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(Note: this is a draft, which can change daily. It includes some unorganized material which might
later be incorporated into the narrative, or removed entirely. In particular, everything involving
Cartesian and coCartesian fibrations needs to be completely reworked.)

1. Introduction to ∞-categories

I’ll give a brief discussion to motivate the notion of ∞-categories.

1.1. Groupoids. Modern mathematics is based on sets. The most basic way of constructing new
sets is as sets solutions to equations. For instance, given a commutative ring R, we can consider the
set X(R) of tuples (x, y, z) ∈ R3 which satisfy the equation x5 + y5 = z5. We can express such sets
as limits; for instance, X(R) is the pullback of the diagram of sets

R×R (x,y)7→x5+y5

−−−−−−−−→ R
z5←[z←−−− R.

Another way to construct new sets is by taking “quotients”; e.g., as sets of equivalence classes of
an equivalence relation. This is in some sense much more subtle than sets of solutions to equations:
mathematicians did not routinely construct sets this way until they were comfortable with the set
theoretic formalism introduced by the end of the 19th century.

Some sets of equivalence classes are nothing more than that; but some have “higher” structure
standing behind them, which is often encoded in the form of a groupoid1. Here are some examples.

• Given a topological space X, we can define an equivalence relation on the set of points, so
x ∼ x′ if and only if there is a continuous path connecting them. The set of equivalence
classes is the set π0X of path components. Standing behind this equivalence relation is
the fundamental groupoid Π1X, whose objects are points of X, and whose morphisms are
path-homotopy classes of paths between two points.
• Given any category C, there is an equivalence relation on the collection of objects, so

that X ∼ Y if there exists an isomorphism between them. Equivalence classes are the
isomorphism classes of objects. Standing behind this equivalence relation is the core of C
(also called the maximal subgroupoid), which is a groupoid having the same objects as C,
but having as morphisms only the isomorphisms in C.
• As a special case of the above, let C = VectF be the category of finite dimensional vector

spaces and linear maps over some field F . Then isomoprhism classes of objects correspond
to non-negative integers, via the notion of dimension. The core Vectcore

F is a groupoid whose
objects are finite dimensional vectors spaces, and whose morphisms are invertible linear
maps.

Note that many interesting problems are about describing isomorphism classes; e.g., classifying
finite groups of a given order, or principal G-bundles on a space. In practice, one learns that when
you try to classify some type of objects up to isomorphism, you will need to have a good handle on
the isomorphisms between such objects, including the groups of automorphisms of such objects. So
you will likely need to know about the groupoid, even if it is not the primary object of interest.

For instance, a problem such as: “describe the groupoid BunG(M) of principal G-bundles on a
space M” is a more sophisticated analogue of: “find the set X(R) of solutions to x5 + y5 = z5 in
the ring R”. (In fact, the theory of “moduli stacks” exactly develops this analogy between the two
problems.) To do this, you can imagine having a “groupoid-based mathematics”, generalizing the
usual set-based one. Here are some observations about this.

• We regard two sets as “essentially the same” if they are isomorphic, i.e., if there is a bijection
f : X → X ′ between them. Any such bijection has a unique inverse bijection f−1 : X ′ → X.

On the other hand, we regard two categories as “essentially the same” if they are merely
equivalent, i.e., if there is a functor f : C → C ′ which admits an inverse up to natural

1I assume familiarity with basic categorical concepts, such as in Chapter 1 of [Rie16].
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isomorphism. It is not the case that such an inverse up to natural isomorphism is itself
unique. These same remarks apply in particular to equivalences of groupoids.

Although any equivalence of categories admits some kind of inverse, the failure to be
unique leads to complications. For example, one goal of every course in abstract linear
algebra is to demonstrate and exploit an equivalence of categories

f : MatF → VectF .

Here MatF is the matrix category, whose objects are non-negative integers, and whose
morphisms n → m are m × n-matrices with entries in F . The functor f is defined by an
explicit construction; e.g., it sends the object n to the vector space Fn. However, there is no
completely “natural” way to construct an inverse functor f−1 : VectF → MatF : producing
such an inverse functor requires making an arbitrary choice, for each abstract vector space
V , of a basis for V .
• We can consider “solutions to equations” in groupoids (e.g., limits). However, the naive

construction of limits of groupoids may not preserve equivalences of groupoids; thus, we
need to consider “weak” or “homotopy” limits.

For example, suppose M is a space which is a union of two open sets U and V . The weak
pullback of

BunG(U)→ BunG(U ∩ V )← BunG(V )

is a groupoid, whose objects are triples (P,Q, α), where P → U and Q→ U are G-bundles,

and α : P |U∩V
∼−→ Q|U∩V is an isomorphism of G-bundles over U ∩ V ; the morphisms

(P,Q, α) → (P ′, Q′, α′) are pairs (f : P → P ′, g : Q → Q′) are pairs of bundle maps which
are compatible over U∩V with the isomorphisms α, α′. Compare this with the strict pullback,
which consists of (P,Q) such that P |U∩V = Q|U∩V as bundles; in particular, P |U∩V and
Q|U∩V must be the identical sets.

A basic result about bundles is that BunG(M) is equivalent to this weak pullback. The
strict limit may fail to be equivalent to this; in fact, it is impossible to describe the strict
pullback without knowing precisely what definition of G-bundle we are using, whereas the
identification of weak pullback is insensitive to the precise definition of G-bundle. (The
point being, there can exist many non-identical “precise definitions of G-bundle”, because
what we really care about in the end is understanding BunG(M) up to equivalence, rather
than up to isomorphism.)

These kinds of issues persist when dealing with higher groupoids and categories.

1.2. Higher groupoids. There is a category Gpd of groupoids, whose objects are groupoids and
whose morphisms are functors. However, there is even more structure here; there are natural
transformations between functors f, f ′ : G→ G′ of groupoids. That is, Fun(G,G′) forms not merely
a set, but a category. We can consider the collection consisting of (0) groupoids, (1) equivalences
between groupoids, and (2) natural isomorphisms between equivalences; this is an example of a
2-groupoid2. There is no reason to stop at 2-groupoids: there are n-groupoids, the totality of which
are an example of an (n+ 1)-groupoid. (In this hierarchy, 0-groupoids are sets, and 1-groupoids are
groupoids.) We might as well take the limit, and consider ∞-groupoids.

It turns out to be difficult (though not impossible) to construct an “algebraic” definition of
n-groupoid. The approach which in seems to work best in practice is to use homotopy theory.
We start with the observation that every groupoid G has a classifying space BG. This is defined

2More precisely, a “quasistrict 2-groupoid”.
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explicitly as a quotient space

G 7→ BG :=

 ∐
x0

f1−→x1

f2−→··· fn−→xn

∆n

 / ∼,

where we glue in a topological n-simplex ∆n for each n-fold sequence of composable arrows in
G, modulo certain identifications. It turns out (i) the fundamental groupoid of BG is equivalent
to G, and (ii) the higher homotopy groups πk of BG are trivial, for k ≥ 2. A space like this is
called a 1-type. Furthermore, (iii) there is a bijection between equivalence classes of groupoids up to
equivalence and CW-complexes which are 1-types, up to homotopy equivalence. (More is true, but
I’ll stop there for now.)

The conclusion is that groupoids and equivalences between them are modelled by 1-types and
homotopy equivalences between them. This suggests that we should define n-groupoids as n-types
(CW complexes with trivial homotopy groups in dimensions > n), with equivalences being homotopy
equivalences. Removing the restriction on homotopy groups leads to modelling ∞-groupoids by
CW-complexes up to homotopy equivalence.

There is a different approach, which we will follow. It uses the fact that the classiyfing space
construction factors through a “combinatorial” construction, called the “nerve”. That is, we have

(G ∈ Gpd) 7→ (NG ∈ sSet) 7→ (|NG| = BG ∈ Top),

where NG is the nerve of the groupoid, and is an example of a simplicial set ; |X| denotes the
geometric realization of a simplicial set X. In fact, the nerve is a particular kind of simplicial
set called a Kan complex. It is a classical fact of homotopy theory that Kan complexes model all
homotopy types. Thus, we will choose our definitions so that ∞-groupoids are precisely the Kan
complexes.

1.3. ∞-categories. An ∞-category is a generalization of ∞-groupoid in which morphisms are no
longer required to be invertible in any sense.

There are a number of approaches to defining ∞-categories. Here are two which build on top of
the identification of ∞-groupoids with Kan complexes.

• A category C consists of a set obC of objects, and for each pair of objects a set homC(x, y) of
maps from x to y. If we replace the set homC(x, y) with a Kan complex (or more generally a
simplicial set) mapC(x, y), we obtain a category enriched over Kan complexes (or simplicial
sets). This leads to one model for ∞-categories: categories enriched over simplicial sets.
• The nerve construction makes sense for categories: given a category C, we have a simplicial

set NC. In general, NC is not a Kan complex; however, it does land in a special class of
simplicial sets, which are called quasicategories. This leads to another model for∞-categories:
quasicategories.

In this paper we focus on the second case: the quasicategory model for ∞-categories.

1.4. Historical remarks. Quasicategories were invented by Boardman and Vogt [BV73, §IV.2],
under the name restricted Kan complex. They did not use them to develop a theory of ∞-categories.
This development began with the work of Joyal, first published in [Joy02]. Much of the material in
this course was developed first by Joyal, in published papers and unpublished manuscripts [Joy08a],
[Joy08b], [JT08]. Lurie [Lur09] gives a thorough treatment of quasicategories (which he simply calls
“∞-categories”), recasting and extending Joyal’s work significantly.

There are significant differences between the ways that Joyal and Lurie develop the theory.
In particular, they give different definitions of the notion of a “categorical equivalence” between
simplicial sets, though they do in fact turn out to be equivalent [Lur09, §2.2.5]. The approach I
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follow here is essentially that of Joyal. However, I have tried to follow Lurie’s terminology and
notation in most places.

1.5. Goal of this book. The goal of this book is to give a reasonably approachable introduction to
the subject of higher category theory. In particular, I am writing with the following ideas in mind.

• The prerequisites are merely some basic notions of category theory, as seen in a first year
algebraic topology or algebraic geometry course. No advanced training in homotopy theory
is assumed: in particular, no knowledge of simplicial sets or model categories is assumed.
• The book is written in “lecture notes” style rather that “textbook” style. That is, I will try

to avoid introducing a lot of theory in section 3 which is only to be used in section 42, even
if that is the “natural” place for it. The goal is to introduce new ideas near where they are
first used, so that motivations are clear.
• The structure of the exposition is organized around the following type of question: Here is a

[definition we can make/theorem we can prove] for ordinary categories; how do we generalize
it to quasicategories? In some cases the answer is easy. In others, it can require a significant
detour.
• The exposition is largely from the bottom up, rather than from the top down. Thus, I

attempt to give complete details about everything I prove, so that nothing is relegated to
references. (The current document does not achieve this yet, but that is the plan; in some
cases, such details will be put into appendices.)
• The idea is that, after you have read this book, you will be well-prepared to dip into the

main references on quasicategories (e.g., Lurie’s books) without too much difficulty. Note
that this book is not meant to (and does not) supplant any such reference.

1.6. Prerequisites. I assume only familiarity with basic concepts of category theory, such as those
discussed in the first few chapters of [Rie16]. It is helpful, but not essential, to know a little algebraic
topology (such as fundamental groups and groupoids, and the definition of singular homology, as
described in Chs. 1–3 of Hatcher’s textbook).

Some categorical prerequisites: you should be at least aware of the following notions (or know
where to turn to in order to learn them):

• categories, functors, and natural transformations;
• full subcategories;
• groupoids;
• products and coproducts;
• pushouts and pullbacks;
• general colimits and limits.
• adjoint functors.

1.7. References and other sources. As noted, the material depends mainly on the work of Joyal
and Lurie.

• Joyal’s first paper [Joy02] on the subject explicitly introduces quasicategories as a model for
∞-categories. It is worth looking at.
• There are several versions of unpublished lecture notes by Joyal [Joy08a], [Joy08b], which

develop the theory of quasicategories from scratch. Also note the paper by Joyal and Tierney
[JT08], which gives a summary of some of this unpublished work.
• Lurie’s “Higher topos theory” [Lur09] gives a complete development of ∞-categories, in-

cluding a number of topics not even touched in this book. The main general material on
∞-categories is in Chapters 1–4, together with quite of bit of material from the appendices.
It is also worth looking at Chapter 5, which develops the very important notions of accessible
and presentable ∞-categories. The final two chapters apply these ideas to the theory of
∞-topoi.
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• Lurie’s “Higher algebra” [Lur12] treats a number of “advanced topics”, including stable
∞-categories (the ∞-categorical foundations for derived categories in homological algebra
and stable homotopy), various notions of monoidal structures on ∞-categories (via the
theory of ∞-operads), and other topics.
• After I came up with the first version of these notes, Cisinski published the book “Higher

Categories and Homotopical Algebra”. It covers much of the material in these notes (and
much more), on roughly similar lines: in his book model categories play a more prominent
role from the start than they do here.
• Bergner’s “The homotopy theory of (∞, 1)-categories” is a survey of various approaches to

higher categories and their interrelationships.
• Groth’s note “A short course on ∞-categories” provides a brief survey to some of the basic

ideas about quasicategories and their applications. It is not a complete treatment, but it
does get very quickly to some of the more advanced topics.
• Riehl and Verity . . .

1.8. Things to add. This is a place for me to remind myself of things I might add.

• A discussion of n-truncation and n-groupoids, including the equivalence of ordinary groupoids
to 1-groupoids (so connecting with the introduction).
• Pointwise criterion for limits/colimits: Show that SB → Fun(D,C) is a colimit cone if each

projection to SB → Fun({d}, C) ≈ C is one.

1.9. Acknowledgements. Thanks to all those who have submitted corrections, including most
notably: Lin (Robbie) Yang, Darij Grinberg, and Vigleik Angeltveit. I’d also like to thank the
participants of courses I have given based on a version of these notes: (Math 595 at the University
of Illinois in Fall 2016, and again in Spring 2019).

Part 1. Basic notions

2. Simplicial sets

In the subsequent sections, we will define quasicategories as a generalization of the notion of a
category. To accomplish this, we will recharacterize categories as a particular kind of simplicial set ;
relaxing this characterization will lead us to the definition of quasicategories.

Simplicial sets were introduced as a combinatorial framework for the homotopy theory of spaces.
There are a number of treatments of simplicial sets from this point of view. We recommend
Greg Friedman’s survey [Fri12] as a starting place for learning about this viewpoint, and we will
discuss this point of view later on in §??. Here we will focus on what we need in order to develop
quasicategories.

2.1. The simplicial indexing category ∆. We write ∆ for the category whose M 14 Jan 2019

• objects are the non-empty totally ordered sets [n] := {0 < 1 < · · · < n} for n ≥ 0, and
• morphisms f : [n] → [m] are weakly monotone functions, i.e., such that x ≤ y implies
f(x) ≤ f(y).

Note that we exclude the empty set from ∆. Morphisms in ∆ are often called simplicial operators.
Because [n] is an ordered set, you can also think of it as a category: the objects are the elements

of [n], and there is a morphism (necessarily unique) i→ j if and only if i ≤ j. Thus, morphisms in
the category ∆ are precisely the functors between the categories [n]. We can, and will, also think of
[n] as the category “freely generated” by the picture

0 → 1 → · · · → n− 1 → n .

Arbitrary non-identity morphisms in [n] can be expressed uniquely as iterated composites of the
arrows which are displayed in the picture.
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We will often use the following notation for morphisms in ∆:

f = 〈f0 · · · fn〉 : [n]→ [m] with f0 ≤ · · · ≤ fn represents the function k 7→ fk.

2.2. Remark. There are distinguished simplicial operators called face and degeneracy operators:

di := 〈0, . . . , î, . . . , n〉 : [n− 1]→ [n], 0 ≤ i ≤ n,
si := 〈0 . . . i, i, . . . n〉 : [n+ 1]→ [n], 0 ≤ i ≤ n.

All maps in ∆ can be obtained as a composition of face and degeneracy operators, and in fact ∆
can be described as the category generated by the above symbols, subject to a set of relations called
the “simplicial identities”, which can be found in various places, e.g., [Fri12, Def. 3.2].

2.3. Simplicial sets. A simplicial set is a functor X : ∆op → Set, i.e., a contravariant functor
(or “presheaf”) from ∆ to sets.

It is typical to write Xn for X([n]), and call it the set of n-simplices in X. I generally prefer to
call it the set of n-dimensional elements of X instead (because the word “simplices” also applies
to the so called “standard n-simplices” defined below (2.7), and I would like to avoid to confusion
between them). I will also speak of the set of all elements (or all simplices) of X, i.e., of the disjoint
union

∐
n≥0Xn the sets Xn.

The 0-dimensional elements of a simplicial set are also called vertices, while the 1-dimensional
elements are also called edges.

Given an element a ∈ Xn and a simplicial operator f : [m] → [n], I will write af ∈ Xm as
shorthand for X(f)(a). That is, I’ll think of simplicial operators as acting on elements from the
right; this is a convenient choice given that X is a contravariant functor. In this language, a
simplicial set consists of

• a sequence of sets X0, X1, X2, . . . ,
• functions a 7→ af : Xn → Xm for each simplicial operator f : [m]→ [n], such that
• a id = a, and (af)g = a(fg) for any element a and simplicial operators f and g whenever

this makes sense.

If I need to have the simplicial operator act from the left, I’ll write f∗(a) = af .
Sometimes I’ll use a subscript notation when speaking of the action of particular simplicial

operators. So, given a simplicial operator of the form f = 〈f0 · · · fm〉 : [m]→ [n], we can indicate
the action of f on elements using subscripts:

af0···fm := af = a〈f0 . . . fm〉.
In particular, applying simplicial operators of the form 〈i〉 : [0]→ [n] gives vertices a0, . . . , an ∈ X0,
which we call the “vertices of a”, while applying simplicial operators of the form 〈ij〉 : [1]→ [n] for
0 ≤ i ≤ j ≤ n gives edges aij ∈ X1, which we call the “edges of a”.

2.4. The category of simplicial sets. A simplicial set is a functor; therefore a map of simplicial
sets is a natural transformation of functors. Explicitly, a map φ : X → Y between simplicial sets is
a collection of functions φ : Xn → Yn, n ≥ 0, which commute with simplicial operators:

(φa)f = φ(af) for all simplicial operators f and elements a in X, when this makes sense.

I’ll write sSet for the category of simplicial sets and maps between them3.

3Lurie [Lur09] uses Set∆ to denote the category of simplicial sets. Perhaps I should try to be consistent
with this?



STUFF ABOUT QUASICATEGORIES 9

2.5. Discrete simplicial sets. A simplicial set X is discrete if every simplicial operator f induces
a bijection f∗ : Xn → Xm.

Every set S gives us a discrete simplicial set Sdisc, defined so that (Sdisc)n = S, and so that each
simplicial operator acts according to the identity map of S. This construction defines a functor
S 7→ Sdisc : Set→ sSet.

2.6. Exercise. Show that (i) every discrete simplicial set X is isomorphic to Sdisc for some set S,
(and that in fact you can take S = X0) , and (ii) for every pair of sets S and T , the evident function
HomSet(S, T )→ HomsSet(S

disc, T disc) is a bijection.

Let sSetdisc denote the full subcategory of sSet spanned by discrete simplicial sets. That is,
objects of sSetdisc are discrete simplicial sets, and morphisms of sSetdisc are all simplicial maps
between them. Then the above exercise amounts to saying that the full subcategory of discrete
simplicial sets is equivalent to the category of sets.

For this reason, it is often convenient to (at least informally) “identify” sets with their corre-
sponding discrete simplicial sets (i.e., for a set S we also write S for the discrete simplicial set Sdisc

defined above).

2.7. Standard n-simplex. The standard n-simplex ∆n is the simplicial set defined by

∆n := Hom∆(−, [n]).

That is, the standard n-simplex is exactly the functor represented by the object [n]. Explicitly, this
means that

(∆n)m = Hom∆([m], [n]) = {simplicial operators a : [m]→ [n]},
while the action of simplicial operators on elements of ∆n is given by composition: f : [m′]→ [m]
sends a ∈ (∆n)m to (af : [m′]→ [n]) ∈ (∆n)m′ .

The generator of ∆n is the element

ιn := 〈01 . . . n〉 = id[n] ∈ (∆n)n

corresponding to the identity map of [n].
The Yoneda lemma (applied to the category ∆) asserts that the function

HomsSet(∆
n, X)→ Xn,

g 7→ g(ιn),

is a bijection for every simplicial set X. (Exercise: if this fact is not familiar to you, prove it.)
The Yoneda lemma can be stated this way: for each n-dimensional element a ∈ Xn there exists a

unique map fa : ∆n → X of simplicial sets which sends the generator to it, i.e., such that fa(ιn) = a.
We call the map fa the representing map of the element a.

We will often use the bijection provided by the Yoneda lemma implicitly. In particular, instead of
using notation such as fa, we will typicially abuse notation and write a : ∆n → X for the representing
map of the simplex a ∈ Xn. We reiterate that the map a : ∆n → X is characterized as the unique
map sending the generator ιn of ∆n to a. Thus with our notation we have a = a(ιn), where the two
appearances of “a” denote respectively the element of Xn and the representing morphism ∆n → X.

2.8. Exercise. Show that the representing map f : ∆n → X of a ∈ Xn sends 〈f0 · · · fk〉 ∈ (∆n)k to
a〈f0 · · · fk〉 ∈ Xk.

Note that if X = ∆m is also a standard simplex, then the Yoneda lemma gives a bijection

HomsSet(∆
n,∆m)

∼−→ (∆m)n = Hom∆([n], [m]).

The inverse of this bijection sends a simplicial operator f : [n]→ [m] to the map ∆f : ∆n → ∆m of
simplicial sets defined on elements g ∈ (∆n)k = Hom∆([k], [n]) by g 7→ fg. (Exercise: prove this.)

I will commonly abuse notation, and write f : ∆n → ∆m instead of ∆f for the map induced by
the simplicial operator f , as it is also the representing map of the corresponding simplex f ∈ (∆m)n.
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2.9. The standard 0-simplex and the empty simplicial set. The standard 0-simplex ∆0 is
the terminal object in sSet. Sometimes I write ∗ instead of ∆0 for this object. Note that it is the
only standard n-simplex which is discrete.

The empty simplicial set ∅ is the functor ∆op → Set sending each [n] to the empty set. It is
the initial object in sSet.

2.10. Exercise. Show that a simplicial set X is isomorphic to the empty simplicial set if and only if
X0 is isomorphic to the empty set.

2.11. Standard simplices on totally ordered sets. The definition of the standard simplices
∆n can be extended to simplicial sets “generated” by arbitrary totally ordered sets.

For instance, for any non-empty finite totally ordered set S = {s0 < s1 < · · · < sn}, there is a
unique order preserving bijection S ≈ [n] for a unique n ≥ 0. We write ∆S for the simplicial set
with (∆S)k = {order preserving [k]→ S}. There is a unique isomorphism ∆S ≈ ∆n of simplicial
sets (Exercise: prove this). We can also apply this idea to the empty ordered set S = ∅, in which
case (∆∅)k = ∅ for all k, i.e., ∆∅ is the empty simplicial set.

This notation is especially convenient for subsets S ⊆ [n] with induced ordering, as the simplicial
set ∆S is in a natural way a subcomplex of ∆n (i.e., a collection of subsets of the (∆n)k closed under
action of simplicial operators; we will return to the notion of subcomplex below §4.9).

Furthermore, any simplicial operator f : [m]→ [n] factors through its image S = f([m]) ⊆ [n],
giving a factorization

[m]
fsurj−−−→ S

finj−−→ [n]

of maps between ordered sets, and thus a factorization ∆m ∆
fsurj

−−−−→ ∆S ∆
finj

−−−→ ∆n of the induced map
∆f of simplicial sets.

2.12. Exercise. Show that ∆finj and ∆fsurj respectively induce maps between simplicial sets which
are (respectively) injective and surjective on sets of k-dimensional elements for all k. (The case of
∆finj is formal, but the case of ∆fsurj is not completely formal.)

2.13. Pictures of standard simplices. When we draw a “picture” of ∆n, we draw a geometric
n-simplex: the convex hull of n+ 1 points in general position, with vertices labelled by 0, . . . , n. The
faces of the geometric simplex correspond exactly to injective simplicial operators into [n]: these
elements are called non-degenerate. For each non-degenerate simplex f in ∆n, there is an infinite
collection of degenerate elements with the same “image” as f (when viewed as a simplicial operator
with target [n]).

Here are some “pictures” of standard simplices, which show their non-degenerate elements. Note
that we draw the 1-dimensional elements of ∆n as arrows; this lets us easily see the total ordering
on the vertices of ∆n.

∆0 : ∆1 : ∆2 : ∆3 :

〈1〉

��

〈1〉
&&

��
〈0〉 〈0〉 // 〈1〉 〈0〉

77

''

〈0〉
77

''

// 〈3〉

〈2〉 〈2〉
88

We’ll extend the terminology of “degenerate” and “non-degenerate” elements to arbitrary simplicial
sets in §15.5.

3. The nerve of a category

The nerve of a category is a simplicial set which retains all the information of the original category.
In fact, the nerve construction provides a full embedding of Cat, the category of categories, into
sSet, which means that we are able to think of categories as just a special kind of simplicial set.
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3.1. Construction of the nerve. Given a category C, the nerve of C is the simplicial set NC
defined so that

(NC)n := HomCat([n], C),

the set of functors from [n] to C, and so that simplicial operators f : [m]→ [n] act by precomposition:
a 7→ af for an element a : [n]→ C in (NC)n.

3.2. Example. There is an evident isomorphism N [n] ≈ ∆n.

Given a functor F : C → D between categories, we obtain a map NF : NC → ND of simplicial
sets, sending (a : [n] → C) ∈ (NC)n to (Fa : [n] → D) ∈ (ND)n. Thus the nerve construction
defines a functor N : Cat→ sSet.

3.3. Structure of the nerve. We observe the following, whose verification we leave to the reader.

• (NC)0 is canonically identified with the set of objects of C.
• (NC)1 is canonically identified with the set of morphisms of C.
• The operators 〈0〉∗, 〈1〉∗ : (NC)1 → (NC)0 assign to a morphism its source and target

respectively.
• The operator 〈00〉∗ : (NC)0 → (NC)1 assigns to an object its identity map.
• (NC)2 is in bijective correspondence with the set of pairs (f, g) of morphisms such that gf

is defined, i.e., such that the target of f is the source of g. This bijection is given by sending
a ∈ (NC)2 to (a01, a12) ∈ (NC)1 × (NC)1.
• The operator 〈02〉∗ : (NC)2 → (NC)1 assigns, to an element corresponding to a pair (f, g)

of morphisms, the composite morphism gf .

We have the following general description of n-dimensional elements in the nerve.

3.4. Proposition. Let C be a category.

(1) There is a bijective correspondence

(NC)n
∼−→
{

(g1, . . . , gn) ∈ (morC)×n
∣∣ target(gi−1) = source(gi)

}
,

which sends (a : [n]→ C) ∈ (NC)n to the sequence (a〈0, 1〉, . . . , a〈n− 1, n〉)
(2) With respect to the correspondence of (1), the map f∗ : (NC)n → (NC)m induced by a

simplicial operator f : [m]→ [n] coincides with the function

(g1, . . . , gn) 7→ (h1, . . . , hm), hk =

{
id if f(k − 1) = f(k)

gjgj−1 · · · gi+1 if f(k − 1) = i < j = f(k).

Proof. For (1), one verifies that an inverse is given by the function which sends a sequence (g1, . . . , gn)
to (a : [n]→ C) ∈ (NC)n defined on objects by a(k) = target(gk−1) = source(gk), and on morphisms
by a(〈ij〉) = gjgj−1 · · · gi+1 for i < j. For (2), note that for a ∈ (NC)n corresponding to the tuple
(g1, . . . , gn) we can compute

(af)〈k − 1, k〉 = a〈f(k − 1), f(k)〉 =

{
id if f(k − 1) = f(k),

gjgj−1 · · · gi+1 if f(k − 1) = i < j = f(k).

�

In particular, you can recover the category from its nerve, up to isomorphism, since the nerve
contains all information about objects, morphisms, and composition of morphisms.

3.5. Remark. It is clear from the above remarks that most of the information in the nerve of C is
redundant: we only needed (NC)k for k = 0, 1, 2 and certain simplicial operators between them to
recover C.

3.6. Exercise. Show that for any discrete simplicial set X there exists a category C and an
isomorphism NC ≈ X.
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3.7. Characterization of nerves. This leads to the question: given a simplicial set X, how can
we detect that it is isomorphic to the nerve of some category?

3.8. Proposition. A simplicial set X is isomorphic to the nerve of some category if and only if for
all n ≥ 2 the function

φn : Xn →
{

(g1, . . . , gn) ∈ (X1)×n
∣∣ gi−1〈1〉 = gi〈0〉, 1 ≤ i ≤ n

}
which sends a ∈ Xn to (a0,1, . . . , an−1,n) is a bijection.

Proof. First, suppose X = NC for some category C. Then the function φn is precisely the bijection
of (3.4)(1). Thus, if X is isomorphic to the nerve of some category then its φn are bijections.

Now suppose X is a simplical set such that the φn are bijections. We define a category C, with

(objects of C) = X0, (morphisms of C) = X1,

following the discussion in (3.3). Thus, the source and target of g ∈ X1 are g0 and g1 in X0

respectively, the identity map of x ∈ X0 is x00 ∈ X1, while the composite of (g, h) such that g1 = h0

is a02, where a ∈ X2 is the unique 2-dimensional element with a01 = g and a12 = h. We leave the
remaining details (e.g., unit and associativity properties) to the reader, though we note that proving
associativity requires consideration of elements of X3. (Or look ahead to (5.10), where we carry out
the argument explicitly in a slighlty different context.)

Next, we claim that for a ∈ Xn, and for 0 ≤ i ≤ j ≤ k ≤ n, we have that

ai,k = aj,kai,j ,

where ai,k, ai,j , aj,k ∈ X1 are images of a under face operators [1] → [n], and right-hand side
represents composition of two morphisms in C. To see this, note first that for b ∈ X2, we have
b0,2 = b1,2b0,1 by construction of C. The general case follows from this by setting b = ai,j,k.

Now we can define maps ψn : Xn → (NC)n by sending a ∈ Xn to ψ(a) : [n] → C defined by
ψ(a)(i ≤ j) = ai,j , which is a functor by the above remarks. These maps ψn are seen to be bijections
using the bijections φn and (3.4), since ψn(a)(i − 1 ≤ i) = ai−1,i. If f : [m] → [n] is a simplicial
operator, then we compute

ψm(af)(i ≤ j) = (af)i,j = af(i),f(j) = (ψn(a))(f(i) ≤ f(j)) = (ψn(a)f)(i ≤ j),
whence ψ is a map of simplicial sets. We have thus constructed an isomorphism φ : X → NC of
simplicial sets, as desired.

�

3.9. A characterization of maps between nerves. Maps between nerves are the same as
functors between categories.

3.10. Proposition. The nerve functor N : Cat→ sSet is fully faithful. That is, every simplicial set
map g : NC → ND between nerves is of the form g = N(f) for a unique functor f : C → D.

Proof sketch. We need to show that HomCat(C,D) → HomsSet(NC,ND) is a bijection for all
categories C and D. Injectivity is clear, as a functor f is determined by its effect on objects and
morphisms, which is exactly the effect of N(f) on 0- and 1-dimensional elements of the nerves.

For surjectivity, observe that for any map g : NC → ND of simplicial sets, we can define a
candidate functor f : C → D, defined on objects and morphisms by the action of g on 0-dimensional
and 1-dimensional elements. That F has the correct action on identity maps follows from the fact
that g commutes with the simplicial operator 〈00〉 : [1]→ [0]. That f preserves composition uses
(3.4) and the fact that g commutes with the simplicial operator 〈02〉 : [1]→ [2].

Note that given g : NC → ND and f : C → D as constructed above, the maps g,N(f) : NC →
ND coincide on 0-dimensional and 1-dimensional elements by construction. It follows that g = N(f)
by (3.11) below. Thus, we have shown that N : HomCat(C,D)→ HomsSet(NC,ND) is surjective
as desired. �
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3.11. Exercise. Show that if C is a category and X is any simplicial set (not necessarily a nerve),
then two maps g, g′ : X → NC are equal if and only if g0 = g′0 and g1 = g′1, i.e., g and g′ are equal
if ond only if they coincide on 0-dimensional and 1-dimensional elements. (Hint: use (3.4).)

4. Spines

In this section we will restate our characterization of simplicial sets which are isomorphic to
nerves, in terms of a certain “extension” condition. To state this condition we need the notion of a
“spine” of a standard n-simplex.

4.1. The spine of an n-simplex. The spine of the n-simplex ∆n is the simplicial set In defined
by

(In)k = { 〈a0 · · · ak〉 ∈ (∆n)k | ak ≤ a0 + 1 }.
That is, a k-dimensional element of In is a simplicial operator a : [k]→ [n] whose image is of the
form either {j} or {j, j + 1}. The action of simplicial operators on elements of In is induced by
their action on ∆n. (To see that this action is well defined, observe that for a : [k]→ [n] in (In)k
and f : [p]→ [k], the image of the simplicial operator af is contained in the image of a.)

There is an evident injective map In → ∆n of simplicial sets. (In fact, In is another example of a
subcomplex of ∆n, see below §4.9.) Here is a picture of I3 in ∆3:

〈1〉

��
〈0〉

88

〈3〉

〈2〉
88 is the spine inside

〈1〉
&&

��
〈0〉

88

&&

// 〈3〉

〈2〉
88

Note that I0 = ∆0 and I1 = ∆1.
The key property of the spine is the following.

4.2. Proposition. Given a simplicial set X, for every n ≥ 0 there is a bijection

Hom(In, X)
∼−→
{

(a1, . . . , an) ∈ (X1)×n
∣∣ ai〈1〉 = ai+1〈0〉

}
,

defined by sending f : In → X to (f(〈01〉), f(〈12〉), · · · , f(〈n − 1, n〉)). (In the case n = 0, the
target of the bijection is taken to be the set X0 of vertices of X, and the bijection in this case sends
f 7→ f〈0〉.)

We will give the proof at the end of this section, after we describe In as a colimit of a diagram of
standard simplices; specifically, as a collection of 1-simplices “glued” together at their ends.

4.3. Nerves are characterized by unique spine extensions. We can now state our new
characterization of nerves: they are simplicial sets such that every map In → X from a spine extends
uniquely along In ⊆ ∆n to a map from the standard n-simplex. That is, nerves are precisely the
simplicial sets with “unique spine extensions”.

4.4. Proposition. A simplicial set X is isomorphic to the nerve of some category if and only if the
restriction map Hom(∆n, X)→ Hom(In, X) along In ⊆ ∆n is a bijection for all n ≥ 2.

Proof. Immediate from (4.2) and (3.8). �

4.5. Colimits of sets and simplicial sets. Given any functor F : C → Set from a small category
to sets, there is a “simple formula” for its colimit. First consider the coproduct (i.e., disjoint union)∐
c∈obC F (c) of the values of the functor; I’ll write (c, x) for a typical element of this coproduct,

with c ∈ obC and x ∈ F (c). Consider the relation ∼ on this defined by

(c, x) ∼ (c′, x′) if ∃ α : c→ c′ in C such that F (α)(x) = x′.
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Define
X :=

( ∐
c∈obC

F (c)
)/
≈,

the set obtained as the quotient by the equivalence relation “≈” which is generated by the relation
“∼”. For each object c of C we have a function ic : F (c)→ X defined by ic(x) := [(c, x)], sending x
to the equivalence class of (c, x). Then the data (X, {ic}) is a colimit of the functor F : i.e., for any
set S and collection of functions

fc : F (c)→ S such that fc′ ◦ F (α) = fc for all α : c→ c′

there exists a unique function f : X → S such that f ◦ ic = fc.

4.6. Example. Verify that (X, {ic}) is in fact a colimit of F .

We write colimC F for a chosen colimit of F .
Note that the relation “∼” is often not itself an equivalence relation, so it can be difficult to

figure out what “≈” actually is: the simple formula may not be so simple in practice.

4.7. Exercise. If C is a groupoid, then ∼ is always an equivalence relation.

There are cases when things are more tractable.

4.8. Proposition. Let A be a collection of subsets of a set S, which is a partially ordered set under
“⊆” and thus can be regarded as a category. Suppose A has the following property: for all s ∈ S, and
T,U ∈ A such that s ∈ T ∩ U , there exists V ∈ A such that s ∈ V ⊆ T ∩ U . Then the tautological
map

colimT∈A T →
⋃
T∈A

T

(sending [(T, t)] 7→ t) is a bijection.

Proof sketch. Show that (T, t) ≈ (T ′, t′) if and only if t = t′. �

Note: an easy way to satisfy the hypothesis of (4.8) is to show that A is closed under finite
interseciton.

4.9. Subcomplexes. Given a simplicial set X, a subcomplex is just a subfunctor of X; i.e., a
collection of subsets An ⊆ Xn which are closed under the action of simplicial operators, and thus
form a simplicial set so that the inclusion A → X is a morphism of simplicial sets. We typically
write A ⊆ X when A is a subcomplex of X.

4.10. Example. Examples we have already seen include the spines In ⊆ ∆n and the ∆S ⊆ ∆n

associated to subsets S ⊆ [n].

4.11. Exercise. For any map f : X → Y of simplicial sets, the image f(X) ⊆ Y of f is a subcomplex
of Y .

For every set S of elements of a simplicial set, there is a smallest subcomplex which contains the
set, namely the intersection of all subcomplexes containing S.

4.12. Example. For a vertex x ∈ X0, we write {x} ⊆ X for the smallest subcomplex which contains
x. This subcomplex has exactly one n-dimensional element for each n ≥ 0, namely x〈0 · · · 0〉, and
thus is isomorphic to ∆0.

More generally, for a collection of vertices a, b, c, · · · ∈ X0, we write {a, b, c, . . . } ⊆ X for the
smallest subcomplex which contains a, b, c, . . . . This subcomplex is a discrete simplicial set. This
choice of notation is supported by our informal identification of discrete sets with sets (2.5).

The result (4.8) carries over to simplicial sets, where the role of subsets is replaced by subcomplexes.



STUFF ABOUT QUASICATEGORIES 15

4.13. Proposition. Let A be a collection of subcomplexes of a simplicial set X, which is a partially
ordered set under “⊆” and thus can be regarded as a category. Suppose A has the following property:
for all n ≥ 0, all x ∈ Xn, and all K,L ∈ A such that x ∈ Kn ∩ Ln, there exists M ∈ A such that
x ∈Mn and M ⊆ K ∩ L. Then the tautological map

colimK∈AK →
⋃
K∈A

K

is a bijection.

Proof. Because simplicial sets are actually functors ∆op → Set, colimits in simplicial sets are
“computed degreewise”. That is, if F : C → sSet is a functor with colimit Y = colimc∈C F (c) ∈ sSet,
then for each n ≥ 0 there is a canonical bijection

Yn ≈ colimc∈C F (c)n.

The proposition follows using this observation and (4.8). �

4.14. Remark (Pushouts of subcomplexes). A special case of (4.13) applied to simplicial sets which
we will use constantly is the following. If K and L are subcomplexes of a simplicial set X, then so
are both K ∩ L and K ∪ L, and furthermore the evident commutative square

K ∩ L // //
��

��

L��

��

K // // K ∪ L
is a pushout square in simplicial sets. (Proof: A = {K,L,K ∩ L}.)

4.15. Subcomplexes of ∆n. For each S ⊆ [n] we have a subcomplex ∆S ⊆ ∆n. The following
says that every subcomplex of ∆n is a union of ∆Ss.

4.16. Lemma. Let K ⊆ ∆n be a subcomplex. If (f : [m] → [n]) ∈ Km with f([m]) = S, then
f ∈ (∆S)m and ∆S ⊆ K.

This the proof uses the following elementary fact.

4.17. Lemma. Any order preserving surjection f : S → T between finite totally ordered sets admits
an order preserving section, i.e., s : T → S such that fs = idT .

Proof. Let s(t) = min { s ∈ S | f(s) = t }. �

Proof of (4.16). Given an order preserving map g : [k]→ S a dotted arrow s exists making

[k]

g
��

s

||

g

!!

[m]
fsurj

// // S //
finj

// [n]

commute by (4.17). Therefore any element g ∈ (∆S)k is an element g = fs ∈ Kk, and it is clear
that f ∈ (∆S)m. �

4.18. Remark. Thus, a subcomplex K ⊆ ∆n determines and is determined by a collection K of
subsets of [n] with the property that T ⊆ S and S ∈ K implies T ∈ K: namely,

K =
{
S ⊆ [n]

∣∣ ∆S ⊆ K
}

and K =
⋃
S∈K

∆S .

In other words, a subcomplex of ∆n is the “same thing” as an abstract simplicial complex whose
vertex set is a subset of [n].
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We can sharpen the above: every subcomplex of ∆n is a colimit of subcomplexes ∆S .

4.19. Proposition. Let K ⊆ ∆n be a subcomplex. Let A be the poset of all non-empty subsets
S ⊆ [n] such that the inclusion map f : S → [n] represents a (|S| − 1)-dimensional element of K.
Then the tautological map

colimS∈A∆S → K

is an isomorphism.

Proof. We must show that for each m ≥ 0, the map colimS∈A(∆S)m → Km is a bijection. Each
(∆S)m = { f : [m]→ [n] | f([m]) ⊆ S } is a distinct subset of Km ⊆ (∆n)m; i.e., S 6= S′ implies

(∆S)m 6= (∆S′)m. In view of (4.13), it suffices to show that for each f ∈ Km there is a minimal S
in A such that f ∈ (∆S)m. This is immediate from (4.16), which says that f ∈ (∆S)m and ∆S ⊆ K
where S = f([m]), and it is obvious that this S is minimal with this property. �

4.20. Proof of (4.2). Now we can prove our claim about maps out of a spine, using an explicit
description of a spine as a colimit.

Proof of (4.2). Let A be the poset of all non-empty S ⊆ [n] which correspond to elements of In;
i.e., subsets of [n] of the form {j} or {j, j + 1}. Explicitly the poset A has the form

{0} → {0, 1} ← {1} → {1, 2} ← {2} → · · · ← {n− 1} → {n− 1, n} ← {n}.
By (4.19), colimS∈A∆S → In is an isomorphism. Thus Hom(In, X) ≈ Hom(colimS∈A∆S , X) ≈
limS∈AHom(∆S , X), and an elementary argument gives the result. �

5. Horns and inner horns

We now are going to give another (less obvious!) characterization of nerves, in terms of “extending W 16 Jan 2019

inner horns”, rather than “extending spines”. It will be this characterization that we “weaken” to
obtain the definition of a quasicategory.

5.1. Definition of horns. We define a collection of subobjects of the standard simplices, called
“horns”. For each n ≥ 1, these are subsimplicial sets Λnj ⊂ ∆n for each 0 ≤ j ≤ n. The horn Λnj is
the subcomplex of ∆n defined by

(Λnj )k = { f : [k]→ [n] | ([n] r {j}) 6⊆ f([k]) }.

Using the fact (4.19) that subcomplexes of ∆n are always unions of ∆Ss, we see that Λn
j is the

union of “faces” ∆[n]ri of ∆n other than the jth face:

Λnj =
⋃
i 6=j

∆[n]ri ⊂ ∆n.

When 0 < j < n we say that Λn
j ⊂ ∆n is an inner horn. We also say it is a left horn if j < n

and a right horn if 0 < j.

5.2. Example. The horns inside ∆1 are just the vertices viewed as subobjects: Λ1
0 = ∆{0} = {0} ⊂ ∆1

and Λ1
1 = ∆{1} = {1} ⊂ ∆1. Neither is an inner horn, the first is a left horn, and the second is a

right horn.

5.3. Example. These are the three horns inside the 2-simplex.

〈1〉 〈1〉
〈12〉
��

〈1〉
〈12〉
��

〈0〉

〈01〉 CC

〈02〉
// 〈2〉 〈0〉

〈01〉 CC

〈2〉 〈0〉
〈02〉

// 〈2〉

Λ2
0 Λ2

1 Λ2
2
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Only Λ2
1 is an inner horn, while Λ2

0 and Λ2
1 are left horns, and Λ2

1 and Λ2
2 are right horns. Note that

Λ2
1 is the same as the spine I2.

5.4. Exercise. Visualize the four horns inside the 3-simplex. The simplicial set Λ3
j actually kind of

looks like a horn: you blow into the vertex 〈j〉, and sound comes out of the opposite missing face

∆[3]rj .

5.5. Exercise. Show that Λn
j is the largest subobject of ∆n which does not contain the element

〈0 · · · ĵ · · ·n〉 ∈ (∆n)n−1, the “face opposite the vertex j”.

We note that inner horns always contain spines: In ⊆ Λn
j if 0 < j < n. This is also true for

non-inner horns if n ≥ 3, but not for non-inner horns with n = 1 or n = 2.

5.6. The inner horn extension criterion for nerves. We can now characterize nerves as those
simplicial sets which admit “unique inner horn extensions”; this is different than, but analogous to,
the characterization in terms of unique spine extensions (4.4).

5.7. Proposition. A simplicial set X is isomorphic to the nerve of a category, if and only if
Hom(∆n, X)→ Hom(Λnj , X) is a bijection for all n ≥ 2, 0 < j < n.

The proof will take up the rest of the section.

5.8. Nerves have unique inner horn extensions. First we show that nerves have unique inner
horn extensions.

5.9. Proposition. If C is a category, then for every inner horn Λn
j ⊂ ∆n the evident restriction

map
Hom(∆n, NC)→ Hom(Λnj , NC)

is a bijection.

Proof. Since inner horns contain spines, we can consider restriction along In ⊆ Λn
j ⊆ ∆n. The

composite

Hom(∆n, NC)→ Hom(Λnj , NC)
r−→ Hom(In, NC)

of restriction maps is a bijection (4.4), so r is a surjection. Thus, it suffices to show that r is injective.
This is immediate when n = 2, since Λ2

1 = I2, so we can assume n ≥ 3.
We will show that for any inner horn Λnj with n ≥ 3 there exists a finite chain

In = F0 ⊂ F1 ⊂ · · · ⊂ Fd = Λnj

of subcomplexes, together with a list of subsets S1, . . . , Sd ⊂ [n], such that (i) Fi = Fi−1 ∪∆Si and
(ii) ISi ⊆ Fi−1 ∩∆Si ; here ISi denotes the spine of ∆Si . Given this, we see by (4.14) that Fi is
isomorphic to a pushout:

Fi ≈ colim
(
Fi−1 ← Fi−1 ∩∆Si → ∆Si

)
.

We then obtain a commutative diagram of sets

Hom(Fi, NC)
b //

��

Hom(Fi−1, NC)

��

Hom(∆Si , NC) a
// Hom(Fi−1 ∩∆Si , NC) // Hom(ISi , NC)

where all maps are induced by restriction, in which the square is a pullback (because Fi is a pushout),
and such that the horizontal composition on the bottom is a bijection. It immediately follows that
a, and hence b, are injective. We can thus conclude that Hom(Λnj , NC)→ Hom(In, NC) is injective
as desired, since it is a composite of injective functions such as b.
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Now we prove the claim about the filtration of Λnj by suitable subcomplexes Fi.
When n = 3, we can “attach” simplices in order explicitly:

Λ3
1 = ((I3 ∪∆{0,1,2}) ∪∆{1,2,3}) ∪∆{0,1,3}, Λ3

2 = ((I3 ∪∆{0,1,2}) ∪∆{1,2,3}) ∪∆{0,2,3}.

Note that, for instance, in building Λ3
1, we must add ∆{0,1,3} after adding ∆{1,2,3}, so that the spine

I{0,1,3} of ∆{0,1,3} is already present.

0

!!��

��

1 //

��

c

a 3

2

==

b

When n ≥ 4, we have that (Λnj )1 = (∆n)1 and (Λnj )2 = (∆n)2. The procedure to “build” Λnj from

In by adding subsimplices is: (1) first attach 2-simplices one at a time, in an allowable order; then
(2) attach all needed higher dimensional subsimplices. In step (2) the order doesn’t matter since all
1-simplices (and hence all spines) are present in what has already been built. We leave the details
of step (1) to the reader. �

5.10. Nerves are characterized by unique inner horn extension. Let X be an arbitrary
simplicial set, and suppose it has unique inner horn extensions, i.e., each Hom(∆n, X)→ Hom(Λnj , X)
is a bijection for all 0 < j < n with n ≥ 2.

Considering the unique extensions along Λ2
1 ⊂ ∆2, we see that this defines a “composition law”

on the set X1. That is, given f, g ∈ X1 such that f1 = g0 in X0,4 there is a unique map u

u : Λ2
1 = ∆{0,1} ∪∆{1,2}

(f,g)−−−→ X, 〈01〉 7→ f ∈ X1, 〈12〉 7→ g ∈ X1.

Let ũ : ∆2 → X be the unique extension of u along Λ2
1 ⊂ ∆2, and define

g ◦ f := ũ02.

The 2-dimensional element ũ is uniquely characterized by: ũ01 = f , ũ12 = g, ũ02 = g ◦ f .
This composition law is automatically unital. Given x ∈ X0, write 1x := x〈00〉 ∈ X1, so that

(1x)0 = x = (1x)1. Then applying the composition law gives 1x ◦ f = f and g ◦ 1x = g. (Proof:
consider the 2-dimensional elements f〈011〉, g〈001〉 ∈ X2, and use the fact that their representing
maps ∆2 → X are the unique extensions of their restrictions to Λ2

1 ⊂ ∆2.)
Now consider Λ3

1 ⊂ ∆3. Recall (4.19) that Λ3
1 is a union (and colimit) of ∆S ⊆ ∆3 such that

S 6⊇ {0, 2, 3}. A map Λ3
1 → X can be pictured as

0
(h◦g)◦f

!!

f

��
g◦f

��

1 h◦g //

g

��

3

2
h

==

so that the planar 2-cells in the picture correspond to non-degenerate 2-dimensional elements of
∆3 which are contained in Λ3

1, while the edges are labelled according to their images in X, using
the composition law defined above. Let v : ∆3 → X be any extension of the above picture along

4Recall that f1 = f〈1〉 and g0 = g〈0〉, regarded as maps ∆0 → X and thus as elements of X0, using the notation
discussed in §2.3.
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Λ3
1 ⊂ ∆3, and consider the restriction w := v〈023〉 : ∆2 → X to the face ∆2 ≈ ∆{0,2,3} ⊂ ∆3. Then
w01 = g ◦ f , w12 = h, and w02 = (h ◦ g) ◦ f , and thus the existence of w demonstrates that

h(g ◦ f) = (h ◦ g)f.

In other words, the existence of extensions along Λ3
1 ⊂ ∆3 implies that the composition law we

defined above is associative. (We could carry out this argument using Λ3
2 ⊂ ∆3 instead.)

Thus, given an X with unique inner horn extensions, we can construct a category C, so that
objects of C are elements of X0, morphisms of C are elements of X1, and composition is given as
above.

Next we construct a map X → NC of simplicial sets. There are obvious maps αn : Xn → (NC)n,
corresponding to restriction along spines In ⊆ ∆n; i.e., α(x) = (x01, . . . , xn−1,n). These maps are
compatible with simplicial operators, so that they define a map α : X → NC of simplicial sets. Proof:
For any n-dimensional element x ∈ Xn, all of its edges are determined by edges on its spine via the
composition law: xij = xj−1,j ◦ xj−2,j−1 ◦ · · · ◦ xi,i+1, for all 0 ≤ i ≤ j ≤ n. Thus for f : [m]→ [n]
we have α(xf) = ((xf)01, . . . , (xf)n−1,n) = (xf0f1 , . . . , xfn−1fn) = (x01, . . . , xn−1,n)f0···fn = (αx)f .

Now we can prove that nerves are characterized by unique extension along inner horns.

Proof of (5.7). We have already shown (5.9) that nerves have unique extensions for inner horns.
Consider a simplicial set X which has unique inner horn extension. By the discussion above, we
obtain a category C and a map α : X → NC of simplicial sets, which is clearly a bijection in degrees
≤ 2. We will show αn : Xn → (NC)n is bijective by induction on n.

Fix n ≥ 3, and consider the commutative square

Hom(∆n, X)
∼ //

α∆n

��

Hom(Λn1 , X)

αΛn1

��

Hom(∆n, NC) ∼
// Hom(Λn1 , NC)

The horizontal maps are induced by restriction, and are bijections (top by hypothesis, bottom by
(5.9)). Because Λn

1 is a colimit of standard simplices of dimension < n (4.19), the map αΛn1
is a

bijection by the induction hypothesis. Therefore so is α∆n . �

6. Quasicategories

We can now define the notion of a quasicategory, by removing the uniqueness part of the inner
horn extension criterion for nerves.

6.1. Identifying categories with their nerves. From this point on, I will (at least informally)
often not distinguish a category C from its nerve. In particular, I may assert something like “let
C be a simplicial set which is a category”, which should be read as “C is a simplicial set which is
isomorphic to the nerve of some category”. This should not lead to much confusion, due to the fact
that the nerve functor is a fully faithful embedding of Cat into sSet (3.10).

6.2. Definition of quasicategory. A quasicategory is a simplicial set C such that for every
map f : Λnj → C from an inner horn, there exists an extension of it to g : ∆n → C. That is, C is a

quasicategory if the function Hom(∆n, C) → Hom(Λn
j , C) induced by restriction along Λn

j ⊂ ∆n

is surjective for all 0 < j < n, n ≥ 2, so there always exists a dotted arrow in any commutative
diagram of the form

Any category (more precisely, the nerve of any category) is a quasicategory. In fact, by what we
have shown (5.7) a category is precisely a quasicategory for which there exist unique extensions of
inner horns.

Let C be a quasicategory. We refer to elements of C0 as the objects of C, and elements of C1

as the morphisms of C. Every morphism f ∈ C1 has a source and target, namely its vertices
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f0, f1 ∈ C0. We write f : f0 → f1, just as we would for morphisms in a category. Likewise, for
every object x ∈ C0, there is a distinguished morphism 1x : x→ x, called the identity morphism,
defined by 1x = x00. When C is (the nerve of) a category, all the above notions coincide with
the usual ones. (Note, however, that we cannot generally define composition of morphisms in a
quasicategory in the same way we do for a category.)

We now describe some basic categorical notions which admit immediate generalizations to
quasicategories. Many of these generalizations apply to arbitrary simplicial sets.

6.3. Products of quasicategories. Simplicial sets are functors, so the product of simplicial sets
X and Y is just the product of the functors. Thus, (X × Y )n = Xn × Yn.

6.4. Proposition. The product of two quasicategories (as simplicial sets) is a quasicategory.

Proof. Exercise, using the bijective correspondence between the sets of (i) maps K → X × Y and
(ii) pairs of maps (K → X,K → Y ). �

6.5. Exercise. If C and D are categories, then N(C ×D) ≈ NC ×ND. Thus, the notion of product
of quasicategories generalizes that of categories.

6.6. Coproducts of quasicategories. The coproduct of simplicial sets X and Y is just the
coproduct of functors, whence (X q Y )n = Xn q Yn, i.e., the set n-dimensional elements of the
coproduct is the disjoint union of the sets of n-dimensional elements of X and Y . More generally,(∐

sXs

)
n

=
∐
s(Xs)n for an indexed collection {Xs} of simplicial sets.

6.7. Proposition. The coproduct of any indexed collection of quasicategories is a quasicategory.

To prove this, we introduce the set of connected components of a simplicial set. Given a
simplicial set X, define an equivalence relation ≈ on the set

∐
n≥0Xn of elements of X, generated

by the relation
a ≈ af for all n ≥ 0, a ∈ Xn, f : [m]→ [n].

Thus two elements are related when you can get from one to another by a sequence of simplicial
operators. An equivalence class for ≈ is called a connected component of X, and we write π0X
for the set of connected components. This construction defines a functor π0 : sSet→ Set.

6.8. Exercise (Connected components are path components). Show that there is a canonical bijection

(X0/ ≈1)
∼−→ π0X,

where the left-hand side denotes the set of equivalence classes in the vertex set X0 with respect to
the equivalence relation ≈1 which is generated by the relation ∼1 on X0, defined by

a ∼1 b iff there exists e ∈ X1 such that a = e0, b = e1.

6.9. Exercise. Show that there is a bijection colim∆op X
∼−→ π0X, between the set of connected

components of X and the colimit of the functor X : ∆op → Set.

