LICHTENBAUM-QUILLEN FOR TRUNCATED
BROWN-PETERSON SPECTRA

JOHN ROGNES

1. STATEMENTS OF RESULTS

Let p be any prime and n > 0 an integer. Recall from [BM13] that BP is a
retract of MU, in E4-rings. Following [HW22, Thm. A], let

R := BP(n)
be an E3-BP-algebra such that the composite ring homomorphism
Zpylv, .. vn] C BPy — Ry
is an isomorphism. Its mod p homology is
HR=AF|k>n+1)@F, & | k> 1] C o

(with the usual adjustments when p = 2). Let C,+ denote the subgroup of T of
order pk when 0 < k < oo, and T itself when k = oo.

The topological Hochschild homology spectrum THH(R) is a cyclotomic Eo-
T H H(BP)-algebra, with (p-)cyclotomic structure map

¢: THH(R) — THH(R)'“"
and canonical maps
can: THH(R)"» — THH(R)'“w*
for 0 < k < oo, all compatible with the (residual) T-actions. A Bokstedt spectral
sequence argument [AR05, Prop. 5.7] gives an isomorphism
H.THH(R) 2 H.R®F,[07+1] @ A(0&1,...,0&041)
of o7,.-comodule algebras. Hence

Lemma 1.1.
T (Fp @r THH(R)) = Fplpn+1] © A(A1, ..o, A1)

with Pnt1 00 degree 2p™ and A in degree 2pk — 1 detected by oTp11 — To - Ugnﬂ
and o€y, respectively.

Theorem 1.2 (Segal conjecture, [HW22, Thm. C, Thm. 4.0.1]). Let U be any
type > n + 1 finite p-local spectrum. The cyclotomic structure map U ® ¢ is trun-
cated, i.e., induces an isomorphism

U,p: UTHH(R) — U,THH(R)'°»
i all sufficiently large degrees x > 0.

Proposition 1.3 ([HW22, Prop. 6.2.1]). There is a finite p-local By -ring U with a
non-nilpotent central v, +1-element v € U, of degree |v| = (2p" ! — 2)e, such that
(1) v has Adams filtration e;
(2) U ® R splits as an R-module as a finite sum of suspensions of F;
(3) the homomorphism U.BP — U.R is surjective.
1
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Part (1) asks that v has maximal Adams filtration.

In Part (2) we may arrange that one of the summands of R — U® R ~ \/’ Y'F,
is the ring map R — F,. (Proof: Let U = F(X,X) with X ® R ~ \/_ X%F,.
Unit map from R to F(X, X)9 R~ Fr(X®@R, X®R) =V, 4 ydatds fp(F,, F,)
factors through 759 Fg(F,,F,) = F, of summands with a = §.)

Part (3) ensures that the Landweber filtration of U,BP = BP,U only has sus-
pensions of BP,/(p,...,v,) in its associated graded.

The following consequence of the Hopkins—Smith nilpotence theorem was ex-
plained to me by Jeremy Hahn.

Lemma 1.4. We may assume that the images of v € U, and vy € BP, imU,BP
are equal.

The cofiber U/v is a type n + 2 finite p-local spectrum.

Theorem 1.5 (Canonical vanishing, [HW22, Thm. D, Thm. 6.3.1]). There are U
and v as above, and an integer d, such that for each 0 < k < oo the canonical
homomorphism

(U/v)scan: (U/v), THH(R)"“»* -2 (U/v), THH(R)' >
is zero whenever x > d.

The Segal conjecture and canonical vanishing together imply cyclotomic bound-
edness.

Corollary 1.6 (Bounded TR, [HW22, Thm. G, Thm. 3.3.2(f)]). For each type n+2
finite p-local spectrum V', the graded abelian group V. TR(R) is bounded.

This conclusion is equivalent to saying that V ® THH(R) is bounded in the
cyclotomic ¢-structure, by [AN21, Thm. 9].
The relative topological Hochschild homology

THH(R/BP) = RQ®Rprgpprer R

is an Eo-BP-algebra with T-action, with homotopy fixed points TC~(R/BP) =
THH(R/BP)"T. Letting v, 11 be the lowest-degree generator of

(Un+1, Unt2,...) = ker(BP, — R,),
its suspension ov,4+1 € [Up41] is the lowest-degree generator of
ker(m. (R ®@pp R?) — R.),
and its double suspension 02v,, 41 € [ov,41] is the lowest-degree generator of
ker(m,THH(R/BP) — R.).

