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Note: this is a major revision of the previous version of these notes. I’ll leave a copy of the
previous version (last modified in June 2021) online for a while, but this version is much better.

Note: this is a draft, which can change daily, though it also sometimes goes months without any
change. I am in the process of adding additional material on (co)Cartesian fibrations.

1. Introduction to ∞-categories

I’ll give a brief discussion to motivate the notion of ∞-categories. W 19 Jan

1.1. Groupoids. Modern mathematics is based on sets. The most familiar way of constructing new
sets is as sets solutions to equations. For instance, given a commutative ring R, we can consider the
set X(R) of tuples (x, y, z) ∈ R3 which satisfy the equation x5 + y5 = z5. We can express such sets
as limits. For instance, X(R) is the pullback of the diagram of sets

R×R (x,y)7→x5+y5−−−−−−−−→ R
z5←[z←−−− R.

Another way to construct new sets is by taking “quotients”, e.g., as sets of equivalence classes of
an equivalence relation. This is in some sense much more subtle than sets of solutions to equations:
mathematicians did not routinely construct sets this way until they were comfortable with the set
theoretic formalism introduced by the end of the 19th century.

Some sets of equivalence classes are nothing more than that. However, some have “higher”
structure standing behind them, which is often encoded in the form of a groupoid1. Here are some
examples.

• Given a topological space X, we can define an equivalence relation on the set of points, so
x ∼ x′ if and only if there is a continuous path connecting them. The set of equivalence
classes is the set π0X of path components. Standing behind this equivalence relation is
the fundamental groupoid Π1X, whose objects are points of X, and whose morphisms are
path-homotopy classes of paths between two points.
• Given any category C, there is an equivalence relation on the collection of objects, so
that X ∼ Y if there exists an isomorphism between them. Equivalence classes are the
isomorphism classes of objects. Standing behind this equivalence relation is the core of C
(also called the maximal subgroupoid), which is a groupoid having the same objects as C,
but having as morphisms only the isomorphisms in C.
• As a special case of the above, let C = VectF be the category of finite dimensional vector
spaces and linear maps over some field F . Then isomorphism classes of objects correspond
to non-negative integers, via the notion of dimension. The core VectcoreF is a groupoid whose
objects are finite dimensional vectors spaces, and whose morphisms are invertible linear
maps.

Note that many interesting problems are about describing isomorphism classes, e.g., classifying
finite groups of a given order, or principal G-bundles on a space. In practice, one learns that when
you try to classify some type of objects up to isomorphism, you will need to have a good handle on
the isomorphisms between such objects, including the groups of automorphisms of such objects. So
you will likely need to know about the groupoid, even if it is not the primary object of interest.

For instance, a problem such as: “classify principal G-bundles on a space M up to isomorphism”
naturally leads you to consider the problem: “describe the groupoid BunG(M) of principal G-bundles
on a space M”. This kind of problem can be thought of as a more sophisticated analogue of one like:
“find the set X(R) of solutions to x5+ y5 = z5 in the ring R”. (In fact, the theory of “moduli stacks”
exactly develops this analogy between the two problems.) To do this, you can imagine having a
“groupoid-based mathematics”, generalizing the usual set-based one. Here are some observations
about this.

1I assume familiarity with basic categorical concepts, such as in Chapter 1 of [Rie16].
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• We regard two sets as “essentially the same” if they are isomorphic, i.e., if there is a bijection
f : X → X ′ between them. Any such bijection has a unique inverse bijection f−1 : X ′ → X.

On the other hand, we regard two categories as “essentially the same” if they are merely
equivalent, i.e., if there is a functor f : C → C ′ which admits an inverse up to natural
isomorphism. It is not the case that such an inverse up to natural isomorphism is itself
unique. These same remarks apply in particular to equivalences of groupoids.

Although any equivalence of categories admits some kind of inverse, the failure to be
unique leads to complications. For example, one goal of every course in abstract linear
algebra is to demonstrate and exploit an equivalence of categories

f : MatF → VectF .

Here VectF is the category of finite dimensional vector spaces over F , while MatF is the
matrix category, whose objects are non-negative integers, and whose morphisms n → m
are m× n-matrices with entries in F . The functor f is defined by an explicit construction,
e.g., it sends the object n to the vector space Fn. However, there is no completely “natural”
way to construct an inverse functor f−1 : VectF → MatF : producing such an inverse functor
requires making an arbitrary choice, for each abstract vector space V , of a basis for V .
• We can consider “solutions to equations” in groupoids (e.g., limits). However, the naive
construction of limits of groupoids may not preserve equivalences of groupoids, thus, we
need to consider “weak” or “homotopy” limits.

For example, suppose M is a space which is a union of two open subsets U and V . The
homotopy pullback of

BunG(U)→ BunG(U ∩ V )← BunG(V )

is a groupoid, whose objects are triples (P,Q, α), where P → U and Q→ V are G-bundles,

and α : P |U∩V
∼−→ Q|U∩V is an isomorphism of G-bundles over U ∩ V . The morphisms

(P,Q, α) → (P ′, Q′, α′) are pairs (f : P → P ′, g : Q → Q′) are pairs of bundle maps which
are compatible over U∩V with the isomorphisms α, α′. Compare this with the strict pullback,
which consists of (P,Q) such that P |U∩V = Q|U∩V as bundles. In particular, P |U∩V and
Q|U∩V must be identical sets.

A basic result about bundles is that BunG(M) is equivalent to this homotopy pullback.
The strict limit may fail to be equivalent to this. Note that it is impossible to describe the
strict pullback without knowing precisely what definition of G-bundle we are using: in this
case we need to be able to say when two bundles are equal, rather than isomorphic. The
homotopy pullback is however relatively insensitive to the precise definition of G-bundle.
(The point being, there can exist many non-identical “precise definitions of G-bundle”,
because what we really care about in the end is understanding BunG(M) up to equivalence,
rather than up to isomorphism.)

These kinds of issues persist when dealing with higher groupoids and categories.

1.2. Higher groupoids. There is a category Gpd of groupoids, whose objects are groupoids and
whose morphisms are functors. However, there is even more structure here: there are natural
transformations between functors f, f ′ : G→ G′ of groupoids. That is, Fun(G,G′) forms not merely
a set, but a category. We can consider the collection consisting of (0) groupoids, (1) equivalences
between groupoids, and (2) natural isomorphisms between equivalences. This is an example of a
2-groupoid2. There is no reason to stop at 2-groupoids: there are n-groupoids, the totality of which
are an example of an (n+ 1)-groupoid. (In this hierarchy, 0-groupoids are sets, and 1-groupoids are
groupoids.) We might as well take the limit, and consider ∞-groupoids.

2More precisely, a “quasistrict 2-groupoid”.
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It turns out to be difficult (though not impossible) to construct an “algebraic” definition of
n-groupoid. The approach which in seems to work best in practice is to use homotopy theory.
We start with the observation that every groupoid G has a classifying space BG. This is defined
explicitly as a quotient space

G 7→ BG :=

 ∐
x0

f1−→x1

f2−→··· fn−→xn

∆n
top

 / ∼,

where we glue in a topological n-simplex ∆n
top for each n-fold sequence of composable arrows in

G, modulo certain identifications. It turns out (i) the fundamental groupoid of BG is equivalent
to G, and (ii) the higher homotopy groups πk of BG are trivial, for k ≥ 2. A space with property
(ii) is said to be 1-truncated. Furthermore, (iii) there is a bijection between equivalence classes
of groupoids up to equivalence and CW-complexes which are 1-types, up to homotopy equivalence.
(More is true, but I’ll stop there for now.)

The conclusion is that groupoids and equivalences between them are modelled by 1-types and
homotopy equivalences between them. This suggests that we should define n-groupoids as n-types
(CW complexes with trivial homotopy groups in dimensions > n), with equivalences being homotopy
equivalences. Removing the restriction on homotopy groups leads to modelling ∞-groupoids by
CW-complexes up to homotopy equivalence.

There is a different approach, which we will follow. It uses the fact that the classiyfing space
construction factors through a “combinatorial” construction, called the “nerve”. That is, we have

(G ∈ Gpd) 7→ (NG ∈ sSet) 7→ (∥NG∥ = BG ∈ Top),

where NG is the nerve of the groupoid, and is an example of a simplicial set, while ∥X∥ denotes
the geometric realization of a simplicial set X. In fact, the nerve of a groupoid is a particular kind
of simplicial set called a Kan complex. It is a classical fact of homotopy theory that Kan complexes
model all homotopy types. Thus, we will choose our definitions so that ∞-groupoids are precisely
the Kan complexes.

1.3. ∞-categories. An ∞-category is a generalization of ∞-groupoid in which morphisms are no
longer required to be invertible in any sense.

There are a number of approaches to defining ∞-categories. Here are two which build on top of
the identification of ∞-groupoids with Kan complexes.

• A category C consists of a set obC of objects, and for each pair of objects a set homC(x, y) of
maps from x to y. If we replace the set homC(x, y) with a Kan complex (or more generally a
simplicial set) mapC(x, y), we obtain a category enriched over Kan complexes (or simplicial
sets). This leads to one model for ∞-categories: categories enriched over simplicial sets.
• The nerve construction makes sense for categories: given a category C, we have a simplicial
set NC. In general, NC is not a Kan complex; however, it does land in a special class of
simplicial sets, which are called quasicategories. This leads to another model for∞-categories:
quasicategories.

In this paper we focus on the second case: the quasicategory model for ∞-categories.

1.4. Historical remarks. Quasicategories were invented by Boardman and Vogt [BV73, §IV.2],
under the name restricted Kan complex. They did not use them to develop a theory of ∞-categories.
This development began with the work of Joyal, first published in [Joy02]. Much of the material in
this course was developed first by Joyal, in published papers and unpublished manuscripts [Joy08a],
[Joy08b], [JT08]. Lurie [Lur09] gives a thorough treatment of quasicategories (which he simply calls
“∞-categories”), recasting and extending Joyal’s work significantly. There is been much work since
then which has refined our understanding even more.



INTRODUCTION TO QUASICATEGORIES 7

There are significant differences between the ways that Joyal and Lurie develop the theory.
In particular, they give different definitions of the notion of a “categorical equivalence” between
simplicial sets, though they do in fact turn out to be equivalent [Lur09, §2.2.5]. The approach I
follow here is essentially that of Joyal. It is also basically the same as the approach Lurie takes in
his reworking of the foundations at kerodon.net.

I have tried to generally adopt the terminology and notation of [Lur09] in most places.

1.5. Goal of this book. The goal of this book is to give a reasonably approachable introduction to
the subject of higher category theory. In particular, I am writing with the following ideas in mind.

• The prerequisites are merely some basic notions of category theory, as seen in a first year
algebraic topology or algebraic geometry course. No advanced training in homotopy theory
is assumed: in particular, no knowledge of simplicial sets or model categories is assumed.
You will learn what you need to know about these by reading this book.
• The book is written in “lecture notes” style rather that “textbook” style. That is, I will try
to avoid introducing a lot of theory in section 3 which is only to be used in section 42, even
if that is the “natural” place for it. The goal is to introduce new ideas near where they are
first used, so that motivations are clear.
• The structure of the exposition is organized around the following type of question: Here is a
[definition we can make/theorem we can prove] for ordinary categories; how do we generalize
it to quasicategories? In some cases the answer is easy. In others, it can require a significant
detour.
• The exposition is largely from the bottom up, rather than from the top down. Thus, I
attempt to give complete details about everything I prove, so that nothing is relegated to
references. (The current document does not achieve this yet, but that is the plan; in some
cases, such details will be put into appendices.)
• The idea is that, after you have read this book, you will be well-prepared to dip into the
main references on quasicategories (e.g., Lurie’s books) without too much difficulty. Note
that this book is not meant to (and does not) supplant any such reference.

1.6. Prerequisites. I assume only familiarity with basic concepts of category theory, such as from
[Lei14], or as discussed in the first few chapters of [Rie16]. Some categorical prerequisites: you
should be at least aware of the following notions (or know where to turn to in order to learn them):

• categories, functors, and natural transformations;
• full subcategories;
• the Yoneda lemma;
• initial and terminal objects;
• limits and colimits;
• groupoids;
• products and coproducts;
• pushouts and pullbacks;
• adjoint functors.

It is also helpful, but not essential, to know a little algebraic topology (such as fundamental groups
and groupoids, and the definition of singular homology, as described in Chs. 1–3 of Hatcher’s
textbook)

1.7. References and other sources. As noted, the material depends mainly on the work of Joyal
and Lurie.

• Joyal’s first paper [Joy02] on the subject explicitly introduces quasicategories as a model for
∞-categories. It is worth looking at.

https://kerodon.net
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• There are several versions of unpublished lecture notes by Joyal [Joy08a], [Joy08b], which
develop the theory of quasicategories from scratch. Also note the paper by Joyal and Tierney
[JT08], which gives a summary of some of this unpublished work.
• Lurie’s “Higher topos theory” [Lur09] gives a complete development of ∞-categories, includ-
ing many topics not even touched in this book. The main general material on ∞-categories
is in Chapters 1–4, together with quite of bit of material from the appendices. It is also
worth looking at Chapter 5, which develops the very important notions of accessible and
presentable ∞-categories. The final two chapters apply these ideas to the theory of ∞-topoi.
• Lurie’s “Higher algebra” [Lur12] treats a number of “advanced topics”, including stable
∞-categories (the ∞-categorical foundations underlying derived categories in homological
algebra and stable homotopy), various notions of monoidal structures on ∞-categories (via
the theory of ∞-operads), and other topics.
• After I came up with the first version of these notes, Cisinski published the book “Higher
Categories and Homotopical Algebra”. It covers much of the material in these notes (and
much more), on roughly similar lines: in his book model categories play a more prominent
role from the start than they do here.
• Bergner’s “The homotopy theory of (∞, 1)-categories” is a survey of various approaches to
higher categories and their interrelationships.
• Groth’s note “A short course on ∞-categories” provides a brief survey to some of the basic
ideas about quasicategories and their applications. It is not a complete treatment, but it
does get very quickly to some of the more advanced topics.
• Riehl and Verity . . .
• Kerodon . . .

1.8. Things to add. This is a place for me to remind myself of things I might add.

• A discussion of n-truncation and n-groupoids, including the equivalence of ordinary groupoids
to 1-groupoids (so connecting with the introduction).
• Pointwise criterion for limits/colimits: Show that S▷ → Fun(D,C) is a colimit cone if each
projection to S▷ → Fun({d}, C) ≈ C is one.

1.9. Acknowledgements. Thanks to all those who have submitted corrections and suggestions for
improvements, including most notably: Lang (Robbie) Yin, Nima Rasekh, Zachary Halladay, Doron
Grossman-Naples, Darij Grinberg, and Vigleik Angeltveit. I’d also like to thank the participants of
courses I have given based on a version of these notes: (Math 595 at the University of Illinois in
Fall 2016, again in Spring 2019, and yet again in Spring 2022).

Part 1. Simplicial sets and nerves of categories

2. Simplicial sets

In the subsequent sections, we will define quasicategories as a generalization of the notion of a F 21 Jan
category. To accomplish this, we will recharacterize categories as a particular kind of simplicial set.
Relaxing this characterization will lead us to the definition of quasicategories.

Simplicial sets were introduced as a combinatorial framework for the homotopy theory of spaces.
There are a number of treatments of simplicial sets from this point of view. I recommend Greg
Friedman’s survey [Fri12] as a starting place for learning about this viewpoint. Here I’ll focus on
what we need in order to develop quasicategories.

2.1. The simplicial operator category ∆. We write ∆ for the category whose

• objects are the finite and non-empty totally ordered sets [n] := {0 < 1 < · · · < n} for n ≥ 0,
and
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• morphisms δ : [n] → [m] are weakly monotone functions, i.e., such that x ≤ y implies
δ(x) ≤ δ(y).

Note that we exclude the empty set from ∆. I’ll refer to morphisms in ∆ as simplicial operators. simplicial operators

Because [n] is an ordered set, you can also think of it as a category: the objects are the elements
of [n], and there is a morphism (necessarily unique) i→ j if and only if i ≤ j. Thus, morphisms
in ∆ are precisely functors between. We can, and will, also think of [n] as the category “freely
generated” by the picture

0 → 1 → · · · → n− 1 → n .

The point is that arbitrary non-identity morphisms i→ j in [n] can be expressed uniquely as iterated
composites of the arrows i→ i+ 1 which are displayed in the picture.

I will often use the following notation for morphisms in ∆, which describes a simplicial operator
by a list of its values:

δ = ⟨δ0 · · · δn⟩ : [n]→ [m] with δ0 ≤ · · · ≤ δn represents the function k 7→ δk.

2.2. Remark. There are distinguished simplicial operators called face and degeneracy operators: face operator

degeneracy operator
di := ⟨0, . . . , î, . . . , n⟩ : [n− 1]→ [n], 0 ≤ i ≤ n,
si := ⟨0, . . . i, i, . . . n⟩ : [n+ 1]→ [n], 0 ≤ i ≤ n.

All maps in ∆ can be obtained as a composition of face and degeneracy operators, and in fact ∆
can be described as the category generated by the above symbols, subject to a set of relations called
the “simplicial identities”, which can be found in various places, e.g., [Fri12, Def. 3.2].

2.3. Simplicial sets. A simplicial set is a functor X : ∆op → Set, i.e., a contravariant functor (or simplicial set

“presheaf”) from ∆ to sets. It is typical to write Xn for X([n]), and call it the set of n-simplices in
X. In these notes I’ll call it the set of n-dimensional cells (or just n-cells) of X instead3. I will n-dimensional cells

n-cellsalso sometimes speak of the set of all cells of X, i.e., of the disjoint union
∐

n≥0Xn of the sets Xn.
The 0-dimensional cells of a simplicial set are also called vertices, while the 1-dimensional cells vertices

are also called edges. edges

Given a cell a ∈ Xn and a simplicial operator δ : [m]→ [n], I will write aδ ∈ Xm as shorthand
for X(δ)(a). That is, I’ll think of simplicial operators as acting on cells from the right; this is a
convenient choice given that X is a contravariant functor. In this language, a simplicial set consists
of

• a sequence of sets X0, X1, X2, . . . , and
• functions a 7→ af : Xn → Xm for each simplicial operator δ : [m]→ [n], such that
• a id = a, and (aδ)γ = a(δγ) for any cell a and simplicial operators δ and γ whenever this
makes sense.

If I need a simplicial operator to act from the left, I’ll write δ∗(a) := aδ. Thus, a simplicial operator
δ : [m]→ [n] induces a function δ∗ : Xn → Xm for any simplicial set X.

Occasionally I’ll use a subscript notation when speaking of the action of particular simplicial
operators. So, given a simplicial operator of the form δ = ⟨δ0 · · · δm⟩ : [m] → [n], we can indicate
the action of δ on cells using subscripts:

aδ0···δm := af = a⟨δ0 . . . δm⟩.
This is handy when m is small. In particular, applying simplicial operators of the form ⟨i⟩ : [0]→ [n]
to an n-dimensional cell a ∈ Xn gives vertices a0, . . . , an ∈ X0, which we call the “vertices of a”,
while applying simplicial operators of the form ⟨ij⟩ : [1]→ [n] for 0 ≤ i ≤ j ≤ n gives edges aij ∈ X1,
which we call the “edges of a”.

3Because the word “simplices” also applies to the so called “standard n-simplices” defined below (3.1), and I would
like to avoid confusion between them.
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2.4. The category of simplicial sets. A simplicial set is a functor. So a map of simplicial sets map of simplicial sets

(or simplicial map) is a natural transformation of functors. Explicitly, a map ϕ : X → Y between simplicial map

simplicial sets is a collection of functions ϕn : Xn → Yn, n ≥ 0, which commute with simplicial
operators:

(ϕna)f = ϕn(af) for all simplicial operators f and cells a in X, when this makes sense.

I’ll write sSet for the category of simplicial sets and maps between them4.

2.5. Remark. A simplicial set is not the same thing as an abstract simplicial complex, though there
are some relationships between the two notions: see (6.19).

2.6. Subcomplexes. A subcomplex of a simplicial set X is a subset Y ⊆ X of the set of cells subcomplex

which inherits the action by simplicial operators, and thus is a simplicial set in it’s own right. If Y
is a subcomplex of X, then the evident inclusion function ϕ : Y → X is a map of simplicial sets.

2.7. Exercise. Show that for any map f : X → Y of simplicial sets, the image f(X) ⊆ Y of f is a
subcomplex of Y .

2.8. Discrete simplicial sets. A simplicial set X is discrete if every simplicial operator f induces discrete simplicial set

a bijection f∗ : Xn → Xm.
Every set S gives us a discrete simplicial set Sdisc, defined so that (Sdisc)n = S, and so that each

simplicial operator acts according to the identity map of S. This construction defines a functor
Set→ sSet given on objects by S 7→ Sdisc.

2.9. Exercise. Show that for any set S and simplical set X there is a bijection HomsSet(S
disc, X)→

HomSet(S,X0).

2.10. Exercise (Discrete simplicial sets come from sets). Show that (i) every discrete simplicial set
X is isomorphic to Sdisc for the set S = X0, and (ii) for every pair of sets S and T , the evident
function HomSet(S, T )→ HomsSet(S

disc, T disc) is a bijection.

Let sSetdisc denote the full subcategory of sSet spanned by discrete simplicial sets. That is, objects
of sSetdisc are discrete simplicial sets, and morphisms of sSetdisc are all simplicial maps between
them. Then (2.10) means that that the full subcategory of discrete simplicial sets is equivalent to the
category of sets. The equivalence is given by the functor Set→ sSet defined on objects by S 7→ Sdisc,
while the inverse equivalence is sSet→ Set defined on objects by X 7→ X0.

For this reason, it is often convenient to (at least informally) “identify” sets with their corre-
sponding discrete simplicial sets. Thus, given a set S we will abuse notation and also write S for
the discrete simplicial set Sdisc defined above.

2.11. Exercise. Show that for any simplicial set X, the discrete simplicial set (X0)
disc is isomorphic

to a subcomplex of X.

3. Standard simplicies

Standard simplices are the basic building blocks of simplicial sets. They are exactly the “repre-
sentable functors” on the simplicial indexing category ∆. A standard n-simplex may also be thought
of as the “free simplicial set on a single n-cell”.

3.1. Standard n-simplex. The standard n-simplex ∆n is the simplicial set defined by standard n-simplex

∆n := Hom∆(−, [n]).
That is, the standard n-simplex is exactly the functor represented by the object [n]. Explicitly, this
means that

(∆n)m = Hom∆([m], [n]) = {simplicial operators a : [m]→ [n]},
4Lurie [Lur09] uses Set∆ to denote the category of simplicial sets.
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while the action of simplicial operators on cells of ∆n is given by composition: f : [m′]→ [m] sends
(a : [m]→ [n]) ∈ (∆n)m to (af : [m′]→ [n]) ∈ (∆n)m′ .

The generator of ∆n is the cell generator of a cell

ιn := ⟨01 . . . n⟩ = id[n] ∈ (∆n)n

corresponding to the identity map of [n].
The Yoneda lemma (applied to the category ∆) asserts that the function Yoneda lemma

HomsSet(∆
n, X)→ Xn,

g 7→ g(ιn),

is a bijection for every simplicial set X. (If this fact is not familiar to you, prove it.)

3.2. Exercise. Prove the Yoneda lemma for ∆.

The Yoneda lemma can be stated this way: for each n-dimensional cell a ∈ Xn there exists a
unique map fa : ∆

n → X of simplicial sets which sends the generator to it, i.e., such that fa(ιn) = a.
We call the map fa the representing map of the cell a. representing map of a

cellI’ll often use the bijection provided by the Yoneda lemma implicitly. In particular, instead of
using notation such as fa, I’ll just write a : ∆

n → X for the representing map of the cell a ∈ Xn, i.e.,
for the unique map of simplicial sets sending the generator ιn of ∆n to a. Thus with our notation
we have a = a(ιn), where the two appearances of “a” denote respectively the cell of Xn and the
representing morphism ∆n → X.

3.3. Exercise. Show that the representing map f : ∆n → X of a ∈ Xn sends ⟨c0 . . . ck⟩ ∈ (∆n)k to
a⟨c0 . . . ck⟩ ∈ Xk.

Note that if X = ∆m is also a standard simplex, then the Yoneda lemma gives a bijection

HomsSet(∆
n,∆m)

∼−→ (∆m)n = Hom∆([n], [m]).

The inverse of this bijection sends a simplicial operator f : [n]→ [m] to the map ∆f : ∆n → ∆m of
simplicial sets defined on cells g ∈ (∆n)k = Hom∆([k], [n]) by g 7→ fg.

Here is another abuse of notation: I’ll write f : ∆n → ∆m instead of ∆f for the map induced by
the simplicial operator f , as it is also the representing map of the corresponding n-dimensional cell
f ∈ (∆m)n.

3.4. Remark. We can summarize the above remarks in the following way: the full subcategory of
sSet spanned by the standard simplices is equivalent to the simplicial operator category ∆, via a
functor which on objects sends [n] to ∆n.

3.5. Teminal and initial simplicial sets. The standard 0-simplex ∆0 is the terminal object
in sSet; i.e., for every simplicial set X there is a unique map X → ∆0. Sometimes I’ll write ∗
instead of ∆0 for this object, and refer to it as “the point”. Note that ∆0 is a discrete simplicial set,
corresponding to a singleton set.

The empty simplicial set ∅ is the functor ∆op → Set sending each [n] to the empty set. It is empty simplicial set

the initial object in sSet; i.e., for every simplicial set X there is a unique map ∅→ X.

3.6. Exercise. Show that a simplicial set X is isomorphic to the empty simplicial set if and only if
X0 is isomorphic to the empty set.

3.7. Standard simplices on totally ordered sets. The definition of the standard simplices ∆n

can be extended to simplicial sets “generated” by arbitrary totally ordered sets. Thus, from any
totally ordered set S we get a simplicial set ∆S with (∆S)n = {order preserving [n]→ S}.

Note that for any non-empty and finite totally ordered set S = {s0 < s1 < · · · < sn}, there is a

unique order preserving bijection [n]
∼−→ S for a unique n ≥ 0, so that there is a unique isomorphism
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∆S ≈ ∆n of simplicial sets. When S = ∅ we have (∆∅)k = ∅ for all k, so ∆∅ is the empty simplicial
set.

This notation is especially convenient for subsets S ⊆ [n] with induced ordering, as the simplicial
set ∆S is in a natural way a subcomplex of ∆n.

Furthermore, any simplicial operator f : [m]→ [n] factors through its image S = f([m]) ⊆ [n],
giving a factorization

[m]
fsurj−−−→ S

finj−−→ [n]

of maps between ordered sets, and thus a factorization ∆m ∆
fsurj

−−−−→ ∆S ∆
finj

−−−→ ∆n of the induced map
∆f of simplicial sets, where ∆S can be regarded as a subcomplex of ∆n.

3.8. Exercise. Show that ∆finj and ∆fsurj respectively induce maps between simplicial sets which are
(respectively) injective and surjective on sets of k-cells for all k. (The case of ∆finj is formal, but
the case of ∆fsurj is not completely formal.)

3.9. Pictures of standard simplices. When we draw a “picture” of ∆n, we draw a geometric
n-simplex: the convex hull of n+1 points in general position, with vertices labelled by 0, . . . , n. The
faces of the geometric simplex correspond exactly to injective simplicial operators into [n]: these
cells are called non-degenerate. For each non-degenerate cell f in ∆n, there is an infinite collection
of degenerate cells with the same “image” as f (when viewed as a simplicial operator with target
[n]).

Here are some “pictures” of standard simplices, which show their non-degenerate cells. Note that
we draw the 1-cells of ∆n as arrows. This lets us easily see the total ordering on the vertices of ∆n.

∆0 : ∆1 : ∆2 : ∆3 :

⟨1⟩

��

⟨1⟩
&&

��
⟨0⟩ ⟨0⟩ // ⟨1⟩ ⟨0⟩

77

''

⟨0⟩
77

''

// ⟨3⟩

⟨2⟩ ⟨2⟩
88

We’ll extend the terminology of “degenerate” and “non-degenerate” cells to arbitrary simplicial sets
in (19.5).

4. The nerve of a category

The nerve of a category is a simplicial set which retains all the information of the original category.
In fact, the nerve construction provides a full embedding of Cat, the category of (small) categories,
into sSet, which means that we are able to think of categories as being just a special kind of
simplicial set.

4.1. Construction of the nerve. Given a category C, the nerve of C is the simplicial set NC nerve

defined so that
(NC)n := HomCat([n], C),

the set of functors from [n] to C, and so that simplicial operators f : [m]→ [n] act by precomposition:
a 7→ af for an element a : [n]→ C in (NC)n.

4.2. Example. There is an evident isomorphism N [n] ≈ ∆n, which is in fact the unique isomorphism
between these two simplicial sets.

Given a functor F : C → D between categories, we obtain a map NF : NC → ND of simplicial
sets, sending (a : [n] → C) ∈ (NC)n to (Fa : [n] → D) ∈ (ND)n. Thus the nerve construction
defines a functor N : Cat→ sSet.
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4.3. Structure of the nerve. We observe the following, whose verification we leave to the reader.

• (NC)0 is canonically identified with the set obC of objects of C.
• (NC)1 is canonically identified with the set morC of morphisms of C.
• The operators ⟨0⟩∗, ⟨1⟩∗ : (NC)1 → (NC)0 assign to a morphism its source and target
respectively.
• The operator ⟨00⟩∗ : (NC)0 → (NC)1 assigns to an object its identity morphism.
• (NC)2 is in bijective correspondence with the set of pairs (f, g) of composable morphisms,
i.e., such that the target of f is the source of g. This bijection is given by sending a ∈ (NC)2
to (a01, a12) ∈ (NC)1 × (NC)1.
• The operator ⟨02⟩∗ : (NC)2 → (NC)1 assigns, to a 2-cell corresponding to a pair (f, g) of
composable morphisms, the composite morphism gf .

In particular, you can recover the category C from its nerve NC, up to isomorphism, since the
nerve contains all information about objects, morphisms, identity morphisms, and composition of
morphisms in C.

We have the following general description of n-dimensional cells in the nerve.

4.4. Proposition. Let C be a category, with object set obC and morphism set morC.

(1) There is a bijective correspondence

(NC)n
∼−→

{
(g1, . . . , gn) ∈ (morC)×n

∣∣ target(gi−1) = source(gi)
}
,

which sends (a : [n]→ C) ∈ (NC)n to the sequence (a⟨0, 1⟩, . . . , a⟨n− 1, n⟩)
(2) With respect to the correspondence of (1), the map f∗ : (NC)n → (NC)m induced by a

simplicial operator δ : [m]→ [n] coincides with the function

(g1, . . . , gn) 7→ (h1, . . . , hm), hk =

{
id if δ(k − 1) = δ(k)

gjgj−1 · · · gi+1 if δ(k − 1) = i < j = δ(k).

Proof. For (1), one verifies that an inverse is given by the function which sends a sequence (g1, . . . , gn)
to (a : [n]→ C) ∈ (NC)n defined on objects by a(k) = target(gk−1) = source(gk), and on morphisms
by a(⟨ij⟩) = gjgj−1 · · · gi+1 for i < j. For (2), note that for a ∈ (NC)n corresponding to the tuple
(g1, . . . , gn) we can compute

(aδ)⟨k − 1, k⟩ = a⟨δ(k − 1), δ(k)⟩ =

{
id if δ(k − 1) = δ(k),

gjgj−1 · · · gi+1 if δ(k − 1) = i < j = δ(k).

□

4.5. Remark. You can probably see from the above remarks that most of the information in the
nerve of C is redundant: we only needed (NC)k for k = 0, 1, 2 and certain simplicial operators
between them to recover complete information about the category C.

4.6. Exercise. Show that for any discrete simplicial set X there exists a category C and an
isomorphism NC ≈ X.

4.7. Characterization of nerves. This leads to the question: given a simplicial set X, how can
we detect that it is isomorphic to the nerve of some category?

4.8. Proposition. A simplicial set X is isomorphic to the nerve of some category if and only if for
all n ≥ 2 the function

ϕn : Xn →
{
(g1, . . . , gn) ∈ (X1)

×n ∣∣ gi−1⟨1⟩ = gi⟨0⟩, 1 ≤ i ≤ n
}

which sends a ∈ Xn to (a0,1, . . . , an−1,n) is a bijection.
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Proof. First, suppose X = NC for some category C. Then the function ϕn is precisely the bijection
of (4.4)(1). Thus, if X is isomorphic to the nerve of some category then its ϕn are bijections.

Now suppose X is a simplical set such that the ϕn are bijections. We define a category C, with

obC := X0, morC := X1,

following the discussion in (4.3). Thus, the source and target of g ∈ X1 are g0 and g1 in X0

respectively, the identity map of x ∈ X0 is x00 ∈ X1, while the composite of (g, h) such that g1 = h0
is a02, where a ∈ X2 is the unique 2-cell with a01 = g and a12 = h. Note that such an a exists exactly
because ϕ2 is a bijection. We leave the remaining details (e.g., unit and associativity properties) to
the reader, though we note that proving associativity requires consideration of cells in X3. (Or look
ahead to (8.10), where we carry out the argument explicitly in a slightly different context.)

Next, we claim that for a ∈ Xn, and for 0 ≤ i ≤ j ≤ k ≤ n, we have that

ai,k = aj,kai,j ,

where ai,k, ai,j , aj,k ∈ X1 are images of a under face operators [1] → [n], and right-hand side
represents composition of two morphisms in C. To see this, note first that for b ∈ X2, we have
b0,2 = b1,2b0,1 by construction of C. The general case follows from this by setting b = ai,j,k ∈ X2.

Now we can define maps ψn : Xn → (NC)n by sending a ∈ Xn to ψn(a) : [n] → C defined by
ψn(a)(i→ j) = ai,j , which is a functor [n]→ C by the above remarks. These maps ψn are seen to
be bijections using the bijections ϕn and (4.4), since ψn(a)((i− 1)→ i) = ai−1,i. If δ : [m]→ [n] is
a simplicial operator, then we compute

ψm(aδ)(i→ j) = (aδ)i,j = aδ(i),δ(j) = (ψn(a))(δ(i)→ δ(j)) = (ψn(a)δ)(i→ j),

whence ψ is a map of simplicial sets. We have thus constructed an isomorphism ψ : X → NC of
simplicial sets, as desired. □

4.9. A characterization of maps between nerves. Maps between nerves are the same thing as
functors between categories.

4.10. Proposition. The nerve functor N : Cat→ sSet is fully faithful. That is, every simplicial set
map g : NC → ND between nerves is of the form g = N(f) for a unique functor f : C → D.

Proof. We need to show that HomCat(C,D)→ HomsSet(NC,ND) induced by the functor N is a
bijection for all categories C and D. Injectivity is clear, as a functor f is determined by its effect on
objects and morphisms, which is exactly the effect of N(f) on 0- and 1-cells of the nerves.

For surjectivity, observe that for any map g : NC → ND of simplicial sets, we can define a
candidate functor f : C → D, defined on objects and morphisms by the action of g on 0-dimensional
and 1-dimensional cells. That F has the correct action on identity maps follows from the fact that
g commutes with the simplicial operator ⟨00⟩ : [1]→ [0]. That f preserves composition uses (4.4)
and the fact that g commutes with the simplicial operator ⟨02⟩ : [1]→ [2].

Note that given g : NC → ND and f : C → D as constructed above, the maps g,N(f) : NC →
ND coincide on 0-dimensional and 1-dimensional cells by construction. It follows that g = N(f) by
using the exercise (4.11) below. Thus, we have shown that N : HomCat(C,D)→ HomsSet(NC,ND)
is surjective as desired. □

4.11. Exercise (Important: Maps to a nerve are determined by edges). Show that if D is a category
and X is any simplicial set (not necessarily a nerve), then two maps g, g′ : X → ND are equal if and
only if g1 = g′1 : X1 → (ND)1, i.e., g and g′ are equal if and only if they coincide on edges. (Hint:
use (4.4).)
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5. Spines

In this section we will restate our characterization of simplicial sets which are isomorphic to M 24 Jan
nerves, in terms of a certain “extension” condition. To state this condition we need the notion of a
“spine” of a standard n-simplex.

5.1. The spine of an n-simplex. The spine of the n-simplex ∆n is the simplicial set In defined spine

by
(In)k = { ⟨a0 · · · ak⟩ ∈ (∆n)k | ak ≤ a0 + 1 }.

That is, a k-dimensional cell of In is a simplicial operator a : [k]→ [n] whose image is of the form
either {j} or {j, j+1}. The action of simplicial operators on cells of In is induced by their action on
∆n. (To see that this action is well defined, observe that for a : [k]→ [n] in (In)k and f : [p]→ [k],
the image of the simplicial operator af is contained in the image of a.)

The spine In is by definition a subcomplex of ∆n. Here is a picture of I3 in ∆3:

⟨1⟩

��
⟨0⟩

88

⟨3⟩

⟨2⟩
88 is the spine inside

⟨1⟩
&&

��
⟨0⟩

88

&&

// ⟨3⟩

⟨2⟩
88

Note that I0 = ∆0 and I1 = ∆1, but In ̸= ∆n for n ≥ 2.
The key property of the spine is the following.

5.2. Proposition. Given a simplicial set X, for every n ≥ 0 there is a bijection

Hom(In, X)
∼−→

{
(a1, . . . , an) ∈ (X1)

×n ∣∣ ai⟨1⟩ = ai+1⟨0⟩
}
,

defined by sending f : In → X to (f(⟨01⟩), f(⟨12⟩), · · · , f(⟨n − 1, n⟩)). (In the case n = 0, the
target of the bijection is taken to be the set X0 of vertices of X, and the bijection in this case sends
f 7→ f⟨0⟩.)

We will give the proof at the end of the next section (6.21), after we describe In as a colimit
of a diagram of standard simplices. Speficically, In is obtained from a collection of 1-simplices by
“gluing” them together at their ends.

5.3. Nerves are characterized by unique spine extensions. Given (5.2), we can now state
our new characterization of nerves: they are simplicial sets such that every map In → X from a
spine extends uniquely along In ⊆ ∆n to a map from the standard n-simplex. That is, nerves are
precisely the simplicial sets with “unique spine extensions”.

5.4. Proposition. A simplicial set X is isomorphic to the nerve of some category if and only if the
restriction map Hom(∆n, X)→ Hom(In, X) along In ⊆ ∆n is a bijection for all n ≥ 2.

Proof. Using the description of (5.2), we see that the restriction map Hom(∆n, X)→ Hom(In, X)
is identical to the function given on n-cells of X by

(a ∈ Xn) 7→ (a0,1, . . . , an−1,n) ∈ (X1)
×n.

The conclusion is then immediate from our earlier characterization of nerves (4.8). □

6. Colimits of simplicial sets and subcomplexes

Because we will work with simplicial sets so much, it is worthwhile to take some time to figure
out how to describe colimits of functors to sSet. Because simplicial sets are built from sets, we start
by recalling how to “compute” colimits of functors to Set.
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6.1. Colimits of sets. Recall that any functor F : C → Set from a small category to sets has a
colimit. Here small means that the collections obC and morC of objects and morphisms of C are
themselves sets5. Given any such functor there is a “simple formula” for its colimit. First consider
the coproduct (i.e., disjoint union)

∐
c∈obC F (c) of the values of the functor. I’ll write (c, x) for a

typical element of this coproduct, with c ∈ obC and x ∈ F (c). Consider the relation ∼ on this
defined by

(c, x) ∼ (c′, x′) if ∃ α : c→ c′ in C such that F (α)(x) = x′.

Define
X :=

( ∐
c∈obC

F (c)
)/
≈,

the set obtained as the quotient by the equivalence relation “≈” which is generated by the relation
“∼”. For each object c of C we have a function ic : F (c)→ X defined by ic(x) := [c, x], sending x to
the equivalence class of (c, x). Then the data (X, {ic}) is a colimit of the functor F : i.e., for any set
S and collection of functions

fc : F (c)→ S for each c ∈ obC, such that fc′ ◦ F (α) = fc for all α : c→ c′

there exists a unique function f : X → S such that f ◦ ic = fc.

6.2. Exercise. Verify that (X, {ic}) is in fact a colimit of F .

We write colimC F for the object X.
Note that if the relation “∼” is not itself an equivalence relation, it can be difficult to figure out

what “≈” actually is: the simple formula may not be so simple in practice.

6.3. Example. A pushout is a colimit of a diagram whose shape is a “span”: pushout

X1
f1←− X0

f2−→ X2.

Using the above recipe, we see that a pushout of sets is a quotient by an equivalence relation “≈”
of a set whose elements are pairs (k, a), where k ∈ {0, 1, 2} and a ∈ Xk, where the ≈ is generated
by the relation “∼” with:

(k, x) ∼ (k, x), (0, x) ∼ (1, f1(x)), (0, x) ∼ (2, f2(x)).

6.4. Exercise. Consider the following span in Set:

Z ⌊x⌋← [x←−−−− 1
2Z

x 7→⌈x⌉−−−−→ Z,

where 1
2Z := {n/2 ∈ R | n ∈ Z }. Use the above recipe to compute its pushout.

6.5. Exercise. Consider the functor F : ∆→ Set which sends [n] to its underlying set {0, 1, . . . , n},
and has the obvious effect on functions. Compute colim∆ F .

6.6. Exercise. If C is a groupoid (i.e., all morphisms of C are isomorphisms), then the relation ∼ is
already an equivalence relation.

6.7. Exercise. Let S be a set with a relation ∼, and write ≈ for the relation generated by ∼. Show
that for s, s′ ∈ S, we have s ≈ s′ if and only if there exists a sequence s0, . . . , sn ∈ S with n ≥ 0,
such that s0 = s, sn = s′, and for each 0 ≤ i < n we have either si ∼ si+1 or si+1 ∼ si. (That is,
elements are in the same equivalence class if and only if they are “connected” by a finite sequence
of elements related by ∼.)

There are cases when things are more tractable.

5The point is that some categories are not small, such as Set itself, since there is no “set of all sets”.
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6.8. Proposition. Let A be a collection of subsets of a set S. Regard A as a partially ordered set
under “⊆”, and hence as a category. Suppose A has the following property: for all s ∈ S, and
T,U ∈ A such that s ∈ T ∩ U , there exists V ∈ A such that s ∈ V ⊆ T ∩ U . Then the tautological
map

colimT∈A T →
⋃
T∈A

T

(sending [(T, t)] 7→ t) is a bijection.

Proof. The tautological map is clearly surjective, so it remains only to show that (T, t) ≈ (T ′, t′) if
and only if t = t′. The remaining details are left for the reader, using (6.7). □

Note: an easy way to satisfy the hypothesis of (6.8) is to show that A is closed under pairwise
intersection, i.e., that T,U ∈ A implies T ∩ U ∈ A.

6.9. Colimits of simplicial sets. Colimits of simplicial sets also exist, and are “computed pointwise”
(or “dimensionwise”).

6.10. Proposition. Let F : C → sSet be a functor from a small category to simplicial sets. This
functor has a colimit (X, {ic}), where X is a simplicial set and ic : F (c)→ X are simplicial maps,
with the property that when we restrict to n-cells, the object (Xn, {ic,n : F (c)n → Xn}) is a colimit
of the functor Fn : C → Set defined on objects by Fn(c) := F (c)n.

Proof. This is a standard exercise whose details we leave to the reader. □

We can summarize the main idea of the above claim by saying that if X = colimc∈C F (c) ∈ sSet,
then for each n ≥ 0 we have a canonical bijection

Xn
∼←− colimc∈C F (c)n.

6.11. Colimits of subcomplexes. Recall (2.6) that a subcomplex of a simplicial set X is just
a subfunctor, i.e., a collection of subsets An ⊆ Xn which are closed under the action of simplicial
operators, and thus form a simplicial set so that the inclusion A→ X is a morphism of simplicial
sets. We typically write A ⊆ X when A is a subcomplex of X.

6.12. Example. Examples we have already seen include the spines In ⊆ ∆n and the ∆S ⊆ ∆n

associated to subsets S ⊆ [n].

For every set S of cells of a simplicial set, there is a smallest subcomplex which contains the set,
namely the intersection of all subcomplexes containing S.

6.13. Example. For a vertex x ∈ X0, we write {x} ⊆ X for the smallest subcomplex which contains
x. This subcomplex has exactly one n-dimensional cell for each n ≥ 0, namely x⟨0 · · · 0⟩, and thus
is isomorphic to ∆0.

More generally, for a collection of vertices a, b, c, · · · ∈ X0, we write {a, b, c, . . . } ⊆ X for the
smallest subcomplex which contains a, b, c, . . . . This subcomplex is a discrete simplicial set. This
choice of notation is supported by our informal identification of discrete simplicial sets with sets
(2.8).

The result (6.8) carries over to simplicial sets, where the role of subsets is replaced by subcomplexes.

6.14. Proposition. Let A be a collection of subcomplexes of a simplicial set X. Regard A partially
ordered set under “⊆”, and hence as a category. Suppose A has the following property: for all n ≥ 0,
all x ∈ Xn, and all K,L ∈ A such that x ∈ Kn ∩ Ln, there exists M ∈ A such that x ∈ Mn and
M ⊆ K ∩ L. Then the tautological map

colimK∈AK →
⋃

K∈A
K

is a bijection.
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Proof. We use the fact that colimits of simplicial sets are computed degreewise (6.10), together with
the analogous statement we already proved about colimits of subsets (6.8). □

6.15. Remark (Pushouts of subcomplexes). A special case of (6.14) applied to simplicial sets which
we will use often is the following. If K and L are subcomplexes of a simplicial set X, then so are
both K ∩ L and K ∪ L, and furthermore the evident commutative square

K ∩ L // //
��

��

L��

��

K // // K ∪ L
is a pushout square in simplicial sets, i.e., K ∪ L ≈ colim[K ← K ∩ L → L]. (Proof: (6.14) with
A = {K,L,K ∩ L}.)

6.16. Subcomplexes of standard simplices. For each S ⊆ [n] we have a subcomplex ∆S ⊆ ∆n,
whose cells correspond simplicial operators to [n] whose image is contained in S. The following says
that every subcomplex of ∆n is a union of such ∆Ss.

6.17. Lemma. Let K ⊆ ∆n be a subcomplex. If (f : [m] → [n]) ∈ Km with f([m]) = S, then
f ∈ (∆S)m and ∆S ⊆ K.

This proof uses the following elementary fact.

6.18. Lemma. Any order preserving surjection f : S → T between finite totally ordered sets admits
an order preserving section, i.e., s : T → S such that fs = idT .

Proof. Let s(t) = min { s ∈ S | f(s) = t }. □

Proof of (6.17). Choose a section t : S → [m] of fsurj : [m]→ S (6.18). Consider a cell g ∈ (∆S)k ⊆
(∆n)k, represented by a map g : [k]→ [n] whose image is contained in S. We get a commutative
diagram

[k]

g
��

s:=tg

||

g

!!

[m]
fsurj

// // S //
finj

// [n]

so g = fs and hence is a cell of the subcomplex K since f is. Thus ∆S ⊆ K, and it is immediate
that f ∈ (∆S)m. □

6.19. Remark. Thus, a subcomplex K ⊆ ∆n determines and is determined by a collection K of
non-empty subsets of [n] with the property that T ⊆ S and S ∈ K implies T ∈ K: namely,

K =
{
S ⊆ [n]

∣∣ ∆S ⊆ K
}

and K =
⋃
S∈K

∆S .

In other words, a subcomplex of ∆n is the “same thing” as an abstract simplicial complex whose
vertex set is a subset of [n].

We can sharpen (6.17): every subcomplex of ∆n is a colimit of subcomplexes of the form ∆S .

6.20. Proposition. Let K ⊆ ∆n be a subcomplex. Let A be the poset of all non-empty subsets
S ⊆ [n] such that ∆S ⊆ K. Then the tautological map

colimS∈A∆S → K

is an isomorphism.
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Proof. We must show that for each m ≥ 0, the map colimS∈A(∆
S)m → Km is a bijection. Each

(∆S)m = { f : [m]→ [n] | f([m]) ⊆ S } is a distinct subset of Km ⊆ (∆n)m; i.e., S ̸= S′ implies

(∆S)m ̸= (∆S′
)m. In view of (6.14), it suffices to show that for each f ∈ Km there is a minimal S

in A such that f ∈ (∆S)m. This is immediate from (6.17), which says that f ∈ (∆S)m and ∆S ⊆ K
where S = f([m]), and it is obvious that this S is minimal with this property. □

6.21. Proof of (5.2). Now we can prove our claim about maps out of a spine, using an explicit
description of a spine as a colimit.

Proof of (5.2). Let A be the poset of all non-empty S ⊆ [n] such that ∆S ⊆ In; i.e., subsets of [n]
of the form {j} or {j, j + 1}. Explicitly the poset A has the form

{0} → {0, 1} ← {1} → {1, 2} ← {2} → · · · ← {n− 1} → {n− 1, n} ← {n}.
By (6.20), colimS∈A∆S → In is an isomorphism. Thus Hom(In, X) ≈ Hom(colimS∈A∆S , X) ≈
limS∈AHom(∆S , X), and an elementary argument gives the result. □

7. Limits of simplicial sets

The notion of colimit has a dual notion, namely that of limit.

7.1. Product of simplicial sets. The product of a collection {Xα}α∈A of simplicial sets is defined product of simplicial
setsto be their product as functors. For instance, if X and Y are simplicial sets, the set of n-cells of the

product X × Y is the set Xn × Yn of pairs (a, b) of n-cells in X and Y , with simplicial operators f
acting by (a, b) 7→ (af, bf).

Later on in these notes, we will need to identify a product ∆m ×∆n of standard simplices (or
a subcomplex of this product) explicitly with a colimit of a diagram of standard simplices. The
following exercise displays the simplest non-trivial example of this.

7.2. Exercise (Important: product of 1-simplices). Let X = ∆1×∆1. Let A,B ⊆ X be subcollections
of cells in X defined so that

(f, g) ∈

{
A if f(i) ≤ g(i) for all i = 0, . . . , n,

B if f(i) ≥ g(i) for all i = 0, . . . n.

where f, g : [n]→ [1] are simplicial operators. Show that A and B are subcomplexes of X which are
each isomorphic to ∆2, and that A∩B is isomorphic to ∆1. Use this to show that the following is a
pushout square of simplicial sets.

∆1 ⟨02⟩
//

⟨02⟩
��

∆2

(⟨011⟩,⟨001⟩)
��

∆2

(⟨001⟩,⟨011⟩)
// ∆1 ×∆1

That is, in simplicial sets a “square” can be obtained by gluing two “triangles” along a common
edge, as suggested by the following picture.

(0, 1) // (1, 1)

(0, 0)

OO

//

;;

(1, 0)

OO
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8. Horns and inner horns

We now are going to give another (less obvious!) characterization of nerves, in terms of “extending
inner horns”, rather than “extending spines”. It will be this characterization that we “weaken” to
obtain the definition of a quasicategory.

8.1. Definition of horns. We define a collection of subcomplexes of the standard simplices, called
“horns”. For each n ≥ 1, these are subcomplexes Λn

j ⊂ ∆n for each 0 ≤ j ≤ n. The horn Λn
j is the horn

subcomplex of ∆n defined by

(Λn
j )k = { f : [k]→ [n] | ([n]∖ {j}) ̸⊆ f([k]) }.

Using the fact (6.20) that subcomplexes of ∆n are always unions of ∆Ss, we see that Λn
j is the

union of “faces” ∆[n]∖i of ∆n other than the jth face:

Λn
j =

⋃
i ̸=j

∆[n]∖i ⊂ ∆n.

When 0 < j < n we say that Λn
j ⊂ ∆n is an inner horn. We also say it is a left horn if j < n and inner horn

left horna right horn if 0 < j. Sometimes I’ll speak of an outer horn, meaning a horn Λn
j with j ∈ {0, n},

right horn

outer horn
i.e., a non-inner horn.

8.2. Example (1-horns). The horns inside ∆1 are just the vertices viewed as subcomplexes: Λ1
0 =

∆{0} = {0} ⊂ ∆1 and Λ1
1 = ∆{1} = {1} ⊂ ∆1. Neither is an inner horn, the first is a left horn, and

the second is a right horn.

8.3. Example (2-horns). These are the three horns inside the 2-simplex.

⟨1⟩ ⟨1⟩
⟨12⟩
��

⟨1⟩
⟨12⟩
��

⟨0⟩

⟨01⟩ CC

⟨02⟩
// ⟨2⟩ ⟨0⟩

⟨01⟩ CC

⟨2⟩ ⟨0⟩
⟨02⟩

// ⟨2⟩

Λ2
0 Λ2

1 Λ2
2

Only Λ2
1 is an inner horn, while Λ2

0 and Λ2
1 are left horns, and Λ2

1 and Λ2
2 are right horns. Note that

Λ2
1 is the same as the spine I2.

8.4. Exercise. Visualize the four horns inside the 3-simplex. The simplicial set Λ3
j actually kind of

looks like a horn: you blow into the vertex ⟨j⟩, and sound comes out of the opposite missing face

∆[3]∖j .

8.5. Exercise. Show that Λn
j is the largest subcomplex of ∆n which does not contain the cell

dj := ⟨0 · · · ĵ · · ·n⟩ ∈ (∆n)n−1, the “face opposite the vertex j”.

We note that inner horns always contain spines: In ⊆ Λn
j if 0 < j < n. This is also true for outer

horns if n ≥ 3, but not for outer horns with n = 1 or n = 2.

8.6. The inner horn extension criterion for nerves. We can now characterize nerves as those
simplicial sets which admit “unique inner horn extensions”. This is different than, but analogous to,
the characterization in terms of unique spine extensions (5.4).

8.7. Proposition. A simplicial set X is isomorphic to the nerve of a category, if and only if
Hom(∆n, X)→ Hom(Λn

j , X) is a bijection for all n ≥ 2, 0 < j < n.

The proof will take up the rest of the section.
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8.8. Nerves have unique inner horn extensions. First we show that nerves have unique inner
horn extensions.

8.9. Proposition. If C is a category, then for every inner horn Λn
j ⊂ ∆n the evident restriction

map
Hom(∆n, NC)→ Hom(Λn

j , NC)

is a bijection.

Proof. Since inner horns contain spines, we can consider restriction along In ⊆ Λn
j ⊆ ∆n. The

composite

Hom(∆n, NC)→ Hom(Λn
j , NC)

r−→ Hom(In, NC)

of restriction maps is a bijection (5.4), so r is a surjection. Thus, it suffices to show that r is
injective.

Recall (4.11) that a map of simplicial sets X → NC to a nerve is uniquely determined by its
values on edges. Thus we can reduce to the following: given a map f : Λn

j → NC from an inner

horn to a nerve, the values f takes on arbitrary edges ⟨a, b⟩ ∈ (Λn
j )1 are uniquely determined by the

values it takes on edges in the spine (In)1, i.e., edges of the form ⟨a, a⟩ and ⟨a, a+ 1⟩. There are
three cases.

n = 2: The claim is immediate since I2 = Λ2
1.

n = 3: Here is a picture of I3 ⊂ Λ3
1 ⊂ ∆3, showing all nondegenerate 0,1, and 2 cells.

0
����

��

1 //

��

c

a 3

2

CC
b

Note that Λ3
1 is the smallest subcomplex of ∆3 containing the 2-cells a = ⟨012⟩, b = ⟨123⟩, c =

⟨013⟩. Since the target of f : Λ3
1 → NC is the nerve of a category, we can check by hand

that the values of f on edges is determined by its value on I3. In fact, only three edges of
Λ3
1 are not in its spine, and we have

f⟨02⟩ = f⟨12⟩ ◦ f⟨01⟩, f⟨13⟩ = f⟨23⟩ ◦ f⟨12⟩, f⟨03⟩ = f⟨13⟩ ◦ f⟨01⟩,
using the presence of the 2-cells ⟨012⟩, ⟨123⟩, ⟨013⟩ in Λ3

1. A similar argument applies for
Λ3
2 ⊆ ∆3.

n ≥ 4: In this case we have that the subcomplex Λn
j ⊂ ∆n contains all 0, 1, and 2 dimensional cells

of ∆n. The argument that the value of a map f : Λn
j → NC on edges is determined by its

value on the spine proceeds much as the case n = 3: compute f⟨x, y⟩ by induction on the
value of y − x ≥ 1.

□

8.10. Nerves are characterized by unique inner horn extension. Let X be an arbi- W 26 Jan
trary simplicial set, and suppose it has unique inner horn extensions, i.e., each restriction map
Hom(∆n, X)→ Hom(Λn

j , X) is a bijection for all 0 < j < n with n ≥ 2.

Observe that unique extension along Λ2
1 ⊂ ∆2, defines a “composition law” on the set X1. That

is, given f, g ∈ X1 such that f1 = g0 in X0,
6 there is a unique map

u : Λ2
1 = ∆{0,1} ∪∆{1,2}

(f,g)−−−→ X such that ⟨01⟩ 7→ f ∈ X1, ⟨12⟩ 7→ g ∈ X1.

6Recall that f1 = f⟨1⟩ and g0 = g⟨0⟩, regarded as maps ∆0 → X and thus as elements of X0, using the notation
discussed in (2.3).
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Let ũ : ∆2 → X be the unique extension of u along Λ2
1 ⊂ ∆2, and define the “composite”

g ◦ f := ũ02.

Thus, the 2-cell ũ is uniquely characterized by: ũ01 = f , ũ12 = g, and g ◦ f is defined by: ũ02 = g ◦ f .
This composition law is automatically unital. Given x ∈ X0, write 1x := x⟨00⟩ ∈ X1, so that

(1x)0 = x = (1x)1. Then applying the composition law gives 1x ◦ f = f and g ◦ 1x = g. (Proof:
consider the 2-cells f⟨011⟩, g⟨001⟩ ∈ X2, and use the fact that their representing maps ∆2 → X are
the unique extensions of their restrictions to Λ2

1 ⊂ ∆2.)
Now consider Λ3

1 ⊂ ∆3. Recall (6.20) that Λ3
1 is a union (and colimit) of ∆S ⊆ ∆3 such that

S ̸⊇ {0, 2, 3}. A map v : Λ3
1 → X can be pictured as

0
(h◦g)◦f

!!

f

��
g◦f

��

1 h◦g //

g

��

3

2
h

==

so that the planar 2-cells in the picture correspond to non-degenerate 2-cells of ∆3 which are
contained in Λ3

1, while the edges are labelled according to their images in X, using the composition
law defined above. Let ṽ : ∆3 → X be an extension of v along Λ3

1 ⊂ ∆3, and consider the

restriction w := ṽ⟨023⟩ : ∆2 → X to the face ∆2 ≈ ∆{0,2,3} ⊂ ∆3. Then w01 = g ◦ f , w12 = h, and
w02 = (h ◦ g) ◦ f , and thus the existence of w demonstrates that

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
In other words, the existence of extensions along Λ3

1 ⊂ ∆3 implies that the composition law we
defined above is associative. (We could carry out this argument using Λ3

2 ⊂ ∆3 instead.)
Thus, given an X with unique inner horn extensions, we can construct a category C, so that

objects of C are elements of X0, morphisms of C are elements of X1, and composition is given as
above.

Next we construct a map X → NC of simplicial sets. There are obvious maps αn : Xn → (NC)n,
corresponding to restriction along spines In ⊆ ∆n; i.e., α(x) = (x01, . . . , xn−1,n). These maps are
compatible with simplicial operators, so that they define a map α : X → NC of simplicial sets. Proof:
For any n-cell x ∈ Xn, all of its edges are determined by edges on its spine via the (associative)
composition law: xij = xj−1,j ◦ xj−2,j−1 ◦ · · · ◦ xi,i+1, for all 0 ≤ i ≤ j ≤ n. Thus for f : [m]→ [n]
we have α(xf) = ((xf)01, . . . , (xf)m−1,m) = (xf0f1 , . . . , xfm−1fm) = (x01, . . . , xn−1,n)f0···fm = (αx)f .

Now we can prove that nerves are characterized by unique extension along inner horns.

Proof of (8.7). We have already shown (8.9) that nerves have unique extensions for inner horns.
Consider a simplicial set X which has unique inner horn extension. By the discussion above, we
obtain a category C and a map α : X → NC of simplicial sets, which is clearly a bijection in degrees
≤ 1. We will show αn : Xn → (NC)n is bijective by induction on n.

Fix n ≥ 2, and consider the commutative square

Hom(∆n, X)
∼ //

α∆n

��

Hom(Λn
1 , X)

αΛn
1

��

Hom(∆n, NC) ∼
// Hom(Λn

1 , NC)

The vertical maps are induced by post-composition with α : X → NC. The horizontal maps are
induced by restriction along Λn

1 ⊂ ∆n, and are bijections (top by hypothesis, bottom by (8.9)).
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Because Λn
1 is a colimit of standard simplices of dimension < n (6.20), the map αΛn

1
is a bijection

by the induction hypothesis. Therefore α∆n is also a bijection. □

Part 2. Quasicategories

9. Definition of ∞-category

We can now define the notion of a quasicategory, by removing the uniqueness part of the inner
horn extension criterion for nerves. This notion first appeared in [BV73, §IV.2], where such a
simplicial set was said to satisfy the “restricted Kan condition”. The terminology “quasicategory”
for such simplicial sets was introduced by André Joyal [Joy02]. These days they are usually referred
to as∞-categories, due to Jacob Lurie’s use of this term in [Lur09]. Note that the term “∞-category”
also gets used to refer to the general concept of which quasicategories are an examplar: i.e., there
are models for ∞-categories other than quasicategories, such as Segal categories, complete Segal
spaces, relative categories, and others. However, I will use the terms quasicategory and ∞-category
interchangably in what follows.

9.1. Identifying 1-categories with their nerves. To distinguish the classical notion of category
from ∞-categories, I will often refer to them as 1-categories. Furthermore, from this point on, I
will (at least informally) often not distinguish a 1-category C from its nerve. In particular, I may
assert something like “let C be a simplicial set which is a 1-category”, which should be read as
“C is a simplicial set which is isomorphic to the nerve of some category”. This should not lead to
much confusion, due to the fact that the nerve functor is a fully faithful embedding of Cat into sSet
(4.10). Recall that under this informal identification, the linearly ordered category [n] is identified
with the standard n-simplex ∆n.

9.2. Definition of quasicategory. A quasicategory (i.e, an ∞-category) is a simplicial set C quasicategory

∞-categorysuch that for every map f : Λn
j → C from an inner horn, there exists an extension of it to g : ∆n → C.

That is, C is a quasicategory if the function Hom(∆n, C) → Hom(Λn
j , C) induced by restriction

along Λn
j ⊂ ∆n is surjective for all 0 < j < n, n ≥ 2, so there always exists a dotted arrow in any

commutative diagram of the form

Λn
j

//

��

��

C

∆n

>>

Any 1-category (more precisely, the nerve of any 1-category) is an ∞-category. In fact, by what
we have shown (8.7), a 1-category is precisely a quasicategory for which there exist unique extensions
of inner horns.

Let C be a quasicategory. We refer to elements of C0 (vertices) as the objects of C, and elements objects

of C1 (edges) as the morphisms of C. Every morphism f ∈ C1 has a source and target, namely morphisms

source

target
its vertices f0 = f⟨0⟩, f1 = f⟨1⟩ ∈ C0. For f ∈ C1 we write f : f0 → f1, just as we would for
morphisms in a category. Likewise, for every object x ∈ C0, there is a distinguished morphism
1x : x→ x, called the identity morphism, defined by 1x = x00 = x⟨00⟩. When C is (the nerve of) identity morphism

a 1-category, all the above notions coincide with the usual ones. Note, however, that we cannot
generally define composition of morphisms in an ∞-category in the same way we do for a 1-category.

We now describe some basic categorical notions which admit immediate generalizations to
quasicategories. Many of these generalizations apply to arbitrary simplicial sets.

9.3. Products of quasicategories. Recall (7.1) that the product of simplicial sets X and Y is
just the product of the functors. Thus, (X × Y )n = Xn × Yn, with the evident action of simplicial
operators: (x, y)f = (xf, yf).
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9.4. Proposition. The product of two quasicategories (as simplicial sets) is a quasicategory.

Proof. Exercise, using the bijective correspondence between the sets of (i) maps K → X × Y and
(ii) pairs of maps (K → X,K → Y ). □

9.5. Exercise. If C and D are 1-categories, then N(C × D) ≈ NC × ND. Thus, the notion of
product of quasicategories generalizes that of categories.

9.6. Coproducts of quasicategories. The coproduct of simplicial sets X and Y is just the
coproduct of functors, whence (X ⨿ Y )n = Xn ⨿ Yn, i.e., the set n-cells of the coproduct is the
disjoint union of the sets of n-cells of X and Y . More generally,

(∐
sXs

)
n
=

∐
s(Xs)n for an indexed

collection {Xs} of simplicial sets.

9.7. Proposition. The coproduct of any indexed collection of quasicategories is a quasicategory.

To prove this, we introduce the set of connected components of a simplicial set. Given a connected components

simplicial set X, define an equivalence relation ≈ on the set
∐

n≥0Xn of cells of X, generated by
the relation

a ∼ aδ for all n ≥ 0, a ∈ Xn, δ : [m]→ [n].

An equivalence class for ≈ is called a connected component of X, and we write π0X for the set connected component

of connected components. This construction defines a functor π0 : sSet→ Set.
Note that the above recipe is exactly how we constructed the a colimit of a functor X : ∆op → Set.

Thus, there is an identification
colim∆op X ≈ π0X

between the set of connected components of X and the colimit of the functor X : ∆op → Set.

9.8. Exercise (Simplicial sets are coproducts of connected subcomplexes). Show that each connected
component C (i.e., equivalence class of cells) of a simplicial set X is a subcomplex of X, and that
the evident map

∐
C∈π0X

C → X of simplicial sets induced by inclusions of connected components
is an isomorphism.

9.9. Exercise. Show that any map f : X → Y of simplicial sets carries each connected component
C ⊆ X into some connected component of Y , and thus induces a map π0X → π0Y .

9.10. Exercise (Connected components are path components). Show that there is a canonical
bijection

(X0/ ≈1)
∼−→ π0X,

where the left-hand side denotes the set of equivalence classes in the vertex set X0 with respect to
the equivalence relation ≈1 which is generated by the relation ∼1 on X0, defined by

a ∼1 b iff there exists e ∈ X1 such that a = e0, b = e1.

We say that a simplicial set X is connected if π0X is a singleton, i.e., if it consists of a single connected

connected component.

9.11. Exercise. Show that every standard simplex ∆n is connected, and that every horn Λn
j is

connected.

Proof of (9.7). Consider a disjoint union X =
∐

sXs of quasicategories. Note that any connected
component of X must be contained inside one of the Xss, since for any cell of Xs, any simplicial
operator applied to it must also be a cell of Xs. Therefore, since horns are connected (9.11), and
maps preserve components (9.9), we see that the image of any map f : Λn

j → X must be contained
in some connected component and therefore in some Xs. Thus if Xs is a quasicategory, the desired
extension of f exists (if 0 < j < n). □

9.12. Exercise (Important). Show that the evident map π0(X × Y ) → π0X × π0Y induced by
projections is a bijection.
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9.13. Exercise (Colimits of functors to sets via π0). Given a functor F : C → Set from at ordinary
category to sets, we can describe its colimit as the set of connected components of the nerve of its
point category.

