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232 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September 

or "conjugate" space T(L). Let L be a finite-dimensional real vector space, 
while its conjugate T(L) is, as is custoiiary, the vector space of all real valued 
linear functions t on L. Since this conjugate T(L) is in its turn a real vector 
space with the same dimension as L, it is clear that L and T(L) are isomor- 
phic. But such an isomorphism cannot be exhibited until one chooses a defi- 
nite set of basis vectors for L, and furthermore the isomorphism which results 
will differ for different choices of this basis. 

For the iterated conjugate space T(T(L)), on the other hand, it is well 
known that one can exhibit an isomorphism between L and T(T(L)) without 
using any special basis in L. This exhibition of the isomorphism L T(T(L)) 
is "natural" in that it is given simultaneously for all finite-dimensional vector 
spaces L. 

This simultaneity can be further analyzed. Consider two finite-dimen- 
sional vector spaces L1 and L2 and a linear transformation X1 of L1 into L2; 
in symbols 

(1) X1: L1-+L2. 

This transformation X1 induces a corresponding linear transformation of the 
second conjugate space T(L2) into the first one, T(L1). Specifically, since each 
element t2 in the conjugate space T(L2) is itself a mapping, one has two trans- 
formations 

L 
X 

L2 R; 

their product t2X1 is thus a linear transformation of L1 into R, hence an element 
t1 in the conjugate space T(L1). We call this correspondence of t2 to t1 the 
mapping T(X1) induced by Xi; thus T(X1) is defined by setting [T(X1) ]t2 =t2X1, 
so that 

(2) T(Xi): T(L2) -+ T(L1). 

In particular, this induced transformation T(X1) is simply the identity when 
X1 is given as the identity transformation of L1 into L1. Furthermore the 
transformation induced by a product of X's is the product of the separately 
induced transformations, for if X1 maps L1 into L2 while X2 maps L2 into L3, 
the definition of T(X) shows that 

T(X2X1) = T(X1)T(X2). 

The process of forming the conjugate space thus actually involves two differ- 
ent operations or functions. The first associates with each space L its con- 
jugate space T(L); the second associates with each linear transformation X 
between vector spaces its induced linear transformation T(X)(1). 

(1) The two different functions T(L) and T(X) may be safely denoted by the same letter T 
because their arguments L and X are always typographically distinct. 
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 233 

A discussion of the "simultaneoils" or "natural" character of the iso- 
morphism L_T(T(L)) clearly involves a simultaneous consideration of all 
spaces L and all transformations X connecting them; this entails a simultane- 
ous consideration of the conjugate spaces T(L) and the, induced transforma- 
tions T(X) connecting them. Both functions T(L) and T(X) are thus involved; 
we regard them as the component parts of what we call a "functor" T. Since 
the induced mapping T(X1) of (2) reverses the direction of the original Xi 
of (1), this functor T will be called "contravariant." 

The simultaneous isomorphisms 

r(L): L >~ T(T(L)) 
compare two covariant functors; the first is the identity functor I, composed 
of the two functions 

1(L) = L, I(X) = W 

the second is the iterated conjugate functor T2, with components 

T2(L) = T(T(L)), T2(X) = T(T(X)). 

For each L, r(L) is constructed as follows. Each vector xCL and each func- 
tional tET(L) determine a real number t(x). If in this expression x is fixed 
while t varies, we obtain a linear transformation of T(L) into R, hence an 
element y in the double conjugate space T2(L). This mapping r(L) of x to y 
may also be defined formally by setting [[i-(L)]x]t=t(x). 

The connections between these isomorphisms r(L) and the transforma- 
tions X: L1-+L2 may be displayed thus: 

7r(Li) 2 L1- r() T2(L1) 

I(X) } T2(X) 

I z7(L2) 2 L2 --E T (L2) 

The statement that the two possible paths from L1 to T2(L2) in this diagram 
are in effect identical is what we shall call the "naturality" or "simultaneity" 
condition for t; explicitly, it reads 

(3) r(L2)I(X) - T2(X)r(Li). 

This equality can be verified from the above definitions of t(L) and T(X) by 
straightforward substitution. A function t satisfying this "naturality" condi- 
tion will be called a "natural equivalence" of the functors I and T2. 

On the other hand, the isomorphism of L to its conjugate space T(L) is a 
comparison of the covariant functor I with the contravariant functor T. Sup- 
pose that we are given simultaneous isomorphisms 
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234 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September 

en(L): L:r-?T(L) 

for each L. For each linear transformation X: L1-+L2 we then have a diagram 

L, - aT(LO) > T(L1) 

1(X) { ~L2) { T(X) 

L2 - a(LT(L2) 
The only "naturality" condition read from this diagram is o(L1) = T(X)o-(L2)X. 
Since o-(L1) is an isomorphism, this condition certainly cannot hold unless X 
is an isomorphism of L1 into L2. Even in the more restricted case in which 
L2- L1,=L is a single space, there can be no isomorphism u: L-+T(L) which 
satisfies this naturality condition o- = T(X)o-X for every nonsingular linear 
transformation X(2). Consequently, with our definition of T(X), there is no 
"natural" isomorphism between the functors I and T, even in a very restricted 
special case. 

Such a consideration of vector spaces and their linear transformations is 
but one example of many similar mathematical situations; for instance, we 
may deal with groups and their homomorphisms, with topological spaces 
and their continuous mappings, with simplicial complexes and their simplicial 
transformations, with ordered sets and their order preserving transforma- 
tions. In order to deal in a general way with such situations, we introduce 
the concept of a category. Thus a category 2f will consist of abstract elements 
of two types: the objects A (for example, vector spaces, groups) and the 
mappings a (for example, linear transformations, homomorphisms). For some 
pairs of mappings in the category there is defined a product (in the examples, 
the product is the usual composite of two transformations). Certain of these 
mappings act as identities with respect to this product, and there is a one-to- 
one correspondence between the objects of the category and these identities. 
A category is subject to certain simple axioms, so formulated as to include all 
examples of the character described above. 

Some of the mappings a of a category will have a formal inverse mapping 
in the category; such a mapping a is called an equivalence. In the examples 
quoted the equivalences turn out to be, respectively, the isomorphisms for 
vector spaces, the homeomorphisms for topological spaces, the isomorphisms 
for groups and for complexes, and so on. 

Most of the standard constructions of a new mathematical object from 
given objects (such as the construction of the direct product of two groups, 

(2) For suppose a had this property. Then (x, y) = [(x) ]y is a nonsingular bilinear form 
(not necessarily symmetric) in the vectors x, y of L, and we would have, for every X, (x, y) 
= [O(x) ](y) = [T(X)oXx]y= [rxx]xy= (Xx, Xy), so that the bilinear form is left invariant by every 
nonsingular linear transformation X. This is clearly impossible. 
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 235 

the homology group of a complex, the Galois group of a field) furnish a func- 
tion T(A, B, * ) = C which assigns to given objects A, B, * * * in definite 
categories X, Q3, * a new object C in a category C. As in the special case 
of the conjugate T(L) of a linear space, where there is a corresponding in- 
duced mapping T(X), we usually find that mappings a, /3, in the cate- 
gories 9I, Q3, * * * also induce a definite mapping T(a, =i, * )=y in the 
category (S, properly acting on the object T(A, B, * * * ). 

These examples suggest the general concept of a functor T on categories 
I, Q3, . to a category L, defined-as an appropriate pair of functions 
T(A, B, * * ), T(a, 3, * * * ). Such a functor may well be covariant in some 
of its arguments, contravariant in the others. The theory of categories and 
functors, with a few of the illustrations, constitutes Chapter I. 

The natural isomorphism L->T2(L) is but one example of many natural 
equivalences occurring in mathematics. For instance, the isomorphism of a 
locally compact abelian group with its twice iterated character group, most 
of the general isomorphisms in group theory and in the homology theory of 
complexes and spaces, as well as many equivalences in set theory in general 
topology satisfy a naturality condition resembling (3). In Chapter II, we pro- 
vide a general definition of equivalence between functors which includes these 
cases. A more general notion of a transformation of one functor into another 
provides a means of comparing functors which may not be equivalent. The 
general concepts are illustrated by several fairly elementary examples of 
equivalences and transformations for topological spaces, groups, and Banach 
spaces. 

The third chapter deals especially with groups. In the category of groups 
the concept of a subgroup establishes a natural partial order for the objects 
(groups) of the category. For a functor whose values are in the category of 
groups there is an induced partial order. The formation of a quotient group 
has as analogue the construction of the quotient functor of a given functor by 
any normal subfunctor. In the uses of group theory, most groups constructed 
are obtained as quotient groups of other groups; consequently the operation 
of building a quotient functor is directly helpful in the representation of such 
group constructions by functors. The first and second isomorphism theorems 
of group theory are then formulated for functors; incidentally, this is used to 
show that these isomorphisms are "natural." The latter part of the chapter 
establishes the naturality of various known isomorphisms and homomor- 
phisms in group theory(3). 

The fourth chapter starts with a discussion of functors on the category 
of partially ordered sets, and continues with the discussion of limits of direct 
and inverse systems of groups, which form the chief topic of this chapter. 

(3) A brief discussion of this case and of the general theory of functors in the case of groups 
is given in the authors' note, Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U.S.A. 
vol. 28 (1942) pp. 537-543. 
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236 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September 

After suitable categories are introduced, the operations of forming direct and 
inverse limits of systems of groups are described as functors. 

In the fifth chapter we establish the homology and cohomology groups of 
complexes and spaces as functors and show the naturality of va.rious known 
isomorphisms of topology, especially those which arise in duality theorems. 
The treatment of the Cech homology theory utilizes the categories of direct 
and inverse systems, as discussed in Chapter IV. 

The introduction of this study of naturality is justified, in our opinion, 
both by its technical and by its conceptual advantages. 

In the technical sense, it provides the exact hypotheses necessary to apply 
to both sides of an isomorphism a passage to the limit, in the sense of direct 
or inverse limits for groups, rings or spaces(4). Indeed, our naturality condi- 
tion is part of the standard isomorphism condition for two direct or two in- 
verse svsterns(5). 

The study of functors also provides a technical background for the intui- 
tive notion of naturality and makes it possible to verify by straightforward 
computation the naturality of an isomorphism or of an equivalence in all those 
cases where it has been intuitively recognized that the isomorphisms are in- 
deed "natural." In many cases (for example, as in the above isomorphism of L 
to T(L)) we can also assert that certain known isomorphisms are in fact "un- 
natural," relative to the class of mappings considered. 

In a metamathematical sense our theory provides general concepts ap- 
plicable to all branches of abstract mathematics, and so contributes to the 
current trend towards uniform treatment of different mathematical disci- 
plines. In particular, it provides opportunities for the comparison of construc- 
tions and of the isomorphisms occurring in different branches of mathematics; 
in this way it may occasionally suggest new results by analogy. 

The theory also emphasizes that, whenever new abstract objects are con- 
structed in a specified way out of given ones, it is advisable to regard the con- 
struction of the corresponding induced mappings on these new objects as an 
integral part of their definition. The pursuit of this program entails a simul- 
taneous consideration of objects and their mappings (in our terminology, this 
means the consideration not of individual objects but of categories). This 
emphasis on the specification of the type of mappings employed gives more 
insight into the degree of invariance of the various concepts involved. For 
instance, we show in Chapter III, ?16, that the concept of the commutator 
subgroup of a group is in a sense a more invariant one than that of the center, 

(4) Such limiting processes are essential in the transition from the homology theory of com- 
plexes to that of spaces. Indeed, the general theory developed here occurred to the authors as a 
result of the study of the admissibility of such a passage in a relatively involved theorem in 
homology theory (Eilenberg and MacLane, Group extensions and homology, Ann. of Math. 
vol. 43 (1942) pp. 757-831, especially, p. 777 and p. 815). 

(5) H. Freudenthal, Entwickelung von Raumen und ihren Gruppen, Compositio Math. vol. 4 
(1937) pp. 145-234. 
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19451 GENERAL THEORY OF NATURAL EQUIVALENCES 237 

which in its turn is more invariant than the concept of the automorphism 
group of a group, even though in the classical sense all three concepts are 
invariant. 

The invariant character of a mathematical discipline can be formulated 
in these terms. Thus, in group theory all the basic constructions can be re- 
garded as the definitions of co- or contravariant functors, so we may formu- 
late the dictum: The subject of group theory is essentially the study of those 
constructions of groups which behave in a covariant or contravariant manner 
under induced homomorphisms. More precisely, group theory studies func- 
tors defined on well specified categories of groups, with values in another such 
category. 

This may be regarded as a continuation of the Klein Erlanger Programm, 
in the sense that a geometrical space with its group of transformations is 
generalized to a category with its algebra of mappings. 

CHAPTER I. CATEGORIES AND FUNCTORS 

1. Definition of categories. These investigations will deal with aggregates 
such as a class of groups together with a class of homomorphisms, each of 
which maps one of the groups into another one, or such as a class of topologi- 
cal spaces together with all their continuous mappings, one into another. 
Consequently we introduce a notion of "category" which will embody the 
common formal properties of such aggregates. 

From the examples "groups plus homomorphisms" or "spaces plus con- 
tinuous mappings" we are led to the following definition. A category 

= {A, a } is an aggregate of abstract elements A (for example, groups), 
called the objects of the category, and abstract elements a (for example, homo- 
morphisms), called mappings of the category. Certain pairs of tnappings 
ali, a2cI determine uniquely a product mapping a =a2a,1G, subject to the 
axioms C1, C2, C3 below. Corresponding to each object A C I there is a 
unique mapping, denoted by eA or by e(A), and subject to the axioms C4 
and C5. The axioms are: 

Cl. The triple product a3(a2al) is defined if and only if (a3a2)al is defined. 
When either is defined, the associative law 

a3(a2al) = (-3a2)al 

holds. This triple product will be written as a3a2ai. 

C2. The triple product a3a2al is defined whenever both products a3a2 and a2al 
are defined. 

DEFINITION. A mapping eC2( will be called an identity of 21 if and only if 
the existence of any product ea or je implies that ea = a and 3e = 3. 

C3. For each mapping ae2f there is at least one identity e1GCf such that ae, 
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238 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September 

is defined, and at least one identity e2GC such that e2cx is defined. 

C4. The mapping eA corresponding to each object A is an identity. 

C5. For each identity e of 2I there is a unique object A of 2I such that eA= e. 

These two axioms assert that the rule A -eeA provides a one-to-one corre- 
spondence between the set of all objects of the category and the set of all its 
identities. It is thus clear that the objects play a secondary role, and could 
be entirely omitted from the definition of a category. However, the manipu- 
lation of the applications would be slightly less convenient were this done. 

LEMMA 1.1. For each mapping aG21 there is exactly one object Al with the 
product ae(Al) defined, and exactly one A2 with e(A2)a defined. 

The objects A1, A2 will be called the domain and the range of a, respec- 
tively. We also say that a acts on A1 to A2, and write 

a: A1 -A2 in Wf. 

Proof. Suppose that ae(Al) and ae(Bl) are both defined. By the proper- 
ties of an identity, ae(Al) =a, so that axioms Cl and C2 insure that the prod- 
uct e(A1)e(Bl) is defined. Since both are identities, e(A1) =e(A1)e(Bl) =e(Bl), 
and consequently A1=B1. The uniqueness of A2 is similarly established. 

LEMMA 1.2. The product a2al is defined if and only if the range of a, is the 
domain of a2. In other words, a2al is defined if and only if a1:A1->A2 and 
a2: A2- A 3. In that case a2a1: A 1--A3. 

Proof. Let a,:A1->A2. The product e(A2)al is then defined and e(A2)al =a,. 
Consequently a2al is defined if and only if a2e(A2)al is defined. By axioms C2 
and Cl this will hold precisely when a2e(A2) is defined. Consequently a2al 
is defined if and only if A2 is the domain of a2 SO that a2:A2->A3. To prove 
that a2a,:A1-*A3 note that since axle(Ai) and e(A3)a2 are defined the products 
(a2a,)e(Al) and e(A3)(a2a,) are defined. 

LEMMA 1.3. If A is an object, eA:A- *A. 

Proof. If we assume that e(A):Ai-*A2 then e(A)e(Al) and e(A2)e(A) are 
defined. Since they are all identities it follows that e(A) =e(Ai) =e(A2) and 
A =A1 =A2. 

A "left identity" ,B is a mapping such that 1Oa =a whenever fOa is defined. 
Axiom C3 shows that every left identity is an identity. Similarly each right 
identity is an identity. Furthermore, the product eel of two identities is de- 
fined if and only if e=el. 

If dry is defined and is an identity, ,B is called a left inverse of y, y a right 
inverse of ,B. A mapping a is called an equivalence of 21 if it has in 2t at least one 
left inverse and at least one right inverse. 
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1945] GENERAL THEORY OF NATURAL EQUIVALENCES 239 

LEMMA 1.4. An equivalence a has exactly one left inverse and exactly one 
right inverse. These inverses are equal, so that the (unique) inverse may be de- 
noted by c-'. 

Proof. It suffices to show that any left inverse f of a equals any right 
inverse -y. Since 3a and a-y are both defined, fay is defined, by axiom C2. But 
3a and a-y are identities, so that A =f3(ay) = (fa)'y =y, as asserted. 

For equivalences a, f one easily proves that a-' and a: (if defined) are 
equivalences, and that 

(a-')-1 = a, (a3)-, = 0-1a-1 

Every identity e is an equivalence, with e- = e. 
Two objects A,, A2 are called equivalent if there is an equivalence a such 

that a:A1-*A2. The relation of equivalence between objects is reflexive, sym- 
metric and transitive. 

2. Examples of categories. In the construction of examples, it is conven- 
ient to use the concept of a subcategory. A subaggregate 2[o of 2t will be called 
a subcategory if the following conditions hold: 

10. If a,, a2z {o and a2a, is defined in 2{, then a2a,C2Eo. 
20. If A E(o, then eA C2o0 
30. If a:A,-*A2 in 2{ with aCe(o, then Al, A2C2f. 

Condition 10 insures that 2[o is "closed" with respect to multiplication 
in 2{; from conditions 20 and 30 it then follows that Wo is itself a category. 
The intersection of any number of subcategories of 2W is again a subcategory 
of W. Note, however, that an equivalence aC2(o of W need not remain an 
equivalence in a subcategory 2to, because the inverse a-' may not be in Wo. 