Theorem 1.7 (Polynomial THH, [HW22, Thm. E, Thm. 2.5.4]). There is an iso-
morphism of even R.-algebras

T THH(R/BP) = R.[yyi0%vp41 | i > 0],
with lowest-degree generator o?v,, 1 in degree 2p™+1.

Theorem 1.8 (Detection, [HW22, Thm. F, Thm. 5.0.1]). There is an isomorphism
of even R.-algebras

7. TC™ (R/BP) = m, THH(R/BP)|[t]]
with |t| = —2. The unit map 1: BP — TC~(R/BP) takes v, 41 tot-02v,41.
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The Es-ring maps
TC(R) -~ TC~(R) — TC~(R/BP)
lead to the following variant of [HW22, Thm. B|, where we may assume T'(n+1) =
v UL

Corollary 1.9. Multiplication by v acts non-nilpotently on U,TC~(R/BP), so
T(n+1),TC~(R/BP)#0 and T(n+ 1), TC(R) # 0.

2. PROOF OF SEGAL CONJECTURE FOR THH(R)
Proof of Theorem 1.2 (= Thm. C). By Proposition 1.3(2) it suffices to prove that
F, ®r ¢: THH(R)/(p,v1,...,vn) — THH(R)'?/(p,v1,...,v,)
is truncated. We exhaustively filter RQ by the sequence fil* R of spectra

G
fil"R = [g]irenA To>uw(Fp ® - @ F, ®R)

for (double-)weights w > 0, with associated graded gr*R given by the cofiber se-
quences

fil*"' R — iR — grR.
(In the words of [Pst23], we form the F,-synthetic analogue.) The filtration is
conditionally convergent, in the sense that lim,, fil R = 0. The associated spectral
sequence

&R —> W*R;\
has starting page equal to the classical Adams Es-page
ATRS™* = Exty, (Fp, H R) = Fy[vo, v1, - - ., vn)

with vy in (even) stem 2p* — 2 and weight w = 2p* — 1, and collapses at this stage.
Looping the inclusion i;: BU(1) — BU twice gives an Ey-map Q%iy: Z — 7 X
BU. For m € Z consider the composite

2.
Mt Zso =5 Z 28 7 x BU .

Here Z>¢ admits a CW Eg-space structure, with one Es-cell in each non-negative
even dimension. This can be deduced along the lines of [GKRW], as shown to me
by Oscar Randal-Williams. The associated Thom Es-ring

S[y2m] = Th(nm) = \/ s2m
Jj=0
inherits a CW Es-ring structure of the same kind, with bottom Es-cell the free Eo-
ring on S%™. We can view this as an Es-algebra S[y4.,] in graded spectra, placing
the summand S?™ in weight wj.

Proposition 2.1 ([HW22, Prop. 4.2.1]).
F, ® S[ag] ® S[a1] ® - - - ® S[an] — gr*R
as graded Eq-Fp,-algebras, with ap, = yi’;::; for0 <k <n.

Proof. The two sides have bigraded homotopy rings that are isomorphic and of
finite type. The left-hand side is a CW graded E,-F,-algebra, containing the free
algebra on SOV §2P=2\/ ...\ §2P" =2 35 a subcomplex, with remaining Ey-cells only
in even dimensions. We first send $%" 2 in weight 2p¥ — 1 within the bottom Eq-
cell of S[ag] to v, for each 0 < k < n. Since m.gr* R is even, there is no obstruction
to extending this over the remaining Es-cells. The resulting Eo-map is surjective
on m,, hence is an equivalence. 1
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Proposition 2.2 ([HW22, Prop. 4.2.2]). The graded cyclotomic structure map
@: gt*THH(R) — gr?*THH(R)!C"
induces the localization homomorphism

FP[,U’O, Vo, V1, - - - 71)11] ® A(UUOa OV, Uvn)
— FP[Matlav0’vla v avn] ® A(O—U()vavla s ,J’Un)
in homotopy. Here |uo| = 2 in weight 0, while ovy, has degree and weight 2p* — 1.