(1) Show that there is a 1-category CF (the point category of F ) so that: point category

• objects are pairs (c, x) where c ∈ C0 and x ∈ F (x), and
• morphisms (c, x)→ (c′, x′) are maps α : c→ c′ ∈ C1 such that F (α)(x) = x′.

(2) Show that there is an isomorphism π0N(CF )
∼−→ colimC F .

10. Subcategories

Recall that if C is a 1-category, then a subcategory C ′ of C consists of subsets obC ′ ⊆ obC and
morC ′ ⊆ morC of objects and morphisms of C which is a 1-category in its own right. Furthermore,
C ′ is a full subcategory if it contains all the morphisms in C which go between any two of its objects.

Both notions admit generalizations to ∞-categories.

10.1. Subcategories of ∞-category. A subcategory of an ∞-category C is a subcomplex subcategory

C ′ ⊆ C such that for all n ≥ 2 and 0 < k < n, every f : ∆n → C such that f(Λn
k) ⊆ C ′ satisfies

f(∆n) ⊆ C ′. That is, all inner horn extensions in C along “horns in C ′” are themselves contained
in C ′. It is clear that a subcategory is in fact a quasicategory.

10.2. Exercise (Subcategories are determined by their morphisms). Let C be a quasicategory, and con-
sider S ⊆ C1 a collection of morphisms in C. Define C ′n := { a ∈ Cn | aij ∈ S for all 0 ≤ i ≤ j ≤ n }.
Show that the C ′ns describe a subcomplex C ′ of C if and only if f00, f11 ∈ S for all f ∈ S. Show that
furthermore C ′ is a subcategory if and only if, in addition, for all u ∈ C2 we have that u01, u12 ∈ S
implies u02 ∈ S.

10.3. Remark. In general, if C ′ ⊆ C is a subcomplex and C and C ′ are quasicategories, it need not
be the case that C ′ is a subcategory of C. See (12.5) below.

When C is an 1-category, a subcategory of C in the above sense is the same as a subcategory
in the usual sense, which correspond exactly to subsets S ⊆ C1 of morphisms for which (i) if

(x
f−→ y) ∈ S then idx, idy ∈ S, and (ii) S is closed under composition, i.e., if g ◦ f is defined and

f, g ∈ S, then g ◦ f ∈ S.

10.4. Full subcategories of an ∞-category. We say that a subcomplex C ′ ⊆ C of an∞-category
C is a full subcategory if for all n and all a ∈ Cn, we have that a ∈ C ′n if and only if ai ∈ C ′0 for full subcategory

all i = 0, . . . , n.

10.5. Exercise. Show that a full subcategory C ′ ⊆ C is in fact a subcategory as defined in (10.1),
and thus in particular a full subcategory C ′ is itself a quasicategory.

Given an ∞-category C and a set S ⊆ C0 of vertices, let

C ′n = { a ∈ Cn | aj ∈ S for all j = 0, . . . , n },
the set of n-dimensional cells whose vertices are in S. This is evidently a full subcategory of C,
called the full subcategory spanned by S. full subcategory

spanned by SWhen C is a 1-category, a full subcategory of C in the above sense is the same as a full subcategory
in the usual sense.

10.6. Opposite of a quasicategory. Given a 1-category C, the opposite category Cop has obCop =
obC, and HomCop(x, y) = HomC(y, x), and the sense of composition is reversed: g ◦Cop f = f ◦C g.

This concept also admits a generalization to quasicategories, which we define using a non-trivial
involution op: ∆→ ∆ of the category ∆. This is the functor which on objects sends [n] 7→ [n], and
on morphisms sends ⟨f0, . . . , fn⟩ : [n]→ [m] to ⟨m− fn, . . . ,m− f0⟩, i.e., op(f)(x) = m− f(n− x).
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10.7. Remark. You can visualize this involution as the functor which “reverses the ordering” of the
totally-ordered sets [n]. Note that the totally ordered set “[n] with the order of its elements reversed”
isn’t actually an object of ∆, but rather is uniquely isomorphic to [n], via the function x 7→ n− x.

The opposite of a simplicial set X : ∆op → Set is the composite functor Xop := X ◦op. We have a opposite

unique isomorphism (∆n)op ≈ ∆n, and this isomorphism restricts to an isomorphism (Λn
j )

op ≈ Λn
n−j

of subcomplexes, so that the opposite of an inner horn is another inner horn. As a consequence, the
opposite of a quasicategory is a quasicategory. It is straightforward to verify that (NC)op = N(Cop),
so the notion of opposite quasicategory generalizes the notion of opposite category. The functor
op: ∆→ ∆ satisfies op ◦ op = id∆, so (Xop)op = X.

11. Functors and natural transformations

11.1. Functors. A functor between ∞-category is merely a map f : C → D between the simplicial functor

sets.
We write qCat for the 1-category of ∞-categories (=quasicategories) and functors between them.

Clearly qCat ⊂ sSet is a full subcategory. Because the nerve functor is a full embedding of Cat into
qCat, the notions of functor for categories and quasicategories coincide when both are viewed as
kinds of simplicial sets.

11.2. Exercise (Mapping property of a full subcategory). Let C be a quasicategory, and C ′ ⊆ C the
full subcategory spanned by some subset S ⊆ C0. Show that a functor f : D → C factors through a
functor f ′ : D → C ′ ⊆ C if and only if f(D0) ⊆ S.

11.3. Natural transformations. Given functors F,G : C → D between categories, a natural
transformation ϕ : F ⇒ G is a choice, for each object c of C, of a map ϕ(c) : F (c) → G(c) in D,
such that g(α) ◦ ϕ(c) = ϕ(c′) ◦ f(α) for every morphism α : c→ c′ in C, i.e., such that the square

F (c)
ϕ(c)

//

f(α)
��

G(c)

g(α)
��

F (c′)
ϕ(c′)

// G(c′)

commutes in D.
There is a standard convenient reformulation of this: a natural transformation ϕ : F ⇒ G is the

same thing as a functor
Φ: C × [1]→ D,

from the product of C with [1], so that Φ|C × {0} = F , Φ|C × {1} = G, and Φ|{c} × [1] = α(c) for
each c ∈ obC.

11.4. Remark. In the above I have made implicit use of the evident isomorphisms C × {0} ≈ C ≈
C × {1}, and of {c} × [1] ≈ [1]. I will do this frequently in what follows, usually without comment,
and implicitly identify X ×∆0 or ∆0 ×X with X.

This reformulation admits a straightforward generalization to quasicategories, using that N [1] =
∆1. A natural transformation ϕ : f0 ⇒ f1 of functors f0, f1 : C → D between quasicategories is natural transformation

defined to be a map
ϕ : C ×∆1 → D

of simplicial sets such that ϕ|C × {i} = fi for i = 0, 1. For ordinary categories this coincides with
the classical notion, since N(C)×∆1 ≈ N(C)×N([1]) ≈ N(C × [1]) (9.5).
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12. Examples of ∞-categories

There are many ways to produce ∞-categories, as we will see. Unfortunately, “hands-on” F 28 Jan
constructions of quasicategories which are not 1-categories are relatively rare. Here I give a few
reasonably explicit examples to play with.

12.1. The ∞-category of 1-categories. This is an example of a quasicategory in which objects
are (small) categories, morphisms are functors between categories, and 2-dimensional cells are
certain kinds of natural isomorphisms of functors.

Define a simplicial set Cat1 so that (Cat1)n has elements described by data x := (Ci, Fij , ζijk)
where

(0) for each i ∈ [n], Ci is a (small) category,
(1) for each i ≤ j in [n], Fij : Ci → Cj is a functor, and
(2) for each i ≤ j ≤ k in [n], ζijk : Fik ⇒ FjkFij is a natural isomorphism of functors Ci → Ck,

such that

(a) for each i in [n], Fii : Ci → Ci is the identity functor IdCi of Ci,
(b) for each i ≤ j in [n], ζiij : Fij ⇒ Fij IdCi and ζijj : Fij ⇒ IdCj Fij are the identity natural

isomorphism of Fij , and
(c) for each i ≤ j ≤ k ≤ ℓ, the diagram

(12.2)

Fiℓ

ζijℓ +3

ζikℓ
��

FjℓFij

ζjkℓFij

��
FkℓFik

Fkℓζijk

+3 FkℓFjkFij

of natural isomorphisms of functors commutes, i.e., we have an identity (ζjkℓFij)ζijℓ =
(Fkℓζijk)ζikℓ of natural transformations Fiℓ → FkℓFjkFij of functors Ci → Cℓ.

For a simplicial operator δ : [m]→ [n] define

(Ci, Fij , ζijk)δ = (Cδ(i), Fδ(i)δ(j), ζδ(i)δ(j)δ(k)).

12.3. Remark. Note that condition (c) is actually implied by condition (b) whenever i = j, or j = k,
or k = ℓ.

12.4. Example. An 0-cell in Cat1 is a category. A 1-cell in Cat1 is a functor. A 2-cell in Cat1 is a
natural isomorphism F02 ⇒ F12F01 from a functor to a composite of two functors.

I claim that Cat1 is a quasicategory. Fillers for Λ2
1 ⊂ ∆2 always exist: a map Λ2

1 → Cat1 amounts

to a choice of functors (C0
F01−−→ C1

F12−−→ C2), and an extension to ∆2 can be given by setting
F02 = F12F01 and ζ012 = idF02 . Note that this is not the only possibly extension: we can take
F02 to be any functor which is naturally isomorphic to F12F01, and ζ012 can be any such natural
isomorphism.

Fillers for Λ3
1 ⊂ ∆3 and Λ3

2 ⊂ ∆3 always exist, and are unique: finding a filler amounts to choosing
isomorphisms ζ023 = ζikℓ (for Λ

3
1) or ζ013 = ζijℓ (for Λ

3
2) making (12.2) commute, which can be done

uniquely because in either case the other three isomorphisms are given. All fillers for all horns
Λn
j ⊂ ∆n in higher dimensions n ≥ 4 exist and are unique: there is no additional data to supply in

these cases, and all properies of the data are automatically satisfied.

12.5. Exercise. Note that the (nerve of) the 1-category Cat of small categories and functors between
them is isomorphic to the subcomplex of Cat1 whose cells are (Ci, Fij , ζijk) such that Fik = FjkFij

and ζijk = idFik
. Show that this subcomplex is a quasicategory which not a subcategory in the sense

of (10.1). (“The 1-category of 1-categories is not a subcategory of the ∞-category of 1-categories.”)
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12.6. Remark. Suppose D is a category. Then a functor D → Cat1 is basically the same thing as
what is called a pseudofunctor D → Cat.

12.7. Automorphism ∞-groupoid of a group. Here is a “smaller” variant of the above example.
Given a group G, let (MG)n be the set whose elements are data x := (ϕij , uijk) where

(1) for each i ≤ j in [n], ϕij : G→ G is a group automorphism, and

(2) for each i ≤ j ≤ k in [n], uijk ∈ G such that ϕjkϕij(g) = uijkϕik(g)
−1u−1ijk for all g ∈ G,

such that

(a) for each i in [n], ϕii : G→ G is the identity map idG,
(b) for each i ≤ j, uiij and uijj are the identity element of G, and
(c) for each i ≤ j ≤ k ≤ ℓ, we have the identity

ϕkℓ(uijk)uikℓ = ujkluijℓ.

For a simplicial operator δ : [m]→ [n] define

(ϕij , uijk)δ = (ϕδ(i)δ(j), uϕ(i)ϕ(j)ϕ(k)).

Thus MG has exactly one 0-cell, while a 1-cell is an automorphism of G, and a 2-cell is a collection
of three automorphisms together with an element u = u012 ∈ G so that ϕ12ϕ02(g) = uϕ02(g)u

−1 for
all g ∈ G.

12.8. Exercise. Show that the above defines a simplicial set which is a quasicategory (in fact, a Kan
complex as defined below (12.12), and therefore an ∞-groupoid as we will see later).

12.9. Singular complex of a space. Given a topological space, we can extract from it an
∞-category (in fact, an ∞-groupoid) sometimes called its fundamental ∞-groupoid, or more conven-
tionally its singular complex.

The topological n-simplex is topological n-simplex

∆n
top :=

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣ ∑
xi = 1, xi ≥ 0

}
,

the convex hull of the standard basis vectors e0, . . . , en in (n + 1)-dimensional Euclidean space,
viewed as a subspace. These fit together as the values of a functor ∆top : ∆→ Top to the category of
topological spaces and continuous maps, with ∆top([n]) = ∆n

top. A simplicial operator δ : [m]→ [n]
sends (x0, . . . , xm) ∈ ∆m

top to (y0, . . . , yn) ∈ ∆n
top with yj =

∑
f(i)=j xi. That is, it sends a standard

basis vector ei to eδ(i), and is extended to the simplex by linearity.
For a topological space T , we define its singular complex Sing T to be the simplicial set with singular complex

cells [n] 7→ HomTop(∆
n
top, T ), the set of continuous maps from the topological n-simplex, with the

action of simplicial operators induced by restriction.
Define topological horns topological horns

(Λn
j )top :=

{
x ∈ ∆n

top

∣∣ ∃ i ∈ [n]∖ {j} such that xi = 0
}
⊂ ∆n

top,

and observe that continuous maps (Λn
j )top → T correspond in a natural way with maps Λn

j → Sing T .

12.10. Exercise. Prove the previous statement, by showing that (Λn
j )top is a colimit in topological

spaces of a functor ∆S 7→ ∆S
top, on the poset of subcomplexes ∆S ⊆ Λn

j , and use (6.20).

There exists a continuous retraction rn : ∆
n
top → (Λn

j )top, and thus we see that

Hom(∆n,Sing T )→ Hom(Λn
j , Sing T )

is surjective for every horn (not just inner ones): any continous map f : (Λn
j )top → T can be extended

to a map f ′ : ∆n
top → T by setting f ′ := frn.

12.11. Exercise. Describe a continuous retraction r : ∆n
top → (Λn

j )top.
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12.12. Remark (Kan complexes). A simplicial set X which has extensions for all horns is called a
Kan complex. Thus, Sing T is a Kan complex, and so in particular is a quasicategory (and as we Kan complex

will see below, a “quasigroupoid” (14.14)).

12.13. Eilenberg-MacLane object. In algebraic topology, an Eilenberg-MacLane space is a space
(called K(A, d)) with only one non-trivial homotopy group A in dimension d. One of their key
features is that they serve as representing objects for cohomology: homotopy classes of maps
X → K(A, d) correspond to elements of the cohomology group Hd(X;A). They have an explicit
construction in terms of simplicial homotopy theory, which provide us with explicit constructions of
quasicategories.

Fix an abelian group A and an integer d ≥ 0. We define a simplicial set K = K(A, d), so that
Kn is a set whose elements are data a = (aδ) consisting of

(a) for each simplicial operator δ : [d]→ [n], an element aδ ∈ A, such that
(b) aδ = 0 if δ is not an injective function [d]→ [n], and such that

(c) for each γ : [d+1]→ [n] we have
∑d+1

j=0(−1)jaγdj = 0, where dj := ⟨0, . . . , ĵ, . . . , d+1⟩ : [d]→
[d+ 1], the injective simplical operator which omits j from its image.

Note that the condition in (c) is automatically satisfied when γ is not injective, given (b): if
γ(v) = γ(v + 1), then γdj is non-injective when j ̸= v, v + 1, and γdv = γdv+1.

For a simplicial operator ϵ : [m]→ [n] and a ∈ K(A, d)n we define

(aϵ)δ := aϵδ for δ : [d]→ [m].

12.14. Exercise. Verify the above formulas define a simplicial set.

When d = 0, the object K(A, 0) is seen to be a discrete simplicial set, equal to A in each
dimension.

12.15. Exercise. Show that K(A, 1) is isomorphic to the nerve of a groupoid, namely the nerve of
the group A regarded as a category with one object.

In general, the object K(A, d) is a Kan complex, and hence a quasicategory (and in fact a
quasigroupoid as we will see). This is demonstrated in the following exercises.

12.16. Exercise. Given a simplicial set X, a normalized d-cocycle with values in an abelian group normalized d-cocycle

A is a function f : Xd → A such that

(1) f(xsi) = 0 for all x ∈ Xd−1 and 0 ≤ i ≤ d−1, where si = ⟨0, . . . , i, i, . . . , d−1⟩ : [d]→ [d−1],
and

(2)
∑

(−1)if(xdi) = 0 for all x ∈ Xd+1 and 0 ≤ i ≤ d+1, where di = ⟨0, . . . , î, . . . , d⟩ : [d−1]→
[d].

Show that there are inverse bijections

ϕ : HomsSet(X,K(A, d))←→ Zd
norm(X;A) :ψ

from the set of simplicial maps to the set of normalized d-cocycles, where ϕ sends g : X → K(A, d)
to its restriction f := gd : Xd → K(A, d)d = A on d-cells, and ψ sends f ∈ Zd

norm(X; d) to the
simplicial map g given gn(x)δ := f(xδ) for x ∈ Xn and δ ∈ Hom∆([d], [n]).

12.17. Exercise. Show that K(A, d) is a Kan complex, i.e., that Hom(∆n,K(A, d)) →
Hom(Λn

j ,K(A, d)) is surjective for all horns Λn
j ⊂ ∆n. In fact, this map is bijective unless n = d.

(Hint: use the previous exercise to transform the question into one about extending normalized
cocycles, and note that there are four distinct cases to check, namely n < d, n = d, n = d+ 1, and
n > d+ 1.)

12.18. Remark. Eilenberg-MacLane objects are an example of a simplicial abelian group: the map
+: K ×K → K defined in each dimension by (a+ b)δ = aδ + bδ is a map of simplicial sets which
satisfies the axioms of an abelian group, reflecting the fact that Zd

norm(X;A) is an abelian group.
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As the terminology of “normalized cocycle” suggests, these objects are closely related to co-
homology of topological spaces. In particular, if T is a topological space, and X = Sing T is
its singular complex, then its singular cohomology group Hd(T ;A) is a quotient of the group
Hom(X,K(A, d)) ≈ Zd

norm(X;A) of normalized cohains (by a subgroup of “normalized bound-
aries”).

13. Homotopy category of an ∞-category

Our next goal is to define the notion of an isomorphism in an ∞-category. This notion behaves M 31 Jan
much like that of homotopy equivalence in topology. We will define isomorphism by means of the
homotopy category of an ∞-category. If we think of an ∞-category as “an ordinary category with
higher structure”, then its homotopy category is the ordinary category obtained by “flatting out
the higher stucture”.

13.1. The fundamental category of a simplicial set. The homotopy category of a quasicategory
is itself a special case of the notion of the fundamental category of a simplicial set, which we turn to
first.

A fundamental category for a simplicial set X consists of (i) a category hX, and (ii) a map fundamental category

α : X → N(hX) of simplicial sets, such that for every category C, the map

α∗ : Hom(N(hX), NC)→ Hom(X,NC)

induced by restriction along α is a bijection. This is a universal property which characterizes the
fundamental category up to unique isomorphism, if it exists.

13.2. Proposition. Every simplicial set has a fundamental category.

Proof sketch. Given X, we construct hX by generators and relations. First, consider the free
category F , whose objects are the set X0, and whose morphisms are finite “composable” sequences free category

[an, . . . , a1] of edges of X1. Thus, morphisms in F are “words”, whose “letters” are edges ai with
(ai+1)0 = (ai)1, and composition is concatenation of words; the element [an, . . . , a1] is then a
morphism (a1)0 → (an)1. We must also suppose that there is an empty sequence []x in F for each
vertex x ∈ X0; these correspond to identity maps in F .

Then hX is defined to be the minimal quotient category of F subject to the following relations
on the set of morphisms:

• [a] ∼ []x for each x ∈ X0 where a = x00 ∈ X1, and
• [g, f ] ∼ [h] whenever there exists a ∈ X2 such that a01 = f , a12 = g, and a02 = h.

The map α : X → N(hX) sends x ∈ Xn to the equivalence class of [xn−1,n, . . . , x0,1]. Given this,
verifying the desired universal property of α is formal.

(We will give another construction of the fundamental category in (17.28).) □

13.3. Exercise. Complete the proof of (13.2) by showing that α∗ : Hom(N(hX), NC)→ Hom(X,NC)
is a bijection for any category C.

As a consquence, the fundamental category construction describes a functor h : sSet → Cat,
which is left adjoint to the nerve functor N : Cat→ sSet, so that there is an isomorphism

HomCat(hX,C)
∼−→ HomsSet(X,NC)

natural in the simplicial set X and category C.
In general, the fundamental category of a simplicial set is not an easy thing to get a hold of

explicitly, because it is difficult to give an explicit description of a “quotient category” induced by a
relation on its morphisms. We will not be making much use of it. When C is a quasicategory, there
is a more concrete construction of hC, which in this context is called the homotopy category of C.
Warning: Sometimes people will not distinguish “fundamental category” from “homotopy category”
as I have here, and just call either the homotopy category. I will use the notation “hC” for either.
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13.4. The homotopy relation on morphisms. Fix a quasicategory C. For x, y ∈ C0, let
homC(x, y) := { f ∈ C1 | f0 = x, f1 = y } denote the set of “morphisms” in C from x to y. We
write 1x for the element x00 ∈ homC(x, x).

Define relations ∼ℓ, ∼r on homC(x, y) (called left homotopy and right homotopy) by left homotopy

right homotopy• f ∼ℓ g iff there exists a ∈ C2 with a01 = 1x, a02 = f , a12 = g,
• f ∼r g iff there exists b ∈ C2 with b12 = 1y, b01 = f , b02 = g.

Pictorally:

f ∼ℓ g :

x f

''
1x
��

y

x g

77a f ∼r g :

y

1y
��

x

f 77

g ''

b

y

Note that f ∼ℓ g in homC(x, y) if and only if g ∼r f in homCop(y, x).

13.5. Remark. If C is an ordinary category, then the left homotopy and right homotopy relations
reduce to the equality relation on the set HomC(x, y).

13.6. Proposition. The relations ∼ℓ and ∼r are equal to each other, and are an equivalence relation
on homC(x, y).

Proof. Given f, g, h : x→ y in a quasicategory C, we will prove

(1) f ∼ℓ f ,
(2) f ∼ℓ g and g ∼ℓ h imply f ∼ℓ h,
(3) f ∼ℓ g implies f ∼r g,
(4) f ∼r g implies g ∼ℓ f .

Statements (3) and (4) combine to show that ∼ℓ is symmetric, and thus with (1) and (2) that ∼ℓ is
an equivalence relation. Statements (3) and (4) and symmetry imply that ∼r and ∼ℓ coincide. The
idea is to use the inner-horn extension condition for C to produce the appropriate relations.

Staetement (1) is exhibited by f001 ∈ C2.

x
f
""

1x

��

y

x

f

<<f001

Statements (2), (3), and (4) are demonstrated by the following diagrams, which present a map
from an inner horn of ∆3 (respectively Λ3

1, Λ
3
1, and Λ3

2) to C constructed from the given data. The

restriction of any extension to ∆3 along the remaining face (respectively ∆{023}, ∆{023}, and ∆{013})
gives the conclusion.

x
f

""

1x
��

1x

��

x g //

1x
��

a

x000 y

x
h

<<

b

x
g

""

1x
��

f

��

x g //

g

��

g001

a y

y
1y

==

g011

x
g

""

f

��
1x

��

b

y 1y // y

x
f

<<

f

??
f001

f011

□

We now define f ≈ g to mean f ∼ℓ g (equivalently f ∼r g). We speak of homotopy classes [f ] homotopy classes

of morphisms f ∈ homC(x, y), meaning equivalence classes under ≈.
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13.7. Composition of homotopy classes of morphisms. Next we observe that we can compose
homotopy classes. Given f ∈ homC(x, y), g ∈ homC(y, z), h ∈ homC(x, z), we say that h is a
composite of (g, f) if there exists a 2-cell a ∈ C2 with a⟨01⟩ = f , a⟨12⟩ = g, a⟨02⟩ = h; thus composite

composition is a three-fold relation on hom(x, y)× hom(y, z)× hom(x, z). The composition relation
is compatible with the homotopy relation in the following sense.

13.8. Lemma. If f ≈ f ′, g ≈ g′, h a composite of (g, f), and h′ a composite of (g′, f ′), then h ≈ h′.

Proof. Since ≈ is an equivalence relation, it suffices prove the special cases (a) f = f ′, and (b)
g = g′. We prove case (b), as case (a) is analogous.

Let a ∈ C2 exhibit f ∼ℓ f
′, and let b, b′ ∈ C2 exhibit h as a composite of (g, f) and h′ as a

composite of (g, f ′) respectively. The inner horn Λ3
2 → C defined by

0
h

!!

f

��
1x

��

b

2 g // 3

1
h′

==

f ′

@@
a

b′

extends to u : ∆3 → C, and u|∆{0,1,3} exhibits h ∼ℓ h
′. □

Thus, composites of (g, f) live in a unique homotopy class of morphisms in C, which only depends
on the homotopy classes of g and f . I will write [g]◦ [f ] for the homotopy class containing composites
of (g, f).

I’ll leave the following as exercises; the proofs are much like what we have already seen.

13.9. Lemma. Given f : x→ y, we have [f ] ◦ [1x] = [f ] = [1y] ◦ [f ].

13.10. Lemma. If [g] ◦ [f ] = [u], [h] ◦ [g] = [v], then [h] ◦ [u] = [v] ◦ [f ].

13.11. Exercise. Prove (13.9) and (13.10).

13.12. The homotopy category of a quasicategory. For any quasicategory, we define its
homotopy category hC, with object set ob(hC) := C0, and with morphism sets homhC(x, y) := homotopy category

homC(x, y)/ ≈, with composition defined by [g] ◦ [f ]. The above lemmas (13.9) and (13.10) exactly
imply that hC is a category.

We define a map π : C → N(hC) of simplicial sets as follows. On vertices, π is the identity
map C0 = N(hC)0 = obhC. On edges, the map is defined by the tautological quotient maps
homC(x, y) → homC(x, y)/ ≈ sending f 7→ [f ]. The map π sends an n-cell a ∈ Cn to the unique
π(a) ∈ N(hC)n such that π(a)i−1,i = π(ai−1,i). These functions are seen to be compatible with
simplicial operators using the following exercise.

13.13. Exercise. Let C be a quasicategory and a ∈ Cn an n-cell, and define fi := ai−1,i ∈ C1 for
i = 1, . . . , n and g := a0,n ∈ C1. Show that [fn] ◦ · · · ◦ [f1] = [g] in the homotopy category hC.

Note that if C is a 1- category, then f ≈ g if and only if f = g. Thus, π : C → N(hC) is an
isomorphism of simplicial sets if and only if the quasicategory C is isomorphic to the nerve of a
1-category, which must be its homotopy category.

The following says that the homotopy category of a quasicategory is its fundamental category,
justifying the notation “hC”.

13.14. Proposition. Let C be a quasicategory and D a small category, and let ϕ : C → N(D) be a
map of simplicial sets. Then there exists a unique map ψ : N(hC)→ N(D) such that ψπ = ϕ.
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Proof. We first show existence, by constructing a suitable map ψ, which being a map between nerves
can be described as a functor hC → D. On objects, let ψ send x ∈ ob(hC) = C0 to ϕ(x) ∈ ob(D) =
(ND)0. On morphisms, let ψ send [f ] ∈ homhC(x, y) to ϕ(f) ∈ homD(ϕ(x), ϕ(y)) ⊆ (ND)1.
Observe that the function on morphisms is well-defined since if f ∼ℓ f

′, exhibited by some a ∈ C2,
then ϕ(a) ∈ (ND)2 exhibits the identity ϕ(f) = ϕ(f ′)ϕ(1x) = ϕ(f ′) in D. It is straightforward to
show that ψ so defined is actually a functor, and that ψπ = ϕ as maps C → N(D).

The functor ψ defined above is the unique solution: the value of ψ on objects and morphisms is
uniquely determined, and π : Ck → (hC)k is bijective for k = 0 and surjective for k = 1. □

In particular, the homotopy category construction provides a left adjoint to the nerve functor, so
we have a pair of adjoint functors

h : qCat ⇄ Cat :N.

13.15. Exercise. Understand the homotopy categories of the various examples of quasicategories
described in (12). In particuar, in each case describe the sets of morphisms in the homotopy category
between any two objects.

13.16. Exercise (Easy but important: homotopy category of a product). Show that formation of the
homotopy category commutes with arbitrary products: for any collection {Ci} of quasicategories,
there is an evident isomorphism

h
∏
i

Ci ≈
∏
i

hCi.

In particular, we have h(C ×D) ≈ hC × hD for any quasicategories C and D.

13.17. A criterion for composition. We have observed that for morphisms f : x → y and
g : y → z in a quasicategory that we can define a composite “g ◦ f” using extension along Λ2

1 ⊂ ∆2,
and that though such compositions are not unique, they are unique up to homotopy, so we get
a well-defined homotopy class [g] ◦ [f ]. The following proposition says that every element in this
homotopy class is obtained from this construction.

13.18. Proposition. If f : x → y, g : y → z, and h : x → z are morphisms in a quasicategory C,
then [h] = [g] ◦ [f ] if and only if there exists u : ∆2 → C such that

u|∆{0,1} = f, u|∆{1,2} = g, u|∆{0,2} = h.

Thus, every morphism in the homotopy class of h can be interpreted as a composite of g with f .

Proof. Clearly if u exists then [h] = [g] ◦ [f ]. Conversely, suppose given f, g, h with h ∈ [g] ◦ [f ],
and choose some a : ∆2 → C with a01 = f and a12 = g, whence [g] ◦ [f ] = [h′] for h′ = a02. Since
h ∈ [h′] there is a b ∈ C2 witnessing the relation h′ ∼r h, and using this we can construct a map
Λ3
2 → C according to the diagram

0
h

!!

h′

��
f

��

b

2 1z // 3

1
g

==

g

@@
a

g011

Extend to a map v : ∆3 → C; then u = v|∆{0,1,3} exhibits h as a composite of (g, f) as desired. □

13.19. Exercise (Subcategories of a quasicategory vs of its homotopy category). Let C ′ ⊆ C be
a subcategory (10.1) of a quasicategory C. Show that if f, g : x → y are morphisms of C which
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are homotopic in C, then f ∈ C ′1 if and only if g ∈ C ′1. Use this to show that there is a bijective
correspondence

(subcategories of C)↔ (subcategories of hC),

and also a bijective correspondence

(full subcategories of C)↔ (full subcategories of hC).

14. Isomorphisms in a quasicategory

Let C be a quasicategory. We say that an edge f ∈ C1 is an isomorphism if its image in the isomorphism

homotopy category hC is an isomorphism in the usual sense of category theory. Another term you
will see for such edges is equivalence, but I prefer to use the term isomorphism here, since this is equivalence

the direct generalization of the notion of isomorphisms in a 1-category.
Explicitly, a morphism f : x→ y in a quasicategory is an isomorphism if and only if there exists

an edge g : y → x such that [g] ◦ [f ] = [1x] and [f ] ◦ [g] = [1y], where equality is in the homotopy
category hC.

14.1. Example. Consider f ∈ C1. If we can produce g ∈ C1 and a, b ∈ C2 such that

a01 = f = b12, a12 = g = b01, a02 = x00, b02 = y00 :

x
1x //

f

��

x

y
1y

//

g
??

b

y

g

??

a

then [g] ◦ [f ] = [1x] and [f ] ◦ [g] = [1y], so f isomorphism. The converse also holds: if f is an
isomorphism, then there exist g ∈ C1 and a, b ∈ C2 as above, which can be proved using (13.18).

14.2. Example (Identity maps are isomorphims). For every x ∈ C0 the identity map 1x : x→ x is an
isomorphism: for instance, use a = b = x000 in the above diagram.

14.3. Exercise. Show that any functor f : C → D between quasicategories sends isomorphisms to
isomorphisms.

14.4. Preinverses and postinverses. Let C be a quasicategory. Given f : x → y ∈ C1, a
postinverse7 of f is a g : y → x ∈ C1 such that [g] ◦ [f ] = [1x], and a preinverse8 of f is an postinverse

preinversee : y → x ∈ C1 such that [f ] ◦ [e] = [1y]. An inverse is an f ′ ∈ C1 which is both a postinverse and a
inversepreinverse. The following is trivial, but very handy.

14.5. Proposition. In a quasicategory C consider f ∈ C1. The following are equivalent.

• f is an isomorphism.
• f admits an inverse f ′.
• f admits a postinverse g and a preinverse e.
• f admits a postinverse g and g admits a postinverse h.
• f admits a preinverse e and e admits a preinverse d.

If these equivalent conditions apply, then f ≈ d ≈ h and f ′ ≈ e ≈ g, and all of them are
isomorphisms.

Proof. All of these are equivalent to the corresponding statements about morphisms in the homotopy
category hC, where they are seen to be equivalent to each other by elementary arguments. □

Note that inverses to a morphism in a quasicategory are generally not unique, though necessarily
they are unique up to homotopy.

7or left inverse, or retraction,
8or right inverse, or section,
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14.6. Exercise. Consider the quasicategory of categories Cat1 as in (12.1). Show that a functor
F : C → C ′ corresponding to a morphism of Cat1 is an isomorphism of Cat1 (in the above sense) if
and only if F is an equivalence of categories.

14.7. Quasigroupoids. A quasigroupoid9 is a quasicategory C such that hC is a groupoid, i.e., quasigroupoid

a quasicategory in which every morphism is an isomorphism.

14.8. Exercise. If every morphism in a quasicategory admits a preinverse, then it is a quasigroupoid.
Likewise if every morphism admits a postinverse.

14.9. The core of a quasicategory. For an ordinary category A, the core (or interior, or core

interiormaximal subgroupoid) of A is the subcategory Acore ⊆ A consisting of all the objects, and all
maximal subgroupoid

the isomorphisms between the objects.
For a quasicategory C, we define the core10 Ccore ⊆ C to be the subcomplex consisting of cells all

of whose edges are all isomorphisms. That is, Ccore is defined so that the diagram

Ccore // //

��

C

π

��

(hC)core // // hC

is a pullback of simplicial sets. Observe that N(Acore) = (NA)core for a category A.

14.10. Proposition. Given a quasicategory C, its core Ccore is a subcategory and a quasigroupoid,
and every subcomplex of C which is a quasigroupoid is contained in Ccore.

Proof. First we show that Ccore is a subcategory (10.1). Suppose f : ∆n → C such that f(Λn
k) ⊆ Ccore

for n ≥ 2 and 0 < k < n. When n ≥ 3 then (Λn
k)1 = (∆n)1, so clearly f(∆n) ⊆ Ccore. When n = 2

we have that f(∆2) ⊆ Ccore because the composite of two isomorphisms is an isomorphism.
It follows that Ccore is a quasicategory. Since the inverse of an isomorphism is an isomorphism, it

is straightforward to see that Ccore is a quasigroupoid. The final statement is clear: if G ⊆ C is
a subcomplex which is a quasigroupoid, then every edge in G has in inverse in G, and hence an
inverse in C. □

14.11. Exercise. Show that if C is a quasicategory, there is an isomorphism (hC)core ≈ h(Ccore).

14.12. Kan complexes. Recall that a Kan complex (12.12) is a simplicial set which has the
extension property with respect to all horns, not just inner horns. That is, K is a Kan complex iff

Hom(∆n,K)→ Hom(Λn
j ,K)

is surjective for all 0 ≤ j ≤ n, n ≥ 1.

14.13. Exercise. Show that every simplicial set X has extensions for 1-dimensional horns, so that
for any simplicial set X, every Λ1

j → X extends over Λ1
j ⊂ ∆1, where j ∈ {0, 1}. Thus, X is a Kan

complex if and only if it has extensions just for the horns inside simplices of dimension ≥ 2.

14.14. Proposition. Every Kan complex is a quasigroupoid.

Proof. It is immediate that a Kan complex K is a quasicategory. To show K is a quasigroupoid, note
that the extension condition for Λ2

0 ⊂ ∆2 implies that every morphism in hK admits a postinverse.
Explicitly, if f : x→ y is an edge in K, let u : Λ2

0 → K with u01 = f and u02 = f00 = 1x, so there is
an extension v : ∆2 → K and g := v12 satisfies gf ≈ 1x. Use (14.8). □

9This is the same as what Lurie [Lur09] and many others call an ∞-groupoid.
10Lurie (along with many others) uses the notation C≃ for what we are calling Ccore.
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This proposition has a converse: quasigroupoids are precisely the Kan complexes. This is a very
important technical result, and it is not trivial; it is the main result of [Joy02]. We will prove this
later as (35.2).

Recall (12.9) that we observed that the singular complex Sing T of a topological space is a Kan
complex, and therefore a quasigroupoid. It is reasonable to think of Sing T as the fundamental
quasigroupoid of the space T . fundamental quasi-

groupoid

14.15. Exercise (for topologists). Show that if T is a topological space, then hSing T , the homotopy
category of the singular complex of T , is precisely the usual fundamental groupoid of T .

14.16. Quasigroupoids, components, and isomorphism classes. We say that two objects in a
quasicategory are isomorphic if there exists an isomorphism between them. This is an equivalence isomorphic

relation on C0, and thus we speak of isomorphism classes of objects. isomorphism classes

Recall (9.10) that the set of connected components of a simplicial set is given by

π0X ≈
((∐

n≥0
Xn

)
/ ∼

)
≈ (X0/ ∼1),

the equivalence classes of cells of X under the equivalence relation generated by “related by a
simplicial operator”, or equivalently the equivalence classes of vertices of X under the equivalence
relation generated by “connected by an edge” . Note that if T is a topological space, then elements
of π0 Sing T correspond exactly to path components of T .

For quasigroupoids, π0 recovers the set of isomorphism classes of objects.

14.17. Proposition. If C is a quasicategory, then

π0
(
Ccore

)
≈ {isomorphism classes of objects of C}.

Proof. Straightforward: edges in Ccore are precisely the isomorphisms in C. □

14.18. Exercise. Show that for a quasicategory C, π0(C
core) ≈ π0(h(Ccore)) ≈ π0((hC)core).

15. Function complexes and the functor quasicategory

Given ordinary categories C and D, the functor category Fun(C,D) has W 2 Feb

• as objects, the functors C → D, and
• as morphisms f → f ′, natural transformations of functors.

Furthermore, for any category A there is a bijective correspondence between sets of functors{
A× C → D

}
⇐⇒

{
A→ Fun(C,D)

}
.

Explicitly, a functor ϕ : A → Fun(C,D) corresponds to ϕ̃ : A × C → D, given on objects by

ϕ̃(a, c) = ϕ(a)(c) for a ∈ obA and c ∈ obC, and on morphisms by ϕ̃(α, γ) = ϕ(a′)(γ) ◦ ϕ(α)(c) =
ϕ(α)(c′) ◦ ϕ(a)(γ) : ϕ(a)(c)→ ϕ(a′)(c′) for α : a→ a′ ∈ morA and γ : c→ c′ ∈ morC.

The generalization of the functor category to quasicategories admits a similar adjunction, and in
fact can be defined for arbitrary simplicial sets.

15.1. Function complexes. Given simplicial sets X and Y , we may form the function complex function complex

Fun(X,Y ). This is a simplicial set with

Fun(X,Y )n = Hom(∆n ×X,Y ),

so that the action of a simplicial operator δ : [m]→ [n] on Fun(X,Y ) is induced by

Hom(δ × idX , Y ) : Hom(∆n ×X,Y )→ Hom(∆m ×X,Y ).

In particular, the set Fun(X,Y )0 of vertices of the function complex is precisely the set of maps
X → Y of simplicial sets.
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15.2. Remark. There are many alternate notations for the function complex. A common one is
Map(X,Y ), because it is the “object of maps” from X to Y , and is sometimes called the mapping
space.

15.3. Proposition. The function complex construction defines a functor

Fun: sSetop × sSet→ sSet.

Proof. Left as an exercise. □

By construction, for each n, there is a bijective correspondence

{∆n ×X → Y } ←→ {∆n → Fun(X,Y )}.
In fact, we can replace ∆n with an arbitrary simplicial set.

15.4. Proposition. For simplicial sets X, Y , Z, there is a bijection

Hom(X × Y,Z) ∼−→ Hom(X,Fun(Y,Z))

natural in all three variables.

Proof. The bijection sends f : X × Y → Z to f̃ : X → Fun(Y,Z) defined so that for x ∈ Xn, the

element f̃(x) ∈ Fun(Y,Z)n is represented by the composite

∆n × Y x×id−−−→ X × Y f−→ Z.

The inverse of this bijection sends g : X → Fun(Y,Z) to g̃ : X × Y → Z, defined so that for
(x, y) ∈ Xn × Yn, the element g̃(x, y) ∈ Zn is represented by

∆n (id,y)−−−→ ∆n × Y g(x)−−→ Z.

The proof amounts to showing that both f̃ and g̃ are in fact maps of simplicial sets, and that the
above constructions are in fact inverse to each other. This is left as an exercise, as is the proof of
naturality. □

15.5. Exercise (Important). Show, using the previous proposition, that there are natural isomorphisms

Fun(X × Y,Z) ≈ Fun(X,Fun(Y, Z)).

of simplicial sets. (Hint: show that both objects represent isomorphic functors sSetop → Set, and
apply the Yoneda lemma.)

15.6. Remark. The construction of the function complex is not special to simplicial sets. The
construction of Fun(X,Y ) (and its properties as described above) works the same way in any
category of functors Cop → Set, where C is a small category (e.g., C = ∆). In this general setting,
the role of the standard n-simplices is played by the representable functors HomC(−, c) : Cop → Set.

15.7. Functor quasicategories. When C and D are quasicategories, then the vertices of the
function complex Fun(C,D) are precisely the functors C → D, and the edges of Fun(C,D) are
precisely the natural transformations. It is thus reasonable to hope that the generalization of functor
category of functor category to quasicategories is precisely the function complex. In fact, this is the
case for the functor category between ordinary categories.

15.8. Exercise. Show that for ordinary categories C and D that N Fun(C,D) ≈ Fun(NC,ND).
(Hint: use that N([n]) = ∆n, and the fact that the nerve preserves finite products (9.5).)

15.9. Exercise. Give an example of quasicategories C and D such that categories hFun(C,D) and
Fun(hC, hD) are not isomorphic (i.e., the homotopy category of the functor quasicategory need not
be the same as the functor category of the homotopy categories). (Hint: you can choose C to be an
ordinary category, but not D.)
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In remains to show that a function complex between quasicategories is again a quasicategory. To
prove this, we will need a to take a detour to develop some technology about “weakly saturated”
classes of maps and “lifting properties”. After this, we will complete the proof as (22.4).

Part 3. Lifting properties

16. Weakly saturated classes and inner-anodyne maps

Quasicategories are defined by an “extension property”: they are the simplicial sets C such that
any map K → C extends over L, whenever K ⊂ L is an inner horn inclusion Λn

j ⊂ ∆n. The set

of inner horns “generates” a larger class of maps (which will be called the class of inner anodyne
maps), which “automatically” shares the extension property of the inner horns. This class of inner
anodyne maps is called the weak saturation of the set of inner horns.

For instance, we will observe (16.14) that the spine inclusions In ⊂ ∆n are inner anodyne, so
that quasicategories admit “spine extensions”, i.e., any In → C extends over In ⊂ ∆n to a map
∆n → C.

These kinds of extension properties are going to play a major role in what follows, and now is a
good time to develop some theory to handle them.

16.1. Weakly saturated classes. Consider a category (such as sSet) which has all small colimits.
A weakly saturated class is a class A of morphisms in the category, which weakly saturated class

(1) contains all isomorphisms,
(2) is closed under cobase change,
(3) is closed under composition,
(4) is closed under transfinite composition,
(5) is closed under coproducts, and
(6) is closed under retracts.

Given a class of maps S, its weak saturation S is the smallest weakly saturated class containing weak saturation

S.
I need to explain some of the elements of this definition.

• Closed under cobase change is also called closed under pushout: it means that if f ′ Closed under cobase
change

closed under pushout
is the pushout of f : X → Y along some map g : X → Z, then f ∈ A implies f ′ ∈ A:

X
g
//

f
��

X ′

f ′

��

Y // Y ′

• Closed under composition means that if g, f ∈ A and gf is defined, then gf ∈ A. Closed under composi-
tion• We say that A is closed under countable composition if given a countable sequence of
closed under countable
compositioncomposable morphisms, i.e., maps

X0
f1−→ X1

f2−→ X2
f3−→ · · ·

such that each fk ∈ A for all k ∈ Z>0, the induced map X0 → colimkXk to the colimit is in
A.

The notion closed under transfinite composition is a generalization of this, in which closed under transfinite
compositionN is replaced by an arbitrary ordinal λ (i.e., a well-ordered set). This means that for any

ordinal λ and any functor X : λ→ sSet, if for every i ∈ λ with i ̸= 0 the evident map

(colimj<iX(j))→ X(i)

is in A, then the induced map X(0)→ colimj∈λX(j) is in A.
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• Closed under coproducts means that if {fi : Xi → Yi} is a set of maps in A, then Closed under coprod-
ucts∐

i fi :
∐

iXi →
∐

i Yi is in A.
• We say that f is a retract of g if there exists a commutative diagram in C of the form retract

X

f
��

//

id
))

X ′ //

g
��

X

f
��

Y //

id

55Y ′ // Y

This is really a special case of the notion of a retract of an object in the functor category
Fun([1], sSet). We say that A is closed under retracts if for every diagram as above, closed under retracts

g ∈ A implies f ∈ A.

16.2. Remark. This list of properties is not minimal: (3) is the special case of (4) when λ = [2], and
(5) can be deduced from (2) and (4). Exercise: Show this.

16.3. Example. Consider the category of sets. The class of all surjective maps is weakly saturated,
and in fact is the weak saturation of { {0, 1} → {1} }. Likewise, the class of injective maps is weakly
saturated, and in fact is the weak saturation of {∅→ {1} }.

16.4. Example. The classes of injections and surjections of simplicial sets are weakly saturated
classes. Later we will identify the class of monorphisms of simplicial sets as the weak saturation of
the set of “cell inclusions” (20.5).

16.5. Proposition. Fix a collection C a simplicial sets (e.g., the class of quasicategories). Let A be
the class of maps of simplicial sets i : A→ B such that every map f : A→ C to an element C ∈ C
admits an extension to g : B → C such that gi = f . Then A is a weakly saturated class.

16.6. Exercise. Give a proof of (16.5). It is highly recommended that you work through the argument
if you haven’t seen it before.

16.7. Remark. There is a dual notion of a weakly cosaturated class: a weakly cosaturated class weakly cosaturated
classis the same thing as a weakly saturated class in the opposite category, and is characterized by being

closed under properties formally dual to (1)–(6).

16.8. Classes of “anodyne” morphisms. We use the following notation for sets of types of
horns:

InnHorn := {Λn
k ⊂ ∆n | 0 < k < n, n ≥ 2 }, (inner horns),

LHorn := {Λn
k ⊂ ∆n | 0 ≤ k < n, n ≥ 1 }, (left horns),

RHorn := {Λn
k ⊂ ∆n | 0 < k ≤ n, n ≥ 1 }, (right horns),

Horn := {Λn
k ⊂ ∆n | 0 ≤ k ≤ n, n ≥ 1 }, (horns).

The weak saturation of each of these sets will play an important role in what follows. Right now,
we focus on the smallest of these classes, namely the weak saturation InnHorn of the set of inner
horns, which is called the class of inner anodyne11 morphisms. The weak saturations of the other inner anodyne

sets are the classes of “left anodyne” and “right anodyne” maps (30.1), and plain old “anodyne”
morphisms (??), about which we have more to say later. Note that anodyne morphisms are always
monomorphisms, since monomorphisms of simplicial sets themselves form a weakly saturated class.

11The “anodyne” terminology for the weak saturation of a set of horns was introduced by Gabriel and Zisman
[GZ67]. “Anodyne” derives from ancient Greek, meaning “without pain”. We leave it to the reader to decide whether
this choice of terminology is appropiate.
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16.9. Proposition. If C is a quasicategory and A ⊆ B is an inner anodyne inclusion, then any
f : A→ C admits an extension to g : B → C so that g|A = f .

Proof. We know that the class A of maps i : A→ B such that every map from A to a quasicategory
extends along i is weakly saturated (16.5). The claim follows immediately since InnHorn ⊆ A by
definition. □

16.10. Exercise (Easy but important). Show that every inner anodyne map induces a bijection on
vertices. (Hint: show that the class of maps of simplicial sets which are a bijection on vertices is
weakly saturated.)

16.11. Examples of inner anodyne morphisms. It is crucial to be able to prove that certain
explicit maps are inner anodyne.

Let S ⊆ [n]. The associated generalized horn is the subcomplex Λn
S ⊂ ∆n defined by generalized horn

Λn
S :=

⋃
i∈S

∆[n]∖i,

i.e., the union of codimension one faces of the n-simplex indexed by elements of S. In particular,
Λn
[n]∖{j} is the usual horn Λn

j . I’ll generalize this notation to arbitary totally ordered sets, so

ΛT
S =

⋃
i∈S ∆T∖i when S ⊆ T .

We call Λn
S ⊂ ∆n a generalized inner horn if S is not an “interval” in [n], i.e., if there exist generalized inner horn

s < t < s′ with s, s′ ∈ S and t /∈ S.

16.12. Lemma. All generalized inner horn inclusions Λn
S ⊂ ∆n are inner anodyne.

There is a slick proof of this given by Joyal [Joy08a, Prop. 2.12], which we present in the appendix
(77.1).

16.13. Example. Consider Λ3
{0,3}, which can be pictured as the solid diagram in

0
����

��

2 // 3

1

CC@@

We can get from this to ∆3 in two steps:

Λ
{0,2,3}
{0,3}

// //

��

��

∆{0,2,3}��

��

Λ3
{0,3}

// // Λ3
2
// // ∆3

The square is a pushout of subcomplexes since Λ3
{0,3}∩∆

{0,2,3} = Λ
{0,2,3}
{0,3} , and the map along the top

is isomorphic to Λ2
1 ⊂ ∆2, an inner horn inclusion. This proves that Λ3

{0,3} ⊂ ∆3 is inner anodyne.

Recall that every standard n-simplex contains a spine In ⊆ ∆n.

16.14. Lemma. The spine inclusions In ⊂ ∆n are inner anodyne for all n. Thus, for a quasicategory
C, any In → C extends to ∆n → C.

Proof. This is proved in [Joy08a, Prop. 2.13]. We give the proof in the appendix (77.2). □
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16.15. Example. To show that I3 ⊂ ∆3 is inner anodyne, observe that we can get from I3 to a
generalized inner horn in two steps by attaching 2-cells along inner horn inclusions:

Λ
{0,1,2}
{0,2}

// //

��

��

∆{0,1,2}��

��

Λ
{1,2,3}
{1,3}

// //

��

��

∆{1,2,3}��

��

I3 // // I3 ∪∆{0,1,2} I3 ∪∆{0,1,2} // // Λ3
{0,3}

since I3 ∩∆{0,1,2} = Λ
{0,1,2}
{0,2} and (I3 ∪∆{0,1,2}) ∩∆{1,2,3} = Λ

{1,2,3}
{1,3} .

16.16. Exercise. Use (16.14) to show that the tautological map π : C → N(hC) from a quasicategory
to (the nerve of) its homotopy category is surjective in every dimension.

17. Lifting calculus and inner fibrations

We have defined quasicategories by an “extension property”: in general, we say that X satisfies
the extension property for f : A→ B if for any diagram

A
u //

f
��

X

B

s

>>

there exists a morphism s making the diagram commute. In this section, we discuss a “relative”
version of this, called a “lifting property”.

17.1. The lifting relation. Given morphisms f : A→ B and g : X → Y in a category, a lifting
problem for (f, g) is a pair of morphisms (u, v) such that vf = gu. That is, a lifting problem is lifting problem

any commutative square of solid arrows of the form

A
u //

f
��

X

g

��

B v
//

s
>>

Y

A lift for the lifting problem is a morphism s such that sf = u and gs = v, i.e., a dotted arrow lift

making the diagram commute.
We may thus define the lifting relation on morphisms in our category: we write “f � g” if every lifting relation

lifting problem for (f, g) admits a lift12. Equivalently, f � g exactly if

Hom(B,X)
s 7→(sf,gs)−−−−−−→ Hom(A,X)×Hom(A,Y ) Hom(B, Y )

is a surjection, where the target is the set of pairs (u : A→ X, v : B → Y ) such that gu = vf (i.e.,
the target is exactly the set of lifting problems for (f, g)).

When f � g holds, one sometimes says f has the left lifting property relative to g, or that g left lifting property

has the right lifting property relative to f . Or we just say that f lifts against g. right lifting property

f lifts against g.We extend the notation to classes of maps, so “A� B” means: a� b for all a ∈ A and b ∈ B.
Note: I will also sometimes speak of a lifting problem of type f � g, by which I mean a pair lifting problem of type

f � g(u, v) which is a lifting problem for (f, g).

17.2. Exercise. Show that f � f if and only if f is an isomorphism.

Given a class of morphisms A, define the right complement A� and left complement
�A by right complement

left complement

A� = { g | a� g for all a ∈ A}, �A = { f | f � a for all a ∈ A}.
12Sometimes one sees the notation “f ⊥ g” or “f ⋔ g” used instead. Our notation is taken from [Rie14, §11].
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17.3. Proposition. For any class A, the left complement
�A is a weakly saturated class, and the

right complement A� is a weakly cosaturated class.

17.4. Exercise (Important). Prove (17.3). (This is a “relative” version of the proof of (16.5).)

17.5. Exercise (Easy). Prove that if A ⊆ B, then A� ⊇ B� and
�A ⊇ �B. Use this to show

A� = (
�
(A�))� and

�A =
�
((

�A)�).
17.6. Exercise (for those who know a little homological algebra). Fix an abelian category C (e.g.,
the category of modules over some ring R). Let P be the class of morphisms in C of the form 0→ P
where P is projective, and let B be the class of epimorphisms in C. Show that P � B; also, show
that B = P� if C has enough projectives.

17.7. Exercise. In the setting of the previous exercise, identify the class
�B.

17.8. Inner fibrations. A map p of simplicial sets is an inner fibration if InnHorn� p. The class inner fibration

of inner fibrations InnFib = InnHorn� is thus the right complement of the set of inner horns. Note
that C is a quasicategory if and only if C → ∗ is an inner fibration.

Because InnFib is a right complement, it is weakly cosaturated (16.7). In particular, it is closed
under composition. This implies that if p : C → D is an inner fibration and D is a quasicategory,
then C is also a quasicategory. Also note that since the left complement of InnFib is weakly
saturated (17.3), we have InnHorn � InnFib.

17.9. Exercise. Show that if f : C → D is any functor from a quasicategory C to a category D,
then f is an inner fibration. In particular, all functors between categories are automatically inner
fibrations. (Hint: use the fact that all inner horns mapping to a category have unique extensions to
simplices.)

17.10. Exercise. Show that any inclusion C ′ ⊆ C of a subcomplex of a quasicategory is an inner
fibration if and only if C ′ is a subcategory (10.1) of C.

17.11. Exercise. Let p : C → D be a functor between quasicategories, and let pcore : Ccore → Dcore

be the restriction of p to cores (14.9). Show that if p is an inner fibration then pcore is also an inner
fibration. (Hint. There are two distinct cases of lifting problems (Λn

k ⊂ ∆n) � pcore, namely n = 2
and n ≥ 3.)

17.12. Exercise. Consider a pullback square of simplicial sets

X ′ //

p′

��

X

p

��

Y ′ π
// Y

such that π is a surjective map. Show that if p′ is an inner fibration then so is p.

17.13. Example (Campbell’s example). Here is an example of an inner fibration whose target is

not a quasicategory. Let Hℓ := ∆2/∆{0,1}, i.e., the pushout of the diagram ∆2 ↢ ∆{0,1} → ∆0 of

simplicial sets, and let f : ∆1 → Hℓ be the composite ∆1 ⟨02⟩−−→ ∆2 π−→ Hℓ, where π is the evident
projection. Then f is an inner fibration. To see this, note that the base-change of f along the
projection map π is the inclusion Λ2

0 ⊆ ∆2, which is an inner fibration since both source and target
are categories (17.10). Thus f is an inner fibration by (17.12).

However, Hℓ is not a quasicategory: there is a map ∆2
1 → Hℓ which does not extend over Λ2

1 ⊂ ∆2

(Exercise: find it).
The map f has been observed by Alexander Campbell [Cam19] to be a counterexample to a

number of plausible-sounding statements, some of which we will discuss later (40.18).

17.14. Exercise. Show that the map f : ∆1 → Hℓ of (17.13) is not inner anodyne. (Hint: (17.2).)
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17.15. Factorizations. It turns out that we can always factor any map of simplicial sets into an F 4 Feb
inner anodyne map followed by an inner fibration. This is a consequence of the following general
observation.

17.16. Proposition (“Small object argument”). Let S be a set of morphisms in sSet. Then every
map f between simplicial sets admits a factorization f = pj with j ∈ S and p ∈ S�.

The proof of this proposition is by means of what is known as the “small object argument”. I’ll
give the proof in the next section. For now we record a consequence.

17.17. Corollary. For any set S of morphisms in sSet, we have that S =
�
(S�).

Proof. That S ⊆ �
(S�) is immediate from (17.3). Given f such that f � S�, use the small object

argument (17.16) to choose f = pj with j ∈ S and p ∈ S�. We have a commutative diagram of
solid arrows

•
id
//

id

&&

f

��

•
id
//

j

��

•
f

��
•

id

88
s // •

p
// •

A map s exists making the diagram commute, because f � p, so there is a lift in

•
j
//

f

��

•
p

��
•

id
//

s

??

•

The diagram exhibits f as a retract of j, whence f ∈ S since weak saturations are closed under
retracts. □

17.18. Remark (Retract trick). The proof of the corollary is called the “retract trick”: given f = pj,
f � p implies that f is a retract of j, while j � f implies that f is a retract of p.

In the case we are currently interested in, we have that InnHorn =
�
InnFib and InnHorn

�
=

InnFib, so we get the following.

17.19. Proposition. An map f of simplicial sets can be factored f = pj, where j is inner anodyne
and p is an inner fibration.

17.20. Weak factorization systems. A weak factorization system in a category is a pair weak factorization sys-
tem(L,R) of classes of maps such that

• every map f admits a factorization f = rℓ with r ∈ R and ℓ ∈ L, and
• L =

�R and R = L�.

Thus, in any weak factorization the “left” class L is weakly saturated and the “right” class R is
weakly cosaturated. The small object argument implies that (S, S�) is a weak factorization in sSet
for every set of maps S. In particular, (InnHorn, InnFib) is a weak factorization system.

17.21. Exercise (for those who know some homological algebra). In an abelian category, let A be
the class of monomorphisms with projective cokernel, and let B be the class of epimorphisms. Show
that the pair (A,B) is a weak factorization system if and only if the category has enough projectives.
(This exercise is related to (17.6).)

17.22. Exercise (due to Goodwillie). Classify all weak factorization systems in the category of sets.
(There are exactly six.)



INTRODUCTION TO QUASICATEGORIES 44

17.23. Uniqueness of liftings. The relation f � g says that lifting problems admit solutions, but
not that the solutions are unique. However, we can incorporate uniqueness into the lifting calculus
if our category has pushouts.

Given a map f : A→ B, let f∨ := (idB, idB) : B⨿AB → B be the “fold” map, i.e., the unique map
such that the composition with either of the canonical maps B → B ⨿AB is f . It is straightforward
to show that for a map g : X → Y we have that {f, f∨} � g if and only if in every commutative
square

A //

f
��

X

g

��

B //

s

>>

Y

there exists a unique lift s.

17.24. Example. Consider the category of topological spaces. Let A be the class of morphisms of the
form A× {0} → A× [0, 1], where A is an arbitrary space. Then (A ∪A∨)� contains all covering
maps (by the “Covering Homotopy Theorem”).

A weak factorization system (L,R) in which liftings are always unique is called an orthogonal
factorization system. orthogonal factoriza-

tion system

17.25. Exercise. Show that in an orthogonal factorization system, the factorizations f = rℓ with
ℓ ∈ L and r ∈ R are unique up to unique isomorphism.

17.26. Exercise. Show that ({surjections}, {injections}) is an orthogonal factorization system for
Set.

17.27. Exercise. Let S be a set of maps of simplicial sets, and consider the weak factorization system
(S ∪ S∨, (S ∪ S∨)�). Show that this is in fact an orthogonal factorization system. (Hint: show that
that for any map g, the class of maps f such that any the lifting problem of type f � g has a unique
solution is a weakly saturated class.)

17.28. Example (The fundamental category via an orthogonal factorization system). In simplicial
sets, the projection map C → ∗ is in the right complement to S := InnHorn ∪ InnHorn∨ if and only
if C is isomorphic to a nerve of a category (8.7). The small object argument using S, applied to a
projection X → ∗, thus produces a morphism π : X → Y in S with Y the nerve of a category.

Uniqueness of liftings in this case implies that π : X → Y has precisely the universal property
of the fundamental category of X defined in (13.1): given f : X → C with C a category, a unique
extension of f over X → Y exists. Thus, the small object argument applied to S gives another
construction of the fundamental category (13.1) of an arbitrary simplicial set S.

17.29. Exercise. Prove that if f : X → Y is any inner anodyne map, then the induced functor
h(f) : hX → hY between fundamental categories is an isomorphism. (Hint: use the universal
property of fundamental categories to construct an inverse to h(f).)

18. The small object argument

In this section we give the proof of (17.16), i.e., that given a fixed set S = {si : Ai → Bi} of maps
of simplical sets, we can factor any map f : X → Y as f = pj with j ∈ S and p ∈ S�. For the
reader: it may be helpful to first work through the special case where Y = ∆0 (the terminal object
in simplicial sets). Also, it is worth noting that we will only rarely need to know any details of this
proof in the subsequent text.
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18.1. A factorization construction. Given any map f : X → Y , we first produce a factorization

X
Lf−−→ Ef

Rf−−→ Y, (Rf)(Lf) = f

as follows. Consider the set

[S, f ] := { (si, u, v) | si ∈ S, fu = vsi } =


Ai

u //

si ��

X
f��

Bi v
// Y


of all commutative squares which have an arrow from S on the left-hand side, and f on the right-hand
side, i.e., the set of all lifting problems of type si � f for some si ∈ S. We define Ef , Lf , and Rf
using the diagram ∐

(si,u,v)

Ai
(u)

//

∐
si
��

X

Lf

��

f

""∐
(si,u,v)

Bi
//

(v)

88Ef
Rf

// Y

where the the coproducts are indexed by the set [S, f ], and the square is a pushout. Note that
Lf ∈ S by construction. However, we do not expect that Rf in S�.

We can iterate the construction:

X

Lf

&&

L2f

++

L3f

,,

Lωf

++
X Lf //

f

��

Ef LRf //

Rf

xx

E2f LR2f //

R2f

ss

E3f //

R3f

rr

· · · // Eωf

Rωf
ooY

Here each triple (Eαf, Lαf,Rαf) is obtained by factoring the “R” map of the previous one, so that

(18.2) Eα+1f := E(Rαf), Lα+1f := L(Rαf) ◦ (Lαf), Rα+1f := R(Rαf).

Taking direct limits gives a factorization X
Lωf−−→ Eωf

Rωf−−−→ Y of f , with Eωf = colimn→∞E
nf .

We can go even further, using the magic of transfinite induction, and define compatible factor-
izations (Eλf, Lλf,Rλf) for each ordinal13 λ. For successor ordinals α+ 1 use the prescription of
(18.2), while for limit ordinals β take a direct limit Eβf := colimα<β E

αf as in the construction of
Eωf above.

It is immediate that every Lαf ∈ S, because weak saturations are closed under transfinite
composition. The maps Rαf are not generally contained in S�, though they do satisfy a “partial
lifting property”: whenever α < β there exists by construction a dotted arrow making

Ai
u′
//

si

��

Eαf // Eα+1f // Eβf

Rβf
��

Bi v
//

55

Y

commute, for any u′ and v making the square commute. This is so exactly because Eα+1f was
obtained from Eαf by “formally adjoining” a solution to every such lifting problem. Thus, we get

13For a treatment of ordinals, see for instance the chapter on sets in [TS14].
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a solution to a lifting problem (u, v) of si against R
βf whenever the map u : Ai → Eβf can be

factored through one of the maps Eαf → Eβf with α < β.
The “small object argument” amounts to the following.
Claim. There exists an ordinal κ such that for every domain Ai of a map in S, every map

Ai → Eκf factors through some Eαf → Eκf with α < κ.
Given this, it follows from the “partial lifting property” that S � Rκf , and so we obtain the

desired factorization: f = (Rκf) ◦ (Lκf) with Lκf ∈ S and Rκf ∈ S�.
It remains to prove the claim, which we will do by choosing κ to be a regular cardinal which is

“bigger” than all the simplicial sets Ai.

18.3. Regular cardinals. The cardinality of a set X is the smallest ordinal λ such that there cardinality

exists a bijection between X and λ; we write |X| for this. Ordinals which can appear this way are
called cardinals. For instance, the first infinite ordinal ω is the countable cardinal. cardinals

Note: the class of infinite cardinals is an unbounded subclass of the ordinals, so is well-ordered
and can be put into bijective correspondence with ordinals. The symbol ℵα denotes the αth infinite
cardinal, e.g., ℵ0 = ω.

Say that λ is a regular cardinal14 if it is an infinite cardinal, and if for every set A of ordinals regular cardinal

such that (i) α < λ for all α ∈ A, and (ii) |A| < λ, we have that supA < λ. For instance, ω is a
regular cardinal, since any finite collection of finite ordinals has a finite upper bound. Not every
infinite cardinal is regular15; however, there exist arbitrarily large regular cardinals16.

Every ordinal α defines a category, which is the poset of ordinals strictly less than α. Colimits of
functors Y : κ→ Set with κ a regular cardinal have the following property: the map

(18.4) colimα<κHom(X,Yα)→ Hom(X, colimα<κ Yα)

is a bijection whenever |X| < κ. This generalizes the familiar case of κ = ω: any map of a finite set
into the colimit of a countable sequence factors through a finite stage.

18.5. Exercise. Prove that (18.4) is a bijection when |X| < κ.

18.6. κ-small simplicial sets. Given a regular cardinal κ, we say that a simplicial set is κ-small κ-small

if it is isomorphic to the colimit of some functor F : C → sSet, such that (i) |obC| , |morC| < κ,
and (ii) each F (c) is isomorphic to a standard simplex ∆n. Morally, we are saying that a simplicial
set is κ-small if it can be “presented” with fewer than κ generators and fewer than κ relations.