For example, if 2W is any category, the aggregate We of all the objects and 
all the equivalences of St is a subcategory of W. Also if 2t is a category and S a 
subclass of its objects, the aggregate %[ consisting of all objects of S and al.l 
mappings of 2t with both range and domain in S is a subcategory. In fact, 
every subcategory of W can be obtained in two steps: first, form a subcate- 
gory Es; second, extract from 2!L a subaggregate, consisting of all the objects 
of 2f8 and a set of mappings of W. which contains all identities and is closed 
under multiplication. 

The category 25 of all sets has as its objects all sets S(6). A mapping a' 
of (E is determined by a pair of sets Si and S2 and a many-one correspondence 
between Si and a subset of S2, which assigns to each xCS, a corresponding 
element aX CS2; we then write o: Si-S2. (Note that any deletion of elements 
from S or S2 changes the mapping ar.) The product of 0o2 S2 -83 and al: Si52 
is defined if and only if S21 = S2; this product then maps Si into S3 by the usual 

(6) This category obviously leads to the paradoxes of set theory. A detailed discussion of 
this aspect of categories appears in ?6, below. 
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240 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September 

composite correspondence (020a1)X = aT2(01X) for each x CS,('). The mapping es 
corresponding to the set S is the identity mapping of S onto itself, with 
esx=x for xCS. The axioms Cl through C5 are clearly satisfied. An equiva- 
lence o: Sl--S2 is simply a one-to-one mapping of Si onto S2. 

Subcategories of ( include the category of all finite sets S, with all their 
mappings as before. For any cardinal number M there are two similar cate- 
gories, consisting of all sets S of power less than m (or, of power less than or 
equal to m), together with all their mappings. Subcategories of 2i can also 
be obtained by restricting the mappings; for instance we may require that 
each o- is a mapping of S1 onto S2, or that each o is a one-to-one mapping of Si 
into a subset of S2. 

The category X of all topological spaces has as its objects all topological 
spaces X and as its mappings all continuous transformations t: X1-*X2 of a 
space X1 into a space X2. The composition 4241 and the identity ex are both 
defined as before. An equivalence in X is a homeomorphism (=topological 
equivalence). 

Various subcategories of X can again be obtained by restricting the type 
of topological space to be considered, or by restricting the mappings, say to 
open mappings or to closed mappings(8). 

In particular, e can be regarded as a subcategory of X, namely, as that 
subcategory consisting of all spaces with a discrete topology. 

The category 5 of all topological groups(9) has as its objects all topological 
groups G and as its mappings y all those many-one correspondences of a 
group G1 into a group G2 which are homomorphisms(10). The composition 
and the identities are defined as in 5. An equivalence ry: G1-*G2 in 65 turns out 
to be a one-to-one (bicontinuous) isomorphism of G1 to G2. 

Subcategories of (M can be obtained by restricting the groups (discrete, 
abelian, regular, compact, and so on) or by restricting the homomorphisms 
(open homomorphisms, homomorphisms "onto," and so on). 

The category e3 of all Banach spaces is similar; its objects are the Banach 
spaces B, its mappings all linear transformations , of norm at most 1 of one 
Banach space into another("). Its equivalences are the equivalences between 
two Banach spaces (that is, one-to-one linear transformations which preserve 

(7) This formal associative law allows us to write 0201X without fear of ambiguity. In more 
complicated formulas, parentheses will be inserted to make the components stand out. 

(8) A mapping t: Xl- X2 iS open (closed) if the image under t of every open (closed) subset 
of X is open (closed) in X2. 

(9) A topological group G is a group which is also a topological space in which the group 
composition and the group inverse are continuous functions (no separation axioms are assumed 
on the space). If, in addition, G is a Hausdorff space, then all the separation axioms up to and 
including regularity are satisfied, so that we call G a regular topological group. 

(10) By a homomorphism we always understand a continuous homomorphism. 
(11) For each linear transformation D of the Banach space B1 into B2, the norm fli3j is defined 

as the least upper bound IIobI|, for all bEB, with ||b|| = 1. 
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the norm). The assumption above that the mappings of the category Z all 
have norm at most 1 is necessary in order to insure that the equivalences in e 
actually preserve the norm. If one admits arbitrary linear transformations as 
mappings of the category, one obtains a larger category in which the equiva- 
lences are the isomorphisms (that is, one-to-one linear transformations)('2). 

For quick reference, we sometimes describe a category by specifying only 
the object involved (for example, the category of all discrete groups). In such 
a case, we imply that the mappings of this category are to be all mappings 
appropriate to the objects in question (for example, all homomorphisms). 

3. Functors in two arguments. For simplicity we define only the concept 
of a functor covariant in one argument and contravariant in another. The 
generalization to any number of arguments of each type will be immediate. 

Let 2{, Z, and C be three categories. Let T(A, B) be an object-function 
which associates with each pair of objects A ES, B CZ an object T(A, B) = C 
in C, and let T(a, [) be a mapping-function which associates with each pair 
of mappings ae2f, OCZ a mapping T(a, f) =,yCA. For these functions we 
formulate certain conditions already indicated in the example in the introduc- 
tion. 

DEFINITION. The object-function T(A, B) and the mapping-function 
T(a, 1) form a functor T, covariant in 2t and contravariant in 53, with values 
in (S, if 

(3.1) T(eA, eB) = eT(A,B), 

if, whenever a:A1-?A2 in 2t and fl:B1->B2 in Q, 

(3.2) T(a, A): T(A1, B2)- T(A2, B1), 
and if, whenever aga,C2t and 320103, 

(3.3) T(ai2ai, 32131) = T(a2, f,%)T(ai, p2). 

Condition (3.2) guarantees the existence of the product of mappings appear- 
ing on the right in (3.3). 

The formulas (3.2) and (3.3) display the distinction between co- and con- 
travariance. The mapping T(a, O) = y induced by a and 3 acts from T(A1, -) 
to T(A2, -); that is, in the same direction as does a, hence the covariance 
of T in the argument 21. The induced mapping T(a, O) at the same time oper- 
ates in the direction opposite from that of ,B; thus it is contravariant in Q3. 
Essentially the same shift in direction is indicated by the orders of the fac- 
tors in formula (3.3) (the covariant a's appear in the same order on both 
sides; the contravariant O's appear in one order on the left and in the opposite 
order on the right). With this observation, the requisite formulas for functors 
in more arguments can be set down. 

According to this definition, the functor T is composed of an object func- 

(12) S. Banach, Thkorie des operations liniaires, Warsaw, 1932, p. 180. 
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tion and a mapping function. The latter is the more important of the two; 
in fact, the condition (3.1) means that it determines the object function and 
therefore the whole functor, as stated in the following theorem. 

THEOREM 3.1. A function T(a, f) which associates to each pair of mappings 
a and A in the respective categories XI, Q3 a mapping T(a, 1G) -y in a third cate- 
gory E is the mapping function of a functor T covariant in W and contravariant 
in 93 if and only if the Jollowing two conditions hold: 

(i) T(eA, eB) is an identity mapping in E for all identities eA, eB of I and Q8. 
(ii) Whenever a2aE1 E and /201 E, then T(a2, 03) T(ai, 32) is defined and 

satisfies the equation 

(3.4) T(a2ai, 1211) = T(a2, 31)T(ai, (2). 

If T(a, 13) satisfies (i) and (ii), the corresponding functor T is uniquely deter- 
mined, with an object function T(A, B) given by the formula 

(3.5) eT(A,B) = T(eA, eB). 

Proof. The necessity of (i) and (ii) and the second half of the theorem are 
obvious. 

Conversely, let T(a, j3) satisfy conditions (i) and (ii). Condition (i) means 
that an object function T(A, B.) can be defined by (3.5). We must show that 
if a:A1--A2 and O:B1-*B2, then (3.2) holds. Since e(A2)a and 3e(B1) are de- 
fined, the product T(e(A2), e(B1)) T(a, 13) is defined; for similar reasons the 
product T(a, 3) T(e(A1), e(B2)) is defined. 

In virtue of the definition (3.5), the products 

e (T (A 2, B 1)) T (a, A), T(ae, ,B)e(T(Al1, B2)) 

are defined. This implies (3.2). 
In any functor, the replacement of the arguments A, B by equivalent 

arguments A', B' will replace the value T(A, B) by an equivalent value 
T(A', B'). This fact may be alternatively stated as follows: 

THEOREM 3.2. If T is a functor on 2f, e3 to C, and if aCe: and (3Cd are 
equivalences, then T(ax, ,3) is an equivalence in S, with the inverse T(ax, f3)' 
- T(C-1, (-1). 

For the proof we assume that T is covariant in 2 and contravariant in Q3. 
The products aa-1 and a-la are then identities, and the definition of a functor 
shows that 

T(a, ,)T(a-1, ,-1) = T(aa'-1, 3-1), T(a-1, #-')T(a, ,B) = T(a-1a, iY -1). 

By condition (3.1), the terms on the right are both identities, which means 
that T(a-1, A-1) is an inverse for T(a, ,B), as asserted. 

4. Examples of functors. The same object function may appear in various 
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functors, as is shown by the following example of one covariant and one con- 
travariant functor both with the same object function. In the category e of 
all sets, the "power" functors P+ and P- have the object function 

P+(S) = P-(S) = the set of all subsets of S. 

For any many-one correspondence a: S1-S2 the respective mapping functions 
are defined for any subset A1CS (or A2CS2) as("3) 

P+(o)Al = oA1, P-(ou)A2 =o-A2. 

It is immediate that P+ is a covariant functor and P- a contravariant one. 
The cartesian product XX Y of two topological spaces is the object func- 

tion of a functor of two covariant variables X and Y in the category X of all 
topological spaces. For continuous transformations t:XX1-*X2 and -0: Y1-? Y2 
the corresponding mapping function (X71 is defined for any point (xi, yi) in 
the cartesian product Xi X Yi as 

t X X(X1, y1) = ({X1, t7yI). 
One verifies that 

t X 1: X1 X Y1 - X2 X Y2, 

that t X 7q is the identity mapping of Xi X Yi into itself when t and -q are both 
identities, and that 

(4241) X (X02X1) = (62 X ?12)(4l X 771) 

whenever the products t221 and 712711 are defined. In virtue of these facts, the 
functions X X Y and ( X 7 constitute a covariant functor of two variables on 
the category X. 

The direct product of two groups is treated in exactly similar fashion; 
it gives a functor with the set function G XH and the mapping function yX71, 
defined for y: G1i-G2 and -q: H1-1H2 exactly as was t X -q. The same applies to 
the category e of Banach spaces, provided one fixes one of the usual possible 
definite procedures of norming the cartesian product of two Banach spaces. 

For a topological space Y and a locally compact ( = locally bicompact) 
Hausdorff space X one may construct the space Yx of all continuous map- 
pingsf of the whole space X into Y (fxC Y for xEX). A topology is assigned 
to Yx as follows. Let C be any compact subset of X, U any open set in Y. 
Then the set [C, U] of all fE Yx with fCC U is an open set in Yx, and the 
most general open set in Yx is any union of finite intersections [C1, U1] 
n ... N'Cc, Uj. 

This space Yx may be regarded as the object function of a suitable func- 
tor, Map (X, Y). To construct a suitable mapping function, consider any 

(13) Here aAl is the set of all elements of S2 of the form ox for xEAi, while c-1A2 consists 
of all elements xE S, with crxG A2. When a- is an equivalence, with an inverse , rA2 =-lA2, 
so that no ambiguity as to the meaning of c-1 can arise. 
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continuous transformations t: X1-*X2, -q: Yi-* Y2. For each fE YX2, one then 
has mappings acting thus: 

e 
X1 X2 y1 Y2- 

so that one may derive a continuous transformation -qft of Yx1. This corre- 
spondencef-71ft may be shown to be a continuous mapping of yx2 into Yx. 
Hence we may define object and mapping functions "Map" by setting, 

(4.1) Map (X, y) = Yx, [Map (V , 77) f = lqft. 
The construction shows that 

Map (Q, -): Map (X2, Y1) -* Map (X1, Y2), 

and hence suggests that this functor is contravariant in X and covariant in Y. 
One observes at once that Map (Q, n) is an identity when both t and 71 are 
identities. Furthermore, if the products 4241 and IW71 are defined, the definition 
of "Map" gives first, 

[Map (Q21, 712711) If = 21271f21 = 772(Mf62)1, 

and second, 

Map (Q1,72) Map (Q2, nl)f = [Map (t1, 12) ]71qft2 = lq2(771ft2)%1 

Consequently 

Map (%241, 712711) = Map 1, 72) Map (Q2, 711), 

which completes the verification that "Map," defined as in (4.1), is a functor 
on XI, X to X, contravariant in the first variable, covariant in the second, 
where Xi,, denotes the subcategory of I defined by the locally compact Haus- 
dorff spaces. 

For abelian groups there is a similar functor "Hom." Specifically, let G 
be a locally compact regular topological group, H a topological abelian groupr. 
We construct the set Hom (G, H) of all (continuous) homomorphisms 4 of G 
into H. The sum of two such homomorphisms 41 and 4)2 is defined by setting 
(4)1+4)2)g =01g+4)2g, for each gEG(14); this sum is itself a homomorphism be- 
cause H is abelian. 

Under this addition, Hom (G, H) is an abelian group. It is topologized 
by the family of neighborhoods [C, U] of zero defined as follows. Given C, 
any compact subset of G, and U, any open set in H containing the zero of H, 
[C; U] consists of all 4)CHom (G, H) with q5CC U. With these definitions, 
Hom (G, H) is a topological group. If H has a neighborhood of the identity 
containing no subgroup but the trivial one, one may prove that Hom (G, H) 
is locally compact. 

(14) The group operation in G, H, and so on, will be written as addition. 
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This function of groups is the object function of a functor "Hom." For 
given y: G1 -G2 and q: H1->H2 the mapping function is defined by setting 

(4.2) [Hom (y, v) ]o = nofy 

for each 4CHom (G2, H1). Formally, this definition is exactly like (4.1). One 
may show that this definition (4.2) does yield a continuous homomorphism 

Hom (y, v) :Hom (G2, H1) -* Hom (G1, H2). 

As in the previous case, Hom is a functor with values in the category (Ma of 
abelian groups, defined for arguments in two appropriate subcategories of (M, 
contravariant in the first argument, G, and covariant in the second, H. 

For Banach spaces there is a similar functor. If B and C are two Banach 
spaces, let Lin (B, C) denote the Banach space of all linear transformations X 
of B into C, with the usual definition of the norm of the transformation. To 
describe the corresponding mapping function, consider any linear transforma- 
tions f:B1->B2 and -y:C1--C2 with I|j||?1 and j!yj 1, and set, for each 
XCLin (B2, C1), 

(4.3) [Lin (,, y) ]X = y),O. 

This is in fact a linear transformation 

Lin (,, 'y) :Lin (B2, C1) -+ Lin (BI, C2) 

of norm at most 1. As in the previous cases, Lin is a functor on 3, e to Q8, 
contravariant in its first argument and covariant in the second. 

In case C is fixed to be the Banach space R of all real numbers with the 
absolute value as norm, Lin (B, C) is just the Banach space conjugate to B, 
in the usual sense. This leads at once to the functor 

Conj (B) Lin (B, R), Conj (,) = Lin (3, eR). 

This is a contravariant functor on Q3 to Q3. 
Another example of a functor on groups is the tensor product G o H of two 

abelian groups. This functor has been discussed in more detail in our Proceed- 
ings note cited above. 

5. Slicing of functors. The last example involved the process of holding 
one of the arguments of a functor constant. This process occurs elsewhere 
(for example, in the character group theory, Chapter III below), and falls at 
once under the following theorem. 

THEOREM 5.1. If T is a functor covariant in X, contravariant in Q3, with 
values in C, then for each fixed B G93 the definitions 

S(A) = T(A, B), S((a) = T (a, eB) 

yield a functor S on 2[ to G with the same variance (in 21) as T. 
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This "slicing" of a functor may be partially inverted, in that the functor T 
is determined by its object function and its two "sliced" mapping functions, 
in the following sense. 

THEOREM 5.2. Let X, Q0, S be three categories and T(A, B), T(a, B), 
T(A, 3) three functions such that for each fixed B ?Q0 the functions T(A, B), 
T(ax, B) form a covariant functor on f to C, while for each A G? the functions 
T(A, B) and T(A, 3) give a contravariant functor on IO to S. If in addition for 
each a::A1 -A2 in a and f:B1->B2 in e0 we have 

(S.1) T(A2, 3)T(a, B2) = T (a, B1)T(A1, j), 

then the functions T(A, B) and 

(5.2) T (a, ,3) = T(a, B1) T(A1, $) 

form a functor covariant in X1, contravariant in 53, with values in (E. 

Proof. The condition (5.1) merely states the equivalence of the two paths 
about the following square: 

T(A B2) T(a, B2) T(A2, B2) 

T(A1, ) T(A2,9) 

T(A1, B1) T(c, T (A2, Bi) 
The result of either path is then taken in (5.2) to define the mapping function, 
which then certainly satisfies conditions (3.1) and (3.2) of the definition of a 
functor, The proof of the basic product condition (3.3) is best visualized by 
writing out a 3 X3 array of values T(A , B,). 

The significance of this theorem is essentially this: in verifying that given 
object and mapping functions do yield a functor, one may replace the veri- 
fication of the product condition (3.3) in two variables by a separate verifica- 
tion, one variable at a time, provided one also proves that the order of 
application of these one-variable mappings can be interchanged (condition 
(5.1)). 

6. Foundations. We remarked in ?3 that such examples as the "category 
of all sets," the "category of all groups" are illegitimate. The difficulties and 
antinomies here involved are exactly those of ordinary intuitive Mengenlehre; 
no essentially new paradoxes are apparently involved. Any rigorous founda- 
tion capable of supporting the ordinary theory of classes would equally well 
support our theory. Hence we have chosen to adopt the intuitive standpoint, 
leaving the reader free to insert whatever type of logical foundation (or ab- 
sence thereof) he may prefer. These ideas will now be illustrated, with particu- 
lar reference to the category of groups. 
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It should be observed first that the whole concept of a category is essen- 
tially an auxiliary one; our basic concepts are essentially those of a functor 
and of a natural transformation (the latter is defined in the next chapter). 
The idea of a category is required only by the precept that every function 
should have a definite class as domain and a definite class as range, for the 
categories are provided as the domains and ranges of functors. Thus one 
could drop the category concept altogether and adopt an even more intuitive 
standpoint, in which a functor such as "Homr" is not defined over the category 
of "all" groups, but for each particular pair of groups which may be given. 
The standpoint would suffice for the applications, inasmuch as none of our 
developments will involve elaborate constructions on the categories them- 
selves. 