Corollary 2.3.

Fp ®ueer 02 gt THH(R)/(vo, v1, - - - ,vn) — gt?* THH(R)'®" / (v, v1, . .., vn)

induces
F,[110] © Alovg, ovr, ..., 0v,) — Fplud'] @ A(ovg, ovy,. .., 00,),
which is truncated.

It follows that F,, ® g ¢ is also truncated, proving Theorem 1.2 (= Thm. C). O
Proof of Proposition 2.2. The convolution product of filtrations gives a condition-
ally convergent filtration fil*TH H (R), with associated graded cyclotomic E;-ring

gr*THH(R) ~ THH(gr*R)
~THH(F, ® Slag] ® - - ® Sla,])
~THH(F,) ® THH(S[ao]) ® --- @ THH (S[ay]) .
By [HM97], ¢ for F,, induces the localization homomorphism
m THH(Fy) 2= Fyuo] — Fyluy'] = m. THH(F,)"",

with |uo| = 2, all in weight 0.
We claim that ¢ for each S[ay] is a p-equivalence. A collapsing Bokstedt spectral
sequence shows that

as a bigraded F,-algebra, with oy3,, in degree 2m + 1 and weight w. Moreover, as
in [Rog09], the cyclic bar construction on Z>q decomposes as

BY(Zso) ~ {0} U [ T/C;,
3>0

which Thomifies to a splitting

THH(S[YE,)) ~ SV \/ T4 Ac, (§2™)%

§>0

with the j-th summand in weight wj. Here C; acts by cyclic permutations on
(52m)®7, and T4 Ag, (S*™)%7 is a finite Cp-spectrum. The graded cyclotomic
structure map

p: THH (Slys,,]) — THH (S[y3,])"
multiplies weights by p. It is the sum of ¢°: S — S*“» and

P Ty Ay (8P — (T4 Ac,, (S2)2H9)1Cr

for j > 0, all of which are p-equivalences by the classical Segal conjecture (proved
by Lin and Gunawardena in these cases). The remaining target terms

(T+ A, (52m)®F)fr,

with p t k, are all trivial, since C), acts freely.
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It follows that
THH(F,) ® THH(S[ao)) ® - - © THH (S[ay))
PELELEY P I (F,)Cr @ THH (S[ag))!®r ® - - ® THH (S[an])'C>
2 (THH(F,) ® THH (S[ag)) ® - - - ® THH(S[ay])) "

induces the asserted localization homomorphism in homotopy. (The Cp-equivariant
finiteness of each T, A¢, (S*™)®7 ensures that the Cp-Tate lax structure map A is
an equivalence.) O

3. PROOF OF CANONICAL VANISHING FOR T'HH(R)
Proof of Theorem 1.5 (= Thm. D). Contemplate
U U®BP BP
U®TC (R) —— U®TC (R/BP)+——TC (R/BP)
F F lF

U® THH(R) —*— U ® THH(R/BP) +—— THH(R/BP)

F, ®x THH(R) —— F, ® s THH(R/BP)

in homotopy. Maps to the right are induced by S — BP. Maps to the left are
induced by S — U. The maps F: TC~ — THH forget T-invariance. The lower
maps are induced by the R-algebra maps R = F, -+ U ® R.

The classes v € U, and U1 € BP, have the same image in U, BP, by Lemma 1.4.

The T-homotopy fixed point spectral sequence for w,TC~(R/BP) collapses at
the Es-page, by the evenness in Theorem 1.7 (= Thm. E), and ¢(vp41) is de-
tected by t - 0%v,11, in filtration 2. (Proof: By Adams spectral sequence for
F(Si,THH(R/BP))T as in [AR02, Prop. 4.8], or by [HW22, Lem. A.4.1].)

The T-homotopy fixed point spectral sequence for U, TC~(R/BP) collapses at
the Eo-page, by [HW22, Lem. 6.3.4], using Proposition 1.3(3), so ¢(v5; ;) and ¢(v) €
U, TC~(R) map to a class detected by t° - (6%v,.41)¢, in filtration 2e.

