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1. Statements of results

Let p be any prime and n ≥ 0 an integer. Recall from [BM13] that BP is a
retract of MU(p) in E4-rings. Following [HW22, Thm. A], let

R := BP 〈n〉

be an E3-BP -algebra such that the composite ring homomorphism

Z(p)[v1, . . . , vn] ⊂ BP∗ → R∗

is an isomorphism. Its mod p homology is

H∗R = Λ(τ̄k | k ≥ n+ 1)⊗ Fp[ξ̄k | k ≥ 1] ⊂ A∗

(with the usual adjustments when p = 2). Let Cpk denote the subgroup of T of

order pk when 0 ≤ k <∞, and T itself when k =∞.
The topological Hochschild homology spectrum THH(R) is a cyclotomic E2-

THH(BP )-algebra, with (p-)cyclotomic structure map

ϕ : THH(R) −→ THH(R)tCp ,

and canonical maps

can: THH(R)hCpk −→ THH(R)tCpk

for 0 ≤ k ≤ ∞, all compatible with the (residual) T-actions. A Bökstedt spectral
sequence argument [AR05, Prop. 5.7] gives an isomorphism

H∗THH(R) ∼= H∗R⊗ Fp[στ̄n+1]⊗ Λ(σξ̄1, . . . , σξ̄n+1)

of A∗-comodule algebras. Hence

Lemma 1.1.

π∗(Fp ⊗R THH(R)) ∼= Fp[µn+1]⊗ Λ(λ1, . . . , λn+1)

with µn+1 in degree 2pn and λk in degree 2pk − 1 detected by στ̄n+1 − τ̄0 · σξ̄n+1

and σξ̄k, respectively.

Theorem 1.2 (Segal conjecture, [HW22, Thm. C, Thm. 4.0.1]). Let U be any
type ≥ n+ 1 finite p-local spectrum. The cyclotomic structure map U ⊗ ϕ is trun-
cated, i.e., induces an isomorphism

U∗ϕ : U∗THH(R)
∼=−→ U∗THH(R)tCp

in all sufficiently large degrees ∗ � 0.

Proposition 1.3 ([HW22, Prop. 6.2.1]). There is a finite p-local E1-ring U with a
non-nilpotent central vn+1-element v ∈ U∗ of degree |v| = (2pn+1 − 2)e, such that

(1) v has Adams filtration e;
(2) U ⊗R splits as an R-module as a finite sum of suspensions of Fp;
(3) the homomorphism U∗BP → U∗R is surjective.
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Part (1) asks that v has maximal Adams filtration.

In Part (2) we may arrange that one of the summands of R→ U ⊗R '
∨?

Σ?Fp
is the ring map R → Fp. (Proof: Let U = F (X,X) with X ⊗ R '

∨
α ΣdαFp.

Unit map from R to F (X,X)⊗R ' FR(X⊗R,X⊗R) '
∨
α,β Σ−dα+dβFR(Fp,Fp)

factors through τ≥0FR(Fp,Fp) = Fp of summands with α = β.)
Part (3) ensures that the Landweber filtration of U∗BP ∼= BP∗U only has sus-

pensions of BP∗/(p, . . . , vn) in its associated graded.
The following consequence of the Hopkins–Smith nilpotence theorem was ex-

plained to me by Jeremy Hahn.

Lemma 1.4. We may assume that the images of v ∈ U∗ and ven+1 ∈ BP∗ in U∗BP
are equal.

The cofiber U/v is a type n+ 2 finite p-local spectrum.

Theorem 1.5 (Canonical vanishing, [HW22, Thm. D, Thm. 6.3.1]). There are U
and v as above, and an integer d, such that for each 0 ≤ k ≤ ∞ the canonical
homomorphism

(U/v)∗can: (U/v)∗THH(R)hCpk
0−→ (U/v)∗THH(R)tCpk

is zero whenever ∗ ≥ d.

The Segal conjecture and canonical vanishing together imply cyclotomic bound-
edness.

Corollary 1.6 (Bounded TR, [HW22, Thm. G, Thm. 3.3.2(f)]). For each type n+2
finite p-local spectrum V , the graded abelian group V∗TR(R) is bounded.

This conclusion is equivalent to saying that V ⊗ THH(R) is bounded in the
cyclotomic t-structure, by [AN21, Thm. 9].

The relative topological Hochschild homology

THH(R/BP ) = R⊗R⊗BPRop R

is an E2-BP -algebra with T-action, with homotopy fixed points TC−(R/BP ) =
THH(R/BP )hT. Letting vn+1 be the lowest-degree generator of

(vn+1, vn+2, . . . ) = ker(BP∗ → R∗) ,

its suspension σvn+1 ∈ [vn+1] is the lowest-degree generator of

ker(π∗(R⊗BP Rop)→ R∗) ,

and its double suspension σ2vn+1 ∈ [σvn+1] is the lowest-degree generator of

ker(π∗THH(R/BP )→ R∗) .