6.10. Exercise (Connected components respect colimits). Show that if X is the colimit of a functor
F : D → sSet of some small category D, then π0X ≈ colimD π0F . In particular, π0

(∐
sXs) ≈∐

s π0(Xs) for any collection {Xs} of simplicial sets.

We say that a simplicial set X is connected if π0X is a singleton.

6.11. Exercise. Show that every standard simplex ∆n is connected, and that every horn Λn
j is

connected.

6.12. Exercise (Every simplicial set is a coproduct of its connected components). Let X be a
simplicial set. Given a ∈ π0X, let Ca denote its equivalence class (regarded as a subset of the set∐
n≥0Xn of elements).



STUFF ABOUT QUASICATEGORIES 21

(1) Show that Ca is closed under the action of simplicial operators, and thus describes a
subcomplex of X.

(2) Show that the evident map ∐
a∈π0X

Ca → X

is an isomorphism of simplicial sets.

Proof of (6.7). If X =
∐
sXs is a coproduct of simplicial sets, then any connected component of X

must be contained in exactly one of the Xs summands, by (6.10). The proof is now straightforward,
using (6.12) and the fact that horns and standard simplices are connected (6.11). �

6.13. Exercise (Important). Show that the evident map π0(X × Y )→ π0X × π0Y is a bijection.

6.14. Full subquasicategories. Given a category C and a set of objects S ⊆ obC, the full F 18 Jan 2019

subcategory spanned by S is the subcategory C ′ ⊆ C with obC ′ = S and with morC ′ =
{ f ∈ morC | source(f), target(f) ∈ S }.

This has a straightforward generalization to quasicategories. Given a simplicial set C and a set
S ⊆ C0 of vertices, let

C ′n = { a ∈ Cn | aj ∈ S for all j = 0, . . . , n },
the set of n-dimensional elements whose vertices are in S.

6.15. Exercise. Show that C ′ is a subcomplex of C, and that if C is a quasicategory then so is C ′.

When C is a quasicategory, the subcomplex C ′ is called the full subcategory spanned by S.
(Note: it would be more logical to say “subquasicategory”, but it is a mouthful. When constructing
new terminology like this we often leave out the “quasi” if it won’t cause confusion.)

6.16. Opposite of a quasicategory. Given a category C, the opposite category Cop has obCop =
obC, and HomCop(x, y) = HomC(y, x), and the sense of composition is reversed: g ◦Cop f = f ◦C g.

This concept also admits a generalization to quasicategories, which we define using a non-trivial
involution op: ∆→ ∆ of the category ∆. This is the functor which on objects sends [n] 7→ [n], and
on morphisms sends 〈f0, . . . , fn〉 : [n]→ [m] to 〈m− fn, . . . ,m− f0〉.
6.17. Remark. You can visualize this involution as the functor which “reverses the ordering” of the
totally-ordered sets [n]. Note that the totally ordered set “[n] with the order of its elements reversed”
isn’t actually an object of ∆, but rather is uniquely isomorphic to [n], via the function x 7→ n− x.

The opposite of a simplicial set X : ∆op → Set is the composite functor Xop := X ◦ op. We
have that (∆n)op = ∆n, while (Λnj )op = Λnn−j , so that the opposite of an inner horn is another inner
horn. As a consequence, the opposite of a quasicategory is a quasicategory. It is straightforward
to verify that (NC)op = N(Cop), so the notion of opposite quasicategory generalizes the notion of
opposite category. The functor op: ∆→ ∆ satisfies op ◦ op = id∆, so (Xop)op = X.

7. Functors and natural transformations

7.1. Functors. A functor between quasicategories is merely a map f : C → D between the
simplicial sets.

We write qCat for the category of quasicategories and functors between them.5 Clearly qCat ⊂
sSet is a full subcategory. Because the nerve functor is a full embedding of Cat into qCat, any
functor between ordinary categories is also a functor between quasicategories.

7.2. Exercise (Mapping property of a full subcategory). Let C be a quasicategory, and C ′ ⊆ C the
full subcategory spanned by some subset S ⊆ C0. Show that a functor f : D → C factors through a
functor f ′ : D → C ′ ⊆ C if and only if f(D0) ⊆ S.

5Lurie [Lur09] denotes this category by Cat∆.
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7.3. Natural transformations. Given functors F,G : C → D between categories, a natural trans-
formation φ : F ⇒ G is a choice, for each object c of C, of a map φ(c) : F (c) → G(c) in D, such
that for every morphism α : c→ c′ in C the square

F (c)
φ(c)

//

f(α)
��

G(c)

g(α)
��

F (c′)
φ(c′)

// G(c′)

commutes in D.
There is a standard convenient reformulation of this: a natural transformation φ : F ⇒ G is the

same thing as a functor
H : C × [1]→ D,

so that H|C × {0} = F , H|C × {1} = G, and H|{c} × [1] = α(c) for each c ∈ obC. (Here we make
implicit use of the evident isomorphisms C × {0} ≈ C ≈ C × {1}.)

This reformulation admits a straightforward generalization to quasicategories. A natural trans-
formation f : f0 ⇒ f1 of functors f0, f1 : C → D between quasicategories is defined to be a
map

f : C ×N [1] = C ×∆1 → D

of simplicial sets such that f |C × {i} = fi for i = 0, 1. For ordinary categories this coincides with
the classical notion.

8. Examples of quasicategories

There are many ways to produce quasicategories, as we will see. Unfortunately, “hands-on”
constructions of quasicategories are relatively rare. Here I give a few reasonably explicit examples
to play with.

8.1. Large vs. small. I have been implicitly assuming that certain categories are small; i.e., they
have sets of objects and morphisms. For instance, for the nerve of a category C to be a simplicial
set, we need C0 = obC to be a set.

However, in practice many categories of interest are only locally small; i.e., the collection of
objects is not a set but is a “proper class”, although for any pair of objects HomC(X,Y ) is a set.
For instance, the category Set of sets is of this type: there is no set of all sets. Other examples
include the categories of abelian groups, topological spaces, (small) categories, simplicial sets, etc.
It is also possible to have categories which are not even locally small, e.g., the category of locally
small categories. These are called large categories.

We would like to be able to talk about large categories in exactly the same way we talk about
small categories. This is often done by positing a hierarchy of (Grothendieck) “universes”. A
universe U is (informally) a collection of sets which is closed under the operations of set theory. We
additionally assume that for any universe U , there is a larger universe U ′ such that U ∈ U ′. Thus, if
by “set” we mean “U -set”, then the category Set is a “U ′-category”. This idea can be implemented
in the usual set theoretic foundations by postulating the existence of suitable strongly inaccessible
cardinals.

The same distinctions occur for simplicial sets. For instance, the nerve of a small category is a
small simplicial set (i.e., the elements form a set), while the nerve of a large category is a large
simplicial set.

I’m not going to be pedantic about this. I’ll usually assume categories like Set, Cat, sSet, etc.,
are categories whose objects are “small” sets/categories/simplicial sets/whatever, i.e., are built
from sets in a fixed universe U of “small sets”. However, I sometimes need to consider examples of
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sets/categories/simplicial sets/whatever which are not small. I leave it to the reader to determine
when this is the case.

In practice, a main point of concern involves constructions limits and colimits. Many typical
examples of categories C = Set,Cat, sSet, etc., in which objects are built out of small sets are small
complete and small cocomplete: any functor F : D → C from a small category D has a limit
and a colimit in C. This is not true if D is not assumed to be small. In this case care about the
small/large distinction is necessary.

8.2. The Morita quasicategory. This is an example of a quasicategory in which objects are
associative rings, morphisms between two rings are bimodules for the pair of rings, and 2-dimensional
elements are given by certain isomorphisms of bimodules.

Define a simplicial set C, so that Cn is a set whose elements are data x := (Ai,Mij , fijk), where

• for each i ∈ [n], Ai is an associative ring,
• for each i < j in [n], Mij is an (Ai, Aj)-bimodule,
• for each i < j < k in [n], fijk : Mij ⊗Aj Mjk →Mik is an isomorphism of (Ai, Ak)-bimodules,

such that
• for each i < j < k < `, the diagram

(8.3)

Mij ⊗Mjk ⊗Mk`

id⊗fjk`
//

fijk⊗id

��

Mij ⊗Mj`

fij`
��

Mik ⊗Mk`
fik`

// Mi`

commutes.

Here is a picture of the data of an n-simplex for n ∈ {0, 1, 2, 3}:

A0

M01

��

A0

M01

��

M02

''

A0

M01

��

M02
''

M03

��

f023

A0 A2 A2 M23
// A3

A1 A1
M12

77f012

A1

M12

77

M13

CC

f123

f012

For an simplicial operator δ : [m]→ [n], we define xδ := (Aδ(i),Mδ(i)δ(j), fδ(i)δ(j)δ(k)). When δ is
injective this stands as it is, but if δ is not injective, we must set Mij := Aδ(i) when δ(i) = δ(j),
and set fijk to the canonical isomorphism Aδ(i) ⊗Aδ(j) Mδ(j)δ(k) → Mδ(i)δ(k) if δ(i) = δ(j) or

Mδ(i)δ(j) ⊗Aδ(j) Aδ(k) →Mδ(i)δ(k) if δ(j) = δ(k).

I claim that C is a quasicategory. Fillers for Λ2
1 ⊂ ∆2 always exist: a map Λ2

1 → C is a choice
of (A0,M01, A1,M12, A2), and an extension to ∆2 can be given by setting M02 to be the tensor
product, and f012 the identity map. Note that there can be more than one choice: even keeping
M02 the same, there is a choice of isomorphism f012.

Fillers for Λ3
1 ⊂ ∆3 and Λ3

2 ⊂ ∆3 always exist, and are unique: finding a filler amounts to choosing
isomorphisms f023 = fik` (for Λ3

1) or f013 = fij` (for Λ3
2) making (8.3) commute, and such choices

are unique. Similarly, all fillers in higher dimensions Λnj ⊂ ∆n with n ≥ 4 exist and are unique.

8.4. Quasicategory of categories. Define a simplicial set C so that Cn is a set whose elements
are data x := (Ci, Fij , φijk) where

• for each i ∈ [n], Ci is a (small) category,
• for each i < j in [n], Fij : Ci → Cj is a functor,
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• for each i < j < k in [n], φijk : FjkFij ⇒ Fik is a natural isomorphism of functors Ci → Ck,
such that
• for each i < j < k < `, the diagram

Fk`FjkFij
φjk` idFij +3

idFk` φijk
��

Fj`Fij

φij`
��

Fk`Fik
φik`

+3 Fi`

commutes.

The action of simplicial operators is defined exactly as in the previous example, as is the proof that
C is a quasicategory.

8.5. Nerve of a crossed module. A crossed module is data (G,H, φ, ρ), consisting of groups
G and H, and homomorphisms φ : H → G and ρ : G→ AutH, such that

φ(ρ(g)(h)) = gφ(h)g−1, ρ(φ(h))(h′) = hh′h−1, for all g ∈ G, h, h′ ∈ H.

(For instance: G = H = the cyclic group of order 4, with φ(x) = x2 and ρ the non-trivial action.)
From this we can construct a quasicategory (in fact, a “quasigroupoid”) much as in the last example:
an n-simplex is data (gij , hijk) with gij ∈ G, hijk ∈ H, satisfying identities

gijgjk = φ(hijk)gik, hijkhik` = ρ(gij)(hjk`)hij`.

8.6. Spans. (See [Bar14, §§2–3], where this is called the effective Burnside ∞-category.) For each
object [n] of ∆, define [n]tw to be the category with

• objects pairs (i, j) with 0 ≤ i ≤ j ≤ n, and
• a unique morphism (i, j)→ (i′, j′) whenever i′ ≤ i ≤ j ≤ j′.

The construction [n] 7→ [n]tw defines a functor ∆→ Cat. (The category [n]tw is called the twisted
arrow category of [n]; in fact you can define a twisted arrow category Ctw for any category C.)

Let C be a category which has pullbacks; for an explicit example, think of the category of finite
sets. Let R(C) be the simplicial set defined so that

R(C)n := {functors ([n]tw)op → C}.
Elements of R(C)0 are just objects of C. Elements of R(C)1, R(C)2, R(C)3 are respectively
diagrams in C of shape

X03
zz $$

X02
zz $$

X02
zz $$

X13
zz $$

X01
zz $$

X01
zz $$

X12
zz $$

X01
zz $$

X12
zz $$

X23
zz $$

X00 X11 X00 X11 X22 X00 X11 X22 X33

Let A(C)n ⊆ R(C)n denote the subset whose n-dimensional elements are functors X : ([n]tw)op → C
such that for every i′ ≤ i ≤ j ≤ j′ the square

Xi′j′
//

��

Xij′

��

Xi′j
// Xij

is a pullback in C. Then A(C) is a subcomplex, and in fact is a quasicategory. This is another
example in which extensions along inner horns Λnj ⊂ ∆n exist for n ≥ 2, and are unique for n ≥ 3.
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8.7. Singular complex of a space. The topological n-simplex is

∆n
top :=

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣ ∑xi = 1, xi ≥ 0
}
,

the convex hull of the standard basis vectors. We get a functor ∆top : ∆→ Top by ∆top([n]) = ∆n
top.

For a topological space T , we define Sing T to be the simplicial set [n] 7→ HomTop(∆n
top, T ).

Define topological horns

(Λnj )top :=
{
x ∈ ∆n

top

∣∣ ∃ i ∈ [n] r {j} such that xi = 0
}
⊂ ∆n

top,

and observe that continuous maps (Λnj )top → T correspond in a natural way with maps Λnj → Sing T .

(Exercise. This is a consequence of the fact that Λnj is a colimit of all the ∆S ⊆ Λnj , and that (Λnj )top

is similarly a colimit of all the ∆S
top ⊆ (Λnj )top.) There exists a continuous retraction ∆n

top → (Λnj )top

(Exercise: describe such a retraction), and thus we see that

Hom(∆n,Sing T )→ Hom(Λnj , Sing T )

is surjective for every horn (not just inner ones).

8.8. Remark (Kan complexes). A simplicial set X which has extensions for all horns is called a Kan
complex. Thus, Sing T is a Kan complex, and so in particular is a quasicategory (and as we will
see below, a “quasigroupoid” (10.11)).

8.9. Eilenberg-MacLane object. Fix an abelian group A and an integer d ≥ 0. We define a
simplicial set K = K(A, d), so that Kn is a set whose elements are data a = (ai0...id) consisting of

• for each 0 ≤ i0 ≤ · · · ≤ id ≤ n, an element ai0...id ∈ A, such that
• ai0...id = 0 if iu−1 = iu for any u, and
• for each 0 ≤ j0 ≤ · · · ≤ jd+1 ≤ n we have

∑
u(−1)uaj0...ĵu...jd+1

= 0.

(Here “j0 . . . ĵu . . . jd+1” is shorthand for the subsequence j0, j1, . . . , ju−1, ju+1, . . . , jd, jd+1

with ju omitted.

For a map δ : [m]→ [n] we define

(aδ)i0...id = aδ(i0)...δ(id).

The object K(A, d) is a Kan complex, and hence a quasicategory (and in fact a quasigroupoid).
When d = 0, this is just a discrete simplicial set, equal to A in each dimension.

8.10. Exercise. Show that K(A, 1) is isomorphic to the nerve of a category, namely the nerve of the
group A regarded as a category with one object.

8.11. Exercise. Show that K(A, d) is a Kan complex, i.e., that Hom(∆n,K(A, d)) →
Hom(Λn

j ,K(A, d)) is surjective for all horns Λn
j ⊂ ∆n. In fact, this map is bijective unless n = d.

(Hint: there are four distinct cases to check, namely n < d, n = d, n = d+ 1, and n > d+ 1.)

8.12. Exercise. Given a simplicial set X, a normalized d-cocycle with values in an abelian group
A is a function f : Xd → A such that

(1) f(x0,...i,i,...d−1) = 0 for all x ∈ Xd−1 and 0 ≤ i ≤ d− 1, and
(2)

∑
(−1)if(x0,...,̂i,...,d+1) = 0 for all x ∈ Xd+1 and 0 ≤ i ≤ d+ 1.

Show that the set Zdnorm(X;A) of normalized d-cocycles on X is in bijective correspondence with
HomsSet(X,K(A, d)). (Hint: an element a ∈ Kn is uniquely determined by the collection of elements
aδ ∈ Kd = A, as δ ranges over injective maps [d]→ [n].)

8.13. Remark. Eilenberg-MacLane objects are an example of a simplicial abelian group: the map
+: K×K → K defined in each dimension by (a+ b)i0...id = ai0...id + bi0...id is a map of simplicial sets
which satisfies the axioms of an abelian group, reflecting the fact that Zdnorm(X;A) is an abelian
group.
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9. Homotopy category of a quasicategory

Our next goal is to define the notion of an isomorphism in a quasicategory. This notion behaves W 23 Jan 2019

much like that of homotopy equivalence in topology. We will define isomorphism by means of the
homotopy category of a quasicategory. If we think of a quasicategory as “an ordinary category with
higher structure”, then its homotopy category is the ordinary category obtained by “flatting out
the higher stucture”.

9.1. The fundamental category of a simplicial set. The homotopy category of a quasicategory
is itself a special case of the notion of the fundamental category of a simplicial set, which we turn to
first.

A fundamental category for a simplicial set X consists of (i) a category hX, and (ii) a map
α : X → N(hX) of simplicial sets, such that for every category C, the map

α∗ : Hom(N(hX), NC)→ Hom(X,NC)

induced by restriction along α is a bijection. This is a universal property which characterizes the
fundamental category up to unique isomorphism, if it exists.

9.2. Proposition. Every simplicial set has a fundamental category.

Proof sketch. Given X, we construct hX by generators and relations. First, consider the free
category F , whose objects are the set X0, and whose morphisms are finite “composable” sequences
[an, . . . , a1] of edges of X1. Thus, morphisms in F are “words”, whose “letters” are edges ai with
(ai+1)0 = (ai)1, and composition is concatenation of words; the element [an, . . . , a1] is then a
morphism (a1)0 → (an)1. (Note: we also suppose that there is an empty sequence []x in F for each
vertex x ∈ X0; these correspond to identity maps in F .)

Then hX is defined to be the largest quotient category of F subject to the following relations on
morphisms:

• [a] ∼ []x for each x ∈ X0 where a = x00 ∈ X1, and
• [g, f ] ∼ [h] whenever there exists a ∈ X2 such that a01 = f , a12 = g, and a02 = h.

The map α : X → N(hX) sends x ∈ Xn to the equivalence class of [xn−1,n, . . . , x0,1]. Given this,
verifying the desired universal property of α is formal.

(We will give another construction of the fundamental category in (13.18).) �

9.3. Exercise. Complete the proof of (9.2) by showing that α∗ : Hom(N(hX), NC)→ Hom(X,NC)
is a bijection for any category C.

As a consquence: the fundamental category construction describes a functor h : sSet → Cat,
which is left adjoint to the nerve functor N : Cat→ sSet.

In general, the fundamental category of a simplicial set is not an easy thing to get a hold of
explicitly, because it is difficult to give an explicit description of a “quotient category” induced by a
relation on its morphisms. We will not be making much use of it. When C is a quasicategory, there
is a more concrete construction of hC, which in this context is called the homotopy category of C.
Warning: Sometimes people will not distinguish “fundamental category” from “homotopy category”
as I have here, and just call either the homotopy category.

9.4. The homotopy relation on morphisms. Fix a quasicategory C. For x, y ∈ C0, let
homC(x, y) := { f ∈ C1 | f0 = x, f1 = y } denote the set of “morphisms” in C from x to y. We
write 1x for the degenerate element x00 ∈ homC(x, x).

Define relations ∼`, ∼r on homC(x, y) (called left homotopy and right homotopy) by

• f ∼` g iff there exists a ∈ C2 with a01 = 1x, a02 = f , a12 = g,
• f ∼r g iff there exists b ∈ C2 with b12 = 1y, b01 = f , b02 = g.
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Pictorally:

f ∼` g :

x f

''
1x
��

y

x g

77a f ∼r g :

y

1y
��

x

f 77

g ''

b

y

Note that f ∼` g in homC(x, y) coincides with g ∼r f in homCop(y, x).

9.5. Remark. If C is an ordinary category, then the left homotopy and right homotopy relations
reduce to the equality relation on morphisms x→ y.

9.6. Proposition. The relations ∼` and ∼r are identical, and are an equivalence relation on
homC(x, y).

Proof. Given f, g, h : x→ y in a quasicategory C, we will prove

(1) f ∼` f ,
(2) f ∼` g and g ∼` h imply f ∼` h,
(3) f ∼` g implies f ∼r g,
(4) f ∼r g implies g ∼` f .

These show that ∼` is an equivalence relation, and also that ∼r and ∼` coincide. The idea is to use
the inner-horn extension condition for C to produce the appropriate relations.

(1) f ∼` f is exhibited by f001 ∈ C2.

x
f
""

1x

��

y

x

f

<<f001

(2), (3), and (4) are demonstrated by the following diagrams, which present a map from an inner
horn of ∆3 (respectively Λ3

1, Λ3
1, and Λ3

2) to C constructed from the given data. The restriction of
any extension to ∆3 along the remaining face gives the conclusion.

x
f

""

1x
��

1x

��

x g //

1x
��

a

x000 y

x
h

<<

b

x
g

""

1x
��

f

��

x g //

g

��

g001

a y

y
1y

==

g011

x
g

""

f

��
1x

��

b

y 1y // y

x
f

<<

f

??
f001

f011

�

9.7. Composition of homotopy classes of morphisms. We now define f ≈ g to mean f ∼` g
(equivalently f ∼r g). We speak of homotopy classes [f ] of morphisms f ∈ homC(x, y), meaning
equivalence classes under ≈. Next we observe that we can compose homotopy classes.

Given f ∈ homC(x, y), g ∈ homC(y, z), h ∈ homC(x, z), we say that h is a composite of (g, f) if
there exists a 2-dimensional element a ∈ C2 with a〈01〉 = f , a〈12〉 = g, a〈02〉 = h; thus composition
is a three-fold relation on hom(x, y)× hom(y, z)× hom(x, z). The composite relation is compatible
with the homotopy relation, as shown by the following.

9.8. Lemma. If f ≈ f ′, g ≈ g′, h a composite of (g, f), and h′ a composite of (g′, f ′), then h ≈ h′.

Proof. Since ≈ is an equivalence relation, it suffices prove the special cases (a) f = f ′, and (b)
g = g′. We prove case (b).
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Let a ∈ C2 exhibit f ∼` f ′, and let b, b′ ∈ C2 exhibit h as a composite of (g, f) and h′ as a
composite of (g, f ′) respectively. The inner horn Λ3

2 → C defined by

0
h

!!

f

��
1x

��

b

2 g // 3

1
h′

==

f ′

@@
a

b′

extends to u : ∆3 → C, and u|∆{0,1,3} exhibits h ∼` h′. �

Thus, composites of (g, f) live in a unique homotopy class of morphisms in C, which only depends
on the homotopy classes of g and f . I will write [g] ◦ [f ] for this class.

I’ll leave the following as exercises; the proofs are much like what we have already seen.

9.9. Lemma. Given f : x→ y, we have [f ] ◦ [1x] = [f ] = [1y] ◦ [f ].

9.10. Lemma. If [g] ◦ [f ] = [u], [h] ◦ [g] = [v], then [h] ◦ [u] = [v] ◦ [f ].

9.11. The homotopy category of a quasicategory. For any quasicategory, we define its homo-
topy category hC, so that ob(hC) := C0, while homhC(x, y) := homC(x, y)/ ≈, with composition
defined by [g] ◦ [f ]. The above lemmas (9.9) and (9.10) exactly imply that hC is a category.

We define a map π : C → N(hC) of simplicial sets as follows. On vertices, π is the identity
map C0 = N(hC)0 = obhC. On edges, the map is defined by the tautological quotient maps
homC(x, y)→ homC(x, y)/ ≈ sending f 7→ [f ]. The map π sends an n-dimensional element a ∈ Cn
to the unique element π(a) ∈ N(hC)n such that π(a)i−1,i = π(ai−1,i). These functions are seen to
be compatible with simplicial operators using the following exercise.

9.12. Exercise. Let C be a quasicategory and a ∈ Cn an n-dimensional element, and define
fi := ai−1,i ∈ C1 for i = 1, . . . , n and g := a0,n ∈ C1. Show that [fn]◦ · · · ◦ [f1] = [g] in the homotopy
category hC.

Note that if C is an ordinary category, then f ≈ g if and only if f = g. Thus, π : C → N(hC) is
an isomorphism of simplicial sets if and only if C is isomorphic to the nerve of a category.

The following says that the homotopy category of a quasicategory is its fundamental category,
justifying the notation “hC”.

9.13. Proposition. Let C be a quasicategory and D a small category, and let φ : C → N(D) be a
map of simplicial sets. Then there exists a unique map ψ : N(hC)→ N(D) such that ψπ = φ.

Proof. We first show existence, by constructing a suitable map ψ, which being a map between nerves
can be described as a functor hC → D. On objects, let ψ send x ∈ ob(hC) = C0 to φ(x) ∈ ob(D) =
(ND)0. On morphisms, let ψ send [f ] ∈ homhC(x, y) to φ(f) ∈ homD(φ(x), φ(y)) ⊆ (ND)1.
Observe that the function on morphisms is well-defined since if f ∼` f ′, exhibited by some a ∈ C2,
then φ(a) ∈ (ND)2 exhibits the identity φ(f) = φ(f ′)φ(1x) = φ(f ′) in D. It is straightforward to
show that ψ so defined is actually a functor, and that ψπ = φ as maps C → N(D).

The functor ψ defined above is the unique solution: the value of ψ on objects and morphisms is
uniquely determined, and π : Ck → (hC)k is bijective for k = 0 and surjective for k = 1. �

In particular, the homotopy category construction gives a pair of adjoint functors

h : qCat� Cat :N.

9.14. Exercise. Understand the homotopy categories of the various examples described in §8.

9.15. Exercise (Easy but important). Show that for quasicategories C and D there is an isomorphism
hC × hD ≈ h(C ×D).
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9.16. A criterion for composition. We have observed that for morphisms f : x→ y and g : y → z F 25 Jan 2019

in a quasicategory that we can define a composite “g ◦ f” using extension along Λ2
1 ⊂ ∆2, and that

though such compositions are not unique, they are unique up to homotopy, so we get a well-defined
homotopy class [g] ◦ [f ]. The following proposition says that every element in this homotopy class is
obtained from this construction.

9.17. Proposition. If f : x→ y, g : y → z, and h : x→ z are morphisms in a quasicategory C, then
[h] = [g] ◦ [f ] if and only if there exists u : ∆2 → C such that

u|∆{0,1} = f, u|∆{1,2} = g, u|∆{0,2} = h.

Thus, every morphism in the homotopy class of h can be interpreted as a composite of g with f .

Proof. Clearly if u exists then [h] = [g] ◦ [f ]. Conversely, suppose given f, g, h with h ∈ [g] ◦ [f ], and
choose a a : ∆2 → C with a01 = f and a12 = g, whence [g] ◦ [f ] = [h′] for h′ = a02. Since h ∈ [h′]
there is a b ∈ C2 witnessing the relation h′ ∼r h, and using this we can construct a map Λ3

2 → C
according to the diagram

0
h

!!

h′

��
f

��

b

2 1z // 3

1
g

==

g

@@
a

g011

Extend to a map v : ∆3 → C; then u = v|∆{0,1,3} exhibits h as a composite of (g, f) as desired. �

10. Isomorphisms in a quasicategory

Let C be a quasicategory. We say that an edge f ∈ C1 is an isomorphism6 if its image in the
homotopy category hC is an isomorphism in the usual sense of category theory.

Explicitly, f : x → y is an isomorphism if and only if there exists an edge g : y → x such that
[g] ◦ [f ] = [1x] and [f ] ◦ [g] = [1y], where equality is in the homotopy category hC.

10.1. Example. Consider f ∈ C1. If we can produce g ∈ C1 and a, b ∈ C2 such that

a01 = f = b12, a12 = g = b01, a02 = x00, b02 = y00 :

x
1x //

f

��

x

y
1y

//

g
??

b

y

g

??

a

then [g] ◦ [f ] = [1x] and [f ] ◦ [g] = [1y], so f isomorphism. The converse also holds: if f is an
isomorphism, then there exist g ∈ C1 and a, b ∈ C2 as above, which can be proved using (9.17).

10.2. Example (Identity maps are isomorphims). For every x ∈ C0 the identity map 1x : x→ x is an
isomorphism: for instance, use a = b = x000 in the above diagram.

6Lurie [Lur09, §1.2.4] uses the term “equivalence” for this. I prefer to go with “isomorphism” here, because it is in
fact a generalization of the classical notion of isomorphism, and because so many other things also get to be called
some kind of equivalence. Other authors also use “isomorphism” in this context.
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10.3. Preinverses and postinverses. Let C be a quasicategory. Given f : x → y ∈ C1, a
postinverse7 of f is a g : y → x ∈ C1 such that [g] ◦ [f ] = [1x], and a preinverse8 of f is an
e : y → x ∈ C1 such that [f ] ◦ [e] = [1y]. An inverse is an f ′ ∈ C1 which is both a postinverse and
a preinverse. The following is trivial, but very handy.

10.4. Proposition. In a quasicategory C consider f ∈ C1. The following are equivalent.

• f is an isomorphism.
• f admits an inverse f ′.
• f admits a postinverse g and a preinverse e.
• f admits a postinverse g and g admits a postinverse h.
• f admits a preinverse e and e admits a preinverse d.

If these equivalent conditions hold, then f ≈ d ≈ h and f ′ ≈ e ≈ g, and all of them are isomorphisms.

Proof. All of these are equivalent to the corresponding statements about morphisms in the homotopy
category hC, where they are seen to be equivalent by elementary arguments. �

Note that inverses to a morphism in a quasicategory are generally not unique, though necessarily
they are unique up to homotopy.

10.5. Quasigroupoids. A quasigroupoid is a quasicategory C such that hC is a groupoid, i.e.,
a quasicategory in which every morphism is an isomorphism.

10.6. Exercise. If every morphism in a quasicategory admits a preinverse, then it is a quasigroupoid.
Likewise if every morphism admits a postinverse.

10.7. The core of a quasicategory. For an ordinary category A, the core (or maximal sub-
groupoid) of A is the subcategory Acore ⊆ A consisting of all the objects, and all the isomorphisms
between the objects.

For a quasicategory C, we define the core9 Ccore ⊆ C to be the subsimplicial set consisting of
elements all of whose edges are all isomorphisms. That is, Ccore is defined so that the diagram

Ccore // //

��

C

π

��

(hC)core // // hC

is a pullback of simplicial sets. Observe that N(Acore) = (NA)core for a category A.

10.8. Proposition. For a quasicategory C, its core Ccore is a quasigroupoid, and every subcomplex
of C which is a quasigroupoid is contained in Ccore.

Proof. First, note that Ccore is a subcomplex by construction: if a ∈ Cn is such that all edges are
isomorphisms, then the same is true for af ∈ Cm for any f : [m]→ [n], since (af)i,j = af(i),f(j) for
any 0 ≤ i ≤ j ≤ m.

Next, we show that Ccore is a quasicategory. In fact, we show that given f : ∆n → C such
that f(Λn

j ) ⊆ Ccore for some 0 < j < n, then f(∆n) ⊆ Ccore, so that inner-horn-filling for C
implies inner-horn-filling for Ccore. For n = 2 this is the fact that composites of isomorphisms are
isomorphisms (true in any quasicategory because it is true in its homotopy category), while for
n ≥ 3 it is just the fact that an inner horn of ∆n contains all the edges of ∆n.

Thus, Ccore is a quasicategory, and is easily seen to be a quasigroupoid, since an inverse of an
isomorphism in C is also an isomorphism.

7or left inverse, or retraction,
8or right inverse, or section,
9Lurie uses the notation C' for what we are calling Ccore.
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The final statement is clear: if G ⊆ C is a subcomplex which is a quasigroupoid, then every edge
in G has in inverse in G, and hence an inverse in C. �

10.9. Kan complexes. Recall that a Kan complex (8.8) is a simplicial set which has the extension
property with respect to all horns, not just inner horns. That is, K is a Kan complex iff

Hom(∆n,K)→ Hom(Λnj ,K)

is surjective for all 0 ≤ j ≤ n, n ≥ 1.

10.10. Exercise. Show that every simplicial set X has extensions for 1-dimensional horns; i.e., every
Λ1
j → X extends over Λ1

j ⊂ ∆1, where j ∈ {0, 1}. Thus, X is a Kan complex if and only if it has
extensions just for the horns inside simplices of dimension ≥ 2.

10.11. Proposition. Every Kan complex is a quasigroupoid.

Proof. It is immediate that a Kan complex K is a quasicategory. To show K is a quasigroupoid, note
that the extension condition for Λ2

0 ⊂ ∆2 implies that every morphism in hK admits a postinverse.
Explicitly, if f : x→ y is an edge in K, let u : Λ2

0 → K with u01 = f and u02 = f00 = 1x, so there is
an extension v : ∆2 → K and g := v12 satisfies gf ≈ 1x. Use (10.6). �

This proposition has a converse.

A. Deferred Proposition. Quasigroupoids are precisely the Kan complexes.

This is a very important technical result, and it is not trivial; it is the main result of [Joy02]. We
will give the proof in (29.2).

Recall (§8.7) that we observed that the singular complex Sing T of a topological space is a Kan
complex, and therefore a quasigroupoid. It is reasonable to think of Sing T as the fundamental
quasigroupoid of the space T .

10.12. Exercise (for topologists). Show that if T is a space, then hSing T , the homotopy category of
the singular complex of T , is precisely the usual fundamental groupoid of T .

10.13. Quasigroupoids, components, and isomorphism classes. We say that two objects in
a quasicategory are isomorphic if there exists an isomorphism between one. This is clearly an
equivalence relation on C0, and thus we speak of isomorphism classes of objects.

Recall (6.8) that the set of connected components of a simplicial set is given by

π0X ≈
((∐

n≥0

Xn

)
/ ∼
)
≈ (X0/ ∼1),

the equivalence classes of elements of X under the equivalence relation generated by “related by a
simplicial operator”, or equivalently the equivalence classes of vertices of X under the equivalence
relation generated by “connected by an edge” . Note that if T is a topological space, then elements
of π0 Sing T correspond exactly to path components of T .

For quasigroupoids, π0 recovers the set of isomorphism classes of objects.

10.14. Proposition. If C is a quasicategory, then

π0

(
Ccore

)
≈ isomorphism classes of objects of C.

Proof. Straightforward: edges in Ccore are precisely the isomorphisms in C. �

10.15. Exercise. Show that for a quasicategory C, π0(Ccore) ≈ π0(h(Ccore)) ≈ π0((hC)core).
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11. Function complexes and the functor quasicategory

Given ordinary categories C and D, the functor category Fun(C,D) has

• as objects, the functors C → D, and
• as morphisms f → f ′, natural transformations of functors.

Furthermore, for any category A there is a bijective correspondence between sets of functors

{A× C → D} ←→ {A→ Fun(C,D)}.

Explicitly, a functor φ : A → Fun(C,D) corresponds to φ̃ : A × C → D, given on objects by

φ̃(a, c) = φ(a)(c) for a ∈ obA and c ∈ obC, and on morphisms by φ̃(α, γ) = φ(a′)(γ) ◦ φ(α)(c) =
φ(α)(c′) ◦ φ(a)(γ) : φ(a)(c)→ φ(a′)(c′) for α : a→ a′ ∈ morA and γ : c→ c′ ∈ morC.

The generalization of the functor category to quasicategories admits a similar adjunction, and in
fact can be defined for arbitrary simplicial sets.

11.1. Function complexes. Given simplicial sets X and Y , we may form the function complex
(or mapping space) Map(X,Y ). This is a simplicial set with

Map(X,Y )n = Hom(∆n ×X,Y ),

so that the action of a simplicial operator δ : [m] → [n] on Map(X,Y ) is induced by Hom(δ ×
idX , Y ) : Hom(∆n ×X,Y ) → Hom(∆m ×X,Y ). In particular, the set Map(X,Y )0 of vertices of
the function complex is precisely the set of maps X → Y of simplicial sets.

11.2. Proposition. The function complex construction defines a functor

Map: sSetop × sSet→ sSet.

Proof. Left as an exercise. �

By construction, for each n, there is a bijective correspondence

{∆n ×X → Y } ←→ {∆n → Map(X,Y )}.
In fact, we can replace ∆n with an arbitrary simplicial set.

11.3. Proposition. For simplicial sets X, Y , Z, there is a bijection

Hom(X × Y,Z)
∼−→ Hom(X,Map(Y, Z))

natural in all three variables.

Proof. The bijection sends f : X × Y → Z to f̃ : X → Map(Y, Z) defined so that for x ∈ Xn, the

element f̃(x) ∈ Map(Y, Z)n is represented by the composite

∆n × Y x×id−−−→ X × Y f−→ Z.

The inverse of this bijection sends g : X → Map(Y, Z) to g̃ : X × Y → Z, defined so that for
(x, y) ∈ Xn × Yn, the element g̃(x, y) ∈ Zn is represented by

∆n (id,y)−−−→ ∆n × Y g(x)−−→ Z.

The proof amounts to showing that both f̃ and g̃ are in fact maps of simplicial sets, and that the
above constructions are in fact inverse to each other. This is left as an exercise, as is the proof of
naturality. �

11.4. Exercise. Show, using the previous proposition, that there are natural isomorphisms

Map(X × Y,Z) ≈ Map(X,Map(Y, Z)).

of simplicial sets. This implies that the function complex construction makes sSet into a cartesian
closed category. (Hint: show that both objects represent isomorphic functors sSetop → Set, and
apply the Yoneda lemma.)
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11.5. Remark. The construction of the function complex is not special to simplicial sets. The
construction of Map(X,Y ) (and its properties as described above) works the same way in any
category of functors Cop → Set, where C is a small category (e.g., C = ∆). In this general setting,
the role of the standard n-simplices is played by the representable functors HomC(−, c) : Cop → Set.

11.6. Functor quasicategories. Thus, we may expect the generalization of functor category to
quasicategories to be defined by the function complex. In fact, if C and D are quasicategories,
then the vertices of Map(C,D) are precisely the functors C → D, and the edges of Map(C,D) are
precisely the natural transformations. Furthermore, for ordinary categories, the function complex
recovers the functor category.

11.7. Exercise. Show that for ordinary categories C and D that N Fun(C,D) ≈ Map(NC,ND).
(Hint: use that N([n]) = ∆n, and the fact that the nerve preserves finite products (6.5).)

It turns out that a function complex between quasicategories is again a quasicategory. In fact, we
have the following.

B. Deferred Proposition. Let K be any simplicial set and C a quasicategory. Then Map(K,C)
is a quasicategory.

For this reason, we will sometimes write Fun(K,C) for Map(K,C) when C is a quasicategory.
To prove (B), we need a to take a detour to develop some technology about “weakly saturated”

classes of maps and “lifting properties”. After this, we will complete the proof in §16.

Part 2. Lifting properties

12. Weakly saturated classes and inner-anodyne maps

Quasicategories are defined by an “extension property”: they are the simplicial sets C such that M 28 Jan 2019

any map K → C extends over L, whenever K ⊂ L is an inner horn inclusion Λn
j ⊂ ∆n. The set

of inner horns “generates” a larger class of maps (which will be called the class of inner anodyne
maps), which “automatically” shares the extension property of the inner horns. This class of inner
anodyne maps is called the weak saturation of the set of inner horns.

For instance, we will observe that the spine inclusions In ⊂ ∆n are inner anodyne, so that
quasicategories admit “spine extensions”, i.e., any In → C extends over In ⊂ ∆n to a map ∆n → C.

12.1. Weakly saturated classes. Consider a category (such as sSet) which has all small colimits.
A weakly saturated class is a class A of morphisms in the category, which

(1) contains all isomorphisms,
(2) is closed under cobase change,
(3) is closed under composition,
(4) is closed under transfinite composition,
(5) is closed under coproducts, and
(6) is closed under retracts.

Given a class of maps S, its weak saturation S is the smallest weakly saturated class containing
S.

We need to explain some of the elements of this definition.

• Closed under cobase change is also called closed under pushout: it means that if f ′

is the pushout of f : X → Y along some map g : X → Z, then f ∈ A implies f ′ ∈ A.
• Closed under composition means that if g, f ∈ A and gf is defined, then gf ∈ A.
• We say that A is closed under countable composition if given a countable sequence of

composable morphisms, i.e., maps

X0
f1−→ X1

f2−→ X2
f3−→ · · ·
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such that each fk ∈ A for all k ∈ Z>0, the induced map X0 → colimkXk to the colimit is in
A.

The notion closed under transfinite composition is the generalization of this, in
which N is replaced by an arbitrary ordinal λ (i.e., a well-ordered set). This means that for
any ordinal λ and any functor X : λ→ sSet, if for every i ∈ λ with i 6= 0 the evident map

(colimj<iX(j))→ X(i)

is in A, then the induced map X(0)→ colimj∈λX(j) is in A.
• Closed under coproducts means that if {fi : Xi → Yi} is a set of maps in A, then∐

i fi :
∐
iXi →

∐
i Yi is in A.

• We say that f is a retract of g if there exists a commutative diagram in C of the form

•
f

��

//

id
((• //

g

��

•
f

��
• //

id

66• // •

This is really a special case of the notion of a retract of an object in the functor category
Fun([1], sSet). We say that A is closed under retracts if for every diagram as above,
g ∈ A implies f ∈ A.

12.2. Remark. This list of properties is not minimal: (3) is actually the special case of (4) when
λ = [2], and (5) can be deduced from (2) and (4).

12.3. Example. Consider the category of sets. The class of all surjective maps is weakly saturated,
and in fact is the weak saturation of { {0, 1} → {1} }. Likewise, the class of injective maps is weakly
saturated, and in fact is the weak saturation of {∅→ {1} }.
12.4. Example. The classes of monomorphisms and epimorphisms of simplicial sets are weakly
saturated classes. Later we will identify the class of monorphisms of simplicial sets as the weak
saturation of the set of “cell inclusions” (15.25).

There is a dual notion of a weakly cosaturated class: a weakly cosaturated class is the same
thing as a weakly saturated class in the opposite category, and is characterized by being closed
under properties formally dual to (1)–(6).

12.5. Classes of “anodyne” morphisms. We use the following notation for sets of types of
horns:

InnHorn := {Λnk ⊂ ∆n | 0 < k < n, n ≥ 2 }, (inner horns),

LHorn := {Λnk ⊂ ∆n | 0 ≤ k < n, n ≥ 1 }, (left horns),

RHorn := {Λnk ⊂ ∆n | 0 < k ≤ n, n ≥ 1 }, (right horns),

Horn := {Λnk ⊂ ∆n | 0 ≤ k ≤ n, n ≥ 1 }, (horns).

The weak saturation of each of these sets will play an important role in what follows. Right now,
we focus on the weak saturation InnHorn of the set of inner horns, which is called the class of
inner anodyne10 morphisms. (There are also classes of “left anodyne”, “right anodyne”, and
plain old “anodyne” morphisms, about which we have more to say later.) Note that inner anodyne
morphisms are always monomorphisms, since monomorphisms of simplicial sets themselves form a
weakly saturated class.

10The “anodyne” terminology for the weak saturation of a set of horns was introduced by Gabriel and Zisman
[GZ67]. “Anodyne” derives from ancient Greek, meaning “without pain”; we leave it to the reader to decide whether
this choice of terminology is appropiate.
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12.6. Proposition. If C is a quasicategory and A ⊆ B is an inner anodyne inclusion, then any
f : A→ C admits an extension to g : B → C so that g|A = f .

Proof. It suffices to show that the collection A of monomorphisms i : A→ B such that every map
from A to a quasicategory extends along i is weakly saturated. Since InnHorn ⊆ A it then follows
that InnHorn ⊆ A. To prove this claim is a relatively straightforward exercise, which we leave for
the reader: check that the class A satisfies each of the conditions (1)–(6) of a weakly saturated
class. It is highly recommended that you work through this argument this if you haven’t seen it
before. �

12.7. Exercise (Easy but important). Show that every inner anodyne map induces a bijection on
vertices. (Hint: show that the class of maps of simplicial sets which are a bijection on vertices is
weakly saturated.)

12.8. Examples of inner anodyne morphisms. It is crucial to be able to prove that certain
explicit maps are inner anodyne.

Let S ⊆ [n]. A generalized horn the subcomplex ΛnS ⊂ ∆n defined by

ΛnS :=
⋃
i∈S

∆[n]ri,

i.e., the union of codimension one faces of the n-simplex indexed by elements of S. In particular,
Λn

[n]r{j} is the usual horn Λn
j . I’ll generalize this notation to arbitary totally ordered sets, so

ΛTS =
⋃
i∈S ∆Tri when S ⊆ T .

We call Λn
S ⊂ ∆n a generalized inner horn if S is not an “interval” in [n], i.e., if there exist

s < t < s′ with s, s′ ∈ S and t /∈ S.

12.9. Lemma. All generalized inner horn inclusions ΛnS ⊂ ∆n are inner anodyne.

There is a slick proof of this given by Joyal [Joy08a, Prop. 2.12], which we present in the appendix
(57.1).

12.10. Example. Consider Λ3
{0,3}, which can be pictured as the solid diagram in

0
����

��

2 // 3

1

CC@@

We can get from this to ∆3 in two steps:

Λ
{0,2,3}
{0,3}

// //

��

��

∆{0,2,3}��

��

Λ3
{0,3}

// // Λ3
2
// // ∆3

The square is a pushout of subcomplexes since Λ3
{0,3}∩∆{0,2,3} = Λ

{0,2,3}
{0,3} , and the map along the top

is isomorphic to Λ2
1 ⊂ ∆2, an inner horn inclusion. This proves that Λ3

{0,3} ⊂ ∆3 is inner anodyne.

Recall that every standard n-simplex contains a spine In ⊆ ∆n.

12.11. Lemma. The spine inclusions In ⊂ ∆n are inner anodyne for all n. Thus, for a quasicategory
C, any In → C extends to ∆n → C.

This is proved in [Joy08a, Prop. 2.13]; we give the proof in the appendix (57.2).
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12.12. Example. To show that I3 ⊂ ∆3 is inner anodyne, observe that we can get from I3 to a
generalized inner horn two steps by gluing 2-simplices along inner horns inclusions:

Λ
{0,1,2}
{0,2}

// //

��

��

∆{0,1,2}��

��

Λ
{1,2,3}
{1,3}

// //

��

��

∆{1,2,3}��

��

I3 // // I3 ∪∆{0,1,2} I3 ∪∆{0,1,2} // // Λ3
{0,3}

since I3 ∩∆{0,1,2} = Λ
{0,1,2}
{0,2} and (I3 ∪∆{0,1,2}) ∩∆{1,2,3} = Λ

{1,2,3}
{1,3} .

12.13. Exercise. Use (12.11) to show that the tautological map π : C → N(hC) from a quasicategory
to (the nerve of) its homotopy category is surjective in every degree.

13. Lifting calculus and inner fibrations

We have defined quasicategories by an “extension property”: in general, we say that X has
satisfies the extension property for A→ B if in any diagram

A
u //

f
��

X

B

s

>>

there exists a morphism s making the diagram commute. In this section, we discuss a “relative”
version of this, called a “lifting property”.

13.1. The lifting relation. Given morphisms f : A→ B and g : X → Y in a category, a lifting
problem for (f, g) is a pair of morphisms (u, v) such that vf = gu. That is, a lifting problem is
any commutative square of solid arrows of the form

A
u //

f
��

X

g

��

B v
//

s
>>

Y

A lift for the lifting problem is a morphism s such that sf = u and gs = v, i.e., a dotted arrow
making the diagram commute.

We may thus define the lifting relation on morphisms in our category: we write “f � g” if every
lifting problem for (f, g) admits a lift11. Equivalently, f � g exactly if

Hom(B,X)
s 7→(sf,gs)−−−−−−→ Hom(A,X)×Hom(A,Y ) Hom(B, Y )

is a surjection, where the target is the set of pairs (u : A→ X, v : B → Y ) such that gu = vf (i.e.,
the target is exactly the set of lifting problems for (f, g)).

When f � g holds, one sometimes says f has the left lifting property relative to g, or that g
has the right lifting property relative to f . Or we just say that f lifts against g.

We extend the notation to classes of maps, so “A� B” means: a� b for all a ∈ A and b ∈ B.

Given a class of morphisms A, define the right complement A� and left complement
�A by

A� = { g | a� g for all a ∈ A}, �A = { f | f � a for all a ∈ A}.

13.2. Proposition. For any class B, the left complement
�B is a weakly saturated class.

13.3. Exercise (Important). Prove (13.2). (This is a “relative” version of the proof of (12.6).)

11Sometimes one sees the notation “f ⊥ g” or “f t g” used instead. Our notation is taken from [Rie14, §11].
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The above proposition (13.2) has a dual statement: any right complement B� is weakly cosaturated,
i.e., satisfies dual versions of the closure properties of a weakly saturated class, or equivalently,
corresponds to a weakly saturated class in the opposite category.

13.4. Exercise (Easy). Prove that if A ⊆ B, then A� ⊇ B� and
�A ⊇ �B. Use this to show

A� = (
�

(A�))� and
�A =

�
((
�A)�).

13.5. Exercise (for those who know a little homological algebra). Fix an abelian category C (e.g.,
the category of modules over some ring R). Let P be the class of morphisms in C of the form 0→ P
where P is projective, and let B be the class of epimorphisms in C. Show that P � B; also, show
that B = P� if C has enough projectives.

13.6. Exercise. In the setting of the previous exercise, identify the class
�B.

13.7. Inner fibrations. A map p of simplicial sets is an inner fibration if InnHorn � p. The
class of inner fibrations InnFib = InnHorn� is thus the right complement of the set of inner horns.
Note that C is a quasicategory if and only if C → ∗ is an inner fibration.

Because InnFib is a right complement, it is weakly cosaturated. In particular, it is closed under
composition. This implies that if p : C → D is an inner fibration and D is a quasicategory, then C
is also a quasicategory.

13.8. Exercise. Show that if f : C → D is any functor from a quasicategory C to a category D,
then f is an inner fibration. In particular, all functors between categories are automatically inner
fibrations. (Hint: use the fact that all inner horns mapping to a category have unique extensions to
simplices.)

13.9. Factorizations. It turns out that we can always factor any map of simplicial sets into an
inner anodyne map followed by an inner fibration. This is a consequence of the following general
observation.

13.10. Proposition (“Small object argument”). Let S be a set of morphisms in sSet. Every map
f between simplicial sets admits a factorization f = pj with j ∈ S and p ∈ S�.

The proof of this proposition is by means of what is known as the “small object argument”. I’ll
give the proof in the next section. For now we record a consequence.

13.11. Corollary. For any set S of morphisms in sSet, we have that S =
�
(S�).

Proof. That S ⊆ �
(S�) is immediate from (13.2). Given f such that f � S�, use the small object

argument (13.10) to choose f = pj with j ∈ S and p ∈ S�. We have a commutative diagram of
solid arrows

•
id
//

id

&&

f

��

•
id
//

j

��

•
f

��
•

id

88
s // •

p
// •

A map s exists making the diagram commute, because f � p, so there is a lift in

•
j
//

f

��

•
p

��
•

id
//

s

??

•

The diagram exhibits f as a retract of j, whence f ∈ S since weak saturations are closed under
retracts. �
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The proof of the corollary is called the “retract trick”: given f = pj, f � p implies that f is a
retract of j, while j � f implies that f is a retract of p.

In the case we are currently interested in, we have that InnHorn =
�

InnFib and InnHorn
�

=
InnFib, and thus any map can be factored into an inner anodyne map followed by an inner fibration.

13.12. Weak factorization systems. A weak factorization system in a category is a pair F 1 Feb 2019

(L,R) of classes of maps such that

• every map f admits a factorization f = r` with r ∈ R and ` ∈ L, and

• L =
�R and R = L�.

Thus, in any weak factorization the “left” class L is weakly saturated and the “right” class R is
weakly cosaturated. The small object argument implies that (S, S�) is a weak factorization in sSet
for every set of maps S. In particular, (InnHorn, InnFib) is a weak factorization system.

13.13. Exercise (for those who know some homological algebra). In an abelian category, let A be
the class of injective maps with projective cokernel, and let B be the class of surjections. Show that
the pair (A,B) is a weak factorization system if and only if the category has enough projectives.
(This exercise is related to (13.5).)

13.14. Uniqueness of liftings. The relation f � g says that lifting problems admit solutions, but
not that the solutions are unique. However, we can incorporate uniqueness into the lifting calculus
if our category has pushouts.

Given a map f : A→ B, let f∨ := (f, f) : B qA B → B be the “fold” map, i.e., the unique map
such that the composition with either of the canonical maps B → B qAB is f . It is straightforward
to show that for a map g : X → Y we have that {f, f∨} � g if and only if in every commutative
square

A //

f
��

X

g

��

B //

s

>>

Y

there exists a unique lift s.

13.15. Example. Consider the category of topological spaces. Let A be the class of morphisms of the
form A× {0} → A× [0, 1], where A is an arbitrary space. Then (A ∪A∨)� contains all covering
maps (by the “Covering Homotopy Theorem”).

A weak factorization system (L,R) in which liftings of type L�R are always unique is called an
orthogonal factorization system.

13.16. Exercise. Show that in an orthogonal factorization system, the factorizations f = r` are
unique up to unique isomorphism.

13.17. Exercise. Show that ({surjections}, {injections}) is an orthogonal factorization system for
Set.

The small object argument implies that (S ∪ S∨, (S ∪S∨)�) is an orthogonal factorization system
for every set S of moprhisms.

13.18. Example (The fundamental category via a weak factorization system). In simplicial sets,
the projection map C → ∗ is in the right complement to S := InnHorn ∪ InnHorn∨ if and only if
C is isomorphic to a nerve of a category (5.7). The small object argument using S, applied to a
projection X → ∗, thus produces a morphism π : X → Y in S with Y the nerve of a category.

Uniqueness of liftings in this case implies that π : X → Y has precisely the universal property
of the fundamental category of X defined in §9.1: given f : X → C with C a category, a unique
extension of f over X → Y exists. Thus, the small object argument applied to S gives another
construction of the fundamental category (9.1) of an arbitrary simplicial set S.
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13.19. Exercise. Prove that if f : X → Y is any inner anodyne map, then the induced functor
h(f) : hX → hY between fundamental categories is an isomorphism. (Hint: use the universal
property of fundamental categories to construct an inverse to h(f).)

14. The small object argument

In this section we give the proof of (13.10), i.e., that given a fixed set S = {si : Ai → Bi} of maps
of simplical sets, we can factor any map f : X → Y as f = pj with j ∈ S and p ∈ S�. For the
reader: it may be helpful to first work through the special case where Y = ∆0 (the terminal object
in simplicial sets).

14.1. A factorization construction. Given any map f : X → Y , we first produce a factorization

X
Lf−−→ Ef

Rf−−→ Y, (Rf)(Lf) = f

as follows. Consider the set

[S, f ] := { (si, u, v) | si ∈ S, fu = vsi } =


Ai

u //

si ��

X
f��

Bi v
// Y


of all commutative squares which have an arrow from S on the left-hand side, and f on the right-hand
side. We define Ef , Lf , and Rf using the diagram∐

(si,u,v)

Ai
(u)

//

∐
si
��

X

Lf

��

f

""∐
(si,u,v)

Bi //

(v)

88Ef
Rf

// Y

where the the coproducts are indexed by the set [S, f ], and the square is a pushout. Note that
Lf ∈ S by construction; however, we do not expect that Rf in S�.

We can iterate the construction:

X

Lf

&&

L2f

++

L3f

,,

Lωf

++
X Lf //

f

��

Ef LRf //

Rf

xx

E2f LR2f //

R2f

ss

E3f //

R3f

rr

· · · // Eωf

Rωf
ooY

Here each triple (Eαf, Lαf,Rαf) is obtained by factoring the “R” map of the previous one, so that

(14.2) Eα+1f := E(Rαf), Lα+1f := L(Rαf) ◦ (Lαf), Rα+1f := R(Rαf).

Taking direct limits gives a factorization X
Lωf−−→ Eωf

Rωf−−−→ Y of f , with Eωf = colimn→∞E
nf .

We can go even further, using the magic of transfinite induction, and define compatible factor-
izations (Eλf, Lλf,Rλf) for each ordinal12 λ. For successor ordinals α+ 1 use the prescription of
(14.2), while for limit ordinals β take a direct limit Eβf := colimα<β E

αf as in the construction of
Eωf above.