Given a functor Y : κ → sSet and a κ-small simplicial set X, we have a bijection as in (18.4).
(This is sometimes phrased as: κ-small simplicial sets are κ-compact.) Thus, to prove the claim
about the small object argument, we simply choose a regular cardinal κ greater than sup{|(Ai)n|},
where (Ai)n is the set of n-cells of the simplicial set Ai, which ranges over the set of domains of
morphisms in S.

18.7. Example. The standard simplices ∆n, as well as any subcomplex such as the horns Λn
j , are

ω-small: this is a consequence of (6.20). Thus, when we carry out the small object argument for
S = InnHorn, we can take (Eωf, Lωf,Rωf) to be the desired factorization.

18.8. Remark. The small object argument can be carried out in a very large class of categories,
including the locally presentable categories. This class includes familiar algebraic examples, such as
categories of groups, rings, lie algebras, modules, etc., along with many others. With a little more
care the argument can sometimes be carried out even more generally (possibly under additional
hypotheses on S), for instance in the category of topological spaces

14In the terminology of [TS14, §3.7], a regular cardinal is one which is equal to its own cofinality.
15For instance, ℵω = sup {ℵk | k < ω } is not regular.
16For instance, every successor cardinal ℵα+1 is regular.
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18.9. Functoriality. The construction f 7→ (X
Lf−−→ Ef

Rf−−→ Y ) is a functor Fun([1], sSet) →
Fun([2], sSet), and it follows that so is f 7→ (X

Lαf−−→ Eαf
Rαf−−−→ Y ) for any α. Because the choice of

regular cardinal κ depends only on S, not on the map f , we see that the small object argument
actually produces a functorial factorization of a map into a composite of an element of S with an
element S�. We will have use of this later in (80).

19. Degenerate and non-degenerate cells

We have noted that monomorphisms of simplicial sets form a weakly saturated class. Here
we identify an important set of maps called Cell, whose weak saturation is precisely the class of
monomorphisms. We do so by getting a very explicit handle on monomorphisms of simplicial sets.
This will involve the notion of degenerate and non-degenerate cells of a simplicial set.

19.1. Boundary of a standard simplex. For each n ≥ 0, define

∂∆n :=
⋃

k∈[n]

∆[n]∖{k} ⊂ ∆n,

the union of all codimension-one faces of the n-simplex. This means that

(∂∆n)k = { f : [k]→ [n] | f([k]) ̸= [n] },
so k-cells of ∂∆n correspond exactly to the non-surjective simplicial operators to [n]. We call ∂∆n

the boundary of ∆n. Note that ∂∆0 = ∅ and ∂∆1 = ∆{0} ⨿∆{1} ≈ ∆0 ⨿∆0. boundary

19.2. Exercise. Show that ∂∆n is the largest subcomplex of ∆n which does not contain the “generator”
ιn = ⟨0 . . . n⟩ ∈ (∆n)n. In other words, ∂∆n is the maximal proper subcomplex of ∆n.

19.3. Exercise. Show that if C is a category, then the evident maps Hom(∆n, C)→ Hom(∂∆n, C)
defined by restriction are isomorphisms when n ≥ 3, but not necessarily when n ≤ 2.

19.4. Trivial fibrations and monomorphisms. Let Cell be the set consisting of the inclusions
∂∆n ⊂ ∆n for n ≥ 0. The resulting right complement is TrivFib := Cell�, the class of trivial
fibrations (also sometimes called acyclic fibrations). By the small object argument (17.16), we trivial fibrations

acyclic fibrationsobtain a weak factorization system (Cell,TrivFib). In particular, we can always factor any map as
f = pj, where j ∈ Cell and p is a trivial fibration.

Since the elements of Cell are monomorphisms, and the class of all monomorphisms is weakly
saturated, we see that all elements of Cell are monomorphisms. We are going to prove the converse,
i.e., we will show that Cell is precisely equal to the class of monomorphisms.

19.5. Degenerate and non-degenerate cells. I’ll write ∆surj,∆inj ⊂ ∆ for the subcategories of
the category ∆ of simplicial operators, consisting of all the objects and the surjective and injective
order-preserving maps respectively. Recall (3.7) that every simplicial operator factors uniquely as
f = f injf surj, a surjection followed by an injection.

A cell a ∈ Xn is said to be degenerate if there exists a non-injective simplicial operator f ∈ ∆ degenerate

and a cell b in X such that a = bf . In view of the factorization f = f injf surj, we see that a is
degenerate if and only if there exists a non-identity surjective simplicial operator f ∈ ∆surj and a
cell b in X such that a = bf .

Likewise, a cell a ∈ Xn is said to be non-degenerate if it is not degenerate, i.e., if whenever non-degenerate

a = bf we must have f ∈ ∆inj. Equivalently, a is non-degenerate if whenever a = bf with f ∈ ∆surj

we must have f = id.

We write Xn = Xdeg
n ⨿Xnd

n for the decomposition of Xn into complementary subsets of degenerate

and non-degenerate cells. Note that if f : A→ X is a map of simplicial sets, then f(Adeg
n ) ⊆ Xdeg

n ,

while f−1(Xnd
n ) ⊆ And

n . Also note that neither Xdeg
n nor Xnd

n assemble to give a subcomplex of X
(unless X is empty).
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The property of being degenerate or non-degenerate is preserved in subcomplexes.

19.6. Proposition. If X is a simplicial set and A ⊆ X is a subcomplex, then And
n = Xnd

n ∩An and

Adeg
n = Xdeg

n ∩An.

Proof. The first statement is a consequence of the second, since subsets of degenerate and non-

degenerate cells are complementary. It is clear that Adeg
n ⊆ Xdeg

n ∩ An. Conversely, suppose

a ∈ Xdeg
n ∩ An, so a ∈ An and a = bg for some non-identity g : [n] → [k] ∈ ∆surj and b ∈ Xk.

Any surjection in ∆ has a section (6.18), so there exists s : [k] → [n] such that gs = 1[k]. Then

b = bgs = as ∈ Ak, whence a ∈ Adeg
n as desired. □

19.7. Exercise (easy). For any simplicial set X, we have Xdeg
0 = ∅ and Xnd

0 = X0, while X
deg
1 is the

image of ⟨00⟩∗ : X0 → X1 (which is an injective function) and Xnd
1 is its complement.

19.8. Example. Here are all cells in the standard 2-simplex up to dimension 3, with the non-degenerate
ones indicated by a box.

(∆2)0 (∆2)1 (∆2)2 (∆2)3

⟨0⟩ ⟨00⟩ ⟨000⟩ ⟨0000⟩
⟨1⟩ ⟨11⟩ ⟨111⟩ ⟨1111⟩
⟨2⟩ ⟨22⟩ ⟨222⟩ ⟨2222⟩

⟨01⟩ ⟨001⟩ ⟨011⟩ ⟨0001⟩ ⟨0011⟩ ⟨0111⟩
⟨02⟩ ⟨002⟩ ⟨022⟩ ⟨0002⟩ ⟨0022⟩ ⟨0222⟩
⟨12⟩ ⟨112⟩ ⟨122⟩ ⟨1112⟩ ⟨1122⟩ ⟨1222⟩

⟨012⟩ ⟨0012⟩ ⟨0112⟩ ⟨0122⟩

19.9. Exercise. Describe the degenerate and non-degenerate cells of all the standard n-simplices ∆n.

19.10. Exercise. For every n ≥ 0, let ∆n/∂∆n be the pushout of the diagram ∆n ↢ ∂∆n → ∆0,
where ∂∆n ↣ ∆n is the usual inclusion and ∂∆n → ∆0 is the unique map to the terminal object.
Describe all degenerate and non-degenerate cells of ∆n/∂∆n.

19.11. Exercise. Show that if C is an ordinary category, then a cell a ∈ N(C)k of the nerve with
k > 0 is non-degenerate if and only if it is represented by a composable sequence of non-identity
maps c0 → · · · → ck in the category C.

19.12. Exercise. Let X be a simplicial set. Show that

Xdeg
n = { af | a ∈ Xk, f : [n]→ [k], k < n }.

19.13. Simplicial sets are canonically free with respect to surjective operators. The key
observation is that degenerate cells in a simplicial set are precisely determined by knowledge of the
non-degenerate cells.

19.14. Proposition (Eilenberg-Zilber lemma). Let a be a cell of X. Then there exists a unique
pair (b, σ) consisting of a non-degenerate cell b and a map σ in ∆surj such that a = bσ.

Proof. [GZ67, §II.3]. First note that for degenerate a such a pair (b, σ) exists by definition, while
for nondegenerate a we can take the pair (a, id).

Given σ : [n]→ [m], let Γ(σ) =
{
δ : [m]→ [n]

∣∣ σδ = id[m]

}
denote the set of sections of σ. The

sets Γ(σ) is non-empty when σ ∈ ∆surj (6.18). We note the following elementary observation, whose
proof is left for the reader:

If σ, σ′ ∈ ∆surj are such that Γ(σ) = Γ(σ′), then σ = σ′.
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Let a ∈ Xn be such that a = biσi for bi ∈ Xnd
mi

, σi ∈ ∆surj([n], [mi]), for i = 1, 2. We want to
show that m1 = m2, b1 = b2, and σ1 = σ2.

Pick any δ1 ∈ Γ(σ1) and δ2 ∈ Γ(σ2). Then we have

b1 = b1σ1δ1 = aδ1 = b2σ2δ1, b2 = b2σ2δ2 = aδ2 = b1σ1δ2,

so b1 and b2 are related by the simplicial operators σ2δ1 and σ1δ2. Since b1 and b2 are non-degenerate,
both σ2δ1 : [m1]→ [m2] and σ1δ2 : [m2]→ [m1] must be injective. This implies m1 = m2, and since
the only order-preserving injective map [m]→ [m] is the identity map, we must have σ2δ1 = id = σ1δ2,
from which it follows that b1 = b2. This also shows that δ1 ∈ Γ(σ2) and δ2 ∈ Γ(σ1). Since δ1 and δ2
were arbitrarily chosen sections, we have shown Γ(σ1) = Γ(σ2), and therefore σ1 = σ2. □

We can reinterpret the Eilenberg-Zilber lemma as follows.

19.15. Corollary. For any simplicial set X, the evident maps∐
j≥0

Xnd
j ×Hom∆surj([n], [j])→ Xn

defined by (j, x, σ) 7→ xσ are bijections. Furthermore, these bijections are natural with respect to
surjective simplicial operators [n′] → [n], and are also natural with respect to monomorphisms
X → X ′ of simplicial sets.

Proof. The bijection is a restatement of (19.14). For the second statement, note that if τ : [n′]→ [n] is
a surjective simplicial operator, then (k, x, στ) 7→ (xσ)τ . The third statement is straightforward. □

Thus the restricted functor X|(∆surj)op : (∆surj)op → Set is canonically isomorphic to a coproduct
of representable functors Hom∆surj(−, [k]) indexed by the nondegenerate cells of X. Or more simply:
simplicial sets are canonically free with respect to surjective simplicial operators.

19.16. Exercise. Let X be a simplicial set such that each Xk is a finite set for all 0 ≤ k ≤ n. Give a
formula for the size of |Xn| as a function of the

∣∣Xnd
k

∣∣ with 0 ≤ k ≤ n.

The following exercises show that the subcomplexes of a simplicial set X can be completely
characterized by the sets of non-degenerate cells of X that they contain, generalizing what we
showed about subcomplexes of standard simplices (6.19).

19.17. Exercise. Let Xnd =
∐

n≥0X
nd
n be the set of non-degenerate cells of X. For x, y ∈ Xnd write

y ≤ x if there exists f ∈ ∆ such that y = xf . Show that “≤” is a partial order on the set Xnd,
which we can call the face relation.

19.18. Exercise. Show that if xf = yg for some x, y ∈ Xnd, f ∈ ∆ and g ∈ ∆surj, then y ≤ x.

19.19. Exercise. Let S ⊆ Xnd be a subset of non-degenerate cells which is downward-closed under
the face relation, i.e., y ≤ x and x ∈ S implies y ∈ S. Show that there exists a unique subcomplex
A ⊆ X such that And = S. (Hint: the cells of A are of the form xg where x ∈ S and g ∈ ∆.)

19.20. Remark. A simplicial set can be recovered up to isomorphism if you only know (i) its sets of
non-degenerate cells, and (ii) the faces of the non-degenerate cells. From this you can reconstruct
the the degenerate cells using (19.15). Simplicial operators on degenerate cells are computed using
the fact that any simplicial operator factors into a surjection followed by an injection.

Warning. The faces of a non-degenerate cell can be degenerate; this happens for instance for
∆n/∂∆n in (19.10) when n ≥ 2. If X is such that all faces of non-degenerate cells are also non-
degenerate, then we get a functor Xnd : (∆inj)op → Set, and the full simplicial set X can be recovered
from Xnd. For instance, this is so for the standard simplices ∆n, as well as any subcomplexes of
such. Functors (∆inj)op → Set are the combinatorial data behind the notion of a ∆-complex, as seen
in Hatcher’s textbook on algebraic topology [Hat02, Ch. 2.1].
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The following exercises give a different point of view of this principle.

19.21. Exercise. Fix an object [n] in ∆, and consider the category ∆surj
[n]/, which has

• objects the surjective morphisms σ : [n]→ [k] in ∆, and
• morphisms commutative triangles in ∆ of the form

[k]

τ
��

[n]

σ 55

σ′ )) [k′]

Show that the category ∆surj
[n]/ is isomorphic to the poset P(n) of subsets of the set n = {1, . . . , n}.

In particular, ∆surj
[n]/ is a lattice (i.e., has finite products and coproducts, called meets and joins in

this context).

19.22. Exercise. Let X be a simplicial set. Given n ≥ 0 and σ : [n]→ [k] in ∆surj, let Xσ
n := σ∗(Xk),

the image of the operator σ∗ in Xn. Show that Xσ∨σ′
n = Xσ

n ∩Xσ′
n , where σ ∨σ′ is join in the lattice

∆surj
[n]/. Conclude that for each x ∈ Xn there exists a maximal σ such that x ∈ Xσ

n .

20. The skeletal filtration

20.1. Skeleta. Given a simplicial set X, the k-skeleton SkkX ⊆ X is the subcomplex with n-cells M 7 Feb
k-skeleton

(SkkX)n =
⋃

0≤j≤k
{ yf | y ∈ Xj , f : [n]→ [j] ∈ ∆ }.

It is immediate that this defines a subcomplex of X, which is in fact the smallest subcomplex
containing all cells of dimensions ≤ k. Note that Skk−1X ⊆ SkkX and X =

⋃
k SkkX, and that a

map X → Y of simplicial sets restricts to a map SkkX → Skk Y . The skeleta constructions define
functors Skk : sSet→ sSet.

In view of (19.15), we see that

(SkkX)n ≈
∐

0≤j≤k
Xnd

j ×Hom∆surj([n], [j]).

The complement of the set of cells of Skk−1X in SkkX consists precisely of the nondegenerate
k-cells of X together with their associated degenerate cells (in dimensions > k).

20.2. Example. The (n− 1)-skeleton of the stardand n-simplex is precisely what we have called its
boundary: Skn−1∆

n = ∂∆n. The only cells of ∆n not contained in its boundary are the generator
ι = ⟨0 . . . n⟩ ∈ (∆n)n together with the degenate cells associated to it.

20.3. Proposition. The evident square∐
a∈Xnd

k
∂∆k //

��

��

Skk−1X
��

��∐
a∈Xnd

k
∆n // SkkX

is a pushout of simplicial sets. More generally, for any subcomplex A ⊆ X, the evident square∐
a∈Xnd

k ∖And
k
∂∆k //

��

��

A ∪ Skk−1X
��

��∐
a∈Xnd

k ∖And
k
∆k // A ∪ SkkX
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is a pushout.

Proof. In each of the above squares, the complements of the vertical inclusions coincide precisely.
In particular, the complement of the inclusion (A ∪ Skk−1X)n ⊆ (A ∪ SkkX)n is in bijective
correspondence with (Xnd

k ∖And
k )×Hom∆surj([n], [k]), and thus the square is a pushout (20.4). □

In the proof, we used the following fact which generalizes (6.15), which is worth recording.

20.4. Lemma. If

X ′ //

i
��

X��

j
��

Y ′
f
// Y

is a pullback of simplicial sets such that (i) j is a monomorphism, and (ii) f induces in each degree

n a bijection Y ′n ∖ i(X ′n)
∼−→ Yn ∖ j(Xn), then the square is a pushout square.

Proof. Verify the analogous statement for a pullback square of sets. □

20.5. Corollary. Cell is precisely the class of monomorphisms.

Proof. We know all elements of Cell are monomorphisms. Any monomorphism is isomorphic to an
inclusion A ⊆ X of a subcomplex, so we only need show that such inclusions are contained in Cell.
Since X ≈ colimk A ∪ SkkX, (20.3) exhibits the inclusion as a countable composite of pushouts
along coproducts of elements of Cell. □

20.6. Geometric realization. Recall the singular complex functor Sing : Top→ sSet (12.9). This
functor has a left adjoint ∥−∥ : sSet→ Top, called geometric realization, constructed explicitly geometric realization

by

(20.7) ∥X∥ := Cok

[ ∐
f : [m]→[n]

Xn ×∆m
top ⇒

∐
[p]

Xp ×∆p
top

]
;

that is, take a collection of topological simplices indexed by cells of X, and make identifactions ac-
cording to the simplicial operators in X. (Here the symbol “Cok” represeents taking a “coequalizer”,
i.e., the colimit of a diagram of shape •⇒ •.)

20.8. Exercise. Describe the two unlabelled maps in (20.7). Then show that ∥−∥ is in fact left
adjoint to Sing.

Because geometric realization is a left adjoint, it commutes with colimits. It is straightforward to
check that ∥∆n∥ ≈ ∆n

top, and that ∥∂∆n∥ ≈ ∂∆n
top, where the latter is the subspace

∂∆n
top :=

{
(x0, . . . , xn) ∈ ∆n

top

∣∣ ∃k such that xk = 0
}
⊂ ∆n

top.

Applying this to the skeletal filtration, we discover that there are pushouts∐
a∈Xnd

k
∂∆k

top
//

��

��

∥Skk−1X∥
��

��∐
a∈Xnd

k
∆k

top
// ∥SkkX∥

of spaces, and that ∥X∥ =
⋃
∥SkkX∥ with the direct limit topology. Thus, ∥X∥ is presented to us as

a CW-complex, whose cells are in an evident bijective correspondence with the set of non-degenerate
cells of X.
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21. Pushout-product and pullback-hom

We are going to prove several “enriched” versions of lifting properties associated to inner anodyne
maps and inner fibrations. As a consequence we’ll be able to prove (22.4) that function complexes
of quasicategories are themselves quasicategories, and thus completing our detour.

21.1. Definition of pushout-product and pullback-hom. Given maps f : A→ B, g : K → L
and h : X → Y of simplicial sets, we define new maps f□g and g□h called the pushout-product17 pushout-product

and the pullback-hom18. The pushout-product f□g : (A × L) ⨿A×K (B × K) → B × L is the pullback-hom

unique map fitting in the commutative diagram

A×K
id×g

//

f×id
��

A× L

��

f×id

��

B ×K //

id×g //

(A× L)⨿A×K (B ×K)

f□g

))

B × L

in which the square is a pushout. The pullback-hom h□g : Fun(L,X) → Fun(K,X) ×Fun(K,Y )

Fun(L, Y ) is the unique map fitting in the commutative diagram

Fun(L,X) Fun(g,X)

**

Fun(L,h)

,,

h□g

**

Fun(K,X)×Fun(K,Y ) Fun(L, Y ) //

��

Fun(K,X)

Fun(id,h)

��

Fun(L, Y )
Fun(g,id)

// Fun(K,Y )

in which the square is a pullback.

21.2. Remark. Usually we form the pushout-product f□g when f and g are monomorphisms of
simplicial sets, in which case f□g is also a monomorphism. In this case, the cells (b, ℓ) ∈ B × L
which are not in the image of f□g are exactly those such that b ∈ B ∖ f(A) and ℓ ∈ L∖ g(K).

21.3. Remark (Important!). On vertices, the pullback-hom h□g is just the “usual” map Hom(L,X)→
Hom(K,X)×Hom(K,Y ) Hom(L, Y ) sending s 7→ (sg, hs). Thus, h□g is surjective on vertices if and
only if g � h.

We think of the pullback-hom as encoding an “enriched” version of the lifting problem for (g, h).
Thus, the target of h□g is an object which “parameterizes familes” of lifting problems of type g � h,
while the source of h□g “parameterizes families” of such lifting problems which are equipped with a
choice of lift.

21.4. Remark. The pushout-product construction is symmetric: f□g is isomorphic to g□f in the
arrow category Fun([1], sSet). Ultimately, this is because product is symmetric. The pullback-hom
construction however is not symmetric.

17This is sometimes called the box-product. Some also call it the Leibniz-product, as its form is that of the Leibniz
rule for boundary of a product space: ∂(X × Y ) = (∂X × Y ) ∪∂X×∂Y (X × ∂Y ) (which is itself reminiscent of the
original Leibniz rule D(fg) = (Df)g + f(Dg) of calculus).

18Sometimes called the box-power or pullback-power. A common alternate notation is g ⋔ h. This may also be
called the Leibniz-hom, though I don’t know what rule of calculus it is related to.
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The product/function complex adjunction gives rise to the following relationship between lifting
problems, which we may refer to as adjunction of lifting problems. adjunction of lifting

problems

21.5. Proposition. We have that (f□g) � h if and only if f � (h□g).

Proof. Compare the two lifting problems using the product/map adjunction.

(A× L)⨿A×K (B ×K)
(u,v)

//

f□g

��

X

h
��

B × L w
//

s

66

Y

⇐⇒

A
ũ //

f

��

Fun(L,X)

h□g

��

B
(ṽ,w̃)

//

s̃

55

Fun(K,X)×Fun(K,Y ) Fun(L, Y )

On the left-hand side are maps

u : A× L→ X, v : B ×K → X, w : B × L→ Y, s : B × L→ X,

while on the right-hand side are maps

ũ : A→ Fun(L,X), ṽ : B → Fun(K,X), w̃ : B → Fun(L, Y ), s̃ : B → Fun(L,X).

The data of (u, v, w) giving a commutative square as on the left corresponds bijectively to data
(ũ, ṽ, w̃) giving a commutative square as on the right. Similarly, lifts s correspond bijectively to lifts
s̃. □

It is important to note the special cases where one or more of A = ∅, K = ∅, or Y = ∗ hold. For
instance, if K = ∅ and Y = ∗, the proposition implies

(A× L f×L−−−→ B × L) � (X → ∗) iff (A
f−→ B) � (Fun(L,X)→ ∗).

This is the kind of case we are interested in for proving that Fun(K,C) is a quasicategory whenever
C is. The more general statement of the proposition is a kind of “relative” version of the thing we
want; it is especially handy for carrying out inductive arguments.

21.6. Exercise (if you like monoidal categories). Let C := Fun([1], sSet), the “arrow category” of
simplicial sets. Show that □ : C × C → C defines a symmetric monoidal structure on C, with unit
object (∅ ⊂ ∆0). Furthermore, show that this is a closed symmetric monoidal structure, with −□g
left adjoint to (−)□g : C → C.
21.7. Inner anodyne maps and pushout-products. The key fact we want to prove is the
following.

21.8. Proposition. We have that InnHorn□Cell ⊆ InnHorn, i.e., that i□j is inner anodyne
whenever i is inner anodyne and j is a monomorphism.

To set up the proof we need the following.

21.9. Proposition. For any sets of maps S and T , we have S□T ⊆ S□T .

Proof. Let F = (S□T )�. From the small object argument we have that S□T =
�F (17.17), so we

will show (S□T ) � F . First we show that (S□T ) � F . Consider
A := { a | (a□T ) � F }
≈

{
a

∣∣ a� (F□T )
}

by correspondence between lifting problems for pushout-products and pullback-homs (21.5). Thus
A is a left complement, and so is weakly saturated. Since S ⊆ A then S ⊆ A, i.e., (S□T )�F . The
same idea applied to

B :=
{
b
∣∣ (S□b) � F

}
≈

{
b
∣∣∣ b� (F□S)

}
,

gives T ⊆ B, whence (S□T ) � F . □
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21.10. Lemma. We have InnHorn□Cell ⊆ InnHorn.

Proof. This is a calculation, given in [Joy08a, App. H], and presented in the appendix (78.3). □

Proof of (21.8). We have that

InnHorn□Cell ⊆ InnHorn□Cell ⊆ InnHorn.

The first inclusion is (21.9), while the second is an immediate conseqence of InnHorn□Cell ⊆ InnHorn
(21.10). □

21.11. Example. Let’s carry out a proof of (21.10) explicitly in one case, by showing that (Λ2
1 ⊂

∆2)□(∂∆1 ⊂ ∆1) is inner anodyne. This map is the inclusion

(Λ2
1 ×∆1) ∪Λ2

1×∂∆1 (∆2 × ∂∆1) ⊂ ∆2 ×∆1,

whose target is a “prism”, and whose source is a “trough”. To show this is in InnHorn, we’ll give
an explicit procedure for constructing the prism from the trough by succesively attaching simplices
along inner horns.

Note that ∆2 ×∆1 = N([2]× [1]), so we are working inside the nerve of a poset, whose elements
(objects) are “ij” with i ∈ {0, 1, 2} and j ∈ {0, 1}. Here is a picture of the trough, showing all the
non-degenerate cells as the planar 2-cells of the graph.

01 //
((

11 // 21

00 //

OO >>

6610 //

OO >>

20

OO

The complement of this in the prism consists of three non-degenerate 3-cells, five non-degenerate
2-cells (two of which form the “lid” of the trough, while the other three are in the interior of the
prism), and one non-degenerate edge cell (separating the two 2-cells which form the lid).

The following chart lists all non-degenerate cells in the complement of the trough, along with
their codimension one faces (in order). The “

√
” marks cells which are contained in the trough.

⟨00, 21⟩ ⟨00, 20, 21⟩ ⟨00, 01, 21⟩ ⟨00, 10, 21⟩ ⟨00, 11, 21⟩ ⟨00, 10, 20, 21⟩ ⟨00, 10, 11, 21⟩ ⟨00, 01, 11, 21⟩√
⟨21⟩

√
⟨20, 21⟩

√
⟨01, 21⟩

√
⟨10, 21⟩

√
⟨11, 21⟩

√
⟨10, 20, 21⟩

√
⟨10, 11, 21⟩

√
⟨01, 11, 21⟩√

⟨10⟩ ⟨00, 21⟩ ⟨00, 21⟩ ⟨00, 21⟩ ⟨00, 21⟩ ⟨00, 20, 21⟩ ⟨00, 11, 21⟩ ⟨00, 11, 21⟩√
⟨00, 20⟩

√
⟨00, 01⟩

√
⟨00, 10⟩

√
⟨00, 11⟩ ⟨00, 10, 21⟩ ⟨00, 10, 21⟩ ⟨00, 01, 21⟩√

⟨00, 10, 20⟩
√
⟨00, 10, 11⟩

√
⟨00, 01, 11⟩

Note that the cells ⟨00, 21⟩, ⟨00, 10, 21⟩, and ⟨00, 11, 21⟩ of the complement appear multiple times as
faces. We can attach simplices to the domain in the following order:

1○⟨00, 10, 21⟩, 2○⟨00, 10, 20, 21⟩, 3○⟨00, 10, 11, 21⟩, 4○⟨00, 01, 11, 21⟩.
In each case, the intersection of the simplex with (domain+previously attached simplices) is an
inner horn. This directly exhibits (Λ2

1 ⊂ ∆2)□(∂∆1 ⊂ ∆1) as an inner anodyne map.

22. Function complexes of quasicategories are quasicategories

22.1. Enriched lifting properties. We record the immediate consequences of InnHorn□Cell ⊆
InnHorn (21.8).

22.2. Proposition.

(1) If i : A→ B is inner anodyne and j : K → L a monomorphism, then

i□j : (A× L) ∪A×K (B ×K)→ B × L
is inner anodyne.
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(2) If j : K → L is a monomorphism and p : X → Y is an inner fibration, then

p□j : Fun(L,X)→ Fun(K,X)×Fun(K,Y ) Fun(L, Y )

is an inner fibration.
(3) If i : A→ B is inner anodyne and p : X → Y is an inner fibration, then

p□i : Fun(B,X)→ Fun(A,X)×Fun(A,Y ) Fun(B, Y )

is a trivial fibration.

These can be summarized as

InnHorn□Cell ⊆ InnHorn, InnFib□Cell ⊆ InnFib, InnFib□InnHorn ⊆ TrivFib.

Statement (1) is just restating (21.8). The other two statements follow from (1) using the adjunction
of lifting problems for pushout-products and pullback-homs (21.5), together with the facts that
InnFib = InnHorn� and TrivFib = Cell�. For instance, (2) follows from the observation that i�p□j

iff (i□j)�p, and that i ∈ InnHorn and j ∈ Cell imply i□j ∈ InnHorn. Likewise (3) follows a similar
argument using that j � p□i iff (i□j) � p.

We are going to use these consequences all the time. To announce that I am using any of these, I
will simply assert “InnHorn□Cell ⊆ InnHorn” without other explanation; sometimes, to indicate an
application of statements (2) and (3), I will call it “enriched lifting”. The following gives the most
general statement, of which (21.8) amounts to the special case of S = U = InnHorn and T = Cell.

22.3. Proposition. Let S, T , and U be sets of morphisms in sSet. Write S, T , and U for the weak
saturations of these sets, and let SFib := S�, TFib := T�, and UFib := U� denote the respective
right complements. If S□T ⊆ U , then

S□T ⊆ U, UFib□T ⊆ SFib, UFib□S ⊆ TFib.
Proof. Exercise using (21.5). □

There are many useful special cases of (22.2), obtained by taking the domain of a monomorphism
to be empty, or the target of an inner fibration to be terminal.

• If i : A→ B is inner anodyne, so is i× idL : A× L→ B × L.
• If p : X → Y is an inner fibration, then so is Fun(L, p) : Fun(L,X)→ Fun(L, Y ).
• If j : K → L is a monomorphism and C a quasicategory, then Fun(j, C) : Fun(L,C) →
Fun(K,C) is an inner fibration.
• If i : A→ B is inner anodyne and C a quasicategory, then Fun(i, C) : Fun(B,C)→ Fun(A,C)
is a trivial fibration.

In particular, we can now prove that function complexes between quasicategories are quasicate-
gories.

22.4. Theorem. For C a quasicategory and L a simplicial set, Fun(L,C) is a quasicategory.

Proof. Immediate from the above remarks, but let’s spell this out with a little detail. Because
InnHorn□Cell ⊆ InnHorn, we have (21.8) that

(Λn
j ⊂ ∆n)□(∅ ⊆ K) = (Λn

j ×K → ∆n ×K)

is inner anodyne for any K and 0 < j < n. Thus, for any diagram

Λn
j ×K //

��

C

∆n ×K

;;

with C a quasicategory, a dotted arrow exists. By adjunction, this is the same as saying we can extend
Λn
j → Fun(K,C) along Λn

j ⊂ ∆n. That is, we have proved that Fun(K,C) is a quasicategory. □
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There are more examples of this type of enriched lifting property, including the following which
will be important for us.

22.5. Proposition. We have that

Cell□øCell ⊆ Cell, and TrivFib□Cell ⊆ TrivFib.

22.6. Exercise. Prove (22.5). (Hint: (20.5).)

22.7. Exercise. Show that every trivial fibration fibration admits a section.

22.8. Remark. Several weakly saturated classes S that appear these notes have the property that
S□Cell ⊆ S, and thus analogues of the above remarks will hold for such classes. In addition to the
inner anodyne maps InnHorn (21.8) and monomorphisms Cell (22.5), these will include anodyne
maps Horn (??), left anodyne and right anodyne maps LHorn and RHorn (63.2), as well as the class
CatEq ∩ Cell (41.3) of monomorphisms which are categorical equivalences (which will be defined in
(24.5)).

22.9. Composition functors. We can use the above theory to construct “composition functors”.
If C is an ordinary category, the operation of composing a sequence of n maps can be upgraded to
a functor

Fun([1], C)×C Fun([1], C)→ Fun([1], C)

which on objects describes composition of a sequence of maps. The source of this functor is the
evident inverse limit in Cat of

Fun([1], C)
⟨1⟩∗−−→ Fun([0], C)

⟨0⟩∗←−− Fun([1], C),

which is isomorphic to Fun(I2, C).
We can generalize this to quasicategories, with the proviso that the composition functor we

produce is not uniquely determined. We use the following observation: any trivial fibration admits
a section (22.7).

Let C be a quasicategory. Then map r : Fun(∆2, C)→ Fun(I2, C) induced by restriction along
I2 ⊆ ∆2 is a trivial fibration by (22.2), since I2 ⊂ ∆2 is an inner-horn inclusion. Therefore r admits
a section s, so we get a diagram

Fun(I2, C)

s
++

Fun(∆2, C)r
oo r′ // Fun(∆{0,2}, C)

where r′ is restriction along ∆{0,2} ⊂ ∆2. The composite r′s can be thought of as a kind of
“composition” functor. It is not unique, since s isn’t, but we’ll see (25.13) that this is ok: all functors
constructed this way are “naturally isomorphic” to each other.

The same argument gives rise to a (non-unique) “n-fold composition functor”

Fun([1], C)×C · · · ×C Fun([1], C)→ Fun([1], C),

whose source is isomorphic to Fun(In, C), using that spine inclusions are inner anodyne (16.14).

22.10. A useful variant. The proof of (21.8) actually proves something a little stronger.

22.11. Proposition ([Joy08a, §2.3.1], [Lur09, §2.3.2]). We have that {Λ2
1 ⊂ ∆2}□Cell = InnHorn.

Proof. We give a proof in the appendix (78.4). □

A consequence of this is another characterization of quasicategories.

22.12. Corollary. A simplicial set C is a quasicategory if and only if f : Fun(∆2, C)→ Fun(Λ2
1, C)

is a trivial fibration.
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Proof. First notice that (∂∆k ⊂ ∆k) � f for all k ≥ 0 iff (∂∆k ⊂ ∆k)□(Λ2
1 ⊂ ∆2) � (C → ∗)

for all k ≥ 0, since f = (C → ∗)□{Λ2
1⊂∆2}. Therefore f ∈ TrivFib = Cell� if and only if

(C → ∗) ∈ (Cell□{Λ2
1 ⊂ ∆2})�. The conclusion immediately follows using (22.11). □

Part 4. Categorical equivalence of quasicategories

The notion of equivalence of categories is one the most important of the basic concepts in the
theory of categories. When two categories are equivalent, we can for many purposes regard them as
being “essentially the same”, even when they are not isomorphic. Here we will set up the analgous
notion of equivalence for quasicategories.

23. Natural isomorphisms

23.1. Natural isomorphisms of functors. Let C and D be quasicategories. Recall that a natural W 9 Feb
transformation between functors f0, f1 : C → D is defined to be a morphism α : f0 → f1 in the
functor quasicategory Fun(C,D), or equivalently a map α̃ : C ×∆1 → D such that α̃|C × {i} = fi,
i = 0, 1.

Say that α : f0 → f1 is a natural isomorphism if a is an isomorphism in the functor quasicategory natural isomorphism

Fun(C,D). Thus, α is a natural isomorphism iff there exists a natural transformation β : f1 → f0
such that βα ≈ 1f0 and αβ ≈ 1f1 , where “≈” is homotopy between morphisms in the quasicategory
Fun(C,D).

This notion of natural isomorphism corresponds with the usual one for ordinary categories, since
in that case homotopy of morphisms is the same as equality of morphisms.

Observe that “there exists a natural isomorphism f0 → f1” is an equivalence relation on the set of
all functors C → D, as this relation precisely coincides with “there exists an isomorphism f0 → f1”
in the category hFun(C,D). We then say that f0 and f1 are naturally isomorphic fuctors. naturally isomorphic

Furthermore, the “naturally isomorphic” relation is compatible with composition: if f, f ′ are
naturally isomorphic and g, g′ are naturally isomorphic, then so are gf and g′f ′. You can read this off
from the fact the operation of composition of functors extends to a functor Fun(D,E)×Fun(C,D)→
Fun(C,E) between quasicategories, and so induces a functor

hFun(D,E)× hFun(C,D) ≈ h
(
Fun(D,E)× Fun(C,D)

)
→ hFun(C,E).

(This uses (13.16) to identify the homotopy category of the product with the product of homotopy
categories.)

23.2. Pointwise criterion for natural isomorphisms. Recall that if C and D are ordinary
categories, a natural transformation α : f0 → f1 between functors f0, f1 : C → D is a natural
isomorphism iff and only if α is a “pointwise isomorphism” (or “objectwise isomorphism”); i.e.,
if for each object c of C the evident map α(c) : f0(c) → f1(c) is an isomorphism in D. That
natural isomorphisms are “pointwise isomorphisms” is immediate. The opposite implication follows
from the fact that a natural transformation between functors of ordinary values can be completely
recovered from its “values on objects”. Thus, given α : f0 → f1 such that each α(c) : f0(c)→ f1(c)
is an isomorphism, we may explicitly construct an inverse transformation β : f1 → f0 by setting
β(c) := α(c)−1 : f1(c)→ f0(c). Note that this β is in fact the unique inverse to α (since inverses to
morphisms are unique when they exist).

One of these directions is straightforward for quasicategories.

23.3. Proposition. Let C and D be quasicategories. If α : C ×∆1 → D is a natural isomorphism
between functors f0, f1 : C → D, then for each object c of C the induced map α(c) : f0(c)→ f1(c) is
an isomorphism in D.

Proof. The map Fun(C,D)→ Fun({c}, D) = D induced by restriction along {c} ⊆ C is a functor
between quasicategories, so it takes isomorphisms to isomorphisms (14.3). It sends α to α(c). □
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The converse to this proposition is also true: A natural transformation α : C × ∆1 → D of
functors between quasicategories is a natural isomorphism if and only if each of the maps α(c) are
isomorphisms in D. Unfortunately, this is much more subtle to prove, as it requires using the
existence of inverses to the α(c)s to produce an inverse to α, which though it exists is not at all
unique. We will prove this converse later as (37.2).

23.4. Remark. An immediate consequence of the pointwise criterion is that if D is a quasigroupoid,
then so is Fun(C,D).

23.5. Remark. The pointwise criterion can be reformulated in terms of homotopy categories. The
homotopy category construction takes quasicategories to categories, and takes functors to functors.
Furthermore, given a natural transformation α : f0 → f1 of functors f0, f1 : C → D between
quasicategories (i.e., a functor α : C × ∆1 → D such that (α|C × {j}) = fj), we obtain an
induced transformation hα : hf0 → hf1 of functors hf0, hf1 : hC → hD between their homotopy
categories (so that the value of hα at an object c ∈ obhC = C0 is the homotopy class of the edge
α({c} ×∆1) ⊆ D). Then the pointwise criterion asserts that α is a natural isomorphism of functors
between quasicategories if and only if hα is a natural isomorphism of functors between ordinary
categories.

24. Categorical equivalence

We are now in position to define the correct generalization of the notion of “equivalence” of
categories. This will be called categorical equivalence of quasicategories, and will be a direct
generalization of the classical notion.

Given this, we use it to define a notion of categorical equivalence which applies to arbitrary maps
of simplicial sets which may not be quasicategories. Finally, we will show that the two definitions
agree for maps between quasicategories.

24.1. Categorical equivalences between quasicategories. A categorical inverse to a functor categorical inverse

f : C → D between quasicategories is a functor g : D → C such that gf is naturally isomorphic to 1C
and fg is naturally isomorphic to 1D. We provisionally say that a functor f between quasicategories
is a categorical equivalence if it admits a categorical inverse. categorical equivalence

24.2. Remark. Categorical equivalence between quasicategories is a kind of “homotopy equivalence”,
where homotopies are natural isomorphisms between functors.

If C and D are nerves of ordinary categories, then natural isomorphisms between functors in our
sense are precisely natural isomorphisms between functors in the classical sense, so that categorical
equivalence between nerves of categories coincides precisely with the usual notion of equivalence of
categories.

If quasicategories are equivalent, then their homotopy categories are equivalent.

24.3. Proposition. If f : C → D is a categorical equivalence between quasicategories, then
h(f) : hC → hD is an equivalence of categories.

Proof. Immediate, given that natural isomorphisms f ⇒ g : C → D induce natural isomorphisms
h(f)⇒ h(g) : hC → hD. □

Note: the converse is not at all true. For instance, there are many examples of quasicategories
which are not equivalent to ∆0, but whose homotopy categories are: e.g., Sing T for any non-
contractible simply connected space T (12.9), or K(A, d) for any non-trivial abelian group A and
d ≥ 2 (12.13).

24.4. Exercise (Categorical inverses are unique up to natural isomorphism). Let f : C → D be a
functor between quasicategories, and suppose g, g′ : D → C are both categorical inverses to f . Show
that g and g′ are naturally isomorphic.
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24.5. General categorical equivalence. We can extend the notion of categorical equivalence
to maps between arbitrary simplicial sets. Say that a map f : X → Y between arbitrary sim-
plicial sets is a categorical equivalence if for every quasicategory C, the induced functor categorical equivalence

Fun(f, C) : Fun(Y,C)→ Fun(X,C) of quasicategories admits a categorical inverse.
We claim that on functors between quasicategories this general definition of categorical equivalence

coincides with the provisional notion described earlier.

24.6. Lemma. For a functor f : C → D between quasicategories, the two notions of categorical
equivalence described above coincide. That is, the following are equivalent:

(1) f admits a categorical inverse.
(2) For every quasicategory E, the functor Fun(f,E) : Fun(D,E)→ Fun(C,E) admits a cate-

gorical inverse.

To prove this, we will need the following observation. The construction X 7→ Fun(X,E) is a
functor sSetop → sSet, and so in particular induces a natural map

γ0 : Hom(X,Y )→ Hom(Fun(Y,E),Fun(X,E))

of sets, which sends f : X → Y to Fun(f,E) : Fun(Y,E)→ Fun(X,E). The observation we need is
that this construction admits an “enrichment”, to a map

γ : Fun(X,Y )→ Fun(Fun(Y,E),Fun(X,E)),

which coincides with γ0 on vertices. The map γ in question is adjoint to the “composition” map
Fun(X,Y )× Fun(Y,E)→ Fun(X,E). (Exercise: Describe explicitly what γ does to n-dimensional
cells.) We say that the functor Fun(−, E) is an enriched functor, as it gives not merely a map between
hom-sets (i.e., acts on vertices in function complexes), but a map between function complexes.

Proof. (1) =⇒ (2). When C, D, and E are quasicategories so are the function complexes between
them (22.4). In this case, the above map γ takes functors C → D to functors Fun(D,E)→ Fun(C,E)
between quasicategories, natural transformations of such functors to natural transformations, and
natural isomorphisms of such functors to natural isomorphisms. Using this observation, it is straight-
forward to show that a categorical inverse g : D → C to f : C → D gives rise to a categorical inverse
Fun(g,E) : Fun(C,E)→ Fun(D,E) to the induced functor Fun(f,E) : Fun(D,E)→ Fun(C,E).

(2) =⇒ (1). Conversely, suppose f : C → D is a categorical equivalence in the general sense, so
that f∗ = Fun(f,E) admits a categorical inverse for every quasicategory E, which implies that each
functor

h(f∗) : hFun(D,E)→ hFun(C,E)

is an equivalence of ordinary categories (24.3). In particular, it follows that f∗ induces a bijection
of sets

f̂∗ : π0(Fun(D,E)core)
∼−→ π0(Fun(C,E)core).

Recall that π0(Fun(D,E)
core) ≈ π0((hFun(D,E))core) is precisely the set of natural isomorphism

classes of functors D → E.
Taking E = C, surjectivity of f̂∗ implies that there is a functor g ∈ Fun(D,C)0 together with a

natural isomorphism gf → idC in Fun(C,C)1. Taking E = D, we note that since

f∗(idD) = idD f = f idC ≈ fgf = f∗(fg),

injectivity of f̂∗ implies that idD ≈ fg, i.e., there exists a natural isomorphism idD → fg in
Fun(D,D)1. Thus, we have shown that g is a categorical inverse of f , as desired. □

24.7. Remark. The definition of categorical equivalence we are using here is very different to the
definition adopted by Lurie in [Lur09, §2.2.5]. It is also slightly different from the definition of “weak
categorical equivalence” used by Joyal [Joy08a, 1.20]. Lurie adopts a definition closely related to
Joyal’s in https://kerodon.net [Lur21]. As we will show soon (27.13), weak categorical equivalence

https://kerodon.net
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and the definition used in kerodon are equivalent to our definition of categorical equivalence. The
discussion around [Lur09, 2.2.5.8] show’s that Joyal’s definitions is equivalent to the one used in
[Lur09], and so they are both equivalent to the one we have used.

25. Trivial fibrations and inner anodyne maps

Inner anodyne maps and trivial fibrations are particular kinds of categorical equivalences.

25.1. Trivial fibrations to the terminal simplicial set. Recall that a trivial fibration p : X → Y
of simplicial sets is a map such that (∂∆k ⊂ ∆k)� p for all k ≥ 0. That is, TrivFib = Cell�, so p is
a trivial fibration if and only if Cell � p.

25.2. Exercise. Consider an indexed collection of trivial fibrations pi : Xi → Yi. Show that p :=∐
pi :

∐
Xi →

∐
Yi is a trivial fibration. (Hint: see proof of (9.7).)

25.3. Proposition. Let X be a simplicial set and p : X → ∗ be a trivial fibration whose target is the
terminal simplicial set. Then

(1) X is a Kan complex (and thus a quasigroupoid),
(2) for any simplicial set K, p′ : Fun(K,X)→ ∗ is a trivial fibration, and
(3) p is a categorical equivalence.

Proof. Since Horn ⊂ Cell, it is immediate that X is a Kan complex, proving (1).
Statement (2) is an immediate consequence of enriched lifting (22.3) applied to Cell□Cell ⊆ Cell

(22.5), as this implies that for i : ∅→ K, the pullback-hom map

p□i = Fun(K,X)→ Fun(∅, X)×Fun(∅,∗) Fun(K, ∗) ≈ ∗
is a trivial fibration.

Next note that X only has one isomorphism class of objects. To show this, note that since X is
a quasigroupoid, it suffices to produce for any pair of objects a, b ∈ X0 a morphism a → b. This
amounts to producing a lift in

∂∆1 = {0, 1}
(a,b)

//

��

��

X

p

��
∆1

99

// ∗
which exists because (∂∆1 ⊂ ∆1) ∈ Cell.

To prove (3), first note that X is non-empty, since Hom(∆0, X)→ Hom(∂∆0, X) = ∗ is surjective.
Choose any s ∈ Hom(∆0, X), so ps = id∆0 . The composite sp : X → X is an object of Fun(X,X),
and we want to show it is naturally isomorphic to idX . But by (2), Fun(X,X) → ∗ is a trivial
fibration, so all objects of Fun(X,X) are isomorphic. □

We will prove a partial converse to this later (40.11): a quasicategory C is categorically equivalent
to ∗ if and only if C → ∗ is a trivial fibration.

25.4. Preisomorphisms. We need a way to produce categorical equivalences between simplicial F 11 Feb
sets which are not necessarily quasicategories.

Let X be a simplicial set. Say that an edge a ∈ X1 is a preisomorphism if it projects to an preisomorphism

isomorphism under α : X → hX, the tautological map to the (nerve of the) fundamental category
(13.1). If X is actually a quasicategory, the preisomorphisms are just the isomorphisms (since in
that case the fundamental category is the same as the homotopy category). Note that degenerate
edges are always preisomorphisms, since they go to identity maps in the fundamental category.

25.5. Proposition. An edge a ∈ X1 is a preisomorphism if and only if for every map g : X → C to
a quasicategory C, the image g(a) is an isomorphism in C.
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Proof. Isomorphisms in C are exactly the edges which are sent to isomorphisms under γ : C → hC.
Given this the proof is straightforward, using the fact that the formation of fundamental categories
is functorial, and that hX is itself a category and hence a quasicategory. □

As a consequence, any map X → Y of simplicial sets takes preisomorphisms to preisomorphisms.
In particular, any map from a quasicategory takes isomorphisms to preisomorphisms. We will use
this observation below.

25.6. Example. Consider the simplicial set Z described by the picture

y
y00
//

g

��

y

h

��
x x00

//

f

??

b

x

a

which shows all its non-degenerate cells: x, y ∈ Z0, f, g, h ∈ Z1, a, b ∈ Z2. It is not a quasicategory.
However, a map ϕ : Z → C to a quasicategory corresponds exactly a choice of:

• objects ϕ(x), ϕ(y) ∈ C0,
• morphisms ϕ(f) : ϕ(x)→ ϕ(y) and ϕ(g), ϕ(h) : ϕ(y)→ ϕ(x) in C1, and
• 2-cells ϕ(a), ϕ(b) ∈ C2 exhibiting f ∼ℓ h and g ∼ℓ f respectively.

In particular, ϕ(g) is a preinverse of ϕ(f) and ϕ(h) is a postinverse of ϕ(f), so all of these edges are
isomorphisms in C. Therefore all edges of Z are preisomorphisms.

25.7. Example. Here is a variant of the previous example. Consider the simplicial set Z ′ described
by the picture

y
y00
//

g

��

y

g

��
x x00

//

f

??

b

x

a

with six non-degenerate cells: x, y ∈ Z ′0, f, g ∈ Z ′1, a, b ∈ Z ′2. Again, Z ′ is not a quasicategory.
A map ϕ : Z ′ → C to a quasicategory corresponds exactly to a choice of:

• objects ϕ(x), ϕ(y) ∈ C0,
• morphisms ϕ(f) : ϕ(x)→ ϕ(y) and ϕ(g) : ϕ(y)→ ϕ(x) in C1, and
• 2-cells ϕ(a), ϕ(b) ∈ C2 exhibiting f ∼ℓ g and g ∼ℓ f respectively.

Thus as in the previous example, every edge of Z ′ is a preisomorphism.

25.8. Exercise. Let Z and Z ′ be as in (25.6) and (25.7). Consider the maps i : ∆1 → Z and
i′ : ∆1 → Z ′ which in either case represent the edge labelled f . Show that an edge in a quasicategory
C is an isomorphism if and only if its representing map ∆1 → C extends along i, and if and only if
its representing map extends along i′.

Say that vertices in a simplicial set X are preisomorphic if they can be connected by a chain preisomorphic

of preisomorphisms (which can point in either direction). Clearly, any map g : X → C to a
quasicategory takes preisomorphic vertices of X to isomorphic objects of C.

We can apply this to function complexes. If two maps f0, f1 : X → Y are preisomor-
phic (viewed as vertices in Fun(X,Y )), then for any quasicategory C, the induced functors
Fun(f0, C),Fun(f1, C) : Fun(Y,C)→ Fun(X,C) are naturally isomorphic. To see this, consider

∆1 a−→ Fun(X,Y )
b−→ Fun(Fun(Y,C),Fun(X,C))

where b is adjoint to the composition map Fun(Y,C)× Fun(X,Y )→ Fun(X,C). If a represents a
preisomorphism f0 → f1 in Fun(X,Y ), then ba represents an isomorphism Fun(f0, C)→ Fun(f1, C),
since the target of b is a quasicategory. As a consequence we get the following.
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25.9. Lemma. If f : X → Y and g : Y → X are maps of simplicial sets such that gf is preisomorphic
to idX in Fun(X,X) and fg is preisomorphic to idY in Fun(Y, Y ), then f and g are categorical
equivalences.

It is important to note that this is a sufficient condition for a map to be a categorical equivalence,
but not a necessary one: there are many categorical equivalences of simplicial sets to which the
lemma cannot be applied (see (26.3) below).

25.10. Trivial fibrations are always categorical equivalences.

25.11. Proposition. Every trivial fibration between simplicial sets is a categorical equivalence.

Here is some notation. Given maps f : A → Y and g : B → Y , we write Fun/Y (f, g) or
Fun/Y (A,B) for the simplicial set defined by the pullback square

Fun/Y (A,B) //

��

Fun(A,B)

g∗=Fun(A,g)

��

{f} // Fun(A, Y )

Note that vertices of Fun/Y (A,B) correspond exactly to “sections of g over f”, i.e., to s : A→ B
such that gs = f . You can think of Fun/Y (A,B) as a simplicial set which “parameterizes” sections
of g over f . I’ll call this the relative function complex over Y . relative function com-

plex over Y

25.12. Exercise. Show that n-dimensional cells of Fun/Y (A,B) correspond to maps a : ∆n ×A→ B
such that ga = π(id×f), where π : ∆n × Y → Y is the projection.

Proof of (25.11). Fix a trivial fibration p : X → S. We regard both X and S as objects over S, via
p and idS , and consider various relative function complexes over S.

Note that since p is a trivial fibration, so are Fun(X, p) = p□(∅⊂X) and Fun(S, p) = p□(∅⊂X) by
enriched lifting Cell□Cell ⊆ Cell. The maps

Fun/S(S,X)→ Fun/S(S, S) = ∗ and Fun/S(X,X)→ Fun/S(X,S) = ∗
are (by construction) base changes of Fun(S, p) and Fun(X, p) respectively, and so are also trivial
fibrations since TrivFib is closed under base change. It follows from (25.3) that both Fun/S(S,X)
and Fun/S(X,X) are quasigroupoids which are categorically equivalent to the terminal object (and
so are non-empty and such that all objects are isomorphic). Note that these are isomorphic to
subcomplexes of simplicial sets Fun(S,X) and Fun(X,X) respectively, which however need not be
quasicategories. However all edges of Fun/S(S,X) and Fun/S(X,X) are necessarily preisomorphisms
in Fun(S,X) and Fun(X,X).

Since Fun/S(S,X) → ∗ is a trivial fibration we can pick a vertex s of Fun/S(S,X), and this s
can be regarded as a map s : S → X such that ps = idS . Pick any isomorphism a : idX → sp in
Fun/S(X,X), which is hence a preisomorphism in Fun(X,X). Thus, we have exhibited maps p
and s whose composites are preisomorphic to identity functors, and therefore they are categorical
equivalences by (25.9). □

25.13. Remark (“Uniqueness” of sections of trivial fibrations). Suppose that p : C → D is a trivial
fibration between quasicategories. As we have noted, the relative function complex Fun/D(D,C)
“parameterizes sections of p”. Since this is a quasigroupoid equivalent to the terminal quasicategory
(25.11), not only is p a categorical equivalence, but also

• p admits a section, which is a categorical inverse to p, and
• any two sections of p are naturally isomorphic.

We will often make use of this observation.
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25.14. Exercise. Let p : C → D be a functor between categories. Show that p is a trivial fibration if
and only if (i) it is surjective on objects, and (ii) homC(x, y)→ homD(px, py) is a bijection for all
objects x, y ∈ C0.

25.15. Exercise. Let p : C → D be a trivial fibration between categories. Show that S := Fun/D(D,C)
is an category which is equivalent to the terminal category, and that the set of objects of S is in
bijective correspondence wtih the set of sections of the map p : C0 → D0.

25.16. Inner anodyne maps are always categorical equivalences.

25.17. Proposition. Every inner anodyne map between simplicial sets is a categorical equivalence.

Proof. Let j : X → Y be a map in InnHorn, and let C be any quasicategory. The induced map
Fun(j, C) : Fun(Y,C) → Fun(X,C) is a trivial fibration by enriched lifting and InnHorn□Cell ⊆
InnHorn (22.2), and therefore is a categorical equivalence. □

25.18. Every simplicial set is categorically equivalent to a quasicategory.

25.19. Proposition. Fix a simplicial set X.

(1) There exists a quasicategory C and an inner anodyne map f : X → C, which is therefore a
categorical equivalence.

(2) For any two fi : X → Ci as in (1), there exists a categorical equivalence g : C1 → C2 such
that gf1 = f2.

(3) Any two categorical equvialences g1, g2 : C1 → C2 such that gif1 = f2 are naturally isomor-
phic.

To prove this we introduce more notation. Given maps f : X → A and g : X → B, we write
FunX/(f, g) or FunX/(A,B) for the simplicial set defined by the pullback square

FunX/(A,B) //

��

Fun(A,B)

f∗=Fun(f,B)

��

{g} // Fun(X,B)

This is the relative function complex under X. relative function com-
plex under X

25.20. Exercise. Show that n-cells of FunX/(A,B) correspond to maps a : ∆n ×A→ B such that
a(id×f) = gπ, where π : ∆n ×X → X is the projection

Proof of (25.19). (1) By the small object argument (17.16), we can factor X → ∗ into X j−→ C
p−→ ∗

where j ∈ InnHorn and p ∈ InnFib. The inner anodyne map j is the desired categorical equivalence
to a quasicategory.

(2) For i, j ∈ {1, 2}, we have a restriction map f∗i,j : Fun(Ci, Cj)→ Fun(X,Cj), which is neces-

sarily a trivial fibration by enriched lifting since InnHorn□Cell ⊆ InnHorn. Therefore the maps
FunX/(Ci, Cj) → ∗ (obtained by base-change from the f∗i,j) are all trivial fibrations, i.e., each

FunX/(Ci, Cj) is a quasigroupoid with only one isomorphism class of objects (25.3). As in the proof
of (25.11) we construct g : C1 → C2 and g′ : C2 → C1 which are categorically inverse to each other;
details are left to the reader.

(3) The maps g1, g2 correspond to vertices in FunX/(C1, C2), which as we have observed is a
quasigroupoid with only one isomorphism class of objects. □

Thus, we can always “replace” a simplicial set X by a categorically equivalent quasicategory C.
Although such C is not unique, it is unique up to categorical equivalence.

You can think of such a replacement X → C of X as a quasicategory “freely generated” by the
simplicial set X, an idea which is validated by the fact that Fun(j,D) : Fun(C,D)→ Fun(X,D) is
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a trivial fibration for every quasicategory D, and so is in particular a categorical equivalence. In the
next section I will look at some specific instances of this idea.

26. Some examples of categorical equivalences

26.1. Free monoid on one generator. Let F denote the free monoid on one generator g. This is
a category with one object x, and morphism set { gn | n ≥ 0 }.

Associated to the generator g is a map

γ : S1 := ∆1/∂∆1 → N(F )

sending the image of the generator ι ∈ (∆1)1 in S1 to g. (We use “L/K” as a shorthand for
“L⨿K ∗” whenever K ⊆ L. The object S1 is called the “simplicial circle”, which has exactly two
nondegenerate cells, one in dimension 0 and one in dimension 1.)

It is not hard to see that F is “freely generated” as a category by S1, in the sense that h(S1) = F
(the fundamental category of S1 is F ). It turns out that N(F ) is actually “freely generated as a
quasicategory” by S1.

26.2. Proposition. The map γ : S1 → N(F ) is a categorical equivalence, and in fact is inner
anodyne.

Proof. This is an explicit calculation. Note that a general cell in N(F )d corresponds to a sequence
(gm1 , . . . , gmd) of elements of the monoid F , where m1, . . . ,md ≥ 0. Let ak ∈ N(F )k denote
the k-cell corresponding to the sequence (g, g, . . . , g), and let Yk ⊆ N(F ) denote the subcomplex
which is the image of the representing map ak : ∆

k → N(F ). For f : [d] → [k] we compute that
akf = (gm1 , . . . , gmd) where mi = f(i)− f(i− 1), so that

(Yk)d = { akf | f : [d]→ [k] } = { (gm1 , . . . , gmd) | m1 + · · ·+md ≤ k },
Clearly Yk−1 ⊆ Yk for all k and N(F ) =

⋃
k≥1 Yk, with Y1 ≈ S1 and Y2 ≈ Y1 ∪Λ2

1
∆2. Furthermore

we have the following:

• A simplicial operator f : [d]→ [k] (i.e., element of (∆k)d) is such that akf is in the subcomplex
Yk−1 of Yk if and only if f(d)− f(0) < k, if and only if either f(d) < k or f(0) > 0, i.e., if

and only if f is in the subcomplex Λk
{0,k} = ∆{0,...,k−1} ∪∆{1,...,k} of ∆k.

• Every cell y of Yk not in Yk−1 is the image under ak of a unique cell in ∆k. That is, for
f : [d]→ [k], we have m1+ · · ·+md = f(d)− f(0), which is equal to k if and only if f(0) = 0
and f(d) = k, and if this is the case then f(i) = m1 + · · ·+mi, so f is uniquely determined
by akf = (gm1 , . . . , gmd).

In other words, the square

Λk
{0,k}

//

��

��

Yk−1
��

��

∆k
ak

// Yk

is a pullback, and ak induces in each dimension d a bijection (∆k)d ∖ (Λk
{0,k})d

∼−→ (Yk)d ∖ (Yk−1)d.

It follows (20.4) that the square is a pushout.
The inclusion Λk

{0,k} ⊂ ∆k is a generalized inner horn, and we have noted this is inner anodyne

when k ≥ 2 (16.12). It follows that each Yk−1 → Yk is inner anodyne for k ≥ 2, whence S1 → N(F )
is inner anodyne, since it is a transfinite composition of the Yk−1 → Yk. □

26.3. Remark. This gives an explicit example of a categorical equivalence to which (25.9) does not
apply: γ does not admit an “inverse up to preisomorphims”. There is only one map δ : N(F )→ S1,
namely the composite N(F ) → ∗ → S1, and it is clear that neither γδ : N(F ) → N(F ) nor
δγ : S1 → S1 are preisomorphic to identity functors.
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26.4. Free categories. We can generalize the above to free monoids with arbitrary sets of generators,
and in fact to free categories. Let S be a 1-dimensional simplicial set, i.e., one such that S = Sk1 S. 1-dimensional

These are effectively the same thing as quivers (i.e., directed graphs which are allowed to have
parallel edges and loops): S0 corresponds to the set of vertices of the quiver, and Snd

1 corresponds
to the set of edges of the quiver.

Let F := hS. We call F the free category on the 1-dimensional simplicial set S. In this case, free category

the morphisms of the fundamental category are precisely the words in the edges Snd
1 of the quiver

(including empty words for each vertex, corresponding to identity maps). That is, it is precisely the
free category described in the proof of (13.2).

26.5. Proposition. The evident map γ : S → N(F ) is a categorical equivalence, and in fact is inner
anodyne.

Proof. This is virtually the same as the proof of (26.2). In this case, Yk ⊆ N(F ) is the subcomplex
generated by all a : ∆k → N(F ) such that each spine-edge ai−1,i is in S

nd
1 , and Yk is obtained by

attaching a generalized horn of type Λk
{0,k} ⊂ ∆k to Yk−1 for each such a. □

As a consequence, it is “easy” to construct functors F → C from a free category to a quasicategory:
start with a map S → C, which amounts to specifying vertices and edges in C corresponding to
elements S0 and Snd

1 , and extend over S ⊆ F . The evident restriction map Fun(F,C)→ Fun(S,C)
is a categorical equivalence, and in fact a trivial fibration. In other words, free categories are also
“free quasicategories”.

26.6. Exercise. Describe the ordinary category A := hΛ3
0 “freely generated” by Λ3

0. Show that the
tautological map Λ3

0 → N(A) is inner anodyne.

26.7. Free commutative monoids. Let F be the free monoid on one generator again, with gen- M 14 Feb
erator corresponding to simplicial circle S1 = ∆1/∂∆1 ⊂ N(F ). Thus F×n is the free commutative
monoid on n generators. Recall that the nerve functor preserves products, so N(F×n) ≈ N(F )×n.
We obtain a map

δ = γ×n : (S1)×n → N(F×n)

from the “simplicial n-torus”.

26.8. Proposition. The map δ : (S1)×n → N(F×n) is a categorical equivalence, and in fact is inner
anodyne.

Proof. This is a consequence of the fact that if j : A → B is inner anodyne and K an arbitrary
simplicial set, then j ×K× : A×K → B×K is inner anodyne (because InnHorn□Cell ⊆ InnHorn).
It follows that A×n → B×n is a composite of inner anodyne maps, and so is inner anodyne and thus
a categorical equivalence (25.17). Also use the fact that the nerve construction preserves products
(9.5), so N(F×n) = N(F )×n. □

26.9. Exercise. Let S1 ∨ S1 ⊂ (S1)×2 be the subcomplex obtained as the evident “one-point union”
of the two “coordinate circles”; i.e., S1 ∨ S1 = (S1 × {∗}) ∪ ({∗} × S1). Suppose given a map
ϕ : S1 ∨ S1 → C to a quasicategory C, corresponding to a choice of object x ∈ C0 together with two
morphisms f, g : x→ x in C1. Show that there exists an extension of ϕ along S1 ∨ S1 ⊂ N(F×2) if
and only if [f ][g] = [g][f ] in hC.

26.10. Remark. The analogue of the above exercise for n = 3 isn’t true. That is, consider the
subcomplex S1 ∨ S1 ∨ S1 ⊂ (S1)×3 which is a one-point union of three circles, suppose we have
S1 ∨ S1 ∨ S1 → C corrposding to three morphisms f, g, h : x → x in C, and suppose we also
know that [f ][g] = [g][f ], [g][h] = [h][g], and [f ][h] = [h][f ] in hC. Then you can show that
there exists an extension to a map K → C as in (26.9), where K ⊆ (S1)×3 is the subcomplex
(S1 × S1 × {∗}) ∪ (S1 × {∗} × S1) ∪ ({∗} × S1 × S1). However, there need not exist an extension
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to a map (S1)×3 → C, and thus there may not exist an extension to a map N(F×3) → C. (For
an explicit example where this fails, take C = Sing T , where T ⊆ (S1

top)
×3 is the subspace of the

topological 3-torus consisting of tuples (x1, x2, x3) such that at least one xi is the basepoint of S1
top.)

Thus, this is a situation where the “higher structure” of a quasicategory plays a role. When C is
an ordinary category, it is easy to show that the desired extension does always exist. However, for a
general quasicategory C, three pairwise-commuting endomorphisms of an object do not generally
give rise to a functor N(F×3)→ C from the free commutative monoid on 3 generators.

26.11. Finite groups are not finitely generated. If A is any ordinary category, then Sk2N(A)
“freely generates N(A) as a category”, in the sense that h(Sk2N(A)) ≈ A, or equivalently that
Fun(N(A), N(B))→ Fun(Sk2N(A), N(B)) is an isomorphism for any category B. However, it is
often the case that no finite dimensional simplicial set “freely generates N(A) as a quasicategory”.
In fact, this is the case for every non-trivial finite group.

26.12. Example. Let G be the finite group of order 2, with generator g, and consider C = NG, the
nerve of G viewed as a category with one object. Then C has exactly one non-degenerate cell in
each dimension:

Cnd
k = {ak := (g, . . . , g)}.

Thus, to give a map ϕ : C → D to some other quasicategory requires describing the infinite list of
data ϕ(ak) ∈ Dk, k ≥ 0, which must necessarily satisfy a number of compatibilities in order that
ϕ. It turns out that there is no way to reduce this to a finite list of data and conditions, in the
following sense: there is no finite dimensional simplicial set which is categorically equivalent to C.

