (K (0p))/w,(F).

We should observe here that this is not the original form of the
conjecture; in the original version ([1 7], [14]) KgﬁjF} is replaced
by Ker A, where %:KQQTF) +‘li (Ev)* is the map induced by the
tame symbols. However, Quillen ([11]) has recently shown that for
Dedekind domains A with quotlent field L there exists an exact
sequence

v LR (T) >y (8) > k(D) > 1L K, 4 (T,) >

In view of the fact that K2 of a finite field is zero this estab-
lishes the isomorphism of Ker M with K, (@)
We now want to restate Conjecture 2 in cchomological terms, mak-

ing use of the following theorem of Tate [15]:

Theorem 3. Let F be a totally real number field. Then KQ(F) is
naturally isomorphic to Hl(G,WQ).

This is only a special case of the actual theorem of Tate, which
gives a cohomological characterization of KQ(F) valid for all num-
ber fields F, but it will suffice for our purpcses.

Now let 4 ©Dbe a fixed prime number, and S the set of primes of
F 1lying over 4. Let C?F,s be the set of S-integers of
F, XS = Specé?F’s and J the natural inclusion of Space F in XS.
If we endow F and X, with the gtale topology, then, for each m,
Wm amy be viewed as a sheafl on Spec F, and we may take the direct

image sheaves qu*wm on X . We then ([81, [15]) have the follow-

ing commutative diagram:
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) 1 ) 2 )
0 > H'(Xg,d¥W,) > H (Gg,W,) > H {XS,RlJ*Wé) > B (X ,d,0,) > 0
|
e ¢
7\ ~ X
0> Ker A > K (F) —> [ F, —> 0
v

where o and f are isomorphisms and the top row is the exact
sequence of terms of low degree coming from the Leray spectral

sequence for the map Jj, and the sheaf wg, namely:

18] g . -+
B (X, Rig,0,) = wP e,y

From this we see that Ker » = Hl(Xs,j*Wg) and that
H(X_,J4W,) = O. In view of this, the {-part of the Birch-Tate con-

jecture may be restated as

Conjecture 1.4. If F 1is totally real, then the 4-part of ((F,-1)

is equal to #Hl(xs,j*wg)/#Ho(Xs,j*w and one is naturally led to

o)
more general conjecture ([8]):

Conjecture 1.5. If F is totally real and m is any odd positive

integer, then the 4-part of ((F,-m) is equal to

1 . o . ; .
#OHT(Xgodu Wop o) AHO(X,,3.W,, (). Also, HP(XS,J*Wm+l

) =0 forp) 2.

This conJecture has been verified in many special cases, by the
use of the theory of p-adic L-functions developed by Leopoldt and
Kubota ([7]) and extended by Iwasawa ([6]) and Coates ([5]). The
strongest positive result is as follows:

Let F. be the field obtained from ¥ by adjoining the 4-th

0
roots of unity, and Fg' the maximal real subfield of FO. Let AO

be the 4-component of the class group of Fy, and AB::{xeAO: ox = -x},
where ¢ denotes complex conjugation. Let w Dbe the Galols group of

FO over ®.
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Theorem 1.6 [5]. Assume (i) that 4 is odd,

(ii) 7 1is abelian of order prime to 4

(iii) no prime of FB lying over 4 splits in F,

(iv) Aa is a cyclic Z[7w]-module.

Then Conjecture 1.5 is true for F,4 and any m.

We remark here that it is almost certain that the methods of [8]
would prove Theorem 1.6 for any real subfield of the field obtained
by adjoining the 4-power roots of unity to F, if F satisfies the
hypotheses of Theorem 1.6. Also, if 4 is regular or properly irreg-
ular (the second factor of the class number of QO is not divisible
by 4), then any subfield of Qg satisfles the hypotheses of Theorenm
1.6.

We next wish to point out that Conjecture 1.5 of course implies

the following result:

Conjecture 1.7. (Serre, [12, p. 164]). If F 1is totally real and m

is an odd negative integer, then Weeq

Serre has proved Conjecture 1.7 in [12] for the cagse m = 1, and,

(F) C(F,-m) is an integer.

more generally, has shown there that the product over the first k
odd integers m of wm+l(F)C(F,-m) is an integer for any k.
Extensions of Conjecture 1.6 to L-functions are discussed and special

casesg are proved in [5] and [9].
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2. Algebraic K-theory.
We now return to the point of view of algebraic K-theory, which
was left aside in Section 1 with the interpretation of KE(OF) as
an étale cohomology group. We begin by discussing finite fields.
First recall that if k 1s a finite field with q elements, then the
_s)-l.

zeta function of k is defined by ((k,s) = (1 - g The

Quillen [10] has proved the following suggestive result:

Theorem 2.1. Let k be a finite field, and 1 a positive integer.
Then Kei(K) is equal to zero, and KEi—l(k) is a finite group of
order equal to ]Q(k,-i)]_l.

In the number field case, Quillen has recently proved that
Ki¢?F) is a finitely-generated abelian group for any 1 and any num-
ber field F. The ranks of these groups are determined by the follow-

ing theorem of Borel:

Theorem 2.2. (Borel [2]). For any non-negative integer i, the rank
of K2i@7F) is equal to zero, and the rank of K is equal to

21+1 (%)
r if 1 is odd, to r1+r2 if 1 1s even, and positive, and to

2
rl+r2—l if i = O.
The significance of this result for us is that it can be stated

more simply as follows:

Corollary 2.3. The rank of X, ,(Cp) 1is equal to the order of the
zero of ((F,s) at s = -i.

(The order of the zero of the zeta-function at s = -1 may easily
be computed from the functional equation, together with a knowledge of
the poles of the gamma function.)

Now that we have seen that some connection exists between alge-

braic K-groups and zeta-functions, we state the following conjecture:
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Conjecture 2.4. Let F be a totally real number field, and m an odd

positive integer. Then [{(F,-m)| = #K2mQ3f)/#K2m+1&3%)’ up to
2-torsion.

We note that the groups involved in the conjecture are finite by
the theorems of Borel and Quillen referred to above. It is clear that
there ought to be a relation between Conjectures 1.5 and 2.4; the
missing link is provided by a conjecture of Quillen which we will pro-
ceed to describe.

Let 4 Dbe an odd prime, as in Section 1, and m a positive
integer. Let Wén) be the kernel of the map from wm to Wm COn -
sisting of multiplication by 2 (in additive relation). Let F agailn
be an arbitrary number field, and let S be g finite set of primes of
F which contain all primes of F 1lying over 4. Let C?S be the

ring of S-integers of ¥F. Then Quillen conjectures:

Conjecture 2.5.

2 tp() @ 2y =R 00w )

b) Ko@) ® 2, =< pl(x_,g, wln)),

with the isomorphisms being given by a generalized Chern character.
If m= 1, a) is equivalent to the theorem of Tate referred to
earlier, and proved in his talk at this conference. If C?é is re-
placed by a finite field k, and Xg by Spec k, then the analogue
to Conjecture 2.5 follows easily from the computation of the K-groups
of a finite fileld, done by Quillen in [10].
We now suppose again that m is odd positive and F is totally

real. Then KQinb) and K are finite, by Theorem 2.2. It

2mi1F)
follows from the exact sequence of a localization that K, (U,) and

K2m+lQ3é) are finite for any finite set of primes S. If we assume
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in addition Conjecture 1.5, then Hi(XS,j*Wm) is finite for all i,
. . . lim i+l . n ~ A . .
which implies that é—n— H (XS,J*,WIEH_:{) - H (XS,J*WHH_l). In view
of this isomorphism, we see that Conjecture 2.5 and Conjecture 1.5

imply Conjecture 2.4.