12For a treatment of ordinals, see for instance the chapter on sets in [TS14].
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It is immediate that every Lαf ∈ S, because weak saturations are closed under transfinite
composition. The maps Rαf are not generally contained in S�, though they do satisfy a “partial
lifting property”: whenever α < β there exists by construction a dashed arrow making

Ai
u′ //

si

��

Eαf // Eα+1f // Eβf

Rβf
��

Bi v
//

55

Y

commute, for any u′ and v making the square commute. Thus, we get a solution to a lifting problem
(u, v) of si against Rβf whenever the map u : Ai → Eβf on the top of a commutative square that
we want a lift for can be factored through one of the maps Eαf → Eβf with α < β. This is so
exactly because Eα+1f was obtained from Eαf by “formally adjoining” a solution to every such
lifting problem.

The “small object argument” amounts to the following.
Claim. There exists an ordinal κ such that for every domain Ai of a map in S, every map

Ai → Eκf factors through some Eαf → Eκf with α < κ.
Given this, it follows from the “partial lifting property” that S � Rκf , and so we obtain the

desired factorization: f = (Rκf) ◦ (Lκf) with Lκf ∈ S and Rκf ∈ S�.
It remains to prove the claim, which we will do by choosing κ to be a regular cardinal which is

“bigger” than all the simplicial sets Ai.

14.3. Regular cardinals. The cardinality of a set X is the smallest ordinal λ such that there
exists a bijection between X and λ; we write |X| for this. Ordinals which can appear this way are
called cardinals. For instance, the first infinite ordinal ω is the countable cardinal.

Note: the class of infinite cardinals is an unbounded subclass of the ordinals, so is well-ordered
and can be put into bijective correspondence with ordinals. The symbol ℵα denotes the αth infinite
cardinal, e.g., ℵ0 = ω.

Say that λ is a regular cardinal13 if it is an infinite cardinal, and if for every set A of ordinals
such that (i) α < λ for all α ∈ A, and (ii) |A| < λ, then supA < λ. For instance, ω is a regular
cardinal, since any finite collection of finite ordinals has a finite upper bound. Not every infinite
cardinal is regular14; however, there exist arbitrarily large regular cardinals15.

Every ordinal α defines a category, which is the poset of ordinals strictly less than α. Colimits of
functors Y : κ→ Set with κ a regular cardinal have the following property: the map

(14.4) colimα<κ Hom(X,Yα)→ Hom(X, colimα<κ Yα)

is a bijection whenever |X| < κ. This generalizes the familiar case of κ = ω: any map of a finite set
into the colimit of a countable sequence factors through a finite stage.

14.5. Exercise. Prove that (14.4) is a bijection when |X| < κ.

14.6. Small simplicial sets. Given a regular cardinal κ, we say that a simplicial set is κ-small if
it is isomorphic to the colimit of some functor F : C → sSet, such that (i) |obC| , |morC| < κ, and
(ii) each F (c) is isomorphic to a standard simplex ∆n. Morally, we are saying that a simplicial set is
κ-small if it can be “presented” with fewer than κ generators and fewer than κ relations.

Given a functor Y : κ → sSet and a κ-small simplicial set X, we have a bijection as in (14.4).
(This is sometimes phrased as: κ-small simplicial sets are κ-compact.) Thus, to prove the claim
about the small object argument, we simply choose a regular cardinal κ greater than sup{|Ai|}.

13In the terminology of [TS14, §3.7], a regular cardinal is one which is equal to its own cofinality.
14For instance, ℵω = sup {ℵk | k < ω } is not regular.
15For instance, every successor cardinal ℵα+1 is regular.
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14.7. Example. The standard simplices ∆n, as well as any subcomplex such as the horns Λn
j , are

ω-small: this is a consequence of (4.19). Thus, when we carry out the small object argument for
S = InnHorn, we can take (Eωf, Lωf,Rωf) to be the desired factorization.

14.8. Functoriality. The construction f 7→ (X
Lf−−→ Ef

Rf−−→ Y ) is a functor Fun([1], sSet) →
Fun([2], sSet), and it follows that so is f 7→ (X

Lαf−−→ Eαf
Rαf−−−→ Y ) for any α. Because the choice of

regular cardinal κ depends only on S, not on the map f , we see that the small object argument
actually produces a functorial factorization of a map into a composite of an element of S with an
element S�. We will have use of this later.

15. Non-degenerate elements and the skeletal filtration

We have noted that monomorphisms of simplicial sets form a weakly saturated class. Here we
identify an important set of maps called Cell, so that the weak saturation of Cell is precisely the
class of monomorphisms. We do so by getting a very explicit handle on monomorphisms of simplicial
sets. This will involve the notion of degenerate and non-degenerate elements of a simplicial set.

15.1. Boundary of a standard simplex. For each n ≥ 0, we define

∂∆n :=
⋃
k∈[n]

∆[n]r{k} ⊂ ∆n,

the union of all codimension-one faces of the n-simplex. Equivalently,

(∂∆n)k = { f : [k]→ [n] | f([k]) 6= [n] }.
We call ∂∆n the boundary of ∆n. Note that ∂∆0 = ∅ and ∂∆1 = ∆{0} q∆{1}.

15.2. Exercise. Show that ∂∆n is the largest subcomplex of ∆n which does not contain the “generator”
〈0 . . . n〉 ∈ (∆n)n. In other words, ∂∆n is the maximal proper subcomplex of ∆n.

15.3. Exercise. Show that if C is a category, then the evident maps Hom(∆n, C)→ Hom(∂∆n, C)
defined by restriction are isomorphisms when n ≥ 3, but not necessarily when n ≤ 2.

15.4. Trivial fibrations and monomorphisms. Let Cell be the set consisting of the inclusions
∂∆n ⊂ ∆n for n ≥ 0. The resulting right complement is TrivFib := Cell�, the class of trivial
fibrations (also sometimes called acyclic fibrations). By the small object argument, we obtain a
weak factorization system (Cell,TrivFib).

Since the elements of Cell are monomorphisms, and the class of all monomorphisms is weakly
saturated, we see that all elements of Cell are monomorphisms. We are going to prove the converse,
i.e., we will show that Cell is precisely equal to the class of monomorphisms.

15.5. Degenerate and non-degenerate elements. Recall ∆surj,∆inj ⊂ ∆, the subcategories of
the category ∆ of simplicial operators, consisting of all the objects and the surjective and injective
order-preserving maps respectively, and that every operator factors uniquely as f = f injf surj, a
surjection followed by an injection.

An element a ∈ Xn is said to be degenerate if there exists a non-injective simplicial operator
f ∈ ∆ and an element b in X such that a = bf . In view of the factorization f = f injf surj, we see
that a is degenerate if and only if there exists a non-identity surjective simplicial operator f ∈ ∆surj

and an element b in X such that a = bσ.
Likewise, an element a ∈ Xn is said to be non-degenerate if it is not degenerate, i.e., if a = bf

for some f in ∆ and b in X we must have f ∈ ∆inj. Equivalently, a is non-degenerate if a = bf for
some f in ∆surj and b in X implies f = id.

We write Xn = Xdeg
n qXnd

n for the decomposition of Xn into complementary subsets of degenerate

and non-degenerate elements. Note that if f : A→ X is a map of simplcial sets, then f(Adeg
n ) ⊆ Xdeg

n ,
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while f−1(Xnd
n ) ⊆ And

n . Note that neither Xdeg
n nor Xnd

n assemble to give a subcomplex of X (unless
X is empty).

15.6. Proposition. If X is a simplicial set and A ⊆ X is a subcomplex, then And
n = Xnd

n ∩An and

Adeg
n = Xdeg

n ∩An.

Proof. The first statement is a consequence of the second, since subsets of degenerate and non-

degenerate element are complementary. It is clear that Adeg
n ⊆ Xdeg

n ∩ An. Conversely, suppose

a ∈ Xdeg
n ∩ An, so a ∈ An and a = bg for some non-identity g : [n] → [k] ∈ ∆surj and b ∈ Xk.

Any surjection in ∆ has a section (4.17), so there exists s : [k] → [n] such that gs = 1[k]. Then

b = bgs = as ∈ Ak, whence a ∈ Adeg
n as desired. �

15.7. Exercise (easy). For any simplicial set X, we have Xdeg
0 = ∅ and Xnd

0 = X0, while Xdeg
1 is the

image of 〈00〉∗ : X0 → X1 and Xnd
1 is its complement.

15.8. Example. Here are all elements in the standard 2-simplex up to dimension 3, with the
non-degenerate ones indicated by a box.

(∆2)0 (∆2)1 (∆2)2 (∆2)3

〈0〉 〈00〉 〈000〉 〈0000〉
〈1〉 〈11〉 〈111〉 〈1111〉
〈2〉 〈22〉 〈222〉 〈2222〉

〈01〉 〈001〉 〈011〉 〈0001〉 〈0011〉 〈0111〉
〈02〉 〈002〉 〈022〉 〈0002〉 〈0022〉 〈0222〉
〈12〉 〈112〉 〈122〉 〈1112〉 〈1122〉 〈1222〉

〈012〉 〈0012〉 〈0112〉 〈0122〉

15.9. Exercise. Describe the degenerate and non-degenerate elements of all the standard n-simplices
∆n.

15.10. Exercise. For every n ≥ 0, let Sn be the pushout of the diagram ∆n� ∂∆n → ∆0, where
∂∆n� ∆n is the usual inclusion and ∂∆n → ∆0 is the unique map to the terminal object. Describe
all degenerate and non-degenerate elements of Sn.

15.11. Exercise. Show that if C is an ordinary category, then an element a ∈ N(C)k of the nerve
is non-degenerate if and only if it is represented by a composable sequence of non-identity maps
c0 → · · · → ck in the category C.

The following exercises show that the subcomplexes of a simplicial set X can be completely
characterized by the sets of non-degenerate elements of X that they contain.

15.12. Exercise. Let Xnd =
∐
n≥0X

nd
n be the set of non-degenerate elements of X. For x, y ∈ Xnd

write y ≤ x if there exists f ∈ ∆inj such that y = xf . Show that “≤” is a partial order on the set
Xnd; it is called the face relation.

15.13. Exercise. Show that if xf = yg for some x, y ∈ Xnd, f ∈ ∆ and g ∈ ∆surj, then y ≤ x.

15.14. Exercise. Let S ⊆ Xnd be a subset of non-degenerate elements which is closed downward
under “≤”, i.e., y ≤ x and x ∈ S implies y ∈ S. Show that there exists a unique subcomplex A ⊆ X
such that And = S. (Hint: the elements of A are of the form xg where x ∈ S and g ∈ ∆surj.)

15.15. Simplicial sets are canonically free with respect to surjective operators. The key
observation is that degenerate elements in a simplicial set are precisely determined by knowledge of
the non-degenerate elements.
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15.16. Proposition (Eilenberg-Zilber lemma). Let a be an element of X. Then there exists a
unique pair (b, σ) consisting of a non-degenerate element b and a map σ in ∆surj such that a = bσ.

Proof. [GZ67, §II.3]. Given σ : [n]→ [m], let Γ(σ) =
{
δ : [m]→ [n]

∣∣ σδ = id[m]

}
denote the set of

sections of σ. The sets Γ(σ) is non-empty when σ ∈ ∆surj (4.17). We note the following elementary
observation, whose proof is left for the reader:

If σ, σ′ ∈ ∆surj are such that Γ(σ) = Γ(σ′), then σ = σ′.

Let a ∈ Xn be such that a = biσi for bi ∈ Xnd
mi , σi ∈ ∆surj([n], [mi]), for i = 1, 2. We want to

show that m1 = m2, b1 = b2, and σ1 = σ2.
Pick any δ1 ∈ Γ(σ1) and δ2 ∈ Γ(σ2). Then we have

b1 = b1σ1δ1 = aδ1 = b2σ2δ1, b2 = b2σ2δ2 = aδ2 = b1σ1δ2,

so b1 and b2 are related by the simplicial operators σ2δ1 and σ1δ2. Since b1 and b2 are both
non-degenerate, σ2δ1 : [m1]→ [m2] and σ1δ2 : [m2]→ [m1] must be injective. This implies m1 = m2,
and since the only order-preserving injective map [m] → [m] is the identity map, we must have
σ2δ1 = id = σ1δ2, from which it follows that b1 = b2. This also shows that δ1 ∈ Γ(σ2) and δ2 ∈ Γ(σ1).
Since δ1 and δ2 were arbitrarily chosen sections, we have shown Γ(σ1) = Γ(σ2), and therefore
σ1 = σ2. �

We can reinterpret the Eilenberg-Zilber lemma as follows.

15.17. Corollary. For any simplicial set X, the evident maps∐
j≥0

Xnd
j ×Hom∆surj([n], [j])→ Xn

defined by (j, x, σ) 7→ xσ are bijections. Furthermore, these bijections are natural with respect to
surjective simplicial operators [n′]→ [n].

Proof. The bijection is a restatement of (15.16). For the second statement, note that if τ : [n′]→ [n]
is a surjective simplicial operator, then (k, x, στ) 7→ (xσ)τ . �

Another way to say this: the restricted functor X|(∆surj)op : (∆surj)op → Set is canonically
isomorphic to a coproduct of representable functors Hom∆surj(−, [k]) indexed by the nondegenerate
simplicies of X. Or more simply: simplicial sets are canonically free with respect to surjective
simplicial operators.

15.18. Remark. A simplicial set can be recovered up to isomorphism if you only know (i) its sets of M 4 Feb 2019

non-degenerate elements, and (ii) the faces of the non-degenerate elements. The proposition we
proved above tells how to reconstruct the degenerate elements; simplicial operators on degenerate
elements are computed using the fact that any simplicial operator factors into a surjection followed
by an injection.

Warning. The faces of a non-degenerate element can be degenerate; this happens for instance in
(15.10) when n ≥ 2. If X is such that all faces of non-degenerate elements are also non-degenerate,
then we get a functor Xnd : (∆inj)op → Set, and the full simplicial set X can be recovered from Xnd.
For instance, this is so for the standard simplices ∆n, as well as any subcomplexes of such. Functors
(∆inj)op → Set are the combinatorial data behind the notion of a ∆-complex, as seen in Hatcher’s
textbook on algebraic topology [Hat02, Ch. 2.1].

The following exercises give a different point of view of this principle.

15.19. Exercise. Fix an object [n] in ∆, and consider the category ∆surj
[n]/, which has

• objects the surjective morphisms σ : [n]→ [k] in ∆, and
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• morphisms commutative triangles in ∆ of the form

[k]

τ
��

[n]

σ 55

σ′
))
[k′]

Show that the category ∆surj
[n]/ is isomorphic to the poset P(n) of subsets of the set n = {1, . . . , n}.

In particular, ∆surj
[n]/ is a lattice (i.e., has finite products and coproducts, called meets and joins in

this context).

15.20. Exercise. Let X be a simplicial set. Given n ≥ 0 and σ : [n]→ [k] in ∆surj, let Xσ
n := σ∗(Xk),

the image of the operator σ∗ in Xn. Show that Xσ∨σ′
n = Xσ

n ∩Xσ′
n , where σ ∨σ′ is join in the lattice

∆surj
[n]/. Conclude that for each x ∈ Xn there exists a maximal σ such that x ∈ Xσ

n .

15.21. Skeleta. Given a simplicial set X, the k-skeleton SkkX ⊆ X is the subcomplex with
n-dimensional elements.

(SkkX)n =
⋃

0≤j≤k
{ yf | y ∈ Xj , f : [n]→ [j] ∈ ∆ }.

It is immediate that this defines a subcomplex of X, which is in fact the smallest subcomplex
containing all elements of dimensions ≤ k. Note that X =

⋃
k SkkX, and that a map X → Y of

simplicial sets restricts to a map SkkX → Skk Y .
In view of (15.16) and (15.17), we see that

(SkkX)n ≈
∐

0≤j≤k
Xnd
j ×Hom∆surj([n], [j]).

Note that X = colimk→∞ SkkX. The complement of Skk−1X in SkkX consists precisely of the
nondegenerate k-dimensional elements of X together with their degeneracies (in dimensions > k).

The skeleta constructions define functors Skk : sSet→ sSet.

15.22. Example. The (n− 1)-skeleton of the stardand n-simplex is precisely what we have called
its boundary: Skn−1 ∆n = ∂∆n. The only simplices of ∆n not contained in its boundary are the
generator ι = 〈0 . . . n〉 ∈ (∆n)n together with the degenate elements associated to it.

15.23. Proposition. The evident square∐
a∈Xnd

k
∂∆k //

��

��

Skk−1X
��

��∐
a∈Xnd

k
∆n // SkkX

is a pushout of simplicial sets. More generally, for any subcomplex A ⊆ X, the evident square∐
a∈Xnd

k rAnd
k
∂∆k //

��

��

A ∪ Skk−1X
��

��∐
a∈Xnd

k rAnd
k

∆k // A ∪ SkkX

is a pushout.

Proof. In each of the above squares, the complements of the vertical inclusions coincide precisely.
In particular, the complement of the inclusion (A ∪ Skk−1X)n ⊆ (A ∪ SkkX)n is in bijective
correspondence with (Xnd

k rAnd
k )×Hom∆surj([n], [k]), and thus the square is a pushout (15.24). �
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In the proof, we used the following fact, which is worth recording.

15.24. Lemma. If

X ′ //

i
��

X��

j
��

Y ′
f
// Y

is a pullback of simplicial sets such that (i) j is a monomorphism, and (ii) f induces in each degree

n a bijection Y ′n r i(X ′n)
∼−→ Yn r j(Xn), then the square is a pushout square.

Proof. Verify the analogous statement for a pullback square of sets. �

15.25. Corollary. Cell is precisely the class of monomorphisms.

Proof. We know all elements of Cell are monomorphisms. Any monomorphism is isomorphic to an
inclusion A ⊆ X of a subcomplex, so we only need show that such inclusions are contained in Cell.
Since X ≈ colimk A ∪ SkkX, (15.23) exhibits the inclusion as a countable composite of pushouts
along coproducts of elements of Cell. �

15.26. Geometric realization. Recall the singular complex functor Sing : Top→ sSet (8.7). This
functor has a left adjoint |−| : sSet→ Top, called geometric realization, constructed explicitly
by

(15.27) |X| := Cok

[ ∐
f : [m]→[n]

Xn ×∆m
top ⇒

∐
[p]

Xp ×∆p
top

]
;

that is, take a collection of topological simplices indexed by elements of X, and make identifac-
tions according to the simplicial operators in X. (Here the symbol “Cok” represeents taking a
“coequalizer”, i.e., the colimit of a diagram of shape •⇒ •.)

15.28. Exercise. Describe the two unlabelled maps in (15.27). Then show that |−| is in fact left
adjoint to Sing.

Because geometric realization is a left adjoint, it commutes with colimits. It is straightforward
to check that |∆n| ≈ ∆n

top, and that |∂∆n| ≈ ∂∆n
top. Applying this to the skeletal filtration, we

discover that there are pushouts ∐
a∈Xnd

k
∂∆k

top
//

��

��

|Skk−1X|
��

��∐
a∈Xnd

k
∆k

top
// |SkkX|

of spaces, and that |X| =
⋃
|SkkX| with the direct limit topology. Thus, |X| is presented to us as a

CW-complex, whose cells are in an evident bijective correspondence with the set of non-degenerate
elements of X.

16. Pushout-product and pullback-power

We are going to prove several “enriched” versions of lifting properties associated to inner anodyne
maps and inner fibrations. As a consequence we’ll be able to prove that function complexes of
quasicategories are themselves quasicategories.
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16.1. Definition of pushout-product and pullback-hom. Given maps f : A→ B, g : K → L
and h : X → Y of simplicial sets, we define new maps f�g and g�h called the pushout-product16

and the pullback-hom1718. The pushout-product f�g : (A × L) qA×K (B ×K) → B × L is the
unique map fitting in the diagram

A×K
id×g

//

f×id

��

A× L

��

f×id

��

B ×K //

id×g //

(A× L)qA×K (B ×K)

f�g
))

B × L

while the pullback-hom h�g : Map(L,X) → Map(K,X) ×Map(K,Y ) Map(L, Y ) is the unique map
fitting in the diagram

Map(L,X)

**

,,

h�g

**

Map(K,X)×Map(K,Y ) Map(L, Y ) //

��

Map(K,X)

Map(id,h)

��

Map(L, Y )
Map(f,id)

// Map(K,Y )

16.2. Remark. Typically we form f�g when f and g are monomorphisms, in which case f�g is also
a monomorphism. In this case, the elements (b, `) ∈ Bn×Ln which are not in the image of f�g are
exactly those such that b ∈ Bn rAn and ` ∈ Ln rKn.

16.3. Remark (Important!). On vertices, the pullback-hom h�g is just the “usual” map Hom(L,X)→
Hom(K,X)×Hom(K,Y ) Hom(L, Y ) sending s 7→ (sg, hs). Thus, h�g is surjective on vertices if and
only if g � h.

We think of the pullback-hom as encoding an “enriched” version of the lifting problem for (g, h).
Thus, the target of h�g is an object which “parameterizes familes” of commutative squares involving
g and h. Similarly, the source of h�g “parameterizes families” of commutative squares together with
lifts.

The product/mapping object adjunction gives rise to the following relationship between lifting
problems.

16.4. Proposition. We have that (f�g) � h if and only if f � (h�g).

16This is sometimes called the box-product. Some also call it the Leibniz-product, as its form is that of the
Leibniz rule for boundary of a product space: ∂(X × Y ) = (∂X × Y ) ∪∂X×∂Y (X × ∂Y ) (which is itself reminiscent of
the original Leibniz rule D(fg) = (Df)g + f(Dg) of calculus).

17Sometimes called the box-power or pullback-power. A common alternate notation is g t h. This may also be
called the Leibniz-hom, though I don’t know what rule of calculus it is related to.

18This notation for pullback-hom is kinda awkward, and I’d like to change it. However, a new notation ought to
admit compatible variants to describe the “pullback-slice” and “alternate pullback-slice” constructions which appear
later on. I don’t see a good way to do this.
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Proof. Compare the two lifting problems using the product/map adjunction.

(A× L)qA×K (B ×K)
(u,v)

//

f�g
��

X

h
��

B × L w
//

s

66

Y

⇐⇒

A
ũ //

f

��

Map(L,X)

h�g

��

B
(ṽ,w̃)

//

s̃

55

Map(K,X)×Map(K,Y ) Map(L, Y )

On the left-hand side are maps

u : A× L→ X, v : B ×K → X, w : B × L→ Y, s : B × L→ X,

while on the right-hand side are maps

ũ : A→ Map(L,X), ṽ : B → Map(K,X), w̃ : B → Map(L, Y ), s̃ : B → Map(L,X).

The data of (u, v, w) giving a commutative square as on the left corresponds bijectively to data
(ũ, ṽ, w̃) giving a commutative square as on the right. Similarly, lifts s correspond bijectively to lifts
s̃. �

It is important to note the special cases where one or more of A = ∅, K = ∅, or Y = ∗ hold. For
instance, if K = ∅ and Y = ∗, the proposition implies

(A× L f×L−−−→ B × L) � (X → ∗) iff (A
f−→ B) � (Map(L,X)→ ∗).

This is the kind of case we are interested in for proving that Map(K,C) is a quasicategory whenever
C is. The more general statement of the proposition is a kind of “relative” version of the thing we
want; it is especially handy for carrying out inductive arguments.

16.5. Exercise (if you like monoidal categories). Let C := Fun([1], sSet), the “arrow category” of
simplicial sets. Show that � : C × C → C defines a symmetric monoidal structure on C, with unit
object (∅ ⊂ ∆0). Furthermore, show that this is a closed monoidal structure, with −�g left adjoint
to (−)�g : C → C.

16.6. Inner anodyne maps and pushout-products. The key fact we want to prove is the
following.

16.7. Proposition. We have that InnHorn�Cell ⊆ InnHorn, i.e., that i�j is inner anodyne
whenever i is inner anodyne and j is a monomorphism.

To set up the proof we need the following. W 6 Feb 2019

16.8. Proposition. For any sets of maps S and T , we have S�T ⊆ S�T .

Proof. Let F = (S�T )�. From the small object argument we have that S�T =
�F (13.11), so we

will show (S�T ) � F . First we show that (S�T ) � F . Consider

A := { a | (a�T ) � F }
≈
{
a
∣∣ a� (F�T )

}
by correspondence between lifting problems for pushout-products and pullback-homs (16.4). Thus
A is a left complement, and so is weakly saturated. Since S ⊆ A then S ⊆ A, i.e., (S�T ) �F . The
same idea applied to

B :=
{
b
∣∣ (S�b) � F

}
≈
{
b
∣∣∣ b� (F�S)

}
,

gives T ⊆ B, whence (S�T ) � F . �

16.9. Lemma. We have InnHorn�Cell ⊆ InnHorn.

Proof. This is a calculation, given in [Joy08a, App. H], and presented in the appendix (58.3). �
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Proof of (16.7). We have that

InnHorn�Cell ⊆ InnHorn�Cell ⊆ InnHorn.

The first inclusion is (16.8), while the second is an immediate conseqence of InnHorn�Cell ⊆ InnHorn
(16.9). �

Let’s carry out a proof of (16.9) explicitly in one case, by showing that (Λ2
1 ⊂ ∆2)�(∂∆1 ⊂ ∆1)

is inner anodyne. This map is the inclusion

(Λ2
1 ×∆1) ∪Λ2

1×∂∆1 (∆2 × ∂∆1) ⊂ ∆2 ×∆1,

whose target is a “prism”, and whose source is a “trough”. To show this is in InnHorn, we’ll give
an explicit procedure for constructing the prism from the trough by succesively attaching simplices
along inner horns.

Note that ∆2 ×∆1 = N([2]× [1]), so we are working inside the nerve of a poset, whose elements
(objects) are “ij” with i ∈ {0, 1, 2} and j ∈ {0, 1}. Here is a picture of the trough, showing all the
non-degenerate simplicies.

01 //
((

11 // 21

00 //

OO >>

6610 //

OO >>

20

OO

The complement of this in the prism consists of three non-degenerate 3-dimensional elements, five
non-degenerate 2-dimensional elements (two of which form the “lid” of the trough, while the other
three are in the interior of the prism), and one non-degenerate edge element (separating the two
2-dimensional elements which form the lid).

The following chart lists all non-degenerate elements in the complement of the trough, along with
their codimension one faces (in order). The “

√
” marks elements which are contained in the trough.

〈00, 21〉 〈00, 20, 21〉 〈00, 01, 21〉 〈00, 10, 21〉 〈00, 11, 21〉 〈00, 10, 20, 21〉 〈00, 10, 11, 21〉 〈00, 01, 11, 21〉√
〈21〉

√
〈20, 21〉

√
〈01, 21〉

√
〈10, 21〉

√
〈11, 21〉

√
〈10, 20, 21〉

√
〈10, 11, 21〉

√
〈01, 11, 21〉√

〈10〉 〈00, 21〉 〈00, 21〉 〈00, 21〉 〈00, 21〉 〈00, 20, 21〉 〈00, 11, 21〉 〈00, 11, 21〉√
〈00, 20〉

√
〈00, 01〉

√
〈00, 10〉

√
〈00, 11〉 〈00, 10, 21〉 〈00, 10, 21〉 〈00, 01, 21〉√

〈00, 10, 20〉
√
〈00, 10, 11〉

√
〈00, 01, 11〉

Note that the elements 〈00, 21〉, 〈00, 10, 21〉, and 〈00, 11, 21〉 of the complement appear multiple
times as faces. We can attach simplices to the domain in the following order:

1©〈00, 10, 21〉, 2©〈00, 10, 20, 21〉, 3©〈00, 10, 11, 21〉, 4©〈00, 01, 11, 21〉.
In each case, the intersection of the simplex with (domain+previously attached simplices) is an
inner horn. This directly exhibits (Λ2

1 ⊂ ∆2)�(∂∆1 ⊂ ∆1) as an inner anodyne map.

17. Function complexes of quasicategories are quasicategories

17.1. Enriched lifting properties. We record the immediate consequences of InnHorn�Cell ⊆
InnHorn (16.7).

17.2. Proposition.

(1) If i : A→ B is inner anodyne and j : K → L a monomorphism, then

i�j : (A× L) ∪A×K (B ×K)→ B × L
is inner anodyne.

(2) If j : K → L is a monomorphism and p : X → Y is an inner fibration, then

p�j : Map(L,X)→ Map(K,X)×Map(K,Y ) Map(L, Y )

is an inner fibration.
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(3) If i : A→ B is inner anodyne and p : X → Y is an inner fibration, then

p�i : Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a trivial fibration.

These can be summarized as

InnHorn�Cell ⊆ InnHorn, InnFib�Cell ⊆ InnFib, InnFib�InnHorn ⊆ TrivFib.

Statement (1) is just restating (16.7). The other two statements follow from (1) using the correspon-
dence between lifting problems for pushout-products and pullback-homs (16.4), together with the
facts that InnFib = InnHorn� and TrivFib = Cell�. For instance, (2) follows from the observation
that i � p�j iff (i�j) � p, and that i ∈ InnHorn and j ∈ Cell imply i�j ∈ InnHorn. Likewise (3)
follows a similar argument using that j � p�i iff (i�j) � p.

We are going to use these consequences all the time. To announce that I am using any of these, I
will simply assert “InnHorn�Cell ⊆ InnHorn” without other explanation; alternately, to indicate an
application of statements (2) and (3), I will call it “enriched lifting”. The following gives the most
general statement, of which (16.7) amounts to the special case of S = U = InnHorn and T = Cell.

17.3. Proposition. Let S, T , and U be sets of morphisms in sSet. Write S, T , and U for the weak
saturations of these sets, and let SFib := S�, TFib := T�, and UFib := U� denote the respective
right complements. If S�T ⊆ U , then

S�T ⊆ U, UFib�T ⊆ SFib, UFib�S ⊆ TFib.

Proof. Exercise using (16.4). �

There are many useful special cases of (17.2), obtained by taking the domain of a monomorphism
to be empty, or the target of an inner fibration to be terminal.

• If i : A→ B is inner anodyne, so is i× idL : A× L→ B × L.
• If p : X → Y is an inner fibration, then so is Map(L, p) : Map(L,X)→ Map(L, Y ).
• If j : K → L is a monomorphism and C a quasicategory, then Map(j, C) : Map(L,C) →

Map(K,C) is an inner fibration.
• If i : A → B is inner anodyne and C a quasicategory, then Map(i, C) : Map(B,C) →

Map(A,C) is a trivial fibration.
• If C is a quasicategory, so is Map(L,C). Thus we have proved (B).

Let’s spell out the proof of (B) in a little more detail. Because InnHorn�Cell ⊆ InnHorn, we
have (16.7) that

(Λnj ⊂ ∆n)�(∅ ⊆ K) = (Λnj ×K → ∆n ×K)

is inner anodyne for any K and 0 < j < n. Thus, for any diagram

Λnj ×K //

��

C

∆n ×K

;;

with C a quasicategory, a dotted arrow exists. By adjunction, this is the same as saying we can extend
Λnj → Map(K,C) along Λnj ⊂ ∆n. That is, we have proved that Map(K,C) is a quasicategory.

17.4. Remark. Most weakly saturated classes S that we will explictly discuss in these notes will have
the property that S�Cell ⊆ S, and thus analogues of the above remarks will hold for such classes.

17.5. Exercise (Important). Show that Cell�Cell ⊆ Cell. (Hint: (15.25).) State the analogue of
(17.2) associated to this inclusion.
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17.6. Composition functors. Rewrite this to use n = 2 as the basic example.
We can use the above theory to construct “composition functors”. If C is an ordinary category,

the operation of composing a sequence of n maps can be upgraded to a functor:

Fun([1], C)×C · · · ×C Fun([1], C)→ Fun([1], C)

which on objects describes composition of a sequence of maps. The source of this functor is the
evident inverse limit in Cat; it can be identified (using simplicial set language) with Fun(In, C).

We can generalize such composition functors to quasicategories. We use the following observation:
any trivial fibration admits a section, since (∅→ Y ) � (p : X → Y ) if p is a trivial fibration (17.2).

Let C be a quasicategory. Then map r : Fun(∆n, C)→ Fun(In, C) induced by restriction along
In ⊆ ∆n is a trivial fibration by (17.2), since the spine inclusion is inner anodyne (12.11). Therefore
r admits a section s, so we get a diagram

Fun(In, C)

s
**

Fun(∆n, C)r
oo r′ // Fun(∆{0,n}, C)

where r′ is restriction along ∆{0,n} ⊂ ∆n. The composite r′s can be thought of as a kind of “n-fold
composition” functor. It is not unique, since s isn’t, but we’ll see (??) that this is ok: all functors
constructed this way are “naturally isomorphic” to each other.

17.7. A useful variant. The proof of (16.7) actually proves something a little stronger.

17.8. Proposition ([Joy08a, §2.3.1], [Lur09, §2.3.2]). We have that {Λ2
1 ⊂ ∆2}�Cell = InnHorn.

Proof. We give a proof in the appendix (58.3). �

A consequence of this is another characterization of quasicategories.

17.9. Corollary. A simplicial set C is a quasicategory if and only if f : Map(∆2, C)→ Map(Λ2
1, C)

is a trivial fibration.

Proof. First notice that (∂∆k ⊂ ∆k) � f for all k ≥ 0 iff (∂∆k ⊂ ∆k)�(Λ2
1 ⊂ ∆2) � (C → ∗)

for all k ≥ 0, since f = (C → ∗)�{Λ2
1⊂∆2}. Therefore f ∈ TrivFib = InnHorn� if and only if

(C → ∗) ∈ (Cell�{Λ2
1 ⊂ ∆2})�. The conclusion immediately follows using (17.8). �

18. Natural isomorphisms

18.1. Natural isomorphisms of functors. Let C and D be quasicategories. Recall that a natural
transformation between functors f0, f1 : C → D is defined to be a morphism α : f0 → f1 in the
functor quasicategory Fun(C,D), or equivalently a map α̃ : C ×∆1 → D such that α̃|C ×∆{i} = fi,
i = 0, 1.

Say that α : f0 → f1 is a natural isomorphism if a is an isomorphism in the quasicategory
of functors Fun(C,D). Thus, α is a natural isomorphism iff there exists a natural transformation
β : f1 → f0 such that βα ≈ 1f0 and αβ ≈ 1f1 , where “≈” is homotopy between morphisms in the
quasicategory Fun(C,D).

This notion of natural isomorphism corresponds with the usual one for ordinary categories, since
in that case homotopy of morphisms is the same as equality of morphisms.

Observe that “there exists a natural isomorphism f0 → f1” is an equivalence relation on the
set of all functors C → D, as this relation precisely coincides with “there exists an isomorphism
f0 → f1” in the category hFun(C,D). We say that f0 and f1 are naturally isomorphic fuctors.

Furthermore, the “naturally isomorphic” relation is compatible with composition: if f, f ′ are
naturally isomorphic and g, g′ are naturally isomorphic, then so are gf and g′f ′. You can read this off
from the fact the operation of composition of functors extends to a functor Fun(D,E)×Fun(C,D)→
Fun(C,E) between quasicategories, and so induces a functor

hFun(D,E)× hFun(C,D) ≈ h
(
Fun(D,E)× Fun(C,D)

)
→ hFun(C,E).
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(This uses (9.15) to identify the homotopy category of the product with the product of homotopy
categories.)

18.2. Objectwise criterion for natural isomorphisms. Recall that if C and D are ordinary
categories, a natural transformation α : f0 → f1 between functors f0, f1 : C → D is a natural
isomorphism iff and only if α is “an isomorphism objectwise”; i.e., if for each object c of C
the evident map α(c) : f0(c) → f1(c) is an isomorphism in D. That natural isomorphisms are
“objectwise isomorphisms” is immediate. The opposite implication follows from the fact that a natural
transformation between functors of ordinary values can be completely recovered from its “values on
objects”. Thus, given α : f0 → f1 such that each α(c) : f0(c) → f1(c) is an isomorphism, we may
explicitly construct an inverse transformation β : f1 → f0 by setting β(c) := α(c)−1 : f1(c)→ f0(c).
Note that this β is in fact the unique inverse to α (since inverses to morphisms are unique when
they exist).

One of these directions is straightforward for quasicategories.

18.3. Proposition. Let C and D be quasicategories. If α : C ×∆1 → D is a natural isomorphism
between functors f0, f1 : C → D, then for each object c of C the induced map α(c) : f0(c)→ f1(c) is
an isomorphism in D.

Proof. The map Fun(C,D)→ Fun({c}, D) = D induced by restriction along {c} ⊆ C is a functor
between quasicategories, so it takes isomorphisms to isomorphisms. It sends α to α(c). �

The converse to this proposition is also true.

C. Deferred Proposition. A natural transformation α : C ×∆1 → D of functors between qua-
sicategories is a natural isomorphism if and only if each of the maps α(c) are isomorphisms in
D.

Unfortunately, this is much more subtle to prove, as it requires using the existence of inverses to
the α(c)s to produce an inverse to α, which though it exists is not at all unique. We will prove this
converse later (30).

18.4. Remark. An immediate consequence of (C) is that if D is a quasigroupoid, then so is Fun(C,D).

18.5. Remark. The objectwise criterion (C) can be reformulated in terms of homotopy categories.
The homotopy category construction takes quasicategories to categories, and takes functors to
functors. Furthermore, given a natural transformation α : f0 → f1 of functors f0, f1 : C → D
between quasicategories (i.e., a functor α : C ×∆1 → D such that (α|C × {j}) = fj), we obtain
an induced transformation hα : hf0 → hf1 of functors hf0, hf1 : hC → hD between their homotopy
categories (so that the value of hα at an object c ∈ obhC = C0 is the homotopy class of the
edge α({c} ×∆1) ⊆ D). Then (C) asserts that α is a natural isomorphism of functors between
quasicategories if and only if hα is a natural isomorphism of functors between ordinary categories.

19. Categorical equivalence

We are now in position to define the correct generalization of the notion of “equivalence” of F 8 Feb 2019

categories. This will be called categorical equivalence of quasicategories, and will be a direct
generalization of the classical notion.

Given this, we use it to define a notion of categorical equivalence which applies to arbitrary
maps of simplicial sets. Finally, we will show that the two definitions agree for maps between
quasicategories.
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19.1. Categorical equivalences between quasicategories. A categorical inverse to a functor
f : C → D between quasicategories is a functor g : D → C such that gf is naturally isomorphic to 1C
and fg is naturally isomorphic to 1D. We provisionally say that a functor f between quasicategories
is a categorical equivalence if it admits a categorical inverse.

19.2. Remark. Categorical equivalence between quasicategories is a kind of “homotopy equivalence”,
where homotopies are natural isomorphisms between functors.

If C and D are nerves of ordinary categories, then natural isomorphisms between functors in our
sense are precisely natural isomorphisms between functors in the classical sense, and that categorical
equivalence between nerves of categories coincides precisely with the usual notion of equivalence of
categories.

If quasicategories are equivalent, then their homotopy categories are equivalent.

19.3. Proposition. If f : C → D is a categorical equivalence between quasicategories, then
h(f) : hC → hD is an equivalence of categories.

Proof. Immediate, given that natural transformations f ⇒ g : C → D induce natural transformations
h(f)⇒ h(g) : hC → hD. �

Note: the converse is not at all true. For instance, there are many examples of quasicategories
which are not equivalent to ∆0, but whose homotopy categories are: e.g., Sing T for any non-
contractible simply connected space T , or K(A, d) for any non-trivial abelian group A and d ≥ 2.

19.4. Exercise (Categorical inverses are unique up to natural isomorphism). Let f : C → D be a
functor between quasicategories, and suppose g, g′ : D → C are both categorical inverses to f . Show
that g and g′ are naturally isomorphic.

19.5. General categorical equivalence. We can extend the notion of categorical equivalence
to maps between arbitrary simplicial sets. Say that a map f : X → Y between arbitrary sim-
plicial sets is a categorical equivalence if for every quasicategory C, the induced functor
Fun(f, C) : Fun(Y,C)→ Fun(X,C) of quasicategories admits a categorical inverse.

We claim that on maps between quasicategories this general definition of categorical equivalence
coincides with the provisional notion described earlier.

19.6. Lemma. For a map f : C → D between quasicategories, the two notions of categorical
equivalence described above coincide. That is, the following are equivalent:

(1) f admits a categorical inverse.
(2) For every quasicategory E, the functor Fun(f,E) : Fun(D,E)→ Fun(C,E) admits a cate-

gorical inverse.

To prove this, we will need the following observation. The construction X 7→ Map(X,E) is a
functor sSetop → sSet, and so in particular induces a natural map

γ0 : Hom(X,Y )→ Hom(Map(Y,E),Map(X,E))

of sets, which sends f : X → Y to Map(f,E) : Map(Y,E)→ Map(X,E). The observation we need
is that this construction admits an “enrichment”, to a map

γ : Map(X,Y )→ Map(Map(Y,E),Map(X,E)),

which coincides with γ0 on vertices. The map γ is defined to be adjoint to the “composition” map
Map(X,Y )×Map(Y,E)→ Map(X,E). (Exercise: Describe explicitly what γ does to n-dimensional
elements.) We say that the functor Map(−, E) is an enriched functor, as it gives not merely a map
between hom-sets (i.e., acts on vertices in function complexes), but in fact gives a map between
function complexes.
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Proof. (1) =⇒ (2). When C, D, and E are quasicategories so are the function complexes between
them. In this case, the above map γ takes functors C → D to functors Fun(D,E) → Fun(C,E)
between quasicategories, natural transformations of such functors to natural transformations, and
natural isomorphisms of such functors to natural isomorphisms. Using this observation, it is
straightforward to show that a categorical inverse g : D → C to f : C → D gives rise to a categorical
inverse Map(g,E) : Map(C,E) → Map(C,D) to the induced functor Map(f,E) : Map(D,E) →
Map(C,E).

(2) =⇒ (1). Conversely, suppose f : C → D is a categorical equivalence in the general sense, so
that f∗ = Map(f,E) admits a categorical inverse for every quasicategory E, which implies that
each functor

h(f∗) : hFun(D,E)→ hFun(C,E)

is an equivalence of ordinary categories (19.3). In particular, it follows that f∗ induces a bijection
of sets

f∗ : π0(Fun(D,E)core)
∼−→ π0(Fun(C,E)core);

recall that π0(Fun(D,E)core) ≈ π0((hFun(D,E))core) is precisely the set of natural isomorphism
classes of functors D → E.

Taking E = C, this implies that there must exist g ∈ Fun(D,C)0 such that there exists a natural
isomorphism gf → idC in Fun(C,C)1. Taking E = D, we note that since

f∗(idD) = idD f = f idC ≈ fgf = f∗(fg),

we must have that idD ≈ fg, i.e., there exists a natural isomorphism idD → fg in Fun(D,D)1.
Thus, we have shown that g is a categorical inverse of f , as desired. �

19.7. Remark. The definition of categorical equivalence we are using here is very different to the
definition adopted by Lurie [Lur09, §2.2.5]. It is also slightly different from the notion of “weak
categorical equivalence” used by Joyal [Joy08a, 1.20]. As we will show soon (22.12), Joyal’s weak
categorical equivalence is equivalent to our definition of categorical equivalence. The discussion
around [Lur09, 2.2.5.8] show’s that Lurie’s and Joyal’s definitions are equivalent, and so they are
both equivalent to the one we have used.

19.8. Exercise. Let f : C → D be a functor between quasicategories. Show that f is a categorical
equivalence if and only if for all simplicial sets X, the induced functor f∗ : Map(X,C)→ Map(X,D)
is a categorical equivalence.

20. Trivial fibrations and inner anodyne maps

Inner anodyne maps and trivial fibrations are particular kinds of categorical equivalences.

20.1. Trivial fibrations to the terminal object. Recall that a trivial fibration p : X → Y of
simplicial sets is a map such that (∂∆k ⊂ ∆k) � p for all k ≥ 0. That is, TrivFib = Cell�, so p is a
trivial fibration if and only if Cell � p.

20.2. Exercise. Consider an indexed collection of trivial fibrations pi : Xi → Yi. Show that p :=∐
pi :

∐
Xi →

∐
Yi is a trivial fibration. (Hint: similar to proof of (6.7).)

20.3. Proposition. Let X be a simplicial set and p : X → ∗ be a trivial fibration whose target is the
terminal simplicial set. Then X is a Kan complex (and thus a quasigroupoid) and p is a categorical
equivalence.

Proof. Enriched lifting (17.3) applied to Cell�Cell ⊆ Cell (17.5) means that for any monomorphism
i : A→ B of subcomplexes the pullback-hom map

p�i = Map(i,X) : Map(B,X)→ Map(A,X)×Map(A,∗) Map(B, ∗) = Map(A,X)
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is a trivial fibration. In particular, it implies that Map(i,X) is surjective on vertices, so Hom(B,X)→
Hom(A,X) is surjective.

It follows immediately that X is a Kan complex, by taking i to be any horn inclusion.
To show that p is a categorical equivalence, first note that X is non-empty, since Hom(∆0, X)→

Hom(∅, X) = ∗ is surjective. Choose any s ∈ Hom(∆0, X). Clearly ps = id∆0 . We will show that
sp : X → X is naturally isomorphic to idX . Consider the commutative diagram

X qX

(idX ,sp)

++X × ∂∆1 //
��

��

X

p

��
X ×∆1 //

h

88

∗
Since p is a trivial fibration, a lift h exists, which exhibits a natural transformation idX → sp; note
that h represents a morphism in Fun(X,X). To show that h represents an isomorphism, it’s enough
to know that Fun(X,X) is actually a quasigroupoid. In fact, restriction along ∅ → X a trivial
fibration

Fun(X,X)→ Fun(∅, X) = ∗,
whence Fun(X,X) is a Kan complex by the argument given above. �

We will prove a partial converse to this later (34.10): if C is a quasicategory which is categorically
equivalent to ∗, then C → ∗ is a trivial fibration.

20.4. Preisomorphisms. We need a way to produce categorical equivalences between simplicial
sets which are not necessarily quasicategories.

Let X be a simplicial set. Say that an edge a ∈ X1 is a preisomorphism if it projects to an
isomorphism under α : X → hX, the tautological map to the (nerve of the) fundamental category
(9.1). If X is actually a quasicategory, the preisomorphisms are just the isomorphisms (since in that
case the fundamental category is the same as the homotopy category). Note that degenerate edges
are always preisomorphisms, since they go to identity maps in the fundamental category.

20.5. Proposition. An edge a ∈ X1 is a preisomorphism if and only if for every map g : X → C to
a quasicategory C, the image g(a) is an isomorphism in C.

Proof. Isomorphisms in C are exactly the edges which are sent to isomorphisms under γ : C → hC.
Given this the proof is straightforward, using the fact that the formation of fundamental categories
is functorial, and that hX is itself a category and hence a quasicategory. �

As a consequence, any map X → Y of simplicial sets takes preisomorphisms to preisomorphisms.
In particular, any map from a quasicategory takes isomorphisms to preisomorphisms. We will use
this observation below.

20.6. Example. Consider the subcomplex Λ3
{0,3} = ∆{0,1,2} ∪ ∆{1,2,3} of ∆3. Define Z to be the

pushout of the diagram

Λ3
{0,3}

j←− ∆{0,2} q∆{1,3}
p−→ ∆{x} q∆{y}

where j is the evident inclusion, ∆{x} and ∆{y} are simplicial sets isomorphic to ∆0, but with
vertices labelled “x” and “y” respectively, and p is induced by the evident projections ∆{0,2} → ∆{x}

and ∆{1,3} → ∆{y}. The resulting complex Z looks like

y
y00
//

g

��

y

h

��
x x00

//

f

??

b

x

a
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with seven non-degenerate elements: x, y ∈ Z0, f, g, h ∈ Z1, a, b ∈ Z2. The simplicial set Z is
not a quasicategory (why not? ). However, any map φ : Z → C to a quasicategory sends f, g, h to
morphisms φ(f), φ(g), φ(h) of C so that φ(g) is a preinverse of φ(f) and φ(h) is a postinverse of
φ(f). Therefore these (and thus all) edges of Z are preisomorphisms.

20.7. Example. Here is a variant of the previous example. Consider the subcomplex Λ3
{0,3} =

∆{0,1,2} ∪∆{1,2,3} of ∆3. Define Z ′ to be the pushout of the diagram

Λ3
{0,3}

j←− ∆{0,1} ∪∆{0,2} ∪∆{1,3} ∪∆{2,3}
p−→ ∆{y<x},

where j is the evident inclusion, ∆{y<x} is a simplical set isomorphic to ∆1 but with vertices labelled
“y” and “x” instead of “0” and “1”, and p is the unique map which on vertices sends 0, 2 7→ y,
1, 3 7→ x. The resulting complex Z ′ looks like

y
y00
//

g

��

y

g

��
x x00

//

f

??

b

x

a

with six non-degenerate elements: x, y ∈ Z ′0, f, g ∈ Z ′1, a, b ∈ Z ′2. Again, Z ′ is not a quasicategory,
but all edges of Z ′ are preisomorphisms.

Say that vertices in a simplicial set X are preisomorphic if they can be connected by a M 11 Feb 2019

chain of preisomorphisms (which can point in either direction). Clearly, any map g : X → C to a
quasicategory takes preisomorphic vertices of X to isomorphic objects of C.

We can apply this to function complexes. If two maps f0, f1 : X → Y are preisomor-
phic (viewed as vertices in Map(X,Y )), then for any quasicategory C, the induced functors
Map(f0, C),Map(f1, C) : Map(Y,C)→ Map(X,C) are naturally isomorphic. To see this, consider

∆1 a−→ Map(X,Y )
b−→ Map(Map(Y,C),Map(X,C))

where b is adjoint to the composition map Map(Y,C)×Map(X,Y )→ Map(X,C). If a represents
a preisomorphism f0 → f1 in Map(X,Y ), then ba represents an isomorphism Map(f0, C) →
Map(f1, C), since the target of b is a quasicategory. As a consequence we get the following.

20.8. Lemma. If f : X → Y and g : Y → X are maps of simplicial sets such that gf is preisomorphic
to idX in Map(X,X) and fg is preisomorphic to idY in Map(Y, Y ), then f and g are categorical
equivalences.

It is important to note that this is a sufficient condition for a map to be a categorical equivalence,
but not a necessary one: there are many categorical equivalences of simplicial sets to which the
lemma cannot be applied (see (21.3) below).

20.9. Trivial fibrations are always categorical equivalences.

20.10. Proposition. Every trivial fibration between simplicial sets is a categorical equivalence.

Here is some notation. Given maps f : A → Y and g : B → Y , we write Map/Y (f, g) or

Map/Y (A,B) for the simplicial set defined by the pullback square

Map/Y (A,B) //

��

Map(A,B)

g∗=Map(A,g)

��

{f} // Map(A, Y )
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Note that vertices of Map/Y (A,B) correspond exactly to “sections of g over f”, i.e., to s : A→ B

such that gs = f . You can think of Map/Y (A,B) as a simplicial set which “parameterizes” sections
of g over f . I’ll call this the relative function complex over Y .

20.11. Exercise. Show that n-dimensional elements of map/Y (A,B) correspond to maps a : ∆n×A→
B such that ga = π(id×f), where π : ∆n × Y → Y is the projection.

Proof of (20.10). Fix a trivial fibration p : X → S. We regard both X and S as objects over S, via
p and idS , and consider various relative function complexes over S.

Note that since p is a trivial fibration, so are Map(X, p) = p�(∅⊂X) and Map(S, p) = p�(∅⊂X) by
enriched lifting Cell�Cell ⊆ Cell. The maps

Map/S(S,X)→ Map/S(S, S) = ∗ and Map/S(X,X)→ Map/S(X,S) = ∗
are (by construction) base changes of Map(S, p) and Map(X, p) respectively, and so are also trivial
fibrations since TrivFib is closed under base change. It follows from (20.3) that both Map/S(S,X)

and Map/S(X,X) are quasigroupoids which are categorically equivalent to the terminal object (and

so are non-empty and such that all objects are isomorphic). Note that these are subcomplexes of
simplicial sets Map(S,X) and Map(X,X) respectively, which however need not be quasicategories.
The edges of Map/S(S,X) and Map/S(X,X) are preisomorphisms in Map(S,X) and Map(X,X).

Pick any vertex s of Map/S(S,X), so that s can be regarded as a map s : S → X such that

ps = idS . Pick any isomorphism a : idX → sp in Map/S(X,X), which is hence a preisomorphism in

Map(X,X).
Thus, we have exhibited maps p and s whose composites are preisomorphic to identity functors,

and therefore they are categorical equivalences by (20.8). �

20.12. Remark (“Uniqueness” of sections of trivial fibrations). Suppose that p : C → D is a trivial
fibration between quasicategories. As we have noted, the relative function complex Map/D(D,C)
“parameterizes sections of p”. Since this is a quasigroupoid equivalent to the terminal quasicategory
(20.10), not only is p a categorical equivalence, but also

• p admits a section, which is a categorical inverse to p, and
• any two sections of p are naturally isomorphic.

We will often make use of this observation.

20.13. Inner anodyne maps are always categorical equivalences.

20.14. Proposition. Every inner anodyne map between simplicial sets is a categorical equivalence.

Proof. Let j : X → Y be a map in InnHorn, and let C be any quasicategory. The induced map
Map(j, C) : Map(Y,C)→ Map(X,C) is a trivial fibration by enriched lifting and InnHorn�Cell ⊆
InnHorn (17.2), and therefore is a categorical equivalence. �

20.15. Every simplicial set is categorically equivalent to a quasicategory.

20.16. Proposition. Fix a simplicial set X.

(1) There exists a quasicategory C and an inner anodyne map f : X → C, which is therefore a
categorical equivalence.

(2) For any two fi : X → Ci as in (1), there exists a categorical equivalence g : C1 → C2 such
that gf1 = f2.
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Here is some more notation. Given maps f : X → A and g : X → B, we write MapX/(f, g) or

MapX/(A,B) for the simplicial set defined by the pullback square

MapX/(A,B) //

��

Map(A,B)

f∗=Map(f,B)

��

{g} // Map(X,B)

This is the relative function complex under X.

20.17. Exercise. Show that n-dimensional elements of mapX/(A,B) correspond to maps a : ∆n×A→
B such that a(id×f) = gπ, where π : ∆n ×X → X is the projection

Proof of (20.16). (1) By the small object argument (13.10), we can factor X → ∗ into X
j−→ C

p−→ ∗
where j ∈ InnHorn and p ∈ InnFib. The inner anodyne map j is the desired categorical equivalence
to a quasicategory.

(2) For i, j ∈ {1, 2}, we have a restriction map f∗i,j : Map(Ci, Cj) → Map(X,Cj), which is

necessarily a trivial fibration by enriched lifting since Cell�Cell ⊆ Cell. Therefore the maps
MapX/(Ci, Cj) → ∗ (obtained by base-change from the f∗i,j) are all trivial fibrations, i.e., each

MapX/(Ci, Cj) is a quasigroupoid with only one isomorphism class of objects (20.3). As in the proof

of (20.10) we construct g : C1 → C2 and g′ : C2 → C1 which are categorically inverse to each other;
details are left to the reader. �

Thus, we can always “replace” a simplicial set X by a categorically equivalent quasicategory C.
Although such C is not unique, it is unique up to categorical equivalence.

You can think of such a replacement X → C of X as a quasicategory “freely generated” by the
simplicial set X, an idea which is validated by the fact that Fun(j,D) : Fun(C,D)→ Map(X,D) is
a categorical equivalence for every quasicategory D.

21. Some examples of categorical equivalences

21.1. Free monoid on one generator. Let F denote the free monoid on one generator g. This
is a category with one object x, and morphism set { gn | n ≥ 0 }.

Associated to the generator g is a map

γ : S := ∆1/∂∆1 → N(F )

sending the image of the generator ι ∈ (∆1)1 in S to g. (We use “L/K” as a shorthand for “LqK ∗”
whenever K ⊆ L. The object S is called the “simplicial circle”, which has exactly two nondegenerate
simplicies, one in dimension 0 and one in dimension 1.)

It is not hard to see that F is “freely generated” as a category by S, in the sense that hS = F
(the fundamental category of S is F ). It turns out that N(F ) is actually freely generated as a
quasicategory by S.

21.2. Proposition. The map γ : S → N(F ) is a categorical equivalence, and in fact is inner W 13 Feb 2019

anodyne.