For a more careful treatment, we may regard a group G as a pair, consist- 
ing of a set Go and a ternary relation g h = k on this set, subject to the usual 
axioms of group theory. This makes explicit the usual tacit assumption that 
a group is not just the set of its elements (two groups can have the same ele- 
ments, yet different operations). If a pair is constructed in the usual manner 
as a certain class, this means that each subcategory of the category of "all" 
groups is a class of pairs; each pair being a class of groups with a class of 
mappings (binary relations). Any given system of foundations will then legiti- 
mize those subcategories which are allowable classes in the system in question. 

Perhaps the simplest precise device would be to speak not of the category 
of groups, but of a category of groups (meaning, any legitimate such cate- 
gory). A functor such as "Hom" is then a functor which can be defined for any 
two suitable categories of groups, (M and .S. Its values lie in a third category 
of groups, which will in general include groups in neither 5 nor ,. This pro- 
cedure has the advantage of precision, the disadvantage of a multiplicity of 
categories and of functors. This multiplicity would be embarrassing in the 
study of composite functors (?9 below). 

One might choose to adopt the (unramified) theory of types as a founda- 
tion for the theory of classes. One then can speak of the category 05m of all 
abelian groups of type m. The functor "Hom" could then have both argu- 
ments in 0,m while its values would be in the same category .5m+, of groups of 
higher type m+k. This procedure affects each functor with the same sort of 
typical ambiguity adhering to the arithmetical concepts in the Whitehead- 
Russell development. Isomorphism between groups of different types would 
have to be considered, as in the simple isomorphism Hom (a, G)_G (see ?10); 
this would somewhat complicate the natural isomorphisms treated below. 

One can also choose a set of axioms for classes as in the Fraenkel-von 
Neumann-Bernays system. A category is then any (legitimate) class in the 
sense of this axiomatics. Another device would be that of restricting the cardi- 
nal number, considering the category of all denumerable groups, of all groups 
of cardinal at most the cardinal of the continuum, and so on. The subsequent 

This content downloaded from 128.151.244.46 on Thu, 08 Oct 2015 12:00:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


248 SAMUEL EILENBERG AND SAUNDERS MAcLANE [September 

developments may be suitably interpreted u-nder any one of these viewpoints. 

CHAPTER II. NATURAL EQUIVALENCE OF FUNCTORS 

7. Transformations of functors. Let T and S be two functors on Xf, eb 
to (5 which are concordant; that is, which have the same variance in 2f and the 
same variance in Q3. To be specific, assume both T and S covariant in 2f and 
contravariant in QT. Let r be a function which associates to each pair of ob- 
jects A G2f, B Et a mapping r(A, B) =-y in G. 

DEFINITION. The function r is a "natural" transformation of the functor 
T, covariant in '1 and contravariant in 3, into the concordant functor S pro- 
vided that, for each pair of objects A C 1, BCB3, 

(7.1) r(A,B):T(A,B)->S(A,B) in (E, 

and provided, whenever a:Ai-*A2 in 2f and 3:B1->B2 in Q3, that 

(7.2) -r(A2, Bl)T(a, 3) = S(a, 3)-r(Ai, B2). 

When these conditions hold, we write 
-r: T -- S. 

If in addition each r(A, B) is an equivalence mapping of the category (E, we 
call r a natural equivalence of T to S (notation: rT:iTzS) and say that the 
functors T and S are naturally equivalent. In this case condition (7.2) can be 
rewritten as 

(7. 2a) r(A2, B1) T(a, i3) [r(A1, B2)]' = S(a, p). 

Condition (7.1) of this definition is equivalent to the requirement that 
both products in (7.2) are always defined. Condition (7.2) is illustrated by the 
equivalence of the two paths indicated in the following diagram: 

T(A1, B2) (a, T(A2, B1) 

r(A1, B2) r(A2, B1) 

S(Ai1 B2) S S(A2, Bi) 

Given three concordant functors T, S and R on Xf, e3 to (E, with natural 
transformations r: T->S and o-: S->R, the product 

p(A, B) = cr(A, B)r(A, B) 
is defined as a mapping in (E, and yields a natural transformation p: T->R. If r 
and a are natural equivalences, so is p = ar. 

Observe also that if r: T->S is a natural equivalence, then the function 
T-' defined by -1(A, B)= [r(A, B)]-1 is a natural equivalence -1: S->T. 
Given any functor T on Xf, e3 to (E, the function 
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-ro(A, B) = eT(A,B) 

is a natural equivalence ro: T;Z?T. These remarks imply that the concept of 
natural equivalence of functors is reflexive, symmetric and transitive. 

In demonstrating that a given mapping T(A, B) is actually a natural 
transformation, it suffices to prove the rule (7.2) only in these cases in which 
all except one of the mappings a, f, * * - is an identity. To state this result 
it is convenient to introduce a simplified notation for the mapping function 
when one argument is an identity, by setting 

TQ(a, B) = T(a, eB), T(A, I3) = T(eA, I) 

THEOREM 7.1. Let T and S befunctors covariant in 9I and contravariant in 9, 
with values in (S, and let T be a function which associates to each pair of objects 
A C9I, B C3 a mapping with (7.1). A necessary and sufficient condition that r 
be a natural transformation T: T-*S is that for each mapping a: A 1-A2 and each 
object B Ez3 one has 

(7.3) -r(A2, B)T(a, B) = S(a, B)'r(A1, B), 

and that, for each A C?2 and each A: B1->B2 one has 

(7.4) T(A, Bl)T(A, j) = S(A, f)'r(A, B2). 

Proof. The necessity of these conditions is obvious, since they are simply 
the special cases of (7.2) in which ,3=eB and a =eA, respectively. The suffi- 
ciency can best be illustrated by the following diagram, applying to any 
mappings a:A --A2 in ? and f:B1-+B2 in eI: 

T(A B2) T(Al, B2) S(A, B2) 

T(a, B2) B S(ar, B2) 

T(A2, B2) S(A 2, B2) 

T(A2, j) S(A2, ) 
1. r(A2, B1) 1. 

T(A2, B)) S(A2, Bi) 

Condition (7.3) states the equivalence of the results found by following 
either path around the upper small rectangle, and condition (7.4) makes a 
similar assertion for the bottom rectangle. Combining these successive equiv- 
alences, we have the equivalence of the two paths around the edges of the 
whole rectangle; this is the requirement (7.2). This argument can be easily 
set down formally. 
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8. Categories of functors. The functors may be made the objects of a 
category in which the mappings are natural transformations. Specifically, 
given three fixed categories Xt, Q3 and S, form the category Z for which the 
objects are the functors T covariant in 2f and contravariant in Q3, with values 
in S, and for which the mappings are the natural transformations r: T-S. 
This requires some caution, because we may have r: T--S and r: T'->S' for 
the same function r with different functors T, T' (which would have the same 
object function but different mapping functions). To circumvent this diffi- 
culty we define a mapping in the category T to be a triple [r, T, S] with 
r: T-*S. The product of mappings [r, T, S] and [a-, S', R] is defined if and 
only if S = S'; in this case it is 

[lo, S, R] [r, T, S] = [T, T, R]. 
We verify that the axioms C1-C3 of ?1 are satisfied. Furthermore we define, 
for each functor T, 

er = [TT, T, TI, with TT(A, B) = eT(A,B), 

and verify the remaining axioms C4, CS. Consequently Z is a category. In 
this category it can be proved easily that [r, T, S] is an equivalence mapping 
if and only if r: T;iS; consequently the concept of the natural equivalence 
of functors agrees with the concept of equivalence of objects in the category 5: 
of functors. 

This category Z is useful chiefly in simplifying the statements and proofs 
of various facts about functors, as will appear subsequently. 

9. Composition of functors. This process arises by the familiar "function 
of a function" procedure, in which for the argument of a functor we substitute 
the value of another functor. For example, let T be a functor on 21, e3 to (, 
R a functor on X, Z to I. Then S = R (T, I), defined by setting 

S(A, B, D) = R(T(A, B), D), S(a, #, B) = R(T(a, 3), 6), 

for objects A ES2, BEQ3, DCEz and mappings aC 2, #3CQ3, b , is a functor 
on 21, Q3, Z to (E. In the argument Z, the variance of S is just the variance 
of R. The variance of R in 21 (or Q3) may be determined by the rule of signs 
(with + for covariance, - for contravariance): variance of S in 21 = variance 
of R in (Xvariance of T in 2W. 

Composition can also be applied to natural transformations. To simplify 
the notation, assume that R is a functor in one variable, contravariant on E 
to Y, and that T is covariant in 21, contravariant in e3 with values in (. The 
composite R 0 T is then contravariant in 21, covariant in Q3. Any pair of natu- 
ral transformations 

p:R-*R', r T-*T' 

gives rise to a natural transformation 

This content downloaded from 128.151.244.46 on Thu, 08 Oct 2015 12:00:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


19451 GENERAL THEORY OF NATURAL EQUIVALENCES 251 

p X r:R 0 T'- R' 0 T 

defined by setting 

p 0 -r(A, B) = p(T(A, B))R(r(A, B)). 

Because p is natural, p Or could equally well be defined as 

p 0 r(A, B) = R'(r(A, B))p(T'(A, B)). 

This alternative means that the passage from R 0 T'(A, B) to R' 0T(A, B) 
can be made either through R0T(A, B) or through R'0T'(A, B), without 
altering the final result. The resulting composite transformation pOr has all 
the usual formal properties appropriate to the mapping function of the "func- 
tor" R O T; specifically, 

(P2P1) 0 (-riT2) = (P2 0 T2)(P1 0 Ti), 

as may be verified by a suitable 3 X3 diagram. 
These properties show that the functions R 0 T and p Or determine a func- 

tor C, defined on the categories St and S of functors, with values in a cate- 
gory e of functors, covariant in St and contravariant in ? (because of the 
contravariance of R). Here 9Z is the category of all contravariant functors R 
on G to (E, while e and ? are the categories of all functors S and T, of ap- 
propriate variances, respectively. In each case, the mappings of the category 
of functors are natural transformations, as described in the previous section. 
To be more explicit, the mapping function C(p, r) of this functor is not the 
simple composite p?Or, but the triple [p?Or, R?T', R'OT]. 

Since p ?r is essentially the mapping function of a functor, we know by 
Theorem 3.2 that if p and r are natural equivalences, then p ?r is an equiva- 
lence. Consequently, if the pairs R and R', T and T' are naturally equivalent, 
so is the pair of composites R 0 T and R' 0 T'. 

It is easy to verify that the composition of functors and of natural trans- 
formations is associative, so that symbols like R 0 TO S may be written with- 
out parentheses. 

If in the definition of p Or above it occurs that T= T' and that r is the 
identity transformation T->T we shall write p?T instead of p Or. Similarly 
we shall write R?r instead of pOr in the case when R=R' and p is the iden- 
tity transformation R->R. 

10. Examples of transformations. The associative and commutative laws 
for the direct and cartesian products are isomorphisms which can be regarded 
as equivalences between functors. For example, let X, Y and Z be three topo- 
logical spaces, and let the homeomorphism 

(10.1) (XX Y) XZ_XX (YXZ) 

be established by the usual correspondence r=r(X, Y, Z), defined for any 
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point ((x, y), z) in the iterated cartesian product (XX Y) XZ by 

r(X, Y, Z)((x, y), z) = (x, (y, z)). 

Each r(X, Y, Z) is then an equivalence mapping in the category X of spaces. 
Furthermore each side of (10.1) may be considered as the object function of a 
covariant functor obtained by composition of the cartesian product functor 
with itself. The corresponding mapping functions are obtained by the parallel 
composition as (Q X 7) X R and { X (77 X P). To show that r(X, Y, Z) is indeed 
a natural equivalence, we consider three mappings t:X1-+X2, 0: Y1-+ Y2 and 
:Z1-+Z2, and show that 

T(X2, Y2,Z2)[(t X 1) X t] = k X (n X t)]r(Xi, Y1,Z1). 

This identity may be verified by applying each side to an arbitrary point 
((xi, yi), z1) in the space (X1 X Y1) X Z1; each transforms it into the point 
xi , (qyl, Rz1)) in X2 X ( Y.2 XZ2). 
In similar fashion the homeomorphism XX Y_ YXX may be interpreted 

as a natural equivalence, defined as r(X, Y)(x, y) = (y, x). In particular, if 
X, Y and Z are discrete spaces (that is, are simply sets), these remarks show 
that the associative and commutative laws for the (cardinal) product of two 
sets are natural equivalences between functors. 

For similar reasons, the associative and commutative laws for the direct 
product of groups are natural equivalences (or natural isomorphisms) between 
functors of groups. The same laws for Banach spaces, with a fixed convention 
as to the construction of the norm in the cartesian product of two such spaces, 
are natural equivalences between functors. 

If J is the (fixed) additive group of integers, H any topological abelian 
group, there is an isomorphism 

(10.2) Hom (J, H) H 

in which both sides may be regarded as covariant functors of a single argu- 
ment H. This isomorphism r = r(H) is defined for any homomorphism 
kEHom (J, H) by setting r(H)4=4(1) GH. One observes that r(H) is in- 
deed a (bicontinuous) isomorphism, that is, an equivalence in the category of 
topological abelian groups. That r(H) actually is a natural equivalence be- 
tween functors is shown by proving, for any r7:H1-+H2, that 

T(H2) Hom (es, -i) = -tr(Hi). 

There is also a second natural equivalence between the functors indicated in 
(10.2), obtained by setting r'(H)4=4(-1). 

With the fixed Banach space R of real numbers there is a similar formula 

(10.3) Lin (R, B)a n r B 

for any Banach space B. This gives a natural equivalence T =T(B) between 
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two covariant functors of one argument in the category 5e of all Banach 
spaces. Here T(B) is defined by setting r(B)l =1(1) for each linear transforma- 
tion lELin (R, B); another choice of T would set T(B)l =I(-1). 

For topological spaces there is a distributive law for the functors "Map" 
and the direct product functor, which may be written as a natural equivalence 

(10.4) Map (Z, X) X Map (Z, Y) _ Map (Z, X X Y) 

between two composite functors, each contravariant in the first argument Z 
and covariant in the other two arguments X and Y. To define this natural 
equivalence 

r(X, Y, Z):Map (Z, X) X Map (Z, Y) ? Map (Z, X X Y), 

consider any pair of mappings f Map (Z, X) and gCMap (Z, Y) and set, 
for each zCZ, 

[r(f, g) ] (z) = (f(z), g(z)). 

It can be shown that this definition does indeed give the homeomorphism 
(10.4). It is furthermore natural, which means that, for mappings t:X1->X2, 
: Y1-> Y2 and ?:Z1->Z2, 

r(X2, Y2, Z1) [lMap (L, t) X Map (i, n)] = Map (, t X 71)r(Xl, Y1, Z2). 

The proof of this statement is a straightforward application of the vari- 
ous definitions involved. Both sides are mappings carrying Map (Z2, X1) 
X Map (A, Y1) into Map (Z1, X2X Y2). They will be equal if they give iden- 
tical results when applied to an arbitrary element (f2, g2) in the first space. 
These applications give, by the definition of the mapping functions of the 
functors "Map" and " X," the respective elements 

T(X2, Y2, Zl)(Qf2L, 71020), ( X 77)-(Xl, Yl, Z2) (f2, 92)r. 

Both are in Map (Z1, X2X Y2). Applied to an arbitrary zCZ1, we obtain in 
both cases, by the definition of T, the same element (Qf2r(z), 9g2?(Z)) GX2X Y2. 

For groups and Banach spaces there are analogous natural equivalences 

(10.5) Hom (G, H) X Hom (G, K)_Hom (G,H X K), 

(10.6) Lin (B, C) X Lin (B, D)-Lin (B, C X D). 

In each case the equivalence is given by a transformation defined exactly as 
before. In the formula for Banach spaces we assume that the direct product is 
normed by the maximum formula. In the case of any other formula for the 
norm in a direct product, we can assert only that T is a one-to-one linear trans- 
formation of norm one, but not necessarily a transformation preserving the 
norm. In such a case T then gives merely a natural transformation of the func- 
tor on the left into the functor on the right. 
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For groups there is another type of distributive law, which is an equiva- 
lence transformation, 

Hom (G, K) X Hom (H, K) _ Hom (G X H, K). 

The transformation r(G, H, K) is defined for each pair (q, 41) GHom (G, K) 
XHom (H, K) by setting 

[r(G, H, K)(4, 4t')](g, h) = Og + /1h 

for every element (g, h) in the direct product GXH. The properties of r are 
proved as before. 

It is well known that a function g(x, y) of two variables x and y may be 
regarded as a function rg of the first variable x for which the values are in 
turn functions of the second variable y. In other words, rg is defined by 

[[rg](X)](y) = g(x, y). 

It may be shown that the correspondence g->rg does establish a homeomor- 
phism between the spaces 

91xxr_ Cz) 

where Z is any topological space and X and Y are locally compact Hausdorff 
spaces. This is a "natural" homeomorphism, because the correspondence 
r=r(X, Y, Z) defined above is actually a natural equivalence 

r(X, Y, Z):Map (X X Y, Z) ? Map (X, Map (Y, Z)) 

between the two composite functors whose object functions are displayed 
here. 

To prove that r is natural, we consider any mappings t: X1-X2, v: Y1-> Y2, 
:Z1-Z2, and show that 

(10.7) r(Xl, Y1, Z2) Map (Q X , 7) = Map (Q, Map (Oi, O))T(X2, Y2, Z1). 

Each side of this equation is a mapping which applies to any element 
g2CMap (X2X Y2, Z1) to give an element of Map (X1, Map (Y1, Z2)). The 
resulting elements may be applied to an x1 CX1 to give an element of 
Map (Y1, Z2), which in turn may be applied to any yiC Y1. If each side 
of (10.7) is applied in this fashion, and simplified by the definitions of T and of 
the mapping functions of the functors involved, one obtains in both cases the 
same element 9g2(Qx1, ny'1)CZ2. Hence (10.7) holds, and T is natural. 

Incidentally, the analogous formula for groups uses the tensor product 
G o H of two groups, and gives an equivalence transformation 

Hom (G o H, K) - Hom (G, Hom (H, K)). 

The proof appears in our Proceedings note quoted in the introduction. 
Let D be a fixed Banach space, while B and C are two (variable) Banach 
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spaces. To each pair of linear transformations X and ,u, with I1X11?1 and 
II|u| < 1, and with 

B - C D, 
there is associated a composite linear transformation 1A, with 1A:B- -D. Thus 
there is a correspondence T =T(B, C) which associates to each XCLin (B, C) 
a linear transformation rX with 

[TX](,u) = AX C Lin (B, D). 