To prove this, relies on some topology, together with a fact to be proved later19: if f : X → Y is
any categorical equivalence of simplicial sets, then the induced map ∥f∥ : ∥X∥ → ∥Y ∥ of geometric
realizations must be a homotopy equivalence of spaces. The realization ∥NG∥ is the classifying
space of G. The topology we need is that the cohomology of this space is non-zero in arbitrarily
large dimensions: H2k(∥NG∥ ,Z) ≈ Z/2 ̸≈ 0 for all k > 0. On the other hand, if X is a simplicial
set with X = SkdX, then Hk(∥X∥ ,Z) = 0 for all k > d.

A similar observation applies for any non-trivial finite group G. Thus, non-trivial finite groups
are never “freely generated as a quasicategory” by finite dimensional complexes. In the world of
∞-categories, finite groups are fundamentally infinite dimensional objects.

27. The homotopy category of quasicategories

27.1. The homotopy category of qCat. The homotopy category hqCat of quasicategories is
defined as follows. The objects of hqCat are the quasicategories. Morphisms C → D in hqCat are
natural isomorphism classes of functors. That is,

HomhqCat(C,D) := isomorphism classes of objects in hFun(C,D) = π0
(
Fun(C,D)core

)
.

That this defines a category results from the fact that composition of functors passes to a functor
hFun(D,E)× hFun(C,D)→ hFun(C,E), and thus is compatible with natural isomorphism.

It comes with an obvious functor qCat→ hqCat. Note that a map f : C → D of quasicategories
is a categorical equivalence if and only if its image in hqCat is an isomorphism.

27.2. Remark. We can similarly define a category hCat, whose objects are ordinary categories and
whose morphisms are isomorphism classes of functors. The nerve functor evidently induces a full
embedding hCat→ hqCat.

27.3. Warning. Although we use the phrase “homotopy category”, the definition of hqCat given
above is not an example of the notion of the homotopy category of a quasicategory defined in
(13): qCat is a (large) ordinary category, so is isomorphic to its own homotopy category in that

19I don’t know if this will actually get proved later. It is proved in [GJ09].
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sense. Here we are using the equivalence relation on morphisms(=functors) defined by natural
isomorphism.

We define hKan ⊂ hqCat to be the full subcategory of the homotopy category spanned by
quasicategories which are Kan complexes.

For future reference, we note that hqCat and hKan have finite products, which just amount to
the usual products of simplicial sets.

27.4. Proposition. The terminal simplicial set ∆0 is a terminal object in hqCat. If C1, C2 are
quasicategories, then the projection maps exhibit C1 × C2 as a product in hqCat.

Proof. This is straightforward. The key observation for the second statement is the fact that
isomorphism classes of objects in a product of quasicategories correspond to pairs of isomorphism
classes in each (9.12), and the fact that Fun(X,C1 × C2)

∼−→ Fun(X,C1)× Fun(X,C2). □

27.5. Exercise (Products of categorical equivalenes). Let f : X → Y and f ′ : X ′ → Y ′ be categorical
equivalences of simplicial sets. Show that f × f ′ : X ×X ′ → Y × Y ′ is a categorical equivalence.
(Hint: reduce to the case where one of the maps is identity.)

27.6. The 2-out-of-6 and 2-out-of-3 properties. A class of morphismsW in a category is said to
satisfy the 2-out-of-6 property if (i) W contains all identity maps, and (ii) given sequence (h, g, f) 2-out-of-6 property

of maps such that the composites gf and hg are defined, if gf, hg ∈ W then also f, g, h, hgf ∈W .
A class of morphismsW in a category is said to satisfy the 2-out-of-3 property if (i)W contains 2-out-of-3 property

all identity maps, and (ii) given a sequence (g, f) of maps such that the composite gf is defined, if
any two of (f, g, gf) are in W, so is the third.

27.7. Example. In any category, the class of isomorphisms satisfies 2-out-of-6 property and the
2-out-of-3 property. The class of identity maps satisfies 2-out-of-3, but does not generally satisfy
2-out-of-6. In fact, the class of isomorphisms is the smallest class which satisfies 2-out-of-6.

27.8. Proposition. If W satisfies 2-out-of-6, then it satisfies 2-out-of-3.

Proof. Given f, g such that gf is defined, apply 2-out-of-6 to the composable sequences (id, g, f),
(g, id, f), (g, f, id). □

27.9. Exercise. Given a functor f : C → D between categories, let W be the class of maps in C that
f takes to isomorphisms in D. Show that W satisfies 2-out-of-6, and thus 2-out-of-3.

27.10. Example (2-out-of-6 for equivalences of categories). In Cat, the category of small categories
and functors, the class of equivalences satisfies 2-out-of-6, and thus 2-out-of-3.

To see this, first suppose (h, g, f) is a triple of functors such that there are natural isomorphisms
gf ≈ id and hg ≈ id. Then, since (i) natural isomorphism is an equivalence relation on functors
and (ii) is compatible with composition, we see that

h = h id ≈ h(gf) = (hg)f ≈ id f = f,

and thus that g is an equivalence since hg ≈ id and gh ≈ gf ≈ id.
Next, note that composites of equivalences are equivalences, by a straightforward argument: if g

and f are equivalences and composable, and g′ and f ′ are categorical inverses to them, then f ′g′ is
easily seen to be a categorical inverese to gf .

Now suppose that (h, g, f) are such that gf and hg are categorical equivalences. Choose categorical
inverses u and v for these, so that

gfu ≈ id, ugf ≈ id, hgv ≈ id, vhg ≈ id .

Apply the above remarks to the triples (ug, f, ug), (vh, g, fu), (gv, h, gv), and (ugv, hgf, vgu) to
show that f, g, h are equivalences, where we use that

fug ≈ (vhg)fug = vh(gfu)g ≈ vhg ≈ id, gvh ≈ gvh(gfu) = g(vhg)fu ≈ gfu ≈ id .



INTRODUCTION TO QUASICATEGORIES 68

It follows that the composite hgf is also an equivalence.
Alternately, we can apply (27.9) to the tautological functor Cat→ hCat, which sends a functor

to an isomorphism in hCat if and only if it is an equivalence.

27.11. Proposition. The class CatEq of categorical equivalences in sSet satisfies 2-out-of-6, and
thus 2-out-of-3.

Proof. It is immediate that the identity map of a simplicial set is a categorical equivalence.
Next consider functors f, g, h between quasicategories such that gf and hg are are defined and are

categorical equivalences. Then f, g, h and hgf are categorical equivalences by an argument which is
word-for-word the same as in (27.10).

For the general case, we reduce to the quasicategory case by applying Fun(−, C), where C is an
arbitrary quasicategory. □

27.12. Other characterizations of categorical equivalence. It turns out that we can replace
the condition in the definition of categorical equivalence with some seemingly weaker conditions.

27.13. Proposition. Let f : X → Y be a map of simplicial sets. The following are equivalent.

(1) The map f is a categorical equivalence: i.e., for every quasicategory C, the functor
Fun(Y,C)→ Fun(X,C) induced by restriction along f admits a categorical inverse.

(2) For every quasicategory C, the map hFun(Y,C)→ hFun(X,C) induced by restriction along
f is an equivalence of ordinary categories.

(3) For every quasicategory C, the map π0(Fun(Y,C)
core) → π0(Fun(X,C)

core) induced by
restriction along f is a bijection of sets.

Proof. (1) ⇒ (2) is immediate from (24.3), while (2) ⇒ (3) is immediate, since an equivalence of
ordinary categories induces a bijection on isomorphism classes of objects. We prove that (3) implies
(1).

In the case that f is a map between quasicategories, this is really what the second half of the
proof of (24.6) actually shows. That is, we let C be either X or Y , and use the bijections

f̂∗ : π0(Fun(Y,X)core)
∼−→ π0(Fun(X,X)core), f̂∗ : π0(Fun(Y, Y )core)

∼−→ π0(Fun(X,Y )core),

to (a) produce a g : Y → X such that gf ≈ idX , and (b) show that fgf ≈ f idX = idY f implies
fg ≈ idY .

We reduce the case of a general map f to that of a map f ′ between quasicategories as follows.
Use factorization to construct a commutative square

X
f
//

u
��

Y

v
��

X ′
f ′
// Y ′

so that u and v are inner anodyne (and so categorical equivalences), andX ′ and Y ′ are quasicategories.
If we apply Fun(−, C) to the square with C a quasicategory, the vertical maps become trivial
fibrations, and hence induce bijections on isomorphism classes of objects. Therefore Fun(f, C)
induces a bijection on isomorphism classes of objects if and only if Fun(f ′, C) does. □

Joyal [Joy08a, 1.20] singles out statement (2) of (27.13) as his basic notion of equivalence, which
he calls weak categorical equivalence20. In kerodon.net Lurie singles out statement (3) as the weak categorical equiv-

alencebasic notion of equivalence. We see that either of these are equivalent to the definition of categorical
equivalence we are using.

20This is not to be confused with “weak homotopy equivalence”, which we will talk about later (52).

https://kerodon.net
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Finally, we note one more criterion for categorical equivalence between quasicategories, which is
in some sense “dual” to the one given above.

27.14. Proposition. Let f : C → D be a functor between quasicategories. The following are
equivalent

(1) The map f is a categorical equivalence.
(2) For every simplicial set X, the map f∗ : Fun(X,C) → Fun(Y,D) induced by composition

with f is a categorical equivalence.
(3) For every simplicial set X, the map (hf)∗ : hFun(X,C)→ hFun(X,D) induced by compo-

sition with f is an equivalence of categories.
(4) For every simplicial set X, the map π0(Fun(X,C)

core) → π0(Fun(X,D)core) induced by
composition with f is a bijection of sets.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) are straightforward. So we need to prove (4) implies (1). The proof
is analogous to the argument of the proof of (27.13): let X be either C or D, and use the bijections

f̂∗ : π0(Fun(D,C)
core)

∼−→ π0(Fun(D,D)core), f̂∗ : π0(Fun(C,C)
core)

∼−→ π0(Fun(C,D)core)

to (a) produce a g : D → C such that fg ≈ idD, and (b) show that fgf ≈ idD f = f idC implies
gf ≈ idC . □

27.15. The homotopy 2-category of qCat. A 2-category E is a category which is itself “enriched” 2-category

over Cat. That is,

• for each pair of objects x, y ∈ obE, there is a category HomE(x, y), so that
• the objects of HomE(x, y) are precisely the set HomE(x, y) of morphisms of E, and
• there are “composition functors” HomE(y, z)×HomE(x, y)→ HomE(x, z) for all x, y, z ∈
obE which on objects is just ordinary composition of morphisms in E, which
• is unital and associative in the evident sense.

One refers to the objects of HomE(x, y) as 1-morphisms f : x→ y of E, and the morphisms of 1-morphisms

HomE(x, y) as 2-morphisms α : f ⇒ g of E. The underlying category of E consists of the 2-morphisms

underlying categoryobjects and 1-morphisms only.
The standard example of a 2-category is Cat, the category of categories, with objects=categories,

1-morphisms=functors, 2-morphisms=natural transformations.
We can enlarge the category qCat of quasicategories to a homotopy 2-category h2qCat, so homotopy 2-category

that
Homh2qCat(C,D) := hFun(C,D).

That is,

• objects of h2qCat are quasicategories,
• 1-morphisms of h2qCat are functors between quasicategories,
• 2-morphisms of h2qCat are isomorphism classes of natural transformations of functors.

Note that qCat sits inside h2qCat as its underlying category. Thus, h2qCat contains all the
information of qCat. On the other hand hqCat is obtained from h2qCat by first identifying 1-
morphisms (functors) which are 2-isomorphic (i.e., naturally isomorphic), and then throwing away
the 2-morphisms. Thus, h2qCat contains all the information of hqCat.

27.16. Exercise (for topologists). Define a homotopy 2-category h2Top of spaces, so that objects are
topological spaces, 1-morphisms are continuous maps, and 2-morphisms are “homotopy classes of
homotopies” between maps.
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Part 5. Joins, slices, and Joyal’s extension and lifting theorems

In this part we describe and apply two methods to construct new quasicategories from old, called
“joins” and “slices”. They are both generalizations of constructions which can be carried out on
categories: the most familiar of these classical constructions is slice category C/x associated to
an object x of a category C, in which objects of the slice C/x are morphisms c → x in C, and
morphisms of C/x are commutative triangles in C.

With these constructions in hand, we will be able to define notions of limit and colimit of a
functor to a quasicategory. We will also be able to prove some of the results we have deferred up
until now, including the equivalence of quasigroupoids and Kan complexes (35.2) and the pointwise
criterion for natural isomorphisms (37.2). Much of the material in this part comes from Joyal’s
seminal paper [Joy02].

28. Joins

28.1. Join of categories. If A and B are ordinary categories, we can define a category A ⋆ B W 16 Feb
called the join. This has

ob(A ⋆ B) = obA ⨿ obB, mor(A ⋆ B) = morA ⨿ (obA× obB) ⨿ morB,

so that we put in a unique map from each object of A to each object of B. Explicitly,

HomA⋆B(x, y) :=


HomA(x, y) if x, y ∈ obA,

HomB(x, y) if x, y ∈ obB,

{∗} if x ∈ obA, y ∈ obB,

∅ if x ∈ obB, y ∈ obA,

with composition defined so that the evident inclusions A→ A ⋆ B ← B are functors, and in fact
are isomorphisms to full subcategories of A ⋆ B. (Check that this really defines a category, and that
A and B are identified with full subcategories of A ⋆ B.)

28.2. Example. We have that [p] ⋆ [q] ≈ [p+ 1 + q].

28.3. Exercise (Functors from a join of categories). Show that functors f : A⋆B → C are in bijective
correspondence with triples (fA : A → C, fB : B → C, γ : fA ◦ πA ⇒ fB ◦ πB), where fA and fB
are functors, and γ is a natural transformation of functors A×B → C, where πA : A×B → A and
πB : A×B → B denote the evident projection functors.

28.4. Exercise (Functors to a join of categories). Show that functors f : C → A ⋆ B are in bijective

correspondence with triples of functors (π : C → [1], f{0} : C
{0} → A, f{1} : C

{1} → B), where

C{j} := π−1({j}) ⊆ C is the fiber of π over j ∈ ob[1], i.e., the subcategory of C consisting of objects
which π sends to j and morphisms which π sends to idj .

28.5. Exercise. Describe an isomorphism (A ⋆ B)op ≈ Bop ⋆ Aop.

28.6. Cones on categories. An important special case are the left cone and right cone of a
category, defined by A◁ := [0] ⋆A and A▷ := A⋆ [0]. For instance, the right cone A▷ is the category
obtained by adjoining one additional object v to A, as well as a unique map x→ v for each object x
of A▷. In this case, v becomes a terminal object for A▷, and we can say that A 7→ A▷ freely adjoins
a terminal object to A. (Note that a terminal object of A will not be terminal in A▷ anymore.)
Likewise, A 7→ A◁ freely adjoins an initial object to A.

Limits and colimits of functors can be characterized using cones: if f : A → C is a functor, a

colimit of f is a functor f̂ : A▷ → C which is initial among functors which extend f , and likewise, a

limit of f is a functor f̂ ′ : A◁ → C which is terminal among functors which extend f .



INTRODUCTION TO QUASICATEGORIES 71

28.7. Remark. It is worthwhile to spell this out in detail. Given a functor f : A→ C, to describe a
functor g : A▷ → C which extends f , it suffices to give

(1) an object g(v) in C,
(2) for each object a ∈ obA a morphism g(a→ v) : f(a) = g(a)→ g(v) in C, such that
(3) for each morphism α : a → a′ in A we have an equality g(a′ → v) ◦ f(α) = g(a → v) of

morphisms f(a)→ g(v) in C.

a

α
��

a′

=⇒

f(a) g(a→v)

((
f(α)

��

g(v)

f(a′) g(a′→v)

66

Given extensions g, g′ : A▷ → C of f , we may consider natural transformations ϕ : g → g′ which
extend the identity transformation of f . Explicitly, such a transformation ϕ is exactly determined by

(1) a morphism ϕ(v) : g(v)→ g′(v) in C such that
(2) for each object a ∈ obA we have an equality g′(a → v) = ϕ(v) ◦ g(a → v) of morphisms

f(a)→ g′(v) in C.

a =⇒

g(v)

ϕ(v)

��

f(a)

g(a→v) 66

g′(a→v)
((

g′(v)

An extension f̂ : A▷ → C of f is a colimit of f if for every g extending f there exists a unique map

ϕ(v) : f̂(v)→ g(v) in C such that g(a→ v) = ϕ(v) ◦ f̂(a→ v) for all a ∈ obA. The object f̂(v) is
what is colloquially known as “the colimit of f”, although the full data of a colimit of f is actually

the functor f̂ . We will call the functor f̂ a colimit cone in what follows.

28.8. Ordered disjoint union. As noted above (28.2), the join operation on categories effectively
descends to ∆. We will call this the ordered disjoint union. It is a functor ⊔ : ∆ ×∆ → ∆, ordered disjoint union

defined so that [p] ⊔ [q] := [p + 1 + q], to be thought of as the disjoint union of underlying sets,
ordered so that the subsets [p] and [q] retain their ordering, and elements of [p] come before elements
of [q].

It is handy to extend this to the category ∆+, the full subcategory of ordered sets obtained by
adding the empty set [−1] := ∅ to ∆. The functor ⊔ extends in an evident way to ⊔ : ∆+×∆+ → ∆+.

This extended functor makes ∆+ into a (strict, but nonsymmetric) monoidal category, with unit
object [−1].

Note that for any map f : [p]→ [q1] ⊔ [q2] in ∆+, there is a unique decomposition [p] = [p1] ⊔ [p2]
such that f = f1 ⊔ f2 for some (necessarily unique) fi : [pi]→ [qi] in ∆+. (We need an object [−1]
to be able to say this, even if p, q1, q2 ≥ 0; if f([p]) ⊆ [q1] then p2 = −1.)

28.9. Join of simplicial sets. Let X and Y be simplicial sets. The join of X and Y is a simplicial join

set X ⋆ Y defined as follows. It has n-dimensional cells

(X ⋆ Y )n :=
∐

[n]=[n1]⊔[n2]

Xn1 × Yn2 ,

where [n1], [n2] ∈ ob∆+, and we declare X−1 = ∗ = Y−1 to be a one-point set. The action of
simplicial operators is defined in the evident way, using the observation of the previous paragraph: for
(x, y) ∈ Xn1×Yn2 ⊆ (X⋆Y )n and f : [m]→ [n], we have (x, y)f = (xf1, yf2) ∈ Xm1×Ym2 ⊆ (X⋆Y )m,
where f = f1 ⊔ f2, fj : [mj ]→ [nj ] is the unique decomposition of f over [n] = [n1] ⊔ [n2].

28.10. Exercise. Check that the above defines a simplicial set.
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In particular,

(X ⋆ Y )0 = X0 ⨿ Y0,

(X ⋆ Y )1 = X1 ⨿ X0 × Y0 ⨿ Y1,

(X ⋆ Y )2 = X2 ⨿ X1 × Y0 ⨿ X0 × Y1 ⨿ Y2,

and so on.
Note that there are evident maps X → X ⋆ Y ← Y , which give isomorphisms from X and Y to

subcomplexes of X ⋆ Y , and these subcomplexes are disjoint from each other, so that we have a
monomorphism X ⨿ Y ↣ X ⋆ Y .

There are isomorphisms
(X ⋆ Y ) ⋆ Z

∼−→ X ⋆ (Y ⋆ Z),

natural in X,Y, Z: on either side, the set of n-cells can described as
∐

[n]=[n1]⊔[n2]⊔[n3]
Xn1×Yn2×Zn3 .

Together with the evident isomorphisms ∅ ⋆ X ≈ X ≈ X ⋆∅, the join gives a monoidal structure
on sSet with unit object ∆−1 := ∅. Note that ⋆ is not symmetric monoidal, though it is true that
(Y ⋆ X)op ≈ Xop ⋆ Y op. (Exercise: verify this.)

28.11. Joins of simplices. We have the (unique) isomorphism

∆p ⋆∆q ≈ ∆p+1+q.

Furthermore, if f : [p′] → [p] and g : [q′] → [q] are simplicial operators, then the induced map

f ⋆ g : ∆p′ ⋆∆q′ → ∆p ⋆∆q between joins of simplices is uniquely isomorphic to (f ⊔ g) : ∆p′+1+q′ →
∆p+1+q.

In particular, if S ⊆ [p] and T ⊆ [q] are subsets, giving rise to subcomplexes ∆S ⊆ ∆p and
∆T ⊆ ∆q, then the evident map ∆S ⋆ ∆T → ∆p ⋆ ∆q ≈ ∆p+1+q realizes the inclusion of the
subcomplex ∆S⊔T ⊆ ∆p+1+q associated to the subset S ⊔ T ⊆ [p] ⊔ [q] = [p+ 1 + q]. This makes it
relatively straightforward to describe the join of subcomplexes of standard simplices.

28.12. Left and right cones of simplicial sets. An important example of joins of simplicial sets
are the cones. The left cone and right cone of a simplicial set X are left cone

right cone
X◁ := ∆0 ⋆ X, X▷ := X ⋆∆0.

Note that outer horns are examples of cones:

(∂∆n)◁ = ∆0 ⋆ ∂∆n ≈ Λn+1
0 , (∂∆n)▷ = ∂∆n ⋆∆0 ≈ Λn+1

n+1.

I will often write v for the cone point, i.e., the vertex of ∆0 ⋆ X or X ⋆∆0 which corresponds to cone point

the unique vertex of the ∆0-factor.
It is straightforward to show that the nerve takes joins of categories to joins of simplicial sets:

N(A ⋆ B) ≈ N(A) ⋆ N(B), and thus N(A◁) ≈ (NA)◁ and N(A▷) ≈ (NA)▷.

28.13. Exercise. Show that the nerve of a join of categories is isomorphic to the join of their nerves.

28.14. Exercise. The outer horns Λ2
2 and Λ2

0 are actually nerves of categories, sometimes called the
walking span and walking cospan. Show that there are isomorphisms

(∂∆1)◁ ≈ Λ2
0, (∂∆1)▷ ≈ Λ2

0

and
(Λ2

2)
◁ ≈ ∆1 ×∆1 ≈ (Λ2

0)
▷.
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28.15. The join of quasicategories is a quasicategory. Here is a handy rule for constructing
maps into a join (compare (28.4)). Note that every join admits a canonical map π : X ⋆ Y →
∆0 ⋆∆0 ≈ ∆1, namely the join applied to the projections X → ∆0 and Y → ∆0.

28.16. Lemma ([Joy08a, Prop. 3.5], compare (28.4)). Maps f : K → X ⋆ Y are in bijective
correspondence with the set of triples(

π : K → ∆1, f{0} : K
{0} → X, f{1} : K

{1} → Y
)
,

where K{j} := π−1({j}) ⊆ K, the pullback of {j} → ∆1 along π.

Proof. This is a straightforward exercise. In one direction, the correspondence sends f to
(πf, f |K{0}, f |K{1}), where π : X ⋆ Y → ∆0 ⋆∆0 = ∆1. □

28.17. Proposition. If C and D are quasicategories, so is C ⋆ D.

Proof. Use the previous lemma (28.16), together with the observations (which we leave as an
exercise) that for any map π : Λn

j → ∆1 from an inner horn, the preimages π−1({0}) and π−1({1})
are either inner horns, standard simplices, or are empty, and for any map π : ∆n → ∆1 from a
standard simplex, the preimages are either a standard simplex or empty. □

28.18. Exercise. Let f : [m]→ [n] be any simplicial operator. Show that the induced map f : ∆m →
∆n on standard simplices is uniquely isomorphic to a join of maps f0⋆f1⋆· · ·⋆fn, with fj : ∆mj → ∆0,
where each mj ≥ −1.

28.19. Exercise. Show that (28.16) implies the following: there is an adjoint pair of functors

i∗ : sSet/∆1 ⇄ sSet/∂∆1 : i∗

where the left adjoint i∗ is the functor defined by pullback along the inclusion ∂∆1 ↣ ∆1, and the
right adjoint i∗ sends p : K → ∂∆1 to (K{0} ⋆ K{1} → ∆1), where K{j} := p−1(j) ⊆ K. This gives
another characterization of join, as “direct image along i”.

29. Slices

29.1. Slices of categories. Given an ordinary category C, and an object x ∈ obC, we may form
the slice categories Cx/ and C/x, (also called undercategory and overcategory, or slice-over category slice categories

and slice-under category).
For instance, the slice-over category C/x is the category whose objects are maps α : c→ x with

target x, and whose morphisms (α : c→ x)→ (α′ : c′ → x) are maps β : c→ c′ such that α′β = α.
This can be reformulated in terms of joins. Let “T” denote the terminal category (isomorphic to

[0]). Note that obC/x corresponds to the set of functors α : [0] ⋆ T → C such that α|T = x, and
morC/x corresponds to the set of functors β : [1] ⋆ T → C such that β|T = x.

More generally, given a functor f : A→ C of categories, we obtain slice categories Cf/ and C/f

defined as follows. The category C/f has

• objects: functors α : [0] ⋆ A→ C such that α|A = f ,
• morphisms f → f ′: functors β : [1] ⋆ A→ C such that β|A = f .

Likewise, the category Cf/ has

• objects: functors α : A ⋆ [0]→ C such that α|A = f ,
• morphisms f → f ′: functors β : A ⋆ [1]→ C such that β|A = f .

29.2. Exercise. Describe composition of morphisms in C/f and Cf/.

29.3. Exercise. Show that (Cf/)
op ≈ (Cop)/fop (isomorphism of categories).
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29.4. Exercise. Fix a functor f : A→ C, and let B be a category. Describe bijections

{functors α : B → C/f} ↔ {functors β : B ⋆ A→ C s.t. β|A = f}
and

{functors α : B → Cf/} ↔ {functors β : A ⋆ B → C s.t. β|A = f}.

29.5. Remark. The notions of limits and colimits can be formulated very compactly in terms of the
general notion of slices, as shown in (29.6) below. We will directly generalize this formulation to
define limits and colimits for quasicategories. Compare (28.7).

29.6. Exercise. Prove for a functor f : A→ C between categories, that a colimit of f amounts to
the same thing as an initial object of Cf/, and that a limit of f amounts to the same thing as a
terminal object of C/f .

29.7. Joins and colimits of simplicial sets. The join functor ⋆ : sSet× sSet→ sSet is in some F 18 Feb
ways analogous to the product functor ×, e.g., it is a monoidal functor.

The product operation (−)× (−) on simplicial sets commutes with colimits in each input, and
the functors X ×− and −×X admit right adjoints (in both cases, the right adjoint is Fun(X,−)).
The join functor does not commute with colimits in each variable, but almost does so, as the only
obstruction is the value on the initial object

More precisely, the functors X ⋆ − and − ⋆ X : sSet → sSet do not preserve the initial object,
since X ⋆∅ ≈ X ≈ ∅ ⋆ X. However, (the identity map of) X is tautologically the initial object of
sSetX/, the slice category of simplicial sets under X.

29.8. Proposition. For every simplicial set X, the induced functors

X ⋆−, − ⋆ X : sSet→ sSetX/

preserve colimits.

Proof. This follows from the degreewise formula for the join, which has the form:

(X ⋆ Y )n = Xn ⨿ (Xn−1 × Y0)⨿ · · · ⨿ (X0 × Yn−1)⨿ Yn = Xn ⨿ (terms which are “linear” in Y ).

That is, for each n ≥ 0 the functor Y 7→ (X ⋆ Y )n : sSet→ SetXn/ is seen to be colimit preserving,
since each functor Xk × (−) : Set→ Set is colimit preserving. □

29.9. Exercise (Trivial, but important). Show that the functors X ⋆ − and − ⋆ X : sSet → sSet
preserve pushouts.

29.10. Slices of simplicial sets. We have seen that the functors

S ⋆− : sSet→ sSetS/ and − ⋆T : sSet→ sSetT/

preserve colimits, and therefore we predict that they admit right adjoints. These exist, and are
called slice functors, denoted slice

(f : S → X) 7→ Xf/ : sSetS/ → sSet

and
(g : T → X) 7→ X/g : sSetT/ → sSet.

I will sometimes distinguish these as slice-under and slice-over, respectively21. Explicitly, there slice-under

slice-overare are bijective correspondences

(29.11)

 S
��

f
// X

S ⋆ K

77

⇐⇒ {K 99K Xf/},

 T
��

g
// X

K ⋆ T

77

⇐⇒ {K 99K X/g}.

21In kerodon [Lur21, 4.3.5], Lurie refers to these as coslice and slice respectively.
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Here we write “S → S ⋆K” and “T → K ⋆ T” for the inclusions S ⋆∅ ⊆ S ⋆K and ∅ ⋆ T ⊆ K ⋆ T ,
using the canonical isomorphisms S ⋆∅ = S and ∅ ⋆T = T . I will refer to the above correspondence
as the join/slice adjunction. join/slice adjunction

Taking K = ∆n we obtain the formulas

(Xf/)n = HomsSetS/(S ⋆∆
n, X), (X/g)n = HomsSetT/

(∆n ⋆ T,X),

which we regard as the definition of slices. (I.e., these formulas specify the n-cells of the slices, and
naturality in “∆n” specifies the action of simplicial operators.)

29.12. Exercise. Given this explicit definition of slices in terms of their cells and the action of
simplicial operators, verify the bijective corrrespondences (29.11).

In particular, we note the special cases associated to x : ∆0 → X:

HomsSet(K,Xx/) = HomsSet∆0/
(∆0 ⋆ K,X) ≈ HomsSet∗((K

◁, v), (X,x)),

HomsSet(K,X/x) = HomsSet∆0/
(K ⋆∆0, X) ≈ HomsSet∗((K

▷, v), (X,x)).

The notation (X,x) with x ∈ X0 represents a pointed simplical set, the category of which is pointed simplical set

sSet∗ := sSet∆0/. The cones K◁ and K▷ are pointed by their cone point v.
The slice construction for simplicial sets agrees with that for categories, so we won’t need to

distinguish them.

29.13. Proposition. The nerve preserves slices, i.e., if f : A→ C is a functor between 1-categories,
then N(Cf/) ≈ (NC)Nf/ and N(C/f ) ≈ (NC)/Nf .

Proof. Left as an exercise. □

29.14. Slice as a functor. The function complex construction Fun(−,−) is a functor in two
variables, contravariant in the first and covariant in the second. The slice constructions also behave
something like a functor of two variables, though it is a little more complicated, because the slice
constructions also depend on a map between the two objects. A precise statement is that every
diagram on the left gives rise to commutative diagrams as on the right.

S
f
// X

p

��

T

j

OO

pfj
// Y

=⇒

X/f
p∗
//

j∗

��

Y/pf

j∗

��

X/fj p∗
// Y/pfj

X/
p∗
//

j∗

��

Ypf/

j∗

��

Xfj/ p∗
// Ypfj/

The notation here is not great, and the whole business of joins and slices can get pretty confusing
because of this.

29.15. Remark. A very precise formulation is that each kind of slice defines a functor Tw(sSet)→ sSet
from the twisted arrow category of simplicial sets, whose objects are maps f of simplicial sets, twisted arrow category

and whose morphisms are pairs (j, p) : f → pfj, where j and p are themselves maps of simplicial
sets.

Let’s spell this out in terms of the correspondence between “maps into slices” and “maps from

joins”. Given T
j−→ S

f−→ X
p−→ Y , consider “restriction map” Xf/ → Ypfj/. The composite of a map

u : K → Xf/ with this restriction map is described in terms of the bijection of (29.11) as follows.
The map u corresponds to a dotted arrow in

T��

��

j
// S

f
//

��

��

X
p
// Y

T ⋆ K
j⋆K

// S ⋆ K
ũ

;;
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The composite K
u−→ Xf/ → Ypfj/ corresponds to pũ(j ⋆ K).

A particular special case which we will see a lot of are the “restriction” or “forgetful” maps

X/f → X and Xf/ → X

induced by sequence ∅→ S
f−→ X → ∆0, using that X/∅ = X = X∅/. For instance, X/f → X sends

an n-cell x ∈ (X/f )n corresponding to x̃ : ∆n ⋆ S → X extending f to the n-cell of X represented
by the map x̃|(∆n ⋆∅) defined as the composite

∆n = ∆n ⋆∅→ ∆n ⋆ S
x−→ X.

Another special case of interest are the “projection” functors

X/f → Y/pf and Xf/ → Ypf/

induced by the sequence ∅→ S
f−→ X

p−→ Y . For instance, X/f → Y/fp sends an n-cell x ∈ (X/f )n
corresponding to x̃ : ∆n ⋆ S → X extending f to the n-cell of Ypf/ represented by px̃ : ∆n ⋆ S → Y .

29.16. Exercise. Let f : S → X and g : T → X be maps of simplicial sets. Describe and prove
bijections between the following sets of solutions to lifting problems:

Xf/

��

T g
//

>>

X

 ⇐⇒


S ⨿ T��

��

(f,g)
// X

S ⋆ T

;;

 ⇐⇒


X/g

��

S
f
//

>>

X


Here Xf/ → X and X/g → X are the evident restriction maps, and S⨿T → S ⋆T is the tautological
inclusion.

30. Slices of quasicategories

In this section we show that, given a quasicategory C and an object x ∈ C0, both C/x and Cx/

are also quasicategories.

30.1. Left and right anodyne maps. We recall the sets of left horns

LHorn := {Λn
k ⊂ ∆n | 0 ≤ k < n, n ≥ 1 } = InnHorn ∪ {Λn

0 ⊂ ∆n | n ≥ 1 }
and right horns

RHorn := {Λn
k ⊂ ∆n | 0 < k ≤ n, n ≥ 1 } = InnHorn ∪ {Λn

n ⊂ ∆n | n ≥ 1 }.
The associated weak saturations LHorn and RHorn are the left anodyne and right anodyne left anodyne

right anodynemaps. The associated right complements

LFib := LHorn�, RFib := RHorn�

are the left fibrations and right fibrations. Note that left fibrations

right fibrations
InnHorn ⊆ LHorn ∩ RHorn and LFib ∪ RFib ⊆ InnFib.

These classes correspond to each other under the opposite involution (−)op : sSet → sSet; i.e.,
LHornop = RHorn, LFibop = RFib.

30.2. Proposition. Let C be a quasicategory and x ∈ C0. The evident maps Cx/ → C and C/x → C
which “forget x” (i.e., induced by the sequence ∅→ {x} → C) are left fibration and right fibration
respectively. In particular, they are inner fibrations, and so Cx/ and C/x are also quasicategories.
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Proof. I claim that π : C/x → C is a right fibration. Explicitly, this map sends the n-cell a : ∆n → C/x,

which corresponds to ã : ∆n ⋆ ∆0 → C such that ã|(∅ ⋆ ∆0) = x, to the n-cell represented by
ã|(∆n ⋆∅)→ C. Using the join/slice adjunction, there is a bijective correspondence between lifting
problems

Λn
j

f
//

��

��

C/x

π

��

∆n
g
//

==

C

⇐⇒
∅ ⋆∆0 // //

x

++(Λn
j ⋆∆

0) ∪Λn
j ⋆∅ (∆n ⋆∅)
��

��

(f̃ ,g) // C

∆n ⋆∆0

44

Note that there is a unique isomorphism ∆n ⋆∆0 ≈ ∆n+1. For any subset S ⊂ [n], this isomorphism

identifies the subcomplex ∆S ⋆∆0 ⊂ ∆n ⋆∆0 with ∆S∪{n+1} ⊂ ∆n+1, while ∆S ⋆∅ ⊂ ∆n ⋆∆0 is
identified with ∆S ⊆ ∆n+1. Since Λn

j =
⋃

k∈[n]∖j ∆
[n]∖k, we see that

(1) the subcomplex (Λn
j ⋆∆

0) ∪Λn
j ⋆∅ (∆n ⋆∅) of ∆n ⋆∆0 is the horn Λn+1

j ⊂ ∆n+1, and

(2) the subcomplex ∅ ⋆∆0 of ∆n ⋆∆0 is the vertex {n+ 1} ⊆ ∆n+1.

Thus, the right hand diagram above is isomorphic to

{n+ 1} // //

x

))
Λn+1
j
��

��

// C

∆n+1

==

If C is a quasicategory, then an extension exists in this for 0 < j ≤ n, and thus a lift exists in the
original lifting problem, whence π : C/x → C is a right fibration.

Since right fibrations are inner fibrations, the composite C/x → C → ∗ is an inner fibration, and
thus C/x is a quasicategory.

The case of Cx/ → C is similar, using the correspondence

Λn
j

//

��

��

Cx/

π

��

∆n //

==

C

⇐⇒
{0} // //

x

((
Λn+1
j+1
��

��

// C

∆n+1

==

□

30.3. Exercise. Let p : C → D be an inner fibration between simplicial sets. Show that p is a left
fibration if and only if the induced maps Cx/ → Dpx/ on slices are trivial fibrations for all x ∈ C0,
and that p is a right fibration if and only if the induced maps C/x → D/px on slices are trivial
fibrations for all x ∈ C0.

31. Initial and terminal objects

We can now give definitions of initial and terminal objects in a quasicategory, and to prove a few
of their properties. For instance, we will prove that initial and terminal objects, if they exist, are
unique up to isomorphism (31.7), and that a functor taking values in initial or terminal objects is
initial or terminal in its functor category (31.9).
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31.1. Initial and terminal objects. An initial object22 of a quasicategory C is an x ∈ C0 such initial object

that every f : ∂∆n → C (for all n ≥ 1) such that f |{0} = x, there exists an extension f ′ : ∆n → C.
A terminal object of C is an initial object of Cop. That is, a y ∈ C0 such that every f : ∂∆n → C terminal object

with f |{n} = y extends to ∆n. Thus, initial and terminal objects are ones such that every extension
problem of the the following types admits a solution.

{0} // //

x

((
∂∆n
��

��

// C {n} // //

y

((
∂∆n
��

��

// C

∆n
∃

==

∆n
∃

==

Let’s spell out the first parts of the definition of initial object applied to x ∈ C0:

• The condition for n = 1 says that for every object c in C there exists f : x→ c,
• The condition for n = 2 says that for every triple of maps f : x → c, g : c → c′, and
h : x→ c′, we must have [h] = [g][f ]. In particular (taking f = 1x), we see there is at most
one homotopy class of maps from x to any object.

If C is the nerve of an ordinary category, then Hom(∆n, C)
∼−→ Hom(∂∆n, C) for all n ≥ 3 (19.3).

Thus, for ordinary categories, the above definition coincides with the usual notion of initial object.
For general quasicategories, we see that an initial object x ∈ C0 necessarily satisfies HomhC(x, y) ≈

∗ for all y ∈ C0, so that x represents an initial object in the homotopy category hC, but this is not
sufficient to be initial in C: there are also an infinite sequence of “higher” conditions that an initial
object of a quasicategory must satisfy.

We will now reformulate these notions using slice categories.

31.2. Reformulation of initial/terminal via slices. We can restate the definition of ini- M 21 Feb
tial/terminal object using the “forgetful” functor of the relevant slice.

31.3. Proposition. If C is a quasicategory, then x ∈ C0 is initial if and only if Cx/ → C is a trivial
fibration, and terminal if and only if C/x → C is a trivial fibration.

Proof. This is an application of the join/slice adjunction. Applied to ∂∆n ⊂ ∆n with n ≥ 0 and
Cx/ → C , this has the form

∂∆n f
//

��

��

Cx/

π

��

∆n
g
//

<<

C

⇐⇒
∆0 ⋆∅ // //

x

,,(∆0 ⋆ ∂∆n) ∪∅⋆∂∆n (∅ ⋆∆n)
��

��

(f̃ ,g) // C

∆0 ⋆∆n

44

Note that under the unique isomorphism ∆0 ⋆∆n ≈ ∆n+1, the subcomplex ∆0 ⋆ ∂∆n corresponds
to Λn

0 . Thus the right-hand diagram is isomorphic to

{0} // //

x

))
∂∆n+1
��

��

// C

∆n+1

<<

So Cx/ → C is in TrivFib = Cell� if and only if x is an initial object of C, as desired. □

22We use Joyal’s definition of initial and terminal object [Joy02, §4] here. Lurie’s definition [Lur09, 1.2.12.1] is
different, but is equivalent to what we use, by [Lur09, 1.2.12.5] and (31.3).
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31.4. Remark. This implies that if x is initial, then Cx/ → C is a categorical equivalence. Later
(40.8) we’ll be able to show the converse, so that x is initial if and only if Cx/ → C is a categorical
equivalence.

31.5. Exercise. Given an initial object x of C, construct a functor f : C◁ → C such that f |C = idC
and f(v) = x, where v ∈ (C◁)0 is the cone point.

31.6. Uniqueness of initial and terminal objects. A crucial fact about initial and terminal
objects in an ordinary category is that they are unique up to unique isomorphism. One way to
formulate this is as follows: given a category C, let C init ⊆ C be the full subcategory spanned by
the initial objects. Then one of two cases applies: either there are no initial objects, so C init is
empty, or there is at least one initial object, and C init is equivalent to the terminal category [0].

This leads to an analogous formulation for quasicategories.

31.7. Proposition. Let C be a quasicategory. Let C init and Cterm denote respectively the full
subcategories spanned by initial objects and terminal objects. Then (i) either C init is empty or
is categorically equivalent to the terminal quasicategory ∆0, and (ii) either Cterm is empty or is
categorically equivalent to the terminal quasicategory ∆0.

Proof. Since Cterm = ((Cop)init)op, we just need to consider the case of initial objects. By definition
of initial object, any f : ∂∆n → C init with n ≥ 1 can be extended to g : ∆n → C, and the image of
g must lie in the full subcategory C init since all of its vertices do. If C init ̸= ∅, then this extension
condition also holds for n = 0, whence C init → ∆0 is a trivial fibration, and thus C init is categorically
equivalent to ∆0 by (25.1). □

There are some seemingly obvious facts about initial and terminal objects that we can’t prove
just yet. For instance:

• Given a quasicategory C with object x, an object f̃ ∈ (Cx/)0 of the slice under x is initial
if and only if the corresponding morphism f : x→ c in C is an isomorphism. Likewise, an
object g̃ ∈ (C/x)0 of the slice over x is terminal if and only if the corresponding morphism
g : c→ x in C is an isomorphism.
• In a quasicategory, every object which is isomorphic to an initial object is initial, and any
object isomorphic to a terminal object is terminal.

Proofs will be given as (35.8) and (35.12).

31.8. Initial and terminal objects in functor categories. Here is a sample of a property of
initial/terminal objects that we can now prove. A functor between ordinary categories whose values
are all initial (or terminal) objects is itself initial (or terminal) as an object of the functor category.
The same holds with categories replaced by quasicategories.

31.9. Proposition. Consider a map f : X → C from a simplicial set to a quasicategory, and
suppose f(X) ⊆ C init (resp. f(X) ⊆ Cterm); i.e., for all x ∈ X0 the object f(x) ∈ C0 is initial (resp.
terminal) in C. Then the functor f is initial (resp. terminal) viewed as an object of Fun(X,C).

In particular, if C has an initial (or terminal) object c0, then the “constant” map (defined as the
composite X → {c0} → C) is an initial (or terminal) object of Fun(X,C). Thus, if C has an initial
(or terminal) object, then so does Fun(X,C).

31.10. Remark. In other words, there is an inclusion Fun(X,C init) ⊆ Fun(X,C)init of the full
subcategories of “objectwise initial functors” and “initial functors” in Fun(X,C). Once we know
that any object isomorphic to an initial object is initial (35.12), it will follow that when C init is
non-empty then Fun(X,C init) = Fun(X,C)init. To see this, pick an initial object c0 ∈ C init and let
f0 : X → C be the constant map with image {c0} ⊆ C. Since any two initial objects are isomorphic,
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every f ∈ Fun(X,C)init0 is naturally isomorphic to f0, and therefore f(x) is isomorphic to f0(x) = c0
for every x ∈ X0. By (35.12), f(x) must be initial in C, so f ∈ Fun(X,C init)0.

On the other hand, it is possible for Fun(X,C)init to be non-empty when C init is empty, even
when X and C are ordinary categories.

31.11. Exercise. Give an example of ordinary categories X and C such that C init is empty but
Fun(X,C)init is non-empty. (Hint: think small.)

Proof. (31.9) Assume f(x) ∈ C0 is initial in C for all x ∈ X0. Suppose given g : ∂∆n → Fun(X,C)
with n ≥ 1 and g|{0} = f . We want to show that there exists an extension g′ : ∆n → Fun(X,C) of
g along ∂∆n ⊂ ∆n. We convert this to the adjoint lifting problem:

{0} ×X //

f

$$
∂∆n ×X

g̃
//

��

��

C

∆n ×X
g̃′

::

The strategy is to construct the extension by inductively constructing extensions g̃k : Fk → C
where Fk = (∂∆n × X) ∪ Skk(∆

n × X), k ≥ 0 is the skeletal filtration (20.3) of the inclusion
∂∆n ×X → ∆n ×X. That is, we need to inductively construct lifts g̃k in∐

h∈Fnd
k ∖Fnd

k−1

∂∆k (h|∂∆k)
//

��

��

Fk−1
g̃k−1

//

��

��

C

∐
h∈Fnd

k ∖Fnd
k−1

∆k

(h)
// Fk

g̃k
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for all k ≥ 0. For k = 0 we have F0 = F−1 = ∂∆n ×X, since n ≥ 1 so (∂∆n ×X)0 = (∆n ×X)0.
For k ≥ 1, note that a k-dimensional cell h = (a, b) : ∆k → ∆n ×X is not contained in in the

subcomplex ∂∆n×X if and only if a ∈ (∆n)k∖ (∂∆n)k, i.e., if the corresponding simplicial operator
a : [k] → [n] is surjective. Therefore such a : ∆k → ∆n sends the vertex 0 ∈ (∆k)0 to 0 ∈ (∆n)0.
Therefore, each composite

∂∆k h|∂∆k

−−−−→ Fk−1 = (∂∆n ×X) ∪ Skk−1(∆
n ×X)

g̃k−1−−−→ C

sends the vertex 0 to g̃k−1(0, b(0)) = g̃(0, b(0)) = f(0, b(0)), which by hypothesis is an inital object
of C. Therefore an extension of (g̃k−1h)|∂∆k along ∂∆k ⊂ ∆k exists as desired. □

32. Joins and slices in lifting problems

Recall that for an object x in a quasicategory C, the slice objects Cx/ and C/x are also qua-
sicategories. It turns out that the conclusion remains true for more general kinds of slices of
quasicategories.

32.1. Proposition. Let f : S → C be a map of simplicial sets, and suppose C is a quasicategory.
Then both Cf/ and C/f are quasicategories.

The proof is just like that of (30.2): we will show below (32.15) that Cf/ → C is a left fibration
and C/f → C is a right fibration.

To set this up, we need a little technology about how joins interact with lifting problems.
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32.2. Pushout-joins. We define an analogue of the pushout-product for the the join. Given maps
i : A→ B and j : K → L of simplicial sets, the pushout-join (or box-join) i� j is the map pushout-join

box-join

i� j : (A ⋆ L)⨿A⋆K (B ⋆ K)
(i⋆L,B⋆j)−−−−−−→ B ⋆ L.

32.3. Warning. Unlike the pushout-product, the pushout-join is not symmetric, since the join is not
symmetric: i� j ̸≈ j � i.

32.4. Example (Pushout-joins of horns and cells). We have already observed examples of pushout-joins
in the proof of (30.2), namely

(Λn
j ⊂ ∆n) � (∅ ⊂ ∆0) ≈ (Λn+1

j ⊂ ∆n+1), (∅ ⊂ ∆0) � (Λn
j ⊂ ∆n) ≈ (Λ1+n

1+j ⊂ ∆1+n),

and also

(∅ ⊂ ∆0) � (∂∆n ⊂ ∆n) ≈ (∂∆1+n ⊂ ∆1+n), (∂∆n ⊂ ∆n) � (∅ ⊂ ∆0) ≈ (∂∆n+1 ⊂ ∆n+1)

in the proof of (31.3). These generalize to arbitrary horns and cells. The pushout-join of a horn
with a cell is always a horn:

(Λn
j ⊂ ∆n) � (∂∆k ⊂ ∆k) ≈ (Λn+1+k

j ⊂ ∆n+1+k),

(∂∆k ⊂ ∆k) � (Λn
j ⊂ ∆n) ≈ (Λk+1+n

k+1+j ⊂ ∆k+1+n).

Also, the pushout-join of a cell with a cell is always a cell:

(∂∆n ⊂ ∆n) � (∂∆k ⊂ ∆k) ≈ (∂∆n+1+k ⊂ ∆n+1+k).

We leave proofs as an exercise for the reader.

32.5. Exercise. Prove the isomorphisms asserted in (32.4). (Hint: use (28.11).)

32.6. Remark. Both pushout-product and pushout-join are special cases of a general construction:
given any functor F : sSet × sSet → sSet of two variables, you get a corresponding “pushout-F”
functor: F□ : Fun([1], sSet)× Fun([1], sSet)→ Fun([1], sSet).

32.7. Pullback-slices. Just as the pushout-product is associated to the pullback-hom, so the

pushout-join is associated to two kinds of pullback-slices. Given a sequence of maps T
j−→ S

p−→ pullback-slices

X
f−→ Y , we define the map

f�pj : X/p → X/pj ×Y/fpj
Y/fp,

where the maps defining the pullback and the components of f�pj are the evident maps induced
from the sequence, as described in (29.14). In a similar way, we define the map

f j�p : Xp/ → Xpj/ ×Yfpj/
Yfp/.

32.8. Remark. When Y = ∗, these pullback-slice maps are just the restriction maps X/p → X/pj

and Xp/ → Xpj/. When T = ∅, these pullback-slice maps have the form X/p → X ×Y Y/fp and
Xp/ → X ×Y Yfp/. When both Y = ∗ and T = ∅, we get X/p → X and Xp/ → X.

32.9. Remark. Both pullback-hom and pullback-slices are special cases of a general construction: given
any functor F : Tw(sSet)→ sSet from the twisted arrow category (29.15), you get a corresponding
“pullback-F” functor F□ : Tw(sSet) → sSet. In the case of pullback-hom, the F in question is a

composite functor Tw(sSet)→ sSetop × sSet Fun−−→ sSet.
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32.10. Joins, slices, and lifting problems. The pushout-join and pullback-slice interact with
lifting problems in much the same way that pushout-product and pullback-hom do.

32.11. Proposition. Given i : A→ B, j : K → L, and h : X → Y , the following are equivalent.

(1) (i� j) � h.
(2) i� (h�qj) for all q : L→ X.
(3) j � (hi�p) for all p : B → X.

Proof. A straightforward exercise. The equivalence of (1) and (2) looks like:

A
u //

i

��

X/q

h�qj

��

B
(v,w)

//

s

88

X/qj ×Y/hqj
Y/hq

⇐⇒
∅ ⋆ L //

q

((
(A ⋆ L) ∪A⋆K (B ⋆ K)

(ũ,ṽ)
//

i�j
��

X

h
��

B ⋆ L
w̃

//

s̃

44

Y

□

Now we can set up “join/slice analogues” of the “enriched lifting theory” we have seen for products
and function complexes.

32.12. Proposition. Let S and T be sets of maps in sSet. Then S � T ⊆ S � T .

Proof. This is formal and nearly identical to the proof of the weak saturation result for box-products
(21.9). □

32.13. Proposition. We have

Cell � Cell ⊆ Cell, RHorn � Cell ⊆ InnHorn, and Cell � LHorn ⊆ InnHorn.

Proof. Immediate from (32.4) and (32.12). □

32.14. Proposition. Given T
i−→ S

f−→ X
p−→ Y , consider the pullback-slice maps

ℓ : Xf/ → Xfi/ ×Ypfi/
Ypf/, r : X/f → X/fi ×Y/pfi

Y/pf .

We have the following.

(1) i ∈ Cell, p ∈ TrivFib implies ℓ, r ∈ TrivFib.
(2) i ∈ Cell, p ∈ InnFib implies ℓ ∈ LFib, r ∈ RFib.
(3) i ∈ RHorn, p ∈ InnFib implies ℓ ∈ TrivFib.
(4) i ∈ LHorn, p ∈ InnFib implies r ∈ TrivFib.

Proof. Exercise, using (32.13). □

We are especially interested in the special case when X = C is a quasicategory and Y = ∗. W 23 Feb

32.15. Corollary. Given T
j−→ S

f−→ C with C a quasicategory, consider the pullback-slice maps

ℓ : Cf/ → Cfj/, r : C/f → C/fj .

We have the following.

(1) j ∈ Cell implies ℓ ∈ LFib, r ∈ RFib.
(2) j ∈ RHorn implies ℓ ∈ TrivFib.
(3) j ∈ LHorn implies r ∈ TrivFib.

In particular, (1) when T = ∅ gives

(1’) ℓ : Cp/ → C is a left fibration and r : C/p → C is a right fibration.
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As a consequence we have proved (32.1).
Here is another useful special case when T = ∅: slices preserve trivial fibrations.

32.16. Corollary. Given S
f−→ X

p−→ Y where p is a trivial fibration, all of the maps in

Xf/ → X ×Y Ypf/ → Ypf/ and X/f → X ×Y Y/pf → Y/pf

are trivial fibrations.

Proof. The two pullback-slice maps are trivial fibrations by (32.14). The projections are each base
changes of the trivial fibration f , and so are trivial fibrations. □

We’ll also meet the following consequence now and again: joins preserve monomorphisms.

32.17. Proposition. If i : A→ B is a monomorphism of simplical sets, then so are S⋆i : S⋆A→ S⋆B
and i ⋆ S : A ⋆ S → B ⋆ S for any S.

Proof. The map S ⋆ i is the composite

S ⋆ A→ (S ⋆ A) ∪∅⋆A (∅ ⋆ B)
(∅⊆S)�i−−−−−→ S ⋆ B.

the second map is a monomorphism by Cell � Cell ⊆ Cell (32.13), while the first map is a cobase
change of the monomorphism i.

Note: that join preserves monomorphisms can also be proved directly from the definition of join
(28.9), or the identification of join as a right adjoint (28.19). □

32.18. Composition functors for slices. Here is a nice consequence of the above. Let C be a
quasicategory and f : x→ y a morphism in it; we represent f by a map ∆1 → C of simplicial sets,
which we also call f . We obtain two restriction functors

C/x
r0←− C/f

r1−→ C/y

associated to the inclusions {0} ⊂ ∆1 ⊃ {1}. The first inclusion {0} ⊂ ∆1 is a left-horn inclusion,
and thus by (32.15) the restriction map r0 is a trivial fibration (and thus a categorical equivalence),
and hence we can choose a section s : C/x → C/f of r0, which is in fact a categorical inverse to r0.

The resulting composite r1s : C/x → C/y can be thought of as a functor realizing the operation

which sends an object (c
g−→ x) of C/x to an object “(c

f◦g−−→ y)” of C/y defined by “composing f and
g” (but remember that such composition is not uniquely defined in a quasicategory C; the choice of
section s gives a collection of such choices for all g.)

32.19. Exercise. Show that if C is a category, then r0 is an isomorphism, and that r1s is precisely
the functor C/x → C/y described above.

33. Limits and colimits in quasicategories

33.1. Definition of limits and colimits. Now we can define the notion of a limit and colimit of
a functor between quasicategories (and in fact of a map from a simplicial set to a quasicategory).
Given a map f : S → C where C is a quasicategory, a colimit of f is defined to be an initial object colimit

of the slice quasicategory Cf/. Explicitly, a colimit of f : S → C is a map f̂ : S ⋆∆0 = S▷ → C
extending f , such that for n ≥ 1 a lift exists in every diagram of the form

S ⋆ {0} // //

f̂

))
S ⋆ ∂∆n //
��

��

C

S ⋆∆n

;;
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Sometimes it is better to call f̂ a colimit cone for f , in which case the restriction f̂ |∅ ⋆∆0 to the colimit cone

cone point is an object in C which can be called a “colimit of f”.

Similarly, a limit of f is a terminal object of C/f . Explicitly, this is a map f̂ : ∆0 ⋆ S = S◁ → C limit

extending p such that for n ≥ 1 a lift exists in every diagram of the form

{n} ⋆ S // //

f̂

))
∂∆n ⋆ S //
��

��

C

∆n ⋆ S

;;

Again, we will also sometimes refer to f̂ : ∆0 ⋆ S = S◁ → C as a limit cone for f , while the limit cone

restriction f̂ |∆0 ⋆∅ can be called the “limit of f”.

33.2. Example. Consider the empty simplicial set S = ∅ and the unique map f : ∅ → C. Then
Cf/ = C, so a colimit of f is precisely the same as an initial object of C. Likewise, a limit of f is
precisely the same as a terminal object of C.

33.3. Example. Consider S = Λ2
0, which is the nerve of a category which we can draw as the picture(

1← 0→ 2
)
. Then (Λ2

0)
▷ ≈ ∆1×∆1 (28.14) is also an ordinary category; explicitly it has the form

of a commutative diagram
0 //

�� ��

1

��
2 // v

where v is the “cone vertex”. A colimit cone (Λ2
0)

▷ → C is called a pushout diagram in C. pushout diagram

Similar considerations give (Λ2
2)

◁ ≈ ∆1 × ∆1. A limit cone (Λ2
2)

◁ → C is called a pullback
diagram in C. pullback diagram

33.4. Exercise (Colimits in full subcategories). Let C ′ ⊆ C be an inclusion of a full subcategory.

Show that if f : S → C has a colimit f̂ in C, and if the image of f̂ is contained in C ′, then the

restricted functor f̂ : S▷ → C ′ is a colimit of the restricted functor f : S → C ′.

33.5. Uniqueness of limits and colimits. Limits and colimits are unique if they exist.

33.6. Proposition. Let f : K → C be a map to a quasicategory, and let (Cf/)
colim ⊆ Cf/ and

(C/f )
lim ⊆ C/f denote the full subcategories spanned by colimit cones and limit cones respectively.

Then (i) either (Cf/)
colim is empty or is categorically equivalent to ∆0, and (ii) either (C/f )

lim is

empty or is categorically equivalent to ∆0.

Proof. This is just the uniqueness of initial and terminal objects (31.7), since (Cf/)
colim = (Cf/)

init

and (C/f )
lim = (C/f )

term. □

We have noted above (31.3) that an object x in a quasicategory C is initial iff Cx/ → C is a
trivial fibration, and terminal iff C/x → C is a trivial fibration. There is a similar characterization
of limit and colimit cones.

33.7. Proposition. Let C be a quasicategory. Let f̃ : K▷ → C be a map, and write f := f̃ |K. Then

f̃ is a colimit diagram if and only if C
f̃/
→ Cf/ is a trivial fibration.

Likewise, let g̃ : K◁ → C be a map, and write g := g̃|K. Then g̃ is a limit diagram if and only if
C/g̃ → C/g is a trivial fibration.
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Proof. I’ll just do the case of colimits.
We make an elementary observation about iterated slices (see (33.8) below). There is an

isomorphism (Cf/)f̃/ ≈ Cf̃/
, where the symbol “f̃” refers to both a morphism f̃ : K▷ → C (on the

right-hand side of the isomorphism) and the corresponding object f̃ ∈ (Cf/)0 (on the left-hand side
of the isomorphism). The point is that in either simplical set, a k-dimensional cell corresponds to a

map K ⋆∆0 ⋆∆k → C which restricts to f̃ on K ⋆∆0 ⋆∅.
Using this, the statement amounts to the special case for initial and terminal objects (31.3),

applied to the restriction functor (Cf/)f̃/ → Cf/. □

33.8. Exercise (Iterated slices). Let f : A⋆B → C be a map of simplicial sets. Describe isomorphisms

Cf/ ≈ (CfA/)f̃B/
, C/f ≈ (C/fB )/f̃A

,

where fA : A→ C and fB : B → C are the evident restrictions of f to subcomplexes, and f̃A : A→
C/fB and f̃B : B → CfA/ are the adjoints to f .

33.9. Limits and colimits in slices. Given a map f : S → C to a quasicategory, we have “forgetful
functors” π : C/f → C and π : Cf/ → C from the slices to C.

The following proposition says that an initial object of C implies a compatible initial object of
C/f , and a terminal object of C implies a compatible terminal object of Cf/. Note that when C is
an ordinary category this is entirely straightforward: e.g., given an initial object c0 of C, there is a

a unique cone f̃ : S◁ → C extending a given f : S → C which sends the cone vertex to c0, and it’s

an easy exercise to show that f̃ represents an initial object of the slice C/f .

33.10. Proposition. Let f : S → C be a map from a simplicial set to a quasicategory.

(1a) If x ∈ (C/f )0 is an object such that π(x) ∈ C0 is initial in C, then x is initial in C/f .
(1b) If C has an initial object then so does C/f .
(2a) If x ∈ (Cf/)0 is an object such that π(x) ∈ C0 is terminal in C, then x is terminal in Cf/.
(2b) If C has a terminal object then so does Cf/.

Proof. (See [Lur09, 1.2.13.8].) I’ll only prove (1a) and (1b), as the other parts are analogous.
To prove (1a), let x ∈ (C/f )0 and y = π(x) ∈ C0; we need to show that if y is initial then so is x.

To show that x is initial we must produce a lift in any diagram of the form

∆0 ⋆∅ // //

x

))
(∆0 ⋆ ∂∆n) ∪∅⋆∂∆n (∅ ⋆∆n) //

��

��

C/f

∆0 ⋆∆n

55

for n ≥ 0, using the identification (∅ ⊂ ∆0)� (∂∆n ⊂ ∆n) ≈ (∂∆n+1 ⊂ ∆n+1). This lifting problem
is equivalent to one of the form

∆0 ⋆∅ ⋆ S // //

x′

**(∆0 ⋆ ∂∆n ⋆ S) ∪∅⋆∂∆n⋆S (∅ ⋆∆n ⋆ S) //

��

��

C

∆0 ⋆∆n ⋆ S

44
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(because (−) ⋆ S preserves pushouts (29.9)), which in turn is equivalent to one of the form

S // //

x′′

**
∂∆n ⋆ S //
��

��

Cy/

q

��

∆n ⋆ S //

::

C

(In these diagrams the maps marked x, x′, x′′ are all adjoints of each other.) Since y is initial, q is
a trivial fibration (31.3), and therefore a lift exists since ∂∆n ⋆ S → ∆n ⋆ S is a monomorphism,
because joins preserve monomorphisms (32.17). We conclude that x is initial when y is.

Next we prove (1b). Suppose y ∈ C0 is an initial object. This implies q : Cy/ → C is a trivial
fibration (31.3). In particular, a lift exists in

Cy/

q

��

S p
//

x′′ >>

C

By an adjunction argument (29.16), x′′ corresponds to a map x : ∆0 → C/f such that π(x) = y. By
what we have already proved, x must be initial since π(x) = y is initial. □

33.11. Remark. In fact, the converses of (1a) and (2a) in (33.10) are also true, as long as we assume
that C has an initial/terminal object. The proof of these converses requires (35.12), which we have
not established yet.

We can now generalize the above to arbitrary limits and colimits.
The following proposition says that colimits in C/f or limits in Cf/ can be “computed in the

underlying quasicategory” C (if the corresponding colimit or limit in C exists).

33.12. Proposition. Let p : S → C be a map from a simplicial set to a quasicategory.

(1) Let f : K → C/p be a map such that the composite map f0 = πf : K
f−→ C/p

π−→ C has a
colimit cone in C. Then
(a) f admits a colimit cone, and

(b) if f̃ : K▷ → C/p is such that the composite map K▷ f̃−→ C/p → C is a colimit cone, then

f̃ is a colimit cone.

(2) Let f : K → Cp/ be a map such that the composite map f0 = πf : K
f−→ Cp/

π−→ C has a limit
cone in C. Then
(a) f admits a limit cone, and

(b) if f̃ : K◁ → C/p is such that the composite map K◁ f̃−→ Cp/ → C is a limit cone, then

f̃ is a limit cone.

The proof will make use an observation sketched in the following exercise: any composite of a
slice-over followed by a slice-under can be reinterpreted as a slice-under followed by a slice-over.

33.13. Exercise (Two-sided slice). Fix a map p : A ⋆ B → X of simplicial sets. Describe a simplicial
set X/p/ which admits bijective correspondences A ⋆ B

��

p
// X

A ⋆K ⋆ B

55

⇐⇒ {K 99K X/p/},
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natural in K. Then construct natural isomorphisms

(XpA/)/p̃B ≈ X/p/ ≈ (X/pB )p̃A/,

where pA : A → X and pB : B → X are the evident restrictions of p to subcomplexes, and
p̃A : A→ X/pB and p̃B : B → XpA/ are adjoints to p.

Proof of (33.12). I prove (1), as (2) is analogous. Note that f : K → C/p is adjoint to a map
g : K ⋆ S → C extending p, which in turn is adjoint to a map q : S → Cf0/ . Colimit cones of f0
correspond precisely to initial objects of Cf0/; in particular, the hypothesis of (1) asserts that Cf0/

has an initial object. Likwise, colimit cones of f correspond exactly to initial objects of (C/p)f/. As
in (33.13) we have isomorphisms

(C/p)f/ ≈ C/g/ ≈ (Cf0/)/q.

To prove (1a) here it suffices to show that (Cf0/)/q has an initial object, which follows by an
application of (33.10)(1b) to the restriction functor (Cf0/)/q → Cf0/ to “lift” an initial object of
Cf0/ to (Cf0/)/q.

To prove (1b) here it suffices to show that the restriction functor (Cf0/)/q → Cf0/ has the
property that objects sent to initial objects of Cf0/ are initial in (Cf0/)/q, which is immediate from
(33.10)(1a). □

33.14. Invariance of limits and colimits. There are some seemingly obvious facts about invariance
of limits and colimits which which we cannot prove yet.

(1) Limits and colimits are invariant under categorical equivalence. For instance, if f : C → D
is a categorical equivalence of quasicategories, and u : K → C is some map, then p admits a
colimit in C if and only if fu admits a colimit in D, and the induced functor Cu/ → Dfu/

preserves colimit cones. We will prove these as (43.5) and (43.6).
(2) Limits and colimits are invariant under natural isomorphism. For instance, if α : f0 → f1 is a

natural isomorphism of maps f0, f1 : K → C, then f0 admits a colimit if and only if f1 does,

and if f̂0 and f̂1 are colimit cones for f0 and f1 respectively, there exists an isomorphism

α̂ : f̂0 → f̂1 extending α. We will prove this as (??).

34. The Joyal extension and lifting theorems

We are now at the point where we can state and prove Joyal’s theorems about extending or lifting
maps along outer horns. This will allow us to prove several facts we have stated but not yet been
able to prove.

34.1. Joyal extension theorem. Joyal’s theorem gives precise criteria for extending maps from
outer horns into a quasicategory.

34.2. Theorem (Joyal extension). [Joy02, Thm. 1.3] Let C be a quasicategory, and fix a map
f : ∆1 → C. The following are equivalent.

(1) The edge represented by f is an isomorphism in C.