Proof. This is an explicit calculation. Note that a general element in N(F )d corresponds to a
sequence (gm1 , . . . , gmd) of elements of the monoid F , where m1, . . . ,md ≥ 0. Let ak ∈ N(F )k
denote the k-dimensional element corresponding to the sequence (g, g, . . . , g), and let Yk ⊆ N(F )
denote the subcomplex which is the image of the representing map ak : ∆k → N(F ). For f : [d]→ [k]
we compute that akf = (gm1 , . . . , gmd) where mi = f(i)− f(i− 1), so that

(Yk)d = { akf | f : [d]→ [k] } = { (gm1 , . . . , gmd) | m1 + · · ·+md ≤ k },
Clearly N(F ) =

⋃
k≥1 Yk, with Y1 ≈ S and Y2 ≈ Y1 ∪Λ2

1
∆2. Furthermore we have the following:
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• An element f of (∆k)d is such that akf is in the subcomplex Yk−1 of Yk if and only if

f(d)− f(0) < k, i.e., if and only if f is in the subcomplex Λk{0,k} = ∆{0,...,k−1} ∪∆{1,...,k}.

• Every element y of Yk not in Yk−1 is the image under ak of a unique element in ∆k. (I.e.,, if
f : [d]→ [k], then m1 + · · ·+md = f(d)− f(0), which is equal to k if and only if f(0) = 0
and f(d) = k, and if this is the case then f(i) = m1 + · · ·+mi.)

In other words, the square

Λk{0,k}
//

��

��

Yk−1
��

��

∆k
ak

// Yk

is a pullback, and ak induces in each dimension d d a bijection (∆k)dr (Λk{0,k})d
∼−→ (Yk)dr (Yk−1)d.

It follows (15.24) that the square is a pushout.
The inclusion Λk{0,k} ⊂ ∆k is a generalized inner horn, and we have noted this is inner anodyne

when k ≥ 2 (12.9). It follows that each Yk−1 → Yk is inner anodyne for k ≥ 2, whence S → N(F ) is
inner anodyne. �

21.3. Remark. This gives an explicit example of a categorical equivalence to which (20.8) does not
apply: γ does not admit an “inverse up to preisomorphims”. There is only one map δ : N(F )→ S,
namely the composite N(F )→ ∗ → S, and it is clear that neither δγ : N(F )→ N(F ) nor γδ : S → S
are preisomorphic to identity functors.

21.4. Free categories. We can generalize the above to free monoids with arbitrary sets of generators,
and in fact to free categories. Let S be a 1-dimensional simplicial set, i.e., one such that S = Sk1 S.
These are effectively the same thing as directed graphs (allowed to have multiple parallel edges and
loops): S0 corresponds to the set of vertices of the directed graph, and Snd

1 corresponds to the set
of edges of the directed graph.

Let F := hS. We call F the free category on the 1-dimensional simplicial set S. In this case,
the morphisms of the fundamental category are precisely the words in the edges Snd

1 of the directed
graph (including empty words for each vertex, corresponding to identity maps).

21.5. Proposition. The evident map γ : S → N(F ) is a categorical equivalence, and in fact is inner
anodyne.

Proof. This is virtually the same as the proof of (21.2). In this case, Yk ⊆ N(F ) is the subcomplex
generated by all a : ∆k → N(F ) such that each spine-edge ai−1,i is in Snd

1 , and Yk is obtained by
attaching a generalized horn to Yk−1 for each such a. �

As a consequence, it is “easy” to construct functors F → C from a free category to a quasicategory:
start with a map S → C, which amounts to specifying vertices and edges in C corresponding to
elements S0 and Snd

1 , and extend over S ⊆ F . The evident restriction map Fun(F,C)→ Map(S,C)
is a categorical equivalence, and in fact a trivial fibration.

21.6. Exercise. Describe the ordinary category A := hΛ3
0 “freely generated” by Λ3

0. Show that the
tautological map Λ3

0 → N(A) is inner anodyne.

21.7. Free commutative monoids. Let F be the free monoid on one generator again, with gen-
erator corresponding to simplicial circle S = ∆1/∂∆1 ⊂ F Recall that F×n is the free commutative
monoid on n generators. Recall that the nerve functor preserves products, so N(F×n) ≈ N(F )×n.
We obtain a map

δ = γ×n : S×n → N(F×n)

from the “simplicial n-torus”.
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21.8. Proposition. The map δ : S×n → N(F×n) is a categorical equivalence, and in fact is inner
anodyne.

Proof. This is a consequence of the fact that if j : A → B is inner anodyne and K an arbitrary
simplicial set, then j ×K× : A×K → B×K is inner anodyne (because InnHorn�Cell ⊆ InnHorn).
It follows that A×n → B×n is a composite of inner anodyne maps, and so is inner anodyne and thus
a categorical equivalence (20.14). Also use the fact that the nerve construction preserves products
(6.5), so N(F×n) = N(F )×n. �

21.9. Exercise. Let S ∨S ⊂ S×2 be the subcomplex obtained as the evident “one-point union” of the
two “coordinate circles”; i.e., S ∨ S = (S × {∗}) ∪ ({∗} × S). Suppose given a map φ : S ∨ S → C
to a quasicategory C, corresponding to a choice of object x ∈ C0 together with two morphisms
f, g : x→ x in C1. Show that there exists an extension of φ along S ∨ S ⊂ N(F×2) if and only if
[f ][g] = [g][f ] in hC.

21.10. Remark. The analogue of the above exercise for n = 3 isn’t true. That is, consider the
subcomplex S∨S∨S ⊂ S×3 which is a one-point union of three circles, suppose we have S∨S∨S → C
corrposding to three morphisms f, g, h : x→ x in C, and suppose we also know that [f ][g] = [g][f ],
[g][h] = [h][g], and [f ][h] = [h][f ] in hC. Then you can show that there exists an extension to a
map Sk2(S×3)→ C as in (21.9). However, there need not exist an extension to a map S×3 → C,
and thus there may not exist an extension to a map N(F×3)→ C. (For an explicit example where
this fails, take C = Sing T , where T ⊆ (S1)×3 is the subspace of the 3-torus consisting of tuples
(x1, x2, x3) such that at least one xi is the basepoint of S1.)

Thus, this is a situation where the “higher structure” of a quasicategory plays a role. When C is
an ordinary category, it is easy to show that the desired extension does always exist. However, for a
general quasicategory C, three pairwise-commuting endomorphisms of an object do not generally
give rise to a functor N(F×3)→ C from the free commutative monoid on 3 generators.

21.11. Finite groups are not finite. If A is any ordinary category, then Sk2N(A) “freely generates
N(A) as a category”, in the sense that h(Sk2N(A)) ≈ A, or equivalently that Map(N(A), N(B))→
Map(Sk2N(A), N(B)) is an isomorphism for any category B. However, it is often the case that no
finite dimensional subcomplex “freely generates N(A) as a quasicategory”. In fact, this is the case
for every non-trivial finite group.

21.12. Example. Let G be a finite group, and let C = N(G). The geometric realization BG := |N(G)|
is the classifying space of G. I want to show that if G is not the trivial group, then NG is not
categorically equivalent to any finite dimensional simplicial set K (i.e., one with no non-degenerate
elements above a certain dimension). We need to use some homotopy theory, along with a fact to
be proved later19: if f : X → Y is any categorical equivalence of simplicial sets, then the induced
map |f | : |X| → |Y | on geometric realizations is a homotopy equivalence of spaces.

First consider G = Z/n with n > 1. A standard calculation in topology says that
H2k(|N(G)| ,Z) ≈ Z/n 6≈ 0 for all k > 0. This implies that |N(G)| cannot be homotopy equivalent
to any finite dimensional complex.

Now consider a general non-trivial finite group G, and choose a non-trivial cyclic subgroup H ≤ G.
We know the fundamental group: π1 |K| ≈ π1 |N(G)| = G. Covering space theory tells us we can
construct a covering map p : E → |N(G)| so that π1E → π1 |N(G)| is the inclusion H → G. In
fact, E is homotopy equivalent to the classifying space BH (because πkE ≈ 0 for k ≥ 2). But if
|N(G)| is finite dimensional then so is E, but this would then contradicting the observation that
H∗(BH,Z) ≈ H∗(E,Z) ≈ 0 for infinitely many ∗.

Thus, non-trivial finite groups are never “freely generated as a quasicategory” by finite dimensional
complexes.

19I don’t know if this will actually get proved later. It is proved in [GJ09]
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21.13. Remark. Let T be a finite CW-complex, and G a finite group. A theorem of Haynes Miller
(the “Sullivan conjecture”) implies that every functor N(G)→ Sing T is naturally isomorphic to
a constant functor (i.e., one which factors through ∆0). Thus, the singular complex of a finite
CW-complex cannot “contain” any non-trivial finite group, even if its fundamental group contains a
non-trivial finite subgroup.

22. The homotopy category of quasicategories

22.1. The homotopy category of qCat. The homotopy category hqCat of quasicategories is
defined as follows. The objects of hqCat are the quasicategories. Morphisms C → D in hqCat are
natural isomorphism classes of functors. That is,

HomhqCat(C,D) := isomorphism classes of objects in hFun(C,D) = π0

(
Fun(C,D)core

)
.

That this defines a category results from the fact that composition of functors passes to a functor
hFun(D,E)× hFun(C,D)→ hFun(C,E), and thus is compatible with natural isomorphism.

It comes with an obvious functor qCat→ hqCat. Note that a map f : C → D of quasicategories
is a categorical equivalence if and only if its image in hqCat is an isomorphism.

22.2. Remark. We can similarly define a category hCat, whose objects are categories and whose
morphisms are isomorphism classes of functors. The nerve functor evidently induces a full embedding
hCat→ hqCat.

22.3. Warning. Although we use the word “homotopy”, the definition of hqCat given above is not
an example of the notion of the homotopy category of a quasicategory defined in §9: qCat is a
(large) ordinary category, so is isomorphic to its own homotopy category in that sense. Here we are
using the equivalence relation on morphisms(=functors) defined by natural isomorphism.

For future reference, we note that hqCat has finite products, which just amount to the usual
products of simplicial sets.

22.4. Proposition. The terminal simplicial set ∆0 is a terminal object in hqCat. If C1, C2 are
quasicategories, then the projection maps exhibit C1 × C2 as a product in hqCat.

Proof. This is straightforward. The key observation for the second statement is the fact that
isomorphism classes of objects in a product of quasicategories correspond to pairs of isomorphism
classes in each (6.13), and the fact that Map(X,C1 × C2)

∼−→ Map(X,C1)×Map(X,C2). �

22.5. The 2-out-of-6 and 2-out-of-3 properties. A class of morphismsW in a category is said to
satisfy the 2-out-of-6 property if (i)W contains all identity maps, and (ii) given sequence (h, g, f)
of maps such that the composites gf and hg are defined, if gf, hg ∈ W then also f, g, h, hgf ∈W .

A class of morphismsW in a category is said to satisfy the 2-out-of-3 property if (i)W contains
all identity maps, and (ii) given a sequence (g, f) of maps such that the composite gf is defined, if
any two of (f, g, gf) are in W, so is the third.

22.6. Example. In any category, the class of isomorphisms satisfies 2-out-of-6 property and the
2-out-of-3 property. The class of identity maps satisfies 2-out-of-3, but does not generally satisfy
2-out-of-6.

22.7. Proposition. If W satisfies 2-out-of-6, then it satisfies 2-out-of-3.

Proof. Given f, g such that gf is defined, apply 2-out-of-6 to the composable sequences (id, g, f),
(g, id, f), (g, f, id). �

22.8. Exercise. Given a functor f : C → D between categories, let W be the class of maps in C that
f takes to isomorphisms in D. Show that W satisfies 2-out-of-6, and thus 2-out-of-3.
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22.9. Example (2-out-of-6 for equivalences of categories). In Cat, the category of small categories
and functors, the class of equivalences satisfies 2-out-of-6, and thus 2-out-of-3.

To see this, first suppose (h, g, f) is a triple of functors such that there are natural isomorphisms
gf ≈ id and hg ≈ id. Then, since (i) natural isomorphism is an equivalence relation on functors
and (ii) is compatible with composition, we see that

h = h id ≈ h(gf) = (hg)f ≈ id f = f,

and thus that g is an equivalence since hg ≈ id and gh ≈ gf ≈ id.
Next, note that composites of equivalences are equivalences, by a straightforward argument: if g

and f are equivalences and composable, and g′ and f ′ are categorical inverses to them, then f ′g′ is
easily seen to be a categorical inverese to gf .

Now suppose that (h, g, f) are such that gf and hg are categorical equivalences. Choose categorical
inverses u and v for these, so that

gfu ≈ id, ugf ≈ id, hgv ≈ id, vhg ≈ id .

Apply the above remarks to the triples (ug, f, ug), (vh, g, fu), (gv, h, gv), and (ugv, hgf, vgu) to
show that f, g, h are equivalences, where we use that

fug ≈ (vhg)fug = vh(gfu)g ≈ vhg ≈ id, gvh ≈ gvh(gfu) = g(vhg)fu ≈ gfu ≈ id .

It follows that the composite hgf is also an equivalence.
Alternately, we can apply (22.8) to the tautological functor Cat→ hCat, which sends a functor

to an isomorphism in hCat if and only if it is an equivalence.

22.10. Proposition. The class CatEq of categorical equivalences in sSet satisfies 2-out-of-6, and
thus 2-out-of-3.

Proof. It is immediate that the identity map of a simplicial set is a categorical equivalence.
Next consider functors f, g, h between quasicategories such that gf and hg are are defined and are

categorical equivalences. Then f, g, h and hgf are categorical equivalences by an argument which is
word-for-word the same as in (22.9).

For the general case, we reduce to the quasicategory case by applying Fun(−, C), where C is an
arbitrary quasicategory. �

22.11. Weak categorical equivalence. Joyal [Joy08a, 1.20] uses a variant of the notion of cat-
egorical equivalence, which turns out to be equivalent to what we are using. A map f : X → Y
of simplicial sets is a weak categorical equivalence20 if for every quasicategory C, the induced
map hFun(Y,C)→ hFun(X,C) is an equivalence of ordinary categories. Note that, like categorical
equivalences, the class of weak categorical equivalences also satisfies 2-out-of-3.

22.12. Proposition. A map is a categorical equivalence if and only if it is a weak categorical
equivalence.

Proof. (=⇒) Straightforward. (⇐=) In the case that f is a weak categorical equivalence between
quasicategories, this is exactly what the second half of the proof of (19.6) really shows. For a general
map f , use factorization to construct a commutative square

X
f
//

u
��

Y

v
��

X ′
f ′
// Y ′

20This is not to be confused with “weak equivalence”, which we will talk about later (33.1).
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so that u and v are inner anodyne (and so categorical equivalences), and X ′ and Y ′ are quasicategories.
Applying hFun(−, C) to the square with C a quasicategory, we see that the vertical maps become
equivalences of categories, so if f is weak categorical equivalence so is f ′, which is then a categorical
equivalence by what we have already proved, whence f is a categorical equivalence by 2-out-of-3. �

22.13. The homotopy 2-category of qCat. A 2-category E is a category which is itself “en-
riched” over Cat. That is,

• for each pair of objects x, y ∈ obE, there is a category HomE(x, y), so that
• the objects of HomE(x, y) are precisely the set HomE(x, y) of morphisms of E, and
• there are “composition functors” HomE(y, z)×HomE(x, y)→ HomE(x, z) for all x, y, z ∈

obE which on objects is just ordinary composition of morphisms in E, which
• is unital and associative in the evident sense.

One refers to the objects of HomE(x, y) as 1-morphisms f : x → y of E, and the morphisms of
HomE(x, y) as 2-morphisms α : f ⇒ g of E. The underlying category of E consists of the
objects and 1-morphisms only.

The standard example of a 2-category is Cat, the category of categories, with objects=categories,
1-morphisms=functors, 2-morphisms=natural transformations.

We can enlarge the category qCat of quasicategories to a homotopy 2-category h2qCat, so
that

Homh2qCat(C,D) := hFun(C,D).

That is,

• objects of h2qCat are quasicategories,
• 1-morphisms of h2qCat are functors between quasicategories,
• 2-morphisms of h2qCat are isomorphism classes of natural transformations of functors.

Note that qCat sits inside h2qCat as its underlying category; thus, h2qCat contains all the informa-
tion of qCat. On the other hand hqCat is obtained from h2qCat by first identifying 1-morphisms
(functors) which are 2-isomorphic (i.e., naturally isomorphic), and then throwing away the 2-
morphisms.

Part 3. Joins, slices, and Joyal’s extension and lifting theorems

In this part we describe and apply two new methods to construct new quasicategories from old,
called “joins” and “slices”. They are both generalizations of constructions which can be carried out
on categories: the most familiar of these classical constructions is slice category C/x associated to
an object x of a category C, in which objects of slice C/x are morphisms c→ x in C.

With these constructions in hand, we will be able to define notions of limits and colimits in
quasicategories. We will also be able to prove some of the results we have deferred up until now,
including the equivalence of quasigroupoids and Kan complexes (A) and the objectwise criterion
for natural isomorphisms (C). Much of the material in this part comes from Joyal’s seminal paper
[Joy02].

23. Joins

23.1. Join of categories. If A and B are ordinary categories, we can define a category A ? B
called the join. This has

ob(A ? B) = obAq obB, mor(A ? B) = morAq (obA× obB)qmorB,
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so that we put in a unique map from each object of A to each object of B. Explicitly,

HomA?B(x, y) :=


HomA(x, y) if x, y ∈ obA,

HomB(x, y) if x, y ∈ obB,

{∗} if x ∈ obA, y ∈ obB,

∅ if x ∈ obB, y ∈ obA,

with composition defined so that the evident inclusions A→ A ? B ← B are functors. (Check that
this really defines a category, and that A and B are identified with full subcategories of A ? B.)

23.2. Example. We have that [p] ? [q] ≈ [p+ 1 + q]. F 15 Feb 2019

23.3. Exercise (Functors from a join of categories). Show that functors f : A?B → C are in bijective
correspondence with triples (fA : A → C, fB : B → C, γ : fA ◦ πA ⇒ fB ◦ πB), where fA and fB
are functors, and γ is a natural transformation of functors A×B → C, where πA : A×B → A and
πB : A×B → B denote the evident projection functors.

23.4. Exercise (Functors to a join of categories). Show that functors f : C → A ? B are in bijective

correspondence with triples of functors (π : C → [1], f{0} : C{0} → A, f{1} : C{1} → B), where

C{j} := π({j}) ⊆ C is the fiber of π over j ∈ ob[1], i.e., the subcategory of C consisting of objects
which π sends to j and morphisms which π sends to idj .

23.5. Exercise. Describe an isomorphism (A ? B)op ≈ Bop ? Aop.

An important special case are the left cone and right cone of a category, defined by AC := [0]?A
and AB := A ? [0]. For instance, the right cone AB is the category obtained by adjoining one
additional object v to A, as well as a unique map x→ v for each object x of AB. In this case, v
becomes a terminal object for AB, and we can say that A 7→ AB freely adjoins a terminal object
to A. (Note that a terminal object of A will not be terminal in AB anymore.) Likewise, A 7→ AC

freely adjoins an initial object to A.
Limits and colimits of functors can be characterized using cones: if p : A → C is a functor, a

colimit of p is a functor p̂ : AB → C which is initial among functors which extend p, and likewise, a
limit of p is a functor p̂′ : AC → C which is terminal among functors which extend p.

23.6. Remark. It is worthwhile to spell this out in detail. Given a functor p : A→ C, to describe a
functor q : AB → C which extends p, it suffices to give

(1) an object q(v) in C,
(2) for each object a ∈ obA a morphism q(a→ v) : p(a) = q(a)→ q(v) in C, such that
(3) for each morphism α : a → a′ in A we have an equality q(a′ → v) ◦ p(α) = q(a → v) of

morphisms p(a)→ q(v) in C.

a

α
��

a′

=⇒

p(a) q(a→v)

((
p(α)

��

q(v)

p(a′) q(a′→v)

66

Given functors q, q′ : AB → C, we may consider natural transformations φ : q → q′ whichextend
the identity transformation of p. Explicitly, such a transformation φ is exactly determined by

(1) a morphism φ(v) : q(v)→ q′(v) in C such that
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(2) for each object a ∈ obA we have an equality q′(a → v) = φ(v) ◦ q(a → v) of morphisms
p(a)→ q′(v) in C.

a =⇒

q(v)

φ(v)

��

p(a)

q(a→v) 66

q′(a→v)
((

q′(v)

An extension p̂ : AB → C of p is a colimit of p if for every q extending p there exists a unique map
φ(v) : p̂(v)→ q(v) in C such that q(a→ v) = φ(v) ◦ p̂(a→ v) for all a ∈ obA. The object p̂(v) is
what is colloquially known as “the colimit of p”, although the full data of a colimit of p is actually
the functor p̂. We will call the functor p̂ a colimit cone it what follows.

23.7. Ordered disjoint union. As noted above (23.2), the join operation on categories effectively
descends to ∆. We will call this the ordered disjoint union. It is a functor t : ∆ × ∆ → ∆,
defined so that [p] t [q] := [p + 1 + q], to be thought of as the disjoint union of underlying sets,
ordered so that the subsets [p] and [q] retain their ordering, and elements of [p] come before elements
of [q].

It is handy to extend this to the category ∆+, the full subcategory of ordered sets obtained by
adding the empty set [−1] := ∅ to ∆. The functor t extends in an evident way to t : ∆+×∆+ → ∆+.
This extended functor makes ∆+ into a (nonsymmetric but strict) monoidal category, with unit
object [−1].

Note that for any map f : [p]→ [q1] t [q2] in ∆+, there is a unique decomposition [p] = [p1] t [p2]
such that f = f1 t f2 for some (necessarily unique) fi : [pi]→ [qi] in ∆+. (We need an object [−1]
to be able to say this, even if p, q1, q2 ≥ 0; if f([p]) ⊆ [q1] then p2 = −1.)

23.8. Join of simplicial sets. Let X and Y be simplicial sets. The join of X and Y is a simplicial
set X ? Y defined as follows.

The join of simplicial sets X and Y is a simplicial set X ? Y with n-dimensional elements

(X ? Y )n :=
∐

[n]=[n1]t[n2]

Xn1 × Yn2 ,

where [n1], [n2] ∈ ob ∆+, and we declare X−1 = ∗ = Y−1 to be a one-point set. The action of
simplicial operators is defined in the evident way, using the observation of the previous paragraph: for
(x, y) ∈ Xn1×Yn2 ⊆ (X?Y )n and f : [m]→ [n], we have (x, y)f = (xf1, yf2) ∈ Xm1×Ym2 ⊆ (X?Y )m,
where f = f1 t f2, fj : [mj ]→ [nj ] is the unique decomposition of f over [n] = [n1] t [n2].

23.9. Exercise. Check that the above defines a simplicial set.

In particular,

(X ? Y )0 = X0 q Y0,

(X ? Y )1 = X1 q X0 × Y0 q Y1,

(X ? Y )2 = X2 q X1 × Y0 q X0 × Y1 q Y2,

and so on.
Note that there are evident maps X → X ? Y ← Y , which give isomorphisms from X and Y to

subcomplexes of X ? Y , and these subcomplexes are disjoint from each other.
There are isomorphisms

(X ? Y ) ? Z
∼−→ X ? (Y ? Z),

natural in X,Y, Z: on either side, the set of n-dimensional simplices can described as∐
[n]=[n1]t[n2]t[n3]Xn1 × Yn2 ×Zn3 . Together with the evident isomorphisms ∅ ?X ≈ X ?X ?∅, the
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join gives a monoidal structure on sSet with unit object ∆−1 := ∅. Note that ? is not symmetric
monoidal, though it is true that (Y ? X)op ≈ Xop ? Y op. We have that

∆p ?∆q ≈ ∆p+1+q.

An important example are the cones. The left cone and right cone of a simplicial set X are

XC := ∆0 ? X, XB := X ?∆0.

Note that outer horns are examples of cones:

(∂∆n)C = ∆0 ? ∂∆n ≈ Λn+1
0 , (∂∆n)B = ∂∆n ?∆0 ≈ Λn+1

n+1.

23.10. Exercise. Let f : [m]→ [n] be any simplicial operator. Show that the induced map f : ∆m →
∆n on standard simplices is uniquely isomorphic to a join of maps f0?f1?· · ·?fn, with fj : ∆mj → ∆0,
where each mj ≥ −1.

It is straightforward to show that the nerve takes joins of categories to joins of simplicial sets:
N(A?B) ≈ N(A) ?N(B), and thus N(AC) ≈ (NA)C and N(AB) ≈ (NA)B. (Exercise: prove this.)

23.11. The join of quasicategories is a quasicategory. Here is a handy rule for constructing
maps into a join (compare (23.4)). Note that every join admits a canonical map π : X ? Y →
∆0 ?∆0 ≈ ∆1, namely the join applied to the projections X → ∆0 and Y → ∆0.

23.12. Lemma ([Joy08a, Prop. 3.5], compare (23.4)). Maps f : K → X ? Y are in bijective
correspondence with the set of triples(

π : K → ∆1, f{0} : K{0} → X, f{1} : K{1} → Y
)
,

where K{j} := π−1({j}) ⊆ K, the pullback of {j} → ∆1 along π.

Proof. This is a straightforward exercise. In one direction, the correspondence sends f to
(πf, f |K{0}, f |K{1}), where π : X ? Y → ∆0 ?∆0 = ∆1. �

23.13. Proposition. If C and D are quasicategories, so is C ? D.

Proof. Use the previous lemma (23.12), together with the observations (which we leave as an
exercise) that for any map π : Λnj → ∆1 from an inner horn, the preimages π−1({0}) and π−1({1})
are either inner horns, standard simplices, or are empty, and for any map π : ∆n → ∆1 from a
standard simplex, the preimages are either a standard simplex or empty. �

24. Slices

24.1. Slices of categories. Given an ordinary category C, and an object x ∈ obC, we may form
the slice categories Cx/ and C/x, also called undercategory and overcategory, or slice-over
category and slice-under category.

For instance, the slice-over category C/x is the category whose objects are maps f : c→ x with
target x, and whose morphisms (f : c→ x)→ (f ′ : c′ → x) are maps g : c→ c′ such that f ′g = f .

This can be reformulated in terms of joins. Let “T” denote the terminal category (isomorphic to
[0]). Note that obC/x corresponds to the set of functors f : [0] ? T → C such that f |T = x, and
morC/x corresponds to the set of functors g : [1] ? T → C such that g|T = x.

More generally, given a functor p : A→ C of categories, we obtain slice categories Cp/ and C/p
defined as follows. The category C/p has

• objects: functors f : [0] ? A→ C such that f |A = p,
• morphisms f → f ′: functors g : [1] ? A→ C such that g|A = p.

Likewise, the category Cp/ has

• objects: functors f : A ? [0]→ C such that f |A = p,
• morphisms f → f ′: functors g : A ? [1]→ C such that g|A = p.
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24.2. Exercise. Describe composition of morphisms in C/p and Cp/.

24.3. Exercise. Show that (Cp/)
op ≈ (Cop)pop/ (isomorphism of categories).

24.4. Exercise. Fix a functor p : A→ C, and let B be a category. Construct bijections

{functors f : B → C/p} ↔ {functors g : B ? A→ C s.t. g|A = p}
and

{functors f : B → Cp/} ↔ {functors g : A ? B → C s.t. g|A = p}.

24.5. Remark. The notions of limits and colimits can be formulated very compactly in terms of the
general notion of slices. Thus, given a functor p : A→ C, a colimit of p is the same data as an initial
object of Cp/, while a limit of p is the same data as a terminal object of C/p. (Exercise: prove
this; this will be the starting case for formulating notions of limits and colimits for quasicategories.
Compare (23.6).)

24.6. Joins and colimits of simplicial sets. The join functor ? : sSet× sSet→ sSet is in some
ways analogous to the product functor ×, e.g., it is a monoidal functor.

The product operation (−)× (−) on simplicial sets commutes with colimits in each input, and
the functors X ×− and −×X admit right adjoints (in both cases, the right adjoint is Map(X,−)).
The join functor does not commute with colimits in each variable, but almost does so; the only
obstruction is the value on the initial object

More precisely, the functors X ? − and − ? X : sSet → sSet do not preserve the initial object,
since X ?∅ ≈ X ≈ ∅ ? X. However, (the identity map of) X is tautologically the initial object of
sSetX/, the slice category of simplicial sets under X.

24.7. Proposition. For every simplicial set X, the induced functors

X ?−, − ? X : sSet→ sSetX/

preserve colimits.

Proof. Ths follows from the degreewise formula for the join, which has the form:

(X ? Y )n = Xn q (Xn−1 × Y0)q · · · q (X0 × Yn−1)q Yn = Xn q (terms which are “linear” in Y ).

That is, for each n ≥ 0 the functor Y 7→ (X ? Y )n : sSet→ SetXn/ is seen to be colimit preserving,
since each functor Xk × (−) : Set→ Set is colimit preserving. �

24.8. Exercise (Trivial, but important). Show that the functors X ? − and − ? X : sSet → sSet
preserve pushouts.

24.9. Slices of simplicial sets. We have seen that the functors

S ?− : sSet→ sSetS/ and − ?T : sSet→ sSetT/

preserve colimits, and therefore we predict that they admit right adjoints. These exist, and are
called slice functors, denoted

(p : S → X) 7→ Xp/ : sSetS/ → sSet

and
(q : T → X) 7→ X/q : sSetT/ → sSet.

I will sometimes distinguish these as slice-under and slice-over, respectively. Explicitly, there are
are bijective correspondences

(24.10)

 S
��

p
// X

S ? K

77

⇐⇒ {K 99K Xp/},

 T
��

q
// X

K ? T

77

⇐⇒ {K 99K X/q}.
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Here we write “S → S ?K” and “T → K ? T” for the inclusions S ?∅ ⊆ S ?K and ∅ ? T ⊆ K ? T ,
using the canonical isomorphisms S ?∅ = S and ∅ ? T = T .

Taking K = ∆n we obtain the formulas M 18 Feb 2019

(Xp/)n = HomsSetS/(S ?∆n, X), (X/q)n = HomsSetT/(∆
n ? T,X),

which we regard as the definition of slices. (I.e., these formulas specify the n-dimensional elements
of the slices, and naturality in “∆n” specifies the action of simplicial operators.)

24.11. Exercise. Given this explicit definition of slices in terms of their elements and the action of
simplicial operators, verify the bijective corrrespondences (24.10).

In particular, we note the special cases associated to x : ∆0 → X:

HomsSet(K, (Xx/) = HomsSet∆0/
(∆0 ? K,X) ≈ HomsSet∗((K

C, v), (X,x)),

HomsSet(K,X/x) = HomsSet∆0/
(K ?∆0, X) ≈ HomsSet∗((K

B, v), (X,x)).

The notation (X,x) with x ∈ X0 represents a pointed simplical set, the category of which is
sSet∗ := sSet∆0/. We write v for the cone point of KC and KB.

The slice construction for simplicial sets agrees with that for categories.

24.12. Proposition. The nerve preserves slices; i.e., if p : A → C is a functor, then N(Cp/) ≈
(NC)Np/ and N(C/p) ≈ (NC)/Np.

Proof. Left as an exercise. �

24.13. Slice as a functor. The function complex construction Map(−,−) is a functor in two
variables, contravariant in the first and covariant in the second. The slice constructions also behave
something like a functor of two variables, though it is a little more complicated, because the slice
constructions also depend on a map between the two objects. A precise statement is that every
diagram on the left gives rise to commutative diagrams as on the right.

S
p
// X

f
��

T

j

OO

fpj
// Y

=⇒

X/p
//

��

Y/fp

��

X/pj
// Y/fpj

Xp/
//

��

Yfp/

��

Xpj/
// Yfpj/

There seems to be no decent notation for the maps in the right-hand squares. The whole business
of joins and slices can get pretty confusing because of this.

24.14. Remark. A very precise formulation is that each kind of slice defines a functor sSettw → sSet
from the twisted arrow category of simplicial sets, whose objects are maps p of simplicial sets, and
whose morphisms are pairs (j, f) : p→ fpj, where j and f are themselves maps of simplicial sets.

Let’s spell this out in terms of the correspondence between “maps into slices” and “maps from

joins”. Given T
j−→ S

p−→ X
f−→ Y , consider “restriction map” Xp/ → Yfpj/. The composite of a map

u : K → Xp/ with this restriction map is described in terms of the bijection of (24.10) as follows.
The map u corresponds to a dotted arrow in

T��

��

j
// S

p
//

��

��

X
f
// Y

T ? K
j?K

// S ? K
ũ

;;

The composite K
u−→ Xp/ → Yfpj/ corresponds to fũ(j ? K).
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A particular special case which we will see a lot of are the “restriction” functors

X/p → X and Xp/ → X

induced by sequence ∅ j−→ S
p−→ X, using that X/∅ = X = X∅/. For instance, X/p → X sends an

n-dimensional element x ∈ (X/p)n corresponding to x̃ : ∆n?S → X extending p to the n-dimensional
element of X represented by the map x̃|(∆n ?∅) defined as the composite

∆n = ∆n ?∅→ ∆n ? S
x−→ X.

24.15. Exercise. Let p : S → X and q : T → X be maps of simplicial sets. Describe and prove
bijections between the following sets of solutions to lifting problems:

Xp/

��

T q
//

>>

X

 ⇐⇒


S q T��

��

(p,q)
// X

S ? T

;;

 ⇐⇒


X/q

��

S p
//

>>

X


Here Xp/ → X and X/q → X are the evident restriction functors, and SqT → S?T the tautological
inclusion.

25. Initial and terminal objects

We now show that for a vertex x in a quasicategory C, the slice objects C/x and Cx/ are also
quasicategories. Using this, we can make a definition of initial and terminal object in a quasicategory.

25.1. Initial and terminal objects. An initial object21 of a quasicategory C is an x ∈ C0 such
that every f : ∂∆n → C (for all n ≥ 1) such that f |{0} = x, there exists an extension f ′ : ∆n → C.

A terminal object of C is an initial object of Cop. That is, a y ∈ C0 such that every f : ∂∆n → C
with f |{n} = y extends to ∆n.

{0} // //

x

((
∂∆n
��

��

// C {n} // //

y

((
∂∆n
��

��

// C

∆n
∃

==

∆n
∃

==

Let’s spell out the first parts of the definition of initial object applied to x ∈ C0:

• The condition for n = 1 says that for every object c in C there exists f : x→ c,
• The condition for n = 2 says that for every triple of maps f : x → c, g : c → c′, and
h : x→ c′, we must have [h] = [g][f ]. In particular (taking f = 1x), we see there is at most
one homotopy class of maps from x to any object.

If C is the nerve of an ordinary category, then Hom(∆n, C)
∼−→ Hom(∂∆n, C) for all n ≥ 3. Thus,

for ordinary categories, this definition coincides with the usual notion of initial object.
For general quasicategories, we see that an initial object x ∈ C0 necessarily satisfies HomhC(x, y) ≈

∗ for all y ∈ C0, so that x represents an initial object in the homotopy category hC, but this is not
sufficient to be initial in C: there are also an infinite sequence of “higher” conditions that an initial
object of a quasicategory must satisfy.

We will now reformulate these notions using slice categories.

21We use Joyal’s definition of initial and terminal object [Joy02, §4] here. Lurie’s definition [Lur09, 1.2.12.1] is
different, but is equivalent to what we use, by [Lur09, 1.2.12.5] and (25.5).
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25.2. Left and right horns, fibrations, and anodyne maps. We recall the sets left horns

LHorn := {Λnk ⊂ ∆n | 0 ≤ k < n, n ≥ 1 } = InnHorn ∪ {Λn0 ⊂ ∆n | n ≥ 1 }
and the right horns

RHorn := {Λnk ⊂ ∆n | 0 < k ≤ n, n ≥ 1 } = InnHorn ∪ {Λnn ⊂ ∆n | n ≥ 1 }.
The associated weak saturations LHorn and RHorn are the left anodyne and right anodyne
maps. The associated right complements

LFib := LHorn�, RFib := RHorn�

are the left fibrations and right fibrations. Note that

InnHorn ⊆ LHorn ∩ RHorn and LFib ∪ RFib ⊆ InnFib.

These classes correspond to each other under the opposite involution (−)op : sSet → sSet; i.e.,
LHornop = RHorn, LFibop = RFib.

25.3. Proposition. Let C be a quasicategory and x ∈ C0. The evident maps Cx/ → C and C/x → C
which “forget x” (i.e., induced by the sequence ∅→ {x} → C) are left fibration and right fibration
respectively. In particular, Cx/ and C/x are also quasicategories.

Proof. I claim that π : C/x → C is a right fibration. Explicitly, this map sends the n-dimensional

element a : ∆n → C/x, which corresponds to ã : ∆n ? ∆0 → C such that ã|(∅ ? ∆0) = x, to
the n-dimensional element ã|(∆n ? ∅) → C. Using the join/slice adjunction, there is a bijective
correspondence between lifting problems

Λnj
f
//

��

��

C/x

π

��

∆n
g
//

==

C

⇐⇒
∅ ?∆0 // //

x

++(Λnj ?∆0) ∪Λnj ?∅ (∆n ?∅)
��

��

(f̃ ,g) // C

∆n ?∆0

44

Note that there is a unique isomorphism ∆n ? ∆0 ≈ ∆n+1. For any subset S ⊂ [n], the above

isomorphism identifies the subcomplex ∆S ?∆0 ⊂ ∆n ?∆0 with ∆S∪{n+1} ⊂ ∆n+1, while ∆S ?∅ ⊂
∆n ?∆0 is identified with ∆S ⊆ ∆n+1. Since Λnj =

⋃
k∈[n]rj ∆[n]rk, we see that

(1) the subcomplex (∆n
j ?∆0) ∪Λnj ?∅ (∆n ?∅) of ∆n ?∆0 is the horn Λn+1

j ⊂ ∆n+1, and

(2) the subcomplex ∅ ?∆0 of ∆n ?∆0 is the vertex {n+ 1}.
Thus, the right hand diagram above is isomorphic to

{n+ 1} // //

x

))
Λn+1
j
��

��

// C

∆n+1

==

If C is a quasicategory, then an extension exists for 0 < j ≤ n.
Since right fibrations are inner fibrations, the composite C/x → C → ∗ is an inner fibration, and

thus C/x is a quasicategory.
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The case of Cx/ → C is similar, using the correspondence

Λnj //

��

��

Cx/

π

��

∆n //

==

C

⇐⇒
{0} // //

x

((
Λn+1
j+1
��

��

// C

∆n+1

==

�

25.4. Reformulation of initial/terminal via slices. We can restate the definition of ini-
tial/terminal object using the “forgetful” functor of the relevant slice.

25.5. Proposition. If C is a quasicategory, then x ∈ C0 is initial if and only if Cx/ → C is a trivial
fibration, and terminal if and only if C/x → C is a trivial fibration.

Proof. This is an application of the join/slice adjunction. Applied to ∂∆n ⊂ ∆n with n ≥ 0 and
Cx/ → C , this has the form

∂∆n f
//

��

��

Cx/

π

��

∆n
g
//

<<

C

⇐⇒
∆0 ?∅ // //

x

,,(∆0 ? ∂∆n) ∪∅?∂∆n (∅ ?∆n)
��

��

(f̃ ,g) // C

∆0 ?∆n

44

The right-hand diagram is isomorphic to

{0} // //

x

))
∂∆n+1
��

��

// C

∆n+1

<<

Thus Cx/ is in TrivFib = Cell� if and only if x is an initial object of C, as desired.
�

25.6. Remark. This implies that if x is initial, then Cx/ → C is a categorical equivalence. Later
(37.10) we’ll be able to show the converse: if Cx/ → C is a categorical equivalence, then x is initial.

25.7. Uniqueness of initial and terminal objects. A crucial fact about initial and terminal
objects in an ordinary category is that they are unique up to unique isomoprhism. One way to
formulate this is as follows: given a category C, let C init ⊆ C be the full subcategory spanned by
the initial objects. Then one of two cases applies: either there are no initial objects, so C init is
empty, or there is at least one initial object, and C init is equivalent to the terminal category [0].

This leads to an analogous formulation for quasicategories.

25.8. Proposition. Let C be a quasicategory. Let C init and Cterm denote respectively the full
subcategories spanned by initial objects and terminal objects. Then (i) either C init is empty or
is categorically equivalent to the terminal quasicategory ∆0, and (ii) either Cterm is empty or is
categorically equivalent to the terminal quasicategory ∆0.

Proof. Since Cterm = ((Cop)init)op, we just need to consider the case of initial objects. By definition
of initial object, any f : ∂∆n → C init with n ≥ 1 can be extended to g : ∆n → C, and the image of
g must lie in the full subcategory C init since all of its vertices do. If C init 6= ∅, then this extension
condition also holds for n = 0, whence C → ∆0 is a trivial fibration, and thus C is categorically
equivalent to ∆0 by (20.1). �
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There are some seemingly obvious facts about initial and terminal objects that we can’t prove
just yet.

D. Deferred Proposition.

(1a) Let f : x→ y be a morphism in a quasicategory C, and let f̃ ∈ (Cx/)0 be the object of the slice

which corresponds to f ∈ C1. Then f̃ is initial in Cx/ if and only if f is an isomorphism.

(1b) Let f : x → y be a morphism in a quasicategory C, and let f̃ ∈ (C/y)0 be the object of

the slice which corresponds to f ∈ C1. Then f̃ is terminal in C/y if and only if f is an
isomorphism.

(2) In a quasicategory, every object which is isomorphic to an initial object is initial, and any
object isomorphic to a terminal object is terminal.

Proofs will be given in (29.6).

25.9. Initial and terminal objects in functor categories. Here is a sample of a property of
initial/terminal objects that we can now prove. A functor between ordinary categories whose values
are all initial (or terminal) objects is itself initial (or terminal) as an object of the functor category.
The same holds with categories replaced by quasicategories.

25.10. Proposition. Consider a map f : X → C from a simplicial set to a quasicategory. Suppose
that for every vertex x ∈ X0 the object f(x) ∈ C0 is initial (resp. terminal) in C. Then the functor
f is initial (resp. terminal) viewed as an object of Fun(X,C).

As a consquence, if C has an initial (or terminal) object c0, then Fun(X,C) also has an initial
(or terminal) object, e.g., the functor which is the composite of X → {c0} → C.

Proof. Assume f(x) ∈ C0 is initial in C for all x ∈ X0. Suppose given g : ∂∆n → Fun(X,C) with
n ≥ 1 and g|{0} = f . We want to show that there exists an extension g′ : ∆n → Fun(X,C) of g.
We convert this to the adjoint lifting problem:

{0} ×X //

f

$$
∂∆n ×X

g̃
//

��

��

C

∆n ×X
g̃′

::

The strategy is to construct the extension by inductively constructing extensions g̃k : Fk → C
where Fk = (∂∆n × X) ∪ Skk(∆

n × X), k ≥ 0 is the skeletal filtration (15.23) of the inclusion
∂∆n ×X → ∆n ×X. Note that any k-dimensional element h = (a, b) : ∆k → ∆n ×X which is not
contained in in the subcomplex ∂∆n ×X must necessarily be such that a : ∆k → ∆n is surjective,
whence a takes the vertex 0 ∈ (∆k)0 to 0 ∈ (∆n)0, and therefore g̃h(0) = ĝ(0, b(0)) = f(b(0)) is an
initial object in C by hypothesis. Thus we can lift in∐

∂∆k(h|∂∆k)
//

��

��

Fk−1

g̃k−1
//

��

��

C

∐
∆k

(h)
// Fk

g̃k

99

since the square is a pushout and for each h : ∆k → Fk we have that (g̃k−1h)|∂∆k sends the vertex
0 to an initial object of C, so an extension of (g̃k−1h)|∂∆k to ∆k always exists. �
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26. Joins and slices in lifting problems

Recall that for an object x in a quasicategory C, the slice objects Cx/ and C/x are also qua-
sicategories. It turns out that the conclusion remains true for more general kinds of slices of
quasicategories.

26.1. Proposition. Let p : S → C be a map of simplicial sets, and suppose C is a quasicategory.
Then both Cp/ and C/p are quasicategories.

The proof is just like that of (25.3): we will show below (26.14) that Cp/ → C is a left fibration
and C/p → C is a right fibration.

To set this up, we need a little technology about how joins interact with lifting problems.

26.2. Pushout-joins. We define an analogue of the pushout-product for the the join. Given maps
i : A→ B and j : K → L of simplicial sets, the pushout-join (or box-join) i� j is the map

i� j : (A ? L)qA?K (B ? K)
(i?L,B?j)−−−−−−→ B ? L.

Warning: unlike the pushout-product, the pushout-join is not symmetric, since the join is not
symmetric: i� j 6= j � i.

26.3. Example. We have already observed examples of pushout-joins in the proof of (25.3), namely

(Λnj ⊂ ∆n) � (∅ ⊂ ∆0) ≈ (Λn+1
j ⊂ ∆n+1), (∅ ⊂ ∆0) � (Λnj ⊂ ∆n) ≈ (Λ1+n

1+j ⊂ ∆1+n),

and also

(∅ ⊂ ∆0) � (∂∆n ⊂ ∆n) ≈ (∂∆1+n ⊂ ∆1+n), (∂∆n ⊂ ∆n) � (∅ ⊂ ∆0) ≈ (∂∆n+1 ⊂ ∆n+1)

in the proof of (25.5). These generalize to arbitrary horns and cells. The pushout-join of a horn
with a cell is always a horn:

(Λnj ⊂ ∆n) � (∂∆k ⊂ ∆k) ≈ (Λn+1+k
j ⊂ ∆n+1+k),

(∂∆k ⊂ ∆k) � (Λnj ⊂ ∆n) ≈ (Λk+1+n
k+1+j ⊂ ∆k+1+n).

Also, the pushout-join of a cell with a cell is always a cell:

(∂∆n ⊂ ∆n) � (∂∆k ⊂ ∆k) ≈ (∂∆n+1+k ⊂ ∆n+1+k).

We leave proofs as an exercise for the reader.

26.4. Exercise. Prove the isomorphisms asserted in (26.3).

26.5. Remark. Both pushout-product and pushout-join are special cases of a general construction:
given any functor F : sSet × sSet → sSet of two variables, you get a corresponding “pushout-F”
functor: F� : Fun([1], sSet)× Fun([1], sSet)→ Fun([1], sSet). We will meet more examples later.

26.6. Pullback-slices. Just as the pushout-product is associated to the pullback-hom, so the

pushout-join is associated to two kinds of pullback-slices (or box-slices). Given maps K
j−→ L

q−→
X

h−→ Y , we define the map
h�qj : X/q → X/qj ×Y/hqj Y/hq,

where the components X/q → X/qj and X/q → Y/hq are the evident maps constructed by “restricting”
along p : K → L in the first case, and “composing” with h : X → Y in the second case.

Similarly, given maps A
i−→ B

p−→ X
h−→ Y we have

hi�p : Xp/ → Xpi/ ×Yhpi/ Yhp/.

26.7. Remark. When Y = ∗, these pullback-slice maps are just the restriction maps X/q → X/qj

and Xp/ → Xpi/.
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26.8. Remark. Both pullback-hom and pullback-slices are special cases of a general construction: given
any functor F : sSettw → sSet from the twisted arrow category (24.14), you get a corresponding
“pullback-F” functor F� : sSettw → sSet. In the case of pullback-hom, the F in question is a

composite functor sSettw → sSetop × sSet
Map−−−→ sSet.

26.9. Joins, slices, and lifting problems. The pushout-join and pullback-slice interact with
lifting problems in much the same way that pushout-product and pullback-hom do.

26.10. Proposition. Given i : A→ B, j : K → L, and h : X → Y , the following are equivalent.

(1) (i� j) � h.
(2) i� (h�qj) for all q : L→ X.
(3) j � (hi�p) for all p : B → X.

Proof. A straightforward exercise. The equivalence of (1) and (2) is

A //

i

��

X/q

h�qj

��

B //

88

X/qj ×Y/hqj Y/hq

⇐⇒
∅ ? L //

q

++(A ? L) ∪A?K (B ? K) //

i�j
��

X

h
��

B ? L //

66

Y

�

26.11. Proposition. Let S and T be sets of maps in sSet. Then S � T ⊆ S � T .

Proof. This is formal and nearly identical to the proof of the weak saturation result for box-products
(16.8). �

26.12. Proposition. We have

Cell � Cell ⊆ Cell, RHorn � Cell ⊆ InnHorn, and Cell � LHorn ⊆ InnHorn.

Proof. Immediate from (26.3) and (26.11). �

26.13. Corollary. Given T
j−→ S

p−→ X
f−→ Y , consider the pullback-slice maps

` : Xp/ → Xpj/ ×Yfpj/ Yfp/, r : X/p → X/pj ×Y/fpj Y/fp.
We have the following.

(1) j ∈ Cell, f ∈ TrivFib implies `, r ∈ TrivFib.
(2) j ∈ Cell, f ∈ InnFib implies ` ∈ LFib, r ∈ RFib.
(3) j ∈ RHorn, f ∈ InnFib implies ` ∈ TrivFib.
(4) j ∈ LHorn, f ∈ InnFib implies r ∈ TrivFib.

Proof. Exercise, using (26.12). �

We are mostly interested in special cases when X = C is a quasicategory, and Y = ∗.

26.14. Corollary. Given T
j−→ S

p−→ C with C a quasicategory and j a monomorphism, the induced
map C/p → C/pj is a right fibration, and Cp/ → Cpj/ is a left fibration. In particular, C/p → C is a
right fibration and Cp/ → C is a left fibration (case T = ∅).

26.15. Corollary. Given T
j−→ S

p−→ C with C a quasicategory, if j is right anodyne then Cp/ → Cpj/
is a trivial fibration, while if j is left anodyne then C/p → C/pj is a trivial fibration.

Another case we will need is when T = ∅.
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26.16. Corollary. Given S
p−→ X

f−→ Y where f is a trivial fibration, all of the maps in

Xp/ → X ×Y Yfp/ → Yfp/ and X/p → X ×Y Y/fp → Y/fp

are trivial fibrations.

Proof. The two pullback-slice maps are trivial fibrations by (26.13). The projections are each base
changes of the trivial fibration f , and so are trivial fibrations. �

26.17. Composition functors for slices. Here is a nice consequence of the above. Let C be a
quasicategory and f : x→ y a morphism in it; we represent f by a map ∆1 → C of simplicial sets,
which we also call f . We obtain two functors

C/x
p←− C/f

q−→ C/y

associated to the inclusions {0} ⊂ ∆1 ⊃ {1}. The first inclusion {0} ⊂ ∆1 is a left-horn inclusion,
and thus by (26.15) the restriction map p is a trivial fibration, and hence we can choose a section
s : C/x → C/f of p.

The resulting composite qs : C/x → C/y can be thought of as a functor realizing the operation

which sends an object (c
g−→ x) of C/x to “the object” (c

fg−→ y) of C/y defined by “composing f and
g” (but remember that such composition is not uniquely defined in a quasicategory C; the choice of
section s gives a collection of such choices for all g.)

26.18. Exercise. Show that if C is a category, then p is an isomorphism, and that qs is precisely the
functor C/x → C/y described above.

27. Limits and colimits in quasicategories

27.1. Definition of limits and colimits. Now we can define the notion of a limit and colimit of
a functor between quasicategories (and in fact of a map from a simplicial set to a quasicategory).
Given a map p : K → C where C is a quasicategory, a colimit of p is defined to be an initial object
of the slice quasicategory Cp/. Explicitly, a colimit of p : K → C is a map p̃ : K ?∆0 = KB → C
extending p, such that for n ≥ 1 a lift exists in every diagram of the form

K ? {0} // //

p̃

**K ? ∂∆n //
��

��

C

K ?∆n

;;

Sometimes it is better to call p̃ a colimit cone, in which case the restriction p̃|∅ ?∆0 to the cone
point is an object in C which can be called a “colimit of p”.

Similarly, a limit of p is a terminal object of C/p; explicitly, this is a map p̃ : ∆0 ? K = KC → C
extending p such that for n ≥ 1 a lift exists in every

{n} ? K // //

p̃

**∂∆n ? K //
��

��

C

∆n ? K

;;

27.2. Example. Consider the empty simplicial set K = ∅. Then C∅/ = C, so a colimit of p : ∅→ C
is precisely the same as an initial object of C. Likewise, a limit of p is precisely the same as a
terminal object of C.
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27.3. Example. Consider K = Λ2
0, which is the nerve of a category which we can draw as the picture(

1← 0→ 2
)
. Then (Λ2

0)B ≈ ∆1 ×∆1 is also an ordinary category; explicitly it has the form of a
commutative square

0 //

�� ��

1

��
2 // v

where v is the “cone vertex”. A colimit cone (Λ2
0)B → C is called a pushout diagram in C.

Similar considerations give (Λ2
2)C ≈ ∆1 × ∆1; a limit cone (Λ2

2)C → C is called a pullback
diagram in C.

27.4. Exercise. Let C ′ ⊆ C be an inclusion of a full subcategory. Show that if p : K → C ′ has a
colimit p̃ in C, and if the image of p̃ is contained in C ′, then p̃ is in fact a colimit of p in C ′.

27.5. Uniqueness of limits and colimits. Limits and colimits are unique if they exist.

27.6. Proposition. Let p : K → C be a map to a quasicategory, and let (Cp/)
colim ⊆ Cp/ and

(C/p)
lim ⊆ C/p denote the full subcategories spanned by colimit cones and limit cones respectively.

Then (i) either (Cp/)
colim is empty or is categorically equivalent to ∆0, and (ii) either (C/p)

lim is

empty or is categorically equivalent to ∆0.

Proof. This is just the uniqueness of initial and terminal objects (25.8), since (Cp/)
colim = (Cp/)

init

and (C/p)lim = (C/p)
term. �

We have noted above (25.5) that an object x in a quasicategory C is initial iff Cx/ → C is a
trivial fibration, and terminal iff C/x → C is a trivial fibration. There is a similar characterization
of limit and colimit cones.

27.7. Proposition. Let C be a quasicategory. Let p̃ : KB → C be a map, and write p := p̃|K. Then
p̃ is a colimit diagram if and only if Cp̃/ → Cp/ is a trivial fibration.

Likewise, let q̃ : KC → C be a map, and write q := q̃|K. Then q̃ is a limit diagram if and only if
C/q̃ → C/q is a trivial fibration.

Proof. I’ll just do the case of colimits.
We make an elementary observation about iterated slices (see (27.8) below). There is an

isomorphism (Cp/)p̃/ ≈ Cp̃/, where the symbol “p̃” refers to both a morphism p̃ : KB → Cp/ (on the
right-hand side of the isomorphism) and the corresponding object p̃ ∈ (Cp/)0 (on the left-hand side
of the isomorphism). The point is that in either simplical set, a k-dimensional element corresponds
to a map K ?∆0 ?∆k → C which restricts to p̃ on K ?∆0 ?∅.

Using this, the statement amounts to the special case for initial and terminal objects (25.5). �

27.8. Exercise (Iterated slices). Let f : A?B → C be a map of simplicial sets. Describe isomorphisms

Cf/ ≈ (CfA/)f̃B/
, C/f ≈ (C/fB )

/f̃A
,

where fA : A→ C and fB : B → C are the evident restrictions of f to subcomplexes, and f̃A : A→
C/fB and f̃B : B → CfA/ are the adjoints to f .

27.9. Limits and colimits in slices. Given a map p : S → C to a quasicategory, we have “forgetful
functors” π : C/p → C and π : Cp/ → C from the slices to C.

The following proposition says that an initial object of C implies a compatible initial object of
C/p, and a terminal object of C implies a compatible terminal object of Cp/.

27.10. Proposition. Let p : S → C be a map from a simplicial set to a quasicategory.

(1) Suppose C has an initial object. Then
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(a) C/p has an initial object, and
(b) if x ∈ (C/p)0 is an object such that π(x) ∈ C0 is initial in C, then x is initial in C/p.

(2) Suppose C has a terminal object. Then
(a) Cp/ has an terminal object, and
(b) if x ∈ (Cp/)0 is an object such that π(x) ∈ C0 is terminal in C, then x is terminal in

C/p.