2.6. There does not seem to be any a priori reason why Conjecture 2.4
should not also include 2-torsion, but this does not seem to be the
case. Using his Hermitian K-theory, Karoubl has indicated an argu-
ment which shows that the 2-torsion part of KS(Z) is not equal to
Z/8Z, as would be predicted by the extended form of Conjecture 2.4,
but is at least big enough to map surjectively onto Z/8Z ® Z/8z. It

would be very desirable to have an exact description of the whole of

Ky ().

2.7. It seems also likely that the strange-looking quantity
#Ks5, 1 ©5) /4K, (&)  should also be interpreted as an Euler character-
istic. Namely, if we let %n Q??) be the sheaf associated to the
obvious étale presheaf defined by the functor Kn’ then it seems POS-
p1s1E5) ~ HO(Spec O, %, 1 (05)) and K, (5) = it (Spec @,
E2i+1(%)) with HP (Spec &F’%ziu(@?)) = 0 for p > 1. These isomorphisms

sible that K

would come from the degeneration of a fourth-quadrant spectral squenceging
(approximately) from the cohomology of the sheaves ﬁi to the groups
Ki’ which would be the analogue for the étale topology of the Zaridkd-
topology spectral sequences described by Bloch and Gersten elsewhere
in this volume. The possibility of the existence of such a spectral
sequence has been investigated (in the case of a field) by K. Brown,

among others.
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3. The case when F = Q.

There is some additional evidence for the conjectures in the case
when F = @ and CDF =Z. Let 1 be a positive integer of the form
4n-1. Quillen has shown that there is always a map from the stable
i-stem to Ki(z), which is injective when restricted to the image of
the J-homomorphism and whose image when so restricted is a direct
summand of Ki@Z). Furthermore the order of this image is then (by
results of Adams, Quillen and Sullivan) equal to twice the denominator

a(2n) of the Bernoulli number Bgn/Qn, where we fix our notation by

the formula

X
£ . E: B X%/n!
ex—l n

=0

It is also well-known that ((1 - 2n) = -B, /2n.

0 .
Furthermore, for a fixed prime 4, the order of H (XS,J*Wm+l)
may be computed if X = Spec £, by using Von-Staudt's Theorem and
Kummer'!s Congruence ([3], pp. 384-385) to be also equal to the
L-part of a{2n) if m = 2n-1l So at least K2m+l(2)(é) contains a
cyclic direct summand whose order 1is equal to the order of the cyclic

group HO(XS,j*W ), 1in support of Conjecture 2.5.

mk1
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4, Generalizations of the regulator.

We conclude with some guesses as to what might happen in the
cases where the zeta-function does have a zero. We must first define
analogues of the regulator.

Let i be an odd integer » 1. Let F be any number field. If
i

22

J
J=1,...,7) + 1, of Kiaﬁb} to R. If i= 3 (mod 4), there will

i

it

1 {mod 4) we are going to define r, + 1, maps o

be T, such maps. Let g = 8; be the rank of KiﬂﬁF) and note that

by Theorem 2.2, g; is also equal to ry + r, if i=1 (mod 4), and
to r, if 1= 3 (mod 4). Let Bl...ﬁg be a basis for K, ().

Definition 4.1. We define the m~th regulator of F, Rm(F), to be

|laet o™ ()|

as J and k both range from 1 to g = Somy1”
Then, inspired by the classical Proposition 1.1, we ask the following

guestion.

Question 4.2. When is it true that

K, (0)
lim (F,s) (s+m)™® = + em 7 F . F)2?
5> ~m ( - K2m+l{oF:tor Rm(

It remains for us to define the wi's. We proceed as follows:

By a result of Quillen's [10], Ki(d%) ® @ 1is naturally isomorphic to
the space of primitive elements in Hi(GL(Oﬁ),Q). If 1> 1 this is

the same as Hi(SL(ﬁF),Q) Now, Hi(SL(OF),Q)

prim’ prim
Hi(SLcﬁf), R)prim’r which by arresult of Borel [2], is naturally iso-
morphic to Hi«SU) 2y (SU/s0) l’lR)prim’ We have the natural projec-

tion maps to Hi(SU,R) and H, (SU/S0, R)

s

prim’ prim’ If i is odd,

vi(SU) ey 4 (mod torsion) by the Bottperiodicity theorem, and the
image of a generator by the Hurewicz map gives a primitive homology
class in Hi(SU,R). We then use this element to give us a natural

identification of Hi{SU,RJ with R. Similarly, if

prim
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i=1 (mod 4), vi(SU/SO) ZZ (mod torsion) and we get a canonical iden-
tification of Hi(SU/SO, R)prim with R. Putting all these isomor-
phisms together, we get the desired maps ®;-
Since these higher regulators have not been computed in any
gingle example, it is not at all clear that we have chosen the correct
normalization of the mi's. We may, for instance, want to take a

generstor of Hi(S[L Z) instead of a spherical class to get the

prinm
icdentification of Hi(SU, R)prim with ®R. Also, the identifications
themselves might need to be adjusted by suitable powers of 7, pre-
sumably depending only on 1 and not on the field F.

Finally, I should say that the definition of the mi‘s is essen-
tially due to Borel, with some modifications by Bott and Milnor,

although the actual words here, and the responsibility for any ernors

in my interpretation of their work, are my own.

499



10.

11.

~12-
References

.J. Birch, K2 of global fields, Proc. Sympos. Pure Math.,

vol. 20, Amer. Math. Soc., Providence, R.I. 1970.

Borel, Cohomologie reelle stable de groupes S-arithmetiques
classiques, Comptes Rendus de 1l'Academie des Sciences,

vol. 274 (1972),1700-1703.

.I. Borevich - I.R. Shafarevich, Number thecry (translated by

N. Greenleaf), Academic Press, New York, 1966.

Cogates, On K2 and some classical conjectures in algebraic

number theory, Ann. of Math. 95 (1972), $9-116.

Coates and S. Lichtenbaum, On 4-adic zeta functions

(to appear).

Iwasawa, On p-adic L-functions, Ann. of Math. 89 (1969),
198-205.

Kubota and H.W. Leopoldt, Eine p-adische Theorie der Zetawerte,

J. Reine Angew. Math. 213 (1964), 328-339.

Lichtenbaum, On the values of zeta and L-functions: I,

Ann. of Math. 96 (1972), 338-360.

Lichtenbaum, On the values of zeta and L-functions: II
(to appear).
Quillen, Cohomology of groups, Proceedings of International

Congress at Nice (1970).

Quillen, Higher K-theory for categories with exact sequences,
To appear in the proceedings of the symposium "New

developments in topology", Oxford, June 1972.

500



12.

13.
14,

5.

~13-

J.-P. Serre, Cohomologie des groups discrets, in Prospects in
Mathematics, Annals of Mathematics Studies (70), Princeton

University Press, Princeton 1971.
C.-L. Siegel, Gesammelte Abhandlungen, Springer-Verlag 1966.