Each rX is a linear transformation of Lin (C, D) into Lin (B, D) with norm 
at most one; consequently r establishes a correspondence 

(10.8) r(B, C):Lin (B, C) - Lin (Lin (C, D), Lin (B, D)). 

It can be readily shown that r itself is a linear transformation, and that 
1lr(X)|| = ||X|| so that T is an isometric mapping. 

This mapping r actually gives a transformation between the functors in 
(10.8). If the space D is kept fixed("5), the functions Lin (B, C) and 
Lin (Lin (C, D), Lin (B, D)) are object functions of functors contravariant 
in B and covariant in C, with values in the category e0 of Banach spaces. 
Each r r (B, C) is a mapping of this category; thus r is a natural transforma- 
tion of the first functor in the second provided that, whenever 3:B,-+B2 and 
'y: C1-C2, 

(10.9) r(Bi, C2) Lin (,B, -y) = Lin (Lin (-y, e), Lin (,B, e))i-(B2, C1), 

where e =eD is the identity mapping of D into itself. Each side of (10.9) is a 
mapping of Lin (B2, C1) into Lin (Lin (C2, D), Lin (B1, D)). Apply each side 
to any XCLin (B2, C1), and let the result act on any ,ueLin (C2, D). On the 
left side, the result of these applications simplifies as follows (in each step the 
definition used is cited at the right): 

{[r(Bi, C2) ] Lin (,B, y)X IAj 
= {[r(B1, C2)](YXO) }IA (Definition of Lin (p, -y)) 
= juyXf (Definition of r(Bi, C2)). 

The right side similarly becomes 

{Lin (Lin (y, e), Lin (,B, e)) [,r(B 2, Cl)\ ] 
= {Lin (B, e) [r(B2, C1)X] Lin (-y, e) }, (Definition of Lin (-, )) 
= Lin (,, e) { [r(B2, Cl)X](yY) } (Definition of Lin ( y, e)) 
= Lin (,B, e) (wyX) (Definition of r(B2, C1)) 

-AyX3 (Definition of Lin (,B, e)). 

(15) We keep the space D fixed because in one of these functors it appears twice, once as a 
covariant argument and once as a contravariant one. 
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The identity of these two results shows that r is indeed a natural transforma- 
tion of functors. 

In the special case when D is the space of real numbers, Lin (C, D) is 
simply the conjugate space Conj (C). Thus we have the natural transforma- 
tion 

(10. 10) -r(B, C) :Lin (B, C) ---Lin (Conj C, Conj B). 

A similar argument for locally compact abelian groups G and H yields a 
natural transformnation 

(10. 1 1) r(G, H):Hom (G, H) -* Hom (Ch H, Ch G). 

In the theory of character groups it is shown that each r(G, H) is an isomor- 
phism, so (10.11) is actually.a natural isomorphism. The well known iso- 
morphism between a locally compact abelian group G and its twice iterated 
character group is also a natural isomorphism 

r(G):G t- Ch (Ch G) 

between functors('6). The analogous natural transformation 

r(B):B -> Conj (Conj B) 

for Banach spaces is an equivalence only when B is restricted to the category 
of reflexive Banach spaces. 

11. Groups as categories. Any group G may be regarded as a category 
5G in which there is only one object. This object may either be the set G 

or, if G is a transformation group, the space on which G acts. The mappings 
of the category are to be the elements 7y of the group G, and the product of 
two elements in the group is to be their product as mappings in the category. 
In this category every mapping is an equivalence, and there is only one iden- 
tity mapping (the unit element of G). A covariant functor T with one argu- 
ment in 65G and with values in (the category of) the group H is just a homo- 
nmorphic mapping X = T(y) of G into H. A natural transformation r of one 
such functor T1 into another one, T2, is defined by a single element r(G) 
=-qoCH. Since -1o has an inverse, every natural transformation is automati- 
cally an equivalence. The naturality condition (7.2a) for r becomes simply 
qoT(-y)-q -I = T2(Qy). Thus the functors T1 and T2 are naturally equivalent if 
and only if T1 and T2, considered as homomorphisms, are conjugate. 

Similarly, a contravariant functor T on a group G, considered as a cate- 
gory, is simply a "dual" or "counter" homomorphism (T(7Y2yl) = T(7l)T(Y2)). 

A ring R with unity also gives a category, in which the mappings are the 
elenments of R, under the operation of multiplication in R. The unity of 
the ring is the only identity of the category, and the units of the ring are the 
equivalences of the category. 

(16) The proof of naturality appears in the note quoted in footnote 3. 
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12. Construction of functors as transforms. Under suitable conditions a 
mapping-function -r(A, B) acting on a given functor T(A, B) can be used to 
construct a new functor S such that r: T--S. The case in which each r is an 
equivalence mapping is the simplest, so will be stated first. 

THEOREM 12.1. Let T be a functor covariant in 21, contravariant in 23, with 
values in G. Let S and -r be functions which determine for each pair of objects 
A C t, B CQ3 an object S(A, B) in ( and an equivalence mapping 

r(A, B): T(A, B)- S(A, B) in C. 

Then S is the object function of a uniquely determined functor S, concordant with 
T and such that r is a natural equivalence -r: T:?S. 

Proof. One may readily show that the mapping function appropriate to S 
is uniquely determined for each a:A1--A2 in 2f and 3:B1-*B2 in 23 by the 
formula 

S(a, 3) = r(A 2, Bi) T(a, 3) [r(A 1, B2)ft'. 

The companion theorem for the case of a transformation which is not nec- 
essarily an equivalence is somewhat more complicated. We first define map- 
pings cancellable from the right. A mapping aC2J will be called cancellable 
from the right if Oa =oya always implies 3 =,y. To illustrate, if each "formal" 
mapping is an actual many-to-one mapping of one set into another, and if the 
composition of formal mappings is the usual composition of correspondences, 
it can be shown that every mapping a of one set onto another is cancellable 
from the right. 

THEOREM 12.2. Let T be a functor covariant in 21 and contravariant in Q3, 
with values in C. Let S(A, B) and S(a, 3) be two functions on the objects (and 
mappings) of 2t and Q, for which it is assumed only, when a: A 1-*A2 in 2f and 
P3. B1 -B2 in 23, that 

S(a, (3):S(Al, B2) --S(A2, B1) in C. 

If a function -r on the objects of 21, e3 to the mappings of C satisfies the usual 
conditions for a natural transformation r: T-*S; namely that 

(12.1) r(A, B):T(A, B) >S(A, B) in C, 

(12.2) r(A2, B1)T(a, (3) = S(a, f)T(A1, B2), 

and if in addition each -r(A, B) is cancellable from the right, then the functions 
S(a, f) and S(A, B) form a functor S, concordant with T, and r is a transforma- 
tion -r: T-*S. 

Proof. We need to show that 

(12.3) S(eA, eB) = es(A,B), 
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(12.4) S(a2al, 03201) = S(a2, f3)S(al, 12)- 

Since T is a functor, T(eA, eB) is an identity, so that condition (12.2) with 
A1=A2, B1=B2 becomes 

T(A, B) = S(eA, eB)T(A, B). 

Because r(A,-B) is cancellable from the right, it follows that S(eA, eB) must 
be the identity mapping of S(A, B), as desired. 

To consider the second condition, let ai:Al->A2, a2:A2--A3, j3: B1->B2 
and 32:B2->B3, so that a2a1 and 32f1 are defined. By condition (12.2) and the 
properties of the functor T, 

S(a2a1, 0201)T(A1, B3) = T(A3, Bi)T(a2ai, 3231) 

= T(A3, Bi)T(a2, 31) T(al, %2) 

= S(a2, 131)T(A2, B2)T(ai, 32) 

= S(a2, 01)S(al, 32)T(Al, B3). 

Again because r(Al, B3) may be cancelled on the right, (12.4) follows. 
13. Combination of the arguments of functors. For n given categories 

W1, * * *2f, the cartesian product category 

(13. 1) S IWi = 2fl X W2 X ... X 2fn 
i 

is defined as a category in which the objects are the n-tuples of objects 
[A1, I * * An], with AiE'Ci, the mappings are the n-tuples [la, . . ., (Xn] of 
mappings aiCz2fi. The product 

al, ... I * an] [I131, . . I. n] = [a13i, * ** , ann] 

is defined if and only if each individual product ai4i is defined in Wi, for 
i=1, , n. The identity corresponding to the object [A1, l * *, An] in the 
product category is to be the mapping [e(A 1), * * * , e(A n) ]. The axioms which 
assert that the product 21 is a category follow at once. The natural corre- 
spondence 

(13.2) P(A1, * . , An) = [A1, a, In] 

is a covariant functor on the n categories t , * **, n to the product category. 
Conversely, the correspondences given by "projection" into the ith coordi- 
nate, 

(13.4) Qi([A1, * * * , An]) = Ail Qi([al, . ., ajn]) = ai, 

is a covariant functor in one argument, on 2I to fi. 
It is now possible to represent a functor covariant in any number of argu- 
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ments as a functor in one argument. Let T be a functor on the categories 
W1i, * * *, I,, (e, with the same variance in 21i as in 21i; define a new functor 
T* by setting 

T*([All * I A,],A4 B) = T(A1, , I An, B), 

T*([CYl ... * * 1na, i) = T(CY1, .. , a, tn ). 
This is a functor, since it is a composite of T and the projections Qi of (13.4); 
its variance in the first argument is that of T in any A i. Conversely, each func- 
tor S with arguments in W1X . . . X9ln and e3 can be represented as S= T*, 
for a T with n+1 arguments in W1i, * * , n1, 58, defined by 

T(A1 l* .. * Any B) = S([All .. * An]? B) = S(P(All .. I An), B), 
T(ai, , * , O 3nt A) = S([C1i, . . , CYn ] 3 A) = S(P(t , ..., aIn1), i3). 

Again T is a composite functor. These reduction arguments combine to give 
the following theorem. 

THEOREM 13.1. For given categories s91, * * *, 581y . . . * 5 (S, there is a 
one-to-one correspondence between the functors T covariant in Wi, * * *, I1W, con- 
travariant in 01, * * with values in C, and the functors S in two arguments, 
covariant in W,X . . . X 2n and con travariant in 3X * * * X53m, with values 
in the same category G. Under this correspondence, equivalent functors T corre- 
spond to equivalent functors S, and a natural transformation wr: T1--T2 gives rise 
to a natural transformation (: S1-*S2 between the functors S, and S2 correspond- 
ing to T1 and T2 respectively. 

By this theorem, all functors can be reduced to functors in two arguments. 
To carry this reduction further, we introduce the concept of a "dual" cate- 
gory. 

Given a category 2X, the dual category W* is defined as follows. The objects 
of W* are those of W ; the mappings a* of W* are in a one-to-one correspondence 
aya* with the mappings of W2. If a:A1-)A2 in W, then a*:A2- >*A1 in W*. The 
composition law is defined by the equation 

0Y2*CO1*= (011012)*, 

if aia2 is defined in W. We verify that W* is a category and that there are 
equivalences 

The mapping 

D(A) = A, D(ct) = 

is a contravariant functor on 2X to W*, while D-1 is contravariant on W* to W!. 
Any contravariant functor T on 2f to C can be regarded as a covariant 
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functor T* on W* to C, and vice versa. Explicitly, T* is defined as a composite 

T*(A) = T(D-1(A)), T*(a*) = T(D-l(a*)). 

Hence we obtain the following reduction theorem. 

THEOREM 13.2. Every functor T covariant on W , 2ln and contravariant 
on ... , 23m with values in C may be regarded as a covariant functor T' on 

( wi) x(IIi* 

with values in C, and vice versa. Each natural transformation (or equivalence) 
-r: T1 ->T2 yields a corresponding transformation (or equivalence) -r': T' ->T2' . 

CHAPTER III. FUNCTORS AND GROUPS 

14. Subfunctors. This chapter will develop the fashion in which various 
particular properties of groups are reflected by properties of functors with 
values in a category of groups. The simplest such case is the fact that sub- 
groups can give rise to "subfunctors." The concept of subfunctor thus de- 
veloped applies with equal force to functors whose values are in the category 
of rings, spaces, and so on. 

In the category 5 of all topological groups we say that a mapping 
G' ->G2' is a submapping of a mapping y: G1-*G2 (notation: y' Cy) when- 

ever Gl%CG,, G2' CG2 and y'(gi) =-y(gi) for each gizG'. Here Gf CG1 means 
of course that Gf is a subgroup (not just a subset) of G1. 

Given two concordant functors T' and T on W and e3 to 5, we say that 
T' is a subfunctor of T (notation: T'CT) provided T'(A, B) C T(4, B) for 
each pair of objects A ES, B CG and T'(a, a) C T(a, A) for each pair of map- 
pings a C, # GE3. Clearly T'CT and TCT' imply T= T'; furthermore this 
inclusion satisfies the transitive law. If T' and T" are both subfunctors of 
the same functor T, then in order to prove that T'C T" it is sufficient to 
verify that T'(A, B)CT"(A, B) for all A and B. 

A subfunctor can be completely determined by giving its object function 
alone. The requisite properties for this object function may be specified as 
follows: 

THEOREM 14.1. Let the functor T covariant in W and contravariant in e3 have 
values in the category (S of groups, while T' is a function which assigns to each 
pair of objects A CI and BCG?3 a subgroup T'(A, B) of T(A, B). Then T' is 
the object function of a subfunctor of T if and only if for each a:A1-*A2 in 9f 
and each f3:B1-3B2 in QB the mapping T(a, ,B) carries the subgroup T'(A1, B2) 
into part of T'(A2, B1). If T' satisfies this condition, the corresponding mapping 
function is uniquely determined. 

Proof. The necessity of this condition is immediate. Conversely, to prove 
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the sufficiency, we define for each a and A a homomorphism T'(a, A) of 
T'(A1, B2) into T'(A2, B1) by setting T'(a, 3)g=T(a, 3)g, for each 
gGT'(Ai, B2). The fact that T' satisfies the requisite conditions for the 
mapping function of a functor is then immediate, since T' is obtained by 
"cutting down" T. 

The concept of a subtransformation may also be defined. If T, S, T', S' 
are concordant functors on XI, Q3 to 65, and if r: T-)S and r': T'--S' are nat- 
ural transformations, we say that r' is a subtransformation of r (notation: 
r'Cr) if T'CT, S'CS and if, for each pair of arguments A, B, r'(A, B) is a 
submapping of r(A, B). Any such subtransformation of r may be obtained 
by suitably restricting both the domain and the range of r. Explicitly, let 
,r:T-)S, let T'CT and S'CS be such that for each A, B, r(A, B) maps the 
subgroup T'(A, B) of T(A, B) into the subgroup S'(A, B) of S(A, B). If then 
T'(A, B) is defined as the homomorphism r(A, B) with its domain restricted 
to the subgroup T'(A, B) and its range restricted to the subgroup S'(A, B), 
it follows readily that r' is indeed a natural transformation r': T'-*S'. 

Let r be a natural transformation r: T-*S of concordant functors T and S 
on t and e3 to the category (M of groups. If T' is a subfunctor of T, then the 
map of each T'(A, B) under r(A, B) is a subgroup of S(A, B), so that we may 
define an object function 

S'(A, B)- (A, B) [ T'(A , B) ], A G . St B E t3. 
The naturality condition on r shows that the function S' satisfies the condi- 
tion of Theorem 14.1; hence S'=TT' gives a subfunctor of S, called the r- 
transform of T'. Furthermore there is a natural transformation r': T'-.S', ob- 
tained by restricting r. In particular, if r is a natural equivalence, so is r'. 

Conversely, for a given r: T-+S let S" be a subfunctor of S. The inverse 
image of each subgroup S"(A, B) under the homomorphism r(A, B) is then 
a subgroup of T(A, B), hence gives an object function 

T"(A, B) = r(A, B)-1[S" (A, B)], A C X, B C 3. 
As before, this is the object function of a subfunctor T"CT which may be 
called the inverse transform r-1S" = T" of S". Again, r may be restricted 
to give a natural transformation r": T"-+S". In case each r(A, B) is a homo- 
morphism of T(A, B) onto S(A, B), we may assert that (1-'S"/) =S/. 

Lattice operations on subgroups can be applied to functors. If T' and T" 
are two subfunctors of a functor T with values in G, we define their meet 
T'nT" and their join T'UT" by giving the object functions, 

[T' n T"](A, B) = T'(A, B) n T"(A, B), 

[T' U T"](A, B) = T'(A, B) U T"(A, B). 

We verify that the condition of Theorem 14.1 is satisfied here, so that these 
object functions do uniquely determine corresponding subfunctors of T. Any 
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lattice identity for groups may then be written directly as an identity for the 
subfunctors of a fixed functor T with values in O. 

15. Quotient functors. The operation of forming a quotient group leads 
to an analogous operation of taking the "quotient functor" of a functor T 
by a "normal" subfunctor T'. If T is a functor covariant in 21 and contra- 
variant in Q3, with values in 5, a normal subfunctor T' will mean a subfunctor 
T'CT such that each T'(A, B) is a normal subgroup of T(A, B), while a 
closed subfunctor T' will be one in which each T'(A, B) is a closed subgroup 
of the topological group T(A, B). If T' is a normal subfunctor of T, the quo- 
tient functor Q = T/T' has an object function given as the factor group, 

Q(A, B) = T(A, B)/T'(A, B). 

For homomorphisms a:A -+A2 and f:B1-+B2 the corresponding mapping 
function Q (a, 3) is defined for each coset(17) x+T'(A1, B2) as 

Q(a, B) [x + T'(A1, B2) ] = [T(o, ,B)x] + T'(A2, B1). 

We verify at once that Q thus gives a uniquely defined homomorphism, 

Q(a, j):Q(A1, B2) -?Q(A2, B1). 

Before we prove that Q is actually a functor, we introduce for each A C2t 
and B CQ3 the homomorphism 

v(A, B):T(A, B) ->Q(A, B) 

defined for each xGT(A, B) by the formula 

v(A, B)(x) = x + T'(A, B). 

When a: A i-A2 and 3:B1-?B2 we now show that 

Q(a, O)v(Ai, B2) = v(A2, Bi) T(a, A). 

For, given any xET(A1, B2), the definitions of v and Q give at once 

Q(a, #)[v(A1, B2)(x)] = Q(a, ,B)[x + T'(A1, B2)] 
= [T(a, j) (x) ] + T'(A2, B1) 

= v(A2, B1) [T(o, j) (x) ]. 