Proof. (See [Lur09, 1.2.13.8].) I’ll only prove (1), as the proof of (2) is analogous.
I prove (1b) first. Let x ∈ (C/p)0 and y = π(x) ∈ C0; we need to show that if y is initial then so

is x. To show that x is initial we must show that a lift in any diagram of the form

∆0 ?∅ // //

x

((
(∆0 ? ∂∆n) ∪ (∅ ?∆n) //

��

��

C/p

∆0 ?∆n

66

for n ≥ 0, using the identification (∆0 ?∂∆n)∪ (∅?∆n) ≈ ∂∆n+1. This lifting problem is equivalent
to one of the form

∆0 ?∅ ? S // //

x′

))
(∆0 ? ∂∆n ? S) ∪ (∅ ?∆n ? S) //

��

��

C

∆0 ?∆n ? S

55

which in turn is equivalent to one of the form

S // //

x′′

**
∂∆n ? S //
��

��

Cy/

q

��

∆n ? S //

::

C

(Here the maps marked x, x′, x′′ are all adjoints of each other.) Since y is initial, q is a trivial
fibration (25.5), and therefore a lift exists since ∂∆n ?S → ∆n ?S is a monomorphism. We conclude
that x is initial if y is.

Next we prove (1a). Suppose y ∈ C0 is an initial object. This implies q : Cy/ → C is a trivial
fibration (25.5). In particular, a lift exists in

Cy/

q

��

S p
//

x′′
>>

C

By an adjunction argument (24.15), x′′ corresponds to a map x : ∆0 → C/p such that π(x) = y. By
what we have already proved, x must be initial since π(x) = y is initial. �

27.11. Remark. In fact, the converses of (1b) and (2b) in (27.10) are also true. The proof of these
converses requires (D), which we have not established yet.
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We can now generalize the above to arbitrary limits in colimits.
The following proposition says that colimits in C/p or limits in Cp/ can be “computed in the

underlying quasicategory” C (if the corresponding colimit or limit in C exists).

27.12. Proposition. Let p : S → C be a map from a simplicial set to a quasicategory.

(1) Let f : K → C/p be a map such that the composite map f0 = πf : K
f−→ C/p

π−→ C has a
colimit cone in C. Then
(a) f admits a colimit cone, and

(b) if f̃ : KB → C/p is such that the composite map KB
f̃−→ C/p → C is a colimit cone, then

f̃ is a colimit cone.

(2) Let f : K → Cp/ be a map such that the composite map f0 = πf : K
f−→ Cp/

π−→ C has a limit
cone in C. Then
(a) f admits a limit cone, and

(b) if f̃ : KB → C/p is such that the composite map KB
f̃−→ Cp/ → C is a limit cone, then

f̃ is a limit cone.

The proof will make use an observation sketched in the following exercise: any composite of a
slice-over followed by a slice-under can be reinterpreted as a slice-under followed by a slice-over.

27.13. Exercise (Two-sided slice). Fix a map p : A ? B → X of simplicial sets. Describe a simplicial
set X/p/ which admits bijective correspondences A ? B

��

p
// X

A ?K ? B

55

⇐⇒ {K 99K X/p/},

natural in K. Then construct natural isomorphisms

(XpA/)/p̃B ≈ X/p/ ≈ (X/pB )p̃A/,

where pA : A → X and pB : B → X are the evident restrictions of p to subcomplexes, and
p̃A : A→ X/pB and p̃B : B → XpA/ are adjoints to p.

Proof of (27.12). I prove (1), as (2) is analogous. Note that f : K → C/p is adjoint to a map
g : K ? S → C, which in turn is adjoint to a map q : S → Cf0/. Colimit cones of f0 correspond
precisely to initial objects of Cf0/; in particular, the hypothesis of (1) asserts that Cf0/ has an initial
object. Likwise, colimit cones of f correspond exactly to initial objects of (C/p)f/. As in (27.13) we
have isomorphisms

(C/p)f/ ≈ C/g/ ≈ (Cf0/)/q.

To prove (1a) here it suffices to show that (Cf0/)/q has an initial object, which since Cf0/ does
using (27.10)(1a). To prove (1b) here it suffices to show that the projection (Cf0/)/q → Cf0/ has
the property that objects sent to initial objects of Cf0/ are initial in (Cf0/)/q, which is immediate
from (27.10)(1b). �

Limits/colimits are invariant under categorical equivalence. Where does this get proved?

28. The Joyal extension and lifting theorems

We are now at the point where we can state and prove Joyal’s theorems about extending or
lifting maps along outer horns. This will allow us to prove many of the results whose proofs we
have deferred up to now.
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28.1. Joyal extension theorem. The following gives a condition for extending maps from outer
horns into a quasicategory.

28.2. Theorem (Joyal extension). [Joy02, Thm. 1.3] Let C be a quasicategory, and fix a map
f : ∆1 → C. The following are equivalent.

(1) The edge represented by f is an isomorphism in C.

(2) Every a : Λn
0 → C with n ≥ 2 such that f = a|∆{0,1} : ∆1 → C admits an extension to a

map ∆n → C.
(3) Every b : Λn

n → C with n ≥ 2 such that f = b|∆{n−1,n} : ∆1 → C admits an extension to a
map ∆n → C.

I’ll call 〈01〉 ∈ ∆n the leading edge, and 〈n − 1, n〉 ∈ ∆n the trailing edge. Thus, the
implications (1)⇒ (2) and (1)⇒ (3) say that we can always extend Λn0 → C to an n-simplex if the
leading edge goes to an isomorphism in C, and extend Λnn → C to an n-simplex if the trailing edge
goes to an isomorphism in C.

The implications (2)⇒ (1) and (3)⇒ (1) are easy, and are left as an exercise.

28.3. Exercise (Easy part of Joyal extension). Suppose C is a quasicategory with edge f ∈ C1, and

suppose that every map a : Λn
0 → C with n ∈ {2, 3} and f = a|∆{0,1} admits an extension along

Λn0 ⊂ ∆n. Prove that f is an isomorphism.

The non-trivial implications of Joyal extension will lead to proofs of the deferred propositions
(A), (C), and (D).

The proof of the Joyal extension theorem will be an application of the fact that left fibrations
and right fibrations are conservative isofibrations.

28.4. Conservative functors. A functor p : C → D between categories is conservative if when-
ever f is a morphism in C such that p(f) is an isomorphism in D, then f is an isomorphism in C.
The definition of a conservative functor between quasicategories is precisely the same.

28.5. Proposition. All left fibrations and right fibrations between quasicategories are conservative.

Proof. Consider a right fibration p : C → D, and a morphism f : x→ y in C such that p(f) is an
isomorphism. We first show that f admits a preinverse.

Let a : Λ2
2 → C such that a12 = f and a02 = 1y. Let b : ∆2 → C be any 2-dimensional element

exhibiting a preinverse of p(f), i.e., such that b12 = p(f) and b02 = 1p(y), so that b01 is a preinverse.
Now have a diagram with a lift

Λ2
2

a //

��

��

C

p

��

∆2

b
//

??

D

which exhibits a preinverse of f , which we will call g.
Because p(f) was assumed to be an isomorhism in D, its preinverse p(g) is also an isomorphism,

and therefore by the above argument g admits a preinverse as well. We conclude that f is invertible
by (10.4). �

28.6. Isofibrations. We say that a functor p : C → D of quasicategories is an isofibration22 if

(1) p is an inner fibration, and
(2) we have “isomorphism lifting” along p. That is, for any c ∈ C0 and isomorphism g : p(c)→ d′,

there exists a c′ ∈ C0 and isomorphism f : c→ c′ such that p(f) = g.

22Joyal uses the term “quasifibration” in [Joy02]. Later in [Joy08a] this is called a “pseudofibration”. Lurie uses
this notion, but never names it. The term “isofibration” is used by Riehl and Verity [RV15].
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Recall that if C and D are nerves of ordinary categories, then any functor C → D is an inner
fibration. Thus in the case of ordinary categories, being an isofibration amounts to condition (2) only.
Also, it is clear that in the case of ordinary categories we can replace (2) with the dual condition

(2’) for any c ∈ C0 and isomorphism g′ : d′ → p(c), there exists a c′ ∈ C0 and isomorphism
f ′ : c′ → c such that p(f) = g′.

To prove (2) from (2’), just apply condition (2’) to the (unique) inverse of g.
The symmetry between (2) and (2’) also holds for functors between quasicategories, by the

following.

28.7. Proposition. An inner fibration p : C → D between quasicategories is an isofibration if and
only if h(p) : h(C)→ h(D) is an isofibration of ordinary categories.

Proof. (=⇒) Straightforward. (⇐=) Suppose given an isomophism g : p(c)→ d′ in D. If h(p) is an
isofibration, there exists an isomorphism f ′ : c→ c′ in C such that p(f ′) ∼r g. Now choose a lift in

Λ2
1

a //

��

��

C

p

��

∆2

b
//

s

??

D

where b exhibits p(f ′) ∼r g and a(〈01〉) = f ′ and a(〈12〉) = 1c′ . The edge f = s02 is a lift of g, and
is an isomorphism since f ′ ∼r f . �

28.8. Exercise. (i) Let Group denote the category of groups, whose objects are pairs G = (S, µ)
consisting of a set S and a function µ : S × S → S satisfying a well-known list of axioms. Show that
the functor U : Group→ Set which on objects sends (S, µ) 7→ S is an isofibration between ordinary
categories.

(ii) Consider the functor U ′ : Group→ Set defined on objects by G 7→ Hom(Z, G). Explain why,
although U ′ is naturally isomorphic to U , you don’t know how to show whether U ′ is an isofibration
without explicit reference to the axioms of your set theory. The moral is that the property of being
an isofibration is not “natural isomorphism invariant”.

28.9. Left and right fibrations are isofibrations.

28.10. Proposition. All left fibrations and right fibrations between quasicategories are isofibrations.

Proof. Suppose p : C → D is a right fibration (and hence an inner fibration) between quasicategories,
and consider

{1} //

��

C

p

��

∆1
g
//

f
>>

D

where g represents an isomorphism. Because p is a right fibration, there exists a lift f . Because
right fibrations are conservative, f represents an isomorphism. �

Note that the above proof checked explicitly isofibration condition (2’) for right fibrations; thus,
by symmetry we conclude that isofibration condition (2) holds for right fibrations. It seems difficult
to give an elementary direct proof that right-fibrations satisfy (2).

28.11. Proof of the Joyal extension theorem.

Proof of (28.2). We prove (1)⇒ (2). Suppose given a : Λn0 → C such that f = a|∆{0,1} represents
an isomorphism. Observe (26.3) that (Λn0 ⊂ ∆n) is the pushout-join of a 1-horn with an (n− 2)-cell:

(Λn0 ⊂ ∆n) ≈ (∆{0} ⊂ ∆{0,1}) � (∂∆{2,...,n} ⊂ ∆{2,...,n}),
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since Λn0 ≈ (∆{0} ?∆{2,...,n})∪ (∆{0,1} ? ∂∆{2,...,n}) inside ∆n ≈ ∆{0,1} ?∆{2,...,n}. Using this, we get
a correspondence of lifting problems

∆{0,1} // //

f

!!

Λn0
a //

��

��

C

∆n

?? ⇐⇒

∆{0}
h //

��

��

C/(a|∆{2,...,n})

q

��

∆{0,1} g //

f
&&

88

C/(a|∂∆{2,...,n})

p

��

C

where g is adjoint to a|(∆{0,1} ? ∂∆{2,...,n}), and h is adjoint to a|(∆{0} ?∆{2,...,n}). Because C is a
quasicategory, both p and q are right fibrations (26.14), and therefore are conservative isofibrations
(28.5), (28.10). Thus since f represents an isomorphism, so does g since p is conservative, and
therefore a lift exists since q is an isofibration.

The proof of (2) =⇒ (1) is left as an exercise (28.3). The proof of (1)⇐⇒ (3) is similar. �

28.12. The Joyal lifting theorem. There is a relative generalizaton.

28.13. Theorem (Joyal lifting). Let p : C → D be an inner fibration between quasicategories, and
let f ∈ C1 be an edge such that p(f) is an isomorphism in D. The following are equivalent.

(1) The edge f is an isomorphism in C.
(2) For all n ≥ 2, every diagram of the form

∆{0,1} // //

f

((
Λn0 //

��

��

C

p

��

∆n //

>>

D

admits a lift.
(3) For all n ≥ 2, every diagram of the form

∆{n−1,n} // //

f

))
Λnn //

��

��

C

p

��

∆n //

>>

D

admits a lift.

Proof. The implications (2)⇒ (1) and (3)⇒ (1) are elementary, as in (28.3).
For (1)⇒ (2), the first step is to prove that

C/(a|∆{2,...,n})
q−→ C/(a|∂∆{2,...,n}) ×D/(pa|∂∆{2,...,n})

D/(pa|∆{2,...,n})
p−→ C

are both right fibrations. For instance, the map q is the slice-power of the inner fibration p by a
monomorphism, so is a right fibration by (26.13). The map p is the composite

C/(a|∂∆{2,...,n}) ×D/(pa|∂∆{2,...,n})
D/(pa|∆{2,...,n})

p′−→ C/(a|∂∆{2,...,n})
p′′−→ C,

where p′ is the base change of the right fibration D/(pa|∆{2,...,n}) → D/(pa|∂∆{2,...,n}), and p′′ is a right

fibration (in both cases by (26.14)) Then the proof of (1) =⇒ (2) proceeds exactly as in (28.2). �
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We note here that as a consequence of Joyal lifting we get a characterization of conservative inner
fibrations between quasicategories in terms of a lifting property.

28.14. Corollary. Let p : C → D be an inner fibration between quasicategories. The following are
equivalent.

(1) The functor p is conservative.
(2) For all n ≥ 2, every diagram of the form

∆{0,1} // //

f

((
Λn0 //

��

��

C

p

��

∆n //

>>

D

such that p(f) represents an isomorphism in D admits a lift.
(3) For all n ≥ 2, every diagram of the form

∆{n−1,n} // //

f

))
Λnn //

��

��

C

p

��

∆n //

>>

D

such that p(f) represents an isomorphism in D admits a lift.

29. Applications of the Joyal extension theorem

We can now prove all the statements whose proofs we have deferred until now, as well as some
others. I’ll prove (A) and (D) in this section, and (C) in the next section.

29.1. Quasigroupoids are Kan complexes. First we prove (A), the identification of quasi-
groupoids with Kan complexes.

29.2. Proposition. Every quasigroupoid is a Kan complex.

Proof. In a quasigroupoid, the Joyal extension property (28.2) applies to all maps from Λn0 and Λnn,
since every edge is an isomorphism. �

From now on we will use terms “quasigroupoid” and “Kan complex” interchangeably.

29.3. Invariance of slice categories. Here is an equivalent reformulation of the Joyal extension
theorem in terms of maps between slices.

29.4. Exercise (Reformulation of Joyal extension). If f : x → y is an edge in a quasicategory C,
then the following are equivalent: (1) f is an isomorphism; (2) Cf/ → Cx/ is a trivial fibration; (3)
C/f → C/y is a trivial fibration.

29.5. Corollary. If f : x → y is an isomorphism in a quasicategory C, then Cx/ and Cy/ are
categorically equivalent, and C/x and C/y are categorically equivalent.

Proof. Consider Cx/
π←− Cf/

ρ−→ Cy/. We have already observed (26.15) that ρ ∈ TrivFib, since

{1} ⊂ ∆1 is right anodyne. The reformulation of Joyal extension (29.4) implies that π ∈ TrivFib
when f is an isomorphism. �
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29.6. Initial objects. Now we prove (D) about initial and terminal objects. We will explicitly
prove the statements about initial objects, as the case of terminal objects is similar.

29.7. Proposition. Let f : x→ y be a morphism in a quasicategory C, and let f̃ ∈ (Cx/)0 be the

object of the slice which corresponds to f ∈ C1. Then f̃ is initial in Cx/ if and only if f is an
isomorphism.

Proof. For all n ≥ 1 we have a correspondence of lifting problems

{0} // //

f̃

))
∂∆n //
��

��

Cx/

∆n

<< ⇐⇒
∆0 ? {0} // //

f

**∆0 ? ∂∆n //

��

C

∆0 ?∆n

;;

and (∆0 ? ∂∆n ⊂ ∆0 ?∆n) ≈ (Λ1+n
0 ⊆ ∆1+n), so a lift exists by the Joyal extension theorem. �

In fact, (29.7), together with dual statement for terminal objects, is merely a reformulation of
the Joyal extension theorem (28.2).

Note that (29.7) implies that the slice Cx/ necessarily has an initial object, namely the vertex
corresponding to the edge 1x ∈ C1.

29.8. Proposition. Any object in a quasicategory isomorphic to an initial object is also initial.

Proof. Let x be an initial object in C, and let c be an object isomorphic to x. It is easy to see that
x is initial in the homotopy category hC, and therefore c is initial in hC also. This has a useful
consequence: any map between x and c (in either direction) must be an isomorphism in C.

We next note another fact: if x is initial, any map f : S → C extends along S ⊂ ∆0 ? S to a
map f ′ : ∆0 ? S → C such that f ′|∆0 represents x. This is a consequence of the fact (25.5) that
p : C/x → C is a trivial fibration whence, there exists a map s : C → C/x such that ps = idC ; set f ′

be the adjoint to sf : S → C/x.
To show c is initial in C, we need to extend any a : ∂∆n → C with a0 = c to a map ã : ∆n : C.

This follows from a succession of two extension problems:

(∆0 ?∅)q (∅ ? ∂∆n)
(x,a)

//

��

��

C

∆0 ? ∂∆n
��

��

g

44

∅ ?∆n // // ∆0 ?∆n

h

::

The extension g exists by the remarks of the previous paragraph since x is initial. The extension h
exists because the leading edge of g is a map x→ c in C, which is an isomorphism by the remarks
of the first paragraph. The desired extension ã is h|(∅ ?∆n). �

30. Proof of objectwise criterion for natural isomorphisms

Next we prove (C). We say that a natural transformation α : ∆1 → Fun(C,D) functors between

quasicategories is an objectwise isomorphism for each object c ∈ C0, the composite ∆1 α−→
Fun(C,D)

res−−→ Fun({c}, D) ≈ D represents an isomorphism in D. Then (C) asserts that every
objectwise natural isomorphism is a natural isomorphism (i.e., that the adjoint map α̃ : ∆1 →
Fun(C,D) represents an isomorphism in the functor category).
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30.1. Some properties of objectwise natural isomorphisms. We first establish a “lifting
property” for objectwise natural isomorphisms.

30.2. Lemma. Let C be a quasicategory, and let i : S → T be a monomorphism such that i : S0 → T0

is a bijection. Then for every diagram

{0} //

��

��

Fun(T,C)

Fun(i,C)

��

∆1
v
//

t

::

Fun(S,C)

such that v is an objectwise natural isomorphism of functors S → C, a lift t exists, and furthermore
any such lift t is an objectwise natural isomorphism of functors T → C.

Proof. First note that the last statement is automatic: any lift t is an objectwise natural isomorphism
if v is, because i : S0 → T0 is a bijection.

Let C denote the class of monomorphims i : S → T such that (i) i : S0 → T0 is a bijection, and (ii)
such that the conclusion of the lemma holds. A straightforward argument shows that C is a weakly
saturated class. (We need condition (i) to ensure that any lift of an objectwise natural isomorphism
is also an objectwise isomorphisms, needed for showing that C is closed under composition and
transfinite composition.)

Let Cell≥1 := {∂∆n ⊂ ∆n}n≥1. From the skeletal filtration (15.23) we see that Cell≥1 is precisely
the class of monomorphisms which are bijections on vertices. Thus the lemma amounts to showing
that Cell≥1 ⊆ C, which in turn follows from the following proposition (30.3) applied to the case of
D = ∗ and (i, j) = (0, 0). �

The following lemma is a kind of “pushout-product” version of Joyal lifting, where we replace a
horn such as Λn

0 ⊂ ∆n with the inclusion ({0} ⊂ ∆1)�(∂∆n ⊂ ∆n), with the role of the “leading
edge” played by ∆1 × {0} ⊂ ∆1 ×∆n.

30.3. Proposition (Pushout-product Joyal lifting). Suppose p : C → D is an inner fibration of
quasicategories, and suppose n ≥ 1, and either (i, j) = (0, 0) or (i, j) = (1, n). For any diagram

∆1 × {j} // //

f

,,({i} ×∆n) ∪{i}×∂∆n (∆1 × ∂∆n) //

��

��

C

p

��

∆1 ×∆n //

55

D

such that f represents an isomorphism in C, a lift exists.

Proof. This is a calculation, given in the appendix (58.5), which itself relies on Joyal lifting. �

30.4. Example. To give an idea of the proof (30.3), consider the case of n = 1 and (i, j) = 0, in
which case K = ({0}×∆1)∪{0}×∂∆1 (∆1×∂∆1) can be pictured the solid-arrow part of the diagram

(0, 1) // (1, 1)

(0, 0)

OO

e
//

;;

a

(1, 0)

OO

b

To lift to a map ∆1 ×∆1 → C, we first choose a lift on the 2-simplex a, which is attached along an
inner horn Λ2

1 ⊂ ∆2; then we choose a lift on the 2-simplex b, which is a non-inner horn Λ2
0 ⊂ ∆2

such that K → C sends the edge marked e to an isomorphism in C, so Joyal-lifting applies.



STUFF ABOUT QUASICATEGORIES 84

30.5. Proof of the objectwise criterion. We can reformulate (C) as follows: for a quasicategory
C and simplicial set K, the evident map

Fun(j, C) : Fun(K,C)→ Fun(Sk0K,C) ≈
∏
k∈K0

C

induced by restriction along j : Sk0K → K is conservative. This is justified by insert justification
here.

What we need to prove is a special case of the following.

30.6. Proposition. Let j : K → L be a monomorphism of simplicial sets such that j : K0
∼−→ L0 is

a bijection. Then for every quasicategory C the restriction map Fun(j, C) : Fun(L,C)→ Fun(K,C)
is conservative.

The proof we give uses ideas from [Lur09, §3.1.1].
Possible alternate proof: Inner fibration p between quasicategories is conservative iff (∆1 ⊂

N Iso) � p; this uses Joyal lifting applied to cell structure of N Iso. Let C be the class of i : K → L

such that p�i is conservative, so C is left complement of p�(∆1⊂NIso) and thus weakly saturated.
Then (∂∆n ⊂ ∆n) ∈ C for n ≥ 1 by pushout-product Joyal lifting.

Proof. Note that p = Fun(j, C) is always an inner fibration between quasicategories (since j is a
monomorphism and InnHorn�Cell ⊆ InnHorn). Therefore we can apply the criterion of (26.15) to
show p is conservative: we show that for every n ≥ 2 and every diagram of the form

∆{0,1} // //

f
,,

Λn0 //

��

��

Fun(L,C)

p=Fun(j,C)

��

∆n //

a

::

Fun(K,C)

such that p(f) represents an isomorphism in Fun(K,C), a lift a exists.
We reduce this lifting problem to a different one using a retraction. For n ≥ 2 we can define maps

∆n s−→ ∆1 ×∆n r−→ ∆n

uniquely characterized by their effect on vertices: s(x) = (1, x), and r(0, 1) = 0 and r(x, y) = y if
(x, y) 6= (0, 1). We check that

• rs = id,
• s(Λn0 ) = {1} × Λn0 ⊆ ({0} ×∆n) ∪ (∆1 × Λn0 ),

• r({0} ×∆n) = ∆[n]r1 ⊆ Λn0 , and

• r(∆1 ×∆[n]rj) = ∆[n]rj if j 6= 0, whence r(∆1 × Λn0 ) = Λn0 .

Therefore we can form the solid arrow diagram

Λn0
s //

��

��

({0} ×∆n) ∪ (∆1 × Λn0 )
��

��

r // Λn0
u //

��

��

Fun(L,C)

p=Fun(j,C)

��

∆n
s

// ∆1 ×∆n
r

//

b

33

∆n //

a

::

Fun(K,C)

and observe that to produce a lift a, it suffices to produce a map b which is a lift in its rectangle:
given b, take a = bs.

Note that r sends each edge ∆1 × {k} in ({0} ×∆n) ∪ (∆1 × Λn0 ) to either: the degenerate edge
〈kk〉 in Λn0 (if k 6= 1), or the leading edge 〈01〉 in Λn0 (if k = 1). Thus for all k ∈ [n] the restriction
of pur to ∆1 × {k} represents an isomorphism in Fun(K,C).
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By adjunction producing a lift b amounts to showing that a lift exists in

{0} //

��

��

Fun(T,C)

Fun(i,C)

��

∆1
v
//

::

Fun(S,C)

where i : S → T is the monomorphism (Λn0 × L) ∪ (∆n ×K)→ ∆n × L, and the edge in Fun(S,C)
represented by v is such that for every k ∈ [n] the restriction v|{k} ×K represents an isomorphism
in Fun({k} ×K).

Note that i : S → T induces a bijection on vertices, and that the hypothesis on v implies that the
restriction v|{x} of v to every vertex x ∈ S0 represents an isomorphism in Fun({x}, C) ≈ C. Thus
the proposition follows from the analogous claim for lifting objectwise natural isomorphisms, which
we proved as (30.2).

�

Now that we have proved the objectwise criterion for natural isomorphisms (C), we can reinterpret
the conclusion of (30.2): the functor Fun(T,C) → Fun(S, T ) is an isofibration when S0 → T0 is
a bijection. Perhaps show here that the bijection condition can be dropped, and do a
relative version here, rather than in a later section.

30.7. Older proof. (This material can probably be removed now.)

Proof. Let C be the class of monomorphisms j : K → L for which the conclusion holds, i.e., such
that Fun(j, C) is conservative for all quasicategories C. To prove the claim, it suffices to show (a)
that C is a weakly saturated class, and (b) that C contains the inclusions ∂∆n ⊂ ∆n for all n ≥ 1.
Given this, the result follows using the skeletal filtration (15.23).

Note that Fun(j, C) is always an inner fibration between quasicategories, and recall the “lifting
characterization” (28.14) of conservative inner fibrations between quasicategories which follows from
the Joyal lifting theorem. Using this, the proof of (a) is a straightforward exercise.

To show (b) that Fun(∆n, C) → Fun(∂∆n, C) is conservative for n ≥ 1, we again use (28.14),
which we convert into its adjoint form. In fact, it suffices to prove that in any diagram of the form

∆{0,1} × {0} // //

f0

))
(Λm0 ×∆n) ∪ (∆m × ∂∆n) //

��

j
��

C

∆2 ×∆n

66

with m ≥ 2 and n ≥ 1 such that f0 represents an isomorphism in C, a lift exists. This reduction
uses that f0 is the composite

∆{0,1}
f−→ Fun(∆n, C)

p−→ Fun(∂∆n, C)→ Fun({0}, C)

induced by restriction along {0} ⊂ ∂∆n ⊂ ∆n, so that if p(f) represents an isomorphism in
Fun(∂∆n, C), then f0 represents an isomorphism in C.

This statement is a consequence of the following lemma (30.8). �
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30.8. Proposition (Pushout-product version of Joyal lifting). Suppose p : C → D is an inner
fibration between quasicategories. Suppose m,n ≥ 1. For any diagram

∆{0,1} × {0} // //

f

,,(Λm0 ×∆n) ∪Λm0 ×∂∆n (∆m × ∂∆n) //

��

j

��

C

p

��

∆m ×∆n //

55

D

such that f represents an isomorphism in C, a lift exists.

Note: if we take instead m ≥ 2 and n = 0, the above statement becomes the Joyal lifting theorem.

Proof. Proved as [Joy08a, 5.8] (though there it is the Λmm ⊂ ∆m case that is proved). �

The idea is to produce the map j by iteratively attaching simplices along horns, which in each
case are either:

(1) an inner horn Λki ⊂ ∆k for 0 < i < k, or
(2) a horn Λk

0 ⊂ ∆k with k ≥ 2 along a map from Λk
0 such that the restriction to its leading

edge ∆{0,1} ⊂ Λk0 of the map to C is identical to f .

The existence of the lifting follows, by applying the definition of inner fibration in cases of type (1),
or the Joyal extension theorem in cases of type (2).

Here is a picture for the case m = 1, n = 1. The source of (Λ1
0 ⊂ ∆1)�(∂∆1 ⊂ ∆1) looks like

01 // 11

00

OO

∼
// 10

First attach the 2-simplex 〈00, 01, 11〉, which intersects the sounce along the inner horn Λ2
1. Then

attach the 2-simplex 〈00, 10, 11〉, which intersects what we have already built along the horn Λ2
0,

whose leading edge 〈00, 11〉 is sent to an isomorphism in C.
Here are pictures for the case m = 2, n = 1. Here is the source of (Λ2

0 ⊂ ∆2)�(∂∆1 ⊂ ∆1).

11
((

01 //oo 21

10

OO

6600 //∼oo

OO >>aa

20

OO

The following chart lists all non-degenerate elements in the complement, with “
√

” marking those in
the source.

〈10, 21〉 〈10, 20, 21〉 〈10, 11, 21〉 〈00, 10, 21〉 〈00, 11, 21〉 〈00, 10, 20, 21〉 〈00, 10, 11, 21〉 〈00, 01, 11, 21〉√
〈21〉

√
〈20, 21〉

√
〈11, 21〉 〈10, 21〉

√
〈11, 21〉 〈10, 20, 21〉 〈10, 11, 21〉

√
〈01, 11, 21〉√

〈10〉 〈10, 21〉 〈10, 21〉
√
〈00, 21〉 〈00, 21〉

√
〈00, 20, 21〉 〈00, 11, 21〉 〈00, 11, 21〉√

〈10, 20〉
√
〈10, 11〉

√
〈00, 10〉

√
〈00, 11〉 〈00, 10, 21〉 〈00, 10, 21〉

√
〈00, 01, 21〉√

〈00, 10, 20〉
√
〈00, 10, 11〉

√
〈00, 01, 11〉

Note that the elements 〈10, 21〉, 〈00, 10, 21〉, and 〈00, 11, 21〉 of the complement appear multiple
times as faces. We attach elements to the domain in the following order:

1©〈10, 11, 21〉, 2©〈00, 01, 11, 21〉, 3©〈00, 10, 11, 21〉, 4©〈00, 10, 20, 21〉.
Only the final step involves attaching along a non-inner horn; in that case, the attaching map sends
the leading edge of Λ3

0 to 〈00, 10〉.
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Part 4. The fundamental theorem

Recall that a functor f : C → D between quasicategories is said to be an equivalence there exists
a g : D → C such that gf and fg are naturally isomorphic to the respective identity functors. When
C and D are ordinary categories, there is a well-known criterion for the existence of such a g,
namely: f is an equivalence if and only if f is fully faithful and essentially surjective. Here

• fully faithful means that HomC(x, y) → HomD(f(x), f(y)) is a bijection of sets for every
pair of objects x, y ∈ obC, and
• essentially surjective means that for every object d ∈ obD there exists an object c ∈ obC

such that f(c) is isomorphic to d.

I like to call this fact the Fundamental Theorem of Category Theory. This is non-standard and
frankly pretentious terminology (I am unaware of any standard descriptive name for this result23). I
want to give this fact a fancy name in order to signpost it, as it is quite nonconstructive: to prove it
requires making a choice for each object d in D of an object c of C such that f(c) ≈ d (so it in fact
relies on an appropriate form of the axiom of choice). (Exercise: prove the “Fundamental theorem”
by positing a choice of object g(d) ∈ obC and isomorphism α(d) : f(g(d))→ d for each object of d,
and extending this to the data of a categorical inverse of f .)

Example. Fix a field k. Let Mat be the category whose objects are non-negative integers n ≥ 0,
and whose morphims A : n → m are (m × n)-matrices with entres in k, so that composition is
matrix multiplication. Let Vect be the category of finite dimensional k-vector spaces and linear
maps. Every basic class in linear algebra proves that the evident functor F : Mat→ Vect is fully
faithful and essentially surjective. Therefore F is an equivalence of categories. However, there is no
canonical choice of an inverse functor, whose construction relies on making an arbitrary choice of
basis for each vector space.

We are going to state and then prove an analogue of this result for functors between quasicategories.
This will first require an analogue of hom-sets, namely the quasigroupoid of maps between two
objects.

31. Mapping spaces of a quasicategory

Given a quasicategory C and objects x, y ∈ C0, the mapping space (or mapping quasi-
groupoid) from x to y is the simplicial set defined by the pullback square

mapC(x, y) //

��

Fun(∆1, C)

��

{(x, y)} // C × C

That is, mapC(x, y) is the fiber of the restriction map Fun(∆1, C)→ Fun(∂∆1, C) over the point
(x, y) ∈ (C × C)0, where we the isomorphism Fun(∂∆1, C) ≈ C × C induced by the isomorphism
∂∆1 ≈ ∆0 q∆0.

If C = N(A) is the nerve of a category, then mapC(x, y) is a discrete simplicial set (2.5)
corresponding to the set HomC(x, y).

31.1. Mapping spaces are Kan complexes. The terminology “space” is justified by the following

31.2. Proposition. The simplicial sets mapC(x, y) are quasigroupoids (and hence Kan complexes
by (A)).

This is a special case of the following, applied to Fun(∆1, C) → Fun(∂∆1, C), the restriction
along j = (∂∆1 ⊂ ∆1).

23I also don’t know when it was first formulated, or who first stated it.
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31.3. Proposition. Let C be a quasicategory, and let j : K → L be a monomorphism which is a
bijection on vertices. Then the fibers of the restriction map p = Fun(j, C) : Fun(L,C)→ Fun(K,C)
are quasigroupoids.

Proof. Consider a vertex g ∈ Fun(K,C)0, and let F denote the fiber of p over g, i.e., the pullback
of p along the inclusion {g} → Fun(K,C).

Note that p : Fun(L,C) → Fun(K,C) is a inner fibration, a case of enriched lifting using
InnHorn�Cell ⊆ InnHorn (16.7). Therefore F → {g}, which is a pullback of p, is also an inner
fibration, so F is a quasicategory.

To show that the quasicategory F is a quasigroupoid, it suffices to show that every Λ2
0 → F

extends to a 2-simplex. Thus we must consider the lifting problem

∆{0,1} // //

f

,,

Λ2
0

//

��

��

F //

��

Fun(L,C)

p

��

∆2 //

>>

{g} // Fun(K,C)

Since the right hand square is a pullback, it suffices to produce a lift ∆2 → Fun(L,C). Since p(f) is
an identity map and hence an isomorphism in Fun(K,C), by the lifting criterion for conservative
inner fibrations (28.14) it suffices to show that p is conservative, which is the case by (30.6) since j
is a bijection on vertices. �

31.4. Mapping spaces and homotopy classes. The set of morphisms x→ y in a quasicategory
is precisely the set of vertices of mapC(x, y).

31.5. Proposition. Let C be a quasicategory. For any two maps f, g : x → y in C, we have that
f ≈ g (equivalence under the relation used to define the homotopy category hC) if and only if f and
g are isomorphic as objects of the quasigroupoid mapC(x, y). That is,

HomhC(x, y) ≈ π0 mapC(x, y)

for every pair x, y of objects of C.

Proof. Suppose f, g ∈ mapC(x, y)0 are isomorphic, so that in particular there is a morphism f → g
in the quasigroupoid mapC(x, y). This amounts to a map ∆1 ×∆1 → C which can be represented
by a diagram of elements of C of the form:

x
g
//

1x

��

y

1y

��
x

f
//

h

??a

b
y

This explicitly exhibits a chain f ∼r h ∼` g of homotopies, so f ≈ g as desired.
Conversely, if f ≈ g, we can explicitly construct a map H : f → g in mapC(x, y): in terms of the

above picture, let h = g, let b be an explicit choice of right-homotopy f ∼r g, and let a = g001. �

31.6. Extended mapping spaces and composition. Given a finite list x0, . . . , xn ∈ C0 of
objects in a quasicategory, we have an extended mapping space. These are the simplicial sets
defined by the pullback squares

mapC(x0, . . . , xn) //

��

Fun(∆n, C)

��

{(x0, . . . , xn)} // C×(n+1)
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where the right-hand vertical arrow is induced by restriction along Sk0 ∆n → ∆n, using the
isomorphism Sk0 ∆n ≈

∐
n+1 ∆0, whence Fun(Sk0 ∆n, C) ≈ C×(n+1). By (31.3) the extended

mapping spaces are quasigroupoids.
We can compare the extended mapping spaces to the fibers of Fun(In, C)→ C×(n+1), which is

seen to be an n-fold product of mapping spaces.

31.7. Lemma. The map

gn : mapC(x0, . . . , xn)→ mapC(xn−1, xn)× · · · ×mapC(x0, x1)

induced by restriction along the spine inclusion In ⊆ ∆n is a trivial fibration. In particular, this
map is a categorical equivalence between Kan complexes.

Proof. The map gn is a base change of p : Fun(∆n, C) → Fun(In, C). Since In ⊂ ∆n is inner
anodyne (12.11), and C is a quasicategory, the map p is a trivial fibration by enriched lifting using
InnHorn�Cell ⊆ InnHorn (16.7). �

The inclusions I2 ⊂ ∆2 ⊃ ∆{0,2} induce restriction maps

Fun(I2, C)← Fun(∆n, C)→ Fun(∆{0,2}, C).

Restricting to the fibers over a triple (x0, x1, x2) of objects, we obtain a zig-zag of maps of Kan
complexes

mapC(x1, x2)×mapC(x0, x1)
g2←−
∼

mapC(x0, x1, x2)→ mapC(x0, x2),

where the second map is induced by restriction along ∆{0,2} ⊂ ∆2, and the first map g2 is a
categorical equivalence, and in fact a trivial fibration. After choosing a categorical inverse to g2

(e.g., a section of g2 using (20.12)), we obtain a “composition” map

(31.8) comp: mapC(x1, x2)×mapC(x0, x1)→ mapC(x0, x2).

This map is not uniquely determined, since it depends on a choice of categorical inverse to g2.
However, any two categorical inverses to g2 are naturally isomorphic (19.4), and therefore comp
is defined up to natural isomorphism. That is, it is a well-defined map in hKan, the homotopy
category of Kan complexes (defined to be the full subcategory of hqCat spanned by Kan complexes).

31.9. Proposition. The two maps obtained by composing the sides of the square

mapC(x2, x3)×mapC(x2, x1)×mapC(x0, x1)
id× comp

//

comp× id

��

mapC(x2, x3)×mapC(x0, x2)

comp

��

mapC(x1, x3)×mapC(x0, x1) comp
// mapC(x0, x3)

are naturally isomorphic. That is, the diagram commutes in hKan ⊂ hqCat.

Proof. Here is a diagram of simplicial sets which actually commutes on the nose, i.e., not merely
in the homotopy category, but actually commutes in qCat. I use “〈x, y, z〉” as shorthand for
“mapC(x, y, z)”, etc.

〈x2, x3〉 × 〈x1, x2〉 × 〈x0, x1〉 〈x2, x3〉 × 〈x0, x1, x2〉
∼oo // 〈x2, x3〉 × 〈x0, x2〉

〈x1, x2, x3〉 × 〈x0, x1〉
∼
OO

��

〈x0, x1, x2, x3〉
∼oo //

∼
OO

��

〈x0, x2, x3〉
∼
OO

��

〈x1, x3〉 × 〈x0, x1〉 〈x0, x1, x3〉
∼oo // 〈x0, x3〉
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The maps labelled “
∼−→” are categorical equivalences, and in fact are trivial fibrations. All the maps

in the above diagram are obtained via restriction along inclusions in

∆{2,3} ∪∆{1,2} ∪∆{0,1}
∼ //

∼
��

∆{2,3} ∪∆{0,1,2}

∼
��

∆{2,3} ∪∆{0,2}oo

∼
��

∆{1,2,3} ∪∆{0,1}
∼ // ∆3 ∆{0,2,3}oo

∆{1,3} ∪∆{0,1}

OO

∼ // ∆{0,1,3}

OO

∆{0,3}oo

OO

where the maps labelled “
∼−→” are inner anodyne, and which therefore give rise to trivial fibrations

in the previous diagram by the same argument we used to define comp. After passing to hKan the
categorical equivalences become isomorphisms, and the result follows. �

31.10. Segal categories. Thus, a quasicategory does not quite give rise to a category “enriched
over quasigroupoids”. Although we can define a composition law, it is not uniquely determined,
and is only associative “up to homotopy”.

What we do get is a Segal category. A Segal category is a functor

M : ∆op → sSet

such that

(1) the simplicial set M([0]) is discrete, i.e., M([0]) = Sk0M([0]), and
(2) for each n ≥ 1 the “Segal map”

M([n])
(〈n−1,n〉∗,...,〈0,1〉∗)−−−−−−−−−−−−→M([1])×M([0]) · · · ×M([0]) M([1])

is a “weak equvialence” of simplicial sets.
We will define “weak equivalence” of simplicial sets below. For now, we note that a map between

Kan complexes is a weak equivalence if and only if it is a categorical equivalence, and that if each
M([n]) is a Kan complex, then so are the fiber products which appear in the above definition.

Given a quasicategory C, we obtain a functor MC : ∆op → sSet by

MC([0]) := Sk0C,

MC([n]) := Fun(∆n, C)×Fun(Sk0 ∆n,C) Fun(Sk0 ∆n, Sk0C)

≈
∐

x0,...,xn∈C0

mapC(x0, . . . , xn).

This object encodes all the structure we used above. For instance, the zig-zag

MC([1])×MC([0] MC([1])
(〈12〉∗,〈01〉∗)←−−−−−−−−MC([2])

〈02〉∗−−−→MC([1])

is a coproduct over all triples x0, x1, x2 ∈ C0 of the zig-zag (31.8) used to define “composition”.
You also get a Segal category from any “simplicially enriched” category. Suppose C is a (small)

category which is enriched over the category of simplicial sets, with object set ob C, and function
objects C(x, x′) ∈ sSet for each x, x′. Then we can define MC : ∆op → sSet by

MC([0]) := ob C,

MC([n]) :=
∐

x0,...,xn∈ob C
C(xn−1, xn)× · · · × C(x0, x1).

We thus obtain functors
qCat→ SeCat← sCat
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relating quasicategories, Segal categories, and simplicially enriched categories. Simplicially enriched
categories were proposed as a model for ∞-categories by Dwyer and Kan24, while Segal categories
were proposed as a model for ∞-categories by Hirschowitz and Simpson [HS01]25. All of these
models are known to be equivalent in a suitable sense; see [Ber10] for more about these models and
their comparison.

31.11. The enriched homotopy category of a quasicategory. Given a quasicategory C we
can produce a vestigial version of a category enriched over quasigroupoids, called the enriched
homotopy category of C and denoted HC.26 This object will be a category enriched over hKan,
the homotopy category of Kan complexes, whose underlying category is hC.

We now define HC. The objects of HC are just the objects of C. For any two objects x, y ∈ C0,
we have the quasigroupoid

HC(x, y) := mapC(x, y)

which we will regard as an object of the homotopy category hKan of Kan complexes. Composition
HC(x1, x2)×HC(x0, x1)→ HC(x0, x2) is the composition map defined above, which is well-defined
as a morphism in hKan. Composition is associative as shown above (31.9).

The underlying ordinary category of HC is just the ordinary homotopy category hC, since

HomhKan(∆0,mapC(x, y)) ≈ π0 mapC(x, y) ≈ HomhC(x, y).

31.12. Warning. A quasicategory C cannot be recovered from its enriched homotopy category HC,
not even up to equivalence. In fact, there exist hKan-enriched categories which do not arise as
HC for any quasicategory C. A proof is outside the scope of these notes; however, we note that
counterexamples may be produced from associative H-spaces which are not loop spaces.

31.13. Exercise. Let C and D be quasicategories. Show that there is an isomorphism H(C ×D) ≈
HC ×HD of hKan-enriched categories.

32. The fundamental theorem of quasicategory theory

32.1. Fully faithful and essentially surjective functors between quasicategories. Note
that any functor f : C → D of quasicategories induces functors mapC(x, y)→ mapD(f(x), f(y)) for
every pair of objects x, y in C. We say that a functor f : C → D between quasicategories is

• fully faithful if for every pair c, c′ ∈ C0, the resulting map mapC(c, c′)→ mapD(fc, fc′) is
a categorical equivalence, and
• essentially surjective if the induced functor hf : hC → hD is essentially surjective; i.e., if

for every d ∈ D0 there exists c ∈ C0 and an isomorphism fc→ d in D1.

Another way to say this: f : C → D is fully faithful and essentially surjective iff the induced
hKan-enriched functor Hf : HC → HD is an equivalence of enriched categories.

32.2. Proposition. If f : C → D is a categorical equivalence between quasicategories, then f is fully
faithful and essentially surjective.

Proof. We already know that hf : hC → hD is an equivalence of ordinary categories, which implies
essential surjectivity.

24They called them “homotopy theories” instead of “∞-categories; see [DS95, §11.6].
25In fact, they generalize this to “Segal n-categories”, which were the first effective model for (∞, n)-categories.
26Lurie usually calls this “hC”, though he also uses that notation for the ordinary homotopy category of C that

we have already discussed. I prefer to have two separate notations.
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To show that f is fully faithful, choose a categorical inverse g of f . Given x, y ∈ C0, consider the
induced diagram of quasigroupoids

mapC(x, y)
f
//

gf

))

mapD(fx, fy)
g
//

fg

55
mapC(gfx, gfy)

f
// mapD(fgfx, fgfy)

By the 2-out-of-6 property for categorical equivalences (22.10), it will suffice to show that the maps
marked gf and fg are categorical equivalences between the respective mapping spaces. Since gf
and fg are naturally isomorphic to the identity maps of mapC(x, y) and mapD(fx, fy) respectively,
the claim follows from (32.3) which we prove below. �

32.3. Proposition. If f0, f1 : C → D are functors which are naturally isomorphic, then f0 is fully
faithful if and only if f1 is.

32.4. Path category. For the proof of the fact that natural isomorphisms preserve the fully-
faithful property, we will need to consider the path category of a quasicategory D. This is the
full sub(quasi)category

D̂ ⊆ Fun(∆1, D)

spanned by the objects which are ∆1 → D which represent isomorphisms in D. (A generalization
of this construction will be used later (??).) The restriction maps along {0} ⊂ ∆1 ⊃ {1} induce

functors D
π0←− D̂ π1−→ D. Note that a functor H̃ : C → D̂ corresponds exactly to giving a natural

isomorphism H : C × ∆1 → D of functors f0, f1 : C → D, where fi = πiH̃ (because natural
isomorphisms are the same as objectwise natural isomorphisms (C)).

32.5. Lemma. Let D be a quasicategory. Then both restriction functors

D
π0←− D̂ π1−→ D

are trivial fibrations.

Proof. We need to solve the lifting problem

∂∆n //

��

D̂

πi
��

// // Fun(∆1, D)

vv

∆n //

88

Fun({i}, D)

for all n ≥ 0 and i = 0, 1. When n = 0 this is easy: any object of D is the source and target of
an isomorphism in D, namely its identity map. For n ≥ 1 it suffices to find a lifting in the adjoint
lifting problem o

∆1 × {j} // //

f

,,({i} ×∆n) ∪{i}×∂∆n (∆1 × ∂∆n) //

��

��

D

∆1 ×∆n

55

where j = 0 if i = 0 and j = n if i = 1. In either case we know by hypothesis that f represents an
isomorphism in D, so a lift exists by the “pushout-product version” of Joyal lifting (30.3).

�
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Proof of (32.3). Consider a natural isomorphism H : C ×∆1 → D between f0 and f1, and write

H̃ : C → D̂ ⊆ Fun(∆1, D) for its adjoint. The lemma (32.5) implies that in the commutative
diagram

Fun({0}, D) = D

C H̃ //

f0 00

f1
..

D̂
π0

33

π1
++

Fun({1}, D) = D

both π0 and π1 are trivial fibrations, whence for any x, y ∈ C0 we get a commutative diagram

mapD(f0(x), f0(y))

mapC(x, y) //

f0 //

f1
//

map
D̂

(H̃(x), H̃(y))
∼
22

∼
,,

mapD(f1(x), f1(y))

in which the indicated maps are categorical equivalences. Using the 2-out-of-3 property of categorical
equivalences (22.10), we see that the mapped marked f0 is a categorical equivalence if and only if the
map marked f1 is. Thus we have shown that f0 : C → D is fully faithful if and only if f1 : C → D is
fully faithful. �

To check that a functor is fully faithful, it suffices to check the defining property on representatives
of isomorphism classes of objects.

32.6. Proposition. Let f : C → D be a functor between quasicategories, and let S ⊂ C0 be a subset
of objects which includes a representative of every isomorphism class in C. Then f is fully faithful
if and only if mapC(c, c′)→ mapD(fc, c′) is a categorical equivalence for all c ∈ S.

Proof. The only-if direction is immediate from the definition of fully faithful. To prove the if
direction, let x, x′ ∈ C0 and choose isomorphisms α : x→ c and α : x→ c′ where c, c′ ∈ S. We may

interpret α and α′ as objects of Ĉ ⊆ Fun(∆1, C). We obtain a commutative diagram

mapC(x, x′)

f

��

map
Ĉ

(α, α′)

f̂
��

π0oo
π1 // mapC(c, c′)

f

��

mapD(fx, fx′) map
D̂

(f̂α, f̂α′)π0

oo
π1

// mapD(fc, fc′)

where the vertical arrows are induced by f : C → D and f̂ : Ĉ → D̂, where f̂ is the restriction
of Fun(∆1, f) : Fun(∆1, C) → Fun(∆1, D) to full subcategories. The maps marked π0 and π1

are categorical equivalences using (32.5). Therefore the left-hand vertical arrow is a categorical
equivalence using the hypothesis on f and 2-out-of-3 for categorical equivalences (22.10). �

32.7. The fundamental theorem for quasicategories. The converse to (32.2) is true, but
nowhere near as straightforward.

E. Deferred Proposition (Fundamental Theorem of Quasicategory Theory). A map f : C → D
between quasicategories is a categorical equivalence if and only if it is fully faithful and essentially
surjective.

This is a non-trivial result. It gives a necessary and sufficient condition for f : C → D to admit
a categorical inverse, but it does not spell out how to construct such an inverse. After many
preliminaries, we will give the proof in §40.
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32.8. 2-out-of-6 for fully faithful essentially surjective functors. The following result will
be useful in the proof of the fundamental theorem. Recall the 2-out-of-6 and 2-out-of-3 properties
of a class of morphisms (22.5), and that the class of categorical equivalences has these properties
(22.10).

32.9. Proposition. The class C of fully faithful and essentially surjective functors between quasicat-
egories satisfies the 2-out-of-6 property, and thus the 2-out-of-3 property.

Proof. Any identity functor id : C → C is manifestly fully faithful and essentially surjective.
Next note that if a functor f : C → D between quasicategories is fully faithful and essentially

surjective, then the induced hf : hC → hD is an equivalence of ordinary categories. Conversely, if
hf is an equivalence, then f is essentially surjective.

Suppose C
f−→ D

g−→ E
h−→ F is a sequence of functors between quasicategories such that gf and

hg are fully faithful and essentially surjective. The induced sequence hC → hD → hE → hF of
functors on homotopy categories has the same property, and thus all the functors between homotopy
categories are equivalences. From this we conclude immediately that f, g, h, hgf are essentialy
surjective.

Given objects x, x′ ∈ C0, we have induced maps

mapC(x, y)
f
//

gf

))

mapD(fx, fy)
g
//

hg

55
mapE(gfx, gfy)

f
// mapF (hgfx, hgfy)

The hypothesis that gf and hg are fully faithful implies that the indicated arrows are categorical
equivalences, and hence all arrows are by (22.10). Because f and gf are essentially surjective, we
may use (32.6) to conclude that f, g, h and thus hgf are fully faithful. �

Introduce path fibration here, and reduce to isofibration case.

32.10. Fully faithful and essentially surjective functors between quasigroupoids. The
special case for quasigroupoids is already interesting. Here, (E) specializes to the “Fundamental
Theorem of Quasigroupoid Theory”, which says that a map f : X → Y between Kan complexes is a
categorical equivalence if and only if it

• induces categorical equivalences mapX(x0, x1)→ mapY (fx0, fx1) on “path spaces”, and
• induces a surjection π0X → π0Y .

32.11. Remark. A mild variant of this says that a map f : X → Y between Kan complexes is a
categorical equivalence if and only if it

• induces categorical equivalences ΩxX → ΩfxY on “loop spaces”, and
• induces an isomorphism π0X → π0Y .

Here ΩxX := mapX(x, x). Under the correspondence between quasigroupoids and classical homotopy
theory, this turns out to be an analogue of the Whitehead theorem27, which says that a map between
CW-complexes is a homotopy equivalence iff it induces an isomorphism on all homotopy groups.

We will prove (E) after first considering the special case of quasigroupoids=Kan complexes.

33. Anodyne maps and Kan fibrations

In the next few sections, we will develop some properties related to Kan complexes. As a
byproduct, we’ll obtain the proof of the specialization of (E) to Kan complexes.

27The “Fundamental Theorem of Classical Homotopy Theory”?
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33.1. Weak equivalence. Say that a map f : X → Y is a weak equivalence of simplicial sets if
and only if Map(f,G) : Map(Y,G)→ Map(X,G) is a categorical equivalence for every quasigroupoid
(i.e., every Kan complex ) G.

Every categorical equivalence is a weak equivalence, but not conversely. For maps between Kan
complexes, weak equivalences and categorical equivalences are the same thing.

33.2. Proposition. If f : X → Y is a map between Kan complexes, then f is a weak equivalence if
and only if it is a categorical equivalence.

Proof. The proof is straightforward, using the same ideas as the proof of (19.6). �

33.3. Proposition. Weak equivalences of simplicial sets satisfy the 2-out-of-6 property, and thus
the 2-out-of-3 property.

Proof. Proved just as for categorical equivalences (22.10). �

33.4. Remark. Given the analogy to categorical equivalence, a more sensible name for weak equiv-
alence is “groupoidal equivalence”. However, the term “weak equivalence” here is historically
well-established.

33.5. Simplicial homotopy equivalence. A simplicial homotopy inverse to a map f : X → Y
of simplicial sets is a map g : Y → X such that there exists a chain of edges in Map(X,X) connecting
idX with gf , and a chain of edges in Map(Y, Y ) connecting idY with fg. Such an f is called a
simplicial homotopy equivalence, and of course any simplicial homotopy inverse to f is also a
simplicial homotopy equivalence.

33.6. Proposition. Any simplicial homotopy equivalence is a weak equaivalence.

Proof. First, if f : X → Y is a simplicial homotopy equivalence between Kan complexes, then it is
clearly a categorical equivalence, because Map(X,X) and Map(Y, Y ) are quasigroupoids, and so
any simplicial homotopy inverse g : Y → X for f must satisfy gf ≈ idX and fg ≈ idY and so is a
categorical inverse for f .

In general, suppose K is a Kan complex and consider f∗ : Map(Y,K) → Map(X,K). By the
same reasoning as used in the proof of (19.6), we see that f∗ is a simplicial homotopy equivalence
between Kan complexes, so a categorical equivalence. �

33.7. Anodyne maps and Kan fibrations. Let

Horn =
{

Λnj ⊂ ∆n
∣∣ n ≥ 1, 0 ≤ j ≤ n

}
= RHorn ∪ LHorn

denote the set of all horn inclusions. A map is anodyne if it is in Horn, and is a Kan fibration if
it is in KanFib := Horn�.

Since Horn is a set, the small object argument (13.10) applies to it: any map can be factored
f = pj with j ∈ Horn and p ∈ KanFib.

33.8. Proposition. We have that Horn�Cell ⊆ Horn.

Proof. This amounts to showing Horn�Cell ⊆ Horn, which is proved in [JT08, Theorem 3.2.2], or
[GZ67]. We give a proof in the appendix (58). �

Thus, we have that

Map(L,X)→ Map(K,X)×Map(K,Y ) Map(L, Y )

is a Kan fibration whenever K ⊆ L and X → Y is a Kan fibration, and is a trivial fibration if
K ⊆ L is also anodyne.

As a special case, we learn that if X is a Kan complex and K ⊆ L, then Fun(L,X)→ Fun(K,X)
is a Kan fibration. Here is another consequence.
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33.9. Proposition. Every anodyne map is a weak equivalence.

Proof. If f : A→ B is anodyne, then Map(f,G) is a trivial fibration for every Kan complex G, and
hence a categorical equivalence (20.10). �

33.10. Exercise. Show that the inclusion {j} ⊆ ∆n of any vertex into any standard n-simplex is
anodyne. (Hint: for 0 ≤ k ≤ n let Fk ⊆ ∆n be the subcomplex which is the union of all ∆S ⊆ ∆n

with j ∈ S and |S| ≤ k + 1, and show that each inclusion Fk−1 → Fk is anodyne.)