J. Tate, Symbols in arithmetic, Proceedings of International

Congress at Nice (1970).

J. Tate, (Unpublished letter to Iwasawa, Jan. 20, 1971).

501



"K-Theory and Iwasawa's Analogue of the Jacobian'

by
Joln Coates

Introduction. Following the initial idea of Birech and Tate, Lichtenbaum
has made a remarkable conjecture relating the values of the geta function of a
totally real number field F at the odd negative integers to the orders of certain
K-groups of the ring of integers of F (see [11] and his article in this volume).
In the present paper, we begin by indicating the connection between this conjecture
and Iwasawa's theory of Zl—extensions of number fields, and, in particular, his pro-
posed analogue of the Jacobian for F (most of what we say is already contained in
[2] and [11]). It turns out that Lichtenbaum's conjecture is very closely related
to the assertion that the characteristic polynomial of the I-module in Iwasawa's
analogue is essentially the %-adic zeta function of F as constructed by Leopoldt—
Kubota [10] when F 1is abelian over Q and by Serre [15] for all F . Unfortu-
nately, this latter fact is still only known for a very restricted class of fields.
Nevertheless, by employing some of Iwasawa's ideas, one can prove it, and thereby
also Lichtenbaum's conjecture, for a class of abelian extensions of Q . We indi-
cate some of the main points involved in such a proof. The reader interested in
the full details of the proof, as well as some related material, is referred to [3]
and [11]. In conclusion, it is a pleasure to express my thanks to J. Tate, both for

introducing me to the subject, and for many helpful suggestions.

Notation. Throughout we use the following notation, We write Q, €, QQ 5
Zﬁ for the rational field, the complex field, the field of g-adic numbers

{% a prime), and the ring of %-adic integers, respectively. A will denote the ring
of formal power series in an indeterminate T with coefficients in Zg , and W(l)
the group of all f-power roots of unity. If m is an integer =z 1, Y will sig-
nify the group of m-th roots of unity, The cardinality of a finite set M will be
denoted by ##(M) . Finally, if E/F is a Galois extension of fields, G(E/F)

will denote the Galois group of E over F .
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1. Iwasawa's Analogue. In this section, we briefly describe Iwasawa's

proposed analogue of the Jacobian for totally real number fields, and indicate its
connection with one form of Lichtenbaum's conjecture about the values of the com-

plex zeta function of the field at the odd negative integers.

Let F be a totally real number field of finite degree over Q . Let 1

be an odd prime number, and let FO = F(uﬁ) , F = F(W(g)) . Then, of course,

T = G(Fm/FO} is non-canonically isomorphic to the additive group of 2 For

R
each n 20, let Fn be the unique sub-extension of Fm/FO of degree 1" over
FO , and let An be the l-primary subgroup of the ideal class group of Fn . If
n <m, the natural Inclusion of the divisor group of Fn in the divisor group of
Fm induces a homomorphism An - Am , and we let A = lim An . Let J denote com-
plex conjugation. Since F 1s totally real, there is a natural action of J on
A, which is easily seen to be independent of the particular embedding of Ew into
L. If B is any Z,-module on which J operates, we put 'B* = (1+3)B ,

B™ = (1-J)B . Now, for reasons which will become clear in the next paragraph, we
shall only be concerned with the G(Fm/F)-module A" . Let X be the character of
G(F_/F) with values in the group of units of Z, » defined by olg) = ;X(c) for
all 7 € W(g) . Plainly, G(FO/F) = H XxT , where H is canonically isomorphic to
G(F_/F) . We denote the restriction of x to H by 6 , and the restriction of

x to T by k. S8ince 4= [FO : F] is prime to 1 , the orthogonal idempotent

ey associated with each power of 6 lies in the group ring Zg[H] . For each
] .
odd integer 1 with 1 %i <d-1, put "A=e A" , 50 that
8
_ a-1 1
A = A
i=1
i odd

N . .
Let *A = Hom (1A,VQ2/ZQ) be the Pontrjagin dual of the discrete group h . we
£~

define an action of T on “4 by specifying that (o¢)}a) = ¢(oa) for all
FAN
geT, ¢, and ac

4. Fix a topological generator Yo of T' . Then as

o
is well known, the I'-structure on i gives rise to a unique A-module structure on
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*A such that Y = (1+T)p for all ¢ € “A . Iwasawa [9] has proven the following

basic facts about this A-structure, by using arguments from class field theory.
Firstly, /ltlx is a finitely generated A-torsion A-module, and secondly, /12 has no
A-submodule of finite cardinality. Thus the structure theory of finitely generated
A-modules implies that there exists an integer Ty z 1 and pon-zero power series

fli(T) »oeee s £ i(T) in A such that we have an exact sequence
i

T

N i
(1) 0= A+j®=lA/(fji(T))+Di+o,

where Di is a A-module of finite cardinality. Moreover, assuming the choice of
ey

Yo fixed, the power series fji(T) are uniquely determined by 4 up to units
T,
in A . We often call, by a slight abuse of language, fi(T) = Hj:l f‘ji(T) the

characteristic polynomial of Yo—l acting on A,

Let C %be a complete, non-singular curve of genus 2 1 defined over a
finite field k , and let gv be the Jacobian variety of C . Assume that 1 is
distinct from the characteristic of k , and let %R be the l-primary subgroup of
the group of points of % defined over the algebralc closure X of k. The
Frobenius automorphism of %/k induces an endomorphism of g’/z , and a fundamental
theorem of Weil asserts that the characteristic polynomial of this endomorphism is
essentially the zeta function of the curve C . Iwasawa has proposed that, in the
number field case, the G(F, _/F)-module A~ should provide an analogue of % o + The
basic conjecture underlying such an analogy is that the characteristic polynomials
fi(T) of the /1\A (1 £4i<4d-1, i o0dd) should be very closely related to the
l-adic zeta functions of F in the sense of Leopoldt-Kubota [10]1, thereby giving
a result for number fields parallel to Weil's theorem. From our point of view, the
most natural way to formulate this conjecture precisely is in terms of the
G(F_/F)-invarients of certain twisted versions of AT . Let dJ denocte the
G(F_/F)-module 1im u 0" If B 1is a discrete 1l-primary G(FW/F)-module, and n
is a positive integer% B{n) will denote the tensor product of B over ZQ with

the n-fold tensor product of J with itself over Z,L . Of course, since 3 is a
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free Z,-module of rank 1 , B(n) is isomorphic to B as an abelian group.

L
However, they are definitely not isomorphic as G(F,/F)-modules, since we shall
always view B(n) as a G(F,_/F)-module via the diagonal action on the tensor product.
For each integer r 2 1 , let Wr(F) denote the largest integer m such that
G(F(um)/F) is ammihilated by r . Finally, let &(F,s) be the complex zeta func-
tion of F . We recall that Siegel (16] has proven that, for each odd positive

integer n, ¢(F,-n) is a non-zero rational number.

G(F,/F)

Conjecture 1. For each odd positive integer n , (A (n)) is finite, and

its order is equal to the l-part of wn+1(F)C(F,—n) .