(2) Every a : Λn
0 → C with n ≥ 2 such that f = a|∆{0,1} : ∆1 → C admits an extension to a

map ∆n → C.
(3) Every b : Λn

n → C with n ≥ 2 such that f = b|∆{n−1,n} : ∆1 → C admits an extension to a
map ∆n → C.

I’ll call ⟨01⟩ ∈ ∆n the leading edge, and ⟨n − 1, n⟩ ∈ ∆n the trailing edge. Thus, the leading edge

trailing edgeimplications (1)⇒ (2) and (1)⇒ (3) say that we can always extend Λn
0 → C to an n-simplex if the

leading edge goes to an isomorphism in C, and extend Λn
n → C to an n-simplex if the trailing edge

goes to an isomorphism in C.
The implications (2)⇒ (1) and (3)⇒ (1) are easy, and are left as an exercise.
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34.3. Exercise (Easy part of Joyal extension). Suppose C is a quasicategory with edge f ∈ C1, and

suppose that every map a : Λn
0 → C with n ∈ {2, 3} and f = a|∆{0,1} admits an extension along

Λn
0 ⊂ ∆n. Prove that f is an isomorphism.

The proof of the Joyal extension theorem will be an application of the fact that left fibrations F 25 Feb
and right fibrations are conservative isofibrations.

34.4. Conservative functors. A functor p : C → D between categories is conservative if whenever conservative

f is a morphism in C such that p(f) is an isomorphism in D, then f is an isomorphism in C. The
definition of a conservative functor between quasicategories is precisely the same.

34.5. Remark. A functor C → D of quasicategories is conservative if and only if the induced functor
hC → hD on homotopy categories is conservative.

34.6. Remark. If p : C → D is an inner fibration between quasicategories which is conservative, then
the fibers p−1(y) ⊆ C of C over any object y ∈ D0 are necessarily quasigroupoids.

34.7. Proposition. All left fibrations and right fibrations between quasicategories are conservative.

Proof. Consider a right fibration p : C → D, and a morphism f : x→ y in C such that p(f) is an
isomorphism. We first show that f admits a preinverse.

Let a : Λ2
2 → C such that a12 = f and a02 = 1y. Let b : ∆2 → C be any 2-dimensional cell

exhibiting a preinverse of p(f), i.e., such that b12 = p(f) and b02 = 1p(y), so that b01 is a preinverse.
Now we have a commutative diagram

Λ2
2

a //

��

��

C

p

��

∆2

b
//

s

??

D

which admits a lift since p is a right fibration. The lift s exhibits a preinverse g := s|∆{0,1} for f .
Because p(f) was assumed to be an isomorphism in D, its preinverse b01 = p(g) is also an

isomorphism, and therefore by the above argument g admits a preinverse as well. We conclude that
f is an isomorphism by (14.5). □

34.8. Isofibrations. We say that a functor p : C → D of quasicategories is an isofibration23 if isofibration

(1) p is an inner fibration, and
(2) we have “isomorphism lifting” along p. That is, for any c ∈ C0 and isomorphism g : p(c)→ d′,

there exists a c′ ∈ C0 and isomorphism f : c→ c′ such that p(f) = g.

Condition (2) is illustrated by the diagram

{0} c //

��

��

Ccore // //

pcore

��

C

p

��

∆1
g
//

f

<<

Dcore // // D

Recall that if C and D are nerves of ordinary categories, then any functor C → D is an inner
fibration. Thus in the case of ordinary categories, being an isofibration amounts to condition (2)
only. Also, it is clear that in the case of ordinary categories condition (2) is equivalent to

(2’) for any c ∈ C0 and isomorphism g′ : d′ → p(c), there exists a c′ ∈ C0 and isomorphism
f ′ : c′ → c such that p(f) = g′.

23Joyal uses the term “quasifibration” in [Joy02]. Later in [Joy08a] this is called a “pseudofibration”. Lurie uses
this notion in [Lur09], but never names it. The term “isofibration” is used by Riehl and Verity [RV15].
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To derive (2) from (2’) for ordinary categories, just apply (2’) to the (unique) inverse of g.
Note that p : C → D satisfies (2) if and only if pop : C → D satisfies (2’). Since h(Cop) = (hC)op,

we see that symmetry between (2) and (2’) also holds for functors between quasicategories, by the
following.

34.9. Proposition. An inner fibration p : C → D between quasicategories is an isofibration if and
only if h(p) : h(C)→ h(D) is an isofibration of ordinary categories.

Proof. (=⇒) Straightforward. (⇐=) Suppose given an isomophism g : p(c)→ d′ in D. If h(p) : hC →
hD is an isofibration, there exists an isomorphism f ′ : c→ c′ in C such that p(f ′) ∼r g. Now choose
a lift in

Λ2
1

a //

��

��

C

p

��

∆2

b
//

s

??

D

where b exhibits p(f ′) ∼r g and a(⟨01⟩) = f ′ and a(⟨12⟩) = 1c′ . The edge f = s02 is a lift of g, and
is an isomorphism since f ′ ∼r f . □

34.10. Example. For any quasicategory C, the tautological map C → ∆0 to the terminal category is
an isofibration.

34.11. Exercise. Let C be a quasicategory and suppose C ′ ⊆ C is a subcomplex. Show that the
inclusion map C ′ ↣ C is an isofibration if and only if C ′ is a replete subcategory of C, i.e., C ′ is a replete

subcategory as in (10.1) with the property that every isomorphism f : x→ y in C with x ∈ C ′0 is
itself contained in C ′.

34.12. Exercise. (i) Let Group denote the category of groups, whose objects are pairs G = (S, µ)
consisting of a set S and a function µ : S × S → S satisfying a well-known list of axioms. Show that
the functor U : Group→ Set which on objects sends (S, µ) 7→ S is an isofibration between ordinary
categories.

(ii) Consider the functor U ′ : Group→ Set defined on objects by G 7→ Hom(Z, G). Explain why,
although U ′ is naturally isomorphic to U , you don’t know how to show whether U ′ is an isofibration
without explicit reference to the axioms of your set theory. (Note that S and Hom(Z, S) may be
distinct sets, even though they are in bijective correpondence.) The moral is that the property of
being an isofibration is not “natural isomorphism invariant”.

34.13. Left and right fibrations are isofibrations.

34.14. Proposition. All left fibrations and right fibrations between quasicategories are isofibrations.

Proof. Suppose p : C → D is a right fibration (and hence an inner fibration) between quasicategories,
and consider

{1} //

��

C

p

��

∆1
g
//

f
>>

D

where g represents an isomorphism in D. Because p is a right fibration and ({1} ⊂ ∆1) ∈ RHorn,
there exists a lift f . Because right fibrations are conservative, f represents an isomorphism. □

Note that the above proof explicitly checked isofibration condition (2’) for right fibrations; thus,
by symmetry we conclude that isofibration condition (2) holds for right fibrations. It seems difficult
to give an elementary direct proof that right-fibrations satisfy (2).
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34.15. Proof of the Joyal extension theorem.

Proof of (34.2). We prove (1)⇒ (2). Suppose given a : Λn
0 → C such that f = a|∆{0,1} represents

an isomorphism. Observe (32.4) that (Λn
0 ⊂ ∆n) is the pushout-join of a 1-horn with an (n− 2)-cell:

(Λn
0 ⊂ ∆n) ≈ (∆{0} ⊂ ∆{0,1}) � (∂∆{2,...,n} ⊂ ∆{2,...,n}),

since Λn
0 ≈ (∆{0} ⋆∆{2,...,n})∪ (∆{0,1} ⋆ ∂∆{2,...,n}) inside ∆n ≈ ∆{0,1} ⋆∆{2,...,n}. Using this, we get

a correspondence of lifting problems

∆{0,1} // //

f

!!

Λn
0

a //

��

��

C

∆n

?? ⇐⇒

∆{0}
h //

��

��

C/(a|∆{2,...,n})

q

��

∆{0,1} g //

f
&&

88

C/(a|∂∆{2,...,n})

p

��

C

where g is adjoint to a|(∆{0,1} ⋆ ∂∆{2,...,n}), and h is adjoint to a|(∆{0} ⋆∆{2,...,n}). Because C is a

quasicategory, and because p and q are restrictions along monomorphisms ∅ ⊂ ∂∆{2,...,n} ⊂ ∆{2,...,n},
both p and q are right fibrations (32.15), and therefore are conservative isofibrations (34.7), (34.14).
Thus since f represents an isomorphism, so does g since p is conservative, and therefore a lift exists
since q is an isofibration.

The proof of (2) =⇒ (1) is left as an exercise (34.3). The proof of (1)⇐⇒ (3) is similar. □

34.16. The Joyal lifting theorem. There is a relative generalizaton, which we will have use of in
the future.

34.17. Theorem (Joyal lifting). Let p : C → D be an inner fibration between quasicategories, and
let f ∈ C1 be an edge such that p(f) is an isomorphism in D. The following are equivalent.

(1) The edge f is an isomorphism in C.
(2) For all n ≥ 2, every diagram of the form

∆{0,1} // //

f

((
Λn
0

//

��

��

C

p

��

∆n //

>>

D

admits a lift.
(3) For all n ≥ 2, every diagram of the form

∆{n−1,n} // //

f

))
Λn
n

//

��

��

C

p

��

∆n //

>>

D

admits a lift.

Proof. The implications (2)⇒ (1) and (3)⇒ (1) are elementary, by the same argument as (34.3).
For (1)⇒ (2), the first step is to prove that

C/(a|∆{2,...,n})
q−→ C/(a|∂∆{2,...,n}) ×D

/(pa|∂∆{2,...,n})
D/(pa|∆{2,...,n})

p−→ C
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are both right fibrations. For instance, the map q is the pullback-slice of the inner fibration p by a
monomorphism, so is a right fibration by (32.14). The map p is the composite

C/(a|∂∆{2,...,n}) ×D
/(pa|∂∆{2,...,n})

D/(pa|∆{2,...,n})
p′−→ C/(a|∂∆{2,...,n})

p′′−→ C,

where p′ is the base change of the right fibration D/(pa|∆{2,...,n}) → D/(pa|∂∆{2,...,n}), and p
′′ is a right

fibration (in both cases by (32.15)) Then the proof of (1) =⇒ (2) proceeds exactly as in (34.2), since

the lifting problem we want to solve is equivalent to (∆{0} ⊂ ∆{0,1}) � q. □

35. Applications of the Joyal extension theorem

We can now prove a number of statements whose proofs we have deferred until now, as well as
some others.

35.1. Quasigroupoids are Kan complexes. First we prove the identification of quasigroupoids
with Kan complexes.

35.2. Theorem (Joyal [Joy08a]). The quasigroupoids are precisely the Kan complexes.

Proof. We have already noted that Kan complexes are quasigroupoids (14.14). In a quasigroupoid,
the Joyal extension property (34.2) applies to all maps from Λn

0 and Λn
n with n ≥ 2, since every

edge is an isomorphism. (Recall that all simplicial sets automatically have extensions for 1-horns
(14.13).) □

From now on we will use terms “quasigroupoid” and “Kan complex” interchangeably.

35.3. Invariance of slice categories. Here is an equivalent reformulation of the Joyal extension
theorem in terms of maps between slices.

35.4. Proposition (Reformulation of Joyal extension). If f : x→ y is an edge in a quasicategory C,
then the following are equivalent: (1) f is an isomorphism; (2) Cf/ → Cx/ is a trivial fibration; (3)
C/f → C/y is a trivial fibration.

Proof. For all n ≥ 0 we have a correspondence of lifting problems

∂∆n //
��

��

Cf/

��

∆n

==

// Cx/

⇐⇒
∆1 ⋆∅ // //

f

++(∆1 ⋆ ∂∆n) ∪ ({0} ⋆∆n) //

��

C

∆1 ⋆∆n

66

and
(
(∆1 ⋆ ∂∆n) ∪ ({0} ⋆∆n)

)
⊂ ∆1 ⋆∆n) ≈ (Λ1+1+n

0 ⊆ ∆1+1+n). The lifting problems on the
right-hand side are precisely those of statement (2) of the Joyal extension theorem (34.2). □

35.5. Exercise (Reformulation of Joyal lifting). Let p : C → D be an inner fibration, and f : x→ y an
edge in C such that p(f) ∈ D1 is an isomorphism. Show that the following are equivalent: (1) f is an
isomorphism in C; (2) Cf/ → Cx/ ×Dp(x)/

Dp(f)/ is a trivial fibration; (3) C/f → C/y ×D/p(y)
D/p(f)

is a trivial fibration.

35.6. Corollary. If f : x → y is an isomorphism in a quasicategory C, then Cx/ and Cy/ are
categorically equivalent, and C/x and C/y are categorically equivalent.

Proof. Consider C/x
r0←− C/f

r1−→ C/y. We have already observed (32.15) that r0 ∈ TrivFib, since

{0} ⊂ ∆0 is left anodyne. The reformulation of Joyal extension (35.4) implies that r1 ∈ TrivFib when
f is an isomorphism. Therefore C/x and C/y are connected by a chain of categorical equivalences.
The proof for slice-under categories is analogous. □
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35.7. Invariance of initial objects. Now we prove some additional facts about initial and terminal
objects. We will explicitly prove the statements about initial objects, as the case of terminal objects
is similar.

35.8. Proposition. Let f : x→ y be a morphism in a quasicategory C, and let f̃ ∈ (Cx/)0 be the

object of the slice which corresponds to f ∈ C1. Then f̃ is initial in Cx/ if and only if f is an
isomorphism.

Proof. For all n ≥ 1 we have a correspondence of lifting problems

{0} // //

f̃

))
∂∆n //
��

��

Cx/

∆n

<< ⇐⇒
∆0 ⋆ {0} // //

f

**∆0 ⋆ ∂∆n //

��

C

∆0 ⋆∆n

;;

and (∆0 ⋆ ∂∆n ⊂ ∆0 ⋆ ∆n) ≈ (Λ1+n
0 ⊆ ∆1+n), so a lift exists in either if and only if f is an

isomorphism, by the Joyal extension theorem applied to the right-hand lifting problem.

(Alternately, we can note that f̃ is initial if and only if π : (Cx/)f̃/ → Cx/ is a trivial fibration

(31.3), and that π is isomorphic to Cf/ → Cx/ (33.8), so the claim follows from (35.4).) □

35.9. Remark. Note that (35.8) implies that the slice Cx/ for any x ∈ C0 in a quasicategory necessarily
has an initial object, namely the vertex corresponding to the edge 1x ∈ C1. Likewise, the slice C/x

has a terminal object corresponding to 1x ∈ C1.

35.10. Remark (Slices of quasigroupoids are quasigroupoids). If C is a quasigroupoid, and x ∈ C0

an object, then the slices C/x and Cx/ are quasigroupoids. This is immediate from the fact that the
restriction maps C/x → C and Cx/ → C are conservative, being respectively right and left fibrations
(32.15) (34.7).

35.11. Remark (Initial and terminal objects in quasigroupoids). If C is a quasigroupoid with
object x ∈ C0, then (35.8) and its analogue for final objects, together with the fact that slices of
quasigroupoids are quasigroupoids (35.10), implies that every object of Cx/ is initial, and every

object of C/x is terminal. That is, Cx/ = (Cx/)
init and C/x = (C/x)

term, and they are non-empty
(35.9), so both Cx/ and C/x are categorically equivalent to the terminal quasicategory.

Finally, we can now show that the property of being initial or terminal is isomorphism invariant. M 28 Feb

35.12. Proposition. In a quasicategory, any object isomorphic to an initial object is also initial,
and any object isomorphic to a terminal object is also terminal.

Proof. Let x be an initial object in C, and let c be an object isomorphic to x. It is easy to see that
x is initial in the homotopy category hC, and therefore c is initial in hC also. This has a useful
consequence: any map between x and c (in either direction) must be an isomorphism in C.

We next note another fact: if x is initial, any map f : S → C extends along S ⊂ ∆0 ⋆ S to a
map f ′ : ∆0 ⋆ S → C such that f ′|∆0 represents x. This is a consequence of the fact (31.3) that
p : Cx/ → C is a trivial fibration, whence (25.13) there exists a map s : C → Cx/ such that ps = idC ;
set f ′ be the adjoint to sf : S → Cx/.
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To show c is initial in C, we need to extend any a : ∂∆n → C with a0 = c to a map ã : ∆n : C.
This follows from a succession of two extension problems:

∅ ⋆ ∂∆n // //
��

��

(∆0 ⋆∅)⨿ (∅ ⋆ ∂∆n)
(x,a)

//

��

��

C

∆0 ⋆ ∂∆n
��

��

g

44

∅ ⋆∆n // // ∆0 ⋆∆n

h

::

The extension g : Λn+1
0 → C exists by the remarks of the previous paragraph since x is initial. The

extension h exists because the leading edge of g is a map x→ c in C, which is an isomorphism by
the remarks of the first paragraph. The desired extension ã is h|(∅ ⋆∆n). □

36. Pointwise natural isomorphisms

Recall (22.4) that if C is a quasicategory then so is any function complex Fun(X,C) for an arbitrary
simplicial set X. In this setting, say that an edge in Fun(X,C)1 is a pointwise isomorphism of pointwise isomorphism

maps X → C if for each for each vertex x ∈ X0, the composite ∆1 f−→ Fun(X,C)
res−−→ Fun({x}, C) ≈

C represents an isomorphism in C, where f is the representing map of the edge.
Note that any isomorphism in Fun(X,C) is automatically an pointwise isomorphism, as isomor-

phisms are preserved by the restriction functor (14.3). Our next goal is to prove the converse holds,
so that pointwise isomorphisms in a functor category are the same as isomorphisms. We will prove
this as (37.2), after some preliminary work.

36.1. A lifting property for pointwise isomorphisms. We establish a “lifting property” for
pointwise isomorphisms.

36.2. Proposition. Let p : C → D be an inner fibration between quasicategories, and let i : S → T
be a monomorphism of simplicial sets such that i0 : S0 → T0 is a bijection. Then a lift exists in any
diagram of the form

{0} //

��

��

Fun(T,C)

p□i

��

∆1
v
//

t

55

Fun(S,C)×Fun(S,D) Fun(T,D)

where the composite ∆1 → Fun(S,C) ×Fun(S,D) Fun(T,D) → Fun(S,C) represents a pointwise

isomorphism. Necessarily any such lift t itself represents a pointwise isomorphism since S0
∼−→ T0.

In particular, when D = ∆0, this says if C is a quasicategory, f : T → C a map of simplicial sets,
and S ⊆ T a subcomplex containing all vertices of T , then any pointwise isomorphism α : f |S → g
of maps S → C extends to a pointwise isomorphism α : f → g of maps T → C.

36.3. Remark. The proposition (36.2) says that, under the hypotheses on i and p, the pullback-hom
map p□i satisfies a variant of the condition for being an isofibration, except that “isomorphism” is
replaced by “pointwise isomorphism”. In fact, it will follow from the pointwise criterion for natural
isomorphisms that p□i is actually an isofibration (39.2).

We need to introduce a number of ideas before we prove this. Recall (20.5) that the class of
monomorphisms of simplicial sets is precisely the weak saturation Cell of Cell. The same idea shows
that the class of monomorphisms which are bijections on vertices is precisely the weak saturation
Cell≥1 of Cell≥1 := { (∂∆n ⊂ ∆n) | n ≥ 1 }.
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36.4. Path category. Next we define the path category of a quasicategory C. This is the full path category

subcategory
Funiso(∆1, C) ⊆ Fun(∆1, C)

spanned by objects corresponding to functors ∆1 → C which represent an isomorphism in C.
Note that any functor p : C → D between quasicategories induces a functor p∗ : Funiso(∆1, C)→
Funiso(∆1, D) on these subcategories, and also that restriction along {x} → ∆1 for x = 0, 1 induces
restriction functors rx : Funiso(∆1, C)→ Fun({x}, C) = C.

36.5. Lemma. Let C be a quasicategory and X a simplicial set. Then the standard bijection
Hom(X,Fun(∆1, C)) ≈ Hom(∆1,Fun(X,C)) restricts to a bijection between (i) the set of maps X →
Funiso(∆1, C) and (ii) the set of maps ∆1 → Fun(X,C) which represent pointwise isomorphisms in
Fun(X,C).

Proof. Consider f : X → Fun(∆1, C), and write f ′ : ∆1 → Fun(X,C) and f ′′ : X ×∆1 → C for its
adjoints. Then it is straightforward to check that f is in the set (i) iff (iii): for each x ∈ X0 the

composite {x} ×∆1 ↣ X ×∆1 f ′′
−→ C represents an isomorphism in C. Likewise it is similarly

straightforward to check that f is in the set (ii) iff (iii) holds. □

Using this, we can reformulate the statement of (36.2) as follows: given an inner fibration
p : C → D and a monomorphism i : S → T of simplicial sets which induces a bijection of vertices,
we need to show there exists a lift in every commutative square of the form

S //
��

i

��

Funiso(∆1, C)

q

��

T //

55

Fun({0}, C)×Fun({0},D) Fun
iso(∆1, D)

where q is the evident restriction of p□({0}⊂∆1).

Proof of (36.2). Let C be the class of monomorphisms of simplicial sets i : S → T such that i� q
for every map q : Funiso(∆1, C) → Fun({0}, C) ×Fun({0},D) Fun

iso(∆1, D) obtained by restriction

from p□({0}⊂∆1), for every inner fibration p : C → D between quasicategories. Is is clear from its
definition that C is a weakly saturated class, as it is defined as a left complement to a class of maps,
namely the class of q described above together with all trivial fibrations.

To prove the claim, it suffices to show that Cell≥1 ⊆ C, whence Cell≥1 ⊆ C. That is, it suffices to
show that for any n ≥ 1, a lift exists in any commutative square of the form

({0} ×∆n) ∪{0}×∂∆n (∆1 × ∂∆n)
��

��

ũ // C

p

��

∆1 ×∆n //

55

D

where p is an inner fibration of quasicategories, and ũ is such that ũ|∆1 × {y} represents an
isomorphism for all y ∈ (∆n)0. This follows from the following proposition (36.6) in the case of
(x, y) = (0, 0). □

Thus we have reduced to the following proposition, which is a kind of “pushout-product” version
of Joyal lifting, where we replace the horn inclusion Λn

0 ⊂ ∆n with the inclusion ({0} ⊂ ∆1)□(∂∆n ⊂
∆n), with the role of the “leading edge” played by ∆1 × {0} ⊂ ∆1 ×∆n; or alternately, replace the
horn inclusion Λn

n ⊂ ∆n with the inclusion ({1} ⊂ ∆1)□(∂∆n ⊂ ∆n), with the role of the “trailing
edge” played by ∆1 × {n} ⊂ ∆1 ×∆n.
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36.6. Proposition (Pushout-product Joyal lifting). Suppose p : C → D is an inner fibration of
quasicategories, and suppose n ≥ 1, and either (x, y) = (0, 0) or (x, y) = (1, n). For any diagram

∆1 × {y} // //

f

,,({x} ×∆n) ∪{x}×∂∆n (∆1 × ∂∆n) //

��

��

C

p

��

∆1 ×∆n //

55

D

such that f represents an isomorphism in C, a lift exists.

Proof. This is a calculation, given in the appendix (78.6), which itself relies on Joyal lifting. □

36.7. Example. To give an idea of the proof (36.6), consider the case of n = 1 and (x, y) = 0, in
which case K = ({0}×∆1)∪{0}×∂∆1 (∆1×∂∆1) can be pictured the solid-arrow part of the diagram

(0, 1) // (1, 1)

(0, 0)

OO

f

∼ //

;;

a

(1, 0)

OO

b

To lift to a map ∆1 ×∆1 → C, we first choose a lift on the 2-cell a, which is attached along an
inner horn Λ2

1 ⊂ ∆2; then we choose a lift on the 2-cell b, which is a non-inner horn Λ2
0 ⊂ ∆2 such

that K → C sends its leading edge (marked f) to an isomorphism in C, so Joyal-lifting applies.

37. Proof of the pointwise criterion for natural isomorphisms

In this section we will prove the following.

37.1. Proposition. Let j : K → L be a monomorphism of simplicial sets such that j0 : K0
∼−→ L0 is

a bijection. Then for every quasicategory C the restriction map Fun(j, C) : Fun(L,C)→ Fun(K,C)
is conservative.

Given this, the pointwise criterion follows easily.

37.2. Theorem (Pointwise criterion for isomorphisms in functor categories). Let C be a quasicategory
and X a simplicial set. Then an edge of Fun(X,C) is an isomorphism if and only if it is a pointwise
isomorphism.

Proof using (37.1). Consider the inclusion j : Sk0X ↣ X of the 0-skeleton (20.1), so that Sk0X =∐
x∈X0

∆0. Then j∗ : Fun(X,C) → Fun(Sk0X,C) is conservative by (37.1). So it suffices to
show pointwise isomorphisms in Fun(Sk0X,C) are isomorphisms. This is clear from the evident
isomorphism

Fun(Sk0X,C) ≈
∏
x∈X0

C

which implies an isomorphism hFun(Sk0X,C) ≈
∏

x∈X0
hC (13.16), so the claim follows from the

“pointwise criterion” for ordinary categories. □

First we observe that the proof of (37.1) follows from the following lemma. W 2 Mar

37.3. Lemma. Let C be a quasicategory, and let j : K → L be a monomorphism of simplicial sets
such that j0 : K0

∼−→ L0 is a bijection, and write j∗ : Fun(L,C) → Fun(K,C) for the restriction
functor. If α is an edge in Fun(L,C) such that the edge j∗(α) admits a postinverse in Fun(K,C),
then α admits a postinverse in Fun(L,C).
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Proof of (37.1) using (37.3). If α is a morphism in Fun(L,C) such that j∗(α) is an isomorphism in
Fun(K,C), then in particular j∗(α) admits a postinverse, so by the lemma α admits a postinverse
β. But then j∗(β), being a postinverse of j∗(α), is also an isomorphism in Fun(K,C), so the same
argument shows that β admits a postinverse. Therefore α is an isomorphism by (14.5). □

Finally, we prove the lemma.

Proof of (37.3). To construct a postinverse of α : f → f ′ in Fun(L,C), we find a lift in a diagram
of the form

Λ2
0

u //

��

��

Fun(L,C)

j∗=Fun(j,C)

��

∆2
v
//

::

Fun(K,C)

where u and v may be depicted as

f ′

β

��

f ′j

β

��

f

α
::

1f $$

∈ Fun(L,C)
j∗ +3 fj

j∗(α) 99

1fj %%

∈ Fun(K,C)

f fj

so that v exhibits a postinverse β of αj. The lifting problem (u, v) may be regarded as a vertex of

Fun(Λ2
0,Fun(L,C))×Fun(Λ2

0,Fun(K,C)) Fun(∆
2,Fun(K,C)) = Fun((Λ2

0 × L) ∪ (∆2 ×K), C).

We will construct a pointwise isomorphism γ : (u′, v′)→ (u, v) in this quasicategory, where u′ and v′

are depicted as

f

1f

��

fj

1fj

��

f

1f
;;

1f ##

∈ Fun(L,C)
j∗ +3 fj

1fj 99

1fj %%

∈ Fun(K,C)

f fj

i.e., so that u′ and v′ are the composites Λ2
0 → {f} ↣ Fun(L,C) and ∆2 → {fj} ↣ Fun(K,C)

respectively. The lifting problem (u′, v′) clearly has a lift given by the the composite s′ : ∆2 →
{f}↣ Fun(L,C). Thus we have a diagram

{0} s′ //

��

��

Fun(∆2 × L,C)

��

∆1
γ
//

δ

55

Fun((Λ2
0 × L) ∪ (∆2 ×K), C)

in which γ represents a pointwise isomorphism and j is a monomorphism which is a bijection on
vertices, and therefore a lift δ exists by our result on lifting pointwise isomorphisms (36.2). The
restriction δ|{1} gives the desired lift for (u, v).

Let r : ∆2 ×∆1 → ∆2 be the map corresponding to the unique natural transformation ⟨002⟩ →
⟨012⟩ = id∆2 of functors ∆2 → ∆2. That is, it is the unique map given on vertices by

r(x, y) =

{
(x, y) if (x, y) ̸= (1, 0),

(0, 0) if (x, y) = (1, 0).
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Note that r(∆{0,1} ×∆1) = ∆{0,1}, and r(∆{0,2} ×∆1) = ∆{0,2}, so that r(Λ2
0 ×∆1) = Λ2

0. We thus
define γ : (u′, v′)→ (u, v) to be the edge represented by the diagram

Λ2
0 ×∆1 r //

��

��

Λ2
0

u //

��

��

Fun(L,C)

j∗

��

∆2 ×∆1
r
// ∆2

v
// Fun(K,C)

Since r : ⟨002⟩ → ⟨012⟩ it is clear that γ is a morphism (u′, v′) → (u, v) where u′ and v′ are as
described above. To see that γ is a pointwise isomorphism, note that

r|{0}×∆1 = (0→ 0), r|{1}×∆1 = (0→ 1), r|{2}×∆1 = (2→ 2).

Thus the restriction of γ : ∆1 → Fun((Λ2
0 × L) ∪ (∆2 ×K), C) to a vertex (x, y) ∈ (∆2 × L)0 works

out to
γ|(0,y) = 1f(y), γ|(1,y) = α(y), γ|(2,y) = 1f(y),

each of which is an isomorphism in C since α is a pointwise isomorphism. □

37.4. Exercise. Show that if f, g : C → D are naturally isomorphic functors between quasicate-
gories, then their restrictions f core, gcore : Ccore → Dcore to cores are also naturally isomorphic.
Conclude that if f : C → D is a categorical equivalence between quasicategories, then the restriction
f core : Ccore → Dcore of f to cores is a categorical equivalence of quasigroupoids.

Part 6. Isofibrations

38. More results on isomorphisms and isofibrations

38.1. Pullbacks of cores. Recall that for a quasicategory C, the core Ccore ⊆ C is the maximal
quasigroupoid in C (14.9). The following says that maximal quasigroupoids are preserved by certain
kinds of pullbacks.

38.2. Proposition. Let

C ′
u //

q
��

C

p

��

D′ v
// D

be a pullback square of simplicial sets such that the objects are quasicategories and p is an inner
fibration. An edge f ∈ C ′1 is an isomorphism in C ′ if and only if u(f) ∈ C1 and q(f) ∈ D′1 are
isomorphisms in C and D′ respectively. Thus the induced map (C ′)core → Ccore ×Dcore (D′)core on
cores is an isomorphism.

Proof. This is a straightforward application of Joyal lifting (34.17): as q is an inner fibration and
q(f) is an isomorphism, to show f is an isomorphism we must produce a lift in every lifting problem
described by the left-hand square in

∆{0,1} // //

f

))
Λn
0

//

��

��

C ′
u //

��

C

p

��

∆n //

>> 77

D′ // D

Because u(f) is an isomorphism, we know a lift exists in the large rectangle by Joyal lifting, and
the desired lift exists because the right-hand square is a pullback.
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Recall that an n-dimensional cell a of a quasicategory is in the core if and only if all of its edges
aij are isomorphisms. Given this, the assertion about pullbacks of cores is immediate. □

38.3. Exercise. Show that the inclusion Ccore → C of the core of a quasicategory is an isofibration.

38.4. Kan fibrations and anodyne maps. Let

Horn =
{
Λn
j ⊂ ∆n

∣∣ n ≥ 1, 0 ≤ j ≤ n
}
= RHorn ∪ LHorn

denote the set of all horn inclusions. A map is anodyne if it is in Horn, the weak saturation of the anodyne

set of horn inclusions, and is a Kan fibration if it is in KanFib := Horn�. Clearly a map is a Kan Kan fibration

fibration if and only if it is both a left fibration and right fibration, and it is necessarily an inner
fibration.

38.5. Example. A simplicial set X is a Kan complex iff X → ∆0 is a Kan fibration.

38.6. The walking isomorphism. Let Iso be the walking isomorphism, i.e., the category with walking isomorphism

two objects 0 and 1, and a unique isomorphism between them. Its nerve N Iso is a simplicial set,
which by abuse of notation I will also denote Iso. Let u : ∆1 → Iso be the inclusion representing the
unique map 0→ 1 in Iso.

38.7. Proposition. The map u : ∆1 → Iso is anodyne.

Proof. The k-dimensional cells of Iso are in one-to-one correspondence with sequences (x0x1 · · ·xk)
with xi ∈ {0, 1}. For each k ≥ 0 there are exactly two non-degenerate k-dimensional cells uk and vk,
corresponding respectively the alternating sequences (0101 . . . ) and (1010 . . . ) of length k + 1. We
also write uk, vk : ∆

k → Iso for the maps representing these non-degenerate cells.
Let Fk = uk(∆

k) ⊂ Iso be the smallest subcomplex containing uk. Observe that for a simplicial
operator f : [d]→ [k] we have ukf = (x0x1 · · ·xd) with xi ≡ f(i) mod 2. In particular,

• uk⟨1 . . . k⟩ = vk−1,
• uk⟨0 . . . k − 1⟩ = uk−1,

• uk⟨0, 1, . . . , î, . . . , k − 1, k⟩ is a degenerate cell associated to uk−2 if i = 1, . . . , k − 1.

From this we can see that the only non-degenerate cells of Fk ∖ Fk−1 are uk and vk−1 = uk⟨1 · · · k⟩.
Therefore Iso =

⋃
k Fk, F1 = u(∆1), and the commutative square

Λk
0��

��

// Fk−1
��

��

∆k
uk

// Fk

is a pushout square for all k ≥ 1 by (20.4), since it is a pullback, and any cell in the complement of
Fk−1 ⊂ Fk is the image of a unique cell under the map uk. It follows that u is anodyne. □

As an immediate consequence, any map f : ∆1 → C can be extended over Iso when C is a
quasigroupoid, since these are Kan complexes (35.2). We can easily refine this to give a criterion for
f to represent an isomorphism in a general quasicategory.

38.8. Proposition. Let C be a quasicategory, and f : ∆1 → C a map. Then there exists f ′ : Iso→ C
with f ′u = f if and only if f represents an isomorphism in C.

Proof. (=⇒) Clear. (⇐=) If f represents an isomorphism then it factors ∆1 → Ccore ⊆ C through
the core, which is a Kan complex, so an extension along the anodyne map u to a map Iso→ Ccore ⊆ C
exists. □

38.9. Exercise. Let Z be the complex of (25.6), and let F : ∆1 → Z be the map representing the
edge f ∈ Z1. Show that F is anodyne, and state and prove an analogue of (38.8) with Z in place of
Iso.
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38.10. Remark. Let Z ′ be the complex of (25.7), and let F ′ : ∆1 → Z ′ be the map representing the
edge f ∈ Z ′1. Note that Z ′ is isomorphic to the subcomplex X ⊂ Iso which is the union of the
images of 2-dimensional cells (010) and (101), and that under this isomorphism F ′ corresponds to u.
It is straightforward to show that F ′ also satisfies an analogue of (38.8), by the same idea as the
proof of (38.9).

However, it turns out that F ′ : ∆1 → Z ′ is not anodyne, and that Z ′ ≈ X → Iso is not a
categorical equivalence. In particular, a map X → C to a quasicategory can fail to extend along
X ⊂ Iso.

38.11. Isofibrations and Kan fibrations. As we have seen, a functor f : C → D between
quasicategories is an isofibration if (1) it is an inner fibration, and (2) every diagram

{j} //

��

��

Ccore

pcore

��

// // C

p

��

∆1

f
//

g
<<

Dcore // // D

with j = 0 admits a lift g. Furthermore, it is equivalent to require (2′) instead of (2), where (2′) is
the same statement with j = 1.

In particular, C → ∗ is an isofibration for any quasicategory C (because identity maps are
isomorphisms). Given a functor p : C → D between quasicategories, we write pcore : Ccore → Dcore

for its restriction to cores.

38.12. Proposition. Let p : C → D be an inner fibration between quasicategories. Then the following
are equivalent.

(1) p is an isofibration.
(2) pcore is an isofibration.
(3) pcore is a Kan fibration.

In particular, an inner fibration between Kan complexes is an isofibration if and only if it is a Kan
fibration.

Proof. (1) ⇐⇒ (2). That pcore is an inner fibration is an elementary argument (17.11). It is also
immediate that condition (2) holds for p iff it holds for pcore.

(2) ⇐⇒ (3). Suppose q is an inner fibration between Kan complexes, e.g., q = pcore. Then Joyal
lifting (34.17) implies that (Λn

j ⊂ ∆n) � q for all n ≥ 2, and all 0 ≤ j ≤ n. The claim follows

from the observation that q is an isofibration iff (Λ1
j ⊂ ∆1) � q for either of (or both of) j = 0 or

j = 1. □

38.13. Exercise. Give an example of an inner fibration between Kan complexes which is not a Kan
fibration.

We have another “lifting criterion” for isofibrations involving the walking isomorphism.

38.14. Proposition. A map p between quasicategories is an isofibration iff (1) it is an inner fibration,
and (2′′′) ({0} ⊂ Iso) � p.

Proof. (⇐=) Straightforward, using the fact (38.8) that every f : ∆1 → D representing an isomor-
phism factors through a map Iso→ D.
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(=⇒) Solve a lifting problem (a : {0} → C, b : Iso→ D) of type ({0} ⊂ Iso) � p by solving two
lifting problems in sequence

{0} a //

��

��

Ccore

pcore

��

// // C

p

��

∆1 t //
��

u

��

Ccore

pcore

��

// // C

p

��

∆1

b′u
//

t

<<

Dcore // // D Iso
b′
//

s

<<

Dcore // // D

b′ : Iso→ Dcore is the factorization of b through the core, and u : ∆1 → Iso represents the morphism
0→ 1 in Iso. Since p is an isofibration, there exists a lift t in the left-hand square which represents
an isomorphism in C. Both t and b land in the relevant cores, and so it suffices to produce a lift in
the right-hand diagram, which exists because u is anodyne (38.7) and pcore is a Kan fibration by
(38.12). □

In other words, the isofibrations are precisely the maps between quasicategories which are contained

in
(
InnHorn ∪ {{0} ⊂ Iso}

)�
. As an immediate consequence we get the following.

38.15. Proposition. If p : C → D is a trivial fibration between quasicategories, then it is an
isofibration.

Proof. All inner horn inclusions as well as {0} → Iso are monomorphisms, so this follows from
(38.14). □

38.16. Remark. We have deliberately excluded maps between non-quasicategories from the definition
of isofibration. The correct generalization of isofibration to arbitrary simplicial sets is called
“categorical fibration”, and will be discussed later (41).

39. Lifting properties for isofibrations

39.1. A useful lifting result. In view of the pointwise criterion for natural isomorphisms (37.2), F 4 Mar
the lifting property for pointwise isomorphisms (36.2) can be reforulated as follows.

39.2. Proposition. Let p : C → D be an inner fibration between quasicategories, and let i : K → L
be a monomorphism of simplicial sets such that i0 : K0 → L0 is a bijection. Then the induced
pullback-hom map p□i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D) is a conservative isofibration.

Proof. By enrchied lifting (22.2) p□i is an inner fibration between quasicategories. Consider a
commutative square of the form

{0} //

��

��

Fun(L,C)

p□i

��

∆1
v
//

t

55

Fun(K,C)×Fun(K,D) Fun(L,D)

where v represents an isomorphism. Then the composite of v with the projection to Fun(K,C)
certainly represents a pointwise isomorphism, and thus (36.2) applies to give a lift t which is
necessarily a pointwise isomorphism, and hence an isomorphism by (37.2). That the functor p□i is
conservative is also clear, e.g., using the pointwise criterion. □

As a consequence we get the following.

39.3. Corollary. Let C be a quasicategory, and i : K → L a monomorphism of simplical sets which
induces a bijection on vertices. Then the fibers of i∗ : Fun(L,C)→ Fun(K,C) over any vertex of
the target are quasigroupoids.

Proof. An immediate consequence of (39.2), since i∗ sends any morphism in one of its fibers to an
identity morphism in the target. □
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39.4. Enriched lifting for isofibrations. Using the same ideas that prove (39.2), we can show
the following variant, where we drop the condition that i be a bijection on vertices, but add the
condition that p be an isofibration.

39.5. Proposition. Let p : C → D be an isofibration between quasicategories, and i : K → L any
monomorphism of simplicial sets. Then the induced pullback-hom map

p□i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D)

is an isofibration.

Proof. Let C be the class of monomorphisms i of simplicial sets such that p□i is an isofibration
whenever p : C → D is an isofibration between quasicategories. I claim that the class C is weakly
saturated. First note that since p is an inner fibration between quasicategories, so is p□i for
any monomorphism i since InnHorn□Cell ⊆ InnHorn (22.2). Given this, p□i is an isofibration iff
({0} ⊂ Iso) � p□i (38.14). Finally, recall that that for any map j we have j � p□i iff (i□j) � p iff

i� p□j (21.5), and so i ∈ C iff (1) i ∈ Cell and (2) i� p□({0}⊂Iso) for every isofibration p.
Thus, to prove the proposition it suffices to show Cell ⊆ C. We have that (∂∆n ⊂ ∆n) is in

C when n ≥ 1 by (39.2) and the fact that isofibrations are inner fibrations by definition, while

(∂∆0 ⊂ ∆0) is in C tautologically since p□(∂∆0⊂∆0) = p is an isofibration by hypothesis. □

39.6. Example. If C is a quasicategory and i : K → L a monomorphism, then i∗ : Fun(L,C) →
Fun(K,C) is an isofibration by (39.5) and the fact that C → ∗ is an isofibration.

39.7. Covering homotopy extension property. Here is a very handy consequence of enriched
lifting for isofibrations (39.5). Consider maps i : K → L and p : C → D of simplicial sets, with
pullback-hom map

p□i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D).

A vertex (u, v) in the target of p□i corresponds to a lifting problem of type i� p, and this lifting
problem has a solution if and only if the vertex (u, v) is in the image of a vertex s in Fun(L,C).

An edge e in the target of p□i from vertex (u0, v0) to vertex (u1, v1) corresponds to a commutative
square

K ×∆1 ũ //

i×id
��

C

p

��

L×∆1

ṽ
// D

such that ũ|K × {x} = ux and ṽ|L × {x} = vx for x = 0, 1. We think of such an edge e as a
“deformation” relating the two lifting problems (u0, v0) and (u1, v1). In certain circumstances, a
lifting problem admits a solution if it admits a suitable deformation to a solvable lifting problem.
In our setting this happens when a lifting problem is isomorphic to a solvable one, a principle called
“covering homotopy extension”.

39.8. Proposition (Covering homotopy extension for isofibrations). Let i : K → L be a monomor-
phism of simplicial sets, and p : C → D an isofibration of quasicategories. If two lifting problems
(u0, v0) and (u1, v1) of type i � p are represented by isomorphic objects of Fun(K,C) ×Fun(K,D)

Fun(L,D), then (u0, v0) admits a lift if and only if (u1, v1) admits a lift.

Proof. Let e be such an isomorphism. I’ll show that if (u0, v0) admits a lift s : L→ C, then (u1, v1)
also admits a lift. The hypotheses on i and p, togther with the fact that p□i is an isofibration (39.5),
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imply that a lift t exists in the commutative square

{0} s //

��

��

Fun(L,C)

p□i

��

∆1
e
//

t

55

Fun(K,C)×Fun(K,D) Fun(L,D)

Then the vertex t(1) ∈ Fun(L,C)0 gives the desired lift for (u1, v1). The proof of the reverse
direction is similar, using ({1} ⊂ ∆1) instead of ({0} ⊂ ∆1). □

39.9. Remark. In the proof of (39.8), the isofibration condition is used to lift the edge e to a suitable
edge t, but the lift t need not itself be an isomorphism. In fact, an analogous covering homotopy
extension property can be proved in other contexts where the edge e can be shown to lift. In
fact, we have already used a variant of this idea in the proof of the pointwise criterion for natural
isomorphisms (37.3).

40. Isofibrations and categorical equivalences

The goal of this section is to characterize the trivial fibrations between quasicategories: they are
precisely the isofibrations which are also categorical equivalences.

40.1. Vertical categorical equivalence. Say that a functor p : C → D between quasicategories is
a vertical categorical equivalence24 if there exists vertical categorical

equivalence• s : D → C such that ps = idD, and
• h : C ×∆1 → C representing a natural isomorphism idC → sp, such that ph = pπC , so that
the diagram

C × ∂∆1 (idC , sp)
//

��

��

C

p

��

C ×∆1
πC

//

h

66

C p
// D

commutes.

Any vertical categorical equivalence is a categorical equivalence, since s is a categorical inverse to p.

40.2. Remark. Here is one way to think about the identity ph = pπC : it says that the map
p∗ : Fun(C, p) : Fun(C,C) → Fun(C,D) sends the isomorphism represented by h to the identity
map of the object p.

40.3. Exercise. Show that vertical categorical equivalence can be reformulated in terms of the relative
function complex of (25.10): a functor p : C → D is a vertical categorical equivalence iff there exists
(i) an object s ∈ Fun/D(D,C)0 and (ii) an isomorphism h : idC → sp in Fun/D(C,C)1.

40.4. Exercise. Show that if p : C → D is a vertical categorical equivalence, then for each object
d ∈ D0 the projection p−1(d)→ {d} of a fiber to its image is a categorical equivalence.

40.5. Exercise. Give an example of a functor p : C → D between quasicategories such that p−1(d)→
{d} is a categorical equivalence for each d ∈ D0, but p is not a vertical categorical equivalence.
(Hint: there are examples where C and D are ordinary categories.)

40.6. Exercise. Show that any base change of a vertical categorical equivalence p along a functor
from a quasicategory is also a vertical categorical equivalence.

24Riehl and Verity [RV22] call this a “split fiber homotopy equivalence”.
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40.7. Isofibrations which are categorical equivalences are trivial fibrations.

40.8. Proposition. A functor p : C → D of quasicategories is a trivial fibration if and only if it is
both a categorical equivalence and an isofibration.

Proof. We have already seen that trivial fibrations of quasicategories are categorical equivalences
(25.11) and isofibrations (38.15). The other direction is a consquence of the two following propositions
(40.9) and (40.10), which show that for an isofibration p, categorical equivalence⇒ vertical categorical
equivalence ⇒ trivial fibration. □

40.9. Proposition. If p : C → D is an isofibration and a categorical equivalence, then it is a vertical
categorical equivalence.

Proof. Choose a categorical inverse g : D → C for p, for which there are natural isomorphisms
gp ≈ idC and pg ≈ idD. We will “deform” g to a functor s : D → C equipped with natural
isomorphisms 1idD : ps→ idD and h : sp→ idC which exhibit p as a vertical categorical equivalence.

Step 1. Choose v : D × ∆1 → D representing a natural isomorphism pg → idD. Since p is
an isofibration so is Fun(D, p) : Fun(D,C) → Fun(D,D) (39.5), and so a lift α representing an
isomorphism exists in

{0}
g
//

��

��

Fun(D,C)

p∗

��

∆1

ṽ
//

α
::

Fun(D,D)

Let s := α(1) ∈ Fun(D,C)0, so that s : D → C is a functor such that ps = idD, and α : g → s is a
natural isomorphism. Thus we have natural isomorphisms idC ≈ gp ≈ sp of functors C → C, i.e.,
there exists a natural isomorphism w : sp→ idC , represented by an edge w ∈ Fun(C,C)1.

Step 2. We have functors Fun(C,C)
p∗−→ Fun(C,D)

s∗−→ Fun(C,C) induced by postcomposition
with p and s. We can apply various iterations of these functors to the natural isomorphism
w : sp → idC , some of which are pictured in the following solid arrow diagram of objects and
isomorphisms in Fun(C,C) and Fun(C,D):

idC

h

��

p

1p

��

sp

w 99

(sp)∗(w) &&

∈ Fun(C,C)
p∗ +3 p = psp

p∗(w)
77

p∗(w)=(psp)∗(w) ''

∈ Fun(C,D)

sp p

Note that ps = idY implies that p∗(sp) = p and (sp)∗(sp) = sp, and that (psp)∗(w) = p∗(w). The
right hand diagram “commutes” in Fun(C,D), i.e., it represents the boundary of an element b ∈
Fun(C,D)2, namely the degenerate cell b := (p∗(w))011 associated to the edge p∗(w) : psp = p→ p.

The above picture is represented by a commutative square

Λ2
0

a //

��

��

Fun(C,C)

Fun(X,p)=p∗
��

∆2

b
//

t
::

Fun(C,D)

in simplicial sets. Since p is an inner fibration and a|∆{0,1} = w represents an isomorphism, a lift

t exists by Joyal lifting (34.17). Thus h := t|∆{1,2} : ∆1 → Fun(C,C) is a natural isomorphism
h : idC → sp such that p∗(h) = 1p, i.e., ph = pπC . We have thus produced s : D → C and
h : C ×∆1 → C exhibiting p as a vertical categorical equivalence, as desired. □
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40.10. Proposition. If p : C → D is an isofibration and a vertical categorical equivalence, then p is
a trivial fibration.

Proof. Given such a functor p, consider a lifting problem

K
u //

��

i
��

C

p

��

L v
// D

with i a monomorphism. Since p is an isofibration, the covering homotopy extension property (39.8)
applies, so it suffices to show that this lifting problem is isomorphic to one we can solve. In fact,
the data (s : D → C, h : C ×∆1 → C) of a vertical categorical equivalence provides us with such an
isomorphism, via the commutative rectangle

K ×∆1 u×id
//

��

i×id
��

C ×∆1 h //

p×id
��

C

p

��

L×∆1

v×id
// D ×∆1

πD

// D

(Note that πD(p × id) = pπC = ph.) Over {0} ⊂ ∆1 this is the original lifting problem (u, v),
while over {1} ⊂ ∆1 we get a lifting problem (spu, v) since sp = h|C × {1} and pspu = pu = vi.
The diagram provides a morphism e : (u, v) → (spu, v) in Fun(K,C) ×Fun(K,D) Fun(L,D), whose
projection to Fun(L,D) is the the identity map of v, and whose projection to Fun(K,C) is represented
by h(u× id), which is an isomorphism since h is. Thus e is itself an isomorphism by (38.2).

Finally, we know a lift for (spu, v), namely sv : L→ C (since svi = spu and psv = v). □

The result we have just proved has many useful consequences: in many cases we can replace
instances of the hypothesis “trivial fibration” with “categorical equivalence”.

40.11. Corollary. A quasicategory C is categorically equivalent to the terminal category ∆0 if and
only if C → ∆0 is a trivial fibration.

Proof. Immediate from (40.8) and the fact that C → ∆0 is an isofibration (34.10). □

40.12. Exercise. Show that an object x of a quasicategory C is initial if and only if Cx/ → C is a
categorical equivalence, and is terminal if and only if C/x → C is a categorical equivalence.

40.13. Exercise. Show that a morphism f : x→ y of a quasicategory C is an isomorphism if and only
if Cf/ → Cx/ is a categorical equivalence, and if and only if C/f → C/y is a categorical equivalence.

40.14. Exercise. Let C be a quasicategory and let π : C → hC be the tautological map to its
homotopy category. Show that

(1) π is an isofibration, and
(2) (∂∆n ⊂ ∆n) � π for n = 0, 1, 2.

Conclude that π is a categorical equivalence if and only if (∂∆n ⊂ ∆n) � π for all n ≥ 3.

40.15. Monomorphisms which are categorical equivalences. We can now give the following M 7 Mar
“lifting characterization” of monomorphisms which are categorical equivalences.

40.16. Proposition. Let j : K → L be a monomorphism of simplicial sets. Then j is a cate-
gorical equivalence if and only if Fun(j, C) : Fun(L,C) → Fun(K,C) is a trivial fibration for all
quasicategories C.

Proof. Straightforward, using the fact that Fun(j, C) is an isofibration since j is mono (39.5), and
that isofibrations which are categorical equivalences are trivial fibrations (40.8). □
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40.17. Remark. The class CatEq ∩ Cell of monomorphisms which are categorical equivalences is
a weakly saturated class: (40.16) says it is the intersection of Cell with the left complement of{
p□Cell

∣∣ p : C → ∗, C ∈ qCat
}
.

Clearly InnHorn ⊆ CatEq ∩ Cell by (25.17). However, InnHorn ̸= CatEq ∩ Cell. For instance,
every inner anodyne map is a bijection on vertices, but the monomorphism {0} → Iso is not bijective
on vertices but is a categorical equivalence. Even if we restrict to morphisms in CatEq ∩Cell which
are bijections on vertices, we need not have an inner anodyne map, as the following example shows
(40.18).

40.18. Example (Campbell’s counterexample [Cam19]). Recall the simplicial set Hℓ = ∆2/∆{0,1} of
(17.13), and write π : ∆2 → Hℓ for the evident quotient map. We have a commutative diagram

∆1 f
//

id   

Hℓ

h
��

∆1g
oo

id~~

∆1

where f and g represent the edges π(⟨02⟩) and π(⟨12⟩) in Hℓ, and h is the unique map such that
hπ = ⟨001⟩. Note that the maps f, g, h induce bijections on vertices.

The map g is actually inner anodyne: it is isomorphic to the cobase-change of the horn inclusion
Λ2
1 → ∆2 along the unique map Λ2

1 → ∆1 which on vertices sends 0, 1 7→ 0 and 2 7→ 1.
Thus g is a categorical equivalence, whence so are h and hence f by the 2-out-of-3 property

(27.11). On the other hand, we have observed that f is not an inner anodyne map (17.14). Therefore
f is a categorical equivalence which is a monomorphism and a bijection on vertices, but is not an
inner anodyne map.

41. Categorical fibrations

As we noted above (40.17), CatEq ∩ Cell is weakly saturated. It is therefore natural to consider
its right complement. Say that a map p : X → Y of simplicial sets is a categorical fibration (or categorical fibration

Joyal fibration) if and only if j�p for all j which are monomorphisms and categorical equivalences. Joyal fibration

I’ll write CatFib = (Cell ∩ CatEq)� for the class of categorical fibrations.
under operations such as composition, base-change, and retracts.
It turns out that the categorical equivalences between quasicategories are precisely the isofibrations.

41.1. Proposition. A map p : C → D with D a quasicategory is an isofibration if and only if j � p
for every j : K → L which is both a monomorphism and a categorical equivalence.

Proof. (⇐=) Immediate from the the characterization of isofibrations as maps between quasicat-
egories in the right complement of InnHorn ∪ {{0} ⊂ Iso} (38.14). (Note that if p is in this right
complement then in particular it is an inner fibration, so C must be a quasicategory.)

(=⇒) Suppose p is an isofibration, and j a monomorphism and a categorical equivalence. We
have a commutative diagram

Fun(L,C)
p□j

//

--

Fun(j,C)

--
Fun(K,C)×Fun(K,D) Fun(L,D) q

//

��

Fun(K,C)

��

Fun(L,D)
Fun(j,D)

// Fun(K,D)

in which p□j , Fun(j, C), and Fun(j,D) are isofibrations by (39.5), and Fun(j, C) and Fun(j,D) are
categorical equivalences since j is. Therefore Fun(j, C) and Fun(j,D), and hence the base-change



INTRODUCTION TO QUASICATEGORIES 106

q, are trivial fibrations by (40.8). Therefore q is a categorical equivalence (25.11), whence p□j is a
categorical equivalence by 2-out-of-3 (27.11) and so a trivial fibration by (40.8). It follows that p□j

is surjective on vertices, i.e., j � p as desired. □

We have shown that isofibrations which are categorical equivalences are trivial fibrations (40.8).
We can generalize this from isofibrations to categorical fibrations.

41.2. Proposition. A map p : X → Y of simplicial sets is a trivial fibration if and only if it is a
categorical fibration and a categorical equivalence.

Proof. (=⇒) We know trivial fibrations are categorical equivalences (25.11), and it is clear that they
are categorical fibrations by definition.

(⇐=) If p is a categorical fibration and a categorical equivalence, factor p as X
j−→ Z

q−→ Y with j a
monomorphism and q a trivial fibration, by the small object argument applied to Cell. In particular
q is a categorical equivalence (25.11), and thus so is j by 2-out-of-3 (27.11), and therefore j � p
since j ∈ CatEq∩Cell and p ∈ CatFib. Thus the “retract trick” (17.18) exhibits p as a retract of q,
whence p is also a trivial fibration. □

We have an enriched lifting property relating Cell and CatFib.

41.3. Proposition. If p : X → Y is a categorical fibration and j : K → L is a monomorphism, then

q = p□j : Fun(L,X)→ Fun(K,X)×Fun(K,Y ) Fun(L, Y )

is a categorical fibration. Furthermore, if either j or p is also a categorical equivalence, then q is a
trivial fibration and hence a categorical equivalence.

Proof. To show that q is a categorical fibration, consider i : A → B a monomorphism which is a
categorical equivalence. We have i� q iff (i□j) � p, so since p is a categorical fibration it suffices to
show that the monomorphism i□j is a categorical equivalence, and by (40.16) it suffices to show
Fun(i□j, C) is a trivial fibration for every quasicategory C. This map is isomorphic to r□j where
r = Fun(i, C). Note that r := Fun(i, C) is an isofibration (39.5) and a categorical equivalence since i
is, and therefore a trivial fibration (40.8). Thus r□j is also a trivial fibration using Cell□Cell ⊆ Cell,
and hence Fun(i□j, C) is a trivial fibration as desired.

If p is also a categorical equivalence, then it is a trivial fibration by (41.2), so q is a trivial fibration
by Cell□Cell ⊆ Cell.

If j is also a categorical equivalence, we want to shaw i� p□j for any monomorphism i. But we
have i� p□j iff (i□j) � p iff j � (p□i). By what we have just proved p□i is a categorical fibration,
and therefore j � p□i by definition. □

42. Path factorization

Recall the path category of a quasicategory D, defined to be the full subcategory

Funiso(∆1, D) ⊆ Fun(∆1, D)

spanned by the objects corresponding to functors ∆1 → D which represent isomorphisms in D. I

will sometimes write D̂ := Funiso(∆1, D) as a shorthand for this. The restriction maps along {0} ⊂
∆1 ⊃ {1} induce functors D

r0←− D̂
r1−→ D. Recall also (36.5) that functors Ĥ : C → Funiso(∆1, D)

correspond exactly to maps H : C×∆1 → D representing a natural isomorphism f0 → f1 of functors

C → D where fi = riH̃i.

42.1. Remark. If D is a Kan complex (i.e., a quasigroupoid), then Funiso(∆1, D) = Fun(∆1, D).
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42.2. Warning. The path category Funiso(∆1, D) ⊆ Fun(∆1, D) is not the same as the core
Fun(∆1, D)core ⊆ Fun(∆1, D), and neither of these are the same as Fun(∆1, Dcore), unless D
is a quasigroupoid: the path category is always a full subcategory, whereas the core is typically not
a full subcategory.

42.3. Lemma. If D is a quasicategory, then the map r = (r0, r1) : Funiso(∆1, D) ⊆ Fun(∆1, D)→
D×D from the path category induced by restriction along ∂∆1 ⊂ ∆1 is an isofibration. Furthermore,
each of the two functors r0 and r1 are trivial fibrations.

Proof. To prove that r is an isofibration, observe that it is the composite of two maps Funiso(∆1, D)→
Fun(∆1, D)→ Fun(∂∆1, D) which are isofibrations: the first by an elementary argument (34.11),
the second since it is a restriction along a monomorphism (39.5).

Since each of the two projections D ×D → D is an isofibration, it follows that both r0 and r1
are also isofibrations. To show that they are trivial fibrations, it suffices by (40.8) to show that
they are categorical equivalences. In fact, the map s : D → Funiso(∆1, D) ⊆ Fun(∆1, D) induced
by restriction along projection ∆1 → ∗ is a categorical inverse to either. To see this, note that
r0s = idD = r1s, while we can easily construct natural isomorphisms sr0 ≈ idFuniso(∆1,D) ≈ sr1
(42.4). □

42.4. Exercise. Complete the proof of the lemma (42.3) by constructing natural isomorphisms
sr0 ≈ id ≈ sr1. (Hint: use suitably chosen maps ∆1 ×∆1 → ∆1 to define natural transformations
sr0 → id→ sr1.)

42.5. The path factorization construction. For a functor f : C → D between quasicategories,

we define a factorization C
j−→ P (f)

p−→ D by means of the commutative diagram

C
j
// P (f)

s0

��

t
//

p

**Funiso(∆1, D)

r0

��

r1
// D

C
f

// D

in which the square is a pullback square. The map j is the unique one so that s0j = idC and
tj = π̃f , where π̃ : D → Funiso(∆1, D) ⊆ Fun(∆1, D) is adjoint to the projection D ×∆1 → D.

42.6. Example. The path factorization of idD is just D
π̃−→ Funiso(∆1, D)

r1−→ D.

42.7. Remark. Note that the objects of P (f) are pairs (c, α) consisting of an object c ∈ C0 and an
isomorphism α : f(c)→ d in D. The map j sends an object c to (c, 1f(c)), while p sends (c, α) to d.

42.8. Exercise. Show that if f : C → D is a functor between ordinary categories, then P (f) is also
an ordinary category.

The properties of this construction are summarized by the following.

42.9. Proposition. In the path factorization of f , the simplicial set P (f) is a quasicategory, the
map j is a categorical equivalence, and p is an isofibration. Furthermore s0 is a trivial fibration.

Proof. From (42.3) we know that both r0 and r1 are trivial fibrations. Therefore the base change s0
of r0 is a trivial fibration, and hence an inner fibration, which implies that P (f) is a quasicategory.

Since s0 is a trivial fibration it is a categorical equivalence (25.11), and thus j is a categorical
equivalence by 2-out-of-3 (27.11).
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To show that p is an isofibration, observe that there is actually a pullback square of the form

P (f)
t //

s=(s0,p)

��

Funiso(∆1, D)

r=(r0,r1)

��

C ×D
f×idD

// D ×D

(To see this, use patching of pullback squares where we regard C ×D as a pullback of C
f−→ D ←

D ×D.) Since r is an isofibration (42.3), its base-change s is also an isofibration, and since the
projection π : C×D → D is an isofibration the composite p = πs is an isofibration as desired. (I have
here used several facts about isofibrations, which are consequences of the fact that isofibrations are
exactly the categorical fibrations between quasicategories, and CatFib forms a weakly cosaturated
class.) □

43. Invariance properties of slices and limits

That isofibrations which are categorical equivalences are trivial fibrations (40.8) has a number
of useful consequnece. For instance, we can reformulate the notion of limit or colimit of a functor
using only the notions of slices and of categorical equivalence.

43.1. Proposition. Let C be a quasicategory. Then a map p̃ : K▷ → C is a colimit diagram iff
the forgetful functor Cp̃/ → Cp/ is a categorical equivalence, where p := p̃|K. Likewise, a map
q̃ : K◁ → C is a limit diagram iff the forgetful functor C/q̃ → C/q is a categorical equivalence, where
q := q̃|K.

Proof. Immediate using the characterization of limits and colimits in terms of trivial fibrations
(33.7), and the fact that the indicated forgetful functors are either left or right fibrations (32.15),
and therefore are isofibrations (34.14). □

43.2. Invariance of slice categories under categorical equivalence. We can now show that a
categorical equivalence between quasicategories induces equivalences of its slice categories.

43.3. Proposition. Let f : C → D be a categorical equivalence of quasicategories. For any map
q : K → C of simplicial sets, the induced maps Cq/ → Dfq/ and C/q → D/fq on slice categories are
also categorical equivalences.

Proof. I’ll prove the slice-under case; the slice-over case is exactly the same. Consider path
factorization (42.9) of f , which gives a commutative diagram

C
j
//

f

!!

P (f)

s0
��

p
// D

C

where j is a categorical equivalence, p is an isofibration, and s0 a trivial fibration. The hypothesis
that f is a categorical equivalence implies that p is a categorical equivalence by 2-out-of-3 (27.11),
and therefore that p is a trivial fibration by (40.8).
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Recall that if f is a trivial fibration, then so is the induced map Cq/ → Dfq/ by Cell�Cell ⊆ Cell
on slices (32.13). Taking slices in the above diagram gives

Cq/
j̃
//

f̃

$$

P (f)jq/

s̃0
��

p̃
// Dfq/

Cq/

in which both p̃ and s̃0 are trivial fibrations and thus categorical equivalences (25.11). Applying the

2-out-of-3 property shows that f̃ is a categorical equivalence as desired.
□

43.4. Invariance of limits and colimits under categorical equivalence. Categorical equiva-
lences always preserve limits and colimits.

43.5. Proposition. Let f : C → D be a categorical equivalence between quasicategories. A map
p̂ : K▷ → C is a colimit cone in C if and only if fp̂ is a colimit cone in D, and a map q̂ : K◁ → C
is a limit cone in C if and only if f q̂ is a colimit cone in D,

Proof. We prove the case of colimits. Consider the commutative diagram

Cp̂/
f ′′
//

π

��

Dfp̂/

π′

��

Cp/
f ′
// Dfp/

where the horizontal maps are induced by f , and the vertical ones by restriction along K ⊂ K▷.
Since f is a categorical equivalence, f ′ and f ′′ are also categorical equivalences by (43.3). Therefore
by 2-out-of-3 for categorical equivalences (27.11) π is a categorical equivalence if and only if π′ is,
and the claim follows from (43.1). □

We can also show that the existence of colimit and limit cones is reflected by categorical W 9 Mar
equivalences.

43.6. Proposition. Let f : C → D be a categorical equivalence between quasicategories. A map
u : K → C admits a colimit cone in C if and only if fu admits a colimit cone in D, and f admits a
limit cone in C if and only if fu admits a colimit cone in D.

Proof. We prove the case of colimits. The forward direction is immediate from (43.5), so we just
prove the reverse direction. Suppose given u : K → C such that w = fu has a colimit cone
ŵ : K▷ → D. Use a path factorization (42.9) to construct a commutative diagram of solid arrows

K // //

u

��

v

!!

K▷

ŵ
��

v̂

||

C
i // P (f)

p
//

s0
��

D

C

with pi = f , so that p and s0 are trivial fibrations and i a categorical equivalence. Since p is a trivial
fibration a lift v̂ exists in its square, which by (43.5) applied to the categorical equivalence p must
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be a colimit cone of v := iu. Therefore again by (43.5) applied to the categorical equivalence s0, we
see that û := s0v̂ must be a colimit cone of s0v = s0iu = u, so u admits a colimit as desired. □

Part 7. The fundamental theorem

44. The fundamental theorem of category theory

Recall that a functor f : C → D between quasicategories is said to be an equivalence there exists
a g : D → C such that gf and fg are naturally isomorphic to the respective identity functors. When
C and D are ordinary categories, there is a well-known criterion for the existence of such a g,
namely: f is an equivalence if and only if f is fully faithful and essentially surjective. Here

• fully faithful means that HomC(x, y) → HomD(f(x), f(y)) is a bijection of sets for every
pair of objects x, y ∈ obC, and
• essentially surjective means that for every object d ∈ obD there exists an object c ∈ obC
such that f(c) is isomorphic to d.

I like to call this fact the Fundamental Theorem of Category Theory. This is non-standard and
frankly pretentious terminology25, though I am unaware of any standard abbreviated name for this
result26. I want to give this fact a fancy name in order to signpost it, as it is quite nonconstructive:
to prove it requires making a choice for each object d in D of an object c of C and an isomorphism
f(c) ≈ d (so it in fact relies on an appropriate form of the axiom of choice).