33.11. Example. From (33.10) it follows that any map f : ∆m → ∆n between standard simplicies
is a weak equivalence, using the 2-out-of-3 property (33.3). Any such f which is not an identity
map gives an example of a weak equivalence between quasicategories which is not a categorical
equivalence.

33.12. Exercise. Let f : X → Y be any map between Kan complexes. Show that f is a Kan fibration
if and only if it is an isofibration. (Hint: Joyal lifting.)

33.13. Exercise. Give an example of an inner fibration between Kan complexes which is not a Kan
fibration.

33.14. The universal isomorphism. Let Iso be the “walking isomorphism”, i.e., the category
with two objects 0 and 1, and a unique isomorphism between them. Let u : ∆1 → N Iso be the
inclusion representing the unique map 0→ 1 in Iso.

33.15. Proposition. The map u : ∆1 → N Iso is anodyne, and hence a weak equivalence.

Proof. The k-dimensional elements of N(Iso) are in one-to-one correspondence with sequences
(x0x1 · · ·xk) with xi ∈ {0, 1}. For each k ≥ 0 there are exactly two non-degenerate k-dimensional
elements, corresponding to the alternating sequences (0101 . . . ) and (1010 . . . ) of length k + 1.

Let uk, vk : ∆k → N Iso be the non-degenerate elements uk = (0101 . . . ) and vk = (1010 . . . ) in
(N Isok). Let Fk ⊂ N Iso be the smallest subcomplex containing uk. Observe that for a simplicial
operator f : [d]→ [k] we have ukf = (x0x1 · · ·xd) with xi ≡ f(i) mod 2. In particular,

• uk〈1 · · · k〉 = vk−1,
• uk〈0 · · · k − 1〉 = uk−1,

• uk〈01 · · · î · · · k − 1, k〉 is a degenerate element associated to uk−2 if i = 1, . . . , k − 1.

From this we can see that the only non-degenerate elements of FkrFk−1 are uk and vk−1 = uk〈1 · · · k〉.
Therefore N Iso =

⋃
Fk, F1 = u(∆1), and the commutative square

Λk0��

��

// Fk−1
��

��

∆k
uk
// Fk

is a pushout square for all k ≥ 1 by (15.24), since (1) it is a pullback, and (2) any element in the
complement of Fk−1 ⊂ Fk is the image of a unique element under the map uk.

It follows that u is anodyne. �

We obtain as a consquence the following criterion for an edge to be an isomorphism, which we
will use later.

33.16. Proposition. Let C be a quasicategory, and f : ∆1 → C a map representing morphism in C.
Then there exists f ′ : N(Iso)→ C such that f ′u = f if and only if f represents an isomorphism in
C.
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Proof. (=⇒) Clear: consider induced maps on homotopy categories. (⇐=) If f represents an
isomorphism then it factors through ∆1 → Ccore ⊆ C. Since the core is a quasigroupoid, and hence
a Kan complex, an extension along the anodyne map u to a map N Iso→ Ccore ⊆ C exists. �

33.17. Remark. Let X ⊂ N Iso be the subcomplex which is the union of the images of 2-dimensional
elements 010 and 10128. The inclusion v : ∆1 → X representing the edge 01 has the same property
described in (33.16): f : ∆1 → C represents an isomorphism if and only if it extends along v. The
proof is easy: an extension of f to a map f ′ : X → C exactly encodes a choice of morphism g in C
(i.e., f ′(〈10〉)) together with explicit homotopies gf ∼r 1 and fg ∼` 1, (i.e., f ′(〈010〉) and f ′(〈101〉)).

However, it turns out that ∆1 → X is not a weak equivalence (and therefore that X → N Iso is
not a categorical equivalence). In particular, a map X → C to a quasicategry can fail to extend
along X ⊂ N Iso.

33.18. Exercise. Show that X → N Iso is not anodyne, by constructing a map X → K(Z, 2) which
does not extend over N Iso. (See (8.12).)

33.19. Exercise. Let Z be the complex of (20.6), and let F : ∆1 = ∆{1,2} → Z be the map representing
the edge f ∈ Z1. Show that F is anodyne, and state and prove an analogue of (33.16) with Z in
place of N Iso.

33.20. Covering homotopy extension property. This is the special case of Horn�Cell ⊆ Horn
which we will use several times in the next few sections: for any inclusion K ⊆ L, the maps

(K ×∆1) ∪K×{0} (L× {0}) −→ L×∆1 ←− (K ×∆1) ∪K×{1} (L× {1})
are anodyne. This amounts to saying that for j ∈ {0, 1} a commutative square

(K ×∆1) ∪ (L× {j}) //

��

��

X

p

��

L×∆1 //

77

Y

has a lift whenever p is a Kan fibration. This is sometimes called the “covering homotopy extension
property”. It may be helpful to think of this in the equivalent form, which asserts a lifting in

{j}
��

��

// Map(L,X)

��

∆1 //

55

Map(K,X)×Map(K,Y ) ×Map(L, Y )

when K ⊆ L and p : X → Y a Kan fibration. This gets used the following way: to demonstrate
(K ⊆ L) � p for a given Kan fibration p and inclusion K ⊆ L, we “deform” a given lifting problem
of this type along a “path” in the space Map(K,X)×Map(K,Y ) Map(L, Y ) of all such commutative
squares to a different lifting problem of the same type for which we know a lift exists.

33.21. Fundamental theorem for Kan complexes: reduction to Kan fibrations. We are
going to show the following

33.22. Theorem. A map f : X → Y between Kan complexes is a weak equivalence if and only if it
is fully faithful and essentially surjective.

Equivalently: a map between quasigroupoids is a categorical equivalence if and only if it is fully
faithful and essentially surjective.

We will prove this by reducing to Kan fibrations.

28This is isomorphic to the complex Z′ of (20.7).
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33.23. Lemma. To prove (33.22), it suffices to prove: If f : X → Y is a Kan fibration between Kan
complexes which is fully faithful and essentially surjective, then f is a weak equivalence.

Proof. The (=⇒) direction of (33.22) has already been established (32.2).
(⇐=) Given f between Kan complexes which is fully faithful and essentially surjective, use the

small object argument (13.10) applied to Horn to factor it as

X
j−→ V

p−→ Y,

where j is anodyne and p is a Kan fibration. It follows that V is a Kan complex, j is a weak
equivalence (33.9) between Kan complexes, and so is fully faithful and essentially surjective. Since
the class of fully faithful and essentially surjective maps satisfy 2-out-of-3 (32.9), it follows that p
also has this property. If we can use this to show p is a weak equivalence, it follows that f is a weak
equivalence, since weak equivalences also satisfy 2-out-of-3 (33.3). �

We will prove the needed special case (that for Kan fibrations between Kan complexes, fully
faithful and essentially surjective implies weak equivalence) in the next couple of sections, after
analyzing Kan fibrations in more detail.

34. Kan fibrations between Kan complexes

In the next few sections, we are going to be considering various properties of Kan fibrations, with
particular interest in Kan fibrations between Kan complexes.

In particualar, we are going to show that for a Kan fibration p : X → Y where X and Y are Kan
complexes, all of the following are equivalent ((34.5), (34.8), (35.2), (36.1)):

(1) p is a trivial fibration;
(2) p is a weak equivalence;
(3) p is a fiberwise deformation retraction;
(4) p has contractible fibers;
(5) p is fully faithful and essentially surjective.

The equivalence of (2) and (5) will complete the proof of the fundamental theorem for Kan complexes
(33.22). (In fact, (1)–(4) are equivalent without the hypothesis that the objects are Kan complexes,
though we will not prove this in all cases.)

34.1. Fiberwise deformation retraction. A map p : X → Y is said to be a fiberwise defor-
mation retraction if there exists

• s : Y → X such that ps = idY , and
• k : X × ∆1 → X such that k|X × {0} = idX , k|X × {1} = sp, and pk = pπ, where
π : X ×∆1 → X is projection; that is, the diagram

X × {0, 1}
(idX ,sp)

//

��

��

X

p

��

X ×∆1
π
//

k

66

X p
// Y

commutes.

Any fiberwise deformation retraction is a weak equivalence: s is a simplicial homotopy inverse to p
(33.6).

34.2. Exercise. Show that fiberwise deformation retraction can be reformulated in terms of the
relative function complex of (20.9): a map p : X → Y is a fiberwise deformation retraction if there
exists (i) a vertex s ∈ Map/Y (Y,X)0 and (ii) an edge k ∈ Map/Y (X,X)1 with associated vertices

k0 = idX and k1 = sp in Map/Y (X,X)0.
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34.3. Exercise. Show that the term “fiberwise” is justified: for each y ∈ Y0, the projection p−1(y)→
{y} of a fiber to its image is a simplicial homotopy equivalence.

34.4. Exercise. Show that if p : X → Y is a fiberwise deformation retraction as above, then any base
change of p is also part of a fiberwise deformation retraction.

Fiberwise deformation retractions of Kan fibrations are always trivial fibrations, as can be shown
with the covering homotopy extension property.

34.5. Lemma. Let p : X → Y be a Kan fibration between simplicial sets. Then p is a fiberwise
deformation retraction if and only p is a trivial fibration.

Proof. [JT08, Prop. 3.2.5]. (=⇒) The idea is that a fiberwise deformation retraction provides a
“formula” which solves every lifting problem

A
a //

��

i
��

X

p

��

B
b
//

>>

u
>>

Y

where i is a monomorphism. Using the data s and k of the fiberwise deformation retraction we
obtain a commutative square

(A×∆1) ∪ (B × {1})
(k(a×id∆1 ),sb)

//

��

j
��

X

p

��

B ×∆1
π

//

t

44

B
b
// Y

Because p is a Kan fibration and j is anodyne by (33.8), a lift t exists. Then u := t|B × {0} is the
desired lift.

(⇐=) Left as an exercise. �

34.6. Exercise. Show that any trivial fibration is a fiberwise deformation retraction.

34.7. Trivial fibrations between Kan complexes and weak equivalences. We know that
trivial fibrations are always categorical equivalences. We now show that any Kan fibration between
Kan complexes which is also a categorical equivalence (and hence a weak equivalence) is a trivial
fibration.

34.8. Proposition. A map p : X → Y between Kan complexes is a trivial fibration if and only if it
is a Kan fibration and a weak equivalence.

Proof. [JT08, Prop. 3.2.6] (=⇒) Clearly trivial fibrations are Kan fibrations since Horn ⊆ Cell. We
have already shown that trivial fibrations between quasicategories are always categorical equivalences
(20.10), which implies that they are weak equivalences if between Kan complexes (33.2).

(⇐=) On the other hand, suppose p is a Kan fibration and a weak equivalence. Being a weak
equivalence between Kan complexes and hence a categorical equivalence, p admits a categorical
inverse: there exists f : Y → X and maps u : X ×∆1 → X and v : Y ×∆1 → Y which give natural
isomorphisms u : fp → idX and v : pf → idY . We will “deform” this data to a pair (s, k) which
exhibits p as a fiberwise deformation retraction.

Step 1. Since Y × {0} ⊂ Y ×∆1 is anodyne by (33.8), a lift α exists in

Y × {0}
f
//

��

��

X

p

��

Y ×∆1
v
//

α

;;

Y
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Let s := α|Y × {1}, so ps = idY . The map α exhibits a natural isomorphism α : f → s of functors
Y → X. Since fp is naturally isomorphic to idX , we have idX ≈ fp ≈ sp, i.e., there exists a natural
isomorphism w : sp→ idX .

Step 2. Consider the natural isomorphism (sp)w : sp = spsp→ sp of functors X → X. We have
a commutative diagram

Λ2
0

a //

��

��

Map(X,X)

Map(X,p)

��

∆2

b
//

t
::

Map(X,Y )

where a01 = w, a02 = spw, and b is the degeneracy b = (pw)011; this commutes since pspw = pw.
Since p is a Kan fibration, so is Map(X, p) by Horn�Cell ⊆ Horn (33.8), and therefore a lift t exists.

Let k = t|∆{1,2} : ∆1 → Map(X,X). It is clear that this is a natural isomorphism k : idY → sp, and
that this is “fiberwise”, i.e., pk = b12 = pπ as maps X ×∆1 → Y .

Thus, we have exhibited p as a fiberwise deformation retraction, so p is a trivial fibration by
(34.5). �

34.9. Contractible Kan complexes.

34.10. Corollary. Let X be a simplicial set. The following are equivalent.

(1) X is a quasicategory which is categorically equivalent to ∆0.
(2) X → ∆0 is a trivial fibration.
(3) Every ∂∆n → X extends over ∂∆n ⊂ ∆n.

Such an X is necessarily a Kan complex.

Proof. We have (2) ⇔ (3) by definition, and we know that (2) ⇒ (1). Given (1), we have that X
is a quasigroupoid, and hence a Kan complex (29.2), and (2) follows by the previous proposition
(34.8). �

We say that an X satisfying these conditions is a contractible Kan complex.

34.11. Monomorphisms which are weak equivalences. We can now characterize the monomor-
phisms which are weak equivalences, in terms of maps into Kan complexes.

34.12. Proposition. Let j : A → B be a monomorphism of simpicial sets. Then j is a weak
equivalence if and only if Map(j,X) : Map(B,X) → Map(A,X) is a trivial fibration for all Kan
complexes X.

Proof. Assume X is an arbitrary Kan complex. We know that Map(j,X) is always a Kan fibration
between Kan complexes using Horn�Cell ⊆ Horn (33.8). We have by definition that j is a weak
equivalence iff all Map(j,X) are weak equivalences, which holds iff all Map(j,X) are trivial fibrations
since for a Kan fibration between Kan complexes “trivial fibration” and “weak equivalence” mean
the same thing by by (34.8). �

34.13. Remark. The class WkEq ∩ Cell of monomorphisms which are weak equvialences is a weakly
saturated class. In fact, using (34.12) it is easy to show that it is the left complement of the class of
maps of the form p�j , where p : X → ∆0 is a projection from a Kan complex X, and j : ∂∆n → ∆n

is a cell inclusion. Furthermore, WkEq ∩ Cell contains the weakly saturated class Horn of anodyne
maps.

It turns out that Horn = WkEq∩Cell, i.e., the injective weak equivalences are precisely the same
as the anodyne maps. This is a fairly non-trivial fact, and we will address it again later. (Maybe I
will, maybe I won’t.) As a consequence, it will follow that (34.8) and (34.16) hold without the
condition that the objects be Kan complexes.
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34.14. Enriched lifting for Kan fibrations between Kan complexes.

34.15. Proposition. If j : A → B is a monomorphism and a weak equivalence of simplicial sets,
and p : X → Y is a Kan fibration between Kan complexes, then the pullback-hom map

p�i : Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a trivial fibration.

Proof. The pullback-hom map p�i is a Kan fibration between Kan complexes, using Horn�Cell ⊆
Horn (33.8). Consider the diagram

Map(B,X)
p�i
// Map(A,X)×Map(A,Y ) Map(B, Y )

q′
//

��

Map(A,X)

��

Map(B, Y ) q
// Map(A, Y )

in which the square is a pullback. By (34.12) the maps q and q′(p�i) are trivial fibrations. The
pullback q′ of q is also a trivial fibration, and so p�i is a weak equivalence by 2-out-of-3 (33.3), and
therefore a trivial fibration since it is a Kan fibration between Kan complexes (34.8). �

We also obtain another characterization of Kan fibrations between Kan complexes.

34.16. Corollary. A map p : X → Y between Kan complexes is a Kan fibration if and only if j � p
for all j which are monomorphisms and weak equivalences.

Proof. (⇐=) Straightforward, since inner horn inclusions are monomorphisms and weak equivalences.
(=⇒) Immediate from the previous proposition. �

35. The fiberwise criterion for trivial fibrations

We give another criterion for Kan fibration to be a trivial fibration, in terms of its fibers.

35.1. Fiberwise criterion for trivial fibrations. The fiber p−1(y) of a map p : X → Y over a
vertex y ∈ Y0 is the pullback of p along {y} → Y .

If p : X → Y is a trivial fibration, then since TrivFib = Horn� we see immediately that every
projection p−1(y) → ∗ from a fiber is a trivial fibration; i.e., the fibers of a trivial fibration are
necessarily contractible Kan complexes.

35.2. Proposition. Let p : X → Y be a Kan fibration. Then p is a trivial fibration if and only if
every fiber of p is a contractible Kan complex.

Proof. We have just observed (=⇒) , so we prove (⇐=) . So suppose p is a Kan fibration whose
fibers are contractible Kan complexes, and consider a lifting problem

∂∆n a //
��

��

X

p

��

∆n

b
//

t

<<

Y

We will construct a lift t by using the covering homotopy extension property to “deform” this to a
lifting problem involving a single fiber of p, which admits a solution by the hypothesis on the fibers
of p.
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Let γ : ∆n ×∆1 → ∆n be the unique map given on vertices by γ(i, 0) = i and γ(i, 1) = n. Thus
γ|∆n × {0} = id, while γ|∆n × {1} factors through the vertex {n} ⊆ ∆n. Since (∂∆n × {0} ⊂
∂∆n ×∆1) is anodyne by Horn�Cell ⊆ Horn and p is a Kan fibration, a lift exists in

∂∆n × {0} a //

��

��

X

p

��

∂∆n ×∆1 // //

c

33

∆n ×∆1
γ
// ∆n

b
// Y

Since bγ|∆n × {1} factors through a vertex y ∈ Y0, we have a lift d in

∂∆n × {1}
c|∂∆n×{1}

//

��

��

p−1(y) //
j

//

��

X

p

��

∆n × {1} //

d

77

{y} y
// Y

since by hypothesis p−1(y) is a contractible Kan complex. Putting this together we obtain a
commutative square

(∂∆n ×∆1) ∪∂∆n×{1} (∆n × {1})
(c,jd)

//

��

��

X

p

��

∆n ×∆1

bγ
//

s

44

Y

which admits a lift s since (∂∆n ⊂ ∆n)�({1} ⊂ ∆1) is anodyne and p is a Kan fibration. The
restriction t := s|∆n × {0} provides a solution to the original lifting problem, since t|∂∆n × {0} =
c|∂∆n × {0} = a and pt = (bγ)|∆n × {0} = b. �

We often apply the above result in the following way.

35.3. Corollary. Suppose

X ′ //

p′

��

X

p

��

Y ′ g
// Y

is a pullback square such that (1) p is a Kan fibration and (2) g0 : Y ′0 → Y0 is surjective. Then p is a
trivial fibration if and only if p′ is a trivial fibration. Furthermore, if all objects are Kan complexes,
then p is a weak equivalence if and only if p′ is a weak equivalence.

Proof. The fibers of p all appear as fibers of p′ by (2). Use the fiberwise criterion (35.2) and
(34.8). �

35.4. Remark. The proof of (35.2) actually shows a little more: If p : X → Y is a Kan fibration, then
for any fixed n ≥ 0 we have that (∂∆n ⊂ ∆n) � p if and only if (∂∆n ⊂ ∆n) � p−1(y) for all y ∈ Y0.

36. Fundamental theorem for Kan complexes

In this section, we will prove quasigroupoid version of the fundamental theorem (33.22), i.e., that
fully faithful and essentially surjective maps between quasigroupoids (=Kan complexes) are weak
equivalences. We note that we have already reduced (33.23) to the case of Kan fibrations, which
follows from the following.

36.1. Proposition. Let p : X → Y be a Kan fibration between Kan complexes. Then
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(1) p is essentially surjective if and only if (∂∆0 ⊂ ∆0) � p, and
(2) p is fully faithful if and only if (∂∆n ⊂ ∆n) � p for all n ≥ 1.

Thus, p is both essentially surjective and fully faithful if and only if it is a trivial fibration.

Proof of (36.1)(1). The property (∂∆0 ⊂ ∆0) � p means exactly that X0 → Y0 is surjective. If this
holds then clearly p is essentially surjective.

Conversely, if p is essentially surjective and y ∈ Y0, we may choose x ∈ X0 and an isomorphism
f : p(x)→ y in Y . Then (x, f) is the data of a lifting problem of ({0} ⊂ ∆1) against p, which has a
solution s : ∆1 → X since p is a Kan fibration. The vertex s1 ∈ X0 satisfies p(s1) = y, so we have
proved that p is surjective on objects. �

To prove the second part of (36.1), we will need the following result which relates the pullback-
homs and composition of maps. You can think of it as an “enriched” version of the fact that i� p
and j � p imply ji� p.

36.2. Proposition (Transitivity triangle for pullback-homs). Let A
i−→ B

j−→ C and p : X → Y be
maps. Then there is a factorization

p�(j◦i) = p�j ◦ q
where q is a base-change of p�i.

Proof. I use “[A,X]” as a shorthand for “Map(A,X)”. Form the commutative diagram

[C,X] p�j //

p�ji

''

[C,p]

''

[j,X]

))

[B,X]×[B,Y ] [C, Y ]

q

��

// [B,X]

p�i

��

[i,X]

��

[A,X]×[A,Y ] [C, Y ] //

��

[A,X]×[A,Y ] [B, Y ] //

��

[A,X]

[A,p]

��

[C, Y ]
[j,Y ]

// [B, Y ]
[i,Y ]

// [A, Y ]

in which all three squares are pullbacks. �

36.3. Remark. I used a special case of (36.2) in the proof of (34.15).

36.4. Exercise. Prove the following transitivity-triangles:

• (i ◦ j)�f = k ◦ (i�f) where k is a cobase-change of j�f .
• (q ◦ p)�i = r ◦ p�i where r is a base-change of q�i.

Given p : X → Y , define a class Cp of morphisms of simplicial sets by

Cp :=
{
i ∈ Cell

∣∣ p�i ∈ TrivFib
}

= Cell ∩ �
(p�Cell).

The equality is because p�i ∈ TrivFib iff Cell � p�i iff i � p�Cell. It is clear that Cp is a weakly

saturated class, and that InnHorn ⊆ Cp since InnHorn�Cell ⊆ InnHorn.

36.5. Remark. Any i ∈ Cp automatically satisfies i � p, since p�i ∈ TrivFib implies that p�i is

surjective on vertices. That is, Cp ⊆
�{p}. Elements of Cp can be thought of as monomorphisms

which satisfy an “enriched” refinement of the lifting property i� p.

We also have the following “precancellation” (or “right cancellation”) property of Cp, which is
ultimately a consequence of (34.8).
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36.6. Lemma. Let p : X → Y be a Kan fibration between Kan complexes. Suppose A
i−→ B

j−→ C are
monomorphisms such that i, ji ∈ Cp. Then j ∈ Cp.

Proof. If i : A→ B is any monomorphism, then p�i : Map(B,X)→ Map(A,X)×Map(A,Y )Map(B, Y )

is a Kan fibration between Kan complexes, using (33.8). Thus p�i, p�j , and p�ji are Kan fibrations
between Kan complexes.

If i, ji ∈ Cp then p�i and p�ji are trivial fibrations. The transitivity triangle (36.2) gives
p�ji = p�j ◦ q, where q is a base change of p�i whence q is a trivial fibration. Since trivial
fibrations are weak equivalences we have that q and p�ji are weak equivalences, whence p�j is a
weak equivalence by the 2-out-of-3 property (33.3). Therefore p�j is also a trivial fibration since it
is a map between Kan complexes which is a Kan fibration and weak equivalence (34.8). Thus we
have proved that j ∈ Cp. �

Proof of (36.1)(2). Fix p : X → Y a Kan fibration between Kan complexes. For any n ≥ 1, we can
form a diagram∐

x0,...,xn∈X×n+1
0

mapX(x0, . . . , xn)

qx0,...,xn

��

// Map(∆n, X)

q

��∐
x0,...,xn∈X×n+1

0

mapY (fx0, . . . , fxn)
j
//

��

X×n+1 ×Y ×n+1 Map(∆n, Y )

��

// Map(∆n, Y )

��

X×n+1
0 i

// X×n+1

p×n+1
// Y ×n+1

in which each square is a pullback. Here

• the map q is the pullback-hom p�(Sk0 ∆n⊂∆n), so
• q is a Kan fibration between Kan complexes (34.15),
• qx is a Kan fibration between Kan complexes for all x ∈ X×n+1

0 ,
• mapX(x0, . . . , xn) and mapY (fx0, . . . , fxn) are extended mapping spaces (31.6),
• the set X0 of vertices of X is identified with the discrete subcomplex of X, so that i is the

evident inclusion, and
• j is surjective on vertices since i is so.

Note that p is fully faithful if and only if each qx is a weak equivalence, and thus if and only if each
qx ∈ TrivFib by (34.8). By the fiberwise criterion for trivial fibrations (35.3), this is equivalent to

q = p�(Sk0 ∆n⊂∆n) ∈ TrivFib. Thus,

(p is fully faithful) ⇐⇒ { Sk0 ∆n ⊂ ∆n | n ≥ 1 } ⊆ Cp,
where Cp =

{
i ∈ Cell

∣∣ p�i ∈ TrivFib
}

is the weakly saturated class we defined earler.

Let Cell≥1 = { ∂∆n ⊂ ∆n | n ≥ 1 }. The weak saturation of Cell≥1 is the class of monomorphisms

which are bijective on vertices. A straightforward argument shows that Cell≥1�Cell = Cell≥1, from
which it follows that

Cell≥1 � p ⇐⇒ Cell≥1 ⊆ Cp.
Thus, the proof of the proposition amounts to showing that

{ Sk0 ∆n ⊂ ∆n | n ≥ 1 } ⊆ Cp ⇐⇒ Cell≥1 ⊆ Cp.
For (⇐=) , note that

{ Sk0 ∆n ⊂ ∆n | n ≥ 1 } ⊆ Cell≥1 ⊆ Cp
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since Cp is weakly saturated and any Sk0K ⊂ K is a monomorphism which is a bijection on vertices.
To prove (=⇒) suppose {Sk0 ∆n ⊂ ∆n | n ≥ 1 } ⊆ Cp. We will show by induction on n ≥ 1 that

(∂∆k ⊂ ∆k) ∈ Cp for all 1 ≤ k ≤ n. Thus, to show (∂∆n ⊂ ∆n) ∈ Cp consider the monomorphisms

Sk0 ∆n i−→ ∂∆n j−→ ∆n.

By assumption we have ji ∈ Cp. Since the non-degenerate elements in ∂∆n r Sk0 ∆n occur only in
dimensions 1, . . . , n−1, we see from the skeletal filtration (15.23) that Sk0 ∆n ⊆ ∂∆n is contained in
the weak saturation of

{
∂∆k ⊂ ∆k

∣∣ 1 ≤ k < n
}

. By the inductive hypothesis these cells inclusions
are contained in Cp, and thus i ∈ Cp. Therefore j ∈ Cp as desired by (36.6). �

Better argument: show that (∂∆1 ⊂ ∆1) ∈ Cp implies (∂∆n ⊂ ∆n) ∈ Cp for all n ≥ 1, by
induction on n. Use that (In ⊆ ∆n) ∈ Cp since inner anodyne, and inductively that (In ⊆ ∂∆n) ∈ Cp
by skeleton argument.

37. Isofibrations

In this section, we return to isofibrations, which were defined in (28.6). The moral is that
isofibrations between quasicategories play a role analogous to Kan fibrations between Kan complexes.

37.1. Characterizations of isofibrations. Recall that a functor f : C → D between quasicate-
gories is an isofibration if (1) it is an inner fibration, and (2) every

{j} //

��

��

C

p

��

∆1

f
//

g
>>

D

with j = 0 such that f represents an isomorphism admits a lift g which is also represents isomorphism.
Furthermore, it is equivalent to require (2’) instead of (2), where (2’) is the same statement with
j = 1.

Note that C → ∗ is an isofibration for any quasicategory C (because identity maps are isomor-
phisms).

We have the following “lifting criterion” for isofibrations.

37.2. Proposition. An map p between quasicategories is an isofibration iff (1) it is an inner fibration
and (2) ({0} ⊂ N(Iso)) � p.

Proof. (⇐=) Straightforward, using the fact (33.16) that every f : ∆1 → D representing an isomor-
phism factors through a map N(Iso)→ D.

(=⇒) Let p be an isofibration. To solve the lifting problem

{0} //

��

��

C

p

��

N(Iso) //

s

<<

D

recall from the proof of (33.15) that N(Iso) =
⋃
Fk where Fk is obtained from Fk−1 by gluing along

Λk0 ⊂ ∆k; we construct lifts sk : Fk → C inductively. A lift s1 : F1 = ∆1 → C exists by the definition
of isofibration, and we may assume that s1 is an isomorphism in C. Then the Joyal lifting theorem
(28.13) provides lifts sk for k ≥ 2. �

In other words, the isofibrations are precisely the maps between quasicategories which are contained

in
(
InnHorn ∪ {{0} ⊂ N(Iso)}

)�
. In particular, the pullback of an isofibration along a map from a

quasicategory is also a quasicategory.
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37.3. Remark. We have deliberately excluded maps between non-quasicategories from the definition
of isofibration. The correct generalization of isofibration to arbitrary simplicial sets is called
“categorical fibration”, and will be discussed later.

Here is another characterization of isofibrations in terms of cores (=maximal sub-quasigroupoids,
defined in (10.7)). Remember that any functor p : C → D restricts to a functor pcore : Ccore → Dcore

between Kan complexes.

37.4. Proposition. A map p : C → D between quasicategories is a isofibration if and only if (1) it
is an inner fibration, and (2) pcore : Ccore → Dcore is a Kan fibration.

Proof. (=⇒) Let p be an isofibration. Then pcore is also an isofibration, by an elementary argument.
(The point is that the relevant lifting problems for pcore clearly have lifts s with target C, since p is
an isofibration; an easy argument shows that the image of such lifts s must actually land in Ccore.)

Thus have reduced to showing that any isofibration between Kan complexes is a Kan fibration,
which is a straightforward exercise using Joyal lifting (33.12).

(⇐=) If pcore is a Kan fibration, then it is immediate that property (2) of an isofibration holds. �

In particular, isofibrations between Kan complexes are precisely Kan fibrations. (This can be
proved directly using Joyal lifting, as in (33.12).)

37.5. Lifting properties for isofibrations. We are now ready to prove the following proposition,
which will be the key tool in what follows.

37.6. Proposition. Let p : C → D be an isofibration between quasicategories, and i : K → L any
monomorphism of simplicial sets. Then the induced pullback-hom map

p�i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D)

is an isofibration.

Proof. Fix a map p : C → D between quasicategories. We first note that the class maps i : K → L
such that p�i is an isofibration is weakly saturated. In fact, let S := InnHorn ∪ {{0} ⊂ N(Iso)}.
Two applications of (16.4) show that S � (p�i) iff (S�i) � p iff i� (p�S). Therefore, (37.2) implies
that the class C :=

{
i
∣∣ p�i ∈ IsoFib

}
is the left complement of p�S , and thus weakly saturated.

Therefore, to show that C contains all monomorphisms, it suffices show that it contains i =
(∂∆n ⊂ ∆n) for n ≥ 0.

Note that we will certainly have that p�i is an inner fibration, using using InnHorn�Cell ⊆
InnHorn (16.7).

If n = 0, then p�i = p so the claim is trivial29.
Now assume n ≥ 1. Since p�i is an inner fibration between quasicategories, it suffices to solve the

lifting problem

{0} //

��

��

Fun(∆n, C)

p�i

��

∆1

f
//

44

Fun(∂∆n, C)×Fun(∂∆n,D) Fun(∆n, D)

⇐⇒

({0} ×∆n) ∪ (∆1 × ∂∆n)
g
//

��

��

C

p

��

∆1 ×∆n //

66

D

where f represents an isomorphism in the target.
The edge f ′ := (g|∆1 ×∆{0}) is the same as the composite

∆1 f−→ Fun(∂∆n, C)×Fun(∂∆n,D) Fun(∆n, C)→ Fun(∂∆n, C)→ Fun({0}, C).

29This step is the only place in the proof where we actually use the fact that p is an isofibration, and not merely
an inner fibration! In fact, if p is merely an inner fibration, but K0 = L0, then p�i is a isofibration. This proof is
closely related to that of (30.6).
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Since f is an isomorphism in the fiber product, it follows that f ′ is an isomorphism in C. Therefore
a lift exists by the pushout-product version of Joyal lifting (30.3), since n ≥ 1. �

One consequence of the above is that if p is an isofibration and i is a monomorphisms, then

(p�i)core : Fun(L,C)core →
(
Fun(K,C)×Fun(K,D) Fun(L,D)

)core

is a Kan fibration (37.4). It turns out we can replace the target (the core of a pullback) with a
pullback of cores.

37.7. Corollary. If p : C → D is any functor between quasicategories and K ⊆ L, then

(37.8)
(
Fun(K,C)×Fun(K,D) Fun(L,D)

)core
= Fun(K,C)core ×Fun(K,D)core Fun(L,D)core.

Proof. Both sides of (37.8) can be regarded as subobjects of Fun(K,C)×Fun(K,D) Fun(L,D), which
we note is a quasicategory since r : Fun(L,D)→ Fun(K,D) is an inner fibration and Fun(K,C) is
a quasicategory. The left-hand side is clearly contained in the right-hand side, since any functor
between quasicategories takes isomorphisms to isomorphisms. By (37.6), r : Fun(L,D)→ Fun(K,D)
is actually a isofibration, and so rcore is a Kan fibration (37.4). Thus the right-hand side of (37.8) is
a pullback of Kan complexes along a Kan fibration, and thus is a Kan complex, which is necesarily
contained in the left-hand side of (37.8). �

37.9. Trivial fibrations between quasicategories. Now we can prove a generalization of (34.8),
which identified trivial fibrations between Kan complexes as the Kan fibrations which are weak
equivalences. In the generalization, the role of Kan fibrations is replaced with isofibrations.

37.10. Proposition. Let p : C → D be a map between quasicategories. Then p is a trivial fibration
if and only if it is an isofibration and a categorical equivalence.

Proof. [Joy08a, Theorem 5.15]. (=⇒) If p is a trivial fibration, it is an inner fibration and ({0} ⊂
N(Iso)) � p, so it is an isofibration (37.2). We have already shown that p is a categorical equivalence
(20.10).

(⇐=) Conversely, suppose p is isofibration and categorical equivalence. It suffices to show that
for any inclusion i : K ⊆ L, the map

g := (p�i)core : Fun(L,C)core → Fun(K,C)core ×Fun(K,D)core Fun(L,D)core

is surjective on 0-simplicies. In fact, we will show that g is a trivial fibration, which implies what
we want. By (37.6), the map p�i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D) is an isofibration;

by (37.4), the restriction (p�i)core of this map to cores is a Kan fibration; by (37.7), this restriction
is precisely g. Thus g is a Kan fibration between Kan complexes. It will therefore suffice by (34.8)
to show that g is also a categorical equivalence.

The maps
Fun(L,C)→ Fun(L,D), Fun(K,C)→ Fun(K,D)

are categorical equivalences since p is (proof?), and so induce categorical equivalences on cores.
These maps are also isofibrations by (37.6), and therefore the restrictions to cores are Kan fibrations.
Thus Fun(L,C)core → Fun(L,D)core and Fun(K,C)core → Fun(K,D)core are Kan fibrations and
weak equivalences between Kan complexes, and thus are trivial fibrations (34.8). Thus in

Fun(L,C)core g−→ Fun(K,C)core ×Fun(K,D)core Fun(L,D)core → Fun(L,D)core

the second map is a trivial fibration being a pullback of Fun(K, p)core, and the composite is a weak
equivalence. It follows that g is a weak equivalence by the 2-out-of-3 property for weak equivalences
(33.3), and the result is proved. �

This proof made essential use of our characterization of trivial fibrations between Kan complexes,
which is why we had to prove that special case first.
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37.11. Exercise. Let C be a quasicategory and let π : C → hC be the tautological map to its
homotopy category. Show that

(1) π is an isofibration, and
(2) (∂∆n ⊂ ∆n) � π for n = 0, 1, 2.

Conclude that π is a categorical equivalence if and only if (∂∆n ⊂ ∆n) � π for all n ≥ 3.

37.12. Monomorphisms which are categorical equivalences lift against isofibrations.
Now we show that isofibrations have liftings with respect to all monomorphisms which are categorical
equivalences.

37.13. Proposition. A map p : C → D with D a quasicategory is an isofibration if and only if j� p
for every j : K → L which is both a monomorphism and a categorical equivalence.

Proof. (⇐=) Immediate from the the characterization of isofibrations as maps between quasicate-
gories in the right complement of InnHorn ∪ {{0} ⊂ N Iso} (37.2).

(=⇒) Suppose p is an isofibration. It suffices to show that for j ∈ Cell ∩ CatEq,

q : Fun(K,C)→ Fun(L,C)×Fun(L,D) Fun(K,D)

is a trivial fibration, whence it is surjective on vertices and thus j � p. Since j is a monomorphism,
(37.6) says q is an isofibration between quasicategories, so by the criterion for an isofibration to
be a trivial fibration (37.10) it suffices to show that q is a categorical equivalence. Since j is
a categorical equivalence both Fun(j, C) and Fun(j,D) are categorical equivalences. The map
Fun(j,D) is also an isofibration by (37.6), so it is a trivial fibration by (37.10). Therefore the
basechange Fun(L,C)×Fun(L,D) Fun(K,D)→ Fun(L,C) of Fun(j,D) is a trivial fibration, and the
result follows using the 2-out-of-3 property of categorical equivalences (22.10). �

37.14. Monomorphisms which are categorical equivalences. We can now prove a generaliza-
tion of (34.12), which characterized the injective weak equivalences.

37.15. Proposition. Let j : K → L be a monomorphism of simplicial sets. Then j is a categor-
ical equivalence if and only if Map(j, C) : Map(L,C) → Map(K,C) is a trivial fibration for all
quasicategories C.

Proof. Straightforward using the fact that Map(j, C) is an isofibration for any inclusion (37.6), and
that isofibrations which are categorical equivalences are trivial fibrations (37.10). �

37.16. Remark. As a consequence of (37.15), we see that the class Cell∩CatEq of injective categorical
equivalences between simplicial sets is a weakly saturated class: it is the left complement of the
class of maps of the form p�i where p : C → ∆0 is a projection from a quasicategory, and i is a cell
inclusion. Furthermore, this class contains the class of inner anodyne maps.

This class is not the same as InnHorn. For instance, every inner anodyne map is a bijection on
vertices, but {0} → N Iso which is not bijective on vertices is an injective categorical equivalence.
Neither is it the same as the weak saturation of InnHorn ∪ {{0} ⊂ N Iso}. (Proof?) This is a
significant way in which the theory of quasicategories is not entirely parallel with the theory of Kan
complexes.

38. Localization of quasicategories

38.1. Quasigroupoidification. Let C be a quasicategory, and X a simplicial set. Let

Fun(X)(X,C) ⊆ Fun(X,C)

denote the full subcategory spanned by objects which are functors f : X → C with the property
that f(X) ⊆ Ccore.
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Note that Fun(X)(X,C) is a quasicategory, but not necessarily a quasigroupoid: for instance,
morphisms are functors f : X ×∆1 → C such that f(X × {0}) ⊆ Ccore and f(X × {1}) ⊆ Ccore,
but need not satisfy f(X ×∆1) ⊆ Ccore.

38.2. Example. In (32.4) we considered the full subcategory Fun(∆1)(∆1, C) ⊆ Fun(∆1, C), which

we there denoted Ĉ.

38.3. Lemma. Consider ∆1 ⊂ N(Iso) representing the map 0 → 1 in Iso. The restriction map
Fun(N(Iso), C)→ Fun(∆1, C) factors through a trivial fibration

Fun(N(Iso), C)→ Fun(∆1)(∆1, C).

Proof. We’ve already proved this is surjective on 0-dimensional elements (33.16). In that proof, we
noted that N(Iso) =

⋃
Fk with Fk = Fk−1 ∪Λk0

∆k and F1 = ∆1, and the result was immediate

using the Joyal extension theorem.

To prove this lemma, it suffices to show that each Fun(∆1)(Fk, C)→ Fun(∆1)(Fk−1, C) is a trivial
fibration for k ≥ 2. There are pullback squares

Fun(∆1)(Fk, C) //

��

Fun(∆{0,1})(∆k, C)

��

Fun(∆1)(Fk−1, C) // Fun(∆{0,1})(Λk0, C)

so it suffices to solve the lifting problems (∂∆n ⊂ ∆n) � (Fun(∆{0,1})(∆k, C)→ Fun(∆{0,1})(Λk0, C))
when n ≥ 0 and k ≥ 0. This adjoints to the lifting problem

∆{0,1} // //

f
,,

Λk0 //

��

��

Fun(∆n, C)

��

∆k //

99

Fun(∂∆n, C)

where f is such that for each j ∈ [n] the composite ∆{0,1} → Fun(∆n, C) → Fun({j}, C) ≈ C
represents an isomorphism in C. By the objectwise criterion for natural isomorphisms (C) we see
that f itself represents an isomorphism in Fun(∆n, C), so the desired lift exists by Joyal lifting
(28.13). �

38.4. Proposition. Let i : X → X ′ be any anodyne map to a Kan complex X ′. Then the restriction
map Fun(i, C) : Fun(X ′, C)→ Fun(X,C) factors through a trivial fibration

q : Fun(X ′, C)→ Fun(X)(X,C).

Proof. Every edge in X maps to an isomorphism in X ′. Therefore Fun(i, C) must factor through

a map q into the subcomplex Fun(X)(X,C) ⊆ Fun(X,C). We also know that Fun(i, C) is an
isofibration by (37.6), and therefore the map q is also an isofibration. Therefore by (37.10) it is
enough to show that for each such i the map q is a categorical equivalence.

Given any two anodyne maps i : X → X ′ and i′ : X → X ′′ to Kan complexes, there exists a
categorical equivalence f : X ′ → X ′′ such that fi = i′ (because Fun(X ′, X ′′) → Fun(X,X ′′) is a
trivial fibration by (33.8)). Therefore in the commutative diagram

Fun(X ′, C)
Fun(f,C)

//

q
''

Fun(X ′′, C)

q′ww

Fun(X)(X,C)
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the map Fun(f, C) is a categorical equivalence, so q is a categorical equivalence iff q′ is.
Thus, given a simplicial set X, to show that any anodyne i : X → X ′ to a Kan complex induces

a categorical equivalence q : Fun(X ′, C)→ Fun(X)(X,C), it suffices to do so for a single choice of
such an i.

Now given any simplicial sets X, construct maps f and g of the form

X
f−→ Y := X ∪∐∆1

∐
N(Iso)

g−→ X ′,

where the coproducts defining Y are taken over all maps ∆1 → X, and g is any inner anodyne map
to a quasicategory. By construction f and g are anodyne, and therefore i = gf is anodyne.

I claim that the quasicategory X ′ is actually a Kan complex, i.e., a quasigroupoid, i.e., a
quasicategory such that h(X ′) is a groupoid. To see this, note that every edge in Y factors through
a map Iso→ Y by construction; from this, we see that every edge in the simplicial set Y must be
a preisomorphism, whence its fundamental category hY is a groupoid. Since g is inner anodyne,
hY → hX ′ is an equivalence, so hX ′ is a groupoid as desired.

Now Fun(i, C) is the composite of

Fun(X ′, C)
Fun(g,C)−−−−−→ Fun(Y,C)

p−→ Fun(X)(X,C) ⊆ Fun(X,C).

Since g is inner anodyne, Fun(g, C) is a trivial fibration by (37.6). The map p is a pullback of

maps Fun(N(Iso), C)→ Fun(∆1)(∆1, C), which are also trivial fibrations by (38.3). The result is
proved. �

We write X → XKan for any choice of anodyne map to a Kan complex, and call it a quasi-
groupoidification of X. What we have shown is that for any quasicategory C we get a categorical
equivalence

Fun(XKan, C) ≈ Fun(X)(X,C).

We can apply this construction when X is a quasicategory, or even when X is the nerve of an
ordinary category, and obtain interesting new Kan complexes.

38.5. Example. It turns out that every simplicial set is weakly equivalent to the nerve of some
ordinary category, and in fact to the nerve of some poset [Tho80]. Thus, for every Kan complex
K, there exists an ordinary category A and a weak equivalence NA→ K, where therefore induces
categorical equivalences Fun(K,C) ≈ Fun(NA)(NA,C) for every quasicategory C.

We note that there is also a classical groupoidification construction, which given an ordinary
category A produces an ordinary groupoid AGpd by “formally inverting all maps”. We have that
h((NA)Kan) ≈ N(AGpd), but in general (NA)Kan is not weakly equivalent to N(AGpd).

38.6. Exercise. Let A be the poset of proper and non-empty subsets of {0, 1, 2, 3}. Show that AGpd is
equivalent to the one-object category, but that (NA)Kan is not equivalent to the one-object category.
(In the second case, the idea is that the geometric realization of NA is a 2-sphere. Explicitly, you can
prove non-equivalence by showing π0 Fun(NA,K(Z, 2)) ≈ Z, using the Eilenberg-MacLane object
of §8.9.)

38.7. Localization of quasicategories. There is a more general construction, which applies to a
simplicial set X equipped with a subcomplex W ⊆ X. Let

Fun(W )(X,C) ⊆ Fun(X,C)

denote the full subcategory spanned by objects f : X → C such that f(W ) ⊆ Ccore. Note that this
really only depends on the edges in W .

38.8. Proposition. Given an inclusion W ⊆ X, choose an anodyne map W → WKan to a Kan
complex, and then choose an inner anodyne map g : Y := X ∪W WKan → X ′ to a quasicategory.
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Then for any quasicategory C, the restriction map Fun(X ′, C)→ Fun(X,C) factors through a trivial
fibration

Fun(X ′, C)→ Fun(W )(X,C).

Proof. We have

Fun(X ′, C)
Fun(g,C)

// Fun(Y,C) //

��

Fun(W )(X,C) // //

��

Fun(X,C)

��

Fun(WKan, C) p
// Fun(W )(W,C) // // Fun(W,C)

in which both squares are pullbacks. The map Fun(g, C) is a trivial fibration since g is inner
anodyne, while p is a trivial fibration as we have shown (38.4). �

We sometimes write X → X(W ) for any map X → X ′ obtained as in the proposition. Note that
any X → X(X) is an example of X → XKan. The observation is that for any quasicategory C, we
have a categorical equivalence

Fun(W )(X,C) ≈ Fun(X(W ), C).

38.9. Quasicategories from relative categories. A relative category is a pair W ⊆ C con-
sisting of an ordinary category C and a subcategory W containing all the objects of C. The above
construction gives, for any relative category, a map

C → C(W ),

unique up to categorical equivalence. We may call C(W ) the localization of C with respect to W .
It turns out that many quasicategories of interest arise as such localizations.

39. The path fibration

To prove the fundamental theorem of quasicategories for a general map between quasicategories,
we will reduce to the special case of isofibrations. We do this by means of the “path fibration”
construction, which provides a factorization of a map into a categorical fibration followed by an
isofibration.

39.1. The path fibration for quasicategories. Let D be a quasicategory. Recall (32.4) the

path category D̂ ⊆ Fun(∆1, D) of D, defined to be the full subcategory spanned by functors which
represent isomorphisms in D.

For a functor f : C → D between quasicategories, we define a factorization C
j−→ P (f)

p−→ D by
means of the following diagram.

C
j
// P (f)

s0

��

t
//

p

((
D̂

r0

��

r1
// D

C
f
// D

Here the the square is a pullback square. The map j is the unique one so that s0j = idC , and

tj = π̃f where π̃ : D → D̂ ⊆ Fun(∆1, D) is adjjoint to the projection D × ∆1 → D. The maps

ri : Fun(∆1)(∆1, D) ⊆ Fun(∆1, D)→ D are induced by restriction along {i} ⊂ ∆1.

The factorization C
j−→ P (f)

p−→ D is called the path fibration of f , because of the following.

39.2. Proposition. The simplicial set P (f) is a quasicategory, the map j is a categorical equivalence,
and p is an isofibration.
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In particular, the objects of P (f) are pairs (c, α) consisting of an object c ∈ C0 and an isomorphism
α : f(c)→ d in D. The map j sends an object c to (c, 1f(c)), while p sends (c, α) to d.

39.3. Exercise. Show that if f : C → D is a functor between ordinary categories, then P (f) is also
an ordinary category.

Proof. From (32.5) we know that both r0 and r1 are trivial fibrations. Therefore the base change s0

of r0 is a trivial fibration, and hence an inner fibration, which implies that P (f) is a quasicategory.
Since s0 is a trivial fibration it is a categorical equivalence (20.10), and thus j is a categorical

equivalence by 2-out-of-3 (22.10).
To show that p is an isofibration, observe that there is actually a pullback square of the form

P (f)
t //

s=(s0,p)

��

D̂

r=(r0,r1)

��

C ×D
f×idD

// D ×D

(To see this, use patching of pullback squares where we regard C ×D as a pullback of C
f−→ D ←

D ×D.) We will prove below (39.5) that r is an isofibration, whence its base-change s is also an
isofibration, and since the projection π : C ×D → D is an isofibration the composite p = πs is an
isofibration as desired. (See exercise (39.4) below for the relevant facts about isofibrations used
here.) �

39.4. Exercise. Show that the following facts about isofibrations.

(1) Any base-change of an isofibration p : C → D along a map D′ → D from a quasicategory is
also an isofibration.

(2) For any quasicategory C, the projection C → ∗ is an isofibration, and thus for any quasicat-
egory D the projection C ×D → D is an isofibration.

(3) The composite of two isofibrations is an isofibration.

39.5. Lemma. If D is a quasicategory, then the map r = (r0, r1) : D̂ ⊆ Fun(∆1, D)→ D ×D from
the path category induced by restriction along ∂∆1 ⊂ ∆1 is an isofibration.

Proof. We need to produce a lift in a diagram of the form

{0}
��

��

g
// D̂

r

��

// // Fun(∆1, D)

��

∆1

f=(f0,f1)
//

s

99

D ×D D ×D

where f represents an isomorphism in D ×D, or equivalently f0 and f1 represent isomorphisms
in D. By the usual lifting-adjunction arguments, to produce a lifting s : ∆1 → Fun(∆1, D) it is
equivalent to producing a lifting s̃ in

({0} ×∆1) ∪{0}×∂∆1 (∆1 × ∂∆1)
(g̃,f̃)

//

��

��

D

∆1 ×∆1

s̃

44

where g̃ and f̃ are adjoint to g and f . The restriction of (g̃, f̃) to the edge ∆1 × {0} is the map
f0 : ∆1 → D, which represents an isomorphism in D, and thus a lift s̃ exists by the easiest case of
the box-product version of Joyal lifting (30.3).
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It remains to show that the adjoint s : ∆1 → Fun(∆1, D) to s̃ lands in the subobject D̃, i.e.,
that the restrictions to each the vertices of ∆1 represent isomorphisms in D, or equivalently (by
the objectwise criterion for natural isomorphisms) that s̃|{j} × ∆1 : {j} × ∆1 → D represent
isomorphisms in D for j = 0, 1.

We know that g̃ = s̃|{0} ×∆1 represents an isomorphism in D, since it is assumed to correspond

to a vertex g of D̃. Let h̃ = s̃|{1} ×∆1. Then going around the “boundary” of the square ∆1 ×∆1,

we see that the map s̃ induces a relation [h̃][f0] = [f1][g̃] in the homotopy category hD. Since the

other three of these are known to be isomorphisms, so is [h̃], as desired.
�

Old proof below.

Proof. For i ∈ {0, 1} the inclusion {i} ⊂ N(Iso) is an equivalence of ordinary categories, hence a
categorical equivalence. Therefore the composite map

Fun(N(Iso), D)
q−→ Fun(∆1)(∆1, D)

ri−→ D

induced by restiction along {i} ⊂ N(Iso) is a categorical equivalence. We have shown (38.3) that q
is a trivial fibration, and therefore the ri are categorical equivalences by 2-out-of-3 (22.10).

The restriction map Fun(∆1, D)→ Fun(∂∆1, D) = D×D is an isofibration (37.6). We claim that

r : Fun(∆1)(∆1, D)→ D ×D is also an isofibration. It easily seen that r is an inner fibration, since

Fun(∆1)(∆1, D) ⊆ Fun(∆1, D) is full. To show that r is also isofibration is then straightforward
(e.g., if α : α0 → α1 is a natural isomorphism of functors ∆1 → D, and α0(∆1) ⊆ Dcore, then
α1(∆1) ⊆ Dcore).

Since the projections D ×D → D are isofibrations, it follows that the ri are isofibrations, and
hence trivial fibrations since they are categorical equivalences (37.10).

Therefore s0, being a pullback of r0, is a trivial fibration. Therefore P (f) is a quasicategory and
j is a categorical equivalence.

In the commutative diagram

P (f) //

s

��

p

||

Fun(∆1)(∆1, D)

r=(r0,r1)

��

D C ×D
f×idD

//
π
oo D ×D

the square is a pullback. We have shown that r is an isofibration, and hence so is its pullback s.
Therefore p = πs is an isofibration, as desired. �

39.6. The path fibration for Kan complexes. If f : C → D is a functor between quasicategories,

and D is a Kan complex, then D̂ = Fun(∆1, D), and the diagram defining the path fibration takes
the form

C
j
// P (f)

s0
��

//

p

**Fun(∆1, D)

r0
��

r1
// D

C
f

// D

39.7. Proposition. If f : C → D is a functor between Kan complexes, then j is a weak equivalence
and p is a Kan fibration.

Proof. Immediate. �
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40. Proof of the fundamental theorem

We are ready to finish the proof of (E), The Fundamental Theorem of Quasicategories.

40.1. Proposition. If f : C → D is a fully faithful and essentially surjective functor between
quasicategories, then f is a categorical equivalence.

We will prove this below. First note that the quasigroupoid version of this result (which we
proved earlier) gives us the following.

40.2. Lemma. If f : C → D is a fully faithful and essentially surjective functor between quasicate-
gories, then f : Ccore → Dcore is a categorical equivalence (in fact, a weak equivalence).

Proof. Note that if f is fully faithful and essentially surjective, so is f core. Apply (33.22). �

Note that the path fibration construction gives us a factorization of f into C
j−→ P (f)

p−→ D, where
j is a categorical equivalence and p is an isofibration. Because both categorical equivalences and
(fully faithful + essentially surjective) are classes which satisfy 2-out-of-3 (22.10), (32.9), proving
the fundamental theorem reduces to the case that f is itself an isofibration.

To prove the isofibration case of (40.1), we will deduce it from the following.

40.3. Proposition. If p : C → D is an isofibration which is fully fathiful and essentially surjective,
then q = (p�i)core : Fun(L,C)core → Fun(K,C)core ×Fun(K,D)core Fun(L,D)core is a trivial fibration
for every monomorphism i : K → L.

Proof that (40.3) implies (40.1). As noted above, it is enough to consider isofibrations p : C → D
which are fully faithful and essentially surjective. By (40.3), for any monomorphism i : K → L the
map q = (p�i)core is a trivial fibration, and therefore surjective on vertices. The core of a quasicategory
has all its objects, and thus the box power map p�i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D)
is surjective on vertices. Thuse, we have i � p for every monomorphism i, whence p is a trivial
fibration, and thus a categorical equivalence. �

State “p ∈ TrivFib iff (p�i)core ∈ TrivFib” as proposition in earlier section.

40.4. Proof of (40.3). We start with the following lemma, which says that isofibrations between
quasicategories which are trivial fibrations on cores are characterized by a lifting property.

40.5. Lemma. There exists a set of maps S such that for any isofibration q : C → D between
quasicategories, we have S � q iff qcore ∈ TrivFib.

Proof. Given an inclusion K ⊆ L of simplicial sets, we can use two applications of the small object
argument (13.10) to construct

K //

��

KKan

�� ##

L // L′ // LKan

in which the square is pushout, the horizontal maps are anodyne, and the objects KKan and LKan

are Kan complexes. (So K → KKan and L → LKan are examples of quasigroupoidification as in
(38.1).

We will show that (K ⊆ L) � qcore iff (KKan ⊆ LKan) � q. The lemma will follow immediately by
taking S = { (∂∆n)Kan ⊂ (∆n)Kan | n ≥ 0 }.

(=⇒) Suppose (K ⊆ L) � qcore. Since KKan and LKan are Kan complexes, any maps from them
to quasicategories must factor through cores. Thus it suffices to find a lift in the right-hand square
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of
K //

��

KKan

��

KKan
//

��

Ccore

qcore

��

L //

s

33

L′ //

s′

55

LKan
//

s′′

;;

Dcore

By hypothesis, a lift s exists, and therefore a lift s′ since the left-hand square is a pushout. Because
L′ → LKan is anodyne and qcore is a Kan fibration (37.4), an extension to a lift s′′ exists.