Special cases of this conjecture have already been proven. We discuss these,
as well as other evidence for the conjecture, in 52 and §3. For the moment, we
simply translate the conjecture into several equivalent forms. If B is a
T-module, let <B)F dencte B/(Yonl)B . Alsc, let | 32 be the valuation of Q, ,

normalized as usual so that ’1'2 =171,

Lemma 2. For all n 2 O, the following assertions are equivalent:

1) (fam))f is finite,
1) (Pa(n))p = 0,

1i1) fi(K(YO)_n—l) 0.

If these assertions do hold, the order of (1A(n))r is lfi(K(Yo)_n‘l)lil .

This lemma is quite elementary, and we refer the reader to §7 of [3] for

its proof.

Proposition 3. Let i Dbe a fixed odd integer with 1 < i £ d-1 . Then, for all

integers n 2 0 with n = 1 mod d , we have

G(F_JF)
i) (&7(n)) 3_87 finite if and only if fi(x(yo)—n-l) # 0, and
G(F_/F - -
ii) if (A7{(n}) is finite, then its order is Ifi{x(yc) n—l){i1 .
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Recall that the action of H on J is given by ot = 8(c)t for o ¢ H,
whence it is easily seen that (A._(n))H = iA(n) for all integers n with
n=1imod d. Thus Proposition 3 follows immediately from Lemma 2. Note that the
finite A-modules D; do not appear in Proposition 3.

In view of Proposition 3, we see that Conjecture 1 is equivalent to the fol-
lowing statement. Fix an odd integer i with 1 < i < d-1 . Then, for all posi-

tive integers n with n = 1 mod 4 , we have
-n -n _
£i(c(r) 1) # 0 and |£5(kly Y1) = [ (F)e(F,-n)],

This suggests that the power series fi(T) are very closely related to the l-adic
zeta functions of F constructed by Leopoldt-Kubota [10] when F 1is abelian over
Q , and recently by Serre [15] for all totally real F . However, we cannot be
more precise at this point because the EX do not provide us with a canonical
shoice of the undetermined unit in A , which is implicit in our definition of the
fi(T) .

Finally, following Lichtenbaum [11], we give an equivalent form of Conjec-
ture 1 in terms of &tale cohomology. We refer the reader to [1] for the basic facts
about &tale cohomology. Let O be the ring of integers of F , and X the spec-
trum of the ring(:y[%- . Let j : Spec (F)+ X be the natural inclusion. Let F
denote the algebraic closure of F . For each n 2 0, we can view the G(FVF)—mod—
ule W(Q)(n) as a sheaf for the &tale topology of Spec (F) , and we may take its
direct image j*W(R)(n) on X . By definition, HO(X,j*W(R)(n)) = (W(l)(n))G(?yF),

and it is easily seen that the order of this latter group is the l-part of Wn+l(F)'

ProEosition 4. For all odd positive integers n , we have

i) EY(%J,W"(n)) is canonically isomorphic to (A (n)) , and

11) X%, 3 0% Nn)) is finite if end omly if HX(X,3 4% )(n)) = 0 for a1l

iz 2.

The proposition follows from Lemma 2 on noting that, on the one hand, it is

shown in §9 of [11] that we have canonical isomorphisms
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B30 ) 5 Aam)) B s®m) ¥ Cak)),

for all n with n = 1 mod d , and, on the other hand, that we always have

Hk(X,j*W(l)(n)) =0 for k23, by a general theorem on cohomological dimension.

We conclude from Proposition 4 that Conjecture 1 is valid if and only if

Hk(X,j*W(g)(n)) =0 forall k=2, and

= (1%, 3,0 ) (n)))

C(F)" ) -1 = .
e s )

The beauty of this formulation of the conjecture is that it gives some indication

of why the factor W F) arises naturally in the theory.

+1(

2. The Analytic Theory. In this section, we indicate a proof of Conjec-
ture 1 for a class of abelian extensions of Q . We only sketch some of the argu-
ments involved, and the reader is referred to [3] and [11] for full details. The
method of proof is based on the important ideas introduced by Iwasawa in [8].
These, in turn, have their origins in a classical theorem of Stickelberger [17],
and the classical analytic class number formula [6].

We use the notation of §1, the prime number 1 being odd, as before. Also,
F; will denote the maximal totally real subfield of Fo , 80 that [Fo : F;] =2,
We assume throughout this section that F 1is an abelian extension of Q . We

first establish the following rather weak consequence of Conjecture 1.

.
Theorem 5. Assume that (i) 1 does not divide [F:QJ, and (ii) no prime of F

lying above 1 splits in FO . Then, for each odd positive integer n , we have
- G{F_/F) -
(A°(n)) =0 if 1 does not divide w_, (F)z(F,-n) .

The special role that the primes 1 not satisfying (ii) play in the theory
will be explained in §3. For the present, we simply note that (ii) excludes only

finitely many primes since 1 must certainly ramify in F if (ii) is not valid.
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Theorem 5 is quite useful for studying particular fields, For example, if we take

the two quadratic fields F, = QvI1) , F, = Q(/19), it is easily seen that (i)

2
and (ii) exclude no primes 1 (except 1 = 2) . Since WZ(Fl) = w2(F2) = 23-3 ’

and C(Fl;'l) =+ 7/(2.3), Q(FZ)‘l) =

1+

19/(2.3) , we conclude from Theorem 5 that
N G(F_/F

(A (1)) = (0 for all primes 1 ¥ 7 for F, , and for all primes 1 ¥ 19 for

F2 .

Proof of Theorem 5. Let x be a primitive Dirichlet character satisfying x(-1) =

-1 . Ve view the values of ¥ as lying in the algebraic closure of Q2 , and let

(ji be the ring generated over Z, by the values of yx . Let AX be the ring of

2
formal power series in T with coefficients in (); . In (8], Iwasawa has associ-
ated with y an element g(T;y) of the quotient field of AX . Define f£(T;x)
to be either g(T;x) or (T-1)g(T;x) , according as x # w or X = @ ; here N
is the Dirichlet character modulo 1 satisfying B(a) = amod 1 Zﬁ for all inte~
gers a . We shall only consider those y which have order prime to 1 , and, in
thls case, f(T;x) 1is an element of AX . Also, it is not difficult to see

(ef. {71) that f£(T;p) is in fact a unit in A . Finally, for each positive

i

integer n , let B§ be the n h Bernoulli number associated with y in the sense

of Leopoldt [12].