Notice also that v(A, B) maps T(A, B) onto the factor group Q(A, B), hence 
is cancellable from the right. Therefore, Theorem 12.2 shows that Q = T/T' 
is a functor, and that v is a natural transformation v: T-?T/T'. We may call v 
the natural transformation of T onto T/T'. 

In particular, if the functor T has its values in the category of regular 
topological groups, while T' is a closed normal subfunctor of T, the quotient 

(17) For convenience in notation we write the group operations (commutative or not) with 
a plus sign. 
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functor T/T' has its values in the same category of groups, since a quotient 
group of a regular topological group by a closed subgroup is again regular. 

To consider the behavior of quotient functors under natural transforma- 
tions we first recall some properties of homomorphisms. Let a:G- +H be a 
homomorphism of the group G into H, while a': G'-+H' is a submapping of a, 
with G' and H' normal subgroups of G and H, respectively, and v and , are 
the natural homomorphisms v:G->G/G', ,u:H-H/H'. Then we may define a 
homomorphism O3:G/G'- +H/H' by setting f(x+G') =ax+H' for each xCG. 
This homomorphism is the only mapping of G/G' into H/H' with the prop- 
erty that /3v =ya, as indicated in the figure 

G ---- H 

l1 t v 

G/G' --- H/Hl' 

We may write j3= a/a'. The corresponding statement for functors is as fol- 
lows. 

THEOREM 15.1. Let r: T-+S be a natural transformation between functors with 
values in 5; and let r': T'-*S' be a subtransformation of r such that T' and S' 
are normal subfunctors of T and S, respectively. Then the definition p(A, B) 
=-r(A, B)/r'(A, B) gives a natural transformation p= T/T', 

p: T/T' -* S/S'. 

Furthermore, pv = ,r, where v is the natural transformation v: T-*T/T' and Pt 
is the natural transformation IA: S--S/S'. 

Proof. This requires only the verification of the naturality condition for p, 
which follows at once from the relevant definitions. 

The 'kernel" of a transformation appears as a special case of this theorem. 
Let r: T-*S be given, and take S' to be the identity-element subfunctor of S; 
that is, let each S'(A, B) be the subgroup consisting only of the identity (zero) 
element of S(A, B). Then the inverse transform T'==r-S' is by ?14 a (nor- 
mal) subfunctor of T, and r may be restricted to give the natural transforma- 
tion r': T'--S'. We may call T' the kernel functor of the transformation r. 
Theorem 15.1 applied in this case shows that there is then a natural trans- 
formation p: T/T'->S such that p =TrV. Furthermore each p(A, B) is a one- 
to-one mapping of the quotient group T(A, B)/T'(A, B) into S(A, B). If in 
addition we assume that each T(A, B) is an open mapping of T(A, B) onto 
S(A, B), we may conclude, exactly as in group theory, that p is a natural 
equivalence. 

16. Examples of subfunctors. Many characteristic subgroups of a group 
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may be written as subfunctors of the identity functor. The (covariant) iden- 
tity functor I on 05 to 5 is defined by setting 

I(G) = G, 1(Y) .- 

Any subfunctor of I is, by Theorem 14.1, determined by an object function 

T(G) CG 

such that whenever y maps G1 homomorphically into G2, then y [T(G1)] 
CT(G2). Furthermore, if each T(G) is a normal subgroup of G, we can form 
a quotient functor I/T. 

For example, the commutator subgroup C(G) of the group G determines 
in this fashion a normal subfunctor of I. The corresponding quotient functor 
(I/C) (G) is the functor determining for each G the factor commutator group 
of G (the group G made abelian). 

The center Z(G) does not determine in this fashion a subfunctor of I, be- 
cause a homomorphism of G1 into G2 may carry central elements of G1 into 
non-central elements of G2. However, we may choose to restrict the category 
5 by using as mappings only homomorphisms of one group onto another. For 

this category, Z is a subfunctor of I, and we may form a quotient functor I/Z. 
Thus various types of subgroups of G may be classified in terms of the 

degree of invariance of the "subfunctors" of the identity which they generate. 
This classification is similar to, but not identical with, the known distinction 
between normal subgroups, characteristic subgroups, and strictly character- 
istic subgroups of a single group(18). The present distinction by functors refers 
not to the subgroups of an individual group, but to a definition yielding a sub- 
group for each of the groups in a suitable category. It includes the standard 
distinction, in the sense that one may consider functors on the category with 
only one object (a single group G) and with mappings which are the inner 
automorphisms of G (the subfunctors of I=normal subgroups), the auto- 
morphisms of G (subfunctors=characteristic subgroups), or the endomor- 
phisms of G (subfunctors=strictly characteristic subgroups). 

Still another example of the degree of invariance is given by the automor- 
phism group A (G) of a group G. This is a functor A defined on the category 5 
of groups with the mappings restricted to the isomorphisms Y G1 -G2 of one 
group onto another. The mapping function A (y) for any automorphism oi of 
G1 is then defined by setting 

[A (Y)0-1g2 = YOY-1g2, g2 C G2. 

The types of invariance for functors on 5 may thus be indicated by a 
table, showing how the mappings of the category must be restricted in order 
to make the indicated set function a functor: 

(18) A subgroup S of G is characteristic if a(S) CS for every atuomorphism - of G, and 
strictly (or 'strongly") characteristic if a (S) CS for every-endomorphism of G. 
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Functor Mappings y:G G2 
C(G) Homomorphisms into, 
Z(G) Homomorphisms onto, 
A (G) Isomorphisms onto. 

For the subcategory of 65 consisting of all (additive) abelian groups there 
are similar subfunctors: 1?. Go, the set of all elements of finite order in G; 
20. Gm, the set of all elements in G of order dividing the integer m; 30. mG, the 
set of all elements of the form mg in G. The corresponding quotient functors 
will have object functions G/Go (the "Betti group" of G), G/Gm, and G/mG 
(the group G reduced modulo m). 

17. The isomorphism theorems. The isomorphism theorems of group the- 
ory can be formulated for functors; from this it will follow that these isomor- 
phisms between groups are "natural." 

The "first isomorphism theorem" asserts that if G has two normal sub- 
groups G1 and G2 with G2CG1, then G1/G2 is a normal subgroup of G/G2, and 
there is an isomorphism r of (G/G2)/(G1/G2) to G/G1. The elements of the 
first group (in additive notation) are cosets of cosets, of the form (x+G2) 
+G1/G2, and the isomorphism T is defined as 

(17.1) T[(x+G2) +G1/G2] =x +G1. 

This may be stated in terms of functors as follows. 

THEOREM 17.1. Let T1 and T2 be two normal subfunctors of a functor T with 
values in the category of groups. If T2 CTi, then T1/T2 is a normal subfunctor of 
T/T2 and the functors 

(17.2) T/T1 and (T/T2)/(T1/T2) 

are naturally equivalent. 

Proof. We assume that the given functor T depends on the usual typical 
arguments A and B. Since (T1/T2)(A, B) is clearly a normal subgroup of 
(T/T2)(A, B), a proof that T1/T2 is a normal subfunctor of T/T2 requires 
only a proof that each (Ti/T2)(a, f), is a submapping of the corresponding 
(T/T2) (a, ,3) for any a:A 1-A2 and f:B1-*B2. To show this, apply (T1/T2) 
*(a, f) to a typical coset x + T2(Al, B2). Applying the definitions, one has 

(TI/T2) (Ca, I3) [x + T2(A1, B2)] = Ti(a, 3)(x) + T2(A2, B1) 
=T(a, A)(x) + T2(A2, B1) 

= (T/T2) (a, ,3) [x + T2(A1, B2) ], 

for Ti(a, ,B) was assumed to be a submapping of T(a, p). 
The asserted equivalence (17.2) is established by setting, as in (17.1), 

T(A, B)g [x + T2(A, B)] + (T1/T2)(A, B)} = x + T1(A, B). 
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The naturality proof then requires that, for any mappings a:A1->A2 and 
3:B1->B2, 

T(A2, Bi)S(a, f3) = (T/Ti)(a, fl)T(Al, B2), 

where S= (T/T2)/(T1/T2). This equality may be verified mechanically by 
applying each side to a general element [x+T2(Al, B2)]+(Ti/T2)(A1, B2) in 
the group S(A1, B2). 

The theorem may also be stated and proved in the following equivalent 
form. 

THEOREM 17.2. Let T' and T" be two normal subfunctors of a functor T 
with values in the category G of groups. Then T'nT" is a normal subfunctor of 
T' and of T, T'/T'nT" is a normal subfunctor of T/T'CT", and the functors 

(17.3) T/T' and (T/T' r, T")/(T'/T' n T") 

are naturally equivalent. 

Proof. Set T1= T', T2= T'nT". 
The second isomorphism theorem for groups is fundamental in the proof 

of the Jordan-H6lder Theorem. It states that if G has normal subgroups G1 
and G2, then G1nG2 is a normal subgroup of G1, G2 is a normal subgroup of 
G1UG2, and there is an isomorphism u of Gl/G1nG2 to G1UG2/G2. (Because 
G1 and G2 are normal subgroups, the join GiUG2 consists of all "sums" g1+g2, 
for giEGi, so is often written as G1UG2=G1+G2.) For any xCG1, this iso- 
morphism is defined as 

(17.4) A[x + (G1n G2)] = x + G2. 

The corresponding theorem for functors reads: 

THEOREM 17.3. If T1, T2 are normal subfunctors of a functor T with values 
in G, then T1n T2 is a normal subfunctor of T1, and T2 is a normal subfunctor 
of T1J T2, and the quotient functors 

(17.5) T1/(T1 l T2) and (T1 J T2)/T2 

are naturally equivalent. 

Proof. It is clear that both quotients in (17.5) are functors. The requisite 
equivalence IA(A, B) is given, as in (17.4), by the definition 

,u(A, B) [x + (T1(A, B) n T2(A, B))] = x + T2(A, B), 

for any xC T1(A, B). The naturality may be verified as before. 
From these theorems we may deduce that the first and second isomor- 

phism theorems yield natural isomorphisms between groups in another and 
more specific way. To this end we introduce an appropriate category W.* An 
object of (M* is to be a triple G* = [G, G', G"] consisting of a group G and two 
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of its normal subgroups. A mapping y: [G1,G 1, G' ]-*[G2, G2', G2" ] of (M* is 
to be a homomorphism y: G1-*G2 with the special properties that y(Gl ) CG2' 
and ,y(Gf' ) CG2". It is clear that these definitions do yield a category 5*. On 
this category 6* we may define three (covariant) functors with values in the 
category 6 of groups. The first is a 'projection" functor, 

P([G, G', G" 3) = G, P(y) = a; 

the others are two normal subfunctors of P, which may be specified by their 
object functions as 

P'( [G, G', G"1]) =G', P"( [G, G', GIl) = G". 

Consider now the first isomorphism theorem, in the second form, 

(17.6) G/G' (G/(G' n G"))/(G'/(G' G G")). 

If we set G*= [G, G', G"], the left side here is a value of the object 
function of the functor, P/P', and the right side is similarly a value of 
(P/P'CnP")/(P'/P'0P"). Theorem 17.2 asserts that these two functors are 
indeed naturally equivalent. Therefore, the isomorphism (17.6) is itself natu- 
ral, in that it can be regarded as a natural isomorphism between the object 
functions of suitable functors on the category W*. 

TFhe second isomorphism theorem 

(G' U G1")IG" =- Gll(G' n G"I) 

is natural in a similar sense, for both sides can be regarded as object functions 
of suitable (covariant) functors on W.* 

It is clear that this technique of constructing a suitable category 6* could 
be used to establish the naturality of even more complicated "isomorphism" 
theorems. 

18. Direct products of functors. We recall that there are essentially two 
different ways of defining the direct product of two groups G and H. The "ex- 
ternal" direct product GXH is the group of all pairs (g, h) with geG, hGH, 
with the usual multiplication. This product G XH contains a subgroup G', 
of all pairs (g, 0), which is isomorphic to G, and a subgroup H' isomorphic 
to H. Alternatively, a group L with subgroups G and H is said to be the "in- 
ternal" direct product L-G X H of its subgroups G and H if gh = hg for every 
gGEG, hICH and if every element in L can be written uniquely as a product gh 
with g EG, hICH. The intimate connection between the two types of direct 
products is provided by the isomorphism GXH~GX H and by the equality 
GXH=G'XH', where G'-G, H'_H. 

As in ?4, the external direct product can be regarded as a covariant functor 
on 6 and 65 to 6, with object function GXH, and mapping function yXn7, 
defined as in ?4. 

Direct products of functors may also be defined, with the same distinction 
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between "external" and "internal" products. We consider throughout func- 
tors covariant in a category ?, contravariant in ~3, with values in the cate- 
gory (o of discrete groups. If T1 and T2 are two such functors, the external 
direct product is a functor T, X T2 for which the object and mapping functions 
are respectively 

(18.1) (Ti X T2)(A, B) = T1(A, B) X T2(A, B), 
(18.2) (Ti X T2)(a, A) = Ti(a, () X T2(a, ,B). 

If T77 (A, B) denotes the set of all pairs (g, 0) in the direct product T1(A, B) 
XT2(A, B), TI is a subfunctor of T, X T2, and the correspondence g->(g, 0) 
provides a natural isomorphism of T, to TI. Similarly T2 is naturally iso- 
morphic to a subfunctor TY of T1X T2. 

On the other hand, let S be a functor on 9t, e3 to o with subfunctors Si 
and S2. We call S the internal direct product S1X S2 if, for each A e2f and 
BCQB, S(A, B) is the internal direct product S1(A, B)XS2(A, B). From this 
definition it follows that, whenever a:A1-*A2 and ,3:B1->B2 are given map- 
pings and giGSj(Ai, B2) are given elements (i =1, 2), then, since Si(ax, X) 

S(a, 13)glg2 = [Sl(a, f)g1] [S2(a, O3)g2]. 

This means that the correspondence r defined by setting [r(Al, B2)] (g9g2) = g2 
is a natural transformation r S-*S2. Furthermore this transformation is 
idempotent, for r(Al, B2OT(A1, B2) =r (Al, B2) . 

The connection between the two definitions is immediate; there is a natu- 
ral isomorphism of the internal direct product S1X S2 to the external product 
S1XS2; furthermore any external product T XT2 is the internal product 
Tl X T2' of its subfunctors T1 _Ti, T2 -T2. 

There are in group theory various theorems giving direct product decom- 
positions. These decompositions can now be classified as to "naturality." Con- 
sider for example the theorem that every finite abelian group G can be repre- 
sented as the (internal) direct product of its Sylow subgroups. This decom- 
position is "natural"; specifically, we may regard the Sylow subgroup Sp(G) 
(the subgroup consisting of all elements in G of order some power of the prime 
p) as the object function of a subfunctor S, of the identity. The theorem in 
question then asserts in effect that the identity functor I is the internal direct 
product of (a finite number of) the functors S,. This representation of the 
direct factors by functors is the underlying reason for the possibility of ex- 
tending the decomposition theorem in question to infinite groups in which 
every element has finite order. 

On the other hand consider the theorem which asserts that every finite 
abelian group is the direct product of cyclic subgroups. It is clear here that 
the subgroups cannot be given as the values of functors, and we observe that 
in this case the theorem does not extend to infinite abelian groups. 
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As another example of non-naturality, consider the theorem which asserts 
that any abelian group G with a finite number of generators can be repre- 
sented as a direct product of a free abelian group by the subgroup T(G) of all 
elements of finite order in G. Let us consider the category 65,af of all discrete 
abelian groups with a finite number of generators. In this category the "tor- 
sion" subgroup T(G) does determine the object function of a subfunctor TCI. 
However, there is no such functor giving the complementary direct factor 
of G. 

THEOREM 18.1. In the category ~$5af there is no subfunctor FCI such that 
I = FX T, that is, such that, for all G, 

(18.3) G = F(G) X T(G). 

Proof. It suffices to consider just one group, such as the group G which is 
the (external) direct product of the additive group of integers and the addi- 
tive group of integers mod m, for m O0. Then no matter which free subgroup 
F(G) may be chosen so that (18.3) holds for this G, there clearly is an iso- 
morphism of G to G which does not carry F into itself. Hence F cannot be a 
functor. 

This result could also be formulated in the statement that, for any G with 
GH T(G) # (0), there is no decomposition (18.3) with F(G) a (strongly) char- 
acteristic subgroup of G. In order to have a situation which cannot be re- 
formulated in this way, consider the closely related (and weaker) group theo- 
retic theorem which asserts that for each G in 5af there is an isomorphism 
of G/T(G) into G. This isomorphism cannot be natural. 

THEOREM 18.2. For the category (3af there is no natural transformation, 
: I/T->I, which gives for each G an isomorphism r(G) of G/T(G) into a sub- 

group of G. 

This proof will require consideration of an infinite class of groups, such as 
the groups Gm = J X J(m) where J is the additive group of integers and J(m) the 
additive group of integers, modulo m. Suppose that r(G): G/T(G)-*G existed. 
If A(G): G->G/T(G) is the natural transformation of G into G/T(G) the prod- 
uct a(G) =r(G)A(G) would be a natural transformation of G into G with 
kernel T(G). For each of the groups Gm with elements (a, b(m)) for aEJ, 
b(mf)CJ(m,), this transformation o-m=o(Gm) must be a homomorphism with 
kernel J(m), hence must have the form 

a.m(a, b(m)) = (rma, (sma)(n)), 

where rm and Sm are integers. Now consider the homomorphism y: Gm-Gm 
defined by setting 'y(a, b(m)) = (0, b(m)). Since am is natural, we must have 
am'y ='yam. Applying this equality to an arbitrary element we conclude that 
Sm=O (mod m). Next consider 6: Gm-Gm defined by (a, b(m)) = (0, a(m)). The 
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condition 0m 8 = b8om here gives rm 0 (mod m), so that we can write rm =mtrn. 
Therefore for each m 

um(ta, b(m)) = (mtma, 0). 

Now consider two groups Gm, Gn with a homomorphism A: Gm4Gn defined by 
setting j3(a, b(m))= (a, 0(n)). The naturality condition o/3=3am now gives 
mtm = ntn. If we hold m fixed and allow n to increase indefinitely, this contra- 
dicts the fact that mtm is a finite integer. The proof is complete. 

It may be observed that the use of an infinite number of distinct groups 
is essential to the proof of this theorem. For any subcategory of 65af containing 
only a finite number of groups, Theorem 18.2 would be false, for it would be 
possible to define a natural transformation r(G) by setting [r(G)]g=kg for 
every g, where the integer k is chosen as any multiple of the order of all the 
subgroups T(G) for G in the given category. 