Theorem 1.7 (Polynomial THH, [HW22, Thm. E, Thm. 2.5.4]). There is an iso-
morphism of even R∗-algebras

π∗THH(R/BP ) ∼= R∗[γpiσ
2vn+1 | i ≥ 0] ,

with lowest-degree generator σ2vn+1 in degree 2pn+1.

Theorem 1.8 (Detection, [HW22, Thm. F, Thm. 5.0.1]). There is an isomorphism
of even R∗-algebras

π∗TC
−(R/BP ) ∼= π∗THH(R/BP ) [[t]]

with |t| = −2. The unit map ι : BP → TC−(R/BP ) takes vn+1 to t · σ2vn+1.
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The E2-ring maps

TC(R)
π−→ TC−(R) −→ TC−(R/BP )

lead to the following variant of [HW22, Thm. B], where we may assume T (n+ 1) =
v−1U .

Corollary 1.9. Multiplication by v acts non-nilpotently on U∗TC
−(R/BP ), so

T (n+ 1)∗TC
−(R/BP ) 6= 0 and T (n+ 1)∗TC(R) 6= 0.

2. Proof of Segal conjecture for THH(R)

Proof of Theorem 1.2 (= Thm. C). By Proposition 1.3(2) it suffices to prove that

Fp ⊗R ϕ : THH(R)/(p, v1, . . . , vn) −→ THH(R)tCp/(p, v1, . . . , vn)

is truncated. We exhaustively filter R∧p by the sequence fil?R of spectra

filwR = lim
[q]∈∆

τ≥w(

1+q︷ ︸︸ ︷
Fp ⊗ · · · ⊗ Fp⊗R)

for (double-)weights w ≥ 0, with associated graded gr∗R given by the cofiber se-
quences

filw+1R −→ filwR −→ grwR .

(In the words of [Pst23], we form the Fp-synthetic analogue.) The filtration is
conditionally convergent, in the sense that limw filwR = 0. The associated spectral
sequence

π∗gr∗R =⇒ π∗R
∧
p

has starting page equal to the classical Adams E2-page
AdE∗,∗2 = ExtA∗(Fp, H∗R) ∼= Fp[v0, v1, . . . , vn] ,

with vk in (even) stem 2pk − 2 and weight w = 2pk − 1, and collapses at this stage.
Looping the inclusion i1 : BU(1) → BU twice gives an E2-map Ω2i1 : Z → Z ×

BU . For m ∈ Z consider the composite

ηm : Z≥0
m·−→ Z Ω2i1−→ Z×BU .

Here Z≥0 admits a CW E2-space structure, with one E2-cell in each non-negative
even dimension. This can be deduced along the lines of [GKRW], as shown to me
by Oscar Randal-Williams. The associated Thom E2-ring

S[y2m] := Th(ηm) '
∨
j≥0

S2mj

inherits a CW E2-ring structure of the same kind, with bottom E2-cell the free E2-
ring on S2m. We can view this as an E2-algebra S[yw2m] in graded spectra, placing
the summand S2mj in weight wj.

Proposition 2.1 ([HW22, Prop. 4.2.1]).

Fp ⊗ S[a0]⊗ S[a1]⊗ · · · ⊗ S[an]
'−→ gr∗R

as graded E2-Fp-algebras, with ak = y2pk−1
2pk−2

for 0 ≤ k ≤ n.

Proof. The two sides have bigraded homotopy rings that are isomorphic and of
finite type. The left-hand side is a CW graded E2-Fp-algebra, containing the free

algebra on S0 ∨S2p−2 ∨ · · · ∨S2pn−2 as a subcomplex, with remaining E2-cells only

in even dimensions. We first send S2pk−2 in weight 2pk − 1 within the bottom E2-
cell of S[ak] to vk, for each 0 ≤ k ≤ n. Since π∗gr∗R is even, there is no obstruction
to extending this over the remaining E2-cells. The resulting E2-map is surjective
on π∗, hence is an equivalence. �
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Proposition 2.2 ([HW22, Prop. 4.2.2]). The graded cyclotomic structure map

ϕ : gr∗THH(R) −→ grp∗THH(R)tCp

induces the localization homomorphism

Fp[µ0, v0, v1, . . . , vn]⊗ Λ(σv0, σv1, . . . , σvn)

−→ Fp[µ±1
0 , v0, v1, . . . , vn]⊗ Λ(σv0, σv1, . . . , σvn)

in homotopy. Here |µ0| = 2 in weight 0, while σvk has degree and weight 2pk − 1.

Corollary 2.3.