Now Fo = F(pl) is abelian over Q . Thus we can associate with each abso-
lutely irreducible character ¢ of G(FO/Q) a primitive Dirichlet character [
in the usual way. In particular, if w is the character of &(Q(u))/Q) given by
og = Cw(o) for all ¢ e Uy , then @ is just the character described in the last
paragraph. If ¢ 1is the character of a representation of G(FO/Q) irreducible
over QQ , let e be the associated orthogonal idempotent in the group ring
ZR[G(FO/Q)] . Let I denote the set of characters of repregentations of
G(F/Q) which are irreducible over Qp . Fix, for the rest of the proof, an odd

positive integer n . Then, with H defined as in 81, we see easily that
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(2) (@) =@ (e _AT)n) .
deI  dw

* -
For each ¢ ¢ I, put & = duw D Note that, since ¢ 1is real and n is odd,

*
® is imaginary. Let ¢ be an absolutely irreducible component of ¢ , and
* - *
¢ = dw T the corresponding component of ¢ ., Then, if 9 denotes the least

common multiple of 1 and the conductor of ¢* , 1t is shown in [8] that

1 -1
805 00 = 167 (DL, al(1vg) 0 B = (1 T )
721
¢ ¢

We denote by RS the set of absolutely irreducible characters of G(F/Q) which
are distinet from wn+l (observe that wn+1 is a character of G(F/Q) if and
only if [FO:F] divides n+l) . Now assume that ¢ 1is any element of 3 . Ssince

* K ~%
o 7 wn+l , we have ¢ # w , and thus g(T;¢*) is in A Consequently, g(0;¢ )E

s -
g((l+qo)'n-l; ¢*) mod lq;', and both values lie in (j; . Further, it is easy
to see using class field theory that our hypothesis that no prime of F; above 1
-1
F *
splits in FO implies that ¢ (1) # 1 , whence 1 - ¢ (1) is a unit in Cj¢

because (1, [FO;QJ) =1 . Thus we conclude that

-1
(3) Bz u 4: mod 107,
5 1 b
¢
where u is a unit in CJ& .
Next we show that Bn+l
1
(4) o (F)F,n) = v [ 8,
e
where v 1s a unit in Z2 . For, by the decomposition of ¢g(F,s) into a product
of L~series, we have ¢(F,n) = + 1 Bn+1/n+l , where the product is taken over all
A
absolutely irreducible characters ¢ of G(F/Q) . The proof of (4) divides into
+
two cases according as wn+l is not or is a character of G(F/Q) . If wn 1 is

not a character of G(F/Q) , (4) is clear because % contains all characters of

&(F/Q) and wn+1(F) is not divisible by 1 since [FO:F] does not divide n+l .
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n+l

*
On the other hand, if ¢ = w is a character of G(F,Q) , then ¢ = w , and, as

(T-1 )g(T;I}) is a unit in A, it follows that its value at (l+£)_n-l , namely,

+1

{(1+2)™ < (1s2)}80 (n+1)

w_

divides n+l , it is not difficult to prove (see §6 of [11]) that the power of 1

/{n*1) , is a unit in Zy - But then, since [FO:F]

dividing both (l+l)—(n+l)—l and wn+l(F) is the same, as required.

Now assume that 1 does not divide wn+1(F)C(F’-B> . Since each term in

the product on the right of {4) is integrel at 1 , it follows that Bf:l/(ml)
1

¢

is a unit in O¢ for all ¢ ¢ &. We then conclude from (3) that BL is a unit
¥

¢
in O;) for all ¢ ¢ &, Let ¢ be any element of 3, and let K be the fixed

*

field of the kernel of ¢ . We write ¢ for the character of G(K/Q) induced
* * *

by ¢ . Let & , ¥ be the sum of the conjugates of ¢ , Y over QSZ, , and let

e, be the orthogonal ldempotent corresponding to Y in the group ring

b4
R = ZQ,[G(K/Q)] . Now, if f denotes the conductor of ¥ , let o be the element

of QQEG(K/Q}] defined by

here (-ﬁ-) is the restriction to K of the automorphism of Q(uf) , which raises
each element of Up to the ath power. It is easily seen that e\ycs is in R,

and it is plain that ey is mapped to BE under the ring isomorphism e‘yR 5 Ow—

which is induced by the map g+ Y(g) . Thus eyo is a unit in the ring eyR .
But, by a classical theorem of Stickelberger [17], eyt annihilates e?@ where
Ul denotes the 1-primary subgroup of the ideal class group of K , whence we con-
clude that e\yUl= 0 . Now, on the one hand,,the natural map from Tl to Ao

induces an isomorphism e‘yu:» e@ —nAc—) because (%, [FO:K]) =1 , and, on the other
hand, it can be shown (see §2 ofw[Bj),that our hypothesis that no prime of F;
lying above 1 splits in F_ implies that e@m_n}i; = (ew"nA—)r . Hence
(e@w_nA')F = 0, whence, by a basic property of discrete [-modules, em_nA =0,
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This argument applies to all characters ¢ of G(FO/Q) , which are irreducible
over Q% , except ¢ = wn+1 . However, a similar argument to the above, using the
fact that (T-1)g(T;w) is a unit in A , shows that we always have ewA_ =0 .

G(F_/F)

Thus, in view of (2), we have certainly shown that (A" (n)) 0 if 1

does not divide wn+l(F);(F,-n) .

Much of the above proof is classical and well known. In particular, the
congruence (3) was pointed out several years ago in letters of Iwasawa and Brumer
to Tate, and special cases of it are probably very old. The reader should also
note that the above argument could be considerably simplified, and the conclusion
of Theorem 5 strengthened, if the following unknown assertion could be proven in

n+l

general, For each character ¢ # u of an imaginary representation of G(FO/Q)

irreducible over Qg , the order of e,A is the exact power of 1 dividing

¢o
i BE ; where the product is taken over all absclutely irreducible components ¢
b ¢
of ¢ .

We next discuss a general conjecture, in the spirit of the proof of Theo-
rem 5, from which we can derive the full conclusion of Conjecture 1. Let F be
a totally real abelian extension of Q , and let 1 be an odd prime number which
does not divide [F:Q] . Let ¢ be the character of an imaginary representation
of G(FO/Q) irreducible over Qp ¢ an absolutely irreducible component of ¢ ,
and let f(T;g) be the associated power series in A¢ , which is defined at the
beginning of the proof of Theorem 5. Let Ay = e®A~ , and let '2; =
Hom (A, Qy/Zy) be the Pontrjagin dual of Ay , endowed with a T-module structure
in the same way as described in §1. Let qo(¢) be the least common multiple of

1 and the conductor of ¢ , and let Y, be the unique topological generator of

I' such that ®(y_ ) =1+ qJ(¢) .

Conjecture 6. For each character ¢ of an imaginary representation of G(FO/Q) s

irreducible over Qq , there is an exact sequence of A-modules
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/\ ~
0~ &y > AJ(EH(T;:§) > Dy > 0,

]
where D, 1is a finite A-module.

o

Theorem 7. If Conjecture 6 is valid for F and 1, then Conjecture 1 is valid

for F, 1, and all odd positive integers n .

Proof. By (2) above, we have
G(E_/F)
) =

(5) (47 (n)
ol

where, as before, I denotes the set of characters of representations of G(F/Q)
which are irreducible over Q£ . To compute the order of the I'-invariants on the
right, we first note the following facts about I'~modules. If B 1is a discrete
T-module, and C = Hom (B, QQ/ZQ) is its Pontrjagin dual, we always assume that
the T-structure on C is given by (Ye)(b) = ¢(Yb) , where Y eI , c e C, and
b € B. Thus, in particular, it follows that (B)r is dual to (C)F ., Also, let
Bln] denote the -module having the same underlying group as B , but with a new
action of I' given by Y°ob = «(Y)™b , the latter action being the original one.