44.1. Exercise. Prove the “Fundamental Theorem” for ordinary categories as follows: given f : C → D
which is fully faithful and essentially surjective, make a choice of object g(d) ∈ obC and isomorphism
α(d) : f(g(d))→ d for each object of d, and extend this to the data of a categorical inverse of f .

44.2. Example. Fix a field k. Let Mat be the category whose objects are non-negative integers
n ≥ 0, and whose morphims A : n→ m are (m× n)-matrices with entres in k, so that composition
is matrix multiplication. Let Vect be the category of finite dimensional k-vector spaces and linear
maps. Every basic class in linear algebra proves that the evident functor F : Mat→ Vect is fully
faithful and essentially surjective. Therefore F is an equivalence of categories. However, there is no
canonical choice of an inverse functor, whose construction amounts to making an arbitrary choice of
basis for each vector space.

We are going to state and then prove an analogue of this result for functors between quasicategories.
This will first require an analogue of hom-sets, namely the quasigroupoid of maps between two
objects, also called the mapping space.

45. Mapping spaces of a quasicategory

Given a quasicategory C and objects x, y ∈ C0, the mapping space (or mapping quasi- mapping space

groupoid) from x to y is the simplicial set defined by the pullback square mapping quasigroupoid

mapC(x, y) //

��

Fun(∆1, C)

��

{(x, y)} // C × C

That is, mapC(x, y) is the fiber of the restriction map Fun(∆1, C)→ Fun(∂∆1, C) over the point
(x, y) ∈ (C×C)0, where we use the isomorphism Fun(∂∆1, C) ≈ C×C induced by the isomorphism
∂∆1 ≈ ∆0 ⨿∆0.

25E.g., the Fundamental Theoroms of Arithmetic, Algebra, Calculus, etc. But if they can have a Fundamental
Theorem, why can’t we? (It should be mentioned that there is another candidate for a fundamental theorem, namely
the Yoneda lemma.)

26I also don’t know when it was first formulated, or who first stated it.
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If C = N(A) is the nerve of a category, then mapC(x, y) is a discrete simplicial set (2.8)
corresponding to the set HomC(x, y).

45.1. Mapping spaces are Kan complexes. The terminology “space” is justified by the following

45.2. Proposition. When C is a quasicategory, the simplicial sets mapC(x, y) are quasigroupoids
(and hence Kan complexes by (35.2)).

Proof. This is a consequence of (39.3), since the inclusion i : ∂∆1 → ∆1 induces a bijection on
vertices, and so restriction along i is conservative. □

We note a relative generalization, which will sometimes be useful.

45.3. Proposition. If p : C → D is an inner fibration between quasicategories, then the induced
maps p : mapC(x, y)→ mapD(px, py) are Kan fibrations.

Proof. Since ∂∆1 ⊂ ∆1 is a bijection on vertices, the induced pullback-hom map q =

p□(∂∆1⊂∆1) : Fun(∆1, C) → Fun(∂∆1, C) ×Fun(∂∆1,D) Fun(∆
1, D) is an isofibration (39.2). We

have pullback squares

mapC(x, y)
q′

//

��

��

MapD(px, py)��

��

// {(x, y)}
��

��

Fun(∆1, C) q
// Fun(∂∆1, C)×Fun(∂∆1,D) Fun(∆

1, D) // Fun(∂∆1, C)

and so the base change q′ is an isofibration between Kan complexes and hence a Kan fibration. □

45.4. Mapping spaces and homotopy classes. The set of morphisms x→ y in a quasicategory
C is precisely the set of objects of mapC(x, y). Two such are isomorphic as objects in mapC(x, y) if
and only if they are homotopic in C.

45.5. Proposition. Let C be a quasicategory. For any two maps f, g : x→ y in C, we have that
f ≈ g (equivalence under the relation used to define the homotopy category hC) if and only if f and
g are isomorphic as objects of the quasigroupoid mapC(x, y). That is,

HomhC(x, y) ≈ π0mapC(x, y)

for every pair x, y of objects of C.

Proof. Suppose f, g ∈ mapC(x, y)0 are isomorphic, so that in particular there is a morphism f → g
in the quasigroupoid mapC(x, y). This amounts to a map ∆1 ×∆1 → C which can be represented
by a diagram of cells of C of the form:

x
g
// y

x

1x

OO

f
//

h

??a

b
y

1y

OO

This explicitly exhibits a chain f ∼r h ∼ℓ g of homotopies, so f ≈ g as desired.
Conversely, if f ≈ g, we can explicitly construct a map H : f → g in mapC(x, y): in terms of the

above picture, let h = g, let b be an explicit choice of right-homotopy f ∼r g, and let a = g001. □



INTRODUCTION TO QUASICATEGORIES 112

45.6. Extended mapping spaces and composition. Given a finite list x0, . . . , xn ∈ C0 of objects
in a quasicategory, we have an extended mapping space. These are the simplicial sets defined by extended mapping

spacethe pullback squares

mapC(x0, . . . , xn) //

��

Fun(∆n, C)

��

{(x0, . . . , xn)} // C×(n+1)

where the right-hand vertical arrow is induced by restriction along Sk0∆
n → ∆n, using the

isomorphism Sk0∆
n ≈

∐
n+1∆

0, whence Fun(Sk0∆
n, C) ≈ C×(n+1). By (39.3) the extended

mapping spaces are quasigroupoids.
On the other hand, we may consider the fibers of Fun(In, C)→ C×(n+1) defined by restriction

along Sk0∆
n = Sk0 I

n → In, where In ⊂ ∆n is the spine. The fibers of this map are isomorphic to
n-fold products of mapping spaces mapC(xn−1, xn)× · · · ×mapC(x0, x1).

45.7. Lemma. The map

gn : mapC(x0, . . . , xn)→ mapC(xn−1, xn)× · · · ×mapC(x0, x1)

induced by restriction along the spine inclusion In ⊆ ∆n is a trivial fibration. In particular, this
map is a categorical equivalence between quasigroupoids.

Proof. The map gn is a base change of p : Fun(∆n, C) → Fun(In, C). Since In ⊂ ∆n is inner
anodyne (16.14), and C is a quasicategory, the map p is a trivial fibration by enriched lifting using
InnHorn□Cell ⊆ InnHorn (21.8). □

The inclusions I2 ⊂ ∆2 ⊃ ∆{0,2} induce restriction maps

Fun(I2, C)
∼←− Fun(∆2, C)→ Fun(∆{0,2}, C)

in which the first map is a trivial fibration. As noted earlier (22.9) by choosing a categorical inverse
to the first map (e.g., a section, since it is a trivial fibration) we obtain a “composition functor”
Fun(I2, C)→ Fun(∆1, C).

For any triple (x0, x1, x2) of objects of C, the above maps restrict to maps between subcomplexes:

mapC(x1, x2)×mapC(x0, x1)
g2←−
∼

mapC(x0, x1, x2)→ mapC(x0, x2).

As g2 is a trivial fibration (45.7), we can choose a section for it, and so by the same construction as
(22.9) we obtain a “composition” functor

(45.8) comp: mapC(x1, x2)×mapC(x0, x1)→ mapC(x0, x2).

Again, this depends on a choice of categorical inverse to g2. However, any two categorical inverses
to g2 are naturally isomorphic (24.4), and therefore comp is defined up to natural isomorphism.
That is, it is a well-defined map in hKan, the homotopy category of Kan complexes (27.1). These
noncanonical composition maps are “associative up to homotopy”.

45.9. Proposition. The two maps obtained by composing the sides of the square

mapC(x2, x3)×mapC(x1, x2)×mapC(x0, x1)
id× comp

//

comp× id
��

mapC(x2, x3)×mapC(x0, x2)

comp

��

mapC(x1, x3)×mapC(x0, x1) comp
// mapC(x0, x3)

are naturally isomorphic. That is, the diagram commutes in hKan ⊂ hqCat.
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Proof. Here is a diagram of Kan complexes which actually commutes “on the nose”, i.e., not merely
in the homotopy category, but in sSet. I use “⟨x, y, z⟩” as shorthand for “mapC(x, y, z)”, etc.

⟨x2, x3⟩ × ⟨x1, x2⟩ × ⟨x0, x1⟩ ⟨x2, x3⟩ × ⟨x0, x1, x2⟩
∼oo // ⟨x2, x3⟩ × ⟨x0, x2⟩

⟨x1, x2, x3⟩ × ⟨x0, x1⟩
∼
OO

��

⟨x0, x1, x2, x3⟩
∼oo //

∼
OO

��

⟨x0, x2, x3⟩
∼
OO

��

⟨x1, x3⟩ × ⟨x0, x1⟩ ⟨x0, x1, x3⟩
∼oo // ⟨x0, x3⟩

The maps labelled “
∼−→” are trivial fibrations, and so are categorical equivalences. All the maps in

the above diagram are obtained via restriction along inclusions in

∆{2,3} ∪∆{1,2} ∪∆{0,1}
∼ //

∼
��

∆{2,3} ∪∆{0,1,2}

∼
��

∆{2,3} ∪∆{0,2}oo

∼
��

∆{1,2,3} ∪∆{0,1}
∼ // ∆3 ∆{0,2,3}oo

∆{1,3} ∪∆{0,1}

OO

∼ // ∆{0,1,3}

OO

∆{0,3}oo

OO

where the maps labelled “
∼−→” are inner anodyne (being generalized inner horn inclusions (16.12)),

and which therefore give rise to trivial fibrations in the previous diagram by the same argument we
used to define comp. After passing from Kan ⊂ sSet to hKan the categorical equivalences become
isomorphisms, and the result follows. □

45.10. Segal categories. Thus, a quasicategory does not quite give rise in this way to a category
“enriched over Kan complexes”. Although we can define a composition law, it is not uniquely
determined, and is only associative “up to homotopy”.

What we do get is a Segal category. A Segal category is a functor Segal category

M : ∆op → sSet

such that

(1) the simplicial set M([0]) is discrete, i.e., M([0]) = Sk0M([0]),
(2) for each n ≥ 1, the simplicial set M([n]) is a Kan complex, and
(3) for each n ≥ 1 the “Segal map”

M([n])
(⟨n−1,n⟩∗,...,⟨0,1⟩∗)−−−−−−−−−−−−→M([1])×M([0]) · · · ×M([0]) M([1])

is a categorical equivalence.
Given a quasicategory C, we obtain a functor MC : ∆op → sSet by

MC([0]) := Sk0C,

MC([n]) := Fun(∆n, C)×Fun(Sk0 ∆n,C) Fun(Sk0∆
n, Sk0C)

≈
∐

x0,...,xn∈C0

mapC(x0, . . . , xn).

This object encodes all the structure we used above. For instance, the zig-zag

MC([1])×MC([0] MC([1])
(⟨12⟩∗,⟨01⟩∗)←−−−−−−−−MC([2])

⟨02⟩∗−−−→MC([1])

is a coproduct over all triples x0, x1, x2 ∈ C0 of the zig-zag (45.8) used to define “composition”.
You also get a Segal category from a “simplicially enriched” category. For instance, suppose C is

a (small) category which is enriched over the category of Kan complexes, with object set ob C, and
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function objects C(x, x′) ∈ Kan for each x, x′. Then we can define MC : ∆
op → sSet by

MC([0]) := ob C,

MC([n]) :=
∐

x0,...,xn∈ob C
C(xn−1, xn)× · · · × C(x0, x1).

We thus obtain functors
qCat→ SeCat← sCatKan

relating quasicategories, Segal categories, and Kan-complex-enriched categories. Simplicially enriched
categories were proposed as a model for ∞-categories by Dwyer and Kan27, while Segal categories
were proposed as a model for ∞-categories by Hirschowitz and Simpson [HS01]28. These models are
all known to be equivalent to quasicategories in a suitable sense; see [Ber10] for more about these
models and their comparison.

45.11. The enriched homotopy category of a quasicategory. Given a quasicategory C we
can produce a vestigial version of a category enriched over quasigroupoids, called the enriched
homotopy category of C and denoted HC.29 This object will be a category enriched over hKan, enriched homotopy cat-

egorywhere hKan is the full subcategory of hqCat spanned by Kan complexes. The underlying category
of the enriched category HC will just be the homotopy category hC of C.

We now define HC. The objects of HC are just the objects of C. For any two objects x, y ∈ C0,
we have the quasigroupoid

HC(x, y) := mapC(x, y)

which we will regard as an object of the homotopy category hKan of Kan complexes. Composition
HC(x1, x2) × HC(x0, x1) → HC(x0, x2) is the composition map defined above (45.8), which is
well-defined as a morphism in hKan. Composition is associative as shown above (45.9). (Remember
that hqCat, and thus also the full subcategory hKan, has finite products, which coincide with
products of simplicial sets (27.4).)

The underlying ordinary category of HC is just the ordinary homotopy category hC, since

HomhKan(∆
0,mapC(x, y)) ≈ π0mapC(x, y) ≈ HomhC(x, y).

45.12. Warning. A quasicategory C cannot be recovered from its enriched homotopy category HC,
not even up to equivalence. Furthermore, there exist hKan-enriched categories which do not arise
as HC for any quasicategory C. A proof is outside the scope of these notes: counterexamples may
be produced (for instance) from examples of associative H-spaces which are not loop spaces, and
examples of spaces which admit several inequivalent loop space structures.

45.13. Exercise. Let C and D be quasicategories. Show that there is an isomorphism H(C ×D) ≈
HC ×HD of hKan-enriched categories.

46. The fundamental theorem of quasicategory theory

46.1. Fully faithful and essentially surjective functors between quasicategories. Note
that any functor f : C → D of quasicategories induces functors mapC(x, y)→ mapD(f(x), f(y)) for
every pair of objects x, y in C. We say that a functor f : C → D between quasicategories is

• fully faithful if for every pair c, c′ ∈ C0, the resulting map mapC(c, c
′)→ mapD(fc, fc

′) is fully faithful

a categorical equivalence, and
• essentially surjective if for every d ∈ D0 there exists a c ∈ C0 together with an isomorphism essentially surjective

27They called them “homotopy theories” instead of “∞-categories; see [DS95, §11.6].
28In fact, they generalize this to “Segal n-categories”, which were the first effective model for (∞, n)-categories.
29Lurie usually calls this “hC” in [Lur09], though he also uses that notation for the ordinary homotopy category of

C that we have already discussed. I prefer to have two separate notations.
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fc→ d in D; that is, if the induced functor hf : hC → hD of ordinary categories is essentially
surjective.

46.2. Remark. Another way to say this is as follows: f : C → D is fully faithful and essentially F 11 Mar
surjective iff the induced hKan-enriched functor Hf : HC → HD is an equivalence of enriched
categories.

46.3. Proposition. If f : C → D is a categorical equivalence between quasicategories, then f is fully
faithful and essentially surjective.

Proof. To prove essential surjectivity, choose any categorical inverse g to f and natural isomorphism
α : fg → idD. Then for any d ∈ D0 we get an object c := g(d) ∈ C0 and an isomorphism
α(d) : f(c)→ d in D.

To show that f is fully faithful, choose a categorical inverse g of f . Given x, y ∈ C0, consider the
induced diagram of quasigroupoids

mapC(x, y)
f
//

gf

))

mapD(fx, fy)
g
//

fg

55
mapC(gfx, gfy)

f
// mapD(fgfx, fgfy)

By the 2-out-of-6 property for categorical equivalences (27.11), it will suffice to show that the
maps marked gf and fg are categorical equivalences between the respective mapping spaces. Since
gf : C → C and fg : D → D are naturally isomorphic to the identity maps of C and D respectively,
the claim follows from (46.4) which we prove below. □

46.4. Proposition. If f0, f1 : C → D are functors which are naturally isomorphic, then f0 is fully
faithful if and only if f1 is.

To prove this we need to apply the following to the path category.

46.5. Lemma. Any trivial fibration p : C → D between quasicategories is fully faithful.

Proof. For x, y ∈ C0 we have a diagram of pullback squares

mapC(x, y) //

q

��

Fun(∆1, C)

p□(∂∆1⊂∆1)

��

mapD(px, py) //

��

Fun(∂∆1, C)×Fun(∂∆1,D) Fun(∆
1, D) //

��

Fun(∆1, D)

��

{(x, y)} // Fun(∂∆1, C) // Fun(∂∆1, D)

The pullback-hom p□(∂∆1⊂∆1) is a trivial fibration using Cell□Cell ⊆ Cell, so q is a trivial fibration
and thus a categorical equivalence (25.11). □

Proof of (46.4). Consider a natural isomorphism H : C ×∆1 → D between f0 and f1, and write

H̃ : C → D̂ ⊆ Fun(∆1, D) for its adjoint, where D̂ = Funiso(∆1, D). Then lemma (42.3) implies
that in the commutative diagram

Fun({0}, D) = D

C H̃ //

f0 00

f1
..

D̂
r0

33

r1
++

Fun({1}, D) = D
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both r0 and r1 are trivial fibrations. Because r0 and r1 are trivial fibrations, for any x, y ∈ C0 we
get a commutative diagram

mapD(f0(x), f0(y))

mapC(x, y) H̃ //

f0 //

f1
//

map
D̂
(H̃(x), H̃(y))

∼
22

∼
,,

mapD(f1(x), f1(y))

in which the maps indicated by “∼” are categorical equivalences by (46.5). Using the 2-out-of-
3 property of categorical equivalences (27.11), we see that the map marked f0 is a categorical

equivalence if and only if the map marked H̃ is, if and only if the map marked f1 is. Thus we have
shown that f0 : C → D is fully faithful if and only if f1 : C → D is fully faithful. □

We’ve finished proving the lemma we needed for the proof that categorical equivalences are fully
faithful (46.3).

We note a useful fact: to check that a functor is fully faithful, it suffices to check the defining
property on representatives of isomorphism classes of objects.

46.6. Proposition. Let f : C → D be a functor between quasicategories, and let S ⊂ C0 be a subset
of objects which includes a representative of every isomorphism class in C. Then f is fully faithful
if and only if mapC(c, c

′)→ mapD(fc, fc
′) is a categorical equivalence for all c, c′ ∈ S.

Proof. The only-if direction is immediate from the definition of fully faithful. To prove the if
direction, let x, x′ ∈ C0 and choose isomorphisms α : x → c and α′ : x′ → c′ where c, c′ ∈ S. We

may interpret α and α′ as objects of Ĉ = Funiso(∆1, C) ⊆ Fun(∆1, C). We obtain a commutative
diagram

mapC(x, x
′)

f

��

map
Ĉ
(α, α′)

f̂
��

r0oo
r1 // mapC(c, c

′)

f

��

mapD(fx, fx
′) map

D̂
(f̂α, f̂α′)r0

oo
r1
// mapD(fc, fc

′)

where the vertical arrows are induced by f : C → D and f̂ : Ĉ → D̂, where f̂ is the restriction

of Fun(∆1, f) : Fun(∆1, C) → Fun(∆1, D) to the path categories Ĉ = Funiso(∆1, C) and D̂ =
Funiso(∆1, D). The maps marked r0 and r1 are categorical equivalences by (42.3) and (46.5).
Therefore the left-hand vertical arrow is a categorical equivalence using the hypothesis on f and
2-out-of-3 for categorical equivalences (27.11). □

46.7. The fundamental theorem for quasicategories. The converse to (46.3) is also true,
whence: A map f : C → D between quasicategories is a categorical equivalence if and only if it is
fully faithful and essentially surjective.

This is a non-trivial result. It gives a necessary and sufficient condition for f : C → D to admit
a categorical inverse, but it does not spell out how to construct such an inverse. After some
preliminaries, we will prove this as (48.2).

46.8. 2-out-of-6 for fully faithful essentially surjective functors. The following result will be
useful in the proof of the fundamental theorem. Recall the 2-out-of-6 and 2-out-of-3 properties of a
class of morphisms (27.6), and that the class of categorical equivalences has these properties (27.11).

46.9. Proposition. The class of fully faithful and essentially surjective functors between quasicate-
gories satisfies the 2-out-of-6 property, and thus the 2-out-of-3 property.
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Proof. Any identity functor id : C → C is manifestly fully faithful and essentially surjective.
Next note that if a functor f : C → D between quasicategories is fully faithful and essentially sur-

jective, then the induced functor hf : hC → hD is an equivalence of ordinary categories. Conversely,
if hf is an equivalence, then f is essentially surjective.

Suppose C
f−→ D

g−→ E
h−→ F is a sequence of functors between quasicategories such that gf and

hg are fully faithful and essentially surjective. The induced sequence hC → hD → hE → hF of
functors on homotopy categories has the same property, and thus all the functors between homotopy
categories are equivalences. From this we conclude immediately that f, g, h, hgf are essentialy
surjective.

Given objects x, y ∈ C0, we have induced maps

mapC(x, y)
f
//

gf

))

mapD(fx, fy)
g
//

hg

55
mapE(gfx, gfy)

h // mapF (hgfx, hgfy)

The hypothesis that gf and hg are fully faithful implies that the indicated arrows are categorical
equivalences, and hence all arrows are by (27.11). Because f and gf are essentially surjective, the
collections of objects { fx | x ∈ C0 } ⊆ D0 and { gfx | x ∈ C0 } ⊆ E0 include representatives of
every isomorphism class of D and E respectively, and thus (46.6) implies that f, g, h, and therefore
hgf , are fully faithful. □

46.10. Reduction steps. To prove the fundamental theorem of quasicategories for a general map
between quasicategories, we can reduce to the special case of isofibrations.

46.11. Lemma. To prove that every fully faithful and essentially surjective functor of quasicategories
is a categorical equivalence, it suffices to prove it for the special case of isofibrations.

Proof. Let f : C → D be a functor which is fully faithful and essentially surjective. Consider the
path factorization

C
j−→ P (f)

p−→ D

of f , with j a categorical equivalence and p an isofibration (42.9). Recall that the class of categorical
equivalences satisfies 2-out-of-3 (27.11), as does the class of functors which are fully faithful and
essentially surjective (46.9). Since every categorical equivalence (such as j) is fully faithful and
essentially surjective (46.3), the claim follows. □

We will prove the special case of isofibrations by showing that if an isofibration is fully faithful
and essentially surjective, then it is a trivial fibration, i.e., that Cell � p for any isofibration p which
is fully faithful and essentially surjective. First note the following.

46.12. Proposition. An isofibration p is essentially surjective if and only if it is surjective on
vertices, i.e., iff (∂∆0 ⊂ ∆0) � p.

Proof. The ⇐= implication is obvious, while =⇒ is a straightforward exercise using definition of
isofibration. □

Thus, to complete the proof of the fundamental theorem, it suffices to show that if an isofibration
p is fully faithful, then Cell≥1 � p, which will will prove as (48.1).
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47. A fiberwise criterion for trivial fibrations to quasigroupoids

We give a criterion for an isofibration to be a trivial fibration when the target is a quasigroupoid.
This criterion is in terms of its fibers. The fiber of a map p : X → Y over a vertex y ∈ Y0 is defined fiber

to be the pullback of p along {y} → Y . We will write p−1(y) = {y} ×Y X for the fiber of p over y.
Recall that a quasicategory C is categorically equivalent to the terminal category ∆0 if and only

if C → ∆0 is a trivial fibration (40.11). We call such an object a contractible Kan complex. If contractible Kan com-
plexp : X → Y is a trivial fibration, then since TrivFib = Horn� we see immediately that every projection

p−1(y) → ∗ from a fiber is a trivial fibration; i.e., the fibers of a trivial fibration are necessarily
contractible Kan complexes. The “fiberwise criterion” asserts the converse for isofibrations to Kan
complexes.

47.1. Proposition. Let p : C → D be an isofibration in which D is a quasigroupoid. Then p is a
trivial fibration if and only if every fiber of p is a contractible Kan complex.

Proof. We have just observed (=⇒) , so we prove (⇐=) . So suppose p is an isofibration to a
quasigroupoid whose fibers are contractible Kan complexes, and consider a lifting problem

∂∆n a //
��

��

C

p

��

∆n

b
//

<<

D

We will “deform” the lifting problem (a, b) to one of the same type which lives inside a single fiber
of p. As such lifting problems have solutions by the hypothesis that the fibers of p are contractible
Kan complexes, the covering homotopy extension property (39.8) implies that the original lifting
problem has a solution.

Let γ : ∆n×∆1 → ∆n be the unique map which on vertices is given by γ(k, 0) = k and γ(k, 1) = n,
i.e., the unique natural transformation γ : id∆n → ⟨n . . . n⟩ of functors ∆n → ∆n. I claim that we
can construct a lift u in

∂∆n × {0} a //

��

��

C

p

��

∂∆n ×∆1 // //

u

33

∆n ×∆1
γ
// ∆n

b
// D

which represents a natural isomorphism of functors ∂∆n → C. To see this, just note that this lifting
problem is adjoint to one of the form

{0} //

��

��

Fun(∂∆n, C)

Fun(∂∆n,p)

��

∆1 //

99

Fun(∂∆n, D)

where the map along the bottom represents an isomorphisms since D and hence Fun(∂∆n, D) is a
quasigroupoid, and Fun(∂∆n, p) is an isofibration since p is (39.5).

The lift u gives a commutative square

∂∆n ×∆1 u //
��

��

C

p

��

∆n ×∆1

bγ
// D
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which represents a morphism e = (u, bγ) in Fun(∂∆n, C) ×Fun(∂∆n,D) Fun(∆
n, D) with vertex

e0 = (a, b) the original lifting problem, and vertex e1 = (a′, b′) where b′ = bγ|∆n × {1} factors
as ∆n → {b(n)}↣ D. Furthermore e is an isomorphism by (38.2) since its images u and bγ are
isomorphisms. By the covering homotopy extension property (39.8) it suffices to produce a lift for
the lifting problem e1, i.e., in the rectangle

∂∆n a′ //
��

��

p−1(b(n)) // //

��

C

p

��

∆n //

55
::

{b(n)} // // D

which amounts to producing a lift in the left-hand square, which exists because p−1(b(n)) is a
contractible Kan complex. □

We often apply the fiberwise criterion in the following way.

47.2. Corollary. Suppose we have a pullback square of the form∐
α∈I

C ′α //

∐
p′α

��

C

p

��∐
α∈I

D′α g
// D

such that (1) D is a quasigroupoid, (2) p is an isofibration, and (3) the map g is surjective on
vertices. Then p is a trivial fibration if and only if every p′α : C

′
α → D′α is a trivial fibration.

Proof. The fibers of p all appear as fibers of the p′α by (3), so this is immediate from the fiberwise
criterion (47.1), and the fact that coproducts of trivial fibrations are trivial fibrations (25.2). □

47.3. Remark. The proof of (47.1) actually shows something a little stronger: If p : C → D is an
isofibration to a quasigroupoid, then for any fixed n ≥ 0 we have that (∂∆n ⊂ ∆n)� p if and only if
(∂∆n ⊂ ∆n) � (p−1(y)→ {y}) for all y ∈ D0.

The hypothesis that the target is a quasigroupoid is necessary: there is is no “fiberwise criterion”
for an arbitrary isofibration between quasicategories to be a trivial fibration.

47.4. Exercise. Give an example of an isofibration between quasicategories whose fibers are all
categorically equivalent to ∆0, but is not a categorical equivalence, and hence not a trivial fibration.
(Hint: think small.)

47.5. Pullback-hom criterion for fully faithful isofibrations. Using the fiberwise criterion,
we obtain a new criterion for an isofibration to be fully faithful.

47.6. Proposition. Let p : C → D be an isofibration between quasicategories. Then p is fully faithful
if and only if

(p□(∂∆1⊂∆1))core : Fun(∆1, C)core →
(
(C × C)×(D×D) Fun(∆

1, D)
)core

is a trivial fibration.
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Proof. We can form a commutative diagram∐
(c,c′)∈C0×C0

mapC(c, c
′)

qc,c′

��

j′
// Fun(∆1, C)

q

��∐
(c,c′)∈C0×C0

mapD(pc, pc
′)

j
//

��

(C × C)×(D×D) Fun(∆
1, D)

��

// Fun(∆1, D)

��

(Sk0C)× (Sk0C)
i

// C × C
p×p

// D ×D

in which: each square is a pullback and the map, q = p□(∂∆1⊂∆1) is the pullback-hom map which
is an isofibration (39.5), and the horizontal maps i, j, j′ are surjective on vertices. Since mapping
spaces are Kan complexes (45.2), the maps i, j, and j′ factor through cores, and the resulting square∐

(c,c′)∈C0×C0

mapC(c, c
′)

qc,c′

��

// Fun(∆1, C)core

qcore

��∐
(c,c′)∈C0×C0

mapD(pc, pc
′)

j̃

//
(
(C × C)×(D×D) Fun(∆

1, D)
)core

is a pullback square. The map qcore is an isofibration between quasigroupoids (38.12), so the fiberwise
criterion (47.2) applies to show that qcore is a trivial fibration if and only if each qc,c′ : mapC(c, c

′)→
mapD(pc, pc′) is a trivial fibration, and therefore if and only if each qc,c′ is a categorical equivalence by
(40.8). The map qc,c′ is precisely the one induced by the functor p, so the proposition is proved. □

48. Proof of the fundamental theorem

In this section, we will prove the following. M 21 Mar

48.1. Proposition. If p : C → D is an isofibration which is fully faithful, then Cell≥1 � p.

As discussed in (46.10), this proves the following.

48.2. Theorem (Fundamental theorem of quasicategories). A functor f : C → D of quasicategories
is a categorical equivalence if and only if it is fully faithful and essentially surjective.

48.3. The class Cp. Let p : C → D be an isofibration. We define the class

Cp :=
{
i ∈ Cell

∣∣ (p□i)core ∈ TrivFib
}

of monomorphisms such that the restriction of the pullback-hom map p□i to cores is a trivial
fibration. Note that if i ∈ Cp, then in particular (p□i)core is surjective on vertices, whence p□i is also
surjective on vertices and thus i� p. Thus to prove (48.1), it suffices to show Cell≥1 ⊆ Cp.

48.4. The class Cp is weakly saturated. First we need to show that Cp is weakly saturated.

48.5. Lemma. Let i : K → L be a monomorphism of simplicial sets. Then there exists a monomor-
phism i′ such that, for any isofibration q : C → D between quasicategories, we have i� qcore if and
only if i′ � q.
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Proof. Given i we construct i′ as in the following diagram

K //
u //

��

i
��

K ′   
i′

  

��

j
��

L // v
// P //

k
// L′

where we

(1) choose an anodyne map u : K → K ′ to a Kan complex K ′,
(2) we form the pushout P of u along i, and
(3) choose an anodyne map k : P → L′ to a Kan complex L′,

whence i′ := kj is a monomorphism. The choices of u and k can be made using the small object
argument (17.16) applied to the set Horn of all horn inclusions. We need to show i� qcore iff i′ � q
for any isofibration p.

(=⇒) Suppose i� qcore, and consider a lifting problem of type i′ � q. Since K ′ and L′ are Kan
complexes, any lifting problem of type i′ � q factors through cores:

K ′ //

i′
��

Ccore // //

qcore

��

C

q

��

L′ //

<<

Dcore // // D

so it suffices to show i′� qcore. Since j is a cobase change of i we have j � qcore, while k� qcore since
k is anodyne and qcore is a Kan fibration (41.1). Therefore i′ = kj � qcore as desired.

(⇐=) Suppose i′�q, and consider a lifting problem (a : K → Ccore, b : L→ Dcore) of type i�qcore.
We factor this lifting problem through a diagram of the following form

K //
u //

��

i
��

a

&&

K ′��

j
��

K ′
a′ //

��

i′
��

Ccore

��

// // C

q

��

L // v
//

b

99P //
k
// L′

b′′
//

t

66

t′

<<

Dcore // // D

as follows.

(1) Since u is anodyne and Ccore is a Kan complex, we can factor a = a′u for some a′ : K ′ → Ccore.
(2) There is a unique map b′ : P → Dcore such that b′v = b and b′j = a′ since P is a pushout.
(3) Since k is anodyne and Dcore is a Kan complex, we can factor b′ = b′′k for some b′′ : L′ →

Dcore.

By hypothesis a lift t exists. Since L′ is a Kan complex the lift t factors through Ccore ⊆ C, so we have
a map t′ : L′ → Ccore such that t′i′ = a′ and qcoret′ = b′′. Then the composite s := t′kv : L→ Ccore

is the desired solution to the lifting problem (a, b). □

48.6. Lemma. For an isofibration p the class Cp is weakly saturated.

Proof. For each jn : ∂∆
n → ∆n, choose a map j′n as in (48.5) so that jn � qcore if and only if j′n � q

for some isofibration q, and apply in the case of q = p□i, so that jn � (p□i)core if and only if j′n � p□i

if and only if i� p□j′n Then Cp = Cell ∩ �
{
p□j′n

∣∣∣ n ≥ 0
}
, and so is weakly saturated. □
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48.7. The class Cp has precancellation. We will need the following result which relates pullback-
homs and composition of maps. You can think of it as an “enriched” version of the fact that i� p
and j � p imply ji� p.

48.8. Proposition (Transitivity triangle for pullback-homs). Let A
i−→ B

j−→ C and p : X → Y be
maps of simplicial sets. Then there is a factorization

p□(j◦i) = q ◦ p□j

where q is a base-change of p□i.

Proof. I use “[A,X]” as a shorthand for “Fun(A,X)”. Form the commutative diagram

[C,X] p□j //

p□ji

''

[C,p]

''

[j,X]

))

[B,X]×[B,Y ] [C, Y ]

q

��

// [B,X]

p□i

��

[i,X]

��

[A,X]×[A,Y ] [C, Y ] //

��

[A,X]×[A,Y ] [B, Y ] //

��

[A,X]

[A,p]

��

[C, Y ]
[j,Y ]

// [B, Y ]
[i,Y ]

// [A, Y ]

in which all three squares are pullbacks, whence in particular q is a base-change of p□i. The claim
follows. □

48.9. Exercise. Prove the following transitivity-triangles:

(1) (i ◦ j)□f = k ◦ (i□f) where k is a cobase-change of j□f .
(2) (q ◦ p)□i = r ◦ p□i where r is a base-change of q□i.

Next, we show that Cp has the following “precancellation” property.

48.10. Proposition. Let p : C → D be an isofibration between quasicategories. If i : K → K ′ and
j : K ′ → K ′′ are monomorphisms, then i, ji ∈ Cp implies j ∈ Cp.

Proof. By (48.8) we have p□ji = q ◦ p□j where q is a base-change of p□i. Restricting to cores gives a
factorization (p□ji)core = qcore ◦ (p□i)core. Furthermore qcore is a base-change of (p□i)core as (38.2)
applies since p□i is an inner fibration between quasicategories (21.8).

We have that (p□ji)core, (p□j)core, (p□i)core, and hence qcore are isofibrations (38.12). Since
ji, i ∈ Cp, we have that (p□ji)core, (p□i)core and hence qcore are trivial fibrations, and therefore are
categorical equivalences, whence p□j is also a weak equivalence by 2-out-of-3 (27.11), and therefore
p□j is a trivial fibration since it is an isofibration between quasicategories (40.8). □

48.11. Exercise. Show that the class of fully faithful functors of quasicategories has “postcancellation”,
in the sense that: if f, g are composable functors such that g and gf are fully faithful, then f is fully
faithful. (This fact is related to the reason that “precancellation” appears in our proof of (48.1).)

48.12. The end of the proof. We can now prove (48.1), using the following lemma to show that
if p is a fully faithful isofibration, then Cp contains Cell≥1, whence Cell≥1 � p as desired. We write
jn : ∂∆

n → ∆n for the nth cell inclusion.

48.13. Lemma. Let C be a weakly saturated class of monomorphism which has precancellation with
respect to the class of monomorphisms, and which contains all inner horn inclusions. If C also
contains some cell inclusion jn : ∂∆

n → ∆n, then Cell≥n ⊆ C.
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Proof. We show that jm ∈ C for m > n by induction on n. For any m ≥ 1 we have a commutative
diagram

∂∆m−1 //
��

jm−1

��

Λm
1

jmi

""

��

i
��

∆m−1
⟨023...m⟩

// ∂∆m //
jm
// ∆m

in which the left-hand square is a pushout. By induction we have that jm−1 ∈ C, whence i ∈ C since
it is weakly saturated. We have that jmi ∈ C since it is an inner horn inclusion. Therefore jm ∈ C
as desired by precancellation, since i and jm are monomorphisms. □

Proof of (48.1). Let p be a fully faithful isofibration. To show Cell≥1 � p it suffices to show
Cell≥1 ⊆ Cp. We have (∂∆1 ⊂ ∆1) ∈ Cp by (47.6), and we know that Cp is weakly saturated
(48.5) and has precancellation with respect to monomorphisms (48.10). Finally, note that Cp
has inner horn inclusions since p is an inner fibration, so p□i ∈ TrivFib for i ∈ InnHorn since
InnHorn□Cell ⊆ InnHorn, and therefore (p□i)core ∈ TrivFib (48.14). Thus we can apply the lemma
(48.13). □

48.14. Exercise. Let p : C → D be a trivial fibration between quasicategories. Show that
pcore : Ccore → Dcore is also a trivial fibration.

Part 8. Model categories

49. The Joyal model structure on simplicial sets

49.1. Model categories. A model category (in the sense of Quillen) is a categoryM with three model category

classes of maps: W, Cof, Fib, which I will call weak equivalences, cofibrations, and fibrations weak equivalences

cofibrations

fibrations
respectively, satisfying the following axioms.

• M has all small limits and colimits.
• W satisfies the 2-out-of-3 property.
• (Cof ∩W,Fib) and (Cof,Fib ∩W) are weak factorization systems (17.20).

An object X is cofibrant if the map from the initial object is a cofibration, and fibrant if the map cofibrant

fibrantto the terminal object is a fibration. A map in Cof ∩W is called a trivial cofibration, and a map
trivial cofibration

in Fib ∩W is called a trivial fibration.
trivial fibration

49.2. Warning. Do not confuse the general notion of “weak equivalence” in an arbitrary model
category with the specific notion of “weak homotopy equivalence of simplicial sets” defined in (52).

49.3. Remark. The third axiom implies that Cof, Cof ∩W, Fib, and Fib ∩W are closed under
retracts.

49.4. Exercise. Show that in a model category (as defined above), the class of weak equivalences is
closed under retracts. Hint: if f is a retract of a weak equivalence g, construct a factorization of f
which is itself a retract of a factorization of g30.

30In many formulations of model categories, closure of weak equivalences under retracts is taken as one of the
axioms. The formulation we use is described in Riehl, “A concise definition of a model category” [Rie09], which gives
a solution to this exercise.

The formulation we are using is equivalent to ones used most often today, but it’s worthwhile to note that there
is some variation: for instance, some may weaken the definition by merely requiring existence of finite limits and
colimits (as in Quillen’s original definition in [Qui67] where it is called a “closed model category”), or strengthen it by
requiring the existence of functorial factorization in the weak factorizations (as in Hovey’s book [Hov99].)
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49.5. Exercise (Slice model categories). LetM be a model category, and let X be an object ofM.
Show that the slice categoriesMX/ andM/X admit model category structures, in which the weak
equivalences, cofibrations, and fibrations are precisely the maps whose images underM/X →M or
MX/ →M are weak equivalences, cofibrations, and fibrations inM.

49.6. Exercise (Goodwillie). Classify all model category structures on the category of sets. (There
are exactly nine. Hint: use (17.22).)

49.7. Categorical fibrations and the small object argument. As we have seen, the class
CatEq ∩ Cell of monomorphisms which are categorical equivalences is weakly saturated (40.17),
with right complement CatFib, the class of categorical fibrations (41). In fact, the pair (CatEq ∩
Cell,CatFib) is a weak factorization system, as a consequence of the small object argument (17.16)
and the following.

49.8. Proposition. There exists a set S of maps of simplicial sets such that S = Cell ∩ CatEq,
whence S� = CatFib.

Unfortunately, it’s apparently not known how to write down an explicit set of maps S so that
S� = CatFib. What is known is that such a set exists: for instance, one can take a set of
representatives (up-to-isomorphism) of every morphism in Cell ∩ CatEq in which source and target
have size bounded by a large but suitably chosen cardinal. We give a proof of this fact in the
appendix (80).

49.9. The Joyal model structure.

49.10. Theorem (Joyal). The category of simplicial sets admits a model structure, in which

• W = CatEq, the class of categorical equivalences,
• Cof = Cell, the class of monomorphims,
• Fib = CatFib, the class of categorical fibrations.

Furthermore, the fibrant objects are precisely the quasicategories, and the fibrations with target a
fibrant object are precisely the isofibrations.

Proof. Categorical equivalences satisfy 2-out-of-3 by (27.11). We have that

• Cell = monomorphisms by (20.5),
• Fib ∩W = CatFib ∩ CatEq = TFib = Cell� by (41.2),
• Cof ∩W = Cell ∩ CatEq = S for some set S (49.8),
• Fib = CatFib = (Cof ∩W)� = S� by definition,

so both (Cof ∩W,Fib) and (Cof,Fib ∩W) are weak factorization systems via the small object
argument (17.16). Thus, we get a model category.

We have shown (41.1) that the categorical fibrations p : C → D with D a quasicategory are
precisely the isofibrations. Applied when D = ∗, this implies that quasicategories are exactly the
fibrant objects, and thus that fibrations with fibrant target are precisely the isofibrations. □

49.11. Remark. It is a fact that a model category structure is uniquely determined by its cofibrations
and fibrant objects [Joy08a, Prop. E.1.10]. Thus, the Joyal model structure is the unique model
structure on simplicial sets with Cof = monomorphisms and with fibrant objects the quasicategories.

49.12. Cartesian model categories. Recall that the category of simplicial sets is cartesian W 23 Mar
closed. A cartesian model category is a model category which is cartesian closed (and thus cartesian model cate-

goryadmits internal hom-objects, which I will write “Fun(A,X)” as in simplicial sets), such that the
terminal object is cofibrant, and with the following properties. Suppose i : A→ B and j : K → L
are cofibrations and p : X → Y is a fibration.



INTRODUCTION TO QUASICATEGORIES 125

•
i□j : (A× L) ∪A×K (B ×K)→ B × L

is a cofibration, and is in addition a weak equivalence if either i or j is also a weak equivalence,
and
•

p□j : Fun(L,X)→ Fun(K,X)×Fun(K,Y ) Fun(L, Y )

is a fibration, and is in addition a weak equivalence if either j or p is also a weak equivalence.

In fact, we only need to specify one of the above two properties, as they imply each other.

49.13. Proposition. The Joyal model structure is cartesian.

Proof. This is just (41.3). □

50. Model categories and homotopy colimits

We are going to exploit these model category structures now. The main purpose of model categories
is to give tools for showing that a given construction preserves certain kinds of equivalence.

50.1. Creating new model categories. Given a model categoryM, many other categories related
to it can also be equipped with model category structures, such as functor categories Fun(C,M)
where C is a small category. We won’t consider general formulations of this here, but rather will set
up some special cases.

As an example, we consider the case of C = [1] = {0 01−→ 1}.

50.2. Proposition. There exists a model structure on N := Fun([1],M) in which a map α : X → X ′

is

• a weak equivalence if α(i) : X(i)→ X ′(i) is a weak equivalence inM for i = 0, 1
• a cofibration if both α(0) and the map (α(1), X(01)) : X(1) ∪X(0) X

′(0)→ X ′(1) are cofibra-
tions inM, and
• a fibration if α(i) is a fibration inM for i = 0, 1.

Proof. It is clear that N has small limits and colimits, and that weak equivalences in it have the
2-out-of-3 property. It remains to show that (Cof∩W,Fib) and (Cof,Fib∩W ) are weak factorization
systems, where W , Cof, Fib are the of maps in N defined in the statement of the proposition.

We start with the following observation about lifting in N = Fun([1],M): given maps j : A→ B
and p : X → Y in N , we can solve a lifting problem (u, v) of type j � p in N by solving a sequence
of two lifting problems inM, namely

A(0)
u(0)
//

j(0)

��

X(0)

p(0)

��

B(0)
v(0)
//

s(0)

;;

Y (0)

and

A(1) ∪A(0) B(0)
(u(1), X(01)◦s(0))

//

(j(1), B(01))

��

X(1)

p(1)

��

B(1)
v(1)

//

s(1)

55

Y (1)

where the second problem depends on the solution s(0) to the first problem. Then the maps s(0)
and s(1) fit together to give a map s : B → X in N which solve the original lifting problem.

Given this, it is not hard to prove that Cof ∩W � Fib and Cof � Fib ∩W , using the definitions
and the fact thatM is a model category. The trickiest point is to observe that if j : A→ B is both
a cofibration and a weak equivalence in N , then (j(1), B(01)) is a trivial cofibration inM: this
uses 2-out-of-3 for weak equivalences inM and the fact that A(1) → A(1) ∪A(0) B(0) must be a
trivial cofibration inM, being a cobase-change of j(0).
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Next, observe that to describe a factorization of a map f : X → Y in N into f = pj with
j : X → U and p : U → Y , it suffices to describe a sequence of two factorizations in M, namely
f(0) = p(0) ◦ j(0) and h = p(1) ◦ g, as in

X(0)
j(0)
// U(0)

p(0)
// Y (0) and

X(0)
j(0)

//

X(01)

��

U(0)
p(0)

//

η′

��

Y (0)

Y (01)

��

X(1) η
// X(1) ∪X(0) U(0)

g
//

h

33U(1)
p(1)
// Y (1)

where h = (f(1), Y (01) ◦ p(0)), so that j(1) = g ◦ η and U(01) = g ◦ η′.
To factor f = pj inN with j ∈ Cof∩W and p ∈ Fib, it suffices to successively choose factorizations

of f(0) and h of this type. Likewise, to factor f = pj in N with j ∈ Cof and p ∈ Fib∩W , it suffices
to successively choose factorizations of f(0) and h of this type.

It remains to show that Cof ∩W =
�
Fib, Fib = Cof ∩W�, Cof =

�
Fib∩W , and Cof� = Fib∩W .

This is an immediate consequence of the “retract trick” (17.17), together with the easily checked fact
that Cof, Cof ∩W , Fib, and Fib ∩W are closed under retracts, which can be proved directly using
the definition and the fact that the analogous classes inM are closed under retracts (49.3). □

The opposite of a model category is also a model category, by switching the roles of fibrations
and cofibrations. Therefore, there is another model structure on Fun([1],M) = (Fun([1],Mop))op.

50.3. Ken Brown lemma. The “Ken Brown lemma” gives an explicit criterion for a functor to
preserve weak equivalences between large classes of objects.

50.4. Proposition (Ken Brown lemma). Let F :M→N be a functor between model categories.

(1) If F takes trivial cofibrations to weak equivalences, then F takes weak equivalences between
cofibrant objects to weak equivalences.

(2) If F takes trivial fibrations to weak equivalences, then F takes weak equivalences between
fibrant objects to weak equivalences.

Proof. I prove (1); the proof of (2) is formally dual.
Let f : X → Y be a weak equivalence between cofibrant objects inM. Form the commutative

diagram

∅ //

��

Y

��

idY

��
b

##
X //

a

55

f

99X ⨿ Y i // C p // Y

where the square is a pushout, and we have chosen a factorization of (f, idY ) : X ⨿ Y → Y as pi,
a cofibration i followed by a weak equivalence p (e.g., a trivial fibration). Because X and Y are
cofibrant, the maps X → X ⨿ Y ← Y are cofibrations. Using this and the 2-out-of-3 property for
weak equivalences, we see that a and b are trivial cofibrations. Applying F gives

F (Y )

id

##

F (b)

��

F (X)
F (a)

// F (C)
F (p)

// F (Y )

in which F (b) and F (a) are weak equivalences by hypothesis, whence F (p) is a weak equivalence by
2-out-of-3, and therefore F (f) = F (p)F (a) is a weak equivalence, as desired. □
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50.5. Quillen pairs. Given an adjoint pair of functors F :M⇆ N :G between model categories,
we see from the properties of weak factorization systems that

• F preserves cofibrations if and only if G preserves trivial fibrations, and
• F preserves trivial cofibrations if and only if G preserves fibrations.

If both of these are true, we say that (F,G) is a Quillen pair. Quillen pair

Note that if (F,G) is a Quillen pair, then the Ken Brown lemma (50.4)(1) applies to F , while
(50.4)(2) applies to G.

50.6. Good colimits. We can apply the above to certain examples of colimit functors, which we
will refer to generically as “good colimits”. There are three types of these: arbitrary coproducts of
cofibrant objects, countable sequential colimits of cofibrant objects along cofibrations, and pushouts
of cofibrant objects along a cofibration. We will show that “good colimits are weak equivalence
invariant”.

50.7. Exercise. Let S be a small discrete category (i.e., all maps are identities). Show that ifM is a
model category, then Fun(S,M) is a model category in which α : X → X ′ is

• a weak equivalence, cofibration, or fibration iff each αs : Xs → X ′s is one inM.

Then show that colim: Fun(S,M) ⇆M : const is a Quillen pair, and use this to prove the next
proposition.

50.8. Proposition (Good coproducts). Given a collection fs : Xs → X ′s of weak equivalences between
cofibrant objects inM, the induced map ⨿fs :

∐
Xs →

∐
X ′s is a weak equivalence.

Proof. Apply the Ken Brown lemma (50.4) to the coproduct functor Fun(S,M) → M, using the
model structure of (50.7). □

50.9. Exercise. Let ω be the category

0→ 1→ 2→ · · ·
with objects indexed by natural numbers. Show that ifM is a model category, then Fun(ω,M) is a
model category in which α : X → X ′ is

• a weak equivalence if each α(i) is a weak equivalence inM,
• a cofibration if (i) α(0) is a cofibration in M, and X ′(i) ∪X(i) X(i + 1) → X ′(i + 1) is a
cofibration inMfor all i ≥ 0, and
• a fibration if each α(i) is a fibration inM.

Then show that colim: Fun(ω,M) ⇆M : const is a Quillen pair, and use this to prove the next
proposition.

50.10. Proposition (Good sequential colimits). Give a natural transformation α : X → X ′ of
functors ω →M such that all maps α(i) : X(i)→ X ′(i) are weak equivalences, all objects X(i) and
X(i′) are cofibrant, and the maps X(i) → X(i + 1) and X ′(i) → X ′(i + 1) are cofibrations, the
induced map colimωX → colimωX

′ is a weak equivalence.

Proof. Apply the Ken Brown lemma (50.4) to the colmit functor Fun(ω,M)→M, using the model
structure of (50.9). □

50.11. Exercise. Recall that Λ2
0 is a category:

1
01←− 0

12−→ 2.

Show that ifM is a model category, then Fun(Λ2
0,M) is a model category in which α : X → X ′ is

• a weak equivalence if α(i) : X(i)→ X ′(i) is a weak equivalence inM for i = 0, 1, 2 (i.e., an
objectwise weak equivalence), objectwise weak equiv-

alence
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• a cofibration if α(0), α(1), and the evident map X(2) ∪X(0) X
′(0)→ X ′(2) are cofibrations

inM, and
• a fibration if α(1), α(2), and the evident map X(0)→ X ′(0)×X′(1) X(1) are fibrations in
M.

Then show that colim: Fun(Λ2
0,M) ⇆M : const is a Quillen pair, and use this to prove the next

proposition.

50.12. Proposition (Good pushouts). Given a natural transformation α : X → X ′ of functors
Λ2
0 →M, i.e., a diagram

X(1)

∼
��

X(0)oo

∼
��

X(02)
// X(2)

∼
��

X ′(1) X ′(0)oo
X′(02)

// X ′(2)

in which the vertical maps are weak equivalences, all objects X(i) and X ′(i) are cofibrant, and
the maps X(02) and X ′(02) are cofibrations, the induced map colimΛ2

0
X → colimΛ2

0
X ′ is a weak

equivalence.

Proof. Apply the Ken Brown lemma (50.4) to the colimit functor Fun(Λ2
0,M)→M, using the model

structure of (50.11). □

In the Joyal model structure on sSet, all objects are automatically cofibrant, which makes the
above propositions especially handy.

We will call any colimit diagram in a model category, satisfying the hypotheses of one of (50.8),
(50.12), (50.10) a good colimit. Thus, we see that good colimits are weak equivalence invariant. good colimit

These “good colimits” are examples of what are called homotopy colimits.
Since the opposite of a model category is also a model category, all of the results of this section

admit dual formulations, leading to the observation that good limits are homotopy invariant. good limits

50.13. Exercise. State and prove the dual versions of all the results in this section.

50.14. Exercise. Recall the relative function complex (25.18), which for objects p : S → K and
q : S → C in sSetS/ is the simplicial set

FunS/(K,C) = Fun(K,C)×Fun(S,C) {q}.
Show that if f : K → L is a categorical equivalence, C is a quasicategory, and both p and fp
are monomorphisms, then the induced map f∗ : FunS/(L,C)→ FunS/(K,C) on relative function
complexes is a categorical equivalence. (Hint: Both source and target of f∗ can be described via
good pullbacks with respect to the Joyal model structure.)

51. Homotopy pullbacks

This section is an attempt to state and prove some basic things about homotopy pullbacks F 25 Mar
(and thus homotopy pushouts). In particular, I want things like pasting. I don’t actually know a
reference about this that I really like.

LetM be a model category, and consider S := Fun(∆1 ×∆1,M), the category of commutative
squares inM. This contains a full subcategory Spb ⊆ S spanned by the squares which are pullback
squares. Given any commutative square X : ∆1 ×∆1 →M there exists a map η : X → Xpb, where
Xpb is a pullback square and η(i, j) : X(i, j)→ Xpb(i, j) is the identity map when (i, j) ̸= (0, 0).

51.1. Exercise. Show Fun(∆1 ×∆1,M) is a model category in which α : X → X ′ is

• a weak equivalence if α(i, j) : X(i, j)→ X ′(i, j) is a weak equivalence inM for all i, j ∈ {0, 1},
• a cofibration if all maps α(i, j) : X(i, j)→ X ′(i, j) are cofibrations inM, and
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• a fibration if the evident maps

X(1, 1)→ X ′(1, 1), X(1, 0)→ X ′(1, 0)×X′(1,1) X(1, 1), X(0, 1)→ X ′(0, 1)×X′(1,1) X(1, 1),

and
X(0, 0)→ X ′(0, 0)×(X′(1,0)×X′(1,1)X

′(0,1)) (X(1, 0)×X(1,1) X(0, 1))

are fibrations inM

51.2. Exercise (Fibrant commutative squares). Show that in the model structure of the previous
exercise (51.1), a commutative square X is fibrant if and only if

(1) the object X(1, 1) is fibrant inM, and
(2) the maps X(1, 0)→ X(1, 1) and X(0, 1)→ X(1, 1) are fibrations inM, and
(3) the map X(0, 0)→ X(1, 0)×X(1,1) X(0, 1) is a fibration inM.

In particular, if X is a fibrant commutative square which is a pullback, then it is a good pullback in
the sense of (??) above.

In the following, we to a given model structure on M, and to the above model structure on
S = Fun(∆1 ×∆1,M) based on it.

Say that a commutative square X is a homotopy pullback if there exists a weak equivalence homotopy pullback

X
∼−→ Y ≈ Y pb to a fibrant pullback square.

51.3. Proposition. Let X be a commutative square. The following are equivalent.

(1) There exists a weak equivalence X → Y to a fibrant square such that ηY : Y → Y pb is a
weak equivalence.

(2) For every weak equivalence X → Y to a fibrant square, the map ηZ : Y → Y pb is a weak
equivalence.

(3) There exists a weak equivalence X → Y ≈ Y pb to a fibrant pullback square (i.e., X is a
homotopy pullback square).

Proof. (1) (=⇒) (2). Suppose given a weak equivalence f : X → Y to a fibrant square with
ηY : Y → Y pb a weak equivalence, and let g : X → Z be any weak equivalence to a fibrant square.
Construct a commutative diagram as follows.

Y
ηY
// Y pb

X

f
??

g
��

h // W

s

��

p

OO

ηW // W pb

spb
��

ppb

OO

Z ηZ
// Zpb

First factor g = ph where h is a cofibration and p is a trivial fibration in in S. Then using the fact
that Y is fibrant, use the lifiting properties of S to construct s such that sh = g. Thus each of
Y,Z,W is fibrant, and by 2-out-of-3 each of the maps p and s is a weak equivalence. Therefore each
of Y pb, Zpb,W pb is a fibrant pullback square and hence a good pullback square, and both maps ppb

and spb give weak equivalences when evaluated at (1, 0), (0, 1), and (1, 1). Therefore ppb and spb

must be weak equivalences, and using 2-out-of-3 we see that since ηY is a weak equivalence, so is ηZ .
(2) (=⇒) (3). Choose any weak equivalence X → Z to a fibrant square, which exists because S is

a model category. By (2), ηZ is a weak equivalence, and hence so is the composite map X → Zpb.
This is the desired weak equivalence to a fibrant pullback square.

(3) (=⇒) (1). Immediate. □
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51.4. Example. Any commutative square in which a pair of opposite sides are weak equivalences is a
homotopy pullback. For instance, suppose X is a square, with weak equivalences X(0, 0)→ X(1, 0)
and X(0, 1)→ X(1, 1). Using the factorizations in the model category S of commutative squares,
construct a commutative diagram

X(0, 0)
∼ //

��

X(1, 0)
∼ //

��

Y (1, 0)

��

X(0, 1) ∼
// X(1, 1) ∼

// Y (1, 1)

so that X(1, 1)→ Y (1, 1) is a weak equivalence to a fibrant object, and X(1, 0)→ Y (1, 0)→ Y (1, 1)
is a factorization of X(1, 0)→ Y (1, 1) into a weak equivalence followed by a fibration. Let Y be the
evident commutative square such that Y (0, k)→ Y (1, k) are identity maps. Then the evident map
X → Y is a weak equivalence to a fibrant pullback square.

51.5. Example. Any good pullback square is a homotopy pullback. For instance, suppose X is a good
pullback square, so that all objects X(i, j) are fibrant and with X(1, 0) → X(1, 1) is a fibration.
Construct a commutative diagram

X(0, 0) //

��

Y (0, 0) //

��

X(1, 0)

��

X(0, 1) ∼
// Y (0, 1) // X(1, 1)

where the bottom row is a factorization of X(0, 1)→ X(1, 1) into a weak equivalence followed by a
fibration, and the right-hand square is a pullback. Write Y for the right-hand square in the diagram.
Thus both X and Y are good pullbacks, and the evident map X → Y ≈ Y pb is a weak equivalence,
so X is a homotopy pullback as desired.

51.6. Remark. Observe that when X is a fibrant square, (51.3) implies that it is a homotopy pullback
if and only if ηX is a weak equivalence of squares, i.e., if and only if X(0, 0)→ X(1, 0)×X(1,1)X(0, 1)
is a weak equivalence inM.

51.7. Remark. Note that the notion of homotopy pullback square is invariant with respect to the
evident involution of ∆1 × ∆1, (i.e., switching X(i, j) with X(j, i)) though the notion of good
pullback is not invariant.

The property of being a homotopy pullback square is invariant with respect to weak equivalences.

51.8. Proposition. If f : X → Y is a weak equivalence of commutative squares, then X is a
homotopy pullback if and only if Y is a homotopy pullback.

Proof. Choose any weak equivalence g : Y → Z to a fibrant commutative square. Then (51.3)
applied to gf and to g implies that ηZ is a weak equivalence if and only if X is a homotopy pullback,
and if and only if Y is a homotopy pullback. □

51.9. Proposition. Let f : X → Y be a map between homotopy pullback squares. Then f is
a weak equivalence if and only if f(i, j) : X(i, j) → Y (i, j) is a weak equivalence for each of
(i, j) = (0, 1), (1, 0), (1, 1).
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Proof. The only if direction is clear, so suppose f is a map which is a weak equivalence at all points
except perhaps (0, 0). Construct a commutative diagram in S of the following form

X
∼ //

f

��

X ′
ηX′
//

f ′

��

X ′
pb

f ′pb
��

Y ∼
// Y ′ ηY ′

// Y ′
pb

where X ′ and Y ′ are fibrant squares and the indicated maps are weak equivalences of squares.
Since X and Y are homotopy pullbacks, so are X ′ and Y ′ (51.8), and hence ηX′ and ηY ′ are weak

equivalences (51.3). Since X ′pb and Y ′pb are fibrant pullback squares they are good pullbacks, and

since good pullbacks are weak equivalence invariant we have that f ′pb(0, 0) is a weak equivalence,

so f ′pb is a weak equivalence of squares. The claim follows by 2-out-of-3. □

51.10. Proposition (Patching homotopy pullbacks). Suppose given a commutative diagram X : ∆2× M 28 Mar
∆1 →M:

X(0, 0) //

��

X(1, 0) //

��

X(2, 0)

��

X(0, 1) // X(1, 1) // X(2, 1)

in which the right-hand square is a homotopy pullback. Then the left-hand square is a homotopy
pullback if and only if the large rectangle is a homotopy pullback.

Proof. Construct a natural transformation α : X → Y of functors ∆2 ×∆1 →M as follows:

X(0, 1) //

∼α(0,1)

��

X(1, 1) //

∼α(1,1)

��

X(2, 1)

∼α(2,1)

��

X(2, 0)

∼α(2,0)

��

oo

Y (0, 1) // Y (1, 1) // Y (2, 1) Y (2, 0)oo

(i) choose a weak equivalence α(2, 1) to a fibrant object, (ii) factor X(1, 1)→ Y (2, 1) into a weak
equivalence α(1, 1) followed by a fibration, (iii) factor X(0, 1)→ Y (1, 1) into a weak equivalence
α(0, 1) followed by a fibration, (iv) factor X(2, 0)→ Y (2, 1) into a weak equivalence α(2, 0) followed
by a fibration, and (v) define Y (0, 0) and Y (1, 0) to be evident pullbacks, with α(0, 0) and α(1, 0)
the unique maps making the diagram commutute.

We see that each of the three squares Y |∆{i,j}×∆1 is a fibrant pullback square. Since X|∆{1,2}×∆1

is a homotopy pullback we have that Y |∆{1,2}×∆1 is also a homotopy pullback by (51.9). Again
using (51.9), we see that α(0, 0) is a weak equivalence if and only if X|∆{0,1}×∆1 is a homotopy
pullback, and also if and only if X|∆{0,2}×∆1 is a homotopy pullback. □

Part 9. Quasigroupoids and weak homotopy equivalence

52. Weak homotopy equivalence

Say that a map f : X → Y of simplicial sets is a weak homotopy equivalence if and only for weak homotopy equiva-
lenceevery ∞-groupoid (i.e., Kan complex) C the induced functor Fun(f, C) : Fun(Y,C)→ Fun(X,C) is

a categorical equivalence. It is immediate that every categorical equivalence is a weak homotopy
equivalence, but the converse is not so.

52.1. Exercise. Show that either inclusion ∆0 → ∆1 is a weak homotopy equivalence but not a
categorical equivalence.
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52.2. Remark. Amore logical name for weak homotopy equivalence might be “groupoidal equivalence”,
by analogy with categorical equivalence.

52.3. Exercise. Show that the class of weak homotopy equivalences satisfies 2-out-of-6, and hence
2-out-of-3.

52.4. Proposition. Let i : X → Y be a monomorphism of simplicial sets. Then the following are
equivalent.

(1) The map i is a weak homotopy equivalence.
(2) For every isofibration p : C → D between quasigroupoids, the pullback-hom map p□i is a

trivial fibration.
(3) For every isofibration p : C → D between quasigroupoids we have i� p.

Then i is a weak homotopy equivalence if and only if i�p for every isofibration p : C → D between
quasigroupoids.

Proof. (1 =⇒ 2): Consider the commutative diagram

Fun(Y,C)
p□i

//

i∗ ..

p∗

,,
Fun(X,C)×Fun(X,D) Fun(Y,D) //

q

��

Fun(Y,D)

i∗

��

Fun(X,C) // Fun(X,D)

in which the square is a pullback. All the maps in this diagram are isofibrations by (39.5) (in fact,
they are Kan fibrations), while the maps marked i∗ are categorical equivalences by hypothesis. In
particular, the maps marked i∗ are trivial fibrations by (40.8), and thus so is the map q obtained by
basechange. Thus p□i is a categorical equivalence by 2-out-of-3 and hence is a trivial fibration by
(40.8).

(2 =⇒ 3): The trivial fibration p□i is surjective on vertices, giving i� p.

(3 =⇒ 2): If p : C → D is an isofibration between quasigroupoids, then so is p□(∂∆n⊂∆n) for any

n ≥ 0, using (40.8). Thus (2) implies that i� p□(∂∆n⊂∆n), which is equivalent to (∂∆n ⊂ ∆n)� p□i,
whence p□i is a trivial fibration as desired.

(2 =⇒ 1): The hypothesis implies in particular that Fun(Y,C)→ Fun(X,C) is a trivial fibration
for every quasigroupoid C, and hence a categorical equivalence (25.11). □

52.5. Corollary. Every anodyne map (i.e., element of Horn) is a weak homotopy equivalence.

Proof. Anodyne maps i are monomorphisms such that i�p for every Kan fibration. Thus statement
(3) of (52.4) applies since isofibrations between quasigroupoids are Kan fibrations (38.12). □

53. The Kan-Quillen model structure on simplicial sets

Say that map p : X → Y is a groupoidal fibration if j � p for all j which are monomorphisms groupoidal fibration

and weak equivalences. I write GpdFib for the class of groupoidal fibrations. As with the class of
categorical fibrations, there a set of maps T such that GpdFib = T�; see (80).

53.1. The Kan-Quillen model structure.

53.2. Theorem. The category of simplicial sets admits a model structure, in which

• W = weak homotopy equivalences (WHEq),
• Cof = monomorphims (Cell),
• Fib = groupoidal fibrations (GpdFib).

Furthermore, the fibrant objects are precisely the Kan complexes, and the fibrations with target a
fibrant object are precisely the Kan fibrations.
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Proof. Weak equivalences satisfy 2-out-of-3 by (52.3). We have that

• Cof = Cell by definition,
• Fib ∩W = GpdFib ∩WHEq = TFib = Cell� by (41.2),
• Cof ∩W = Cell ∩WHEq = T for some set T , as noted above.
• Fib = GpdFib = (Cof ∩W)� = T� by definition,

so both (Cof ∩W,Fib) and (Cof,Fib ∩W) are weak factorization systems via the small object
argument (17.16). Thus, we get a model category.

We have seen that Kan fibrations between Kan complexes (which are exactly the isofibrations
between Kan complexes) have the lifting property of groupoidal fibrations (52.4), so the statements
about fibrant objects and fibrations to fibrant objects follow just as in the categorical case. □

53.3. Proposition. The Quillen model structure is cartesian.

Proof. We must show that p□j is a groupoidal fibration if j is a monomorphsm and p a groupoidal
fibration, and also that it is a weak equivalence if either j or p is. This is proved by an argument
nearly identical to the proof of (41.3). □

53.4. Kan fibrations are groupoidal fibrations. The proof of the Quillen model structure we
gave above relied on (80) to produce a set T such that T = Cof ∩WHEq. In fact, more is true.
It turns out that we can take T = Horn, so that GpdFib = KanFib. It was in this form that the
model structure was first constructed by Quillen.