(⇐=) Suppose (KKan ⊆ LKan) � q. Consider a lifting problem

K
a //

��

Ccore

qcore

��

L //

<<

Dcore

Because Ccore is a Kan complex and K → KKan is anodyne, the map a factors through some
a′ : KKan → Ccore, and there is a unique compatible map b′ : L′ → Dcore from the pushout along
K ⊂ L. Again, b′ factors through b′′ : LKan → Dcore. Thus we have extended the original square to
a diagram

K //

��

KKan

��

KKan
a′ //

��

Ccore

��

// // C

q

��

L // L′ // LKan
b′′
//

t

55

t′
;;

Dcore // // D

A lift t exists by hypothesis, and since LKan is a Kan complex it factors through a unique lift t′

(using that Ccore → C and Dcore → D are monomorphisms). The composite L→ LKan → Ccore is
the desired lift. �

Fix an isofibration p : C → D between quasicategories which is fully faithful and essentially
surjective. Consider the class

Cp :=
{
i
∣∣ i is a monomorphism and (p�i)core ∈ TrivFib

}
.

The statement of (40.3) amounts to showing that Cp contains every monomorphism.

40.6. Lemma. The class Cp is weakly saturated.

Proof. First note that for any monomorphism i, the map p�i is an isofibration since p is (37.6).
Using the set of maps S provided by the previous lemma (40.5), for a monomorphism i we have

that (p�i)core ⊆ TrivFib iff S � (p�i) iff i� (p�S). Thus Cp is the intersection of
�

(p�S) with Cell,
and so is weakly saturated. �

40.7. Lemma. Let p : C → D be an isofibration between quasicategories. If K ⊆ L, and if (∅ ⊂ K)
and (∅ ⊂ L) are elements of Cp, then (K ⊆ L) ∈ Cp.

Proof. Consider the commutative diagram

Map(L,C)core

(p�i)core

//

Map(L,p)core

++(
Map(K,C)×Map(K,D) Map(L,D)

)core

q
//

��

Map(L,D)core

��

Map(K,C)core

Map(K,p)core
// Map(K,D)core
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where the square is a pullback (37.7). By hypothesis, both Map(K, p)core and Map(L, p)core are
trivial fibrations, whence q is also a trivial fibration. By 2-out-of-3, we have that (p�i)core is a
categorical equivalence. Since p is an isofibration, we have that (p�i)core is a Kan fibration (37.6),
(37.7) between Kan complexes, and therefore is a trivial fibration (34.8) as desired. �

Next we observe that (∅ ⊆ ∆n) ∈ Cp if p is fully faithful and essentially surjective.

40.8. Proposition. If p : C → D is an isofibration which is fully faithful and essentially surjective,
then Fun(∆n, C)core → Fun(∆n, D)core is a trivial fibration for all n ≥ 0.

Proof. In the case n = 0, this means showing that pcore : Ccore → Dcore is a trivial fibration, which
we have already observed (40.2). (Not quite what it says, fix this.)

For n ≥ 1, consider the diagram∐
c0,...,cn

mapC(c0, . . . , cn) // //

∐
qc0,...,cn

��

Fun(∆n, C)core

q

��

Fun(∆n,p)core

**∐
c0,...,cn

mapD(pc0, . . . , pcn) //
j
//

��

(C×n+1)core ×(D×n+1)core Fun(∆n, D)core
r
//

��

Fun(∆n, D)core

��

C×n+1
0

// // (C×n+1)core (p×n+1)core

// (D×n+1)core

in which all the squares are pullbacks. The map r is a base change of (p×n+1)core : (C×n+1)core →
(D×n+1)core, which is isomorphic to the (n+ 1)-fold product of pcore : Ccore → Dcore, which we have
just noted is a trivial fibration. Thus, r is a trivial fibration, so it will suffice to show that q is a
trivial fibration, for which we will use the fiberwise criterion (35.3).

We know that p�(Sk0 ∆n⊂∆n) is an isofibration (37.6), and thus q = (p�(Sk0 ∆n⊂∆n))core is a
Kan fibration (37.4). Because p is an essentially surjective isofibration, pcore is surjective on
vertices, and thus j is surjective on vertices. Thus by the fiberwise criterion (35.3) we need
to show that

∐
qc0,...,cn is a trivial fibration. Since coproducts of trivial fibrations are trivial

fibrations (20.2) we thus reduce to showing that each qc0,...,cn (which is a Kan fibration between
Kan complexes being a pullback of q) is a weak equivalence, and hence a trivial fibration (34.8).
This is immediate from the fact that p is fully faithful and induces maps compatible with the weak
equivalences mapC(c0, . . . , cn) → mapC(c0, c1) × · · · ×mapC(cn−1, cn) and mapD(pc0, . . . , pcn) →
mapD(pc0, pc1)× · · ·mapD(pcn−1, pcn). �

Proof of (40.3). As we have already noted it suffices to show that

Cell ⊆ Cp =
{
i
∣∣ i ∈ Cell, (p�i)core ∈ TrivFib

}
for any fully faithful and essentially surjective isofibration p : C → D. As Cp is weakly saturated
(40.6), it is enough to show that (∂∆n ⊂ ∆n) ∈ Cp for all n ≥ 0. We will do this by induction on n.

For the case n = 0, this is immediate from (40.8). For n ≥ 1, suppose we have (∂∆k ⊂ ∆k) ∈ Cp
for k < n. Since ∂∆n is equal to its own (n − 1)-skeleton, skeletal filtration (15.23) gives that
(∅ ⊂ ∂∆n) ∈ Cp. Then use (40.7) and (40.8) to conclude that (∂∆n ⊂ ∆n) ∈ Cp as desired. �

Part 5. Model categories

41. Categorical fibrations

A map p : X → Y of simplicial sets is a categorical fibration if and only if j � p for all j
which are monomorphisms and categorical equivalences. I’ll write CatFib for the class of categorical
fibrations.
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Categorical fibrations generalize isofibrations. In fact, a map p : C → D with D a quasicategory
is a categorical fibration if and only if it is an isofibration, as we proved in (37.13).

41.1. Proposition. A map p : X → Y of simplicial sets is a trivial fibration if and only if it is a
categorical fibration and a categorical equivalence.

Proof. (=⇒) We have already proved this: (??) and (??). (⇐=) If p is a categorical fibration and a

categorical equivalence, factor p as X
j−→ Z

q−→ Y with j a monomorphism and q a trivial fibration.
Then the usual argument shows that p is a retract of q, using the fact that j � p since j is a
categorical equivalence by 2-of-3. �

41.2. Proposition. If p : X → Y is a categorical fibration and j : K → L is a monomorphism, then

q : Map(L,X)→ Map(K,X)×Map(K,Y ) Map(L, Y )

is a categorical fibration. Furthermore, if either j or p is also a categorical equivalence, then so is q.

Proof. For the first, let i : A→ B be a monomorphism which is a categorical equivalence. We have
i� q iff (i�j) � p. By definition of categorical fibration, it suffices to show that i�j is a categorical
equivalence, i.e., to show Map(i�j, C) is a categorical equivalence for every quasicategory C. In fact,
Map(i, C) is an isofibration and a categorical equivalence, hence a trivial fibration, and therefore
j�Map(i, C).

If p is also a categorical equivalence, then it is a trivial fibration, and the result follows.
If j is also a categorical equivalence, then for any monomorphism i, we have i� q iff (i�j) � p iff

j � (p�i). But p�i is a categorical fibration by what we have just proved, so the result holds. �

41.3. Categorical fibrations and the small object argument. Clearly, CatFib =
(
Cell ∩

CatEq
)�

is a right complement to a class of maps. We would like to know that CatFib is the right
complement to a set of maps; then we could use the small object argument to factor any map into
an injective categorical equivalence followed by a categorical fibration.

Unfortunately, it’s apparently not known how to write down an explicit set of maps S so that
S� = CatFib. What is known is that such a set exists.

41.4. Proposition. There exists a set S of maps of simplicial sets such that S = Cell ∩ CatEq,
whence S� = CatFib.

In the rest of this section we will sketch a proof. The idea is to show that CatFib is the right
complement of the class of all injective categorical equivalences K → L for which the number
of elements in K and L is bounded by some explicit cardinal κ. We obtain S by choosing one
representative for each isomorphism class in this class; then S is a set because of the cardinality
bound.

We will define a detection functor F : Fun([1], sSet)→ Fun([1],Set) on categories of morphisms.
This will have the following properties:

• For each map f : X → Y , the map F (f) is a monomorphism of sets.
• A map f : X → Y is a categorical equivalence if and only if F (f) is a bijection.
• The functor F commutes with κ-filtered colimits for some regular cardinal κ.
• The functor F takes κ-small simplicial sets to κ-small sets.

We define F as the composite of several intermediate steps.

Step 1: Recall that the small object argument gives a functorial way to factor a map f as f = pi,
with i ∈ S and p ∈ S�. “Funtorial factorization” means that we get a section of the functor
Fun([2], sSet)→ Fun([1], sSet) defining composition.

We can apply this using S = InnHorn. Thus, given any simplicial set, we functorially
obtain an inner anodyne map X → XqCat to a quasicategory XqCat. As a result, we have a
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functor f 7→ fqCat : Fun([1], sSet)→ Fun([1], sSet), with the property that f is a categorical
equivalence if and only if fqCat is, and both source and target of fqCat are quasicategories.

Step 2: Form the path fibration Q(f) : P (fqCat) → YqCat of fqCat. The map Q(f) is thus an
isofibration between quasicategories, and is a trivial fibration if and only if f is a categorical
equivalence.

Step 3: Write Q(f) : X ′ → Y ′. Define E(f) to be the map of sets

E(f) :
∐
n

Hom(∆n, X ′)→
∐
n

Hom(∂∆n, X ′)×Hom(∂∆n,Y ′) Hom(∆n, Y ′).

Thus, f is a categorical equivalence if and only if E(f) is surjective.
Step 4: Write E(f) : E0(f)→ E1(f), and define F (f) by

F (f) : colim
[
E0(f)×E1(f) E0(f)⇒ E0(f)

]
→ E1(f).

In other words, F (f) is the map from the image of E(f) to E1(f). Thus, F (f) is always a
monomorphism, and f is a categorical equivalence if and only if F (f) is a bijection.

There exists a regular cardinal κ such that F commutes with κ-filtered colimits, and takes κ-small
simplicial sets to κ-small sets. (In fact, we can take κ = ω+, the sucessor to the countable cardinal).

Using the detection functor, we can prove the following key lemma.

41.5. Lemma. Let f : X ⊆ Y be an inclusion which is a categorical equivalence. Every κ-small
subcomplex A ⊆ Y is contained in a κ-small subcomplex B ⊆ Y with the property that B ∩X ⊆ B
is a categorical equivalence.

Proof. For a subcomplex A ⊆ Y let fA denote the inclusion A∩X ⊆ A. The collection of all κ-small
subcomplexes of Y is κ-filtered. Thus

colimκ-small A ⊆ Y F (fA) = F (f),

which we have assumed is an isomorphism. Thus for any κ-small A ⊆ there must exist a κ-small
A′ ⊃ A such that a lift exists in

F0(fA) //

��

��

F0(fA′)
��

��

F1(fA) //

99

F1(fA′)

This is because F1(fA) is a κ-small set, so any lift F1(fA)→ F0(F ) factors through some stage of
the κ-filtered colimit.

We use transfinite induction to obtain a sequence {Ai} indexed by i < κ, where at limit ordinals
we take a colimit. Set B := colimAi. Because κ is regular |B| < κ, and we have that F (fB) is an
isomorphism by construction. �

Consider the collection of monomorphisms i : A→ B such that i is a categorical equivalence and
|B| < κ. Choose a set S of such spanning all isomorphism classes of such maps; this is a set because
of the cardinality bound. Clearly S ⊆ Cell ∩ CatEq.

41.6. Proposition. We have S = Cell ∩ CatEq.

Proof. [Joy08a, D.2.16]. Given an injective categorical equivalence X ⊆ Y , we consider the following
poset P. The objects of P are subobjects P ⊆ Y such that X ⊆ P so that the inclusion X → P is
contained in S. The morphisms of P are inclusions P → Q of subobjects of Y which are contained
in S. Because S is weakly saturated, the hypotheses of Zorn’s lemma apply to give a maximal
element M of P. Since X ⊆ Y is assumed to be a categorical equivalence, 2-out-of-3 gives that
M ⊆ Y is a categorical equivalence.

If M = Y we are done, so suppose M 6= Y . Then there exists a κ-small A ⊆ Y not contained
in M , which by the above lemma can be chosen so that A ∩M ⊆ A is a categorical equivalence,
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and thus an element of S. The pushout M ⊆ A ∪M of this map is thus in S contradicting the
maximality of M . �

In particular, we learn that every map can be factored into an injective categorical equivalence
followed by a categorical fibration.

42. The Joyal model structure on simplicial sets

42.1. Model categories. A model category (in the sense of Quillen) is a categoryM with three
classes of maps: W, Cof, Fib, conventionally called weak equivalences, cofibrations, and fibrations,
satisfying the following axioms.

• M has all small limits and colimits.
• W satisfies the 2-out-of-3 property.
• (Cof ∩W,Fib) and (Cof,Fib ∩W) are weak factorization systems (13.12).

Conventionally, an object X is cofibrant if the map from the initial object is a cofibration, and
fibrant if the map to the terminal object is a fibration.

42.2. Remark. The third axiom implies that Cof, Cof ∩W, Fib, and Fib ∩W are closed under
retracts.

42.3. Exercise. Show that in a model category (as defined above), the class of weak equivalences is
closed under retracts. Hint: construct a factorization of f which is itself a retract of a factorization
of g30.

42.4. Exercise (Slice model categories). Let M be a model category, and let X be an object of M.
Show that the slice categories MX/ and M/X admit model category structures, in which the weak
equivalences, cofibrations, and fibrations are precisely the maps whose images under M/X →M or
MX/ →M are weak equivalences, cofibrations, and fibrations in M.

42.5. The Joyal model category.

42.6. Theorem (Joyal). The category of simplicial sets admits a model structure, in which

• W = categorical equivalences (CatEq),
• Cof = monomorphims (Cell),
• Fib = categorical fibrations (CatFib).

Furthermore, the fibrant objects are precisely the quasicategories, and the fibrations with target a
fibrant object are precisely the isofibrations.

Proof. Categorical equivalences satisfy 2-out-of-3 by (22.10). We have that

• Cof = Cell by definition,
• Fib ∩W = TFib = Cell� by (41.1),
• Cof ∩W = S for some set S (41.4),
• Fib = CatFib = (Cof ∩W)� = S� by definition,

so both (Cof ∩W,Fib) and (Cof,Fib ∩W) are weak factorization systems via the small object
argument (13.10). Thus, we get a model category.

We have shown (37.13) that the categorical fibrations p : C → D with D a quasicategory are
precisely the isofibrations. Applied when D = ∗, this implies that quasicategories are exactly the
fibrant objects, and thus that fibrations with fibrant target are precisely the isofibrations. �

42.7. Remark. It is a standard fact that a model category structure is uniquely determined by its
cofibrations and fibrant objects. Thus, the Joyal model structure is the unique model structure on
simplicial sets with Cof = monomorphisms and with fibrant objects the quasicategories.

30In many formulations of model categories, closure of weak equivalences under retracts is taken as one of the
axioms. The formulation we use is described in Riehl, “A concise definition of a model category” [Rie09], which gives
a solution to this exercise.
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42.8. Cartesian model categories. Recall that the category of simplicial sets is cartesian closed.
A cartesian model category is a model category which is cartesian closed, with the following
properties. Suppose i : A→ B and j : K → L are cofibrations and p : X → Y is a fibration. Then

•
i�j : (A× L) ∪A×K (B ×K)→ B × L

is a cofibration, and is in addition a weak equivalence if either i or j is also a weak equivalence,
and
•

p�j : Map(L,X)→ Map(K,X)×Map(K,Y ) Map(L, Y )

is a fibration, and is in addition a weak equivalence if either j or p is also a weak equivalence.

In fact, we only need to specify one of the above two properties, as they imply each other.

42.9. Proposition. The Joyal model structure is cartesian.

Proof. This is just (41.2). �

43. The Kan-Quillen model structure on simplicial sets

A map p : X → Y is a groupoidal fibration if and only if j�p for all j which are monomorphisms
and weak equivalences. I write GpdFib for the class of categorical fibrations.

43.1. The Kan-Quillen model structure.

43.2. Theorem (Cisinski). The category of simplicial sets admits a model structure, in which

• W = weak equivalences (WkEq),
• Cof = monomorphims (Cell),
• Fib = groupoidal fibrations (GpdFib).

Furthermore, the fibrant objects are precisely the Kan complexes, and the fibrations with target a
fibrant object are precisely the Kan fibrations.

Proof. This goes very much the same way as the Joyal model structure, and I won’t spell it out
in detail. First build a detecting functor F so that a map f is a weak equivalence iff F (f) is a
bijection; this is just as in the categorical equivalence case, except that we make use of functorial
replacement X 7→ XKan by Kan complexes, rather than by quasicategories. Using this, we can
show that Cell ∩WkEq = S and GpdFib = S� for some set S, giving the factorization system
(Cof ∩W,Fib).

We know that trivial fibrations are weak equivalences and are certainly groupoidal fibrations. The
converse is proved just as in the categorical fibration case (41.1). This gives the other factorization
system (Cof,Fib ∩W).

We have already proved that Kan fibrations between Kan complexes have the lifting property
of groupoidal fibrations (34.16), so the statements about fibrant objects and fibrations to fibrant
objects follow just as in the categorical case. �

43.3. Proposition. The Quillen model structure is cartesian.

Proof. We must show that p�j is a groupoidal fibration if j is a monomorphsm and p a groupoidal
fibration, and also that it is a weak equivalence if either j or p is. This is proved by an argument
nearly identical to the proof of (41.2). �
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43.4. Kan fibrations are groupoidal fibrations. The above model structure was actually first
produced by Quillen. In Quillen’s formulation, the fibrations were taken to be the Kan fibrations.
In fact, this is the same model structure, by

43.5. Proposition (Quillen). KanFib = GpdFib.

We will not give a proof of this here. The non-trivial part is to show that KanFib ⊆ GpdFib;
note that we already know that a Kan fibration between Kan complexes is a groupoidal fibration by
(34.16). This proposition is usually proved via an argument (due to Quillen) based on the theory of
minimal fibrations. See for instance Quillen’s original argument [Qui67, §II.3] or [GJ09, Ch. 1].

These arguments work by showing that KanFib is the weak cosaturation of the class of Kan
fibrations between Kan complexes. In fact one can even show that every Kan fibration is a base
change of a Kan fibration between Kan complexes, see [KLV12].

44. Model categories and homotopy colimits

We are going to exploit these model category structures now. The main purpose of model categories
is to give tools for showing that a given construction preserves certain kinds of equivalence.

44.1. Creating new model categories. Given a model categoryM, many other categories related
to it can also be equipped with model category structures, such as functor categories Fun(C,M)
where C is a small category. We won’t consider general formulations of this here, but we will
consider some special cases.

As an example, we consider the case of C = [1] = {0 01−→ 1}.

44.2. Proposition. There exists a model structure on N := Fun([1],M) in which a map α : X → X ′

is

• a weak equivalence if α(i) : X(i)→ X ′(i) is a weak equivalence in M for i = 0, 1
• a cofibration if α(i) is a cofibration in M for i = 0, 1, and
• a fibration in M if both α(1) and the map (X(01), α(0)) : X(0) → X(1) ×X′(1) X

′(0) are
fibrations in M.

Proof. It is clear that N has small limits and colimits, and that weak equivalences in it have the
2-out-of-3 property. It remains to show that (Cof∩W,Fib) and (Cof,Fib∩W ) are weak factorization
systems.

Let α : X → X ′ be a map in N . Choose

• a factorization X(1)→ Y (1)→ X ′(1) of α(1) of the form Fib ◦ Cof ∩W , and
• a factorization X(0)→ Y (0)→ X ′(0)×X′(1) Y (1) . . .

. . .
�

44.3. Reedy lemma.

44.4. Proposition (Reedy lemma). Let F : M→N be a functor between model categories which
takes trivial cofibrations to weak equivalences. Then F takes weak equivalences between cofibrant
objects to weak equivalences.

Proof. Let f : X → Y be a weak equivalence between cofibrant objects inM. Form the commutative
diagram

∅ //

��

Y

��

idY

((
b

##
X //

a

55

f

99X q Y // C p // Y
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where the square is a pushout, and we have chosen a factorization XqY → C → Y into a cofibration
followed by a weak equivalence (e.g., a trivial fibration). Because X and Y are cofibrant, the maps
X → X q Y ← Y are cofibrations. Using this and the 2-of-3 property, we see that a and b are
trivial cofibrations. Applying F gives

F (Y )

id

##

F (b)

��

F (X)
F (a)

// F (C)
F (p)

// F (Y )

in which F (b) and F (a) are weak equivalences by hypothesis, whence F (b) is a weak equivalence by
2-of-3, and therefore F (f) = F (p)F (b) is a weak equivalence, as desired. �

The opposite of a model categry is also a model category, by switching the roles of fibrations and
cofibrations. Thus, there is a dual formulation of the Reedy lemma.

44.5. Proposition (Reedy lemma, dual form). Let G : N →M be a functor between model categories
which takes trivial fibrations to weak equivalences. Then G takes weak equivalences between fibrant
objects to weak equivalences.

44.6. Quillen pairs. Given an adjoint pair of functors F : M� N :G between model categories,
we see from the properties of weak factorization systems that

• F preserves cofibrations if and only if G preserves trivial fibrations, and
• F preserves trivial cofibrations if and only if G preserves fibrations.

If both of these are true, we say that (F,G) is a Quillen pair.
Note that if (F,G) is a Quillen pair, then the Reedy lemma (44.4) applies to F , and the dual

form of the Reedy lemma (44.5) applies to G.

44.7. Good colimits. We can apply the above to certain examples of colimit functors, which we
will refer to generically as “good colimits”. There are three types of these: arbitrary coproducts of
cofibrant objects, countable sequential colimits of cofibrant objects along cofibrations, and pushouts
of cofibrant objects along a cofibration. We will show that “good colimits are weak equivalence
invariant”.

44.8. Exercise. Let S be a small discrete category (i.e., all maps are identities). Show that if M is a
model category, then Fun(S,M) is a model category in which α : X → X ′ is

• a weak equivalence, cofibration, or fibration iff each αs : Xs → X ′s is one in M.

Then show that colim: Fun(S,M)�M : const is a Quillen pair, and use this to prove the next
proposition.

44.9. Proposition. Given a collection fs : Xs → X ′s of weak equivalences between cofibrant objects
in M, the induced map qfs :

∐
Xs →

∐
X ′s is a weak equivalence.

44.10. Exercise. Let V be the category

0
10←− 1

12−→ 2.

Show that if M is a model category, then Fun(V,M) is a model category in which α : X → X ′ is

• a weak equivalence if α(i) : X(i) → X ′(i) is a weak equivalence for i = 0, 1, 2 (i.e., an
objectwise weak equivalence), and is
• a cofibration if α(0) and α(1) are cofibrations, and the evident map X(2)∪X(1)X

′(1)→ X ′(2)
is a cofibration.
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Then show that colim: Fun(V,M)�M : const is a Quillen pair, and use this to prove the next
proposition. (Hint: determine what the fibrations in Fun(V,M) must be according to the lifting
property.)

44.11. Proposition. Given a natural transformation α : X → X ′ of functors V → M, i.e., a
diagram

X(0)

∼
��

X(1)oo

∼
��

X(12)
// X(2)

∼
��

X ′(0) X ′(1)oo
X′(12)

// X ′(2)

in which the vertical maps are weak equivalences, all objects X(i) and X ′(i) are cofibrant, and
the maps X(12) and X ′(12) are cofibrations, the induced map colimV X → colimV X

′ is a weak
equivalence.

44.12. Exercise. Let ω be the category

0→ 1→ 2→ · · ·
with objects indexed by natural numbers. Show that ifM is a model category, then Fun(ω,M) is a
model category in which α : X → X ′ is

• a weak equivalence if each α(i) is a weak equivalence,
• a cofibration if (i) α(0) is a cofibration, and X ′(i)∪X(i) X(i+ 1)→ X ′(i+ 1) is a cofibration

for all i ≥ 0.

Then show that colim: Fun(ω,M)�M : const is a Quillen pair, and use this to prove the next
proposition.

44.13. Proposition. Give a natural transformation α : X → X ′ of functors ω →M such that all
maps α(i) : X(i)→ X ′(i) are weak equivalences, all objects X(i) and X(i′) are cofibrant, and the
maps X(i)→ X(i+1) and X ′(i)→ X ′(i+1) are cofibrations, the induced map colimωX → colimωX

′

is a weak equivalence.

In the Joyal and Quillen model structures, all objects are automatically cofibrant, which makes
the above propositions especially handy.

We will call any colimit diagram in a model category, satisfying the hypotheses of one of (44.9),
(44.11), (44.13) a good colimit. Thus, we see that good colimits are homotopy invariant. These
“good colimits” are examples of what are called homotopy colimits.

Since the opposite of a model category is also a model category, all of the results of this section
admit dual formulations, leading to the observation that good limits are homotopy invariant.

44.14. Exercise. State and prove the dual versions of all the results in this section.

45. A simplicial set is weakly equivalent to its opposite

Recall the opposite construction X 7→ Xop on general simplicial sets. We will now prove the
following, which is a kind of a generalization of the fact that every groupoid is isomorphic to its
own opposite.

45.1. Proposition. Every simplicial set X is weakly equivalent to its opposite, in the sense that
there exists a zig-zag of weak equivalences connecting X and Xop.

Note that for any ordinary groupoid G, it is straightforward to construct an isomorphism G→ Gop,
by sending each map to its inverse. Unfortunately, this proof cannot be replicated in our setting,
even if we assume that X is a quasigroupoid.
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45.2. Remark. Here is one possible proof (in some sense, the most natural proof). Note that there is a
homeomorphism of geometric realizations |X| ≈ |Xop|. Then use the fact that geometric realization
induces an equivalence h(sSet,WkEq) ≈ h(Top,WkEq). Of course, we haven’t actually proved this
fact about homotopy categories yet.

I’ll give some different proofs which are internal to simplicial sets. I do this in part because it’s
interesting to see how this is done, but also because it allows me to set up some technology which
will be useful later.

45.3. General “singular” and “realization” functors. Consider a functor C : ∆ → A into
some category A, i.e., a cosimplicial object in A. Often we write Cn ∈ A instead of C([n]) for
the values of this functor, and so write C• for the whole functor. In most of our examples, we will
actually have A = sSet, so C• will be a cosimplicial simplicial set.

Given such a C•, realization and singular functors are an adjoint pair

Re = ReC• : sSet� A : SiC• = Si

associated to C•. The singular functor Si is always defined, and is defined by

(SiX)n := HomsSet(C([n]), X),

with simplicial operators induced by the fact that C is a functor on ∆. The left adjoint Re is defined
if A is cocomplete31.

45.4. Exercise. Show that if A is cocomplete, and X ∈ sSet, then

ReX ≈ Cok

[ ∐
f : [m]→[n]

∐
x∈Xn

Cm ⇒
∐
[p]

∐
x∈Xp

Cp

]
.

(Part of the exercise is to figure out what the two maps are.)

45.5. Example. For the cosimplicial space ∆•top : ∆→ Top taking [n] to the topological n-simplex,
Re∆•top

and Si∆•top
are just the usual geometric realization and singular complex functors.

45.6. Example. For the tautological functor ∆• : ∆ → sSet sending [n] 7→ ∆n, the functors Re∆•

and Si∆• are isomorphic to the identity functor on simplicial sets.

45.7. Example. For the functor (∆•)op = ∆• ◦ op: ∆→ sSet, the functors Re∆•◦op and Si∆•◦op are
both isomorphic to the opposite functor X 7→ Xop.

45.8. The cosimplicial object Iso•. Consider Iso• : ∆ → sSet, where Ison is the (nerve of the)
groupoid with objects {0, 1, . . . , n} and unique isomophisms between every object. This has
corresponding realization and singular functors

Re = ReIso• : sSet→ sSet : SiIso• = Si .

There is an evident natural transformation α : ∆• → Iso•, by the unique functors [k]→ Isok sending
object j to j. This gives an adjoint-related pair of natural transformations

ηX : X → ReIso• X, εX : SiIso• X → X.

If we precompose with op, we obtain a cosimplicial object Iso• ◦ op = (Iso•)op. One sees that
there are natural isomorphisms

(45.9) ReIso•◦op ≈ (ReIso•)
op, SiIso•◦op ≈ (SiIso•)

op,

and that the evident natural transformation α◦op: ∆•◦op→ Iso•◦op gives rise to an adjoint-related
pair of natural transformations

η′X : Xop → ReIso•◦opX, ε′X : SiIso•◦opX → Xop.

31This means that A has colimits for all functors F : B → A from small categories B.
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Furthermore, under the isomorphisms of (45.9) the maps η′X and ε′X are identified with ηXop and
εXop .

45.10. Exercise. Prove the statements of the previous paragraph.

Although ∆• and ∆• ◦ op are not isomorphic as functors ∆ → sSet, it is the case that Iso• ≈
Iso• ◦ op, using the isomorphisms of categories Ison → Ison given on objects by x 7→ n− x. Putting
all this together, we obtain natural transformations

X
ηX−−→ ReIso• X ≈ ReIso• X

op ηXop←−−− Xop, X
εX←− SiIso• X ≈ SiIso• X

op εXop−−−→ Xop.

We’ll show that that ηX , and hence ηXop , are always weak equivalences, and that εX , and hence
εXop , are weak equivalences whenever X is a Kan complex. In the following, Re = ReIso• and
Si = SiIso• .

45.11. Lemma. For each monomorphism K → L, the induced map (ReK) qK L → ReL is a
monomorphism. In particular,

• Re preserves monomorphisms and Si preserves trivial fibrations, and
• ηL : L→ ReL is always a monomorphism.

Proof. Formally, it is enough to check the case of ∂∆n ⊂ ∆n. To see this, check that the lifting
problems

(ReK) ∪K L //

��

X

��

ReL

99

// Y

⇐⇒

K //
��

��

SiX

��

L //

99

(SiY )×Y X
are equivalent. This means we need to show that all monomorphisms are contained in the weakly

saturated class
�C, where C is the class of all the maps (Si p, εX) : SiX → (SiY )×Y X such that

p ∈ TrivFib, which means we only need to show that Cell is contained in it.
This is a calculation: Re(∂∆n)→ Re(∆n) = N(Ison) is isomorphic to inclusion of the subcomplex

K ⊆ N(Ison) whose k-dimensional elements are sequences x0 → · · · → xk such that {x0, . . . , xk} 6=
{0, . . . , n}. To show this, use the fact that ∆n is a colimit of its (n − 1)-dimensional faces along
their intersections, and that Re preserves colimits. The image of the element (0, 1, . . . , n) in
Re(∆n) intersects K exactly in its boundary, so (Re ∂∆n) ∪∂∆n ∆n → Re ∆n is a monomorphism
as desired. �

45.12. Remark. Given any natural transformation λ : F → G of functors, and map f : X → Y , we
get induced maps

F (Y ) ∪F (X) G(X)→ G(Y ), F (X)→ F (Y )×G(Y ) G(X).

These can be thought of as a variant of the “box” construction we’ve considered elsewhere (26.5),
but associated to the “evaluation pairing” Fun(sSet, sSet) × sSet → sSet rather than a functor
sSet× sSet→ sSet.

45.13. Skeletal induction. The next step is to show that K → ReK is a weak equivalence for
every simplicial set K. To do this, we will use the following bit of machinery.

45.14. Proposition (Skeletal induction). Let C be a class of simplicial sets with the following
properties.

(1) If X ∈ C, then every object isomorphic to X is in C.
(2) Every ∆n ∈ C.
(3) The class C is closed under good colimits. That is:

(a) any coproduct of objects of C is in C;
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(b) any pushout of a diagram X0 ← X1 → X2 of objects in C along a monomorphism
X1 → X2 is in C;

(c) any colimit of a countable sequence X0 → X1 → X2 → · · · of objects in C, such that
each Xk → Xk+1 is a monomorphism, is in C.

Then C is the class of all simplicial sets.

Proof. This is a straightforward consequence of the skeletal filtration (15.23). To show X ∈ C, it
suffices to show each SknX ∈ C by (3c). So we show that all n-skeleta are in C by induction on
n, with base case n = −1 (the empty simplicial set), which is really a special case of (3a). Since
Skn−1X ⊆ SknX is a pushout along a coproduct of maps ∂∆n = Skn−1 ∆n → ∆n, this follows
using (2), (3a), (3b), and the inductive hypothesis. �

45.15. Proposition. For every simplical set X, the map X → ReX is a weak equivalence.

Proof. Let C be the class of X such that η : X → ReX is a weak equivalence. We verify the
hypotheses of the above proposition. Property (1) is obvious.

To prove property (2) recall that η∆1 : ∆1 → Iso1 is anodyne (33.15). We can identify η∆n

as a retract of (η∆1)×n : (∆1)×n → (Iso1)×n, which is necessarily anodyne since a product of an

anodyne map with any identity map is anodyne. The retractions ∆n f−→ (∆1)×n
g−→ ∆n and

Ison
f−→ (Iso1)×n

g−→ Ison are maps which are given on vertices by

f(k) = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n− k

), g(k1, . . . , kn) = max { j | kj = 1 }.

Property (3) involves colimits, which in every case are good colimits. In each case, we need to
show that a map colimXi → Re colimXi is a weak equivalence when each Xi → ReXi is. The
functor Re preserves colimits and monomorphisms (45.11), so in every case we are comparing good
colimits, so the result follows from (44.9), (44.11), (44.13). �

We thus obtain the desired result.

45.16. Corollary. Every simplicial set is weakly equivalent to its opposite Xop.

Proof. Both maps in X
ηX−−→ ReX ≈ ReXop ηXop←−−− Xop are weak equivalences (45.15). �

45.17. Proposition. For each monomorphism K → L, the induced map (ReK)qK L→ ReL is a
monomorphism and a weak equivalence.

Proof. Both squares

K
η

//

��

ReK

��

ReK
id //

��

ReK

��

L η
// (ReK)qK L ReL

id // ReL

are good pushouts, using (45.11). The evident map from the left square to the right square is a
weak equivalence at the upper left, upper right, and lower left corners (45.15), so the result follows
from the invariance of good pushouts (44.11). �

45.18. Corollary. If p : X → Y is a Kan fibration, then SiX → SiY ×Y X is a trivial fibration. In
particular, if X is a Kan complex, then SiX → X is a trivial fibration.

In particular, for any Kan complex X, both maps in X
εX←− SiX ≈ SiXop εXop−−−→ Xop are trivial

fibrations.

Proof. Straightforward, using (45.17). �

45.19. Remark. The object ReX is not generally categorically equivalent to X.
It can be shown that if C is a quasicategory, then SiC is categorically equivalent to Ccore.



STUFF ABOUT QUASICATEGORIES 127

46. Initial and terminal objects, revisited

Recall the definition of initial and terminal objects in a quasicategory. One characterization was:
x is an initial object of C iff the left fibration p : Cx/ → C is a trivial fibration, and a terminal
object iff the right fibration p′ : C/x → C is a trival fibration.

When C is the nerve of an ordinary category, these reduce to the usual definitions of initial
and terminal object. In this case, there is an equivalent characterization: x is initial if and only
if HomC(x, y) is a singleton set for all objects y of C, and terminal if and only if HomC(y, x) is a
singleton set for all y.

We would like to generalize this to the case of quasicategories.

F. Deferred Proposition. An object x of a quasicategory is initial if and only if mapC(x, c) is
contractible for all objects c of C, and terminal if and only if mapC(c, x) is contractible for all
objects c of C.

To prove this, you need to be able to relate mapping spaces of a quasicategory to the join/slice
constructions that we used to define initial and terminal. We will establish such a relation in the
next few sections.

46.1. Right and left mapping spaces. Let x, y be objects of a quasicategory C. We define the
right mapping space mapRC(x, y) and left mapping space mapLC(x, y) by pullback diagrams

mapRC(x, y) //

��

Cx/

π

��

mapLC(x, y) //

��

C/y

π

��

∆0
y

// C ∆0
x

// C

where the maps labelled π are the evident forgetful maps.
For instance, an n-dimensional element of mapRC(x, y) is precisely a map a : ∆n+1 → C such that

a|∆{0,...,n} represents the vertex x, and a|∆{n+1} = y. In particular, a vertex of mapRC(x, y) is a
morphism x→ y in C, while an edge of mapRC(x, y) is a 2-dimensional element in C exhibiting the
∼r relation between two maps, which we used to define the homotopy category in §9.

Recall (26.15) that when C is a quasicategory, the maps Cx/ → C and C/y → C are left fibrations

and right fibrations respectively. Thus both mapRC(x, y) and mapLC(x, y) are Kan complexes, by the
following.

46.2. Exercise. Show that if X → ∆0 is a left fibration or a right fibration, then X is a Kan complex.
(Hint: Joyal lifting.)

Furthermore, by the above remarks relating edges in the right and left mapping spaces to the
homotopy relation, we have that π0 mapRC(x, y) ≈ π0 mapLC(x, y) ≈ HomhC(x, y).

We will show below that both mapRC(x, y) and mapLC(x, y) are actually weakly equivalent to the
standard mapping space mapC(x, y).

46.3. Box products and right and left anodyne maps. Recall that InnHorn�Cell ⊆ InnHorn
(16.7) and Horn�Cell ⊆ Horn. We have an analogous fact for left or right anodyne maps.

46.4. Proposition. We have that LHorn�Cell ⊆ LHorn and RHorn�Cell ⊆ RHorn.

Proof. See appendix. �

46.5. Fiberwise criterion for trivial fibrations, revisited. Recall the fiberwise criterion for
trivial fibrations (35.2): a Kan fibration p is a trivial fibration if and only if the fibers of p are
contractible Kan complexes. In fact, this still holds if we only know p is a left or right fibration.
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46.6. Proposition. Suppose p : X → Y is a right fibration or left fibration of simplicial sets. Then
p is a trivial fibration if and only if it has contractible fibers.

Proof. [Lur09, 2.1.3.4]. Let’s consider the case of p : X → Y a left fibration. The direction (=⇒) is
immediate, so we only need to prove (⇐=) .

We attempt to carry out the argument of the proof of (35.2), and show that (∂∆n ⊂ ∆n) � p for
all n ≥ 0. The case of n = 0 is immediate, since the fibers of p must be non-empty, since they are
contractible, so we can assume n ≥ 1.

Examining that proof of (35.2), we see that we used only the hypothesis that p is a Kan fibration
in order to have that

(∂∆n × {0} ⊂ ∂∆n ×∆1) � p,
(
(∂∆n ⊂ ∆n)�({1} ⊂ ∆1)

)
� p.

In the first case, the inclusion (∂∆n × {0} ⊂ ∂∆n ×∆1) is left anodyne by (46.4), so the lifting
problem stil has a solution when p is only a left fibration.

In the second case, we need to argue a little differently. In the proof of (35.2) this lifting problem
appears when producing a lifting (for n ≥ 1) in a diagram of the form

(∂∆n ×∆1) ∪∂∆n×{1} (∆n × {1})
(c,jd)

//

��

��

X

p

��

∆n ×∆1

bγ
//

s

44

Y

Pulling back along the factorization of the bottom map bγ, we obtain a diagram

(∂∆n ×∆1) ∪∂∆n×{1} (∆n × {1}) //

��

��

C //

p′

��

X

p

��

∆n ×∆1
γ

//

s′

44

∆n

b
// Y

where the right-hand square is a pullback. Observe that (i) p′ is a left fibration, and hence an inner
fibration, between quasicategories, and that (ii) the map γ (as defined in the proof of (35.2)) sends
the edge {n} ×∆1 to the degenerate edge 〈nn〉 in ∆n. Therefore we can apply the pushout-product
version of Joyal lifting (30.3) to produce a lift s′. �

46.7. Corollary. An object x of a quasicategory C is initial if and only if mapRC(x, c) is contractible
for all objects c of C, and is final if and only if mapLC(c, x) is contractible for all objects c of C.

Proof. The fibers of the left fibration Cx/ → C are precisely the right mapping spaces mapRC(x, c).
By what we just proved (46.6) these fibers are all contractible if and only if Cx/ → C is a trivial
fibration, which we have noted (25.5) is equivalent to x being initial in C. �

47. The alternate join and slice

We now want to compare the right and left mapping spaces, which are fibers of the projections
Cx/ → C and C/x → C, to the ordinary mapping spaces, which are fibers of Fun(∆1, C) →
Fun(∂∆1, C). We do this using constructions called the “alternate join” and “alternate slice”
[Lur09, §4.2.1].

Given an object x in C, consider the map

q : Fun(∆1, C)×Fun({0},C) {x} → Fun({1}, C) = C

induced by restriction along {0} ⊂ ∆1. Note that the fiber of q over some object c of C is precisely
the quasigroupoid mapC(x, c). The domain of q is an example of what we will call the “alternate

slice” construction, for which we will use the (unmemorable) notation Cx/.
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47.1. Exercise. Show that if C is an ordinary category, then Cx/ is isomorphic to the usual slice
category Cx/, and q is isomorphic to the usual projection p : Cx/ → C.

For a general quasicategory, q is not isomorphic p. What is true is that there is a commutative
diagram

Cx/
f

//

p
  

Cx/ = Fun(∆1, C)×Fun({0},C) {x}

q

uuC

The map f sends an element a : ∆k → C/x, which corresponds to ã : ∆k+1 → C such that ã0 = x,

to an element in Cx/ corresponding to ãr : ∆k ×∆1 → C, where r : ∆k ×∆1 → ∆k+1 is the unique
map given on vertices by r(i, 0) = 0, r(i, 1) = i+ 1.

The characterization (F) of initial objects in terms of contractible mapping spaces thus amounts
to the claim that p is a trivial fibration if and only if q has contractible fibers. In fact, we’ll prove
that

• both p and q are left fibrations,
• f is a categorical equivalence.

Because p and q are left fibrations, they are trivial fibrations iff their fibers are contractible (46.6).
Because f is a categorical equivalence, p is a categorical equivalence if and only if q is by 2-out-of-3
(22.10). The result follows because p and q are in particular isofibrations (28.10), and an isofibration
is a trivial fibration if and only if it is a categorical equivalence (37.10).

In other words, we can regard Cx/ as an alternate version of the slice construction, so we call it
the “alternate slice”. It is related to an alternate version of the join, denoted X � Y and called the
“alternate join”, which we define first.

47.2. The alternate join. Given simplicial sets X and Y , define the alternate join by the
pushout diagram

(X × {0} × Y ) q (X × {1} × Y ) // //

��

X ×∆1 × Y

��

(X × {0} ×∆0)q (∆0 × {1} × Y ) // // X � Y
where the maps on top and left are induced by the evident inclusion and projection maps.

The alternate join comes with a natural comparison map

X � Y → X ? Y,

defined as follows. Using the recipe of (23.12) for constructing maps to a join, we get a map

X × ∆1 × Y → X ? Y corresponding to the triple (g, f (0), f (1)), where g : X × ∆1 × Y → ∆1,

f (0) : X × {0} × Y → X, and f (1) : X × {1} × Y → Y are the evident projections. A similar
procedure produces compatible maps to X ?Y from the other vertices of the pushout square defining
X � Y . Note that the comparison map induces a bijection on vertices.

47.3. Example. We have

X �∆0 ≈ (X ×∆1)/(X × {1}), ∆0 � Y ≈ (∆1 × Y )/({0} × Y ),

simplical sets obtained by collapsing subcomplexes to a single point. These come with evident maps
X �∆0 → XB and ∆0 � Y → Y C.

Like the true join, X �∅ ≈ X ≈ ∅�X, and the functors X �− : sSet→ sSetX/ and −�Y : sSet→
sSetY/ commute with colimits.
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Warning: when X and Y are non-empty, X ×∆1 × Y → X � Y is surjective, but this is not the
case when either X or Y are empty.

Unlike the true join, the alternate join is not monoidal: (X � Y ) � Z 6≈ X � (Y � Z) in general.
Also, the alternate join of two quasicategories is not usually a quasicategory.

The alternate join is a categorically invariant construction.

47.4. Proposition. The alternate join � preserves categorical equivalences in either variable. That
is, if Y → Y ′ is a categorical equivalence, then so are X � Y → X � Y ′ and Y � Z → Y ′ � Z.

Proof. The � product is constructed using a “good” pushout, i.e., a pushout along a cofibration.
The result follows because both products and good pushouts preserve categorical equivalences
(44.11). �

47.5. Alternate slice. Given p : S → X and q : T → X, we define the alternate slices Xp/ and
X/q via the bijective correspondences S �∅

��

p

''
S �K // X

⇐⇒ {K 99K Xp/},

 ∅ � T
��

q

''
K � T // X

⇐⇒ {K 99K X/q}.

just as we defined ordinary slices using joins. These constructions give right adjoints to the alternate
join functors:

S � (−) : sSet� sSetS/ : (p 7→ Xp/), (−) � T : sSet� sSetT/ : (q 7→ X/q).

Alternate slices are “functorial” in exactly the sense that ordinary slices are (24.13): a sequence

of maps T
j−→ S

p−→ X
f−→ Y induces Xp/ → Y fpj/ and X/p → Y /fpj .

47.6. Exercise. Show that there are pullback squares of the form

Xp/ //

��

Map(S ×∆1, X)

��

X/p //

��

Map(∆1 × S,X)

��

X
(p̃,c)

// Map(S × {0}, X)×Map(S × {1}, X) X
(c,p̃)

// Map({0} × S,X)×Map({1} × S,X)

where p̃ : X → Map(S,X) is adjoint to X × S proj−−→ S
p−→ X, and c : X → Map(S,X) is adjoint to

X × S proj−−→ X
id−→ X.

Using the adjunction relation between joins and slices, and alternate joins and slices, the natural
comparison map X � Y → X ? Y induces natural comparison maps on alternate slices. That is,
given p : S → X and q : T → Y we have natural comparison maps

Xp/ → Xp/ and Y/q → Y /q.

47.7. Joins, slices, and function complexes. Recall the function complex Map(X,Y ) ∈ sSet,
defined for any pair of simplicial sets X,Y . Recall also (20.15) the relative function complex under
S, which for objects p : S → X and q : S → Y in sSetS/ is a simplicial set

MapS/(X,Y ) := Map(X,Y )×Map(S,Y ) {q}
with bijective correspondences

{
K // MapS/(X,Y )

}
⇐⇒

 K × S
proj

//

id×p ��

S
q
��

K ×X // Y
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natural in the simplicial set K. The set of vertices of MapS/(X,Y ) is precisely the set

HomsSetS/(X,Y ) of morphisms in the category sSetS/.

Given X and p : S → Y , we have join/slice adjunctions

HomsSet(X,Yp/) ≈ HomsSetS/(S ? X, Y ), HomsSet(X,Y/p) ≈ HomsSetS/(X ? S, Y ).

We now construct maps

Map(X,Yp/)→ MapS/(S ? X, Y ), Map(X,Y/p)→ MapS/(X ? S, Y ).

which are natural in both X and p, and which on vertices are exactly the join/slice adjunctions. We
will call these the enriched adjunction maps for join/slice; they are not isomorphisms in general.

I write this out in the case of slice-over, by constructing a transformation{
K // Map(X,Yp/)

}
=⇒

{
K // MapS/(S ? X, Y )

}
natural in the simplicial set K. Applying the product/function complex adjunction, and the
join/slice adjunction, this amounts to defining natural maps

S ?∅
��

p

))
S ? (K ×X) // Y

 =⇒


K × (S ?∅)

proj
//

��

S
p
��

K × (S ? X) // Y


Thus it suffices to produce natural maps

K × (S ? X)→ S ? (K ×X)

which in the case that X = ∅ reduce to the projection map K × S → S. We take this to be the
map corresponding by (23.12) to the triple (g, f{0}, f{1}) so that g is the composite

K × (S ? X)→ K × (∆0 ?∆0)→ ∆0 ?∆0 = ∆1,

and
f (0) = proj : K × (S ?∅)→ S, f (1) = id: K × (∅ ? X)→ K ×X.

It is now straightforward to derive explicit formulas for the desired transformation (by specializing
to K = ∆n), and to show that is is natural.

47.8. Exercise. Construct a natural “distributivity” map K × (X ? Y )→ (K ×X) ? (K × Y ).

47.9. Alternate joins, alternate slices, and function complexes. We can carry out the same
procedure for alternate joins and slices, to obtain maps

Map(X,Y p/)→ MapS/(S �X,Y ), Map(X,Y /p)→ MapS/(X � S, Y )

which are natural in both X and p, and which on vertices are exactly the alternate join/slice
adjunctions. We will call these the enriched adjunction maps for alternate join/slice.

Tracing through the same steps as in the previous section, we see that (in the first case) we need
natural maps

K × (S �X)→ S � (K ×X)

which when X = ∅ reduce to the projection map K×S → S. In this case it is entirely straightforward
to construct such a map, since both objects are naturally quotients of the product K×S×∆1×X ≈
S ×∆1 ×K ×X. In fact, examination of the constructions shows that the evident diagram

K × S
proj

//

��

S

��

K × (S �X) // S � (K ×X)
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is a pushout square. (Exercise: prove this.) Given this consideration, we see that we have actually
defined natural isomorphisms

Map(X,Y p/)
≈−→ MapS/(S �X,Y ), Map(X,Y /p)

≈−→ MapS/(X � S, Y ).

Furthermore, these natural isomorphisms are compatible with the transformations for join/slice.

47.10. Proposition. The evident diagrams

Map(X,Yp/) //

��

MapS/(S ? X, Y )

��

Map(X,Y/p) //

��

MapS/(X ? S, Y )

��

Map(X,Y p/) ≈
// MapS/(S �X,Y ) Map(X,Y /p) ≈

// MapS/(X � S, Y )

commute.

Proof. This amounts to showing that the evident diagram

K × (S �X) //

��

S � (K ×X)

��

K × (S ? X) // S ? (K ×X)

commutes, which we leave to the reader. �

Below we will show that if Y = C is a quasicategory, then all of the maps in these diagrams are
categorical equivalences. As a consequence, we will obtain categorical equivalences Cp/ → Cp/ and

C/p → C/p.

48. Equivalence of the two join and slice constructions

48.1. The enriched adjunction map for joins/slices preserves isomorphism classes of
objects. We now consider the natural maps

Map(X,Cp/)→ MapS/(S ? X,C), Map(X,C/p)→ MapS/(X ? S,C)

in the case when p : S → C is a map to a quasicategory C. In this case both sources and targets of
the natural maps in question are themselves quasicategories, and both induce bijections on sets of
objects. Eventually we will show that these functors are categorical equivalencs. Right now we will
just prove that these functors induce bijections on isomorphism classes of objects.

48.2. Proposition. For X a simplicial set and p : S → C a map to a quasicategory, the enriched
adjunction map for join/slice induces bijections

π0

(
Map(X,Cp/)

core
) ∼−→ π0

(
MapS/(S?X,C)core

)
, π0

(
Map(X,C/p)

core
) ∼−→ π0

(
MapS/(X?S,C)core

)
,

Proof. We give the proof in the slice-over case. Since the enriched adjunction map gives a bijection
on objects, it suffices to prove injectivity on sets of isomorphism classes.

Let f0, f1 : X → Cp/ be objects of Map(X,Cp/), which correspond to objects f̃0, f̃1 : S ? X → C

of MapS/(S ? X,C), with f̃j |S = p. If f̃0 and f̃1 are isomorphic objects, then there exists a map

N Iso → MapS/(S ? X,C) representing such an isomorphism (33.16). The data of such a map

amounts to a an arrow f̃ fitting in the commutative diagram

S��

��

p
// C // Map(N Iso, C)

��

S ? X
(f̃0,f̃1)

//

f̃

44

C × C
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where C → Map(N Iso, C) → C × C are induced by restriction along ∗ ← N Iso ← {0, 1}. Write
D = Map(N Iso, C) and p : S → D for the map along the top of the rectangle. Applying the
join/slice adjunction, we see that we have a diagram

Dp/

��

X

f
::

(f0,f1)
// Cp/ × C/p

That is, we have produced an object f in Map(X,Dp/) which under the two evident projections
π0, π1 : Map(X,Dp/)→ Map(X,C) is sent to f0 and f1 respectively.

We have that both projections D → C are trivial fibrations, whence so are both projections
Dp/ → Cp/ (this needs a proof), and hence both projections π0 and π1. Considering the induced
commutative diagram

Map(X,Cp/)

Map(X,Cp/) //

id //

id
//

Map(X,Dp/)
π0

44

π1

**

Map(X,Cp/)

we see that every arrow in this diagram is a categorical equivalence, and therefore both π0 and π1

induce the same bijection on isomorphism classes on objects. Therefore f0 and f1 are isomorphic
objects, as desired. �

48.3. Equivalence of join and alternate join. The key result of this section is the following.

48.4. Proposition. The canonical comparison map X � Y → X ? Y is a categorical equivalence for
all simplicial sets X and Y .

What we have proved implies the categorical invariance of the usual join.

48.5. Corollary. The join ? preserves categorical equivalences in either variable. That is, if Y → Y ′

is a categorical equivalence, then so are X ? Y → X ? Y ′ and Y ? Z → Y ′ ? Z.

Proof. Immediate using (48.4), the invariance of the alternate join under categorical equivalence
(47.4), and the 2-out-of-3 property of categorical equivalences (22.10). �

The proof is based on the following general strategy.

48.6. Proposition. Let α : F → F ′ be a natural transformation between functors sSet→M, where
M is some model category. If

(1) F and F ′ preserve colimits,
(2) F and F ′ take monomorphisms to cofibrations,
(3) F and F ′ take inner anodyne maps to to weak equivalences in M, and
(4) α(∆1) : F (∆1)→ F ′(∆1) is a weak equivalence in M,

then α(X) : F (X)→ F ′(X) is a weak equivalence in M for all simplicial sets X.

Proof. [Lur09, 4.2.1.2] Consider the class of simplicial sets C := {X | α(X) is a weak equivalence }.
We use skeletal induction (45.14) to show that C contains all simplicial sets.

It is clear that C is closed under isomorphic objects. Because F and F ′ preserve colimits (1) and
cofibrations (2), they take good colimit diagrams in sSet to good colimit diagrams in M. Since
good colimits are weak equivalence invariant (44.9), (44.11), (44.13), we see that C is closed under
forming good colimits. It remains to show that ∆n ∈ C for all n.
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We have ∆1 ∈ C by (4). Since ∆0 is a retract of ∆1, we get that ∆0 ∈ C since weak equivalences
in M are closed under retracts (42.3).

The spines In can be built from ∆0 and ∆1 by a sequence of good pushouts (glue on one 1-simplex
at a time), so the In ∈ C. The inclusions In ⊂ ∆n are inner anodyne (12.11), so by (3) and the
2-out-of-3 property of weak equivalences in M it follows that ∆n ∈ C. �

We will apply this idea to functors sSet→ sSetX/, where the slice category sSetX/ inherits its
model structure from the Joyal model structure on sSet (42.4).

Proof of (48.4). The functors X � (−), X ? (−), (−) �X, (−) ? X : sSet → sSetX/ satisfy the first
three properties required of the functors in the previous proposition (48.6). That is, they (1)
preserve colimits, (2) take monomorphisms to monomorphisms, and (3) take inner anodyne maps
to categorical equivalences. Condition (3) for � follows from (47.4), while condition (3) for ? this
follows from (26.12) since InnHorn ⊆ LHorn ∩ RHorn.

Thus, to show X � Y → X ? Y is a categorical equivalence for a fixed X and arbitrary Y , it
suffices by the previous proposition to show that X �∆1 → X ? ∆1 is a categorical equivalence.
The same argument lets us reduce to the case when X = ∆1, i.e., to showing that a single map
f : ∆1 �∆1 → ∆1 ?∆1 is a categorical equivalence.

We will show f is a categorical equivalence by producing a map g : ∆1 ?∆1 → ∆1 �∆1 such that
fg = id∆1?∆1 and gf is preisomorphic to the identity map of ∆1 �∆1, via (20.8) .

Since ∆1 �∆1 is a quotient of a cube, we start with maps involving the cube. I will write vertices
in (∆1)× as sequences (a1a2a3) where ai ∈ {0, 1}. Let

f : (∆1)×3 → ∆3 = ∆1 ?∆1

be the map which on vertices sends

(a1a2a3) 7→ sup { k | ak = 1 }.
On passage to quotients this gives the comparison map f : ∆1 �∆1 → ∆1 ?∆1 of the proposition.