We define Clnl in the same way. It is therefore clear that C[n] can be iden-

tified with the Pontrjagin dual of B[nl . Note also that B[n] is non-canoni-
cally I-isomorphic to B(n) . Now, applying these remarks to our particular situ-
T A
ation, we conclude that (A4 ,(n)) 1s dual to (A *[n])r , where, as before,
[ ]

* - % .
¢" = &w™ . Further, if C = A¢/(f(T;¢ )) , then it is easily seen that C[n] is

A-isomorphic to A¢/(fn(T;¢*)) , where

£,(1507) = £((1rq (67)(1+T)1)

Vel
Writing E = A

x» D=D, , the validity of Conjecture 6 implies that we have an
® 3

exact sequence

(6) 0 * Elnl > ¢[n] » Dln]l * O .
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*
Note that, in view of the explicit formula for fn(O;¢ ) derived in [8], we have
*
£(056") # 0 . It follows easily that (C[n])f = 0 and (CInl), is finite of
%, -
order [fn(0;¢ )|21 . Hence, applying the snake lemma to (6), we obtain the exact

sequence
o+ (ol » (Efn1), > (¢ln1), » (Dlnd). > 0 .

r‘
But, as DInJ] is finite, (DInl]) and (D[n])p have the same order, whence
(E[n])r and (C[n])r also have the same order, namely Ifn(0;¢*)|£l . Recalling
that we always have A = O, the conclusion of Conjecture 1 follows from (4)

and (5).

By using Iwasawa's methods [7], we have been able to prove Conjecture 6 in

some cases.

Theorem 8. Assume that 1 is an odd prime number such that (i) 1 does not divide

[F:Q] , (ii) mo prime of F. 1lying above 1 splits in F_, and (iii) AJ is

eyclic as a module over Z£[G(FO/Q)] . Then Conjecture 2 is valid for F and 1.

For the proof of Theorem 8, which involves similar ideas to those given
above in the proof of Theorem 5, we refer the reader to [3]. Unfortunately, hypo-
thesis (iii) is very restrictive, and difficult to verify for any particular field.
Nevertheless, it can sometimes be verified by using tables of class numbers [13].
For example, if we take F; = Q(/II), 1 =7, or F,= A/IT), 1=19, we
conclude easily from the tables [13] that (iii) is valid. Hence, in view of the
remarks after Theorem 5, we see that (A—(l))G(E”/F) has order 7 in the first

example, and order 19 in the second.

3. Divisibility Assertions. Let F be any totally real finite extension

of Q . A particular consequence of Conjecture 1 would be that, for each odd

positive integer n , wn+1(F);(F,—n) is integral at 1 for all primes 1
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(although 1 = 2 has been excluded in our discussion, it can be included if one
uses a different formulation of Conjecture 1, cf. [11]). Such an integrality
result was first conjectured by Serre {14], who proved it for n =1 . It is still
unknown for n > 1 . However, it is shown in [3] that the validity of Conjecture 1
would imply an even stronger result than this integrality assertion. Assume again
that 1 is odd. If ? is a prime of F , let Fga denote the completion of F
at ® - Also, if K 1is any field, let wz(ll)(K) be the largest power of 1 , say

T

1" , such that G(K(u r)/K) has exponent n .
2

Theorem 9 (Lichtenbaum). Let n be an odd positive integer, and assume that

_ G(E_/F) - G&E/F)
(A (n)) is finite. Then the order of (A (n)) is divisible by

i wl(lg')(F&,) , where the product is taken over all primes gg of F 1yi
&/ = e

above 1 .

Note that, since n is odd, the term II WI(IJZ’)(F&)) is greater than 1
®/2

for some n > 1 1if and only if at least one prime of F; lying above 1 splits

in F_ .
o

Conjecture 10. Let n be an odd positive integer. Then wn+l(F)C(F,—n) is an

T W)
@/ "
all primes &) of F lying above 1 .

l-integer, which is divisible by (F&,) , where the product is taken over

It is not difficult to see that Theorem 9 and Conjecture 10 are very closely
related to the existence of a zero at T = O of a certain order for the various
power series discussed in §1 and §2. For example, using the existence of this zero
for certain of the Iwasawa power series g(T;X) , the following result is proven

in [3].

Theorem 11. Assume that F 1is a totally real abelian extension of Q . Then

Conjecture 10 is true for F and all odd primes 1 .
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On the other hand, Theorem 9 implies the following result about the power

series fi(T} (1 <1sd-1, i odd, 4= {FO:F]) introduced in §1.

Theorem 12. Assume that F 1s any totally real finite extension of Q. Then,

for each odd integer i with 1 <1 <4d~1 , fi(T) has & zero at T =0 of

order greater than or equal to s(i) , where s(i) denotes the number of primes

@.0_2 F lying above 1 such that [F&,(uk) : F&,] divides 1 .

Proof. Let f be any prime of F lying above 1 such that [ﬂ?(ug) : %PJ
divides i . It is plain that, for all integers m z O, [EF(u2m+l) : gb]

{(2)
(E.)
P

d divides 1-1 , it is also clear that the integers 1™ (m=0,1,...) are all

m+l

aivides 1™ , or equivalently that w is divisible by 1 . Now, since

congruent modulo d . Further, as fi(T) has only finitely many zeros, we have

m,
fi(K(Yo)'z 1.1) # 0 for all sufficiently large m . It then follows from Propo-
o S(E/F)
sition 3 that (A™(171)) is finite for all sufficiently large m , whence,

m
2 . s
again by Proposition 3 and Theorem 9, we conclude that fi(K(yO) l—l) is divis-

(m+1)s(1) )

ible by 1 Letting m tend to infinity, we easily see that fi(T)

must have a zero at T = O of order = s(i) .

Recently, R. Greenberg [5) has shown that, when F 1is a totally real
abelian extension of Q , and 1 is any odd prime number, then the order of the
zero of fi(T) at T =0 is exactly s{i) for all odd i with 1 <41 <d-1.
His proof makes essential use of the p-adic analogue of Baker's theorem on linear
forms in the logarithms of algebralc numbers.

So far, no proof of Conjecture 10 has been found for non-abelian extensions
F of @, although we have verified special cases of it for many particular fields
by direct computations. We mentlon two examples. Let F, = Q(8;), F, = Q(92) .
where 6, is a root of X3 - 9X + 1, and 62 is a root of X3 - 6X + 2 . The

1

discriminant of Fl is 3.107 and that of F2

verified that Conjecture 10 predicts that w2(F1)C(Fl,—l) s w4(Fl)€(Fl’—3)’

is 2%°3%7 . It is readily
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w4(F2)r,(F2,—3) gshould be integers divisibly by 3, 32 , and 7 , respectively.
This is indeed the case, because direct computations show that Wz(Fl) = 23'3 ’
WL(Fl) = WZ,(FZ) = 24'3.5 2 and E(Fl)_l} = : l bl C(Fl,-B) = t (3'5.37>/2 2
UFy-3) = ¢+ (7°:3589)/(2:3:5) .

4. Connection with K-theory. In this last section, we briefly discuss the

relationship of Conjecture 1 with K-theory. We use the notation of 81. Thus F
is any totally real finite extension of Q , 1 1is an odd prime number, FO =

F(“z) , ete. Let ﬁdenote the ring of algebraic integers in F .

Theorem 13. The l-primary subgroup of K2O’ is canonically isomorphic to
G(E, /F)

(a7(1))

Conjecture 14. For each odd positive integer n ,
GIF_/F)
KZnO is canonically isomorphic to (4 (n)) “ .

the l-primary subgroup of

Note the following consequences of Theorem 13 and our earlier results.