Fp ⊗gr∗R ϕ : gr∗THH(R)/(v0, v1, . . . , vn) −→ grp∗THH(R)tCp/(v0, v1, . . . , vn)

induces

Fp[µ0]⊗ Λ(σv0, σv1, . . . , σvn) −→ Fp[µ±1
0 ]⊗ Λ(σv0, σv1, . . . , σvn) ,

which is truncated.

It follows that Fp⊗R ϕ is also truncated, proving Theorem 1.2 (= Thm. C). �

Proof of Proposition 2.2. The convolution product of filtrations gives a condition-
ally convergent filtration fil?THH(R), with associated graded cyclotomic E1-ring

gr∗THH(R) ' THH(gr∗R)

' THH(Fp ⊗ S[a0]⊗ · · · ⊗ S[an])

' THH(Fp)⊗ THH(S[a0])⊗ · · · ⊗ THH(S[an]) .

By [HM97], ϕ for Fp induces the localization homomorphism

π∗THH(Fp) ∼= Fp[µ0] −→ Fp[µ±1
0 ] ∼= π∗THH(Fp)tCp ,

with |µ0| = 2, all in weight 0.
We claim that ϕ for each S[ak] is a p-equivalence. A collapsing Bökstedt spectral

sequence shows that

H∗THH(S[yw2m]) ∼= HH∗(Fp[yw2m]) ∼= Fp[yw2m]⊗ Λ(σyw2m)

as a bigraded Fp-algebra, with σyw2m in degree 2m+ 1 and weight w. Moreover, as
in [Rog09], the cyclic bar construction on Z≥0 decomposes as

Bcy(Z≥0) ' {0} t
∐
j>0

T/Cj ,

which Thomifies to a splitting

THH(S[yw2m]) ' S ∨
∨
j>0

T+ ∧Cj (S2m)⊗j

with the j-th summand in weight wj. Here Cj acts by cyclic permutations on
(S2m)⊗j , and T+ ∧Cj (S2m)⊗j is a finite Cp-spectrum. The graded cyclotomic
structure map

ϕ : THH(S[yw2m]) −→ THH(S[yw2m])tCp

multiplies weights by p. It is the sum of ϕ0 : S→ StCp and

ϕwj : T+ ∧Cj (S2m)⊗j −→ (T+ ∧Cpj (S2m)⊗pj)tCp

for j > 0, all of which are p-equivalences by the classical Segal conjecture (proved
by Lin and Gunawardena in these cases). The remaining target terms

(T+ ∧Ck (S2m)⊗k)tCp ,

with p - k, are all trivial, since Cp acts freely.
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It follows that

THH(Fp)⊗ THH(S[a0])⊗ · · · ⊗ THH(S[an])

ϕ⊗ϕ⊗···⊗ϕ−→ THH(Fp)tCp ⊗ THH(S[a0])tCp ⊗ · · · ⊗ THH(S[an])tCp

λ−→ (THH(Fp)⊗ THH(S[a0])⊗ · · · ⊗ THH(S[an]))tCp

induces the asserted localization homomorphism in homotopy. (The Cp-equivariant
finiteness of each T+ ∧Cj (S2m)⊗j ensures that the Cp-Tate lax structure map λ is
an equivalence.) �

3. Proof of canonical vanishing for THH(R)

Proof of Theorem 1.5 (= Thm. D). Contemplate

U //

ι

��

U ⊗BP
ι

��

BPoo

ι

��

U ⊗ TC−(R) //

F
��

U ⊗ TC−(R/BP )

F
��

TC−(R/BP )oo

F
��

U ⊗ THH(R)
α // U ⊗ THH(R/BP ) THH(R/BP )oo

uu

Fp ⊗R THH(R)

OO

// Fp ⊗R THH(R/BP )

OO

in homotopy. Maps to the right are induced by S → BP . Maps to the left are
induced by S → U . The maps F : TC− → THH forget T-invariance. The lower
maps are induced by the R-algebra maps R→ Fp → U ⊗R.

The classes v ∈ U∗ and ven+1 ∈ BP∗ have the same image in U∗BP , by Lemma 1.4.
The T-homotopy fixed point spectral sequence for π∗TC

−(R/BP ) collapses at
the E2-page, by the evenness in Theorem 1.7 (= Thm. E), and ι(vn+1) is de-
tected by t · σ2vn+1, in filtration 2. (Proof: By Adams spectral sequence for
F (S3

+, THH(R/BP ))T as in [AR02, Prop. 4.8], or by [HW22, Lem. A.4.1].)
The T-homotopy fixed point spectral sequence for U∗TC

−(R/BP ) collapses at
the E2-page, by [HW22, Lem. 6.3.4], using Proposition 1.3(3), so ι(ven+1) and ι(v) ∈
U∗TC

−(R) map to a class detected by te · (σ2vn+1)e, in filtration 2e.
Since U ⊗ THH(R) is a U ⊗ R-module, it is also an Fp-module. Hence the

associated graded of the T-homotopy fixed point filtration of U ⊗TC−(R) consists
of Fp-modules, and is trivial in odd gradings. The Adams filtration of v is e, so ι(v)
must be detected in filtration ≥ 2e in the T-homotopy fixed point spectral sequence
for U∗TC

−(R).
Combining the last two paragraphs, we see that ι(v) must be detected by the

E∞-class of an infinite cycle te · z, for some z ∈ U∗THH(R) that maps by the
homomorphism labeled α to (σ2vn+1)e ∈ U∗THH(R/BP ).