We will not give a proof of this here. The non-trivial part is to show that KanFib ⊆ GpdFib.
This proposition is usually proved via an argument (due to Quillen) based on the theory of minimal
fibrations. See for instance Quillen’s original argument [Qui67, §II.3] or [GJ09, Ch. 1].

These arguments work by showing that KanFib is the weak cosaturation of the class of Kan
fibrations between Kan complexes, which we know are groupoidal fibrations. In fact one can even
show that every Kan fibration is a base change of a Kan fibration between Kan complexes, see
[KLV12].

The observation that the Kan-Quillen model structure can be constructed without first showing
GpdFib = KanFib, and thus (53.2) in the form I have stated it, is due to Cisinski [Cis06].

54. Groupoid completion

54.1. Functors into the core of a quasicategory. Given a quasicategory C and a simplicial set
X, let

Funiso(X,C) ⊆ Fun(X,C)

denote the full subcategory spanned by objects which are functors f : X → C with the property
that f(X) ⊆ Ccore.

54.2. Example. When X = ∆1, then this is precisely the path category Funiso(∆1, C) introduced in
(36.1).

Note that Funiso(X,C) is not necessarily a quasigroupoid, unless C itself is a quasigroupoid.
We have a convenient characterization of maps into Funiso(X,C).

54.3. Proposition. For any quasicategory C and simplicial sets X and S, the evident bijection
Hom(S,Fun(X,C)) ≈ Hom(X,Fun(S,C)) restricts to a bijection{

S // Funiso(X,C)
}
←→

{
X // Fun(S,C)core

}
.

Proof. (This is a generalization of (36.5).) Consider f : S → Fun(X,C), and write f ′ : X →
Fun(S,C) and f ′′ : S ×X → C for its adjoints. We have the following observations (which make
use of the pointwise criterion for natural isomorphisms (37.2)).
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(1) The map f factors through Funiso(X,C) ⊆ Fun(X,C) if and only if for each vertex s ∈ S0
the induced map f(s) : X → C factors through Ccore ⊆ C. This amounts to saying that for
each edge g ∈ X1, each map f(s) sends g to an isomorphism in C.

(2) The map f ′ factors through Fun(S,C)core ⊆ Fun(S,C) if and only if for each edge g ∈ X1

the the image f ′(g) ∈ Fun(S,C)1 represents an isomorphism in Fun(S,C). By the objectwise
criterion (37.2), this amounts to saying that f ′(g) sends each vertex s ∈ S0 to an isomorphism
in C.

It is thus apparent that conditions (1) and (2) are equivalent: both are amount to the requirement

that ∆0 ×∆1 s×g−−→ S ×X f ′′
−→ C represent an isomorphism in C for every s ∈ S0 and g ∈ X1. □

For any map f : X → Y of simplicial sets and any quasicategory C, the induced functor Fun(f, C)
restricts to a functor Funiso(Y,C)→ Funiso(X,C) between full subcategories.

54.4. Proposition. Let i : X → Y be any map of simplical sets which is a monomorphism and a
weak homotopy equivalence. Then for any quasicategory C, the restriction map

i∗ : Funiso(Y,C)→ Funiso(X,C)

is a trivial fibration, and thus in particular a categorical equivalence between quasicategories.

Proof. We need to solve lifting problems

∂∆n u //
��

��

Funiso(Y,C)

i∗

��

∆n

s

99

v
// Funiso(X,C)

for all n ≥ 0. Using (54.3) we can replace this with the adjoint lifting problem

X
ṽ //

��

i

��

Fun(∆n, C)core

pcore

��

Y
ũ
//

ũ
//

s̃

88

Fun(∂∆n, C)core

where pcore is induced by the restriction map p : Fun(∆n, C)→ Fun(∂∆n, C). By (39.5) the map p
is an isofibration, and thus pcore is an isofibration between quasigroupoids and thus a Kan fibration
(38.12). Therefore a lift exists by (52.4). □

54.5. Groupoid completion. For any simplicial set X, we can always construct a monomorphism
i : X → X ′ to a Kan complex which is a weak homotopy equivalence. For instance, factor X → ∗
into an anodyne map followed by a Kan fibration. Any such map provides an example of a groupoid
completion of X. groupoid completion

54.6. Proposition. Suppose i : X → X ′ is a monomorphism of simplicial sets which is a weak
homotopy equivalence, with X ′ a quasigroupoid. Then for any quasicategory C, restriction along i
induces a trivial fibration

p : Fun(X ′, C)→ Funiso(X,C).

In particular, any map f : X → Xcore ⊆ C, extends over i to a map g : X ′ → Ccore, and any two
such extensions are naturally isomorphic in Fun(X,C).

Proof. That p is a trivial fibration is immediate from (54.4) and the fact that Funiso(X ′, C) =
Fun(X ′, C) since X ′ is a quasigroupoid. The fiber of p over a vertex representing f is thus a
contractible Kan complexes, so any two objects in this fiber are isomorphic, and hence correspond
to isomorphic objects of Fun(X ′, C). □
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Although the groupoid completion isn’t unique, it is unique up to categorical equivalence.

54.7. Exercise. Let fi : X → Xi be groupoid completions of X, for i = 1, 2. Show that there exists
a categorical equivalence g : X1 → X2 such that gf1 = f2, and that any two such are naturally
isomorphic. (Hint: proof of (25.19) and (40.16).)

We can apply this construction when X is a quasicategory, or even when X is the nerve of an
ordinary category, and obtain interesting new quasigroupoids.

54.8. Example. It turns out that every simplicial set is weakly equivalent to the nerve of some
ordinary category, and in fact to the nerve of some poset [Tho80]. Thus, for every Kan complex
K, there exists an ordinary category A and a weak equivalence NA→ K, which therefore induces
categorical equivalences Fun(K,C) ≈ Funiso(NA,C) for every quasicategory C.

We note that there is also a classical groupoid completion construction, which given an ordinary
category A produces an ordinary groupoid AGpd by “formally inverting all maps”. We have that
h((NA)Kan) ≈ N(AGpd), but in general (NA)Kan is not weakly equivalent to N(AGpd).

54.9. Exercise. Let A be the poset of proper and non-empty subsets of {0, 1, 2, 3}. Show that AGpd is
equivalent to the one-object category, but that (NA)Kan is not equivalent to the one-object category.
(In the second case, you can prove non-equivalence by showing π0 Fun(NA,K(Z, 2)) ≈ Z, using the
Eilenberg-MacLane object of (12.13).)

55. Localization of quasicategories

There is a generalization of groupoid completion, which applies to a simplicial set X equipped
with a subcomplex W ⊆ X. For a quasicategory C, let

FunW iso(X,C) ⊆ Fun(X,C)

denote the full subcategory spanned by objects f : X → C such that f(W ) ⊆ Ccore. (Note that this
condition it satified if and only if f maps the edges of W to isomorphisms.) Clearly FunW iso(X,C)
is the primage of Funiso(W,C) along the restriction map Fun(X,C)→ Fun(W,C).

55.1. Exercise. Show that there is a bijective correspondence of the form

{
S // FunW iso(X,C)

}
←→


W //
��

��

Fun(S,C)core
��

��

X // Fun(S,C)

 .

Given a subcomplex W ⊆ X, we may define a localization of X with respect to W . This is any localization

map X → X(W ) constructed as follows.

(1) Choose a groupoid completion i : W →W ′ of W , i.e., a monomorphsm to a Kan complex.
(2) Choose monomorphism which is a categorical equivalence from j : X ∪W W ′ → X(W ) to a

quasicategory X(W ) (e.g., an inner anodyne map to a quasicategory).

If W = X then X → X(X) is an example of a groupoid completion of X as discussed above.

55.2. Proposition. For any localization X → X(W ) as defined above, and any quasicategory C, the
restriction map Fun(X(W ), C)→ Fun(X,C) induces a trivial fibration

Fun(X(W ), C)→ FunW iso(X,C).

In particular, any map f : X → C such that f(W ) ⊆ Ccore extends to a functor g : X(W ) → C, and
any two such extensions are naturally isomorphic.
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Proof. Consider

Fun(X(W ), C)
j∗
// Fun(X ∪W W ′, C)

p
//

��

FunW iso(X,C) // //

��

Fun(X,C)

��

Fun(W ′, C)
i∗
// FunW iso(W,C) // // Fun(W,C)

in which both squares are pullbacks. The map j∗ is a trivial fibration since j ∈ Cell ∩ CatEq
(??), while i∗ is a trivial fibration (54.6) since FunW iso(W,C) = Funiso(W,C), whence p is a trivial
fibration. □

55.3. Quasicategories from relative categories. A relative category is a pair W ⊆ C relative category

consisting of an ordinary category C and a subcategory W containing all the objects of C. The
above construction gives, for any relative category, a map

C → C(W ),

unique up to categorical equivalence. We may call C(W ) the localization of C with respect to W . localization

It turns out that all quasicategories, up to categorical equivalence, arise as localizations of relative
categories in this way [BK11].

56. Weak homotopy equivalence and homotopy groups

56.1. Pointed simplicial sets and pointed function complexes. Given a simplicial set X
and a vertex x ∈ X0, I’ll write (X,x) for the corresponding pointed simplicial set, i.e., object of pointed

sSet∗ := sSet∆0/. Given pointed simplicial sets (X,x), (Y, y), I’ll write

Fun∗((X,x), (Y, y)) := Fun∆0/((X,x), (Y, y))

for the relative function complex, and call it the pointed function complex. I’ll often omit mention of
the basepoints and write Fun∗(X,Y ). This defines a functor Fun∗ : (sSet∗)

op×sSet∗ → sSet∗, where
the basepoint of Fun∗(X,Y ) is represented by the constant map X → {y} → Y to the basepoint of
Y .

Say that a map of pointed simplicial sets is a weak homotopy equivalence if the underlying map
of simplicial sets is a weak homotopy equivalence.

56.2. Proposition. The pointed function complex is weak homotopy equivalence invariant when the
target is a Kan complex. That is,

(1) if f : A→ B is a weak homotopy equivalence of pointed simplicial sets, and X is a pointed
Kan complex, then f∗ : Fun∗(B,X)→ Fun∗(A,X) is a weak homotopy equvialence, and

(2) if A is any pointed simplicial set and g : X → Y is a weak homotopy equivalence of pointed
Kan complexes, then g∗ : Fun∗(A,X)→ Fun∗(B,X) is a weak homotopy equivalence.

Proof. The pointed function complex Fun∗(A,X) is defined by a pullback Fun(A,X)×Fun({a},X) {x},
which is good pullback when X is a Kan complex since {a} → A is always a monomorphism. The
claim follows from the fact that Fun is weak homotopy invariant whenever the target X is a Kan
complex. □

56.3. Homotopy sets. Given a Kan complex X, for each n ≥ 0 and each vertex x ∈ X0 we define
the nth homotopy set to be nth homotopy set

πn(X,x) := π0 Fun∗(∆
n/∂∆n, X).

These define functors πn : sSet∗ → Set∗ from pointed simplicial sets to pointed sets, where the
basepoint of πn(X,x) is the path component containing the constant map.
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56.4. Remark. In general, πn(X,x) is a pointed set. In fact, when n ≥ 1 it has a natural structure
of a group, which is abelian when n ≥ 2.

56.5. Exercise. Let X be a Kan complex and x ∈ X0. Show that π1(X,x) ≈ HomhX(x, x), so that
π1(X,x) has a group stucture defined by composition in hX, and that this group structure is natural
with respect to maps between pointed Kan complexes.

We present a proof that πn(X,x) are groups for all n ≥ 1 in the appendix (79).

56.6. Remark. If T is a topological space with basepoint t ∈ T , then the homotopy sets πn(Sing(T ), t)
are in natural bijective correspondence with the “usual” homotopy sets (groups) πn(T, t) of the
space T . This is a straightforward consequence of the observation that ∥∆n/∂∆n∥ is homeomorphic
to an n-dimensional sphere.

56.7. π∗-equivalences. Say that a map f : X → Y between Kan complexes is a π∗-equivalence if π∗-equivalence

for all k ≥ 0 and all x ∈ X0, the induced map πk(X,x)→ πk(Y, f(x)) is a bijection. It is clear from
(56.2) that every weak equivalence of Kan complexes is a π∗-equivalence. In fact the converse is also
true.

56.8. Theorem. A map f : X → Y between Kan complexes is a weak homotopy equivalence if and
only if it is a π∗-equivalence.

We give a proof in an appendix (79).

57. Every quasigroupoid is equivalent to its opposite

Every ordinary groupoid C is equivalent, and in fact isomorphic, to its opposite: there is a functor
C → Cop which is the identity on objects, and which sends each morphism to its inverse. We cannot
define such a functor for quasigroupoids, since inverses of morphisms in a quasigroupoid are not
unique. However, it is the case that any quasigroupoid is equivalent to its opposite.

We will produce for each quasicategory C a quasigroupoid S(C), together with a trivial fibration
S(C)→ Ccore, with the property that S(C) and S(Cop) are isomorphic as simplicial sets.

57.1. The functor S. Given a set S, let IsoS denote the simplicial set with

(IsoS)n := HomSet([n] = {0, 1, . . . , n}, S),
with simplicial operators induced in the evident way. Observe that

HomsSet(X, Iso
S) ≈ HomSet(X0, S),

so that we have a functor Iso• : Set → sSet which is right adjoint to X 7→ X0 : sSet → Set. In
particular, we have

HomsSet(Iso
S , IsoT ) ≈ HomSet(S, T ).

Recall that X 7→ X0 also admits a left adjoint S 7→ Sdisc, sending any set to the correpsonding
discrete simplcial set (2.9).

Note that the simplicial set IsoS is the nerve of a category, with object set S and a unique
morphism x→ y for every pair x, y ∈ S. This is in fact a groupoid, which when S is non-empty is
equivalent to the trivial groupoid. For instance, Iso{0,1} is precisely the walking isomorphism Iso
discussed in (38.6).

We may compose Iso• with the evident functor ∆ → Set sending the ordered set [n] to its

underlying set {0, 1, . . . , n}, and in this way obtain a functor Iso : ∆ → sSet, so that (Iso[n])m =
HomSet([m], [n]). This in turn induces by restriction a functor S : sSet→ sSet, with

S(C)n = Hom(Iso[n], C).

57.2. Proposition. There is a natural isomorphism S(C)→ S(Cop) of functors sSet→ sSet.
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Proof. It suffices to describe a natural isomorphism Iso → Iso ◦ op of functors ∆ → sSet. On
each object [n] in ∆ this is the map Isor : Iso[n] → Iso[n] induced by the order reversing bijection
r : [n]→ [n], r(x) := n− x. □

We write ηn : ∆
n → Iso[n] for the map representing the n-cell correpsonding to the identity

function [n] → [n]. Then we get a natural tranformation ϵ : S → idsSet of functors sSet → sSet,
which for a simplicial set C and n ≥ 0 is given by the function Hom(Ison, C) → Cn which sends
f : Ison → C to to the n-cell represented by fηn : ∆

n → C. Note that ϵ induces a bijection on
vertices, since η0 : ∆

0 → Iso[0] is an isomorphism.
We are going to show that ϵ : S(C) → C is a trivial fibration whenever C is a quasigroupoid.

Together with (57.2) this gives a sequence of categorical equivalences

C
ϵC←− S(C) ≈ S(Cop)

ϵCop−−−→ Cop

between quasigroupoids. In particular, by choosing any section s of the trivial fibration ϵC we get a
categorical equivalence C → Cop which is identity on objects.

57.3. The functor R. The functor S admits a left adjoint R, which we can describe explicitly.
We will make use of the evident identification

γ 7→ γ̃ : HomsSet([n],∆
m) ≈ HomsSet(Iso

[n], Iso[m]).

Note that ι̃n = idIso[n] where ιn : [n]→ ∆n is the evident function sending k 7→ ⟨k⟩ ∈ (∆n)0.
Define R(X) to be the simplicial set with n-dimensional cells

R(X)n := {[n] γ−→ ∆m x−→ X}/ ∼,
where we quotient by the equivalence relation generated by (xf, γ) ∼ (x, fγ) for every simplicial
operator f . The simplicial operators act on R(X) in the evident way: g : [n′] → [n] sends an
equivalence class [x, γ] ∈ R(X)n to [x, γg] ∈ R(X)n′ .

57.4. Proposition. The functor R is left adjoint to S, so that a map f : X → S(C) corresponds to
a map g : R(X)→ C which sends [x, γ] ∈ R(X)n to f(x)γ̃ ∈ Cn.

Proof. We just need to verify that the correspondence is well-defined, a bijection, and natural in
X and C. That it is well-defined is clear, since if [xδ, γ] = [x, δγ] for some simplicial operator γ,

we have f(xδ)γ̃ = f(x)δγ̃ = f(x)(̃δγ). To see that it is a bijection, note that an inverse is given
by sending g : R(X) → C to the map f : X → S(C) sending x ∈ Xn to g([x, ιn]). Naturality is a
straightforward verification. □

57.5. Example. Suppose X = ∆n. Then

Hom(R(∆n), C) ≈ Hom(∆n,S(C)) ≈ Hom(Iso[n], C)

so R(∆n) ≈ Iso[n] by Yoneda, and in fact R : sSet→ sSet extends Iso : ∆→ sSet.
We can also see this from the explicit description of R. Each equivalence class [x, γ] ∈ R(∆n)k

contains a unique element of the form ([k]
ιk−→ ∆k → ∆n), so R(∆n)k is in natural bijective

correspondence with the set of all functions γ : [k]→ [n] (not necessarily order preserving), i.e., with

the set of k-cells of Iso[n].
In the following, it will be convenient to represent a k-cell in R(∆n) ≈ Iso[n] by a sequence

(a0 . . . ak) of elements ai ∈ [k]. Note that such a k-cell is non-degenerate if and only if the sequence
has no consecutive repetition, i.e., ai−1 ̸= ai for all i = 1, . . . , k.

57.6. Lemma. Let K ⊆ ∆n be a subcomplex. Then the induced map R(K)→ R(∆n) is injective,

whose image consists exactly of the cells represented by sequences (a0 . . . an) such that ∆{a0,...,an} ⊆ K.
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Proof. If K = ∆S for some S ⊆ [n] this is immediate from the explicit description of cells of R(∆n),
in which case it is convenient to identify R(∆S) with the corresponding subcomplex of R(∆n). It is
then clear that for S, T ⊆ [n] we have R(∆S) ∩R(∆T ) = R(∆S∩T ).

In general we can write K ≈ colim∆S⊆K ∆S , a colimit over a poset of some subsets S ⊆ [n] (6.20).

Since R is a left adjoint it preserves colimits, so R(K) ≈ colim∆S⊆K R(∆S). Then the claim follows
from (6.14). □

57.7. The proof. The natural map ϵ : S(C)→ C is adjoint to a natural map η : X → R(X), which
sends x ∈ Xn to the element [x, ιn] ∈ R(X)n. When X = ∆n this is just the tautological map

ηn : ∆
n → R(∆n) = Iso[n] described earlier.

For an arbitrary map f : X → Y of simplicial sets, we define maps

fR := (R(f), ηY ) : R(X) ∪X Y → R(Y ), gS := (S(f), ϵX) : S(X)→ S(Y )×Y X.

57.8. Lemma. For any maps i : K → L and p : C → D of simplicial sets, we have that iR � p if
and only if i� pS .

Proof. This is a straightforward verification of the equivalence of lifting problems.

R(X) ∪X Y

iR
��

(u,v)
// C

p

��

R(Y ) w
//

s

99

D

⇐⇒

X
ũ //

i

��

S(C)

pS
��

Y
(w̃,v)

//

s̃

::

S(D)×D C

□

57.9. Proposition. If f : K → L is a monomorphism, so is fR.

Proof. Let in : ∂∆
n → ∆n be the cell inclusion. We already know that R(in) is a monomorphism

by (57.6), which also explicitly describes the image of this map. Using this it is straightforward to
show that ηn : ∆

n → R(∆n) is also injective, and that the pullback of R(in) along ηn is precisely
∂∆n ⊂ ∆n, from which it follows that (in)R is a monomorphism.

Let C be the class of maps f : K → L such that fR ∈ Cell. By (57.8) and Cell =
�
TrivFib it

follows that
C = �

(TrivFibS) = { f | f � pS for all p ∈ TrivFib },
so C is weakly saturated. Since all in ∈ C, we have that Cell ⊆ C and the claim follows. □

57.10. Lemma. For each horn inclusion jn,k : Λ
n
k ⊂ ∆n, 0 ≤ k ≤ n, the induced map

(jn,k)R : R(Λn
k) ∪Λn

k
∆n → R(∆n) is anodyne.

Proof. This is an explicit calculation, which generalizes (38.7) which is the case of (n, k) = (1, 0).
Let Tm := R(∆n)ndm ∖R := R(Λn

k)
nd
m be the set of nondegenerate m-cells of R(∆n) not contained

in the subcomplex. In terms of representing sequences, (a0 . . . am) ∈ Tm if and only if it has no
consecutive repetitions, and if [n]∖ {k} ⊆ {a0, . . . , am} ⊆ [n]. Note in particular that Tm = ∅ if
m < n− 1.

Partition this set as Tm = T 1
m ⨿ T 2

m, where (a0 . . . am) ∈ T 1
m iff a0 = k, and (a0 . . . am) ∈ T 2

m iff

a0 ̸= k. Recall the notation di := ⟨0 . . . î . . .m⟩ for the the simplicial face operator [m− 1]→ [m]
(2.2). The verification of the following two statements is immediate.

(1) d0 restricts to a bijection T 1
m → T 2

m−1.

(2) For each 0 < i ≤ m, di(T 1
m) ∩ T 2

m−1 = ∅.

Given this, define Fm ⊆ R(∆n) to be the smallest subcomplex containing R(Λn
k) and the sets T 1

i

for 0 ≤ i ≤ m (and hence the sets T 2
i for 0 ≤ i ≤ m− 1). Then it is apparent that each inclusion

Fm−1 ⊆ Fm is obtained by cobase change along a coproduct of horn inclusions Λm
0 ⊂ ∆m, with
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one copy for each element of T 1
m, and since Fn−1 = R(Λn

k) and
⋃

m Fm = R(∆n) it follows that
R(Λn

k)→ R(∆n) is anodyne.

To show that R(Λn
k) ∪Λn

k
∆n → R(∆n) is anodyne just note that the domain is contained31 in

Fn, and is the smallest subcomplex containing Fn−1 and the n-cell (01 . . . n), which is an element of
T 1
n . □

Let C denote the class of monomorphisms i : K → L of simplicial sets such that iR is a weak
homotopy equivalence.

57.11. Proposition. The class C contains all monomorphisms.

Proof. We are going to apply (48.13), so we must show that C contains inner horn inclusions, is
weakly saturated, has precancellation with respect to monomorphisms, and contains (∂∆0 ⊂ ∆0).

First note that since anodyne maps are weak homotopy equivalences, C contains all horn inclusions
by (57.10).

Next we show that C is weakly saturated. Let i be a monomorphism of simplicial sets, and recall
that so is iR (57.9). Then iR is a weak homotopy equivalence if and only if iR � p for all Kan
fibrations p : C → D between Kan complexes (52.4). Thus i ∈ C if and only if i� pS , so C is weakly
saturated.

Next we show that C has precancellation, i.e., that i, ji ∈ C imply j ∈ C. For monomorphisms

A
i−→ B

j−→ C we obtain a commutative diagram

R(A) ∪A B
iR //

��

R(B)

��

R(A) ∪A C
k //

(ji)R

33R(B) ∪B C
jR
// R(C)

in which the square is a pushout. If i ∈ C, then iR ∈ Cell∩GpdEq, whence k ∈ Cell∩GpdEq since
this class is saturated. Since also (ji)R ∈ GpdEq, we have jR in GpdEq by 2-out-of-3.

Finally note that j := (∂∆0 ⊂ ∆0) ∈ C, since in fact jR is an isomorphism.
□

57.12. Proposition. For every Kan fibration p : C → D between Kan complexes, we have that
pS : S(C) → S(D) ×D C is a trivial fibration. In particular, S(C) → C is a trivial fibration for
every quasigroupoid C.

Proof. It suffices to show that i� pS for every monomorphism i, or equivalently that iR � p. That
this is so is because iR is a weak homotopy equivalence by (57.11), so iR � p by (52.4). □

Note that if i : ∅→ X, then iR = ηX : X → R(X), and this map is a weak homotopy equivalence
by (57.11). Thus for any simplicial set X, we get a diagram

X
ηX←−− R(X) ≈ R(Xop)

ηXop−−−→ Xop

in which the maps are weak homotopy equivalences. Thus we learn that every simplicial set is
weakly homotopy equivalent to its opposite.

Part 10. Understanding join and slice

58. The alternate slice

Given a quasicategory C and an object x ∈ C0, we have constructed the slice quasicategories Cx/ W 30 Mar

31Owen Barrett points out this is not true when k = 0.
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and C/x, which come equipped with forgetful functors Cx/ → C and C/x → C. When C is an ordinary
category, the slices and can also be described as pullbacks. For instance, for an ordinary category
C, the slice C/x is isomorphic to the fiber of the restriction functor Fun(∆1, C)→ Fun({1}, C) over
the vertex representing x ∈ C0.

58.1. Exercise. Prove that if C is an ordinary category, this fiber is isomorphic to C/x.

58.2. Alternate slices over and under an object. For a general simplicial set, we take this as
the definition of the alternate slice. Thus, given a simplicial set C and x ∈ C0, we define simplicial alternate slice

sets Cx/ and C/x together with maps p : Cx/ → C and q : C/x → C via the pullback squares

Cx/ //

p

��

Fun(∆1, C)

��

C/xoo

q

��

{x} × C
j0
// Fun(∂∆1, C) {x} × C

j1
oo

where the maps jk, k = 0, 1, are induced by the inclusions {x} → Fun({k}, C) = C.
These alternate slices are not generally isomorphic to the slice we have already defined, but note

that there are evident bijections (Cx/)0 ≈ (Cx/)0 and (C/x)0 ≈ (C/x)0 on sets of vertices. We will

eventually show that if C is a quasicategory, then there are categorical equivalences Cx/ → Cx/ and

C/x → C/x.
A key feature of alternate slices is that, unlike ordinary slices, it is straightforward to relate them

to the mapping spaces of a quasicategory.

58.3. Proposition. Given a quasicategory C and objects x, y ∈ C0, there are pullback squares

mapC(x, y) //

��

Cx/

p

��

mapC(x, y) //

��

C/y

q

��

{y} // C {x} // C

That is, the fibers of the forgetful functors of alternate slices of C are mapping spaces of C.

Proof. Immediate from the definitions of mapping spaces and alternate slices. □

58.4. Remark. The fibers of the forgetful functors Cx/ → C over y and C/y → C over x for the usual

slices are called the right and left mapping spaces respectively, and are denoted mapRC(x, y) and right and left mapping
spaces

mapLC(x, y). For a quasicategory C they are categorically equivalent to the usual mapping space
mapC(x, y), as a consequence of the equivalence slices and alternate slices which we will prove.

Given a map p : C → D and x ∈ C0 we have evident restriction maps p′ : Cx/ → C ×D Dpx/ and
p′′ : C/x → C ×D D/px. This “pullback-alternate-slice” map is closely related to the pullback-hom
map.

58.5. Lemma. For any map p : C → D and x ∈ C0, there are pullback squares of the form

Cx/ //

p′

��

Fun(∆1, C)

p□(∂∆1⊂∆1)

��

C/x

p′′

��

oo

C ×D Dpx/ // Fun(∂∆1, C)×Fun(∂∆1,D) Fun(∆
1, D) C ×D D/pxoo

Proof. This is a straightforward exercise. For instance, C ×D Dpx/ is seen to be the pullback of

Fun(∂∆1, C)×Fun(∂∆1,D) Fun(∆
1, D)→ (C ×C)×D×D (D×D)← ({x}×C)×{px}×D ({px}×D).
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Precomposing the left arrow with p□(∂∆1⊂∆1) and using the obvious isomorphisms gives the pullback
square defining Cx/. □

58.6. Alternate slice for arbitrary maps. We can generalize the alternate slice construction
to arbitrary maps of simplicial sets. Thus, suppose given a map f : K → C, which corresponds to

a vertex f̃ ∈ Fun(K,C)0. We define the general alternate slices Cf/ and C/f via the pullback alternate slices

squares

Cf/ //

��

Fun(K,C)f̃/ //

��

Fun(K ×∆1, C)

��

Fun(K,C)/f̃oo

��

C/f

��

oo

C
π̃K

// {f̃} × Fun(K,C)
j0
// Fun(K × ∂∆1, C) Fun(K,C)× {f̃}

j1
oo C

π̃K

oo

where the maps jk, k = 0, 1 are induced by the inclusions {f̃} → Fun(K×{k}, C), and π̃K is adjoint
to the projection π : C ×K → C. Thus, the general alternate slices are obtained by base-change
from the special case for functors from ∆0.

The fibers of general alternate slices can also be described as mapping spaces, namely as spaces
of natural transformations to or from a constant functor.

58.7. Proposition. Given a quasicategory C, a map f : K → C of simplicial sets, and x, y ∈ C0,
there are pullback squares

mapFun(K,C)(f, π̃Ky) //

��

Cf/

��

mapFun(K,C)(π̃Kx, f) //

��

C/f

��

{y} // C {x} // C

where π̃Kx : K → C represents the constant map with value x, i.e., the composite K → {x} → C.

Given a sequence of maps K
i−→ L

f−→ C
p−→ D of simplicial sets, we have evident restriction

maps Cf/ → Cfi/ ×Dpfi/ Dpf/ and C/f → C/fi ×D/pfi D/pf . These are alternate analogs of the

pullback-slice maps of (32.14). Applied to a sequence of the form ∅→ {x} → C
p−→ D this gives the

special case already discussed. It turns out that the general case can be obtained via base-change
from the special case.

58.8. Proposition. There are pullback squares of the form

Cf/ //

��

U f̃/

��

C/f //

��

U/f̃

��

Cfi/ ×Dpfi/ Dpf/ // U ×V U
(f̃ i,p̃f)/ C/fi ×D/pfi D/pf // U ×V V

/(f̃ i,p̃f)

where U → V is the pullback-hom map q = p□i : Fun(L,C) → Fun(K,C) ×Fun(K,D) Fun(L,D),
and the vertical maps in each square are alternate pullback-slice maps associated to the sequences

K
i−→ L

f−→ C
p−→ D and ∅→ {f̃} → U

q−→ V respectively.

Proof. This is a difficult to visualize but ultimately straightforward argument. A key observation is
that the four alternate-slice objects associated to f , pf , fi, and pfi are each described by a pullback
square [1]×2 → sSet, which therefore fit together to give a functor [1]×4 → sSet, which is a limit
cone. Decomposing this 4-dimensional cartesian cube in a different way gives the desired pullback
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description. It may be helpful to note that the lower horizontal map in the left square is really a
map of the form

C ×(
C×DD

) (Cfi/ ×Dpfi/ Dpf/
)
→

Fun(L,C)×(
Fun(K,C)×Fun(K,D)Fun(L,D)

) (Fun(K,C)f̃ i/ ×
Fun(K,D)p̃fi/

Fun(L,D)p̃f/
)
,

involving 14 of the 16 vertices of the 4-dimensional cube. □

59. The alternate join

Just as the usual slices are adjoint to a join construction, the alternate slices are adjoint to an
alternate join construction.

59.1. Definition of alternate join. Given simplicial sets X and Y , we define the alternate join alternate join

by the pushout diagram

(X × {0} × Y ) ⨿ (X × {1} × Y ) //

��

��

(X × {0} ×∆0) ⨿ (∆0 × {1} × Y )

��

X ×∆1 × Y // // X ⋄ Y

where the map on the left is induced by inclusion ∂∆1 ⊂ ∆1, and the map on the top by the
projections X → ∆0 and Y → ∆0.

59.2. Example. We have isomorphsims X ⋄∅ ≈ ∅ ≈ ∅ ⋄X.

59.3. Example. We have isomorphisms

X ⋄∆0 ≈ (X ×∆1)/(X × {1}), ∆0 ⋄ Y ≈ (∆1 × Y )/({0} × Y ).

59.4. Remark. Unlike the join, the alternate join is not monoidal: (X ⋄ Y ) ⋄ Z ̸≈ X ⋄ (Y ⋄ Z) in
general. Also, the alternate join of two quasicategories is not usually a quasicategory.

Viewed as a functor of either variable, the alternate join gives functors

S ⋄ − : sSet→ sSetS/, − ⋄ T : sSet→ sSetT/

from simplicial sets to the evident slice categories.

59.5. Proposition. The alternate join is left adjoint to the alternate slices, in the sense that
S ⋄ − : sSet→ sSetS/ and − ⋄ −T : sSet→ sSetT/ are left adjoint to

(f : S → C) 7→ Cf/ : sSetS/ and (g : T → C) 7→ C/g : sSetT/ → sSet

respectively. Thus, we have natural bijections

Hom(K,Cf/) ≈ HomS/(S ⋄K,C), Hom(K,C/g) ≈ HomT/(K ⋄ T,C).

Proof. Straightforward. □

59.6. Enriched adjunction for alternate join/slice. In fact, we can do a little better: the
alternate join and slices participate in enriched adjunctions involving the relative function complex enriched adjunctions

(25.18), which for objects p : S → K and f : S → C in sSetS/ is a simplicial set

FunS/(K,C) = Fun(K,C)×Fun(S,C) {f}.
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First, note that for any simplicial sets S, K, and X, we have pushout squares of the form

X × S //

��

S

��

X × S //

��

S

��

X × (S ⋄K)
ℓ
// S ⋄ (X ×K) X × (K ⋄ S) r

// (X ×K) ⋄ S

where the top horizontal maps are projections, the vertical maps are the evident inclusions, and the
bottom horizontal maps are the evident ones induced by the fact that the objects are quotients of
the same product X × S ×K ×∆1 (up to permuting the factors). Using this, for any f : K → C we
obtain isomorphisms

Fun(K,Cf/)
∼−→ FunS/(S ⋄K,C), Fun(K,C/f )

∼−→ FunS/(K ⋄ S,C).
In the left-hand case, we define the map by describing a natural transformation{

X // Fun(K,Cf/)

}
=⇒

{
X // FunS/(S ⋄K,C)

}
sending  S

��

f

))
S ⋄ (X ×K) // C

 =⇒


X × S

proj
//

��

S
f��

X × (S ⋄K) // C


by precomposing with ℓ defined above. The transformation is an isomorphism exactly because the
square defining ℓ is a pushout square.

We note that this provides us with another description of the alternate slice.

59.7. Proposition. For any map f : S → C of simplicial sets, we have isomorphisms

Cf/ ≈ FunS/(S ⋄∆0, C), C/f ≈ FunS/(∆
0 ⋄ S,C).

Proof. These are the enriched adjunction maps for alternate join/slice for K = ∆0. □

59.8. Enriched adjunction for join/slice. In an analogous way we can define enriched adjunction
maps for the usual join and slices, using commutative squares

X × S //

��

S

��

X × S //

��

S

��

X × (S ⋆ K)
ℓ′
// S ⋆ (X ×K) X × (K ⋆ S)

r′
// (X ×K) ⋆ S

which however are not pushouts in general (though they are trivially pushouts when X = ∆0). For
instance the map ℓ′ is the one correspoing by (28.16) to the triple of maps

π : X× (S ⋆K)→ X×∆1 → ∆1, π−1({0}) = X×S proj−−→ S, π−1({1}) = X×K id−→ X×K.
Following the same recipe as for alternate join and slices, given f : K → C we have natural maps

Fun(K,Cf/)→ FunS/(S ⋆ K,C), Fun(K,C/f )→ FunS/(K ⋆ S,C),

which we call enriched adjunction maps for join and slices. These are not in general isomorphisms, enriched adjunction
mapsbut they are bijections on vertices. Although they are not isomorphisms, we will later show that

these enriched adjunction maps are categorical equivalences when C is a quasicategory. For now, M 4 Apr
we show that when C is a quasicategory they induce bijections on isomorphism classes of objects.

59.9. Proposition. For K a simplicial set and p : S → C a map to a quasicategory C, the enriched
adjunction map for join/slice induces bijections

π0
(
Fun(K,Cp/)

core
) ∼−→ π0

(
FunS/(S⋆K,C)

core
)
, π0

(
Fun(X,C/p)

core
) ∼−→ π0

(
FunS/(K⋆S,C)core

)
,
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Proof. We give the proof in the slice-under case. Since the enriched adjunction map gives a
bijection on objects, it suffices to prove injectivity on sets of isomorphism classes. Thus, we suppose
given f0, f1 : X → Cp/ representing objects of Fun(X,Cp/) such that the corresponding objects

f̃0, f̃1 : S ⋆X → C represent isomorphic objects of FunS/(S ⋆X,C), and show that there is a natural
isomorphism f0 → f1.

Let C
i−→ Ĉ

r=(r0,r1)−−−−−−→ C ×C be the standard path category for C (36.4), with Ĉ = Funiso(∆1, C).

An isomorphism f̃0 → f̃1 in FunS/(S ⋆ K,C) amounts to a choice of lift f̃ in

S��

��

p
// C

i // Ĉ

r=(r0,r1)

��

S ⋆ X
(f̃0,f̃1)

//

f̃

55

C × C

Applying the join/slice adjunction to the lower triangle gives a diagram

C/p
i′ // Ĉpi/

r′=(r′0,r
′
1)

��

X

f
::

(f0,f1)
// Cp/ × C/p

Since r0, r1 : Ĉ → C are trivial fibrations (42.3), so are the induced maps r′0, r
′
1 : Ĉpi/ → C/p on

slices (32.16). Thus every functor in

Fun(X,Cp/)

Fun(X,Cp/)
i′∗ //

id //

id
//

Fun(X, Ĉpi/)
(r′0)∗

44

(r′1)∗

**

Fun(X,Cp/)

is a categorical equivalence, whence r′0 and r′1 induces the same bijection on isomorphism classes of
objects. we see that every arrow in this diagram is a categorical equivalence, and therefore both π0
and π1 induce the same bijection on isomorphism classes on objects, and thus f0 = (r′0)∗(f) and
f1 = (r′1)∗(f) are isomorphic as desired.

□

59.10. Exercise. Construct a natural “distributivity” map X × (S ⋆ T )→ (X × S) ⋆ (X × T ).

60. Equivalence of join and alternate join

The proof that slice and alternate slice are equivalent will rely on an equivalence between join
and alternate join.

60.1. Comparison map from alternate join to join. There is a canonical comparison map
X ⋄ Y → X ⋆ Y , natural in both variables, which by (28.16) corresponds to the triple of maps

π : X ⋄ Y → ∆0 ⋄∆0 ≈ ∆1, π−1({0}) = X
id−→ X, π−1({1}) = Y

id−→ Y.

60.2. Proposition. The canonical comparison map X ⋄ Y → X ⋆ Y is a categorical equivalence for
all simplicial sets X and Y .

We will give the proof at the end of this section.
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60.3. Categorical invariance of joins. First we note that the alternate join is a “categorically
invariant” construction.

60.4. Proposition. The alternate join ⋄ preserves categorical equivalences in either variable. That
is, if Y → Y ′ is a categorical equivalence, then so are X ⋄ Y → X ⋄ Y ′ and Y ⋄ Z → Y ′ ⋄ Z.

Proof. The ⋄ functor is constructed (59.1) using finite products and a “good” pushout, i.e., a
pushout along a cofibration (=monomorphism). The result follows because both finite products
(27.5) and good pushouts (50.12) preserve categorical equivalences. □

Once we prove equivalence of join and alternate join, this will imply the categorical invariance of
the usual join.

60.5. Corollary. The join ⋆ preserves categorical equivalences in either variable. That is, if Y → Y ′

is a categorical equivalence, then so are X ⋆ Y → X ⋆ Y ′ and Y ⋆ Z → Y ′ ⋆ Z.

Proof. Immediate using (60.2), the invariance of the alternate join under categorical equivalence
(60.4), and the 2-out-of-3 property of categorical equivalences (27.11). □

60.6. Skeletal induction. To prove (60.2) we will use the following strategy.

60.7. Proposition (Skeletal induction). Let C be a class of simplicial sets with the following
properties.

• Every ∆n ∈ C.
• The class C is closed under good colimits. That is:

(a) any coproduct of objects of C is in C;
(b) any pushout of a diagram X0 ← X1 → X2 of objects in C along a monomorphism

X1 → X2 is in C;
(c) any colimit of a countable sequence X0 → X1 → X2 → · · · of objects in C, such that

each Xk → Xk+1 is a monomorphism, is in C.
Then C is the class of all simplicial sets.

Proof. This is a straightforward consequence of the skeletal filtration (20.3). To show X ∈ C, it
suffices to show each SknX ∈ C by (c). So we show that all n-skeleta are in C by induction on
n, with base case n = −1 (the empty simplicial set), which is really a special case of (a). Since
Skn−1X ⊆ SknX is a pushout along a coproduct of maps ∂∆n = Skn−1∆

n → ∆n, this follows using
(a), (b), the fact that all ∆n ∈ C, and the inductive hypothesis, which tells us that ∂∆n ∈ C. □

We will use skeletal induction to show that certain natural transformations from simplicial sets
to a model category take values in weak equivalences.

60.8. Proposition. Let α : F → F ′ be a natural transformation between functors sSet→M, where
M is some model category. If

(1) F and F ′ preserve colimits,
(2) F and F ′ take monomorphisms to cofibrations,
(3) F and F ′ take inner anodyne maps to to weak equivalences inM, and
(4) α(∆1) : F (∆1)→ F ′(∆1) is a weak equivalence inM,

then α(X) : F (X)→ F ′(X) is a weak equivalence inM for all simplicial sets X.

Proof. [Lur09, 4.2.1.2] Consider the class of simplicial sets C := {X | α(X) is a weak equivalence }.
We use skeletal induction (60.7) to show that C contains all simplicial sets.

Because F and F ′ preserve colimits (1) and cofibrations (2), they take good colimit diagrams
in sSet to good colimit diagrams inM. Since good colimits are weak equivalence invariant (50.8),
(50.12), (50.10), we see that C is closed under forming good colimits. It remains to show that ∆n ∈ C
for all n.
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We have ∆1 ∈ C by (4). Since ∆0 is a retract of ∆1, we get that ∆0 ∈ C since weak equivalences
inM are closed under retracts (49.4).

The spines In can be built from ∆0 and ∆1 by a sequence of good pushouts (glue on one 1-simplex
at a time), so the In ∈ C. The inclusions In ⊂ ∆n are inner anodyne (16.14), so by (3) and the
2-out-of-3 property of weak equivalences inM it follows that ∆n ∈ C. □

60.9. Proof of the equivalence. We will apply this idea to functors sSet→ sSetX/, where the
slice category sSetX/ inherits its model structure from the Joyal model structure on sSet (49.5).

Proof of (60.2). The functors X ⋄ (−), X ⋆ (−), (−) ⋄X, (−) ⋆ X : sSet → sSetX/ satisfy the first
three properties required of the functors in the previous proposition (60.8). That is, they (1) preserve
colimits, (2) take monomorphisms to monomorphisms, and hence to cofibrations, and (3) take inner
anodyne maps to categorical equivalences. Condition (3) for ⋄ follows from (60.4), while condition
(3) for ⋆ follows from Cell � LHorn ⊆ InnHorn and RHorn � Cell ⊆ InnHorn (32.13) and the fact
that InnHorn ⊆ LHorn ∩ RHorn.

Thus, to show X ⋄Y → X ⋆Y is a categorical equivalence for a fixed X and arbitrary Y , it suffices
by the previous proposition to show (4), i.e., that X ⋄∆1 → X ⋆∆1 is a categorical equivalence.
The same argument in the other variable lets us reduce to the case when X = ∆1, i.e., to showing
that a single map f : ∆1 ⋄∆1 → ∆1 ⋆∆1 is a categorical equivalence, which is the following lemma
(60.10). □

60.10. Lemma. The canonical comparison map f : ∆1 ⋄∆1 → ∆1 ⋆∆1 is a categorical equivalence. W 6 Apr

Proof. We will show f is a categorical equivalence by producing a map g : ∆1 ⋆∆1 → ∆1 ⋄∆1 such
that fg = id∆1⋆∆1 and gf is preisomorphic to the identity map of ∆1 ⋄∆1, via (25.9).

Recall that ∆1 ⋄∆1 is a quotient of a cube, so that it is isomorphic to the pushout of

∆1 × {0} × ∗ ⨿ ∗ × {1} ×∆1∗↢ ∆1 × {0} ×∆1 ⨿ ∆1 × {1} ×∆1 ↣ ∆1 ×∆1 ×∆1.

We write vertices in (∆1)×3 as sequences (xty) where x, t, y ∈ {0, 1}. Note that ∆1 ⋄∆1 has exactly
four vertices, corresponding to equivalence classes {(000), (001)}, {(100), (101)}, {(010), (110)}, {(011), (111)}
of vertices in the cube, and that the only edges in ∆1 ⋄∆1 which connect a vertex to itself are
degenerate.

Let
f : (∆1)×3 → ∆1 ⋆∆1 = ∆3

be the map which on vertices sends

(xty) 7→ (1− t)x+ t(2 + y) =

{
x if t = 0,

2 + y if t = 1.

010

ww ''

110

''

000

OO

ww ''

011

ww

100

OO

''

111 001

OO

ww

101

OO

(∆1)×3

f7−−−−→

2

{{ ##
2

##

0

OO

{{ ##

3

{{
1

OO

##

3 0

OO

{{
1

OO

∆3

On passage to quotients this gives the comparison map f : ∆1 ⋄∆1 → ∆1 ⋆∆1 we want. Note that
f is a bijection on vertices.

Let g : ∆3 → (∆1)×3 be the map classifying the cell ⟨(000), (100), (110), (111)⟩, and let g : ∆3 →
∆1 ⋄∆1 be the composite with the quotient map. We have fg = id∆3 = fg.
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Let h ∈ Fun((∆1)×3, (∆1)×3)0 and a, b ∈ Fun((∆1)×3, (∆1)×3)1 be the unique elements whose
action on vertices is as indicated in the following picture.

010

yy %%

110

%%

000

OO

yy %%

011

yy

100

OO

%%

111 001

OO

yy

101

OO

id

a⇐====

010

yy %%

110

%%

000

OO

yy %%

011

yy

100

OO

%%

111 000

OO

yy

100

OO

h

b
====⇒

110

yy %%

110

%%

000

OO

yy %%

111

yy

100

OO

%%

111 000

OO

yy

100

OO

gf

These pass to 1-cells h, a, b in Fun(∆1 ⋄∆1,∆1 ⋄∆1). The edges a and b are preisomorphisms, as one

sees that for each vertex v ∈ (∆1 ⋄∆1), the induced maps ∆1×{v} ⊂ ∆1× (∆1 ⋄∆1)
a or b−−−→ ∆1 ⋄∆1

represent degenerate edges of ∆1 ⋄∆1. Thus fg and gf are preisomorphic to identity maps, and
hence f is a categorical equivalence as desired. □

61. Equivalence of slice and alternate slice

61.1. Comparison map from slice to alternate slice. The natural comparison map X ⋄ Y →
X ⋆ Y from alternate join and join induces adjoint comparison maps from slice to alternate slice.
Thus, given f : S → C, we have maps

Cf/ → Cf/ and C/f → C/f

which can be described using the adjuntion as follows: given g : K → Cf/, the composite h : K → Cf/

with the comparison map is adjoint to g̃α in

S��

��

S��

��

f
// C

S ⋄K α
// S ⋆ K

g̃

;;

and similarly for slice-over.
To compare slices with alternate slices, we will use the following commutative diagram of function

complexes.

61.2. Proposition. For all simplicial sets K and all maps f : S → C of simplicial sets, we have
commutative squares

Fun(K,Cf/) //

��

FunS/(S ⋆ K,C)

��

Fun(K,C/f ) //

��

FunS/(K ⋆ S,C)

��

Fun(K,Cf/) ≈
// FunS/(S ⋄K,C) Fun(K,C/f ) ≈

// FunS/(K ⋄ S,C)

in which the horizontal maps are the respective enriched adjunction maps, the left vertical map in
each square is induced by the slice comparison maps Cf/ → Cf/ or C/f → C/f , and the right vertical
map in each square is induced by the join comparison maps S ⋄K → S ⋆ K or K ⋄ S → K ⋆ S.

Proof. This is straightforward from the definitions of the enriched adjunction maps and the com-
parison maps for joins and slices. Explicitly, consider a map γ : X → Fun(K,Cf/) from some test
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object X, and follow it through the diagram. We are led to consider a diagram

X × S
proj

//
��

��

S��

�� f

��

X × (S ⋄K) //

idX ×α
��

S ⋄ (X ×K)

α×idX⋆K

��

X × (S ⋆ K) // S × (X ⋆K)
γ̃
// C

where maps labelled α are comparison maps from alternate join to join (60.1), the top square is the
pushout used to define enriched adjunction for alternate join/slice (59.6), and the rectangle is the
pushout used to define enriched adjunction for join/slice (59.8). The result follows exactly because
the lower square commutes. □

61.3. Equivalence of slice and alternate slice.

61.4. Proposition. For any quasicategory C and map f : S → C, the comparison maps Cf/ → Cf/

and C/f → C/f are categorical equivalences.

Proof. [Lur09, 4.2.1.5] We do the first case. First recall that if f : A → B is a functor be-
tween quasicategories, then f is a categorical equivalence if and only if the induced maps
π0

(
Fun(X,A)core

)
→ π0

(
Fun(X,B)core

)
are bijections for all simplicial sets X (27.14)(4).

We refer to the left-hand commutative square of (61.2). We know that the bottom horizontal map
is an isomorphism (59.6). By (59.9) the top map is a bijection on isomorphism classes of objects.
By (60.2) αS ⋄K → S ⋆K is a categorical equivalence, and therefore the right-hand vertical map in
the commutative square is a categorical equivalence using (50.14).

Therefore, both of the horizontal maps and the right-hand vertical map induce bijections on
isomorphism classes of objects, and hence so does the left-hand vertical map. Since this holds for
every simplicial set K, it follows that Cf/ → Cf/ is a categorical equivalence by the criterion of
(27.14)(4). The proposition is proved. □

61.5. Corollary. For any quasicategory C map f : S → C, and simplicial set X, the enriched
adjunction maps Fun(X,Cf/)→ FunS/(S ⋆X,C) and Fun(X,C/f )→ FunS/(X ⋆S,C) for join/slice
are categorical equivalences.

Proof. Immediate from the proof of (61.4) □

61.6. Slices as fibers of cone-restriction. As a consequence, we obtain another variant of the
slice construction. Let C be a quasicategory and S a simplicial set, and consider the forgetful
functors

p : Fun(S▷, C)→ Fun(S,C), q : Fun(S◁, C)→ Fun(S,C).

For a given map f : S → C, the fibers of p and q over the vertex of Fun(S,C) corresponding to f
are precisely the relative function complexes FunS/(S

▷, (C, f)) and FunS/(S
◁, (C, f)). These fibers

are in fact equivalent to the evident slice categories.

61.7. Corollary. For any map f : S → C to a quasicategory, we have commutative squares

Cf/
//

��

FunS/(S
▷, (C, f))

��

C/f
//

��

FunS/(S
◁, (C, f))

��

Cf/
≈
// FunS/(S ⋄∆0, (C, f)) C/f

≈
// FunS/(∆

0 ⋄ S, (C, f))
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in which the lower horizontal maps are isomorphisms, the top horizontal maps are bijections on sets
of objects, and every map is a categorical equivalence.

Proof. These are just the commutative squares of (61.2) with K = ∆0, together with (61.4) and
(61.5). □

62. Properties of the alternate slice

Recall that given a sequence of maps K
i−→ L

f−→ C
p−→ D where i is a monomorphism and p an

inner fibration, the induced pullback-slice maps Cf/ → Cfi/×Dpfi/
Dpf/ and C/f → C/fi×D/pfi

D/pf

are left fibration and right fibration respectively (32.14), and therefore in particular are conservative
isofibrations (34.7) (34.14). Furthermore, they are trivial fibrations if either p is a trivial fibration
or if i is right or left anodyne respectively (32.14). We will show that the alternate pullback-slice
maps share these properties, at least when C and D are quasicategories.

62.1. Proposition. Let p : C → D be an inner fibration between quasicategories. Then for any object
x ∈ C0, the evident induced map p′ : Cx/ → C×DD

px/ is a left fibration, and p′′ : C/x → C×DD
/px

is a right fibration.

Proof. We deal with the case of p′, as the case of p′′ is similar. Since p′ is a base-change of p□(∂∆1⊂∆1),
it is an inner fibration. To produce a lift in the left-hand square of

Λn
0

//

��

��

Cx/ //

p′

��

Fun(∆1, C)

p□(∂∆1⊂∆1)

��

∆n //

::

C ×D Dpx/ // Fun(∂∆1, C)×Fun(∂∆1,D) Fun(∆
1, D)

for n ≥ 1, it suffices to produce a lift in the large rectangle. This lifting problem is equivalent to
one of the form

{0} ×∆{0,1} // //

f

))
(∂∆1 ×∆n)×∂∆1×Λn

0
(∆1 × Λn

0 ) t //

��

��

C

p

��

∆1 ×∆n //

55

D

in which the map t sends {0} ×∆n to {x} ⊆ C, so that in particular f represents 1x in C. The
claim follows from the following (62.2).

□

62.2. Lemma (Another pushout-product version of Joyal lifting). Let p : C → D be an inner
fibration between quasicategories. Then if n ≥ 0, and for either: (i) (x, y) = (0, 0), {a, b} = {0, 1},
or (ii) (x, y) = (1, n), {a, b} = {n− 1, n}, a lift exists in any diagram of the form

{x} ×∆{a,b} // //

f

))
(∂∆1 ×∆n)×∂∆1×Λn

y
(∆1 × Λn

y ) //

��

��

C

p

��

∆1 ×∆n //

55

D

such that f represents an isomorphism in C.

Proof. We give a proof in the appendix as another application of Joyal lifting (78.8). □
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As a special case (i.e., if D = ∆0), we learn that for a quasicategory C we get a left fibration

Cx/ → C and a right fibration C/x → C, which are therefore both conservative isofibrations.
In fact, we have the same property for the general alternate pullback slice map.

62.3. Corollary. Consider a sequence K
i−→ L

f−→ C
p−→ D where i is a monomorphism and p

is an inner fibration between quasicategories. Then the alternate pullback slice map p′ : Cf/ →
Cfi/×Dpfi/ Dpf/ is a left fibration and the alternate pullback slice map p′′ : C/f → C/fi×D/pfi D/pf

is a right fibration. In particular, both p′ and p′′ are conservative isofibrations.

Proof. We consider the slice-under case. Consider the pullback-hom map q := p□i : U → V . This is
an inner fibration by (22.2). Thus for any object u ∈ U0 the induced map q′ : Uu/ → U ×V V

qu/ is
a left fibration (62.1). The claim follows because p′ is a basechange of q′ (58.8). □

We note the following special case.

62.4. Corollary. For a sequence K
i−→ L

f−→ C where i is a monomorphism and C is a quasicategory,
the restriction functor Cf/ → Cfi/ is a left fibration and C/f → C/fi is a right fibrations, hence
both are conservative isofibrations.

Proof. Immediate from (62.3) (where D = ∆0), and (34.7) and (34.14). □

This means that for any sequence K
i−→ L

f−→ C
p−→ D as in (62.3), the targets of the alternate

pullback slice maps p′ and p′′ are not merely pullbacks, but good pullbacks in the Joyal model
strucutre. Thus the equivalence between slice and alternate slice extends to the target of the
pullback-slice maps.

62.5. Proposition. Consider a sequence K
i−→ L

f−→ C
p−→ D where i is a monomorphism and p is

an inner fibration between quasicategories. Then the horizontal maps in the commutative squares

Cf/
//

��

Cf/

��

C/f
//

��

C/f

��

Cfi/ ×Dpfi/
Dpf/

// Cfi/ ×Dpfi/ Dpf/ C/fi ×D/pfi
D/pf

// C/fi ×D/pfi D/pf

induced by the comparison between slice and alternate slice are all categorical equivalences. In
particular, under these hypotheses the slice-pullback map is a categorical equivalence (and hence
a trivial fibration) if and only if the corresponding alternate slice-pulllback map is a categorical
equivalence (and hence a trivial fibration).

Proof. The first statement is immediate from the categorical equivalence of slice and alternate slice
(61.4) once we see that the pullbacks along the bottom row are all good pullbacks with respect to
the Joyal model structure, and hence homotopy pullbacks, so that we may apply (51.9). The final
statement is a consequence of 2-out-of-3 (27.11), and the fact that the pullback-slice and alternate
pullback-slice maps are isofibrations and so are categorical equivalence if and only if they are trivial
fibrations (40.8). □

62.6. Corollary. Consider a sequence K
i−→ L

f−→ C
p−→ D where i is a monomorphism and F 8 Apr

p : C → D is an inner fibration between quasicategories. If i is right anodyne then the alternate
pullback-slice map Cf/ → Cfi/ ×Dpfi/ Dpf/ is a trivial fibration, and if i is left anodyne then the

alternate pullback-slice map C/f → C/fi ×D/pfi D/pf is a trivial fibration.

Proof. Immediate from (62.5) and the corresponding facts for the corresponding pullback-slice maps
(32.14). □
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We will often combine the above with the following.

62.7. Proposition. For any monomorphism j : K → L of simplicial sets, the map ∆0 ⋆j : K◁ → L◁

is left anodyne, and the map j ⋆∆0 : K▷ → L▷ is right anodyne.

Proof. We prove the first case. Note that for any map p : C → D of simplicial sets, we have that
(∆0⋆j)�p if and only if j�(Cx/ → Dpx/) for all vertices x ∈ C0. Since (LHorn,LFib) is a factorization

system, we see that that the class of maps j such that j ⋆∆0 is weakly saturated, so it suffices to show
that the cell inclusions have this property. But we know that ∆0⋆(∂∆n ⊂ ∆n) = (Λn+1

0 ⊂ ∆n+1). □

In particular, inclusions {v} ⊆ L◁ and {v} ⊆ L▷ are left anodyne and right anodyne respectively.
As a consequence we get the following, which says that slices under a left cone or over a right

cone are equivalent to the corresponding slices under or over the “cone point”.

62.8. Corollary. For any map f̂ : S▷ → C to a quasicategory, the restriction maps C
f̂/
→ C

f̂(v)/

and C f̂/ → C
f̂(v)/

induced by restriction along the inclusion of the cone point of S▷ are trivial

fibrations. Likewise, for any map ĝ : S◁ → C to a quasicategory, the restriction maps C/ĝ → C/ĝ(v)

and C/ĝ → C/ĝ(v) induced by restriction along the inclusion of the cone point of S▷ are trivial
fibrations.

As a consequence, for each c ∈ C0 the induced maps

mapFun(S▷,C)(f̂ , π̃S▷c)→ mapC(f̂(v), c) and mapFun(S◁,C)(π̃S◁c, ĝ)→ mapC(c, ĝ(v))

are equivalences.

Proof. We do the case of f̂ . By (62.7) the inclusion {v} → S▷ is right anodyne. Hence the restriction

map C
f̂/
→ C

f̂(v)/
is a trivial fibration by (32.14), and C f̂/ → C f̂(v)/ is a trivial fibration by (62.6).

The equivalence of mapping spaces is immediate from (58.7) and the fact that all restriction maps
to C are isofibrations. □

Part 11. More on limits and colimits

63. Limits, colimits, and mapping spaces

63.1. Pushout products and right and left anodyne maps. Recall that InnHorn□Cell ⊆
InnHorn (21.8) and Horn□Cell ⊆ Horn (??). We have an analogous fact for left or right anodyne
maps, which in fact implies both prior results.

63.2. Proposition. We have that LHorn□Cell ⊆ LHorn and RHorn□Cell ⊆ RHorn.

Proof. This is a calculation. See the appendix (78). □

Therefore we have versions of enriched lifting which apply in this case.

63.3. Corollary.

(1) If p : X → Y is a left fibration and j : K → L is a monomorphism, then p□j is a left fibration.
If furthermore j is left anodyne, then p□j is a trivial fibration.

(2) If p : X → Y is a right fibration and j : K → L is a monomorphism, then p□j is a right
fibration. If furthermore j is right anodyne, then p□j is a trivial fibration.

63.4. Fiberwise criterion for trivial fibrations, revisited. We note the following “fiberwise”
criterion for a left or right fibration to be a trivial fibration (and hence a categorical equivalence),
analogous to the one we proved for isofibrations to quasigroupoids (47.1). Recall that the fibers of
any left or right fibration between simplicial sets are Kan complexes.

63.5. Proposition. Let p : X → Y be either a left or right fibration of simplicial sets. Then p is a
trivial fibration if and only if it has contractible fibers.
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Proof. [Lur09, 2.1.3.4]. We consider the case of a left fibration, and note that the direction (=⇒) is
imediate.

Suppose given a left fibration p with contractible fibers. We will show that (∂∆n ⊂ ∆n) � p for
all n ≥ 0, by a variant of the covering homotopy extension technique we used to prove (47.1), to
“deform” a given lifting problem to one which lives in a single fiber.

As in the proof of (47.1) we consider a lifting problem of type (∂∆n ⊂ ∆n) � p, i.e., a vertex
(a, b) ∈ Fun(∂∆n, X)×Fun(∂∆n,Y ) Fun(∆

n, Y ). Let γ : ∆n ×∆1 → ∆n be the unique map given on
vertices by γ(k, 0) = k and γ(k, 1) = n, so that γ represents a natural transformation id∆n → ⟨n · · ·n⟩
of functors ∆n → ∆n. Then there exists a lift u in

∂∆n × {0} a //

��

��

X

p

��

∂∆n ×∆1 // //

u

33

∆n ×∆1
γ
// ∆n

b
// Y

since LHorn□Cell ⊆ LHorn (63.2) so ∂∆n{0} ⊂ ∂∆n ×∆n is left anodyne. The lower right triangle
represents an edge e in Fun(∂∆n, X)×Fun(∂∆n,Y ) Fun(∆

n, Y ) connecting the vertex e0 = (a, b) to a
vertex e1 = (a′, b′), where b′ = bγ|∆n × {1} factor as ∆n → {b(n)} → Y . As the lifting problem
(a′, b′) lives in a single fiber, by hypothesis it admits a solution t : ∆n → X.

Thus we have a solid arrow commutative diagram

(∂∆n ×∆1) ∪∂∆n×{1} (∆
n × {1})

(u,t)
//

��

��

X

p

��

∆n ×∆1

bγ
//

s

44

Y

If we can produce a lift s, then the restriction s|∆n × {0} is the desired solution to the original
lifting problem (a, b).

Form the diagram

(∂∆n ×∆1) ∪∂∆n×{1} (∆
n × {1})

g
//

��

��

(u,t)

((
C

h
//

p′

��

X

p

��

∆n ×∆1
γ

//

s′

44

∆n

b
// Y

where the right-hand square is a pullback. Observe that (i) p′ is a left fibration, and hence an inner
fibration, between quasicategories, and that (ii) γ sends the edge {n} ×∆1 to the degenerate edge
⟨nn⟩ in ∆n. Therefore g sends the edge {n} × ∆1 into the fiber of p′ over n ∈ (∆n)0, which is
isomorphic to the fiber of p over b(n), which is by hypothesis a contractible Kan complex. Thus,
g|{n} × ∆1 represents an isomorphism in the quasicategory C. Therefore the pushout-product
version of Joyal lifting (36.6) gives a lift s′, and so s := hs′ is the desired lift. □

63.6. Initial and terminal objects via mapping spaces. We can apply this fiberwise criterion
to pullback-slice maps or their alternate analogs, since these are often either left or right fibrations.
Using this we get a natural criterion for an object to be initial or terminal, in terms of spaces of
maps from or to the object.

63.7. Proposition. Let C be a quasicategory and x ∈ C0 an object of C.
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(1) The object x is initial in C if and only if for every object c ∈ C0 the mapping space mapC(x, c)
is contractible.

(2) The object x is terminal in C if and only if for every object c ∈ C0 the mapping space
mapC(c, x) is contractible.

Proof. I’ll prove case (1). Consider the commutative diagram

Cx/
γ

//

p
  

Cx/

q
~~

C

where p and q are the evident forgetful functors and γ is the comparison map. The object x is
initial if and only if p is a categorical equivalence (43.1), hence by 2-out-of-3 (27.11) if and only
if q is a categorical equivalence. Since q is a left fibration and thus an isofibration (34.14), this
is so if and only if q is a trivial fibration (40.8), and this is the case if and only if the fibers of q
are contractible (63.5). The claim follows because the fibers of q are precisely the mapping spaces
mapC(x, c) (58.3). □

63.8. Limits and colimits via mapping spaces. We have a similar result for general limits
and colimits, so that whether a cone is a colimit or limit is characterized in terms of the spaces of
natural transformations from or to constant functors.

63.9. Proposition.

(1) For any map f̂ : S▷ → C to a quasicategory with f̂ |S = f , the following are equivalent.

(a) The slice restriction functor C
f̂/
→ Cf/ is a trivial fibration, i.e., f̂ is a colimit cone.

(b) The slice restriction functor C
f̂/
→ Cf/ is a categorical equivalence.

(c) The alternate slice restriction functor C f̂/ → Cf/ is a trivial fibration.

(d) The alternate slice restriction functor C f̂/ → Cf/ is a categorical equivalence.
(e) For each object c ∈ C0, the restriction map

mapFun(S▷,C)(f̂ , π̃S▷c)→ mapFun(S,C)(f, π̃Sc)

is an equivalence, where π̃S▷ : C → Fun(S▷, C) and π̃S : C → Fun(S,C) are adjoints to
projection.

Furthermore, if any of these hold, restriction along {v} ⊆ S▷ gives an equivalence

mapFun(S,C)(f, π̃Sc)
∼−→ mapC(f̂(v), c).

(2) For any map ĝ : S◁ → C to a quasicategory with ĝ|S = f , the following are equivalent.
(a) The slice restriction functor C/ĝ → C/g is a trivial fibration, i.e., ĝ is a limit cone.
(b) The slice restriction functor C/ĝ → C/g is a categorical equivalence.

(c) The alternate slice restriction functor C/ĝ → C/g is a trivial fibration.

(d) The alternate slice restriction functor C/ĝ → C/g is a categorical equivalence.
(e) For each object c ∈ C0, the restriction map

mapFun(S◁,C)(π̃S◁c, ĝ)→ mapFun(S,C)(π̃Sc, g)

is an equivalence, where π̃S◁ : C → Fun(S◁, C) and π̃S : C → Fun(S,C) are adjoints to
projection.

Furthermore, if any of these hold, restriction along {v} ⊆ S◁ gives an equivalence

mapFun(S,C)(π̃Sc, g)
∼−→ mapC(c, ĝ(v)).