The examples of "non-natural" direct products adduced here are all ex- 
amples which mathematicians would usually recognize as not in fact natural. 
What we have done is merely to show that our definition of naturality does 
indeed properly apply to cases of intuitively clear non-naturality. 

19. Characters(19). The character group of a group may be regarded as a 
contravariant functor on the category (15jca of locally compact regular abelian 
groups, with values in the same category. Specifically, this functor "Char" 
may be defined by "slicing" (see ?5) the functor Hom of ?4 as follows. Let P 
be the (fixed) topological group of real numbers modulo 1, define "Char" by 
setting 

(19.1) Char G = Hom (G, P), Char y = Hom (Qy, ep). 

Given gEG and XEChar G it will be convenient to denote the element 
x(g) of P by (x, g). Using this terminology and the definition of Hom we ob- 
tain for y: G1-G2, XCChar G2 and g1 CG1, 

(19.2) (Char (T)x, g) = (x, yg). 

As mentioned before (?10) the familiar isomorphism Char (Char G)-G is 
a natural equivalence. 

The functor "Char" can be compounded with other functors. Let T be 
any functor covariant in Xf, contravariant in !, with values in (5lca. The com- 
posite functor Char T is then defined on the same categories 2f and e3 but is 
contravariant in 1 and covariant in Q3. Let S be any closed subfunctor 
of T. Then for each pair of objects A E-I, B CQ, the closed subgroup 
S(A, B)CT(A, B) determines a corresponding subgroup Annih S(A, B) in 
Char T(A, B); this annihilator is defined as the set of all those characters 
xCChar T(A, B) with (X, g) =0 for each gCS(A, B). This leads to a closed 

(19) General references: A. Weil, L'integration dans les groupes topologiques et ses applica- 
tions, Paris, 1938, chap. 1; S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Pub- 
lication, vol. 27, New York, 1942, chap. 2. 
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subfunctor Annih (S; T) of the functor Char T, determined by the object 
function 

[Annih (S; T)](A, B) = Annih S(A, B) in Char T(A, B). 

It is well known that 

Char [T(A, B)/S(A, B)] = Annih S(A, B), 

Char S(A, B) = Char T(A, B)/Annih S(A, B). 

These isomorphisms in fact yield natural equivalences 

(19.3) a:Annih (S; T) z Char (TIS), 
(19.4) T Char T/Annih (S; T) T? Char S. 

For example, to prove (19.4) one observes that each XCChar T(A, B) 
may be restricted to give a character ro(A, B)X of S(A, B) by setting 

(19.5) (ro(A, B)x, h) = (X, h), h i S(A, B). 

This gives a homomorphism 

'ro(A, B): Char T(A, B) -* Char S(A, B) 

with kernel Annih S(A, B). This homomorphism ro will yield the required 
isomorphism r of (19.4); by Theorem 15.1 a proof that ro is natural will imply 
that r is natural. 

To show ro natural, consider any mappings a:A1-*A2 and f:B1-*B2 in 
the argument categories of T. Then y = T(a, f) maps T(A1, B2) into T(A2, B1), 
while a = S(a, f) is a submapping of "y. The naturality requirements for r0 is 

(19.6) (Char 6)ro(A2, B1) = ro(A I, B2) Char 'y. 

Each side is a homomorphism of Char T(A2, B1) into Char S(Al, B2). If the 
left-hand side be applied to an element XC Char T(A2, B,), and the resulting 
character of S(A1, B2) is then applied to an element h in the latter group, we 
obtain 

(Char S(To(A2, B1)X), h) = (ro(A2, Bi)X, Ai) = (x, Ah) 

by using the definition (19.2) of Char a and the definition (19.5) of to. If the 
right-hand side of (19.6) be similarly applied to X and then to h, the result is 

(ro(Al, B2)((Chat -)x), h) = ((Char 7y)x, h) = (x, yth). 

Since 5Cy, these two results are equal, and both T0 and r are therefore natu- 
ral. 

The proof of naturality for (19.3) is analogous. 
If R is a closed subfunctor of S which is in turn a closed subfunctor of T, 

both of these natural isomorphisms may be combined to give a single natural 
isomorphism 
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(19.7) p: Char (S/R) >? Annih (S; T)/Annih (R; T). 

CHAPTER IV. PARTIALLY ORDERED SET$ AND PROJECTIVE LIMITS 

20. Quasi-ordered sets. The notions of functors and their natural equiva- 
lences apply to partially ordered sets, to lattices, and to related mathematical 
systems. The.category Z0 of all quasi-ordered sets(20) has as its objects the 
quasi-ordered sets P and as its mappings 7w P1->P2 the order preserving trans- 
formations of one quasi-ordered set, P, into another. An equivalence in this 
category is thus an isomorphism in the sense of order. 

An important subcategory of e0 is the category ZCd of all directed sets(21). 
One may also consider subcategories which are obtained by restricting both 
the quasi-ordered sets and their mappings. For example, the category of lat- 
tices has as objects all those partially ordered sets which are lattices and as 
mappings those correspondences which preserve both joins and meets. Alter- 
natively, by using these mappings which preserve only joins, or those which 
preserve only meets, we obtain two other categories of lattices. 

The category 5 of sets may be regarded as a subcategory of Z0, if each set 
S is considered as a (trivially) quasi-ordered set in which pi <P2 in S means 
that pl=P2. The category Q3 of well-ordered sets is another subcategory of D0. 
These categories provide a basis for appjying the study of functors to cardinal 
and ordinal arithmetic. Specifically, the general theory of arithmetic of par- 
tially ordered sets, as developed recently by Birkhoff(22), can be viewed as 
the construction of a large number of functors (cardinal power, ordinal power, 
and so on) defined on suitable subcategories of Z, together with a collection 
of natural equivalences and transformations between these functors(23). 

The construction of the category -e of all quasi-ordered sets is not the 
only such interpretation of partial order. It is also possible to regard the ele- 
ments of a single quasi-ordered set P as the objects of a category; with this 
device, one can represent an inverse or a direct system of groups (or of spaces) 
as a functor on P. 

If a quasi-ordered set P be regarded as a category Tp, the objects of the 
category are the elements p EP and the mappings are the pairs w= (P2, pi) 
of elements PiEP such that Pl<P2. To each object p we assign the pair 
ep= (p, p) as the corresponding identity mapping, while the product (p3, P2') 
(P2, pl) of two mappings of Lp is defined if and only if P2' = P2 and is in this 
case the mapping (P3, pi). The axioms Cl to C5 for a category are readily 

(20) A quasi-ordered set P is a set of elements pi, P2, * * -with a reflexive and transitive 
binary relation pl <P2 between the elements. If, in addition, the antisymmetric law (pl<p2 
and P2 < Pl imply Pl = P2) holds, P is a partially ordered set. 

(21) A quasi-ordered set P is directed if for each pair of elements pi, p2EP there exists a 
p3E pwith pl < P3, P2 < P3 

(22) Garrett Birkhoff, Generalized arithmetic, Duke Math. J. vol. 9 (1942) pp. 283-302. 
(23) Note, however, that the ordinary cardinal sum of two sets A and B does not give rise 

to a functor, because the definition applies only when the sets A and B are disjoint. 
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verified, and it develops that the only identities are the pairs (p, p), that the 
equivalence mappings of (Sp are the pairs (P2, P0) with Pi <P2 and P2 <pi and 
that any pair (P2, Pi) with pi <P2 is a mapping (P2, Pl) :P1-P2. It further fol- 
lows that any two mappings r,:P-p2 and r2:Pl- 'P2 of this category which 
have the same range and the same domain are necessarily equal. Conversely 
any given category (E which has the property that any two mappings 7r, and 
72 of (E with the same range and the same domain are equal is isomorphic to 
the category (p for a suitable quasi-ordered set P. In fact, P can be defined 
to be the set of all objects C of the category E with Ci < C2 if and only if there 
is in (E a mapping y: C1-*C2. 

Consider now two quasi-ordered sets P and Q, with their corresponding 
categories (Sp and (SQ. A covariant (contravariant) functor T on (Sp with 
values in (EQ is det6rmined uniquely by an order preserving (reversing) map- 
ping t of P into Q. Specifically, each such -correspondence t is the object func- 
tion t(p) = q of a functor T, for which the corresponding mapping function is 
defined as T(p2, P) = (tp2, tp1) (or, in case t is order-reversing, as (tp1, tp2)). 
Each functor T of one variable can be obtained in this way. 

21. Direct systems as functors. Let D be a directed set. If for every 
d ED a discrete group Gd is defined and for every pair di <d2 in D a homomor- 
phism 

(21.1) 4d2,dl:Gdl Gd2 

is given such that ?d,d is the identity and that 

(21.2) 4d3,di = 4Pd3,d24Od2,di for di < d2 < d3 

then we say that the groups { Gd} and the homomorphisms {kd2,di } consti- 
tute a direct system-of groups indexed by D. 

Let us now regard the directed set D as a category. For every object 
d ED define 

T(d) = Gd. 

For every mapping 3= (P2, Pi) in D define 

T(6) = T(d2, d1) = 4d2,d1. 

Conditions (21.1) and (21.2) imply that T is a covariant functor on D with 
values in the category (o of discrete groups. Conversely any such functor 
giv'es rise to a unique direct system. Consequently the terms "direct system 
of groups indexed by the directed set D" and "covariant functor on D to O5" 
may be regarded as synonyms. 

With each direct system of groups T there is associated a discrete limit 
group G =Lim, T defined as follows. The elements of the limit group G are 
pairs (g, d) for gCT(d); two elements (gi, di) and (g2, d2) are considered equal 
if and only if there is an index d3 with dl<d3, d2<d3 and with T(d3, dl)g1 
= T(d3, d2)g2. The sum is defined by setting (g, d)+(g', d) = (g+g', d); since 
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the set D is directed, this provides for the addition of any two pairs in G. 
For a fixed dED one may also consider the homomorphisms, called projec- 
tions, X(d): T(d)-*G defined by setting 

(21.3) X(d)g = (g, d) 

for gGT(d). Clearly 

(21.4) X(d1) = X(d2)T(d2, di) for d1 < d2. 

To treat this limit group, we enlarge the given directed set D by adjoining 
one new element oo, ordered by the specification that d < oo for each d CD. 
This enlarged directed set DX. also determines a category containing D as 
a subcategory, with new mappings (co, d) for each dED. Let now T be any 
covariant functor on D to (o (that is, any direct system of groups indexed 
by D). We define an extension Too of the object function of T by setting 

(21.5) T.,(?o) = Lim T =G 

the limit group of the given directed system T, and we similarly extend the 
mapping function of T by letting Too, for a new mapping ( oo , d), be the corre- 
sponding projection of T(d) into the limit group 

(21.6) T.,( o, d) = X(d). 

Condition (21.5) implies that T. is indeed a covariant function on D. with 
values in 65. The properties of the limit group may be described in terms of 
this extended functor Tx. 

THEOREM 21.1. Let D be a directed set and T a covariant functor on D (re- 
garded as a category) to 60. Then the limit group G of the direct system T 
and the projections of each group T(d) into this limit determine as in (21.5) and 
(21.6) an extension of T to a covariantfunctor T. on D. to Oo. If S. is any other 
extension of T to a covariantfunctor on D. to Oo, there is a unique natural trans- 
formation a: T.-6 such that each a(d) with d $ oo is the identity. 

Proof. We have already seen that T. is a covariant functor on D. to i0, 
extending T. Let now S. be any other functor extending T. Since S(d2, di) 
- T(d2, di) for d2 <dl in D, it follows from the functor condition on S. that 

(21.7) Sx(oo , d2)T(d2, di) = S(oo, di). 

We define a homomorphism 

a(oo): Tx(oo) -- Sx(??) 

by setting a( oc )(g, d) =S( oo, d)g for every element (g, d) GT.( oo) =Lim_ T. 
Condition (21.7) implies that o( oo) is single-valued. If we now set a(d) to be 
the identity mapping T.(d)->S.(d) for d: oo, we have the desired transfor- 
mation a: T.-+S6. 
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The extension T. and hence the limit group G = T.( oo ) of the given direct 
system is completely determined by the property given in the last sentence of 
the theorem. In fact if T , is any other extension of T with the same property 
as T., there will exist transformations o: T,--+T , and o': T! -*T,. Then 
pFa'a: T >T. with p(d) the identity whenever d $ oo . It follows that 

p(oo))X(d) = p(oo) T(oo, d) = T(oo, d)p(d)- T(oo, d) = X(d) 

and therefore for every (g, d) in G we get 

p(ooc)(g, d) = p(oo)X(d)g = X(d)g (g, d). 

Hence p( oo) is the identity and a is a natural equivalence o: T-*TX ', In this 
way the limit group of a direct system of groups can be defined up to an iso- 
morphism by means of such extensions of functors. This indicates that the 
concept (but not necessarily the existence) of direct "limits" could be set up 
not only for groups, but also for objects of any category. 

THEOREM 21.2. If T1 and T2 are two covariant functors on the directed cate- 
gory D with values in 60, and r is a natural transformation r: T1i-T2, there is 
only one extension rT of r which is a natural transformation rw: Tl,--+T2. be- 
tween the extended functors on D.. When r is a natural equivalence so is rT. 

Proof. The naturality condition for r, when applied to any mapping (d2, d1) 
with di <d2 in the directed set D reads 

(21.8) r(d2) Ti(d2, d1) = T2(d2, di)T(di). 

Given any element (gi, d) of the limit group T,. ( oo) = Lim-. T, we define 

(21.9) w(gi, d) = (r(d)gl, d) E Lim, T2= T2o( X )- 

Condition (21.8) implies that this definition of w gives a result independent 
of the special representation (g1, d) chosen for the limit element. Hence we 
get a homomorphism 

w: Ti,(oo) -+T2w( o). 

In virtue of (21.6) and (21.3), the definition (21.9) becomes 

(21.10) wTi,(oo%,d)= T2=(o ,d)r(d) 

This means simply that by setting r,(d) =r(d), r,(oo) =w we get an exten- 
sion of r which is still natural and which gives a transformation r,: TlXT2w. 
Since the naturality condition (21.10) is equivalent with (21.9) which com- 
pletely determines the value of r,(oo), the requisite uniqueness follows. In 
particular, if r is an equivalence, each r(d) is an isomorphism "onto," hence 
it follows that wX=-r( oo) is also an isomorphism onto, and is an equivalence. 
This is just a restatement of the known theorem that "isomorphic" direct 
systems determine isomorphic limit groups. 
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THEOREM 21.3. If T is a direct system of groups indexed by a directed set D, 
while H is a fixed discrete group, regarded as a (constant) covariant functor on 
D to Oo, then for each natural transformation r: T-[H there is a unique homo- 
morphism ro of the limit group Lim. T into H with the property that r(d) =iroX(d) 
for each d ED, where M(d) is the projection of T(d) into Lim. T. 

Proof. This follows from the preceding theorem and from the remark that 
H0. is also a constant functor on Da. to Oo. 

22. Inverse limits as functors. Let D be a directed set. If for every d ED 
a topological group Gd is defined and for every pair di <d2 in D a homomor- 
phism 

(22 .1) d2, di G d2 G di 

is given such that 4d,d is the identity and that 

(22.2) 40d3,di = 40d2,d140dg,d2 for d1 < d2 < d3 

then we say that the groups {Gd} and the homomorphisms {4d2,d1} consti- 
tute an inverse system of groups indexed by D. 

If we now regard D as a category, and define as before 

(22.3) T(d) = Gd 

for every object d in D, and 

(22.4) T(b) = T(d2, di) = Od2,d, 

for every mapping a = (d2, d1) in D, it is clear that T is a contravariant functor 
on D with values in the category 5 of topological groups. Conversely any such 
functor may be regarded as an inverse system of groups. 

With each inverse system of groups T there is associated a limit group 
G=Lim.. T defined as follows. An element of G is a function g(d) which as- 
signs to each element dED an element g(d)ET(d), in such wise that these 
elements "match" under the mappings; that is, such that T(d2, d1)g(d2) =g(d1) 
whenever d1<d2. The sum of g1+g2 is defined as (g1+g2)(d)=gi(d)+g2(d). 
This limit group G is assigned a topology, in known fashion, by treating G 
as a subgroup of the direct product of the groups T(d), with the usual direct 
product topology. For fixed d, the (continuous) projection ,u(d) of the limit 
group G into T(d) is defined by setting [,u(d) ]g =g(d), for gGG. 

Again we may consider the extended category Do. and define the extension 
To. of T by setting 

(22.5) T0.(oo) = G, T0(coo, d) (d). 

As before the following theorem can be established: 

THEOREM 22.1. Let D be a directed set and T a contravariant functor on D 
(regarded as a category) to 5. Then the limit group G of the inverse system T 
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and the projections of this limit group into each group T(d) determine as in 
(22.5) an extension of T to a contravariant functor T. on D. to 5. If S. is any 
other extension of T to a contravariant functor on D. to 5, there is a unique 
natural transformation a: S. -T. such that each a(d) with d $ oo is the identity. 

As before we can also verify that the second half of the theorem deter- 
mines the extended functor T. to within a natural equivalence, and therefore 
it determines the limit group to within an isomorphism. 

The following two theorems may also be proved as in the preceding sec- 
tion. 

THEOREM 22.2. If T1 and T2 are two contravariant functors on the directed 
category D with values in 5, and r is a natural transformation x: T1- >T2, there 
is only one extension r. of r which is a natural transformation r.: T1.-*T2i be- 
tween the extended functors on D.. When T is a natural equivalence so is r.x 

THEOREM 22.3. If T is an inverse system of groups indexed by the directed 
set D, while K is a fixed topological group regarded as a (constant) contravariant 
functor on D to 0, then for each natural transformation r: T-*K there is a unique 
homomorphism ro: Lim,. T-*K such that ro=r(d)X(d) for each dciD. 

The preceding discussion carries over to inverse systems of spaces, by a 
mere replacement of the category of topological groups 6 by the category of 
topological spaces I. 