G(E_/F)

Corollary 15. (A7(1)) is finite, or equivalently fl(:c(yo)'l—l) #0.

For, by Garland's theorem [4], K20’ is a finite group.

Corollary 16. Let F be a totally real abelian extension of Q . Let of be the

finite set of rational primes consisting of 1 =2 , and all 1 such that either

1 divides [F:Q} , or at least one prime of F lying above 1 gplits in F0 .

Then, if 1 £od, 1 divides the order of K20' only if 1 divides W2(F)C(F,-l) .

Further, if 1 ¢d , and A; is cyclic over the group ring Zz[G(FO/Q)] , the order

of the 1-primary subgroup of KO is the exact power of 1 dividing WZ(F);(F,-J.).

This is clear from Theorem 13 and Theorems 5 and 8. In particular, if we
consider the two examples mentioned before, namely F; = Q /1), F, = A/19) ,

then, in both cases, @ = {2} , and we conclude that (writing O ,0'2 for the
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rings of integers of F,, F,) # (KZOi) = 4.7, =l'ﬁ'k?(K'gO;';) = 4+19, except perhaps

)
for the 2-primary subgroups. In fact, a simple direct argument enables us to

verify that the above orders are correct even for the 2-primary subgroup.

Sketch 9£ the proof of Theorem 13. We first remark that, by Quillen's long exact

sequence [18], the inclusion of O in F induces an isomorphism from KZO' onto

Ker )\F , where )\F : K2F -+ @k; is the homomorphism induced by the tame symbols
&

(here ga runs over all finite primes of F , and kza denotes the multiplicative
group of the residue field of ga) . Let 1! be the free abelian group generated
by the non-archimedean primes of F, which do not lie above 1 . OSince only the
primes above 1 are ramified in the extension E,/F , and since there are only
finitely many primes of F, 1lying above each finite rational prime, we have the
natural map from F: to Il which associates to a field element its divisor out~-

side 1 . This gives rise to a homomorphism (QQI/ZQ}@F: > (QQ/ZQ)®IG’° , and
Z Z

we define O0G to be the kernel of this homomorphism. Now TG is a discrete
l-primary G(Fm/F J-module, and so, in particular, it has the decomposition W=
BB . It is shown in [2] (see Theorems 6 and 11) or [11] (see §7), and we
do not repeat the arguments here, that Tate's cohomological description of K2F
{see his article in this volume) implies that, since F 1s totally real, the
l-primary subgroup of Ker )‘F is canonically isomorphic to (K(I)G(Fm/F) .
Theorem 13 then follows immediately from this result and the corollary of the
following lemma. Let O’w be the ring of algebraic integers in F_ , and let &
be the group of units of O’m (note that we are not taking the group of units of
the ring O’mﬁl/].]) . It is very easy to see that the inclusion of E  in F

&0

induces an injection (le.,'/z2 )® E_ 0.
Z

Lemma 17. There is a canonical G(F,/F)-homomorphism ¢ : WG+ A such that the

seguence
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¢
0~ (Qg/zg)‘gEm W+ A » 0
VA
is exact.

Corollary. WG is canonically isomorphic to A~ as a G(F_/F)-module.

To deduce the corollary from the lemma, let F; be the maximal totally
real subfield of F_, E  the units of F_, E  the units of F. , and @
n 7 n n n n
the group of roots of unity of Fn . Then it is well known that QnE:1 is a sub-
o0

group of En of index at most 2 . Hence, since 1 is odd and E, = Un=0 En )

we deduce easily that ((QR,/ZSL)® E) =0,
Z

Proof of Lemma 17. The proof is entirely elementary, and is based on the fact

that there exists an integer n 2z 0 such that the extension Fw/Fn is

totally ramified at all primes of Fn lying above 1 (we do not include a proof
0

of this since it is both easy to prove and very well known). Let s denote the
number of primes of F_ 1lying above 1 , and, for each n 2 n  , let &j(n)

(1 <j<s) denote the primes of Fn lying above 1 , our notation being chosen
m-1n
= L . s
so that, for m > n , we have &’j(n) = &j(m) when 603.(11) is viewed as an
ideal of F . DNowlet x be any element of Wh, say x = a® (172 mod Zg) .
a

! 2
O =
Choose nn2>2n 80 large that o ¢ F and a

with @' ¢ 1! (here
n n
O’I'1 denotes the ring generated by the algebralc integers of Fn and 1/£, and

II'1 denotes the free sbelian group generated by the primes of Or'1) . Now, if
O;z denotes the ring of algebraic integers of Fn , we have txOn' =

a J J
%zéol(n) 1 "-8’03(n) S | for certain integers I 0 e s 'js (of course,
Jy » +ev s J, are not necessarily divisible by 1%) . Now aq+a =
1 Jo\g® A s .
(’&Aﬁ(ma) &Ds(ma) Y, where 1'1 is the image of UL}'} under the natural
inclusion of II‘1 in I£x+a . We define ¢(x) 1to be the image in A under the

B J
. 1 1., 5 .
canonical map Al > A of the class of ﬁﬁ(n«ﬁa) 5cs(n+a) in An+a .

It is trivial to verify that ¢ does not depend on any of the choices made in

518



the above definition, that it is a G(Fm/F)-homomorphism, and that its kernel is

(Q,z'/zﬂ')®Eao . To prove ¢ surjective, let £ be any element of A , and pick
4

an integer n 2 n, such that & is the image under the canonical map An + A

of the class of an ideal & of Fn . Thus there exists an integer b 2 0 such

b
that AS"L = 801; for some R in F_, and it is then plain that g =

HB® 17° mod Zy) . This completes the proof.

Finally, as was remarked by Tate several years ago, Theorem 13 shows that
the divisibility assertion of Theorem 9 for n =-1 has a simple interpretation
in terms of K-theory. For each finite or real prime 53 of F, let ¥ £ be the
group of all roots of unity in the completion of F at éo , and let \)&, : K2F -
H ® be the homomorphism induced by the Hilbert norm residue symbol relative to the

whole of lea . By using Moore's theorem, a simple computation shows that the ker-

nel of the homomorphism Vg =@ v&, : K2F >P u&) is a subgroup of Ker AF of

r. -1
index 2 L I I wgl)(F ) , where the product is taken over all primes 1 ,
% §/% &
including 1 = 2 . Granted Conjecture 14, Theorem 9 presumably has a similar

interpretation for all odd n > 1 .
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Research Problems: Arithmetic Questions in K-theory

Throughout F will denote a finite extension of the rational
field ¢, O will be the ring of integers of F,1 will be any
prime number,and,for each integer m > 1, fAm will be the

group of m-th roots of unity.

1. Is the natural map from X, O° to K, F injective for all
0dd positive integers n ? (If n is even,it is injective,as

is immediately seen by looking at the long exact sequence of
localization and using the fact that K, of a finite field
is zero for n even).

2. Assume F is totally real, Then K, O is finite for all
positivé inbegers n with n gé 1 mod 4, Determine the orders
of these groups. What relation do these orders have to the
values of the zeta function of F at the negative integers ?
(See Lichtenbaum's article in this volume for some more
detailed possibilities on this subject). In particular,determine
the order (and structure,if possible) of K, Z. .