Recalling Lemma 1.1, the bottom horizontal arrow induces

Fp[µn+1]⊗ Λ(λ1, . . . , λn+1) −→ Fp[γpiσ2vn+1 | i ≥ 0]

with µn+1 7→ σ2vn+1.
Hence µen+1 ∈ U∗THH(R) is also a class that maps by α to (σ2vn+1)e. By [HW22,

Prop. 6.1.1] (see below) the kernel of α is nilpotent. It follows that by replacing v
with some power of itself we may arrange that z = µen+1. Then ι(v) is detected by
te · µen+1.

Since U ⊗ THH(R) ' (U ⊗ R) ⊗R THH(R) is a finite sum of suspensions of
Fp ⊗R THH(R), it follows that U∗THH(R) is finitely generated and free as a
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Fp[µn+1]-module, hence also as a Fp[µen+1]-module. Thus the Cpk -Tate spectral
sequence E2-page

Ê2 = Ĥ∗(Cpk , U∗THH(R)) =⇒ U∗THH(R)tCpk

is finitely generated and free over Fp[t±1, µen+1] = Fp[t±1, te ·µen+1], uniformly in 0 ≤
k ≤ ∞.

Tate

te v 7→ teµen+1

t tµen+1

1

OO

µen+1
// stem

t−1 t−1µen+1

Multiplication by v defines a filtration-shifting self-map, and passing to cofibers
gives a (hastened) Cpk -Tate spectral sequence

Ê2 = Ĥ∗(Cpk , U∗THH(R))/(te · µen+1) =⇒ (U/v)∗THH(R)tCpk

with an E2-page that is finitely generated and free over Fp[t±1]. Here t has (stem,
filtration) equal to (−2, 2), so in all sufficiently large stems ∗ ≥ d the hastened
Cpk -Tate E2-page (and E∞-page) is concentrated in negative filtrations.

On the other hand, the (hastened) Cpk -homotopy fixed point spectral sequence

E2 = H∗(Cpk , U∗THH(R))/(te · µen+1) =⇒ (U/v)∗THH(R)hCpk

is concentrated in non-negative filtrations, so the canonical map must induce the
zero homomorphism (U/v)∗can = 0 in stems ∗ ≥ d. �

Proposition 3.1 ([HW22, Prop. 6.1.1]). For any type n + 1 finite p-local spec-
trum U , the descent spectral sequence computing U∗THH(R) by descent along
THH(R) → THH(R/BP ) collapses at a finite Er-page, with a horizontal van-
ishing line. Hence, if U is an E1-ring, the kernel of

α : U∗THH(R) −→ U∗THH(R/BP )

is nilpotent.

Using [HPS99] and a thick subcategory argument in R-modules, this follows from
the next result.

Proposition 3.2 ([HW22, Prop. 6.1.6]). The descent spectral sequence for

Fp ⊗R THH(R) −→ Fp ⊗R THH(R/BP )

collapses at the E2-page, with λk in filtration 1 for each 1 ≤ k ≤ n + 1, and µn+1

mapping to σ2vn+1 in filtration 0.

The proof involves recognizing the descent E1-term as the cobar complex of a
flat Hopf algebroid, and showing that the E2-term is of finite type and of the same
size as the known abutment.
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4. Proof of polynomial THH for R

Proof of Theorem 1.7 (= Thm. E). Recall that

THH(R/BP ) = R⊗R⊗BPRop R .
The bar spectral sequence

TorBP∗(R∗, R
op
∗ ) = R∗ ⊗ Λ(σvk | k ≥ n+ 1)

=⇒ π∗(R⊗BP Rop)
collapses. The bar spectral sequence

Torπ∗(R⊗BPRop)(R∗, R∗) = R∗ ⊗ Γ(σ2vk | k ≥ n+ 1)

=⇒ π∗THH(R/BP )

also collapses, but has multiplicative extensions

(γpiσ
2vk)p ≡ γpiσ2vk+1

for k ≥ n+ 1, so that

π∗THH(R/BP ) ∼= R∗[γpiσ
2vn+1 | i ≥ 0] .

These multiplicative extensions are established using naturality along R→ Fp and
the calculation of Dyer–Lashof operations in A∗ due to (Kristensen and) Stein-
berger. �
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