Let g : ∆3 → (∆1)×3 be the map classifying the element 〈(000), (100), (110), (111)〉, and let
g : ∆3 → ∆1 �∆1 be the composite with the quotient map. We have fg = id∆3 = fg.

Let h ∈ Map((∆1)×3, (∆1)×3)0 and a, b ∈ Map((∆1)×3, (∆1)×3)1 be as indicated in the following
picture.

010

yy %%

110

%%

000

OO

yy %%

011

yy

100

OO

%%

111 001

OO

yy

101

OO

id

a←−−−−

010

yy %%

110

%%

000

OO

yy %%

011

yy

100

OO

%%

111 000

OO

yy

100

OO

h

b−−−−→

110

yy %%

110

%%

000

OO

yy %%

111

yy

100

OO

%%

111 000

OO

yy

100

OO

gf

These pass to elements h, a, b in Map(∆1 �∆1,∆1 �∆1). The edges a and b are preisomorphisms, as

one sees that for each vertex v ∈ (∆1�∆1), the induced maps ∆1×{v} ⊂ ∆1×(∆1�∆1)
a or b−−−→ ∆1�∆1

represent degenerate edges. Thus fg and gf are preisomorphic to identity maps, and hence f is a
categorical equivalence as desired. �

48.7. Equivalence of slice and alternate slice.

48.8. Proposition. For any quasicategory C and map p : S → C, the comparison maps Cp/ → Cp/

and C/p → C/p are categorical equivalences.
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Proof. We do the first case. We use the following fact: if f : A→ B is a functor between quasicat-
egories, then f is a categorical equivalence if and only if the induced maps π0

(
Fun(X,A)core

)
→(

Fun(X,B)core
)

are bijections for all simplicial sets X. I probably did this before somewhere.
Recall (47.10) that we have a commutative diagram

Map(X,Cp/) //

��

MapS/(S ? X,C)

��

Map(X,Cp/) ≈
// MapS/(S �X,C)

in which the bottom map is an isomorphism. By (48.2) the top map is a bijection on isomorphism
classes of objects By (48.4) S �X → S ?X is a categorical equivalence, and thus the right-hand map
is a categorical equivalence, and hence a bijection on isomorphism classes of objects. It follows that
the left-hand map is a bijection on isomorphism classes of objects, and the proposition is proved. �

48.9. Corollary. For any quasicategory C and map p : S → C, the enriched adjunction maps
Fun(X,Cp/)→ MapS/(S ? X,C) and Fun(X,C/p)→ MapS/(X ? S,C) are categorical equivalences.

48.10. Alternate pushout-join. Just as we defined the “pushout-join” �, we can define the
“alternate pushout-join” ��: given f : A→ B and g : K → L, we obtain

f �� g : (B �K) ∪A�K (A � L)→ B � L.
48.11. Proposition. We have that

RHorn �� Cell ∪ Cell �� LHorn ⊆ Cell ∩ CatEq.

Proof. We’ll show that RHorn��Cell ⊆ Cell∩CatEq. It is straightforward to show that the ��-product
of two monomorphisms is a monomorphism. Thus, it suffices to show that for f : A → B right
anodyne and any inclusion g : K → L, the map f �� g is a categorical equivalence. We know that
RHorn � Cell ⊆ InnHorn ⊆ CatEq (26.12), so f � g is a categorical equivalence. Furthermore, in

(B �K) ∪A�K (A � L) //

��

B � L

��

(B ? K) ∪A?K (A ? L) // B ? L

the vertical maps are categorical equivalences; this uses the result proved above (48.4), as well as
the fact that since f and g are monomorphisms, the domains of f �� g and f � g are constructed
from good pushouts. �

Question: is LHorn �� Cell ⊆ InnHorn?

48.12. Proposition. Given K
j−→ L

p−→ C, if C is a quasicategory and j is a monomorphism, then
Cp/ → Cpj/ is a left fibration, and C/p → C/pj is a right fibration.

Proof. Follows from LHorn �� Cell ⊆ Cell ∩ CatEq and Cell �� RHorn ⊆ Cell ∩ CatEq. �

48.13. Equivalence of various mapping spaces. Finally we can prove our original goal.

48.14. Proposition. For any quasicategory C and object x ∈ C0, the natural comparison maps
mapRC(x, y)→ mapC(x, y)← mapLC(x, y) are weak equivalences.

Proof. In

Cx/
f

//

p
  

Cx/

q
~~

C
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the map f is a categorical equivalence (48.8) and p and q are left fibrations by (??) and (??)
respectively, and hence are categorical fibrations (??). It follows that the induced maps on
fibers mapRC(x, c)→ mapC(x, c) are categorical equivalences and hence weak equivalences, since the
pullbacks describing the pullbacks are good pullbacks (with respect to the Joyal model structure). �

48.15. Slices as fibers. Rewrite this in terms of the enriched adjunction maps.
The alternate slice Cf/ has another convenient characterization: it is the fiber over f of a map

between functor categories.

48.16. Proposition. For a map f : S → X of simplicial sets, the alternate slice Xf/ is isomorphic
to the fiber of the restriction map

Map(S �∆0, X)→ Map(S,X).

over f .

Proof. Let F be the fiber of the restriction map. There is an evident correspondence

K // F ⇐⇒

S ×K π //

��

S

��

f

��

(S �∆0)×K // C

The claim follows by showing that the evident quotient map S ×∆1 ×K → (S �∆0)×K extends
to an isomorphism

S �K ∼−→ ((S �∆0)×K) ∪S×K S

compatible with the standard inclusions of S. �

We can also consider the fiber of the inclusion S ⊂ S ?∆0 into the standard cone. This gives yet
another version of the slice.

48.17. Corollary. Let C be a quasicategory, and let F (f) := the fiber of Fun(SB, C)→ Fun(S,C)
over f . Then there is a chain of categorical equivalences

F (f)→ Cf/ ← Cf/.

Furthermore, F (f) and Cf/ have the same set of 0-dimensional elements, and both arrows above
coincide on 0-dimensional elements.

Proof. The second equivalence is just (48.8). For the first equivalence, note that

Fun(S ?∆0, C) //

��

Fun(S �∆0, C)

��

Fun(S,C) Fun(S,C)

the top horizontal map is a categorical equivalence using (48.4), while the vertical maps are both
categorical fibrations. Therefore the induced map on fibers over f is a categorical equivalence, since
the pullback squares in question are good.

The vertices of F (f) and Cf/ are exactly the set {SB → C}. Both inclusions F (f)0 → (Cf/)0 ←
(Cf/)0 are induced by restriction along the standard comparison map S �∆0 → S ?∆0. �
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Part 6. The quasicategory of ∞-categories

Category theory naturally provides an example of itself. That is, the collection of categories and
functors between them is itself a category. In particular, we write Cat for the (large) category whose
objects are (small) categories, and whose morphisms are functors between them.

By analogy, one may expect that quasicategory theory provides an an example of itself, e.g., that
the collection of quasicategories and functors between forms part of the data of a quasicategory. In
fact, that is the case: we write qCat for the (large) category whose objects are (small) quasicategories,
and whose morphisms are functors between them. Being an ordinary category, qCat is a fortiori a
quasicategory.

This is unsatisfying. We would hope to have a richer object, i.e., a quasicategory which we might
name Cat∞, whose objects and functors are as in qCat, but which in addition has some kind of
non-trivial “higher structure”.

Such “quasicategory of ∞-categories” Cat∞ does exist. However, its description is nowhere as
evident or natural as Cat. In fact, there are many possible constructions of Cat∞ which are not
isomorphic to each other (though they are categorically equivalent to each other). We will describe a
particular construction of Cat∞ (due to Lurie, and which is in some sense the standard construction)
below.

In order to understand the role that Cat∞ plays, we will start by thinking about ordinary
categories. We will see that even in the classical case, what is wanted is not the ordinary category
Cat, but rather a certain quasicategorical thickening of it, which we will Cat1.

49. The quasicategory of categories

49.1. The category of categories. We write Cat for the category of categories, by which we
mean the category of small categories (i.e., categories whose collections of objects and morphisms
are sets). Sometimes I will need to talk about a larger category CAT of possibly non-small categories
(so that Cat is an object of CAT).

To understand Cat (and CAT), let us think about what functors to it look like. Given a category
C, we obtain the category Fun(C,Cat) of functors from C to the category of categories. Explicitly:

• An object of Fun(C,Cat) is a functor F : C → Cat, which assigns
– to each object c ∈ obC a category F (c), and
– each morphism α : c→ c′ in C a functor F (α) : F (c)→ F (c′), such that
– F (idc) is the identity functor of F (c), and F (βα) = F (β) ◦ F (α) for all composable

arrows c
α−→ c′

β−→ c′′ in C.
• A morphism γ : F → F ′ in Fun(C,Cat) is a natural transformation of functors, which assigns

– to each object c ∈ obC a functor γ(c) : F (c)→ F ′(c) such that
– for each morphism α : c → c′ in C we have an equality F ′(α)γ(c) = γ(c′)F (α) of

functors F (c)→ F ′(c′).

The same description applies to Fun(C,CAT).
A functor C → Cat may be thought of as a “family of categories parameterized by C”.

49.2. Example. Let Ring be the category of associative rings and homomorphisms; it is a large
category. We may define a functor M : Ringop → CAT as follows.

• For a ring R ∈ ob Ring, let M(R) := ModR the category of left R-modules.
• For a homorphism α : R→ R′ of rings, letM(α) : ModR′ → ModR be the restriction-along-α

functor, which on objects sends an R′-module M to the R-module with same underlying
abelian group and with rx = α(r)x for r ∈ R and x ∈M .

It is straightforward to see that this indeed defines a functor Ringop → CAT.



STUFF ABOUT QUASICATEGORIES 138

There however many examples of “families of categories parameterized by a category” which can
not be easily described by a functor to Cat or CAT.

49.3. Example. As in (49.2) let Ring be the category of associative rings and homomorphisms. We
may attempt to define a functor M′ : Ring→ CAT as follows.

• For a ring R ∈ ob Ring, let M′(R) := ModR the category of left R-modules.
• For a homomorphism α : R→ R′, let M′(α) : ModR → ModR′ be the extension-of-scalars-

along-α functor, which on objects sends an R-module M to the R′-module R′ ⊗RM .

However, the above data does not define a functor. Given morphisms R
α−→ R′

β−→ R′′, we need to have
an equality of functors M′(β) ◦M′(α) =M′(βα). However, we only have a natural isomorphism of

functors, given by isomorphisms M′(β, α) : R′′ ⊗R′ (R′ ⊗RM)
∼−→ R′′ ⊗RM which are natural in

the R-module M .

The data of (49.3) does not define a functor, but rather a pseudofunctor. A pseudofunctor32

from F : C → Cat associates

• to each object c ∈ obC a category F (c),
• to each morphism α : c→ c′ in C a functor F (α) : F (c)→ F (c′),

• to each object c ∈ obC, a natural isomorphism εc : idF (c)
∼−→ F (idc) of functors F (c)→ F (c),

• to each composable sequence c
α−→ c′

β−→ c′′ in C, a natural isomorphism µβ,α : F (β) ◦F (α)→
F (βα) of functors F (c)→ F (c′′),

such that

•
strictly unitary pseudofunctor . . .

Part 7. Old stuff

Note. From this point forward, these notes are not an organize narrative, but rather a collection
of bits and pieces that might be worked into something useful at some point.

50. Coherent nerve

50.1. The coherent nerve. The coherent nerve N is a construction which turns a simplicially
enriched category into a simplicial set, and in particular turns a Kan-enriched category into a
quasicategory. It was invented by Cordier [Cor82]. The coherent nerve is constructed as right
adjoint of a “realization/singular” pair

C : sSet� sCat :N .
Given a finite totally ordered set S, define

P(S) := {A ⊆ S | {min,max} ⊆ A ⊆ S }.
This is a poset, ordered by set containment; here min,max denote the least and greatest elements
of S (possibly the same). If S is empty, so is P (S).

Let C(∆n) denote the simplicially enriched category defined as follows.

• The objects are elements of [n] = {0, . . . , n}.
• For objects x, y ∈ [n], the function complex is

MapC(∆n)(x, y) := NP([x, y]), [x, y] := { t ∈ [n] | x ≤ t ≤ y },
which is set to be empty if x > y.

32Pseudofunctors may be defined more generally with domain and codomain arbitrary 2-categories, or even arbitrary
bicategories.
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• Composition is induced by the union operation on subsets:

(T, S) 7→ T ∪ S : P([y, z])× P([x, y])→ P([x, z]).

Every f : [m] → [n] in ∆ gives rise to an enriched functor C(f) : C(∆m) → C(∆n), which on
objects operates as f does on elements of the ordered sets, and is induced on morphisms by

S 7→ f(S) : P([x, y])→ P([fx, fy])

We obtain (after identifying ∆ with its image in sSet) a functor C : ∆→ sCat.
Given a simplicially enriched category C, its coherent nerve (or simplicial nerve) is the

simplicial set NC defined by
(NC)n = HomsCat(C(∆n), C).

. . .

50.2. Quasicategories from simplicial nerves.

50.3. Proposition. If C is a category enriched over Kan complexes, then N (C) is a quasicategory.

Proof. �

51. Correspondences

A correspondence is defined to be an inner fibration p : M → ∆1. A map of correspondences is
a morphism in the slice category sSet/∆1 .

51.1. Correspondences of ordinary categories. If M is an ordinary category, then any functor
p : M → ∆1 is an inner fibration. Given such a functor, we can identify the following data:

• categories C := p−1({0}) and D := p−1({1}), the preimages of the vertices, and
• for each pair of objects c ∈ obC, d ∈ obD, a set

M(c, d) := HomM (c, d),

which
• fit together to give a functor

M : Cop ×D → Set.

Conversely, given the data of categories C and D, and a functor M : Cop ×D → Set, we can
construct a category M with functor p : M → ∆1 in the evident way, with

obM := obC q obD, morM := morC q
(∐
c,d

M(c, d)

)
qmorD.

Under the above, maps f : M →M ′ between correspondences which are categories are sent to
data consisting of: functors u : C → C ′ and v : D → D′, and natural transformations

M→M′ ◦ (u× v) of functors Cop ×D → Set.

51.2. Example. If C and D are categories, then the functor C ?D → ∆0 ?∆0 ≈ ∆1 is an example of
a correspondence. The corresponding functorM : Cop ×D → Set is the one withM(c, d) = {∗} for
all objects.

51.3. Example. Let F : C → D be a functor between categories. Then we get a functorM : Cop×D →
Set defined by

M(c, d) := HomD(F (c), D),

and thus an associated correspondence p : M → ∆1.
Similarly, let G : D → C be a functor between categories. Then we get a functorM′ : Cop×D →

Set defined by
M′(c, d) := HomC(c,G(d)),
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and thus an associated correspondence p′ : M ′ → ∆1.

51.4. Example. Suppose F : C � D :G is an adjoint pair of functors. If we form M and M′ as in
the previous example, we see that the adjunction gives a natural isomorphism M≈M′ of functors
Cop ×D → Set. The associated correspondences M → ∆1 and M ′ → ∆1 are isomorphic.

52. Cartesian and cocartesian morphisms

In the following, we fix an inner fibration p : M → S. We will often assume that S (and thus M)
is a quasicategory.

Consider an edge f : x→ y in M . We say that the edge represented by f : ∆1 →M is p-cartesian
if a lift exists in every diagram of the form

∆{n−1,n} // //

f

((
Λnn //

��

��

M

p

��

∆n //

>>

S

for all n ≥ 2.
There is a dual notion of a p-cocartesian edge, where Λn

n is replaced by Λn
0 , and we use the

leading edge of the simplex instead of the trailing edge.
We have already seen examples of this property.

• Let p : C → ∗ where C is a quasicategory By the Joyal extension theorem (28.2), we have
that an edge in C is p-cartesian if and only if it is p-cocartesian if and only if it is an
isomorphism.
• Let p : M → S be an inner fibration between quasicategories, and suppose f ∈M1 is an edge

such that p(f) is an isomorphism in S. By the Joyal lifting theorem (28.13), f is p-cartesian
if and only if it is p-cocartesian if and only if f is an isomorphism in M .
• If p : M → S is a right fibration, then every edge in M is p-cartesian. Likewise, if p is a left

fibration, then every edge in M is p-cocartesian.

Thus, Joyal’s theorem completely describe cartesian/cocartesian edges over an isomorphism in a
quasicategory.

We have an equivalent formulation: f is p-cartesian if and only if

M/f →M/y ×S/p(y)
S/pf

is a trivial fibration.

52.1. Cartesian edges and correspondence. Let p : M → ∆1 be a correspondence, with M
an ordinary category. We write C := p−1({0}), D := p−1({1}), and M : Cop ×D → Set for the
associated functor.

Suppose f : c→ d is an edge such that p(f) = 〈01〉.

52.2. Lemma. The edge f is p-catesian if and only if, for each u : x→ d with p(u) = 〈01〉, there
exists a unique v : x→ c such that fv = u.

In particular, if f is p-cartesian, then composition

f∗ : HomM (x, c)→ HomM (x, d)

is a bijection for all x ∈ obC. Equivalently, the map

HomC(x, c)→M(x, d), v 7→ fv

is a bijection, so M(−, d) : Cop → Set is represented by c.
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52.3. Box criterion for cartesian edges.

52.4. Proposition. [Lur09, 2.4.1.8] Let p : M → S be an inner fibration, and f ∈ M1 an edge.
Then f is p-cartesian if and only if a lift exists in every diagram of the form

∆1 × {n} // //

f

,,({1} ×∆n) ∪{1}×∂∆n (∆1 × ∂∆n) //

��

��

M

p

��

∆1 ×∆n //

55

S

for all n ≥ 1.

Proof. The if part is just like the proof of the box version of Joyal lifting. �

We reformulate this criterion. Consider the box power map

q := p�({1}⊂∆1) : Map(∆1,M)→ Map(∆1, S)×Map({1},S) Map({1},M).

Then the above proposition says that f is p-cartesian iff a lift exists in every diagram

∂∆n a //
��

��

Map(∆1,M)

q

��

∆n

b
//

44

Map(∆1, S)×Map({1},S) Map({1},M)

such that n ≥ 1 and a(n) = f ∈ Map(∆1,M)0.

52.5. Uniqueness of lifts to Cartesian edges. Let U ⊆ Map(∆1,M) be the full subsimplicial set
spanned by the vertices which represent p-cartesian edges. Likewise, let V ⊆ Map(∆1, S)×Map({1},S)

Map({1},M) denote the essential image of U under q, i.e., the full subsimplicial set spanned by the
vertices q(U0). Obviously, the map q restricts to a map q′ : U → V .

Note in particular that V0 is the subset of { (g, y) ∈ S1 ×M0 | g1 = p(y) } such that there exists
a Cartesian edge f ∈M1 with f1 = y and p(f) = g, and the preimage of (g, y) under q′ : U → V is
the set of all choices of lifts. The following in particular asserts a kind of uniqueness for choices of
lifts.

52.6. Proposition. The map q′ : U → V is a trivial fibration.

Proof. Consider

∂∆n a //
��

��

U // //

q|U
��

Map(∆1,M)

q

��

∆n // V // // Map(∆1, S)×Map({1},S) Map({1},M)

If n ≥ 1, then a lift s : ∆n → Map(∆1,M) exists by the previous proposition, since a(n) ∈ U0 ⊆
Map(∆1,M)0 represents a p-cartesian edge. Because (∂∆n)0 = (∆n)0 when n ≥ 1, we see that s
maps into the full subcomplex U .

If n = 0, this amounts to U0 → V0 being surjective, which holds by definition. �
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52.7. Cartesian fibration. A cartesian fibration is a map p : M → S which is an inner fibration,
and is such that for all (g, y) ∈ S1 ×M0 with g1 = p(y), there exists a p-cartesian edge f with
p(f) = g and f1 = y.

52.8. Example. Every left or right fibration is a cartesian fibration, since all edges are cartesian.

By the above, we see that an inner fibration p : M → S is a cartesian fibration if and only if
V = Map(∆1, S)×Map({1},S) Map({1},M).

52.9. Cartesian correspondences. Given a map p : M → S, for any element a ∈ Sk write

Ma := Map/S(∆k,M) = Map/S(a, p).

Note that if a = bf for some simplicial operator f : [k]→ [l], we obtain an induced restriction map

f∗ : Mb →Ma.

Given a correspondence p : M → ∆1, we obtain

C = M〈0〉
〈0〉∗←−−M〈01〉

〈1〉∗−−→M〈1〉 = D.

Note that these are all quasicategories. The objects of M〈01〉 are precisely the edges in M lying over
〈01〉.

52.10. Proposition. Let p : M → S be a cartesian fibration, and let M cart
〈01〉 ⊆ M〈01〉 be the full

subcategory spanned by elements corresponding to cartesian edges. Then M cart
〈01〉 →M〈1〉 is a trivial

fibration.

Proof. Every square in

M cart
〈01〉

//

��

��

U��

i
��

M〈01〉

��

// Map(∆1,M)

q

��

M〈1〉 //

��

Map(∆1,∆1)×Map({1},∆1) Map({1},M)

��

// Map({1},M)

��

{id∆1} // Map(∆1,∆1) // Map({1},∆1)

is a pullback. The result follows because qi = q′ is a trivial fibration. �

More generally, given an inner fibration p : M → S and an element a ∈ Sk, the objects of the
quasicategory Ma correspond to k-dimensional elements b ∈Mk such that p(b) = a. Let M cart

a ⊆Ma

denote the full subcategory spanned by objects corresponding to b ∈Mk such that all edges of b are
p-cartesian.

52.11. Proposition. Let p : M → S be an inner fibration, and f ∈M1 an edge. Consider

∆k × {n} // //

f

,,(Λkj ×∆n) ∪Λkj×∂∆n (∆k × ∂∆n) //

��

��

M

p

��

∆1 ×∆n //

55

S
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where Λk
j ⊂ ∆k is a right horn inclusion, and f represents a p-cartesian edge. Then a lift exists

whenever n, k ≥ 1, and also when k ≥ 2, n = 0.

Proof. This should also be like the box version of Joyal lifting. Note that if k = 0, we recover the
definition of p-cartesian edge. �

This admits a reformulation: if f is p-cartesian, then if 0 < j ≤ k and a(n) = f is p-cartesian
there is a lift in

∂∆n a //
��

��

Map(∆k,M)

q

��

∆n

b
//

55

Map(∆k, S)×Map(Λkj ,S) Map(Λkj ,M)

when k ≥ 1 and n ≥ 1, or for all n ≥ 0 if k ≥ 2.

52.12. Cartesian fibrations and right fibrations.

52.13. Proposition. [Lur09, 2.4.2.4] A map p : M → S is a right fibration iff it is a cartesian
fibration whose fibers are Kan complexes.

Proof. We have already seen that a right fibration is a cartesian fibration, and has Kan complexes
as fibers.

Now suppose p is cartesian fibration with Kan complex fibers. Let f : x→ y be an edge in M .
Since p is cartesian, there exists a p-cartesian edgee f ′ : x′ → y over p(f). Since p is cartesian
fibration and f ′ a cartesian edge, there exists a ∈M2 with a02 = f and a12 = f ′ and p(a) = (p(f))001.
Thus g := a01 is an edge in the fiber over (p(f))0, so is an isomorphism in that fiber. �

52.14. Mapping space criterion for cartesian edges.

52.15. Proposition. [Lur09, 2.4.4.3] Let p : C → D be an inner fibration between quasicategories,
and f : x→ y a morphism in C. The following are equivalent.

(1) f is p-cartesian.
(2) For every c ∈ C0, the diagram

mapC(c, x)
f∗

//

��

mapC(c, y)

��

mapD(p(c), p(x))
p(f)∗

// mapD(p(c), p(y))

is a homotopy pullback.

53. Limits and colimits as functors

Suppose J and C are categories. We say that C has all J-colimits if every functor F : J → C
has a colimit in J . It is a standard observation that if F is such a functor, then we can assemble a
functor

colimJ : Fun(J,C)→ C.

In fact, we can regard this functor as a composite of functors

Fun(J,C)
s−→ Fun(JB, C)

eval. at v−−−−−−→ C,

where s is some section of the restriction functor Fun(JB, C) → Fun(J,C) which takes values in
colimit cones.
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Even when C does not have all J-colimits, we can assert the following. Consider the diagram

Funcolim cone(JB, C) // //

p

��

Fun(JB, C)

��

Fun∃ colim(J,C) // // Fun(J,C)

in which the objects on the left are the evident full subcategories of the corresponding objects on
the right, i.e., the ones consisting of colimit cones, and of functors which admit colimits. Then p
is an equivalence of categories, and in fact is a trivial fibration. Therefore there is a contractible
groupoid of sections of p, and any section s gives rise to a colimit functor

Fun∃ colim(J,C)
s−→ Funcolim cone(JB, C)

eval. at v−−−−−−→ C.

We want to prove the analogous statement for quasicategories. Thus, given a quasicategory C
and a simplicial set S, let Funcolim cone(SB, C) ⊆ Fun(SB, C) denote the full subcategory spanned by
SB → C which are colimit cones, and let Fun∃ colim(S,C) ⊆ Fun(S,C) denote the full subcategory
spanned by S → C for which a colimit exists.

53.1. Proposition. The induced projection q : Funcolim cone(SB, C)→ Fun∃ colim(S,C) is a trivial
fibration.

We refer to this as the functoriality of colimits. We will prove it below.
The strategy is to show (1) that q is an isofibration, and (2) that q is fully faithful and essentially

surjective. Then (40.1) applies to show that q is a categorical equivalence, and so a trivial fibration
by (41.1).

Parts of this are already clear. For instance, q is certainly an inner fibration, since
p : Fun(SB, C)→ Fun(S,C) is one, and q is the restriction of p to full subcategories. Likewise, q is
manifestly essentially surjective.

53.2. Conical maps. In what follows, C will be a quasicategory and S a simplicial set, and we
write

V = V (S) := Fun(SB, C), U = U(S) := Fun(S,C).

Let p : V → U be the evident restriction map.

Let’s say that a morphism α̂ : f̂ → ĝ in V is conical if its evalutation α̂(v) : f̂(v)→ ĝ(v) at the
cone point of SB is an isomorphism in C.

“Conical” here is really equivalent to “p-Cartesian morphism” where p : Fun(SB, C)→
Fun(S,C). This whole section needs to have that observation baked in.

What follows are two propositions involving conical maps. We will prove them soon. The first
says that any morphism in U can be lifted to a conical morphism in V with prescribed target.

53.3. Proposition. Fix a quasicategory C and a simplicial set S. Suppose given

• a functor ĝ : SB → C, and
• a natural transformation α : f ⇒ g of functors S → C such that g = ĝ|S.

Then there exists a conical morphism α̂ : f̂ → ĝ in V such that α̂|S = α.

{1}
ĝ
//

��

��

Fun(SB, C) = V

��

∆1
α
//

α̂

conical

88

Fun(S,C) = U

The second says that morphisms in V can be “transported” along conical maps.
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53.4. Proposition. Fix a quasicategory C, simplicial set S, and a map α̂ : f̂ → ĝ in V , and let

α : f → g denote α̂|S. For any object ĥ of V , consider the square

mapV (ĥ, f̂)
α̂◦ //

��

mapV (ĥ, ĝ)

��

mapU (h, f)
α◦
// mapU (h, g)

where h = ĥ|S, and the horizontal maps are induced by postcomposition with α̂ and α respectively.
If α̂ is conical, then the above square is a homotopy pullback square.

We will explain and prove these two propositions soon. For the time being, you should con-
vince yourself that if C is the nerve of an ordinary category, then both propositions are entirely
straightforward to prove.

53.5. Proof of functoriality of colimits, using properties of conical maps. Recall that

f̂ : SB → C extending f : S → C is a colimit cone if and only if it corresponds to an initial object of
Cf/. Using the categorical equivalences

F (f)→ Cf/ ← Cf/

where F (f) ⊆ V is the fiber of p : V → U over f , we see that it is equivalent to say that f̂ is initial
in F (f).

The following gives a criterion for being a colimit cone in terms of the whole functor category
V = Fun(SB, C), rather than just in terms of the fiber over some f .

53.6. Proposition. A functor f̂ : SB → C is a colimit cone if and only if

p′ : mapV (f̂ , ĝ)→ mapU (f, g)

is a weak equivalence for every ĝ : SB → C, g = ĝ|S = p(ĝ).

Proof. Since p : V → U is a categorical fibration, the induced maps p′ on mapping spaces are Kan
fibrations. Thus, p′ is a weak equivalence if and only if its fibers are contractible.

(⇐=) Suppose every p′ is a weak equivalence. Then in particular p′ is a weak equivalence for
any ĝ : SB → C such that ĝ|S = f . In this case, the fiber of p′ over 1f ∈ mapU (f, f) is precisely

the mapping space mapF (f)(f̂ , ĝ) in the fiber quasicategory F (f) ⊆ Fun(SB, C), and this fiber is

contractible. Therefore, f̂ is an initial object of F (f), and therefore f̂ is initial in Cf/ by the above

discussion. We have shown that f̂ is a colimit cone.

(=⇒) Suppose f̂ is a colimit cone. Therefore for f̂ ′ such that f̂ ′|S = f the fiber of mapV (f̂ , f̂ ′)→
mapU (f, f) over 1f is contractible. We need to show that the fiber of p′ : mapV (f̂ , ĝ)→ mapU (f, g)
over a general α ∈ mapU (f, g) is contractible.

Given such an α, choose a conical map α̂ : f̂ ′ → ĝ with α̂|S = α (53.3), and consider the resulting
square

mapV (f̂ , f̂ ′)
α̂◦ //

p′
��

mapV (f̂ , ĝ)

p′′
��

mapU (f, f)
α◦
// mapU (f, g)

1f
� // α

Since α̂ is conical, the square is a homotopy pullback square (53.4). Therefore, the fiber of p′′ over

α is weakly equivalent to the fiber of p′ over 1f , which is contractible since f̂ is a colimit cone. �
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Proof of (53.1). First we show that q : Funcolim cone(SB, C) → Fun∃ colim(S,C) is an isofibration;
we have already observed that it is an inner fibration. Given an isomorphism α : f → g between

objects in Fun∃ colim(S,C) ⊆ U and a choice of colimit cone ĝ over g, chose a conical lift α̂ : f̂ → ĝ.
The arrow α̂ : SB ×∆1 → C restricts to an isomorphism at each vertex of SB, and so is a natural

isomorphism by the objectwise criterion for natural isomorphisms. Thus f̂ is also a colimit cone by
(53.6), so α̂ is an isomorphism in Funcolim cone(SB, C).

We have already observed that q is essentially surjective (in fact, it is surjective on vertices).
That q is fully faithful is immediate from (53.6). �

53.7. Proof of properties of conical maps.

Proof of (53.3). Recall the situation: we are given a natural transformation α : f ⇒ g of functors
S → C, and a lift ĝ : SB → C of the target to the cone, and we want to find a conical lift of α:

{1}
ĝ
//

��

��

Fun(SB, C)

��

∆1
α
//

α̂

conical

99

Fun(S,C)

We make use of a natural map

κ : SB ×K → (S ×K)B.

Note that this map sends {v} ×K to the cone point {v}. Consider the composite

λ : (S ×∆1) ∪S×{1} (SB × {1})→ SB ×∆1 κ−→ (S ×∆1)B

where the first map is the box-product (S ⊂ SB)�({1} ⊂ ∆1). By inspection, we see that the
composite map can be identified with the box-join

(S × {1} ⊆ S ×∆1) � (∅ ⊆ ∆0).

Since RHorn�Cell ⊆ RHorn (46.4) we have that (S × {1} ⊆ S ×∆1) is right anodyne. Likewise,
since RHorn�Cell ⊆ InnHorn (26.12), we conclude that λ is inner anodyne. Therefore, an extension
α exists in

(S ×∆1) ∪S×{1} (SB × {1})
(α,ĝ)

//

��
��

C

SB ×∆1

κ ��

(S ×∆1)B

α

77

We set α̃ := α ◦ κ. It is clear that α̃ is conical: α̂(v) is the identity map of α(v). �

For the proof of (53.4), let’s first note that, as stated, it actually doesn’t make sense! This
proposition asserts that for conical α̂, the diagram

mapV (ĥ, f̂)
α̂◦ //

��

mapV (ĥ, ĝ)

��

mapU (h, f)
α◦
// mapU (h, g)

is a homotopy pullback. However, the horizontal maps (“postcomposition” with α and α̂) are only
defined as a homotopy class of maps in hKan. For instance, “α◦” is the homotopy class defined by
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the zig-zag around the left and top of the diagram

mapU (h, f, g)α //

∼
��

mapU (h, f, g)

∼
��

comp
// mapU (h, g)

mapU (h, f)× {α} // mapU (h, f)×map(f, g)

where the left-hand square is a pullback. The correct statement of (53.4) is that in

mapV (ĥ, f̂)

��

mapV (ĥ, f̂ , ĝ)α̂
∼oo

��

// mapV (ĥ, ĝ)

��

mapU (h, f) mapU (h, f, g)α∼
oo // mapU (h, g)

the right-hand square is a homotopy pullback.
We can refine this a little further. Fix a map e : ∆{1,2} → C. For a simplicial set S, let

K ⊆ SB ×∆2 be a subcomplex containing the edge {v} ×∆{1,2}, and define Map(K,C)e by the
pullback square

Map(K,C)e // //

��

Map(K,C)

��

{e} // // Map({v} ×∆{1,2}, C)

To prove our proposition, it suffices to show that for every isomorphism e in C, the map

Map(SB ×∆2, C)e → Map((SB × Λ2
2) ∪S×Λ2

2
(S ×∆2), C)e

is a trivial fibration. Equivalently, we must produce a lift in each diagram of the form

(SB × ∂∆m) ∪S×∂∆m (S ×∆m) //

��

��

Map(∆2, C)

��

{v} ×∆{1,2} // //

--

SB ×∆m //

44

Map(Λ2
2, C) // Map(∆{1,2}, C)

{e}
OO

OO

We reduce to producing a lift in

{n} ×∆{1,2} // //

e

))
(∆n × Λ2

2) ∪∂∆n×Λ2
2

(∂∆n ×∆2) //

��

��

C

∆n ×∆2

55

where e is an isomorphism in C. This is precisely the box-version of Joyal extension.

54. More stuff

I’m not sure what this is needed for.
Recall that the join constructions K ?− and − ?K are colimit preserving functors sSet→ sSetK/

to the category of simplicial sets under K. In particular, viewed as functors sSet→ sSet to plain
simplicial sets, they preserve pushouts, and transfinite compositions.



STUFF ABOUT QUASICATEGORIES 148

54.1. Proposition. If A is a class of maps in sSet, then K ?A ⊆ K ?A and A ? K ⊆ A ? K.

Proof. Check that K ?− : sSet→ sSet preserves isomorphisms, transfinite composition, pushouts,
and retracts. �

54.2. Remark. Given f : X → Y and K, we have a factorization of K ? f as

K ?X → (K ?X)q∅?X (∅ ? Y )
(∅⊆K)�f−−−−−−→ K ? Y.

54.3. Proposition. We have ∆0 ? Cell ⊆ LHorn and Cell ?∆0 ⊆ RHorn.

54.4. Proposition. Let C be a quasicategory and x an object of C. Then x is an initial object iff
{x} → C is left anodyne, and x is a terminal object iff {x} → C is right anodyne.

Proof. (=⇒) Let x be terminal, and consider j : {x} → C. Since jB is right anodyne, it suffices to
show that j is a retract of jB. To do this, we construct a map r fitting into

{x} // //

j

��

id

))
{x}B

jB

��

// {x}

j

��

C // //

id

55CB
r // C

This amounts to solving the lifting problem

C ∪ {x}B
(id,1x)

//

��

��

C

CB

::

⇐⇒
{x} 1x //
��

��

Cx/

��

C

==

C

Since x is terminal, Cx/ → C is a trivial fibration (??), so a lift exists.
(⇐=) Suppose j : {x} → C is right anodyne. Since C/x → C is a right fibration, a lift exists in

{x} 1x //
��

��

Cx/

��

C

==

C

which is equivalent to x being terminal. �

54.5. Corollary. Let p : D → C be a right fibration between quasicategories, and let x be an object
of C. Then the induced map

Map(C/x, D)→ Map({1x}, D)×Map({1x},C) Map(C/x, C)

is a trivial fibration. In particular, the map

MapC(C/x, D)→ MapC({1x}, D)

induced by restriction over the projection map (C/x → C) ∈ Map(C/x, C) is a trivial fibration
between Kan complexes.
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55. Straightening and unstraightening

Let D∆n : C(∆n)op → sSet be the simplicialy enriched functor defined as follows.

• For each object x ∈ {0, . . . , n}, set

D∆n(x) := NP`(x),

the nerve of the poset

P`(x) :=
{
S | {x} ⊆ S ⊆ [x, n]}

of subsets of the interval [x, n] = {x, . . . , n} which contain the left endpoint.
• The structure of enriched functor is induced by the union operation on subsets:

(T, S) 7→ T ∪ S : P(x, y)× P`(y)→ P`(x).

• For each map δ : ∆m → ∆n, we define a natural transformation

Dδ : D∆m → D∆n ◦ C(δ)op

of simplicially enriched functors C(∆m)op → sSet, which at each object x of C(∆m)op is a
map D∆m(x)→ D∆n(δx) induced by the map of posets

S 7→ δ(S) : P`(x)→ P`(δx).

55.1. Remark. The functor D∆n : C(∆n)op → sSet is isomorphic to the representable functor
MapC((∆n)B)(−, v), where v represents the cone point of (∆n)B. Likewise, the natural transformation

Dδ : D∆m → D∆n ◦ C(δ)op coincides with the transformation

MapC((∆m)B)(−, v)
C(δB)−−−→ MapC((∆n)B)(δ(−), v)

induced by δB : (∆m)B → (∆n)B.

Fix a simplical set S, and consider a simplicially enriched functor F : C(S)op → sSet. We define
a morphism

UnS(F ) : X → S

of simplicial sets, called the unstraightening of F over S, as follows.

• An n-dimensional element of UnS F is a pair

f : ∆n → S, t : D∆n → F ◦ C(f),

where f is a map of simplicial sets, and t is a map of simplicially enriched functors
C(∆n)op → sSet.
• To a map δ : ∆m → ∆n we have an induced map (UnS F )n → (UnS F )m, which sends an
n-dimensional element (f, t) to the pair

∆m δ−→ ∆n f−→ S, D∆m
Dδ−−→ D∆n ◦ C(δ)op t◦C(δ)op

−−−−−→ F ◦ C(f) ◦ C(δ)op.

56. Cartesian fibrations

Let p : C → D a functor between ordinary categories. A morphism f : x′ → x in C is called
p-Cartesian if for every object c of C the evident commutative square

HomC(c, x′)
f◦

//

p

��

HomC(c, x)

p

��

HomD(p(c), p(x′))
p(f)◦

// HomD(p(c), p(x))

is a pullback square of sets.
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Given an object x ∈ obC and a morphism g : y′ → p(x) in D, a Cartesian lift of g at x is a
p-Cartesian morphism f : x′ → x such that p(f) = g.

We say that p : C → D is a Cartesian fibration of categories if every pair (x ∈ obC, g : y′ →
p(x) ∈ D) admits a Cartesian lift.

Here are some observations, whose verification we leave to the reader. Fix a functor p : C → D.

• Every isomorphism in C is p-Cartesian.
• Every Cartesian lift of an isomorphism in D is itself an isomorphism.
• If f : x′ → x is p-Cartesian, then for any g : x′′ → x′ in C, we have that g is p-Cartesian if

and only if gf is p-Cartesian.
• Any two Cartesian lifts of g at x are “canonically isomorphic”.

Explicitly, fix g : y′ → y in D and an object x in C such that y = p(x). If f1 : x′1 → x and
f2 : x′2 → x are any two Cartesian lifts of g, then there exists a unique map u : x′1 → x′2 such
that p(u) = 1y′ and f2u = f1; the map u is necessarily an isomorphism.
• The map p is a right fibration if and only if it is a Cartesian fibration and every morphism

in C is p-Cartesian.

Now suppose that p : C → D is a Cartesian fibration. For an object y of D, we write Cy := p−1(y)
for the fiber of C over y.

• The map p is an isofibration.
• For each morphism g : y′ → y in D and object x in C with p(x) = y, fix a choice of Cartesian

lift g̃x of g at x. Using this data, we obtain functors

g! : Cy → C ′y

so that for morphism α : x1 → x2 in Cy, the map g!(α) in Cy′ is the unique one fitting into

x′1
g̃x1 //

g!(α)
��

x1

α

��
x′2 g̃x2

// x2

The functor g! depends on the choices of Cartesian lifts of g. Any two set of choices of lifts
give rise to isomorphic functors.

• For each pair of morphisms y′′
h−→ y′

g−→ y, we obtain a natural isomorphism of functors

γ : h! ◦ g! ∼=⇒ (hg)! : Cy → Cy′′ .

This natural transformation is given by the unique maps γx in Cy′′ fitting into

x′′
h̃x′ //

γx
��

x′

g̃x

��
x′′′

(̃gh)x

// x

Similarly, there is a natural isomorphism id
∼
=⇒ (1y)! : Cy → Cy. The data of the functors g!

together with these natural isomorphisms define a pseudofunctor Dop → Cat, which on
objects sends y 7→ Cy.
• We can produce an actual functor F : Dop → Cat with F (y) equivalent to Cy as follows.

Given functors p′ : C ′ → D and p : C → D, let FunD(C ′, C) denote the category of fiberwise
functors and natural transformations; i.e., the fiber of p◦ : Fun(C ′, C)→ Fun(C ′, D) over q.
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Let Fun+
D(C ′, C) ⊆ FunD(C ′, C) denote the full subcategory of functors f : C ′ → C which

take p′-Cartesian morphisms to p-Cartesian morphims.
We obtain a functor F : Dop → Cat, given on objects by

F (y) := Fun+
D(D/y, C).

One can show that restriction to {1y} ⊆ D/y defines an equivalence of categories F (y)→ Cy.
• Given D, there is a 2-category FD, whose objects are Cartesian fibrations p : C → D; for any

two objects p : C → D and p′ : C ′ → D we take Fun+
D(C ′, C) as the category of morphisms

from p′ to p. One can show that FD is 2-equivalent to the 2-category Fun(Dop,Cat).

Part 8. Appendices

57. Appendix: Generalized horns

A generalized horn33 is a subcomplex ΛnS ⊂ ∆n of the standard n-simplex, where S ⊆ [n] and

(ΛnS)k := { f : [k]→ [n] | S 6⊆ f([k]) }.
In other words, a generalized horn is a union of some codimension 1 faces of the n-simplex:

ΛnS =
⋃
s∈S

∆[n]rs.

In particular,
Λn[n] = ∂∆n, Λn[n]rj = Λnj , Λn{j} = ∆[n]rj , Λn∅ = ∅.

In general S ⊆ T implies ΛnS ⊆ ΛnT .

57.1. Proposition (Joyal [Joy08a, Prop. 2.12]). Let S ( [n] be a proper subset.

(1) (ΛnS ⊂ ∆n) ∈ Horn if S 6= ∅.

(2) (ΛnS ⊂ ∆n) ∈ LHorn if n ∈ S.

(3) (ΛnS ⊂ ∆n) ∈ RHorn if 0 ∈ S.

(4) (Λn
S ⊂ ∆n) ∈ InnHorn if S is not an “interval”; i.e., if there exist a < b < c with a, c ∈ S

and b /∈ S.

Proof. We start with an observation. Consider S ( [n] and t ∈ [n] r S. Observe the diagram

∆[n]rt ∩ ΛnS // //

��

��

∆[n]rt
��

��

ΛnS // // ΛnS∪t // // ∆n

in which the square is a pushout, and the top arrow is isomorphic to the generalized horn Λ
[n]rt
S ⊂

∆[n]rt. Thus, (ΛnS ⊂ ∆n) is contained in the weak saturation of any set contaning the two inclusions

Λ
[n]rt
S ⊂ ∆[n]rt and ΛnS∪t ⊂ ∆n.

Each of the statements of the proposition is proved by an evident induction on the size of [n]r S,
using the above observation. I’ll do case (4), as the other cases are similar. If S ⊂ [n] is not an
interval, there exists some s < u < s′ with s, s′ ∈ S and u /∈ S. If [n] r S = {u} then we already
have an inner horn. If not, then choose t ∈ [n] r (S ∪ {u}), in which case S ∪ t is not an interval in

[n], and S is not an interval in [n] r t. Therefore both Λ
[n]rt
S ⊂ ∆[n]rt and Λn

S∪t ⊂ ∆n are inner
anodyne by the inductive hypothesis. The proofs of the other cases are similar. �

33This notion is from [Joy08a, §2.2.1]. However, I have changed the sense of the notation: our ΛnS is Joyal’s Λ[n]rS .
I find my notation easier to follow, but note that it does conflict with the standard notation for horns. Maybe I should
use something like Λn,S?
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57.2. Proposition (Joyal [Joy08a, Prop. 2.13]). For all n ≥ 2, we have that (In ⊂ ∆n) ∈ InnHorn.

Proof. We can factor the inclusion spine inclusion as hn = gnfn:

In
fn−→ ∆{1,...,n} ∪ In gn−→ ∆n.

We show by induction on n that fn, gn, hn ∈ InnHorn, noting that the case n = 2 is immediate.
To show that fn ∈ InnHorn, consider the pushout square

I{1,...,n} // //
��

��

∆{1,...,n}��

��

In //
fn

// ∆{1,...,n} ∪ In

in which the top arrow is isomorphic to hn−1, which is in InnHorn by induction.
To show that gn ∈ InnHorn, consider the diagram

∆{1,...,n−1} ∪ I{0...,n−1} // gn−1
//

��

��

∆{0,...,n−1}
��

��

∆{1,...,n} ∪ In // // ∆{1,...,n} ∪∆{0,...,n−1} // // ∆n

in which the square is a pushout, the top horizontal arrow is isomorphic to gn−1, an element of
InnHorn by induction, and the bottom right horizontal arrow is equal to Λn{0,n} ⊂ ∆n, which is in

InnHorn by (57.1)(4).
�

58. Appendix: Box product lemmas

Here is where I’l prove various statements mentioned in the text.

• LHorn�Cell ⊆ LHorn (46.4), proved in (58.1) below.
• RHorn�Cell ⊆ RHorn (46.4), proved in (58.1) below.
• Horn�Cell ⊆ Horn, is a consequence of the above, since Horn = LHorn ∪ RHorn and

LHorn ∪ RHorn ⊆ Horn.
• InnHorn�Cell ⊆ InnHorn (16.9), proved in (58.3) below.

58.1. Left and right horns. We prove the case of LHorn�Cell ⊆ LHorn here. Given this
RHorn�Cell ⊆ RHorn follows since op: sSet→ sSet carries LHorn to RHorn and preserves Cell.

Joyal [Joy08a, 2.25]34 observes that (Λn
k ⊂ ∆n) is a retract of (Λn

k ⊂ ∆n)�({0} ⊂ ∆1) when
0 ≤ k < n. The retraction is

∆n s−→ ∆n ×∆1 r−→ ∆n

defined by s(x) = (x, 1) and

r(x, 0) =

{
x if x ≤ k,

k if x ≥ k,
r(x, 1) = x.

Note that r(∆[n]rj ×∆1) = ∆[n]rj if j 6= k, and r(∆n × {0}) = ∆{0,...,k} ⊆ ∆[n]r(k+1), so this gives
the desired retraction.

The existence of the retraction reduces showing LHorn�Cell ⊆ LHorn to proving

({0} ⊂ ∆1)�Cell ⊆ LHorn,

since (Λnk ⊂ ∆n) ∈ Cell and thus (Λnk ⊂ ∆n)�Cell ⊆ Cell.

34Lurie [Lur09, 2.1.2.6] states this incorrectly.
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58.2. Lemma. We have that ({0} ⊂ ∆1)�Cell ⊆ LHorn.

Proof. . . . Let K = ({0} ×∆n) ∪ (∆1 × ∂∆n), so that ({0} ⊂ ∆1)�(∂∆n ⊂ ∆n) is the inclusion
K → ∆1 ×∆n. We will show that we can build ∆1 ×∆n from K by an explicit sequence of steps,
where in each case we attach an (n+ 1)-sequence along a left horn.

For each 0 ≤ a ≤ n let τa be the (n+ 1)-dimensional element of ∆1 ×∆n defined by

τa = 〈(0, 0), . . . , (0, a), (1, a), . . . , (1, n)〉.
We obtain an ascending filtration of ∆1 ×∆n by starting with K and attaching simplices in the
following order:

τn, τn−1, . . . , τ1, τ0.

The τs range through all non-degenerate (n+ 1)-dimensional elements of ∆1 ×∆n, so K ∪
⋃
τa =

∆1 × ∆n. (Here I am using the same notation for elements τa ∈ (∆1 × ∆n)n+1 and for the
corresponding subcomplex of ∆1 ×∆n which is isomorphic to ∆n+1.)

The claim is that each attachment is along a specified horn inclusion. More precisely, for a ∈ [n]
the simplex τa is attached to K ∪

⋃
k>a τk along the horn at the vertex (0, a) in τa, i.e., via a

Λn+1
a ⊂ ∆n horn inclusion. Note that if when a > 0 this is an inner horn, while when a = 0

this is the inclusion Λn+1
0 ⊂ ∆n; in either case, it is a left horn. Given the claim, it follows that

({0} ⊂ ∆1)�(∂∆n ⊂ ∆n) ∈ LHorn as desired.
The proof of the claim amounts to the following list of elementary observations about τa:

• Every codimension-one face is contained in ∆1× ∂∆n except: the face opposite vertex (0, a),
and the face opposite vertex (1, a).
• The face opposite vertex (1, a) is contained in {0}×∆n if a = n, or is a face of τa+1 if a < n.
• The face opposite vertex (0, a) is not contained in ∆1 × ∂∆n, nor in {0} ×∆n. Nor is it

contained in any τi with i > a (beacuse the vertex (1, a) is in this face but not in τi with
i > a).

Taken together these show that τa ∩ (K ∪
⋃
k>a τk) is the ath horn in the (n+ 1)-simplex τa.

�

58.3. Inner horns. Here is an argument for the key case for inner horns.

Consider ∆n s−→ ∆2 ×∆n r−→ ∆n, the unique maps which are given on vertices by

s(y) =


(0, y) if y < j,

(1, y) if y = j,

(2, y) if y > j,

r(x, y) =


y if x = 0 and y < j,

y if x = 2 and y > j,

j otherwise.

These explicitly exhibit (Λnj ⊂ ∆n) as a retract of (Λ2
1 ⊂ ∆2)�(Λnj ⊂ ∆n), so

InnHorn ⊆ {Λ2
1 ⊂ ∆2}�Cell.

We have (17.5) that Cell�Cell ⊆ Cell, so the above implies that InnHorn�Cell ⊆ {Λ2
1 ⊂ ∆2}�Cell.

Thus the assertions “InnHorn�Cell ⊆ InnHorn” and “{Λ2
0 ⊂ ∆2}�Cell ⊆ InnHorn” are equivalent.

Thus both assertions follow from the following.

58.4. Lemma. For all n ≥ 0 we have that (Λ2
1 ⊂ ∆2)�(∂∆n ⊂ ∆n) ∈ InnHorn.

Proof. [Lur09, 2.3.2.1].
For each 0 ≤ a ≤ b < n, let σab be the (n+ 1)-simplex of ∆2 ×∆n defined by

σab = 〈(0, 0), . . . , (0, a), (1, a), . . . , (1, b), (2, b+ 1), . . . , (2, n)〉.
For each 0 ≤ a ≤ b ≤ n, let τab be the (n+ 2)-simplex of ∆2 ×∆n defined by

τab = 〈(0, 0), . . . , (0, a), (1, a), . . . , (1, b), (2, b), . . . , (2, n)〉.
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The set {τab} consists of all the non-degenerate (n+ 2)-dimensional elements. Note that σab is a
face of τab and of τa,b+1, but not a face of any other τ .

We attach simplices to K := (Λ2
1 ×∆n) ∪ (∆2 × ∂∆n) in the following order:

σ00, σ01, σ11, σ02, σ12, σ22, . . . σ0,n−1, . . . , σn−1,n−1,

followed by
τ00, τ01, τ11, τ02, τ12, τ22, . . . τ0,n, . . . , τn,n.

The τs range through all the non-degenerate (n + 2)-dimensional elements of ∆2 ×∆n, so that
K ∪

⋃
σa,b ∪

⋃
τa,b = ∆2 ×∆n.

The claim is that each attachment is along an inner horn inclusion. More precisely, each σab gets
attached along the horn at the vertex (1, a) in σab, i.e., via a Λn+1

a+1 ⊂ ∆n+1 horn inclusion, which is
always inner since a ≤ b < n. Likewise, each τab gets attached along the horn at vertex (1, a) in τab,
i.e., via a Λn+2

a+1 ⊂ ∆n+2 horn inclusion, which is always inner since a ≤ b ≤ n.
The proof of the claim amounts to the following lists of elementary observations.
For σa,b:

• Every codimension-one face is contained in ∆2×∂∆n, except the following: the face opposite
vertex (0, a), and the face opposite vertex (1, a).
• The face opposite vertex (0, a) is either contained in Λ2

0 ×∆n if a = 0, or a face of σa−1,b if
a > 0.
• The face of σa,b opposite vertex (1, a) is not contained in ∆2 × ∂∆n, nor in Λ2

0 ×∆n, nor in
any σi,b with i < a (because of the vertex (0, a)), nor in any σi,j with i ≤ j < b (because of
the vertex (1, b) if a < b, or the vertex (0, a) if a = b).

For τa,b when a < b:

• Every codimension-one face is contained in ∆2×∂∆n except the following: the face opposite
vertex (0, a), the face opposite vertex (1, a), the face opposite vertex (1, b), and the face
opposite vertex (2, b).
• The face opposite vertex (2, b) is σa,b, while the face opposite vertex (1, b) is σa,b−1.
• The face opposite vertex (0, a) is either contained in Λ2

1 ×∆n if a = 0, or is a face of τa−1,b

if a > 0.
• The face opposite vertex (1, a) is not contained in ∆2× ∂∆n, nor in Λ2

1×∆n, nor in any σi,j
(because of the vertices (1, b) and (2, b)), nor in any τi,b with i < b (because of the vertex
(0, a)), nor in any τi,j with i ≤ j < b (because of the vertex (1, b)).

For τa,b when a = b:

• Every codimension-one face is contained in ∆2×∂∆n except the following: the face opposite
vertex (0, a), the face opposite vertex (1, a) = (1, b), and the face opposite vertex (2, b).
• The face opposite vertex (2, b) is σa,b.
• The face opposite vertex (0, a) is contained in Λ2

1×∆n if a = 0, or is a face of τa−1,b if a > 0.
• The face opposite vertex (1, a) = (1, b) is not contained in ∆2× ∂∆n, nor in Λ2

1×∆n, nor in
any σi,j (because of the vertices (0, a) and (2, b)), nor in any τi,b with i < b (because of the
vertex (0, a)), nor in any τi,j with i ≤ j < b (because of the vertex (0, a)).

�

58.5. A pushout-product version of Joyal lifting. We now give a proof of (30.3): we will
prove the case of (i, j) = (0, 0), i.e., given p : C → D an inner fibration of quasicategories, n ≥ 1,



STUFF ABOUT QUASICATEGORIES 155

and

∆1 × {0} // //

f

,,({0} ×∆n) ∪{0}×∂∆n (∆1 × ∂∆n) //

��

��

C

p

��

∆1 ×∆n //

55

D

such that f represents an isomorphism in C, we will construct a lift. (Note that if n = 0 such a lift
does not generally exist.)

We refer to the proof of (58.2), where we observed that we can build ∆1 × ∆n from K =
({0} ×∆n) ∪ (∆1 × ∂∆n) by successively attaching a sequence τn, . . . , τ0 of (n+ 1)-simplices along
horns; in particular, τa is attached to K∪

⋃
k>a τk along a horn inclusion isomorphic to Λn+1

a ⊂ ∆n+1.
Given this, we thus construct the desired lift by inductively choosing a lift defined on each τa

relative to the given lift on its Λn+1
a -horn. When a > 0 such a lift exists because p is an inner

fibration and τa is attached along an inner horn, while when a = 0 a lift exists by Joyal lifting
(28.13), as ∆1 × {0} is the leading edge of τ0.
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