3. Let ® be a finite prime of F,and 1et‘§} be the
Henselization of F at P (the algebraic closure of F in

the completion of F at P ). What is Kﬂﬁﬁg ) ? In particular,

is Ka(f; ) naturally isomorphic to the group of roots of
T

8 .
4. Assume 1 is odd,and let F_, be the field obtained by

unity in

adjoining to F all l-power roots of unity. Let K F(1),K F(1)
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denote the l-primary subgroups of X F,K P, ,respectively,and
let j:K_F(1) —> K,F, (1) be the natural map. Determine the
kernel of j. (If F is totally resl,j is injective; on the
other hand,examples are known where j is not injective,e.g.
1=3,and F = Q{257 ,{=3 ) or ({993 ,[=3)). In particular,
determine the kernel of j when F = Q(f*i)' (If the class
number of the maximal real subfield of Q(fﬁa) is prime to 1,
J is injective,e.g. for 1 < 4001).

5. Assume that p, << F,and let F* denote the multiplicative
group of F. Let 4\ be the kernel of the map from f&gin
to K;F given by Se®a +—> {S,a} . If S®ais in O s
and a is not an 1-th power in F* ,is it true that F(%a )

is always the first layer of a 2, -extension above F in

the sense of Iwasawa (if F is totally real,whence 1 = 2,%this
is true) ? Note that,by a result of Tate (see his article in
this volume),the order of I ‘is 1" s ,where r, is the
number of pairs of complex conjugate embeddings of F in € .
6. Let F be the algebraic closure of F,and let G, be the
Galois group of F over F. Let T = %EE [ ,and write iy
for the tensor product of T with itself over 2, ,viewed as

a GF.~m6du1e via the diagonal action. Excluding perhaps the
prime 1 = 2,is it true that KSF?? z, 1is isomorphic to
H’(GF,T°“),the latter cohomology group being formed with

continuous cochains ? (See Tate's article in this volume).

522



7. If X = Spec(A) is a non-singular affine curve defined over
a finite field,and n is greater than 2,is K A finite ? (It
does not even seem to be known that K.A is finitely generated).

By results of Bass and Tate,K A is finite.

8. Let I be any field,and 1 a prime,distinct from the
characteristic of IL,such that My < L. Is it true that every
element of K, of order 1 is of the form {s ,a } with
Sepy and 2 € L ? (When L is a global field,this has been
proven by Tate; see his article in this volume). Also,do there
exist fields of characteristic 1 such that their K » have

non-trivial l-primary subgroups ?
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Letter from Tate to Iwasawa on a relation between

_K2 and Galois cohomology

The text below is a copy of a letter I wrote Iwasawa in January 1971. It contains a
sketch of the proof of what is called the "Main Conjecture” on page 210 of my talk in the
Proceedings of the International Congress of Mathematicians at Nice. The letter below and
the Nice talk, taken together, provide an outline of the proof for number fields of the

fundamental isomorphism between K_ and Galois cohomology (formula (42) on page 210 of

2

the Nice talk). I hope to publish the details sometime soon.
The notes of Iwasawa referred to below will appear shortly as a paper in the Annals.
J.Tate
Dear Iwasawa,
Thank you for sending me the notes of your course. They have been very helpful to me.

I am enclosing a copy of the manuscript which I am submitting to the Nice volume,
because I think that now I can prove what I there called the Main Conjecture, and this result
is equivalent to the following statement about your I'-module X = Gal (M/K), by your

r
theorem that X/X ~A 2,
tors

THEOREM: The character xz does not occur in X ; more precisely, the module

T(-Z)

2
® X-= HomZ (T( ), X) contains no non-zero element fixedby T* .
Z, 4
Here I am using without explanations notations from your notes (except I use X instead

(r)

of your X), and also the notation T from my manuscript. In order that this combination
of documents (i.e. my Nice talk and this letter) will be self-contained, let me review your
notation:

£ is a prime number .

k is a finite extension of Q containing the £-th roots

of unity, and containing /1 if 4= 2 .
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K= k(W), where W is the group of £"~th roots of 1,

all o, in some algebraic closure of k .

T= Gal (K/k)-_—yozz ~z, .

x:I‘——>u=%i via 7((;):2:)‘(?) forfe W, YeT.

(In other words, Yt= (¥}t for te T.)

M the maximal abelian £ -extension of K which is

unramified outside £.

X = Gal (M/K) .
1’ = the group of £ -ideals of K = free abelian group
generated by discrete valuations of K (i.e. by the

non-archimedean valuations not dividing £) .

M is defined by the exactness of the sequence .

¥ 0— M — @,/Z,)) 8K —> (Q/Z )8 1'—> 0
By Kummer theory we have your theorem 2, namely
X = Hom (%, W)

and the resulting pairing X XM.———> W is a T'-pairing, i.e. satisfies

<, ym>=y<x,m> , for Ye T*, x ¢ X, m ¢WL. Hence

(T(‘Z) ® x)rz Homr(T(z) @?{(_,W):\Homr.('r oM, Q/Z,)

z,

= Hom((T @10/ (7, ~1XT 89, Q/Z )~ Hom (4 (T, TOM), Q,/Z, ) ,

so our theorem is equivalent to

ul(r, Tem=o0 .
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Tensoring the exact sequence (1) with T, and then passing to cohomology, we get an

exact sequence

. o .
(2) (W ®K )1‘__> wery —- uh(T, Te)—s HYT, WO K°)
So our theorem is now reduced to two statements:

PROPOSITION : The map @ in(2)is surjective , and
LEMMA : Hl(r, WeK =0 .

The lemma is trivial. Infact, if N is any discrete module on which I’ operates

continuously, then Hl(l", WeN)=0.

Proof. N= lim Na , Na finitely generated, so we can assume N is finitely generated

n
and fixed by Vg for some n( since N is discrete, a finitely generated I'-module isa

finitely generated abelian group). Now W ®N is a quotient of the finite-dimensional
Ql -vector space V@®N, where V=T ® Qz . The eigenvalues of ‘)/0 on Qz ®N are

Z

£
£%-th roots of unity, soon V®N, ?¥. has eigenvalues which are not roots of unity (since

0

x(‘yo) is not a root of unity}. Thus }'0—1 operates bijectively on V @8N, hence surjec-

tively on W@N | Q.E.D.

To prove the proposition we use non-trivial facts from K, -theory, namely Moore's

2

theorem on Coker A, Garland's theovem that Ker A is finite, and Matsumoto’s theorem
that a symbol gives a homomorphism of sz . Garland's theorem implies that sz isa
torsion group. This, the discussion on pages 208, 209 of my Nice talk (with F = k), and the

isomorphisms

ik, WP = mlk, WS wek)T

give a diagram
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h 2. .2, .T s
PP (K k) ——=> H (K, T, = (WBK')/(WeK")" ),
l M l induced by @& of (2)
2P || () —= wer' -
viLl® M

where 4PP denotes L-primary part.

Local considerations show that the diagram commutes, and that the lower
horizontal arrow is bijective. The arrowed marked ltame is surjective by Moore's
theorem. The map h is defined via Matsumoto's theorem and has values in the torsion

subgroup of H2 by Garland's theorem. Hence @ is surjective.
Best regards,

J.Tate
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