23. The categories "Zir" and "`nb." The process of forming a direct or 
inverse limit of a system of groups can be treated as a functor "Lim_" or 
"Lim,'" which operates on an appropriately defined category. Thus the func- 
tor "Lim_" will operate on any direct system T defined on any directed set D. 
Consequently we define a category "Zit" of directed systems whose objects 
are such pairs (D, T). Here we may regard D itself as a category and T as a 
coyariant functor on D to 65. To introduce the mappings of this category, 
observe first that each order preserving transformation R of a directed set D, 
into another such set D2 will give for each direct system T2 of groups indexed 
by D2 an induced direct system indexed by D1. Specifically, the induced direct 
system is just the composite T2 0R of the (covariant) functor R on D1 to D2 
and the (covariant) functor T2 on D2 to (5o. Given two objects (D1, T1) and 
(D2, T2) of Zit, a mapping 

(R, p):(D,, T1) -* (D2, T2) 

of the category Zit is a pair (R, p) composed of a covariant functor R on D, 
to D2 and a natural transformation 

p:T1-* T2 X R 

of T1 into the composite functor T2 0R. 
To form the product of two such mappings 
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(23.1) (Ri, pi)' (D1, T1) -- (D2, T2), (R2, P2) .(D2, T2) -* (D3, T3) 

observe first that the functors T2 and T3?R2 on D2 to 6o can be compounded 
with the functor R1 on D1 to D2, and hence that the given transformation 
P2: T2- T3OR2 can be compounded with the identity transformation of R1 into 
itself, just as in ?9. 

The result is a composite transformation 

(23.2) p2 X R1:T20 R1- T3? R20 RI 
which assigns to each object d1CDL the mapping [p2 OR1] (di)= p2(R1di) of 
T2(R1d1) into T30R2(Rldi). The transformations (23.2) and pl:T1-*T2 OR1 
yield as in ?9 a composite transformation P20 R1 0 pi: T1->T3 OR2OR1. We 
may now define the product of two given mappings (23.1) to be 

(R2, p2)(Ri, Pi) = (R2 0 R1, P2 0 R1 0 pi). 

With these conventions, we verify that Ztr is a category. Its identities are 
the pairs (R, p) in which both R and p are identities; its equivalences are the 
pairs (R, p) in which R is an isomorphism and p a natural equivalence. 

The effect of fixing the directed set D in the objects, (D, T) of the cate- 
gory ltr is to restrict Str to the subcategory which consists of all direct sys- 
tems of groups indexed by D (that is, the category of all covariant functors 
on D to Oo, as defined in ?8). 

We shall now define Lim. as a covariant functor on Sit with values in 5o. 
For each object (D, T) of Ztr we define Lim-. (D, T) to be the group obtained 
as the direct limit of the direct system of groups T indexed by the directed 
set D. Given a mapping 

(23.3) (R, p):(Di, T1) -* (D2, T2) in Zir 

we define the mapping function of Lim_, 

(23.4) Limn (R, p) :Lim_. (D1, T1) -*Lim. (D2, T2), 

as follows. An element in the limit group Lim (D1, T1) is a pair (gl, dl) with 
d1CD1, g1GT1(d&). For each such element define 0(gi, di) to be the pair 
(p(d1)gi, Rd1). Since p(d1) maps T1(d1) into T2(Rd1) we have p(d1)gi in T2(Rd1), 
so that the resulting pair is indeed in the limit group Lim. (D2, T2). The map- 
ping 4 carries equal pairs into equal pairs, and yields the reqdisite homomor- 
phism (23.4). We verify that Lim,, defined in this manner, is a covariant 
functor on Ztr to Oo. 

Alternatively, the mapping function of this functor "Lim," can be ob- 
tained by extensions of mappings to the directed sets D1,,o D2o (with oo 
added), defined as in ?21. Given the mapping (R, p) of (23.3), first extend the 
given objects of Zir to obtain new objects (Di., Tl,,,) and (D2,0, T2.). The 
given functor R on D1 to D2 can also be extended by setting R,( o) =-o; this 
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gives a functor R. on Di,,, to D20. Furthermore, Theorem 21.2 asserts that the 
transformation p: Tl-*T2OR has then a unique extension p.: Tloo-T2o0Roo 
All told, we have a new mapping 

(Root poo): (Dloo Tloo) --+ Aw T2oo) 

in itr. In particular, when po. is applied to the new element oo of Di,., it 
yields a homomorphism of the limit group of T1 into the limit group of T2?(R. 
On the other hand, R determines a homomorphism R# of the limit group of 
T2 OR into the limit group of T2; explicitly, for (gl, di) in the first limit group, 
the image R#(gi, d1) is the element (gl, Rd,) in the second limit group. The 
requisite mapping function of the functor "Lim_" is now defined by setting 

Lim, (R, p) = R#(p0.(oo)). 

In a similar way we define the category ant. The objects of $nb are pairs 
(D, T) where D is a directed set and T is an inverse system of topological 
groups indexed by D (that is, T is a contravariant functor on D to (i). Thw 
mappings in ant are pairs (R, p) 

(R, p): (Di, Ti) -+(D2, T2) 

where R is a covariant functor on D2 to D1 (that is, an order preserving trans- 
formation of D2 into D1) and p is a natural transformation of the functors 

p: T, 0 R- T2 

both contravariant on D2 to (M. The product of two mappings 

(R1, p): (Di, T1) -* (D2, T2), (R2, P2) = (D2, T2) -+ (D3, T3) 

is defined as 

(R2, P2)(Ri, P1) = (R1 0 R2, P2 0 pi 0 R2) 

where P10R2 is the transformation 

Pi 0 R2: T1 0 R1 0 R2 - T2 0 R2 

induced (as in ?9) by 

p1: T, 0 R1--+ T2. 

With these conventions, we verify that anb is a category. 
We shall now define Lim? as a covariant functor on anb with values in (i. 

For each object (D, T) in anb we define Lime. (D, T) to be the inverse limit 
of the inverse system of groups T indexed by the directed set D. Given a 
mapping 

(23.5) (R, p):(Di, T1) -* (D2, T2) in ant 

we define the mapping function of Lim, 
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,(23 .6) Lim. (R, p) :Lim,. (Di, TO - Lim. (D2, T2) 

as follows. Each element of Lim, (Di, T1) is a function g(d1) with values 
g(d1)C7T7(d1), for dCEDi, which match properly under the projections in T1. 
Now define a new function h, with 

h(d2) = p(d2)g(Rd2), d2 C Da; 

it is easy to verify that h is an element of the limit group Lim (D2, T2). The 
,correspondence g->h is the homomorphism (23.6) required for the definition 
of the mapping function of Lim,. One may verify that this definition does 
yield a covariant functor Lim, on the category anb to O. 

The mapping function of Lim may again be obtained by first extending 
the given mapping (23.5) to 

(R2, poo): (Dl, Too) -* (D2w, T2,,) in anb. 
In particular, when the extended transformation p.O is applied to the element 
X of Dl, we obtain a homomorphism of the limit group of T1GR into the 
limit group of T2. On the other hand, the covariant functor R on D2 to Di de- 
termines a homomorphism R* of the limit group of (DA, T1) into the limit 
group of (D2, T? OR); explicitly, for each function g(di) in the first limit group, 
the image h=R*g in the second limit group is defined by setting h(d2) =g(Rd2) 
for each d2ED2. The mapping function of the functor "Lim," is now 
Lim. (R, p) = p.(oo)R*. 

24. The lifting principle. Let Q be a functor wh )se arguments and values 
are groups, while T is any direct or inverse system of groups. If the object 
function of Q is applied to each group T(d) of the given system, while the 
mapping function of Q is applied to each projection T(d1, d2) of the given 
system, we obtain a new system of groups, which may be called QO T. If Q 
is covariant, T and Q ? T are both direct or both inverse, while if Q is contra- 
variant, Q 0 F is inverse when T is direct, and vice versa. 

Actually this new system Q 0 T is simply the composite of the functor T 
with the functor Q (see ?9). We may regard this composition as a process 
which "lifts" a functor Q whose arguments and values are groups to a functor 
QL whose arguments and values are direct (or inverse) systems of groups. We 
may then regard the lifted functor as one acting on the categories itr and 
3nb, as the case may be. In every case, the lifted functor has its object and 
mapping functions given formally by the equations (in the "cross" notation 
for composites) 

(24.1) QL(D, T) = (D, Q 0 T), QL(R, p) = (R, Q 0 p). 

This formula includes the following four cases: 
(I) Q covariant on (5o to 0o; QL covariant on Zir to ZMt. 
(II) Q contravavriant on 60 to @'; QL contravariant on Ztr to ani. 
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(III) Q covariant on (5 to 0; QL covariant on anb to anb. 
(IV) Q contravariant on (5 to (50; QL contravariant on anb to Ztr. 
For illustration, we discuss case (II), in which Q is given contravariant 

on (o to (M. The object function of QL, as defined in the first equation of 
(24.1), assigns to each object (D, T) of the category itr a pair (D, QQ T). 
Since T is covariant on D to (o and Q contravariant on (o to (M, the com- 
posite Q 0 T is contravariant on D to (M, so that Q 0 T is an inverse system of 
groups, and the pair (D, Q 0 T) is an object of anb. On the other hand, given 
a mapping 

(R, p): (D1, T1) -- (D2, T2) in Zir, 

with p: T1-+T2 O R, the composite transformation Q X p is obtained by apply- 
ing the mapping function of Q to each homomorphism p(d1): T1(d1)-+T2 OR(d1), 
and this gives a transformation Q p: Q 0 T2 0 R->Q 0 T1. Thus the mapping 
function of QL, as defined in (24.1), does give a mapping (R, Q 0 p): (D2, Q 0 T2) 
--(D1, Q 0 T1) in the category anb. We verify that QL is a contravariant func- 
tor on TAr to anb. 

Any natural transformation Ki Q--P induces a transformation on the 
lifted functors, KL: QL-*PL, obtained by composition of the transformation K 

with the identity transformnation of each T, as 

KL(D, T) = (D, K ( T7). 

If K is an equivalence, so is this "lifted" transformation. 
Just as in the case of composition, the operation of "lifting" can itself be 

regarded as a functor "Lift," defined oti a suitable category of functors Q. 
In all four cases (I)-(IV), this functor "Lift" is covariant. 

In all these cases the functor Q may originally contain an-y number of 
additional variables. The lifted functor QL will then involve the same extra 
variables with the same variance. With proper caution the lifting process 
may also be applied simultaneously to a functor Q with two variables, both 
of which are groups. 

25. Functors which commute with limits. Certain operations, such as the 
formation of the character groups of discrete or compact groups, are known to 
"commute" with the passage to a limit. Using the lifting operation, this can 
be formulated exactly. 

To illustrate, let Q be a covariant functor on -S5o to Oo, and QL the corre- 
sponding covariant lifted functor on Z)tr to Ztr, as in case (I) of ?24. Since 
Lim. is a covariant functor on Ztr to Oo, we have two composite functors 

Lim_.(OQL and Q C) Lim_, 

both covariant on Zir to (o. There is also an explicit natural transformation 

(25.1) wl:Lim-. 0QL Q-Q 0 Lim-, 

defined as follows. Let the pair (D, T) be a direct system of groups in the 
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category Zit, and let X(d) be the projection 

X(d): T(d) Lim- T, d 
E 
D. 

Then, on applying the mapping function of Q to X, we obtain the natural 
transformation 

QX(d): QT(d) -Q [Lim. T]. 

Theorem 21.3 now gives a homomorphism 

w1(T):Lim. [Q (D T] Q [Limx Tj, 

or, exhibiting D explicitly, a homomorphism 

co,I(Dj T): Lim QL(D, T) -+Q [Limn (D, T)] 

We verify that wi, so defined, satisfies the naturality condition. 
Similarly, to treat case (II), consider a contravariant functor Q on (o to (D 

and the lifted functor QL on Zir to 3nb. We then construct an explicit natural 
transformation 

(25.2) ZII Q 0 Lirn_ Lim,,. 0 QL 

(note the order !), defined as follows. Let the pair (D, T) be in Ztr, and let 
X(d) be the projection 

X(d): T(d) ->Lim- T, d 
E 
D. 

On applying Q, we get 

QX(d): :Q[Lim T] QT(d). 

The Theorem 22.3 for inverse systems now gives a homomorphism 

wII(D, T7) :Q[Lim.. (D, T) ] -*Limr QL(D, T7). 

In the remaining cases (III) and (IV) similar arguments give natural 
transformations 

(25.3) coxii:Q (D Lim,-*Lim4 0 QL, 

(25.4) w1vr:Lim. 0 QL -Q 0 Limn. 

DEFINITION. The functor Q defined on groups to groups is said to com- 
mute (more precisely to w-commute) with Lim if the appropriate one of the 
four natural transformations co above is an equivalence. 

In other words, the proof that a functor Q commutes with Lim requires 
only the verification that the homomorphisms defined above are isomor- 
phisms. The naturality condition holds in general! 

To illustrate these concepts, consider the functor C which assigns to each 
discrete group G its commutator subgroup C(G), and consider a direct system 
T of groups, indexed by D. Then the lifted functor Q (case (I) of ?24) applied 
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to the pair (D, T) in tir gives a new direct system of groups, still indexed 
by D, with the groups T(d) of the original system repiaced by their commuta- 
tor subgroups CT(d), and with the projections correspondingly cut down. It 
may be readily verified that this functor does commute with Lim. 

Another functor Q is the subfunctor of the identity which assigns to each 
discrete abelian group G the subgroup Q(G) consisting of those elements geG 
such that there is for each integer m an xEG with mx =g (that is, of those ele- 
ments of G which are divisible by every integer), Q is a covariant functor with 
arguments and values ill the subcategory Goa of discrete abelian groups. The 
lifted functor QL will be covariant, with arguments and values in the sub- 
category Zrt,a of Zir, obtained by restricting attention to abelian groups. This 
functor Q clearly does not commute with Lim, since one may represent the 
additive group of rational numbers as a direct limit of cyclic groups Z for 
which each subgroup Q(Z) is the group consisting of zero alone. 

The formation of character groups gives further examples. If we consider 
the functor Char as a contravariant functor on the category (5Oa of discrete 
abelian groups to the category (5ca of compact abelian groups, the lifted func- 
tor CharL will be covariant on the appropriate subcategory of Zir to 3nt as 
in case (II) of ?24. This lifted functor CharL applied to any direct system 
(D, T) of discrete abelian groups will yield an inverse system of compact 
abelian groups, indexed by the same set D. Each group of the inverse system 
is the character group of the corresponding group of the direct system, and 
the projections of the inverse system are the induced mappings. 

On the other hand, there is a contravariant functor Char on (ca to (Oa. 

In this case the lifted functor CharL will be contravariant on a suitable sub- 
category of anb with values in tir, just as in case (III) of ?24. Both these 
functors Char commute with Lim. 

CHAPTER V. APPLICATIONS TO TOPOLOGY(24) 

26. Complexes. An abstract complex K (in the sense of W. Mayer) is a 
collection 

C-z(K)} q = 0, ? 1, ? 2, ., 
of free abelian discrete groups, together with a collection of homomorphisms 

a :Cz(K) - C-zl(K) 

called boundary homomorphisms, such that 

a a q+ = 0. 

By selecting for each of the free groups Cz a fixed basis {a O } we obtain a 
complex which is substantially an abstract complex in the sense of A. W. 

(24) General reference: S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium 
Publications, vol. 27, New York, 1942. 
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Tucker. The oa will be called q-dimensional cells. The boundary operator a 
can be written as a finite sum 

901 = E [a3 : aq2l ]aqZl. 
Obg- 

The integers [oq:ao91] are called incidence numbers, and satisfy the following 
conditions: 

(26.1) Given oa, [oa; oa $- 0 only fo& a finite number of (q- 1)-cells aq-1. 

(26.2) Given oq+l and oq-1, E,Y[oaq+1; oaz] [oa; oaz1] =0. 

Condition (26.1) indicates that we are confronted with an abstract com- 
plex of the closure finite type. Consequently we shall define (?27) homologies 
based on finite chains and cohomologies based on infinite cochains. 

Our preference for complexes a la W. Mayer is due to the fact that they 
seem to be best adapted for the exposition of the homology theory in terms 
of functors. 

Given two abstract complexes K1 and K2, a chain transformation 

K: Kl -> K2 

will mean a collection K= { KI} of homomorphisms, 

K':Cz(Kl) C-(K2), 

such that 

In this way we are led to the category S whose objects are the abstract 
complexes (in the sense of W. Mayer) and whose mappings are the chain 
transformations with obvious definition of the composition of chain trans- 
formations. 

The consideration of simplicial complexes and of simplicial transforma- 
tions leads to a category R.. As is well known, every simplicial complex 
uniquely determines an abstract complex, and every simplicial transforma- 
tion a chain transformation. This leads to a covariant functor on Rs to R. 

27. Homology and cohomology groups. For every complex K in the cate- 
gory R and every group G in the category (,Oa of discrete abelian groups we 
define the groups Cz(K, G) of the q-dimensional chains of K over G as the 
tensor product 

Cz(K, G) = G o Cg(K), 

that is, Cz(K, G) is the group with the symbols 

gca, gnG, r Eto Cs(K) 

as generators, and 

This content downloaded from 128.151.244.46 on Thu, 08 Oct 2015 12:00:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1945] GENERAL THEORY OF NATURAL EQUIVALENCES 285 

(gi + 2) = + g2Cg, g(C + C2) = gCg + gc9 

as relations. 
For every chain transformation i:KK1->K2 and for every homomorphism 

ay: G1-*G2 we define a homomorphism 

Cq(K, y) :Cq(K1, G1) -+ Cq(K2, G2) 

by setting 

C (K, 'y)(giCb) = 7(gl)Kq(C1) 

for each generator g1c" of Cq(K1, G1). 
These definitions of Cq(K, G) and of Cq(,, y) yield a functor Cz covariant 

in ft and in (5Oa with values in (5Oa. This functor will be called the q-chain 
functor. 

We define a homomorphism 

aq(K, G) :Cq(K, G) Cq- 1C(K, G) 

by setting 
aq(K, G)(gcq) = gOcq 

for each generator gcq of Cq(K, G). Thus the boundary operator becomes a 
natural transformation of the functor Cq into the functor Cq- 

Cq Cq_Cq-. 

The kernel of this transformation will be denoted by Zq and will be called the 
q-cycle functor. Its object function is the group Zq(K, G) of the q-dimensional 
cycles of the complex K over G. 

The image of Cq under the transformation q is a subfunctor Bq-1 =q (Cq) 
of Cq-1. Its object function is the group Bq-l(K, G) of the (q-.1)-dimensional 
boundaries in K over G. 

The fact that aq4q+1 = 0implies that Bq(K, G) is a subgroup of Zq(K, G). 
Consequently Bq is a subfunctor of Zq. The quotient functor 

Hq = ZqlBq 

is called the qth homology functor. Its object function associates with each 
complex K and with each discrete abelian coefficient group G the qth homol- 
ogy group Hq(K, G) of K over G. The functor Hq is covariant in ft and (5Oa and 
has values in (5Oa. 