Since U @ THH(R) is a U ® R-module, it is also an Fp-module. Hence the
associated graded of the T-homotopy fixed point filtration of U @ TC'~ (R) consists
of F,-modules, and is trivial in odd gradings. The Adams filtration of v is e, so ¢(v)
must be detected in filtration > 2e in the T-homotopy fixed point spectral sequence
for U,TC~(R).

Combining the last two paragraphs, we see that +(v) must be detected by the
E-class of an infinite cycle t¢ - z, for some z € U, THH(R) that maps by the
homomorphism labeled « to (0%v,11)¢ € U.THH(R/BP).

Recalling Lemma 1.1, the bottom horizontal arrow induces

Fp[ﬂn+1] X A()\l, ey )\n+1) — Fp[’)/piﬂzvn+1 | 7 Z 0]

with MHpt1 — O-Q’UnJrl.

Hence pé_, € U, THH(R) is also a class that maps by a to (6%v,11)¢. By [HW22,
Prop. 6.1.1] (see below) the kernel of « is nilpotent. It follows that by replacing v
with some power of itself we may arrange that z = g, ;. Then ¢(v) is detected by
£ -

Sin::_e U®THH(R) ~ (U® R)®r THH(R) is a finite sum of suspensions of
F, @ THH(R), it follows that U, THH(R) is finitely generated and free as a
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Fp[tins1]-module, hence also as a F,[uf  ]-module. Thus the Cpr-Tate spectral
sequence Fs-page

By = H*(Cpr,U.THH(R)) = U, THH(R)"“+*
is finitely generated and free over Fp,[t1, i8] = Fp[t*1,¢¢-p¢ ], uniformly in 0 <
k < o0.

Tate

e vt g

t Ty

1 T stem

¢! t g
Multiplication by v defines a filtration-shifting self-map, and passing to cofibers
gives a (hastened) C,x-Tate spectral sequence

By = H*(Cpr,UTHH(R))/(t° - 1) = (U/v). THH(R)"»*
with an Ep-page that is finitely generated and free over F,[t*!]. Here ¢ has (stem,
filtration) equal to (—2,2), so in all sufficiently large stems % > d the hastened
Cpr-Tate Ez-page (and E.-page) is concentrated in negative filtrations.
On the other hand, the (hastened) C,x-homotopy fixed point spectral sequence
Ey = H*(Cpr, U THH(R))/(t* - & 1) = (U/v). THH(R)"“*

is concentrated in non-negative filtrations, so the canonical map must induce the
zero homomorphism (U/v).can = 0 in stems % > d. O

Proposition 3.1 ([HW22, Prop. 6.1.1]). For any type n + 1 finite p-local spec-
trum U, the descent spectral sequence computing U THH(R) by descent along
THH(R) — THH(R/BP) collapses at a finite E.-page, with a horizontal van-
ishing line. Hence, if U is an Ei-ring, the kernel of

a: U, THH(R) — U, THH(R/BP)
is nilpotent.

Using [HPS99] and a thick subcategory argument in R-modules, this follows from
the next result.

Proposition 3.2 ([HW22, Prop. 6.1.6]). The descent spectral sequence for
F,®r THH(R) — F, @ THH(R/BP)
collapses at the Fo-page, with A\ in filtration 1 for each 1 < k <n+ 1, and piy11

mapping to o2v, 1 in filtration 0.

The proof involves recognizing the descent E4-term as the cobar complex of a
flat Hopf algebroid, and showing that the Es-term is of finite type and of the same
size as the known abutment.
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4. PROOF OF POLYNOMIAL THH FOR R

Proof of Theorem 1.7 (= Thm. E). Recall that
THH(R/BP) = R®Rggyprer R.
The bar spectral sequence
Tor®?P(R,,R%) = R, @ A(owy, | k> n+1)
= m.(R®pp RP)
collapses. The bar spectral sequence
Tor™E@erE) (R R.) = R, @ [(cvy, | k> n+1)
= m,THH(R/BP)
also collapses, but has multiplicative extensions
(Vi 020k )P = Vi 020k 41
for £ > n + 1, so that
T THH(R/BP) = R.[yyi0%vn41 | i > 0].

These multiplicative extensions are established using naturality along R — F,, and
the calculation of Dyer—-Lashof operations in 7 due to (Kristensen and) Stein-
berger. O
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