In order to define the cohomology groups as functors we consider the cate- 
gory St as before and the category a of topological abelian groups. Given a 
complex K in S and a group G in (5a we define the group Cq(K, G) of the q-di- 
mensional cochains of K over G as 

Cq(K, G) = Hom (Cq(K), G). 
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Given a chain transformation K:KK1-*K2 and a homomorphism 'y:G1-*G2, we 
define a homomorphism 

Cg2(K, 7):C,(K2, Gi) _> Cg(Kil G21) 

by associating with each homomorphism f CCq(K2, G1) the homomorphism 
f = CQ(K, y)f, defined as follows: 

f(Cl) = 7f(K Ci)], Cl E C (K1). 

By comparing this definition with the definition of the functor Hom, we ob- 
serve that Cq(K, 'y) is in fact just Hom (K0, -y). 

The definitions of Cq(K, G) and Cq(K, 'Y) yield a functor Cq contravariant 
in 9, covariant in (Ma and with values in 65a. This functor will be called the 
qth cochain functor. 

The coboundary homomorphism 

aq(K, G) :Cq(K, G) - Cq+l(K, G) 

is defined by setting, for each cochain f Cq(K, G), 

(bqf)(Cq+l) = f(aq+lcq+l). 

This leads to a natural transformation of functors 

8q:Cq > Cq+li 

We may observe that in terms of the functor "Hom" we have 8q(K, G) 
=Hom ( q+1, eG). 

The kernel of the transformation bq is denoted by Zq and is called the 
q-cocycle functor. The image functor of 6, is denoted by Bq+1 and is called 
the (q +1 )-coboundary functor. Since &4 q+1 = 0, we may easily deduce that 
Bq is a subfunctor of Zq. The quotient-functor 

Hq = Zq/Bq 

is, by definition, the qth cohomology functor. Hq is contravariant in ft, co- 
variant in (S5a, and has values in (Ma. Its object function associates with each 
complex K and each topological abelian group G the (topological abelian) 
qth cohomology group Hq(K, G). 

The fact that the homology groups are discrete and have discrete coeffi- 
cient groups, while the cohomology groups are topologized and have topologi- 
cal coefficient groups, is due to the circumstance that the complexes 
considered are closure finite. In a star finite complex the relation would 
be reversed. 

For "finite" complexes both homology and cohomology groups may be 
topological. Let Rf denote the subcategory of S determined by all those 
complexes K such that all the groups Cq(K) have finite rank. If KCRf and 
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G is a topological group, then the group Cq(K, G) = G o Cq(K) can be topolo- 
gized in a natural fashion and consequently Hs(K, G) will be topological. 
Hence both Hg and Hq may be regarded as functors on ff and 05a with values 
in (5a. The first one is covariant in both Rf and 05a, while the second one is 
contravariant in Sf and covariant in a. 

28. Duality. Let G be a discrete abelian group and Char G be its (com- 
pact) character group (see ?19). 

Given a chain 
Cq Cq(K, G) 

where 

c = giCq gi EG, c' Cq(K), 

and given a cochain 
f E Cq(K, Char G), 

we may define the Kronecker index 

KI(f, c =-E (f(c6), gi). 
i 

Since f (c") is an element of Char G, its application to gi gives an element of the 
group P of reals reduced mod 1. The continuity of KI(f, cq) as a function of f 
follows from the definition of the topology in Char G and 'in Cq(K, Char G). 

As a preliminary to the duality theorem, we define an isomorphism 

(28. 1) rq(K, G):Cq(K, Char G) >? Char Cq(K, G), 

by defining for each cochain fC Cq(K, Char G) a character 

rq(K, G)f:Cq(K, G) -P, 

as follows: 
(rqf, Cq) = KI(f, Cq). 

The fact that 7q(K, G) is an isomorphism is a direct consequence of the 
character theory. In (28.1) both sides should be interpreted as object func- 
tions of functors (contravariant in both K and G), suitably compounded from 
the functors Cq, Cq, and Char. In order to prove that (28.1) is natural, con- 
sider 

K:K1- K2 in :, 'y:G1- G2 in (MOa. 

We must prove that 

(28.2) Tq(K1, Gl)Cq(K, Char y) = [Char Cq(K, y) ]rq(K2, G2). 

If now 
f E Cq(K2, G2), cq C Cq(Kl, Gi), 

then the definition of ,q shows that (28.2) is equivalent to the identity 
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(28.3) KI(Cq(K, Char y)f, cq) = KI(f, Cq(K, y)cq). 

It will be sufficient to establish (28.3) in the case when cq is a generator of 
Cq (Ki, Gi), 

q 
= gicl, gi C G1, cl C (K2) 

Using the definition of the terms involved in (28.3) we have on the one hand 

KI(Cq(K, Char y)f, glcq) = ([Cq(K, Char y)f]cq, gi) 
= (Char 'y[f(Kc1) ]g) = (f(KCq), 'ygl), 

and on the other hand 

KI(f, C(K, y)gjcq) = KI(f, ('ygj)(KCq)) = (f(KC1), 'ygl). 

This completes the proof of the naturality of (28.1). 
Using the well known property of the Kronecker index 

KI(f, aO+lcq+l) = KI(qj, cq+l), 

one shows easily that under the isomorphism Tq of (28.1) 

s [Zq(K, Char G)] = Annih Bq(K, G), r [Bq(K, Char G)] = Annih Zq(K, G), 

with "Annih" defined as in ?19. Both Annih (Be; Cq) and Annih (Zq; Cq) are 
functors covariant in K and G; the latter is a subfunctor of the former, so 
that 7q induces a natural isomorphism 

oq:Zq(K, Char G)/Bq(K, Char G) T? Annih Bq(K, G)/Annih Zq(K, G). 

The group on the left is Hq(K, Char G). The group on the right is, according 
to (19.7), naturally isomorphic to Char Z2(K, G)/Bq(K, G). All told we have 
a natural isomorphism: 

pq: Hq(K, Char G) T? Char HI(K, G). 

This is the customary Pontrjagin-type duality between homology and co- 
homology. Thus we have established the naturality of this duality. 

29. Universal coefficient theorems. The theorems of this name express the 
cohomology groups of a complex, for an arbitrary coefficient group, in terms 
of the integral homology groups and the coefficient group itself. A quite gen- 
eral form of such theorems can be stated in terms of certain groups of group 
extensions(2"); hence we first show that the basic constructions of group ex- 
tensions may be regarded as functors. 

Let G be a topological abelian group and H a discrete abelian group. A 
factor set of H in G is a function f (h, k) which assigns to each pair h, k of ele- 
ments in H an element f(h, k) CG in such wise that 

(25) S. Eilenberg and S. MacLane, Group extensions and homology, Ann. of Math. vol. 43 
(1943) pp. 757-831. 
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f(h, k) = f(k, h), f(h, k) + f(h + k, 1) = f(h, k + 1) + f(k, 1), 

for all h, k, and I in H. With the natural addition and topology, the set of all 
factor sets f of H in G constitute a topological abelian group Fact (G, H). If 
'y: G1-*G2 and : H1->H2 are homomorphisms, we can define a corresponding 
mapping 

Fact (7y, qj) Fact (G1, H2) -* Fact (G2, H1) 

by setting 
[Fact ('y, q)f ](hi, ki) = yf(,qhi, qki) 

for each factor set f in Fact (G1, H2). Thus it appears that Fact is a functor, 
covariant on the category 05a of topological abelian groups and contravariant 
in the category (5Oa of discrete abelian groups. 

Given any function g(h) with values in G, the combination 

f(h, k) = g(h) + g(k) - g(h + k) 

is always a factor set; the factor sets of this special form are said to be trans- 
formation sets, and the set of all transformation sets is a subgroup Trans (G, H) 
of the group Fact (G, H). Furthermore, this subgroup is the object function of 
a subfunctor. The corresponding quotient functor 

Ext = Fact/Trans 

is thus covariant in 6,aS contravariant in (&, and has values in ($a. Its object 
function assigns to the groups G and H the group Ext (G, H) of the so-called 
abelian group extensions of G by II. 

Since Cq(K, G) = Hom (Cq (K), G) and since C (K, I) = I o Cq(K) = Cq(K) 
where I is the additive group of integers, we have 

Cq(K, G) = Hom (Cq(K, 1), G). 

We, therefore, may define a subgroup 

Aq(K, G) = Annih Zq(K, I) 

of Cq(K, G) consisting of all homomorphisms f such that f(zq)=O for 
zqCZq(K, I). Thus we get a subfunctor Aq of C, and one may show that 
the coboundary functor B q is a subfunctor of A q which, in turn, is a subfunctor 
of the cocycle functor Zq. Consequently, the quotient functor 

Qq = Aq/Bq 

is a subfunctor of the cohomology functor Hq, and we may consider the quo- 
tient functor Hq/Qq. The functors Qq and Hq/Qq have the following object 
functions 

Qq(K, G) = Aq(K, G)/Bq(K, G), 
(H q/Qq) (K, G) = Hq(K, G)/Qq(K, G) -Zq(K, G)/A (K, G). 
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The universal coefficient theorem now consists of these three assertions(26): 

(29.1) Qq(K, G) is a direct factor of Hq(K, G). 
(29.2) Qq(K, G) _ Ext (G, flq+l(K, I)). 

(29.3) Hq(K, G)/Qq(K, G) - Hom (flq(K, I), G). 

Both the isomorphisms (29.2) and (29.3) can be interpreted as equiva- 
lences of functors. The naturality of these equivalences with respect to K has 
been explicitly verified(27), while the naturality with respect to G can be veri- 
fied without difficulty. We have not been able to prove and we doubt that 
the functor Qq is a direct factor of the functor Hq (see ?18). 

30. Cech homology groups. We shall present now a treatment of the 
Cech homology theory in terms of functors. 

By a covering U of a topological space X we shall understand a finite 
collection: 

U = {A1, *** An} 
of open sets whose union is X. The sets Ai may appear with repetitions, and 
some of them may be empty. If U1 and U2 are two such coverings, we write 
Ui< U2 whenever U2 is a refinement of Ul, that is, whenever each set of the 
covering U2 is contained in some set of the covering Ul. With this definition 
the coverings U of X form a directed set which we denote by C(X). 

Let t: Xl- X2 be a continuous mapping of the space X, into the space X2. 
Given a covering 

U A {1, * A*,, An QX2)^ 

we define 
C(t)U = {U-1(A1), * * *, t-'(A,)} C C(X1) 

and we obtain an order preserving mapping 

C(t):C(X2)- C(X,). 

We verify that the functions C(X), C(t) define a contravariant functor C on 
the category X of topological spaces to the category Z of directed sets. 

Given a covering U of X we define, in the usual fashion, the nerve N(U) 
of U. N(U) is a finite simplicial complex; it will be treated, however, as an 
object of the category Kf of ?27. 

If two coverings U,< U2 of X are given, then we select for each set of the 
covering U2 a set of the covering U, containing it. This leads to a simplicial 
mapping of the complex N(U2) into the complex N(U1) and therefore gives 
a chain transformation 

(26) Loc. cit. p. 808. 
(27) Loc. cit. p. 815. 
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K:N(U2) -* N(Ul). 

This transformation K will be called a projection. The projection K is not de- 
fined uniquely by Ui and U2, but it is known that any two projections K, and 
K2 are chain homotopic and consequently the induced homomorphisms 

(30.1) Hq(K, eG) :Jq(N(U2), G) > Hq(N(Ul), G), 

(30.2) Hq(K, eG) Hq(N(Ul), G) Hq(N( U2), G) 

of the homology and cohomology groups do not depend upon the particular 
choice of the projection K. 

Given a topological group G we consider the collection of the homology 
groups Hq(N(U), G) for UCC(X). These groups together with the mappings 
(30.1) form an inverse system of groups defined on the directed set C(X). 
We denote this inverse system by Cq(X, G) and treat it as an object of the 
category 2nb (?23). 

Similarly, for a discrete G the cohomology groups Hq(N(U), G) together 
with the mappings (30.2) form a direct system of groups Cq(X, G) likewise 
defined on the directed set C(X). The system Cq(X, G) will be treated as an 
object of the category ?)tr. 

The functions Cq(X, G) and Cq(X, G) will be object functions of functors 
Cq and Cq In order to complete the definition we shall define the mapping 
functions 7qQ, 7y) and %(, -y) for given mappings 

t:X1 -X2, 7:G1 -G2. 

We have the order preserving mapping 

(30.3) C(): C(X2) -- C(X1) 

which with each covering 

U = {A1, * * A,,} E QX2) 

associates the covering 

V = C()= {u A1, *w t-,A4 C C(X1). 

Thus to each set of the covering V corresponds uniquely a set of the cover- 
ing U; this yields a simplicial mapping 

K: N(V) -N(U)f 

which leads to the homomorphisms 

(30.4) Hq(K, y) Hq(N(V), G1) Hq(N(U), G2), 

(30.5) Hq(K, y) Hq(N(U)e Gt ) sq(N(V)s, G2)n 

The mappings (30.3)-(30.5) define the transformations 
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Z7q(, ) :ZC(X1, G1) Z-Cq(X2, G2) in anD, 

Cq % 7) Cq(X2, G1) ZCq(Xi, G2) in Zir. 

Hence we see that Zq is a functor covariant in X and in R$a with values in 
anb while Zq is contravariant in X covariant in 5Oa and has values in Zir. 

The Cech homology and cohomology functors are now defined as 

Hq = Lim.. Cq Hq = Lim-. Cq. 

77q is covariant in X and R,a and has values in R,a, while ftq is contravariant 
in X, covariant in (5Oa, and has values in 5Oa. The object functions Hft(X, G) 
and iiq(X, G) are the Cech homology and cohomology groups of the space X 
with the group G as coefficients. 

31. Miscellaneous remarks. The process of setting up the various topo- 
logical invariants as functors will require the construction of many categories. 
For instance, if we wish to discuss the so-called relative homology theory, we 
shall need the category Xs whose objects are the pairs (X, A), where X is a 
topological space and A is a subset of X. A mapping 

t:(X, A) -* (Y, B) in Xs 

is a continuous mapping t: X-- Y such that t(A) CB. The category X may be 
regarded as the subcategory of Xs, determined by the pairs (X, A) with A = 0. 

Another subcategory of Xs is the category Xb defined by the pairs (X, A) 
in which the set A consists of a single point, called the base point. This cate- 
gory Xb would be used in a functorial treatment of the fundamental group and 
of the homotopy groups. 

APPENDIX. REPRESENTATIONS OF CATEGORIES 

The purpose of this appendix is to show that every category is isomorphic 
with a suitable subcategory of the category of sets S. 

Let 2I be any category. A covariant functor T on 2I with values in e will 
be called a representation of 21 in S. A representation T will be called faithful 
if for every two mappings, a1, a2E:f, we have T(ai) = T(a2) only if a,1= a2. 
This implies a similar proposition for the objects of WI. It is clear that a faith- 
ful representation is nothing but an isomorphic mapping of 2 onto some sub- 
category of S. 

If the functor T on 2I to e is contravariant, we shall say that T is a dual 
representation. T is then obviously a representation of the dual category 2*, 
as defined in ?13. 

Given a mapping a:A -*A2 in f, we shall denote the domain A1 of a by 
d(a) and the range A2 of a by r(a). In this fashion we have 

a: d (a - r (a). 
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Given an object A in 2I we shall denote by R(A) the set of all aCoX, such 
that A = r(c(). In symbols 

(I) R(A) = aI a | tE , r(a) = A} 

For every mapping a in a we define a mapping 

(II) R (ae): R (d (at)) R (r (a)) 

in the category e by setting 

(III) [R(at)]t= aet 

for every (ER(d(a)). This mapping is well defined because if tCR(d(a)), 
then r(Q) =d(a), so that ao is defined and r(ao) =r(a) which implies 
a tER(r(at)). 

THEOREM. For every category 2t the pair of functions R(A), R(a), defined 
above, establishes a faithful representation R of a in S. 

Proof. We first verify that R is a functor. If a = eA is an identity, then defi- 
nition (III) implies that [R(a)] = t, so that R(a) is the identity mapping of 
R(A) into itself. Thus R satisfies condition (3.1). Condition (3.2) has already 
been verified. In order to verify (3.3) let us consider the mappings 

a1:A1- A2, a2:A2 A3. 

We have for every tGR(Al), 

[R(a2al)]t = a2a1l = [R(a2)]al= [R(a2)R(a=)% 

so that R (a.a2) =R(aO2)R(al). This concludes the proof that R is a representa- 
tion. 

In order to show that R is faithful, let us consider two mappings.al, a2CW 

and let us assume that R(ai) =R(a2). It follows from (II) that R(d(al)) 
=R(d(a2)), and, therefore, according to (I), d(a,) = d(2). Consider the iden- 
tity mapping e=ed(a1)=ed(a2). Following (III), we have 

a,= ale= [R(al)]e = [R(a2)]e = a2e = a2, 

so that al = a2. This concludes the proof of the theorem. 
In a similar fashion we could define a faithful dual representation D of W 

by setting 
D(A) = a I a E f, d(a) =A} 

and 
[D(a)]t ta 

for every D (r (a)). 
The representations R and D are the analogues of the left and right regu- 

lar representations in group theory. 
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We shall conclude with some remarks concerning partial order in cate- 
gories. Most of the categories which we have considered have an intrinsic 
partial order. For instance, in the categories 5, X, and 65 the concepts of 
subset, subspace, and subgroup furnish a partial order. In view of (I), A1jA2 
implies that R(A1) and R(A2) are disjoint, so that the representation R de- 
stroys this order completely. The problem of getting "order preserving repre- 
sentations" would require probably a suitable formalization of the concept of 
a partially ordered category. 

As an illustration of the type of arguments which may be involved, let us 
consider the category 65 of discrete groups. With each group G we can associ- 
ate the set R1(G) which is the set of elements constituting the group G. With 
the obvious mapping function, R1 becomes a covariant functor on 6o to 5, 
that is, R1 is a representation of 60 in S. This representation is not faithflul, 
since the same set may carry two different group structures. The group struc- 
ture of G is entirely described by means of a ternary relation glg2=g. This 
ternary relation is nothing but a subset R2(G) of R1(G) XR(G) XR,(G). All 
of the axioms of group theory can be formulated in terms of the subset R2(G). 
Moreover a homomorphism 'y: G1-*G2 induces a mapping R2(y): R2(G1) 
-Ri(G2). Consequently R2 is a subfunctor of a suitably defined functor 
R, XR1 XRi. The two functors R1 and R2 together give a complete description 
of 65O, preserving the partial order. 
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