Proof. We prove case (1), following the same strategy as the proof of (63.7). The equivalence of
(a)–(d) is straightforward using (62.5) to compare pullback-slices with alternate pullback-slices,
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and the fact that each of the maps is an isofibration. For the equivalence with (e) we refer to the
diagram of pullback squares (58.7)

mapFun(S▷,C)(f̂ , π̃S▷c)
pc
//

��

��

mapFun(S,C)(f, π̃Sc) //

��

��

{c}
��

��

C f̂/
p

// Cf/ // C

Any vertex of Cf/ is contained in are contained in mapFun(S,C)(f, π̃Sc) for some c ∈ C0, so we deduce

from the fiberwise criterion (63.5) that p is a trivial fibration if and only if each pc is a trivial fibration.
This is the case if and only if each pc is a categorical equivalence, since each pc is a pullback of the left

fibration p (62.4) and so is an isofibration. The final claim that mapFun(S,C)(f, π̃Sc) ≈ mapC(f̂(v), c)

if f̂ is a colimit cone is immediate from (62.8). □

63.10. Limits and colimits in quasicategories vs. homotopy limits and colimits in sim-
plicial sets. We can sometimes use the mapping-space criterion for limits/colimits to convert the
property of being a limit/colimits in a quasicategory to a question about homotopy limits/colimits
in simplicial sets.

For instance, let S be a set, corresponding to a discrete simplicial set which I also call S. For
each s ∈ S = S0, write is : ∆

1 ≈ {s}▷ → S▷ for the evident inclusion, so that we get commutative
diagrams

Fun({v}, C)

≈
��

Fun(S▷, C)oo //

i∗s
��

Fun(S,C)

{s}∗

��

C Fun(∆1, C)
⟨0⟩∗

oo

⟨1⟩∗
// C

where all the maps are induced by restriction, and note that Fun(S,C) ≈
∏

s∈S C.

Given a functor f̂ : S▷ → C with restriction f = f̂ |S : S → C, and an object c ∈ C0 with
corresponding constant functor π̃S▷c : S▷ → C, evaluating the above diagram on mapping spaces
gives us

mapC(f̂(v), c) mapFun(S▷,C)(f̂ , π̃S▷c)
∼oo α //

∼
��

∏
s∈S

mapC(f(s), c)

��

mapC(f̂(v), c) mapFun(∆1,C)(f̂ is, π̃∆1c)∼
oo

βs

// mapC(f(s), c)

where the maps indicated “∼” are equivalences by (??) and 2-out-of-3, since {v} ⊂ S▷ and {0} ⊂ ∆1

are left anodyne.

The mapping space criterion for colimits says that f̂ is a colimit cone (i.e., a coproduct in C) if
and only if the map α is an equivalence, . . .

64. Functoriality of limits and colimits

Let S be a simplicial set and C a quasicategory, and consider the functor p : Fun(S▷, C) → M 11 Apr
Fun(S,C) induced by restriction along S ⊂ S▷. Let us consider the following diagram.

Funcolim(S▷, C) // //

p′

��

Fun(S▷, C)

p

��

e // C

Fun∃ colim(S,C) // // Fun(S,C)
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Here Funcolim(S▷, C) denotes the full subcategory of Fun(S▷, C) spanned by f̂ : S▷ → C which are
colimit cones, and Fun∃ colim(S,C) denotes the full subcategory of Fun(S,C) spanned by f : S → C
which admit an extension to a colimit cone. The functor p′ is the evident restriction of p, and is
necessarily surjective on objects. The functor e is defined by evaluation at the cone point of S▷.

By a colimit cone functor, we mean a section s of the the functor p′, i.e., a functorial assignment colimit cone functor

of a colimit cone f̂ extending each functor f which admits a colimit. If such a colimit functor exists,
then we can compose it with restriction to the cone point: the resulting composite will be a functor
Fun∃ colim(S,C)→ C, which we will call a colimit functor. In particular, in the happy situation colimit functor

that every f : S → C admits a colimit cone, so that Fun∃ colim(S,C) = Fun(S,C), we get a functor

colimS : Fun(S,C)→ C.

The colimit cone functor always exists, and is essentially unique, because of the following fact, which
we will prove as (69.13): the restriction functor p′ : Funcolim(S▷, C)→ Fun∃ colim(S,C) is a trivial
fibration. As a consequence, p′ has a contractible Kan complex of sections, and any of these sections
is a colimit cone functor.

Of course, there is an analogous series of definitions and results involving limits, whose statement
we leave for the reader.

64.1. Exercise. Show that if C is an ordinary category, the functor p′ is fully faithful, and hence is a
trivial fibration since it is surjective on objects.

We might want to prove our result by showing that p′ is fully faithful when C is any quasicategory.

The mapping space criterion for colimits tells us only that mapFun(S▷,C)(f̂ , ĝ)→ mapFun(S,C)(f̂ |S , ĝ|S)
is an equivalence for a colimit cone f̂ when ĝ is a constant functor π̃S▷c. So the idea of the proof is
to show that having equivalences for constant ĝ gives equivalences for general ĝ.

To set up the proof, we first need to understand the fibers of the restriction p : Fun(S▷, C)→
Fun(S,C). Given f : S → C, we have the following diagram, in which both squares are pullbacks.

Cf/
α // p−1(f)

β
//

��

��

Cf/ //
��

��

{f}
��

��

Fun(S▷, C)
r //

p

44
Fun(S ⋄∆0, C)

q
// Fun(S,C)

Here p = qr, q, and r are the evident maps induced by restriction along S → S ⋄∆0 → S ⋆∆0.
Since both p and q are induced by restriction along an isomorphism they are isofibrations (39.6).
Since S ⋄∆0 → S ⋆∆0 is a categorical equivalence (60.2) so is r. Furthermore, both maps α and
β are categorical equivalences: note that p−1(f) = FunS/ S

▷, (C, f) as in (61.7), and that α is a
bijection on objects.

64.2. Lemma. A map f̂ : S▷ → C is a colimit cone if and only if it is an initial object of the fiber

p−1(f) of p : Fun(S▷, C)→ Fun(S,C), where f = f̂ |S.

Proof. Apply the fact that initial objects are invariant under equivalences (43.5) to β. □

65. Relative initial and terminal objects

Let p : C → D be an inner fibration of quasicategories. We say that an object x ∈ C0 is p-initial p-initial
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if a lift exists in every commutative diagram of the form

{0} //

x

((
∂∆n u //
��

��

C

p

��

∆n
v
//

==

D

with n ≥ 1, and with u(0) = x. Similarly, the object is p-terminal if a lift exists in every p-terminal

commutative diagram of the form

{n} //

x

((
∂∆n u //
��

��

C

p

��

∆n
v
//

==

D

with n ≥ 1, and with u(n) = x.

65.1. Example. For the projection p : C → ∆0, being p-initial or p-terminal is the same as being
initial or terminal in C.

The property of an object being relatively initial or terminal is closed under basechange.

65.2. Lemma. Consider a pullback square of quasicategories

E′
f
//

p′

��

E

p

��

B′ // B

in which p is an inner fibration, and let x ∈ E′0. If f(x) is p-initial then x′ is p′-initial, and if f(x)
is p-terminal then x′ is p′-terminal.

In particular, if y ∈ E0 is p-initial/p-terminal, then it is initial/terminal in the fiber quasicategory
p−1(py) = {y} ×B E.

Proof. The first statement is immediate from the definition, and the second statement is a special
case of the first. □

65.3. Example (Initial in fiber does not imply relative initial). The map p : ∂∆1 → ∆1 is an inner
fibration of categories, such that the object 0 is initial in its fiber but is not p-initial.

65.4. Proposition. Let p : C → D be an inner fibration of quasicategories, and let x ∈ C0. Then
the following are equivalent.

(1) The object x is p-initial.
(2) The pullback-slice map Cx/ → C ×D Dpx/ is a trivial fibration.

(3) The alternate pullback-slice map Cx/ → C ×D Dpx/ is a trivial fibration.
(4) For each c ∈ C0, the map mapC(x, c)→ mapD(px, pc) induced by p is an equivalence.

Proof. The equivalence of (1) and (2) is an immediate consequence of the join/slice adjunction, as
in (31.3). The equivalence of (2) and (3) is immediate from (62.5). The equivalence of (3) and
(4) is a consequence of the fiberwise criterion for trivial fibrations (63.5) (because the alternate

pullback-slice map q : Cx/ → C ×D Dpx/ is a left fibration (62.3)), and the fact that the induced
map mapC(x, c)→ mapD(px, py) is precisely the map induced by q on fibers over c ∈ C0 (58.3). □
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Given an inner fibration p : C → D between quasicategories, we consider the following commutative
diagram

Cp init // //

p′
��

C

p

��

D∃p init // // D

where Cp init ⊆ C is the full subcategory spanned by p-initial objects, and D∃p init ⊆ D is the full
subcategory spanned by objects which are the image of some p-initial object in C. The functor p′ is
the evident restriction of p, which by construction is surjective on objects.

65.5. Proposition. If p : C → D is an inner fibration between quasicategories, the restricted functor
p′ : Cp init → D∃p init is a trivial fibration.

Proof. We want (∂∆n ⊂ ∆n)� p′ for all n ≥ 0. When n = 0 this is by definition, while if n ≥ 1 is is
an immediate consequence of the fact that all objects in Cp init are p-initial. □

We will apply this to the restriction functor p : Fun(S▷, C) → Fun(S,C). Thus, to prove the
existence of a colimit cone functor, it will suffice to prove that every object in Fun(S▷, C) which is
initial in its fiber over p (i.e., is a colimit cone) is in fact p-initial, after which we can apply (65.5).

66. Cartesian and coCartesian morphisms

Consider a map p : E → B between simplicial sets. An edge f : x → y in E is said to be
p-Cartesian edge (or a p-Cartesian morphism if E and B are quasicategories) if a lift exists in p-Cartesian edge

p-Cartesian morphismevery square of the form

∆{n−1,n} // //

f

))
Λn
n

//

��

��

E

p

��

∆n //

??

B

with n ≥ 1, i.e., if we can lift every right-horn whose trailing edge maps to f . Likewise, f is said to
be a p-coCartesian edge (or a p-coCartesian morphism if E and B are quasicategories) if a p-coCartesian edge

p-coCartesian mor-
phism

lift exists in every square of the form

∆{0,1} // //

f

((
Λn
0

//

��

��

E

p

��

∆n //

??

B

with n ≥ 1, i.e., if we can lift every left-horn whose leading edge maps to f .

66.1. Remark. In [Lur09, 2.4.1], Lurie makes it a precondition for an edge to be Cartesian or
coCartesian that the map p be an inner fibration; however, he drops this condition in [Lur21,
Definition 01T5]. In practice, it is rarely useful to consider this notion when p is not at least an
inner fibration.

66.2. Example. If p : E → B is an inner fibration, then it is a left fibration if and only if every edge
in E is p-coCartesian, Likewise, it is a right fibration if and only if every edge in E is p-Cartesian.

The Joyal lifting theorem describes the Cartesian and coCartesian morphisms which project to
isomorphisms.

https://kerodon.net/tag/01T5


INTRODUCTION TO QUASICATEGORIES 159

66.3. Proposition. Let p : C → D be an inner fibration between quasicategories, and suppose f ∈ C1

is a morphism in C such that p(f) is an isomorphism in D. Then f is a p-Cartesian morphism if
and only if f is an isomorphism if and only if f is a p-coCartesian morphism.

Proof. Immediate from the statement of Joyal lifting (34.17). □

66.4. Lemma. Let C
p−→ D

q−→ E be a sequence of maps of simplicial sets, and let f ∈ C1 be an edge
of C. If (i) f is p-Cartesian, and (ii) p(f) is q-Cartesian, then f is qp-Cartesian. Likewise, if (i’)
f is p-coCartesian, and (ii’) p(f) is q-coCartesian, then f is qp-Cartesian.

Proof. Straightforward from the defintions. □

66.5. Lemma. Let
C ′

u //

p′

��

C

p

��

D′ // D

be a pullback square of simplicial sets, and let f ∈ C ′1 be an edge in C ′. If u(f) is p-Cartesian then
f is p′-Cartesian, and if u(f) is p-coCartesian then f is p′-coCartesian.

Proof. Straightforward from the definitions. □

66.6. Characterizations of Cartesian and coCartesian edges. We have a number of charac-
terizations of Cartesian and coCartesian edges, which I’ll state in the Cartesian case.

66.7. Proposition. Let p : E → B be a map of simplicial sets, and f ∈ E1 an edge with x = f0, y =
f1 ∈ E0. Then f is a p-Cartesian edge if and only if the pullback-slice map E/f → E/y ×B/py

B/pf

is a trivial fibration.

Proof. This amounts to the the equivalence of lifting problems

∂∆n //
��

��

Ef/

��

∆n //

88

Ex/ ×Bpx/
Bpf/

⇐⇒
∅ ⋆∆1 // //

f

++(∂∆n ⋆∆1) ∪ (∆n ⋆ {1})
��

j
��

// E

p

��

∆n ⋆∆1 //

66

B

where j is isomorphic to Λn+2
n+2 ⊂ ∆n+2. □

66.8. Proposition. Let p : E → B be an inner fibration of quasicategories, and f ∈ E1 an edge with
x = f0, y = f1 ∈ E0. Then f is a p-Cartesian edge if and only if the alternate pullback-slice map
E/f → E/y ×B/py B/pf is a trivial fibration.

Proof. Deduce from the pullback-slice case (66.7) using (62.5) to compare the two types of pullback-
slice map. □

66.9. Proposition. Let p : E → B be an inner fibration of quasicategories. Then a morphism
f : x→ y in E is a p-Cartesian morphism if and only if it corresponds to a q-terminal object for
the slice restriction functor q : E/y → B/py, if and only if it corresponds to a q′-terminal object for

the alternate slice restriction functor q′ : E/y → B/py.

Proof. The first part is a consquence of the equivalence of lifting problems

{n} // //

f

))
∂∆n //
��

��

Ey/

q

��

∆n //

<<

Bpy/

⇐⇒
∅ ⋆∆0 // //

f

**∂∆n ⋆∆0
��

j
��

// E

p

��

∆n ⋆∆0 //

::

B
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where j is isomorphic to Λn+1
n+1 ⊂ ∆n+1. Deduce the second part from the first using (62.5). □

66.10. Mapping space criterion for (co)Cartesian morphisms.

66.11. Lemma. Let C be a quasicategory, f : x → y a morphism in C, and c ∈ C0 an object. W 13 Apr
Consider the diagrams

mapC(c, x)
r←− mapFun(∆1,C)(1c, f)

r′−→ mapC(c, y)

and

mapC(x, c)
r′←− mapFun(∆1,C)(f, 1c)

r−→ mapC(y, c)

in which 1c, f ∈ C1 are regarded in an evident way as objects of Fun(∆1, C), and the maps are
induced by the evident restrictions to subcomplexes of ∆1. Then the maps marked r′ are Kan
fibrations, and the maps marked r are trivial fibrations.

Proof. I’ll prove the claims for the first diagram. We have a commutative square of alternate slices

C/f q′
//

q
��

C/y

��

C/x // C

where each map is induced by restriction to the evident subcomplex of ∆1. Furthermore, the map
q′ is a right fibration (62.4) and the map q is a trivial fibration (66.7). Taking the fiber over c ∈ C0

of each map to C in this diagram gives the zig-zag in the statement of the lemma, and the claim
follows since being a trivial fibration or right right fibration is preserved under base change, and
right fibrations between Kan complexes are Kan fibrations. □

Given a functor p : C → D of quasicategories, we get an induced commutative diagram of
quasigroupoids

mapC(c, x)

��

mapFun(∆1,C)(1c, f)
∼oo //

��

mapC(c, y)

��

mapD(pc, px) mapFun(∆1,D)(1pc, pf)∼
oo // mapD(pc, py)

in which the left-pointing arrows are equivalences. Furthermore, if p is an inner fibration then the
vertical arrows are Kan fibrations.

66.12. Exercise. Let p : C → D be a functor of ordinary categories, and let f : x→ y be a morphism
in C. Show that f is p-Cartesian if and only if for every object c of C, the square

homC(c, x)
f◦−

//

p

��

homC(c, y)

p

��

homD(pc, px)
pf◦−

// homD(pc, py)

is a pullback of sets.

66.13. Proposition. Let p : C → D be an inner fibration between quasicategories, and let f : x→ y
be a morphism in C.

The morphism f is p-Cartesian if and only if for every c ∈ C0 the right-hand square in
the above diagram is a homotopy pullback, i.e., if mapFun(∆1,C)(1c, f) → mapC(c, y) ×mapD(pc,py)

mapFun(∆1,D)(1pc, pf) is an equivalence.
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Proof. (Based on [Lur09, 2.4.4.3].) Recall that f is p-Cartesian if and only if the alternate pullback

slice map q : C/f → C/y ×D/py D/pf is a trivial fibration (66.8). Note that since p is an inner
fibration of quasicategories the map q is a right fibration (62.3), and therefore is a trivial fibration if
and only if it has contractbile fibers (63.5).

For each c ∈ C0 both squares in

{c} ×C C
/f qc

//

��

��

({c} ×C C
/y)×{pc}×DD/py ({py} ×D D/pf ) //

��

��

{c}
��

��

C/f
q

// C/y ×D/py D/pf // C

are pullbacks. Thus to show that q has contractible fibers it suffices to show that each qc (which is
also a right fibration) has contractible fibres. But qc is isomorphic to the map

mapFun(∆1,C)(1c, f)→ mapC(c, y)×mapD(pc,py) mapFun(∆1,D)(1pc, pf),

which is we wanted to prove is an equivalence. □

67. Cartesian and coCartesian fibrations

A map p : C → D is a Cartesian fibration if it is an inner fibration and if for every diagram of Cartesian fibration

the form
{1} //

��

��

C

p

��

∆1 //

f

>>

D

a lift exists such that f represents a p-Cartesian edge. Likewise p is a coCartesian fibration if it coCartesian fibration

is an inner fibration and if for every diagram of the form

{0} //

��

��

C

p

��

∆1 //

f

>>

D

a lift exists such that f represents a p-coCartesian edge.

67.1. Example. Every left fibration between simplicial sets is a coCartesian fibration, and every
right fibration between simplicial sets is a Cartesian fibration.

67.2. Example. Every Cartesian fibration and coCartesian fibration between quasicategories is
an isofibration. The point is that if p : C → D is an inner fibration of quasicategories, then the
p-Cartesian and p-coCartesian morphisms of C which map to isomorphisms to D are precisely the
isomorphisms in C (66.3).

In particular, if p : C → D is a map to a Kan complex D, then p is a Cartesian fibration if and
only if it is an isofibration (and thus also if and only if it is a coCartesian fibration).

Our first application of these notions is the following, which will be the key to our proof of
functoriality of limits and colimits.

67.3. Proposition. Suppose p : C → D is a Cartesian fibration between quasicategories. Then an
object c ∈ C0 is p-initial if and only if c is initial in its fiber p−1(pc).

Proof. We have already shown that if c is p-initial then it is initial in its fiber (65.2), so we only need
to prove the converse. Given c which is initial in its fiber, we want to show that for any y ∈ C0, the
map p′ : mapC(c, y)→ mapD(pc, py) induced by p is an equivalence. Since p is an inner fibration



INTRODUCTION TO QUASICATEGORIES 162

the map p′ is a Kan fibration (45.3), so by the fiberwise criterion (47.1) it suffices to show that the
fiber of p′ over any g : pc→ py is contractible.

Since p is a Cartesian fibration, we can choose a Cartesian morphism f : x→ y such that pf = g.
Now consider the diagram

mapC(c, x)

q0

��

mapFun(∆1,C)(1c, f)
rcoo

r′c //

q

��

mapC(c, y)

p′

��

mapD(pc, pc) mapFun(∆1,D)(1pc, g)rpc
oo

r′pc

// mapD(pc, py)

in which both squares are homotopy pullbacks by (66.13), and all three vertical maps are Kan
fibrations (45.3) since they are induced by inner fibrations between quasicategories. Suppose there
exists an object h of mapFun(∆1,D)(1pc, g) such that rpc(h) = 1pc and r′pc(h) = g. Then we get
induced maps on fibers

q−10 (1pc)← q−1(h)→ p′−1(g)

which are weak equivalences. Furthermore, the object q−10 (1pc) is exactly the mapping space
mapp−1(pc)(c, x) in the fiber category, which is contractible by the hypothesis that c is initial in its

fiber. Thus p′−1(g), the fiber of p′ over g, is also contractible as desired.
It is not hard to produce such an h, which will correspond to a map ∆1 ×∆1 → D which can be

pictured as

pc
1pc
//

1pc

�� !!

pc

g

��
pc g

// py

so that the labels on edges and vertices correspond to the constraints on h. For instance, we can
build such a map by sending both of the two pictured 2-cells to the degenerate cell g001 ∈ D2.

□

68. Relative initial and terminal objects for pullback-hom maps

We need to be able to produce examples of Cartesian and coCartesian morphisms in certain F 15 Apr
cases. Since such morphisms can be characterized in tems of relative terminal or inital objects, we
start with a method for producing these.

68.1. Relative terminal objects for pullback-hom maps. We will find examples of relative
terminal objects using the following.

68.2. Lemma. Let p : E → B be an inner fibration of quasicategories. In any commutative diagram

∆m × ∂∆n ∪ ∂∆m ×∆n r //
��

i
��

E

p

��

∆m ×∆n //

66

B

with m ≥ 0 and n ≥ 1, if r(m,n) ∈ B0 is a p-terminal object, then a lift exists.

Proof. Consider the skeletal filtration of i. The non-degenerate k-cells of ∆m × ∆n not in the
image of i are the pairs (a, b) where a : [k]→ [m] and b : [k]→ [n] are both surjective functions. In
particular k ≥ 1 since n ≥ 1. The restriction

∂∆k (a,b)|∂∆k

−−−−−−→ ∆m × ∂∆n ∪ ∂∆m ×∆n u−→ C
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to the boundary of ∆k sends the vertex k to the object r(m,n) ∈ E0, which is p-terminal by
hypothesis. Thus we can inductively construct a lift cell-by-cell along the skeletal filtration of i. □

68.3. Remark. Consider the pullback-hom map

q = p□(∂∆m⊂∆m) : Fun(∆m, E)→ Fun(∂∆m, E)×Fun(∂∆m,B) Fun(∆
m, B).

The lifting problem described in (68.2) amounts to asserting that a lift exists in

∂∆n r′ //
��

��

Fun(∆m, E)

q

��

∆n //

44

Fun(∂∆m, E)×Fun(∂∆m,B) Fun(∆
m, B)

whenever n ≥ 1 and r′(n) ∈ E0 is p-terminal. Thus, it implies that if f : ∆m → E is such that
f(m) ∈ E0 is p-terminal, then f corresponds to a q-terminal object of Fun(∆m, E).

Also note that if m ≥ 1, any object (u, v) in the target of q with the property that u(m) ∈ E0 is
p-terminal is the image of some p-terminal object f in the domain of q, as u(m) being p-terminal
is precisely what is needed to find a solution f to the lifting problem (u, v), and such a solution
necessarily satisfies f(m) = u(m) and so is q-terminal by the above remarks.

We will apply the above observation to produce relative terminal objects for more general kinds
of pullback-hom maps. Let i : K → L be a monomorphism of simplicial sets. Say that a vertex in
L is i-right critical if it is of the form an for some n ≥ 0 and some a ∈ Lnd

n ∖ i(Knd
n ). Likewise, i-right critical

a vertex is i-left critical if it is of the form a0 for some n ≥ 0 and some a ∈ Lnd
n ∖ i(Knd

n ). Note i-left critical

that the sets of i-right critical and i-left critical vertices include every vertex of the complement
L0 ∖ i(K0). The point of the definition is that, because of the skeletal filtration of i, we obtain L
from K by succesively attaching cells along maps ∂∆k → L such that the final vertex k is always
sent to an i-right critical vertex, and the intial vertex 0 is always sent to an i-left critical vertex.

68.4. Example. Consider the inclusions K
i−→ K ⋆ L

j←− L into the factors of the join. Then:

• all vertices are i-left critical and j-right critical,
• the i-right critical vertices are precisely those of L, and
• the j-left critical vertices are precisely those of K.

If instead we consider the inclusion γ : K ⨿ L→ K ⋆ L, then the γ-left critical vertices are precisely
those in K, and the γ-right critical vertices are precisely those in L.

The following gives a condition for detecting relative terminal objects in pullback-hom maps, via
“evaluation at i-right critical vertices”.

68.5. Proposition. Let p : E → B be an inner fibration of quasicategories, i : K → L a monomor-
phism of simplicial sets, and write q := p□i : Fun(L,E)→ Fun(K,E)×Fun(K,B) Fun(L,B) for the
pullback-hom map.

Consider a map f : L→ E, regarded as an object of Fun(L,E). If for each i-right critical vertex
s ∈ L0 the object f(s) ∈ E0 is p-terminal, then f is q-terminal.

Proof. To show that f is q-terminal, we need to produce a lift in every commutative square of the
form

{n} // //

f

((

∂∆n u //
��

��

Fun(L,E)

q

��

∆n

(v,w)
//

55

Fun(K,E)×Fun(K,B) Fun(L,B)
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with n ≥ 1 such that u(n) = f , using the hypothesis on f which says that u(n)(s) = f(s) ∈ E0 is
p-terminal for each i-right critical vertex s ∈ L0. Such a lifting problem is equivalent to one of the
form

K
ṽ //

��

i

��

Fun(∆n, E)

q′

��

L
(ũ,w̃)

//

44

Fun(∂∆n, E)×Fun(∂∆n,B) Fun(∆
n, B)

with the property that for each i-right critical vertex s ∈ L0, the object ũ(s)(n) ∈ E0 is p-terminal.
We construct such a lift inductively along the skeletal filtration of i (20.3), and thus reduce to the
special case when i is the inclusion ∂∆m → ∆m for some m ≥ 0, and we have that ũ(m)(n) ∈ E0

is p-terminal, exactly because for any σ ∈ Lnd
m ∖ i(Knd

m ) we have that σ(m) ∈ L0 is i-right critical.
This special case is in turn equivalent to the lifting problem solved by the lemma (68.2). □

The following uses the same idea to produce examples of relative terminal objects in pullback-hom
maps.

68.6. Proposition. Let p : E → B be an inner fibration of quasicategories, i : K → L a monomor-
phism of simplicial sets, and write q := p□i : Fun(L,E)→ Fun(K,E)×Fun(K,B) Fun(L,B) for the
pullback-hom map.

Consider an object (u, v) of Fun(K,E)×Fun(K,B) Fun(L,B). If

(a) u takes every i-right critical vertex in i(K) to a p-terminal object of E, and
(b) v takes every vertex in L∖ i(K) to an object of B which is the image of some p-terminal

object of E,

then there exists a q-terminal object f in Fun(L,E) such that q(f) = (u, v).

Proof. We will construct a lift in

K
u //

��

i
��

E

p

��

L v
//

f

>>

B

with the property that f(s) ∈ E0 is p-terminal for each right i-critical vertex s ∈ L0. By (68.5) this
lift wil correspond to the desired q-terminal object of Fun(L,E).

We construct such a lift inductively along the skeletal filtration of i : K → L (20.3). Thus, we
can reduce to the case when i is a cell inclusion ∂∆m → ∆m. When m = 0, the existence of such a
lift taking value at a p-terminal object is just hypothesis (b), while when m > 0, the existence of
such a lift sending the vertex m ∈ (∆m)0 to a p-terminal object is given by (a). □

68.7. Example. Let C be a quasicatategory, and conside the projection functor q : C ×C → C to the
second factor. If (x, y) is an object of C × C, then (x, y) is q-terminal if and only if x is terminal in
C. The if direction follows from the proposition (68.5) applied to p : C → ∗ and i : {1} → {0, 1},
since in this case q = p□i, while the only if direction follows because q-terminal objects are always
terminal in their fiber (65.2).

68.8. Example. Let C be a quasicategory, let i : ∂∆1 → ∆1, and consider the restriction functor
q = i∗ : Fun(∆1, C)→ Fun(∂∆1, C) = C ×C. Suppose f : x→ y is a morphism of C, considered as
an object of Fun(∆1, C).

Then if y is terminal in C then f is q-terminal, and if x is initial in C then f is q-initial.
Note that the converse is not true. For instance, if C is a poset, then you can show that every

object of Fun(∆1, C) is q-terminal.
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69. Cartesian and coCartesian morphisms for pullback-hom maps

69.1. Pullback-hom-map criterion for (co)Cartesian morphisms. As we have seen, coCarte-
sian/Cartesian morphisms correspond to relative intial/terminal objects for slice restrictions (66.9).
In fact, they also correspond to relative initial/terminal objects for pullback-hom maps.

69.2. Proposition. Let p : E → B be an inner fibration of quasicategories, and let f : x→ y be a
morphism in E. Then

(1) f is p-coCartesian if and only if f corresponds to a q-initial object in q : Fun(∆1, E) →
Fun({0}, E)×Fun({0},B) Fun(∆

1, B), where q = p□({0}⊂∆1) is the pullback-hom map, and

(2) f is p-Cartesian if and only if f corresponds to a q′-terminal object in q′ : Fun(∆1, E)→
Fun({1}, E)×Fun({1},B) Fun(∆

1, B), where q′ = p□({1}⊂∆1) is the pullback-hom map.

Proof. For the if direction we consider case (2), where we have a commutative diagram

E/y q
//

��

��

B/py //
��

��

{y}
��

��

Fun(∆1, E) q
// Fun({1}, E)×Fun({1},B) Fun(∆

1, B) // E

in which both squares are pullbacks. The morphism f corresponds to an object f̃ of E/y which maps

to the corresponding vertex f̃ ′ of Fun(∆1, E). By (66.9), it suffices to show that f̃ is q-terminal,
and this is immediate from the fact that q is a basechange of q (65.2).

For either (1) or (2), the only-if direction is immediate from (69.3) below. □

69.3. Proposition. Let p : E → B be an inner fibration of simplicial sets, and f an edge in E. We
consider commutative diagrams of the form

∆1 × {y} // //

f

,,({x} ×∆n) ∪{x}×∂∆n (∆1 × ∂∆n) //

��

��

E

p

��

∆1 ×∆n // B

(1) If f represents a p-coCartesian edge, then a lift exists in every such diagram with n ≥ 0 and
(x, y) = (0, 0).

(2) If f represents a p-Cartesian edge, then a lift exists in every such diagram with n ≥ 0 and
(x, y) = (1, n).

Proof. This is a calculation, given in the appendix (78.7). In fact, the proof is an immediate
generalization of the proof of the pushout-product form of Joyal lifting (36.6). □

To show that an inner fibration q : E → B is a Cartesian fibration, we need to be able to solve
lifting problems of the form

{1} u //

��

��

E

q

��

∆1
v
//

s

>>

B

so that the lift s represents a q-Cartesian edge. This admits a nice reformulation in terms of relative
initial or terminal objects.
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69.4. Lemma. Let q : E → B be an inner fibration of quasicategories. In a lifting problem (u, v) as
above (69.1), lifts s representing a q-Cartesian edge are in bijective correspondence with r-terminal
objects which map to (u, v), where

r := q□({1}⊂∆1) : Fun(∆1, E)→ Fun({1}, E)×Fun({1},B) Fun(∆
1, B).

In particular, q is a Cartesian fibration if and only if every vertex of the target of r is the image of
some r-terminal object in the source.

Proof. Straightforward: a vertex s such that r(s) = (u, v) is precisely a lift for the lifting problem,
and we have seen that s is r-terminal if and only if it corresponds to a q-Cartesian morphism
(69.2) □

69.5. Sufficient criteria for Cartesian morphisms in pullback-hom maps. We can now give
the following sufficient criterion for a morphism to be Cartesian for a pullback-hom map, in terms
of “restriction to right-critical vertices”.

69.6. Proposition. Let p : C → D be an inner fibration of quasicategories, and let i : K → L be
a monomorphism of simplicial sets. Write q := p□i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D)
for the pullback-hom map.

If α : f → f ′ is a morphism in Fun(L,C) such that for each i-right critical vertex s ∈ L0, the
restriction α(s) : f(s)→ f ′(s) is a p-Cartesian morphism in C, then α is a q-Cartesian morphism.

Proof. Write q′ := p□({1}⊂∆1) : Fun(∆1, C) → Fun({1}, C) ×Fun({1},D) Fun(∆
1, D). Observe that

since q = p□i is itself a pullback-hom map, we have isomorphisms of maps

q□({1}⊂∆1) ≈ pi□({1}⊂∆1) ≈ q′□i.

We are going to make several uses of (69.2), which says that q-Cartesian morphisms correspond to

q□({1}⊂∆1)-terminal objects, where q is a general inner fibration of quasicategories.
For instance, we see that our α is q-Cartesian if and only if it corresponds to a relative terminal

object for r := q□({1}⊂∆1), which is isomorphic to r′ := q′□i. Thus it suffices to apply the criterion of
(68.5) to the object α̃ of Fun(L,Fun(∆1, C)) (the domain of r′) which corresponds to the object α
of Fun(∆1,Fun(L,C)). This criterion asserts that α̃ is r′-terminal if for every i-right critical vertex
s ∈ L0, the object α̃(s) of Fun(∆1, C) is q′-terminal. Or in other words, again (69.2), we need to
show that the edge of C represented by the map α̃(s) : ∆1 → C is p-Cartesian. This is precisely the
hypothesis we are given. □

The following gives a sufficient criterion for lifting morphisms to Cartesian morphisms for M 18 Apr
pullback-hom maps.

69.7. Proposition. Let p : C → D be an inner fibration of quasicategories, and let i : K → L be
a monomorphism of simplicial sets. Write q := p□i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D)
for the pullback-hom map.

Consider a commutative square

{1} u //

��

��

Fun(L,C)

q

��

∆1

(v,w)
//

t

55

Fun(K,C)×Fun(K,D) Fun(L,D)

Suppose

(a) v(s) ∈ C1 is p-Cartesian for each i-right critical vertex s ∈ K0, and
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(b) for each vertex s in L∖ i(K), there exists a lift t(s) in

{1}
u(s)

//

��

��

C

p

��

∆1

w(s)
//

t(s)

::

D

which represents a p-Cartesian morphism.

Then there exists a lift t in the diagram above which represents a q-Cartesian morphism.

Proof. As in the proof of (69.7), we refer to an adjunction of lifting problems. A lift t in the square
of the proposition is equivalent to a lift t̃ in the square

K��

��

ṽ // Fun(∆1, C)

q′

��

L
(ũ,w̃)

//

t̃

55

Fun({1}, C)×Fun({1},D) Fun(∆
1, D)

where q′ = p□({1}⊂∆1). Furthermore, t represents a q-Cartesian morphism if and only if t̃, regarded
as a vertex of Fun(L,Fun(∆1, C)), is an r′-terminal vertex for r′ = q′□i. According to the criterion
of (68.6), to show that the desired lift t̃ exists, we should show

(a) ṽ takes each i-right critical vertex in i(K) to a q′-terminal object of Fun(∆1, C), and
(b) (ũ, w̃) takes every vertex in L ∖ i(K) to an object of Fun({1}, C) ×Fun({1},D) Fun(∆

1, D)

which is the image of some q′-terminal object of Fun(∆1, C).

Undwinding this we precisely recover the hypotheses of the proposition. □

This criterion is easiest to state when there are no right critical vertices in the subcomplex.

69.8. Corollary. Let p : C → D be a Cartesian fibration of quasicategories, and let i : K → L
be a monomorphism of simplicial sets such that K contains no i-right critical vertices. Then
q = p□i : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D) is a Cartesian fibration. Furthermore, any
morphism α ∈ Fun(L,C)1 such that α(s) is p-Cartesian for all s ∈ L0 ∖ i(K0) is q-Cartesian.

69.9. Restriction functors which are (co)Cartesian fibrations. For the functor p : C → ∗,
the p-Cartesian morphisms are precisely the isomorphisms in C, and such a p is always a Cartesian
fibration. So we obtain the following.

69.10. Proposition. Let C be a quasicategory and i : K → L a monomorphism of simplicial sets,
and write

q = i∗ : Fun(L,C)→ Fun(K,C)

for the restriction functor. If α ∈ Fun(L,C)1 is a morphism such that α(s) is an isomorphism in C
for any i-right critical vertex s ∈ K0, then u is q-Cartesian. Furthermore, if K contains no i-right
critical vertices, then q is a Cartesian fibration.

69.11. Example. Consider q = i∗ : Fun(∆1, C) → Fun({0}, C), restriction along the inclusion
{0} ⊂ ∆1. The only i-right critical vertex is 1, which is not in the image of i. Thus q is a Cartesian
fibration, and any morphism f ∈ Fun(∆1, C)1 such that f(1) is an isomorphism is q-Cartesian.
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69.12. Proof of functoriality of colimits. We can now complete the proof of functoriality of
colimits.

69.13. Theorem. Let C be a quasicategory and S a simplicial set. Consider the commutative square

Funcolim(S▷, C) // //

p′

��

Fun(S▷, C)

p

��

Fun∃ colim(S,C) // // Fun(S,C)

where the quasicategories on the left-hand side are the full subcategories spanned respectively by
colimit cones and by functors which admit colimit cones. Then p′ is a trivial fibration, and thus
there exists a colimit cone functor.

Proof. The only right-critical vertex of the inclusion S ⊂ S▷ is the cone point. Therefore p is a
Cartesian fibration by (69.10). The colimit cones are precisely the vertices of Fun(S▷, C) which are
initial in their fiber along p (64.2). By (67.3), these are precisely the p-initial vertices. Then (65.5)
applies to show that p′ is a trivial fibration, as desired. □

70. Cartesian and coCartesian path fibrations

Given a functor f : C → D (not necessarily an inner fibration) between quasicategories, we obtain
functors

q : Fun({0}, C)×Fun({0},D) Fun(∆
1, D)→ Fun({1}, D)

and
q′ : Fun({1}, C)×Fun({1},D) Fun(∆

1, D)→ Fun({0}, D),

where all maps are induced in the evident way by f and by restriction to subcomplexes of ∆1. I
will call these the coCartesian path fibration and Cartesian path fibration of f respectively. coCartesian path fibra-

tion

Cartesian path fibra-
tion

This terminology will be justified soon.

70.1. Remark. Note that the fibers of q and q′ over an object d ∈ D0 are isomorphic to the pullbacks
C ×D D/d and C ×D Dd/ of the alternate slices along f .

70.2. Lemma. Let f : C → D be a functor between quasicategories. Then the coCartesian path
fibration and Cartesian path fibration associated to f are inner fibrations.

Proof. We prove the case of the coCartesian path fibration q. Consider the commutative diagram

(C ×D)×D×D Fun(∆1, D)
r′ //

��

C ×D π //

f×idD
��

D

Fun(∆1, D) r
// D ×D

in which r is restriction along {0, 1} = ∂∆1 ⊂ ∆1, π is the evident projection, and the square is a
pullback. Then both π and r, and hence r′, are inner fibrations. The claim follows because q is
isomorphic to the map πr′. □

70.3. Lemma. Let f : C → D be a functor between quasicategories, and consider the coCartesian
path fibration

q : Fun({0}, C)×Fun({0},D) Fun(∆
1, D)→ Fun({1}, D) = D.

If α : ∆1 → Fun({0}, C)×Fun({0},D) Fun(∆
1, D) is such that the composite

∆1 α−→ Fun({0}, C)×Fun({0},D) Fun(∆
1, D)

π′
−→ Fun({0}, C) = C

represents an isomorphism in C, then α is a q-coCartesian morphism.
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Proof. Here is a picture of α:

x0

u

��
y0

in C,

fx0 //

fu

��

y0

v

��
fx1 // y1

in D.

The hypothesis on α is that u is an isomorphism in C.
We again refer to the commutative diagram

(C ×D)×D×D Fun(∆1, D)
r′ //

��

C ×D π //

f×idD
��

D

Fun(∆1, D) r
// D ×D

in which πr′ is isomorphic to q. To show that α is q-coCartesian, by (66.4) it suffices to show that
(i) r′(α) = (f, g) is π-coCartesian, and (ii) α is r′-coCartesian. Since f is an isomorphism, (i) is
immediate from (66.3). For (ii), since r′ is a basechange of r, it suffices by (66.5) to show that the
edge represented by fu : ∆1 → D is r-coCartesian. (66.5), which is the following lemma (70.4). □

70.4. Lemma. Let D be a quasicategory, and consider the restriction functor r : Fun(∆1, D) →
Fun(∂∆1, D) ≈ D ×D. If β : f → g is a morphism in Fun(∆1, D) such that f is an isomorphism
in D, then β is r-coCartesian, while if g is an isomorphism in D, then β is r-Cartesian.

Proof. We use the criterion of (69.10). For instance, since 1 is the only i-right critical vertex of
i : ∂∆1 → ∆1, we have that β is r-coCartesian if and only if g is π-coCartesian for π : D → ∗, i.e., if
and only if f is an isomorphism. □

70.5. Proposition. Let p : C → D be a functor between quasicategories. Then the coCartesian path
fibration q : Fun({0}, C)×Fun({0},D) Fun(∆

1, D)→ Fun({1}, D) = D of p is a coCartesian fibration,

and the Cartesian path fibration q′ : Fun({1}, C) ×Fun({1},D) Fun(∆
1, D) → Fun({0}, D) = D is a

Cartesian fibration.

Proof. The map q is an inner fibration (70.2). To show that q is a coCartesian fibration, suppose given
(x0 ∈ C0, α0 : fx0 → y0 ∈ D1) (i.e., an object of the domain of q), and a map (v : y0 → y1) ∈ D1.
We want to lift v along q to a q-coCartesian morphism in C with source x0. By (70.3), it suffices to
fill in the dotted part of the picture

x0

u

��
y0

in C,

fx0
α0 //

fu
��   

y0

v

��
fx1 // y1

in D.

where u is some isomorphism in C. We can do this easily: for instance, set u = idx0 , and extend
the induced map (∂∆1 ×∆1) ∪ (∆1 × {0}) → D to the two non-degenerate 2-cells in the square
using extension along the inner horn ∆2

1 ⊂ ∆2 followed by extenison along ∆2
0 ⊂ ∆2, which exists

by Joyal extension (34.2). □

Part 12. Adjoint functors

In ordinary category theory, adjunction is often regarded as a relation between pairs of functors
f : C ⇆ D : g. In fact, an adjunction involves a choice of additional structure, namely a choice of
isomorphisms αc,d : homC(c, g(d))

∼−→ homD(f(c), d) for all pairs of objects, which must fit together
to give a natural isomorphism of functors Cop ×D → Set.
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Another point of view is that being an adjoint is a property of a functor. For instance, one may
say that f : C → D is a left adjoint if for every object d of D, the functor

Cop → Set, c 7→ homC(f(c), d)

is representable by some object of C. One shows that if f has this property, then you can construct
a functor g and natural isomorphism α as above: in fact, once you pick for each object d in D an
object g(d) of C representing homC(f(−), d), all other choices are forced.

We cannot replicate the definition of adjoint pair of functors in quasicategories using the theory
we have so far, as this requires a notion of mapping space which is fully functorial, in the sense
that for any quasicategory C we get a functor Cop × C → S, where S is a suitable quasicategory of
∞-groupoids. This can be done, but it requires a lot more work.

However, we can replicate the property of being of adjoint, by means of a trick: it turns out that the
functor homC(f(−), d) : Cop → Set is representable if and only if the projection map C×DD/d → C
is a right fibration, and this are notions which we can make sense for in qusiacategories.

70.6. Exercise. Let f : C → D be a functor of 1-categories, d an object ofD, and let q : C×DD/d → C
be the evident projection map, where the fiber product is the pullback of slice-restriction D/d → D
along f . Show that homC(f(−), d) is representable by some object c in C if and only if d is
isomorphic (as an object of sSet/D) to the slice-restriction C/c → C.

71. Representable fibrations

A representable fibration is a right fibration p : E → C between quasicategories such that E representable fibration

has a terminal object. Likewise, a corepresentable fibration is a left fibration p : E → C between corepresentable fibra-
tionquasicategories such that E has an initial object.

71.1. Example. The slice restrictions C/c → C and C/c → C are representable fibrations for any
object c of a quasicategory C, since the vertex corresponding to 1c is respectively terminal or initial
in the slices (35.9).

Maps between representable fibrations are equivalences exactly when they preserve the terminal
object.

71.2. Proposition. Consider a diagram

E
f

//

p
��

E′

p′~~

C

where C is a quasicategory, p is a representable fibrations, and p′ is a right fibration. The functor f
is an equivalence if and only if it takes some terminal object of E to a terminal object of E′. When
this is the case, p′ is also a representable fibration.

Proof. One direction is clear: any equivalence preserves terminal objects (43.5). In particular, if f
is an equivalence then p′ is also a representable fibration.

It remains to show that if f sends a terminal object t ∈ E0 to a terminal object t′ = f(t) ∈ E′0,
then f is a categorical equivalence. I will show that f is essentially surjective and fully faithful, so
that the “fundamental theorem” applies (48.2).

First we show f is essentially surjective. Suppose x′ ∈ E′0 is any object. Since t′ is terminal in E′

there exists a morphism α′ : x′ → t′ in E′. Since p is a right fibration we have ({1} ⊂ ∆1) � p, so
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we can find α : x→ t with p(α) = p′(α′). From this we obtain a commutative diagram

Λ2
0

u //

��

��

E′

p

��

∆2
v
//

s

>>

C

so that v = p(α′001) and u represents the solid arrows of the diagram

x′

α′

��

f(x)
f(α)

//

β
==

t′

in E. Since p is a right fibration a lift s exists. Then β := s01 : f(x)→ x′ is a morphism contained
in a fiber of the right fibration p′ over the vertex p(x) = p(x′), so is an isomorphism since the fiber
is a Kan complex. Thus we have shown that f is essentially surjective.

To show that f is fully faithful, consider any x, y ∈ E0, and choose any map α : y → t, which
exists because t is terminal. Then we have a commutative diagram

mapE(x, y)

f

��

mapFun(∆1,E)(1x, α)
∼oo //

f

��

mapE(x, t)

∼f

��

mapE′(fx, fy)

p′

��

mapFun(∆1,E′)(1fx, fα)
∼oo //

p′

��

mapE′(fx, t′)

p′

��

mapC(px, py) mapFun(∆1,C)(1px, pα)
∼oo // mapC(px, pt)

in which:

• The horizontal maps in the left-hand column are equivalences (66.11).
• The lower right square is a homotopy pullback, since the morphism fα is p′-Cartesian (since
p′ is a right fibration) (66.13).
• Likewise, the right-hand vertical rectangle is a homotopy pullback, since the morphism α is
p-Cartesian.
• It follows that the upper right square is a homotopy pullback, by patching of homotopy
pullbacks (51.10).
• The map mapE′(x, t)→ mapE(fx, t

′) induced by f is an equivalence since both spaces are
contractible, since t and t′ = f(t) are terminal objects.

Since the upper squares are homotopy pullbacks, we can conclude that mapE(x, y)→ mapE′(fx, fy)
induced by f is an equivalence, so f is fully faithful as desired. □

72. Slice restrictions as representable fibrations

Next we will show that all representable fibrations are equivalent to slice restrictions. The key is
the following lemma, which we will prove below.

72.1. Lemma. Let p : E → C be a right fibration of simplicial sets. For any vertex e ∈ E, there
exists a commutative diagram

C/c
g

//

π
  

E

p
��

C
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such that g(1c) = e, where π is the slice projection.

72.2. Proposition. Let p : E → C be a right fibration to a quasicategory. The following are
equivalent:

(1) The map p is a representable fibration (i.e., E has a terminal object).
(2) There exists an object c ∈ C0 and a commutative diagram

C/c
g

//

π
  

E

p
��

C

such that g is an equivalence, where π is the slice restriction.
(3) There exists an object c ∈ C0 and a commutative diagram

C/c g
//

π′
  

E

p
��

C

such that g is an equivalence, where π′ is the slice restriction.

Proof. To show that (1) implies (2), note that by (72.1) we can construct a map g such that pg = π,
and such that g(1c) is any chosen terminal object of E. Then g is an equivalence by (71.2). To
show that (2) implies (1), note that since g is an equivalence it preserves terminal objects (43.5),
and thus g(1c) must be terminal in E since 1c is terminal in C/c (35.9).

That (2) and (3) are equivalent is immediate from the existence of a commutative diagram

C/c
g
//

π

!!

C/c h //

π′

��

C/c

π
}}

C

in which both g and h are equivalences. The equivalence g is just the standard equivalence between
slice and alternate slice (61.4), while h can be chosen to be a categorical inverse of g which is
compatible with the projections π and π′, since these are both isofibrations and thus fibrations in
the Joyal model structure (??). □

Now we turn to the proof of (72.1). It is based on the following.

72.3. Lemma. Let C be any simplicial set, and c ∈ C0 a vertex. Then the inclusion {1c} ⊂ C/c is
right anodyne, and the inclusion {1c} ⊂ Cc/ is left anodyne.

Proof of (72.1), using (72.3). We want a lift in the commutative square

{1c}
e //

��

��

E

p

��

C/c π
//

g

>>

C

whose existence is immediate from the fact that i is right anodyne and p is a right fibration. □
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72.4. Contractions of simplicial sets. We now turn to the proof of (72.3), which relies on the
notion of a “contraction” of a simplicial set. Let ∆R denote the category whose

• objects are totally ordered sets [n]R := [n] ⊔ {R} = {0 < 1 < · · · < n < R} for n ≥ −1, and
• morphisms are order preserving functions which take the “right basepoint” R to R.

There is an evident “inclusion” functor ∆ ↣ ∆R sending [n] 7→ [n]R, and extending a simplicial
operator f : [m] → [n] by the rule f(R) := R. I’ll silently identify ∆ with the corresponding
subcategory of ∆R.

A right contraction of a simplicial set X is a choice of extension of X : ∆op → Set to a functor right contraction

X : (∆R)
op → Set. There is an evident dually defined category ∆L and corresponding notion of left

contraction. left contraction

Note that a right contraction ofX in particular provides contraction operators Q∗ : Xn−1 → Xn contraction operators

for all n ≥ 0, induced by the surjective function Q := ⟨0, 1, . . . , n− 1, R,R⟩ : [n]R → [n− 1]R (which
is not in the subcategory ∆). The functions Q admit sections in ∆R, and thus the contraction
operators are always injective. In particular, we get a monomorphism Q∗ : X−1 → X0.

72.5. Example (Slices have contractions). The functor ∆→ sSet∗ defined by [n] 7→ (∆n)▷ manifestly

extends to a functor ∆R → sSet∗, given on objects by the rule [n]R 7→ ∆[n]R = (∆n)▷, which is
compatible with all order preserving maps in ∆R. Note that for all f : [m]R → [n]R in ∆R, the
induced map (∆m)▷ → (∆n)▷ sends the cone point to the cone point.

Given a simplicial set C with vertex c ∈ C0, the slice C/c is a simplicial set with n-cells
corresponding to maps (∆n)▷ → C sending the cone point to c. Thus any such slice admits a
canonical right contraction, as the functor C : ∆op → Set extends to a functor ∆op

R → Set.

72.6. Proposition. Let X be a simplicial set equipped with a right contraction. Consider the evident
inclusion f : S → X, where S is the discrete simpicial set with underlying set X−1. Then f is right
anodyne. (In fact, f is in the weak saturation of {Λn

n ⊂ ∆n | n ≥ 1 }.)
Proof. We will make use of the standard notation for simplicial operators:

si : [n]→ [n− 1], i = 0, . . . , n− 1, si(x) =

{
x if x ≤ i,
x− 1 if x > i.

dj : [n− 1]→ [n], j = 0, . . . , n, dj(x) =

{
x if x < j,

x+ 1 if x ≥ j.
These extend to give morphisms in ∆R, so that si(R) = R = dj(R).

Consider the collection Xnd of non-degenerate cells of X not contained in S. Partition Xnd into
disjoint subsets XI ⨿XII , where XI = (Xnd ∖ Snd)∩XQ, the set of nondegenerate cells which are
in the image of the contraction operators. Note that there is a bijection Q∗ : S → XI

0 .
I claim that the contraction operators Q restrict to bijections ϕ : XII

n−1 → XI
n for n ≥ 1, with

inverses given by (dn)∗ : XI
n → XII

n−1, and that furthermore XI
nd

i ⊆ XI
n−1 ∪X

deg
n−1 when 0 ≤ i < n.

We make the following observations for x ∈ Xn−1.

• If xQ = ysi ∈ Xn with i ∈ {0, . . . , n − 2}, then x = xQdn = ysidn = ydnsi. Thus, x is
degenerate in this case.
• If xQ = ysn−1 ∈ Xn, then x = xQdn = ysn−1dn = y and xdn−1Q = xQdn−1 = ysn−1dn−1 =
y. Thus, x is in the image of Q in this case.
• Taken together, the last two statements imply that Q applied to an element of XII (i.e.,
a non-degenerate cell not in the image of Q) must produce a non-degenerate cell. Thus
Q(XII) ⊆ XI , so ϕ is well-defined.
• We have xQdn = x for x ∈ Xn−1, so ϕ is injective.
• If x = ysi ∈ Xn−1 with i ∈ {0, . . . , n−2}, then xQ = ysiQ = yQsi, i.e., x degenerate implies
xQ degenerate.



INTRODUCTION TO QUASICATEGORIES 174

• If x = yQ ∈ Xn−1, then xQ = yQQ = yQsn−1, i.e., Q sends cells in the image of Q to
degenerate cells.
• Taken together, the last two statements imply that every non-degenerate cell in the image
of Q is the image of a non-degenerate cell not in the image of Q. That is, ϕ is surjective,
with inverse given by dn.

• We have xQdi = xdiQ ∈ XI
n−1 ∪X

deg
n−1 if i ∈ {0, . . . , n− 1}.

Now we can filter X by subcomplexes En, where E−1 = S, while for n ≥ 0 we let En be the
smallest subcomplex containing Skn−1X and XI

n. Thus the non-degenerate cells in the complement
End

n ∖ End
n−1 are precisely those in XI

n and XI
ndn = XII

n−1, while X
I
nd

i ⊆ (En−1)n−1 when 0 ≤ i < n.

Thus each inclusion En−1 ⊆ En is obtained by attaching each of the cells in XI
n along Λn

n ⊂ ∆n. □

73. Equivalences of right fibrations

Say that a functor f : C → D between quasicategories is a weak right fibration if the square weak right fibration

Fun(L,C)
f∗
//

j∗

��

Fun(L,D)

j∗

��

Fun(K,C)
f∗
// Fun(K,D)

is a homotopy pullback in the Joyal model structure for all right anodyne maps j : K → L. Since
both restriction maps j∗ are isofibrations (39.6), this is equivalent to saying that

f□j : Fun(L,C)→ Fun(K,C)×Fun(K,D) Fun(L,D)

is a categorical equivalence for all j ∈ RHorn. There is an analogous notion of weak left fibration. weak left fibration

For isofibrations, weak right fibrations are the same as right fibrations.

73.1. Proposition. A right fibration f : C → D of quasicategories is always a weak right fibration.
The converse holds whenever f is an isofibration.

Proof. If f is a right fibration then f□j is a trivial fibration for every j ∈ RHorn (63.3). For an
isofibration f and monomorphism j the pullback-hom map f□j is also an isofibration (39.5). If f is
also a weak right fibration then f□j is also a categorical equivalence, and thus is a trivial fibration
(40.8). Therefore f□j is surjective on vertices, whence j � f . □

The class of weak right fibration has properties not shared in general by the class of right
fibrations.

73.2. Proposition. Consider a commutative square

C
u //

f
��

C ′

f ′

��

D v
// D′

where C,C ′, D,D′ are quasicategories, and u and v are categorical equivalences. Then f is a weak
right fibration if and only if f ′ is a weak right fibration.

Proof. The categorical equivalences induce a weak equivalence between the commutative squares
Fun(j, f) and Fun(j, f ′), so that one square is a homotopy pullback if and only if the other is (51.8).
The claim follows. □

73.3. Proposition. Let C
f−→ D

g−→ E be functors between quasicategories, and suppose g is a weak
right fibration. Then f is a weak right fibration if and only if gf is a weak right fibration.
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Proof. Let j : K → L be any right anodyne map, and consider the commutative diagram

Fun(L,C)
f∗
//

j∗

��

Fun(L,D)
g∗
//

j∗

��

Fun(L,E)

j∗

��

Fun(K,C)
f∗
// Fun(K,D) g∗

// Fun(K,E)

The claim is immediate from patching of homotopy pullbacks (51.10). □

73.4. Lemma. Let E
f−→ F

q−→ C be functors of quasicategories, and let p = qf . If p and q are right
fibrations, then there exists a factorization of the form f = rj where j is a categorical equivalence
and r is a right fibration.

Proof. Choose any factorization f = rj into a categorical equivalence j followed by an isofibration r
(42.9), and consider the resulting commutative diagram

E
j
//

p
  

E′

p′

��

r // F

q
~~

C

Note that since p and q are right fibrations, they are in particular weak right fibrations (73.1).
Since j is an equivalence p′ is also a weak right fibration by (73.2), and therefore r is a weak right
fibration by (73.3). But r is an isofibration, and thus is also a right fibration (73.1). □

73.5. Proposition. Consider a commutative square

E
g
//

p

��

F

q

��

C
f
// D

of quasicategories in which p and q are right fibrations. Then the square is a homotopy pullback
in the Joyal model structure if and only if it induces equivalences on all fibers, i.e., if and only if
p−1(c)→ q−1(fc) is an equivalence of quasigroupoids for all c ∈ C0.

Proof. The only if direction is immediate. In fact, if p and q are merely isofibrations, then taking
fibers over a vertex is a good pullback and thus an instance of a homotopy pullback (??).

For the other direction, let g′ : E → C ×D F be the evident map to the pullback, so that we
want to show that g is a categorical equivalence. Choose a factorization g′ = jr into a categorical
equivalence j followed by a right fibration (73.4). Thus by 2-out-of-3, it suffices to show that r is a
categorical equivalence. Since r is a right fibration, it suffices by the fiberwise criterion (??) to show
that all its fibers are contractible.

Write q′ := qg′ : C ×D F → C and p′ := q′r : E′ → C. Given any vertex c ∈ C0 we have induced
maps on fibers

p−1(c)
jc−→ (p′)−1(c)

rc−→ (q′)−1(c) ≈ q−1(f(c)).
Any fiber of r is a fiber of rc for some c. We know that both jc and rcjc are equivalences, whence rc
is an equivalence. The map rc is a right fibration since it is the basechange of one, so since it is an
equivalence its fibers will be contractible. But every fiber of r appears as the fiber of some rc, so we
are done. □
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74. Adjoint functors

A functor f : C → D is a left adjoint if for every pullback square left adjoint

E′ //

p′

��

E

p

��

C
f
// D

in which p is a representable fibration, then p′ is also a representable fibration. Likewise, f is a
right adjoint if for every pullback square as above in which p is a corepresentable fibration, then right adjoint

p′ is also a corepresentable fibration.
Several standard properties of adjoint functors are easy.

74.1. Proposition. Every categorical equivalence between quasicategories is both a a left adjoint
and a right adjoint. Any composite of two left adjoints is a

left adjoint, and any composite of two right adjoints is a right adjoint.

Proof. The first statement is immediate from (71.2) and the fact that a pullback of a categorical
equivalence along an isofibration is a categorical equivalence. The second statement is immediate. □

Since representable functors are always equivalent to slice restrictions, we can refomulate the
definition of adjoint using only these.

74.2. Proposition. Let f : C → D be a functor. The following are equivalent.

(1) The functor f is a left adjoint (i.e., pullback along f preserves representable fibrations).
(2) For every object d ∈ D0 there exists an object c ∈ C0 and a homotopy pullback square of the

form

C/c f ′
//

π

��

D/d

π′

��

C
f
// D

where the maps π and π′ are slice restrictions.
(3) For every object d ∈ D0 there exists an object c ∈ C0 and a commutative square as in (2)

such that for each object x ∈ C0 the map

mapC(x, c)→ mapD(fx, d)

induced by f ′ is an equivalence.

Proof. (1) (=⇒) (2). Since f is a left adjoint, any basechange π̃′ : C ×D D/d → C of π′ along f is a

representable fibration. Thus by (72.2) we can find a c ∈ C0 and an equivalence C/c → C ×D D/d

compatible with the projections π and π̃′. Since both these projections are right fibrations and thus
isofibrations, we get the desired homotopy pullback square.

(2) (=⇒) (1). By (72.2) a right fibration E → D is representable if and only if it is weakly

equivalent (in the Joyal model structure on sSet/D) to one of the form π′ : D/d → D. Pullback along
f defines a functor f∗ : sSet/D → sSet/C which preserves categorical fibrations, and thus preserves
categorical equivalences between fibrant objects by the Ken Brown lemma (50.4). Given this the
claim is straightforward.

(2) (⇐⇒) (3). Since π and π′ are right fibrations whose fibers are the indicated mapping spaces,
we see from (73.5) that the square is a homotopy pullback if and only if the induced map on the
mapping spaces are equivalences. □
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75. Adjoints and limits and colimits

Next we show that adjoint functors preserve colimits or limits as the case may be.

75.1. Lemma. Let K be a simplicial set, C a quasicategory, and c ∈ C0 an object. There are
isomorphisms of simplicial sets

Fun(K,Cc/)
∼−→ Fun(K,C)π̃Kc/, Fun(K,C/c)

∼−→ Fun(K,C)/π̃Kc,

where π̃K : C → Fun(K,C) is adjoint to projection. Furthermore, these isomorphisms are natural in
K, and are compatible with the evident projections to Fun(K,C).

Proof. Apply Fun(K,−) to the pullback square defining the alternate slice C/c, giving a pullback
square

Fun(K,C/c) //

��

Fun(K,Fun(∆1, C))

��

Fun(K,C × {c}) // Fun(K,C × C)
Product-hom adjunction gives an isomorphism between this square and the pullback square

Fun(K,C)π̃Kc/ //

��

Fun(∆1,Fun(K,C))

��

Fun(K,C)× {π̃Kc} // Fun(K,C)× Fun(K,C)

defining the alternate slice Fun(K,C)π̃Kc/. □

75.2. Proposition. Left adjoints preserve all colimit cones, and right adjoints preserve all limit
cones.

Proof. We prove the case of left adjoints and colimits. Let f : C → D be a left adjoint, let S be
a simplicial set, and suppose u : S▷ → C is a colimit cone. We want to show that the composite
fu : S▷ → D is a colimit cone. We apply the criterion of (63.9), and show that for every object d
in D the restriction map mapFun(S▷,D)(fu, π̃S▷d)→ mapFun(S,D)(fu|S , π̃Sd) is an equivalence.

Since f is a left adjoint, by (74.2) we can construct for every object d of D an object c of C
homotopy pullback diagram of the form

C/c f ′
//

��

D/d

��

C
f
// D

where the vertical maps are the evident restriction functors. For any simplicial set K, applying
Fun(K,−) to the above diagram gives another homotopy pullback square of quasicategories (??),
which by the previous proposition (75.1) we can write as

Fun(K,C)/π̃Kc //

��

Fun(K,D)/π̃Kd

��

Fun(K,C) // Fun(K,D)

where the vertical maps are the evident restriction functors. Taking fibers of the vertical maps over
vertices u in Fun(K,C) and fu and Fun(K,D) respectively gives an equivalence

mapFun(K,C)(u, π̃Kc)→ mapFun(K,D)(fu, π̃Kd).
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Taking either K = S or K = S▷, and using the naturality of the construction, thus gives a
commutative square

mapFun(S▷,C)(u, π̃S▷c) //

∼
��

mapFun(S,C)(u|S , π̃Sc)

∼
��

mapFun(S▷,D)(fu, π̃S▷d) // mapFun(S,D)(fu|S , π̃Sd)

in which the vertical maps are equivalences. Since u is a colimit cone, the top horizontal map is also
an equivalence, and hence the bottom horizontal map is also by 2-out-of-3. Thus fu is a colimit
cone as desired. □

76. Adjoints of adjoints

Suppose p : C → D is an inner fibration of categories. We have observed (65.5) that the restricted
functor p′ : Cp init → D∃p init is a trivial fibration. Thus if every object of D is the image of some
p-initial object of C, we can always produce a section s : D → Cp init ⊆ C of p taking values in
p-initial objects. Note that any such section s is fully faithful, as it restricts to an equivalence
D → Cp init ⊆ C to a full subcategory.

It turns out in this situation the functor s is always a left adjoint, and p is always a right adjoint.

76.1. Proposition. Let p : C → D be an inner fibration of quasicategories, and let s : D → C be
a functor such that ps = 1D, and such that for all objects d ∈ D0 the object s(d) ∈ C0 is p-initial.
Then p is a right adjoint and s is a left adjoint.

Proof. First we show that p is a right adjoint. Given y ∈ D0, consider the commutative square

Csy/ p′
//

��

Dy/

��

C p
// D

where p′ is the functor induced by p (which is defined since psy = y), and the vertical arrows are
slice restrictions, which are right fibrations. Far any c ∈ C0, the map p′ induces a map on fibers of
the form

mapC(sy, c)→ mapD(psy, pc) = mapD(y, pc)

which is identical to the map induced by p, and thus is an equivalence since sy is p-initial (65.4).
Therefore the square is a homotopy pullback (??), and thus p is a right adjoint (??).

Next we show that s is a left adjoint. We construct the following commutative diagram

D/px s′ //

��

C/x p′
//

��

D/px

��

D s
// C p

// D

in which the vertical maps are slice restrictions and thus right fibrations (??), the map p′ is induced
by p, and the map s′ is any map making the diagram commute and sending 1px to 1x, which exists
by (71.2) and (??). The composite p′s′ sends 1px to itself, and thus is an equivalence (??). For any
d ∈ D0 we have induced maps on fibers

mapD(d, px)
s′′−→ mapC(sd, x)

p′′−→ mapD(psd, px) = mapD(d, px).

Since p′s′ is an equivalence, so is p′′s′′, Since sd is a p-initial object, the map p′′ is also an equivalence,
and therefore s′′ is an equivalence by 2-out-of-3. Thus s is a left adjoint (??). □
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76.2. Example (Restriction to a cone vertex). Let C be a quasicategory and S a simplicial set.
Consider the functor q : Fun(S▷, C) → Fun({v}, C) = C induced by restriction along {v} ⊂ S▷.
Then every object c ∈ C0 lifts along q to a q-terminal object. In fact, the constant functor

π̃S▷(c) : S▷ → C is q-terminal, since as we have seen the restriction map mapFun(S▷,C)(f̂ , π̃S▷(c))→
mapC(f̂(v), c) is always an equivalence since the slice restriction C f̂/ → C f̂(v)/ is always a trivial
fibration (62.8). Note that we have a convenient choice of section of q, namely the functor
t : C → Fun(S▷, C) induced by restriction along S▷ → ∆0. Thus we obtain a pair of functors

Fun(S▷, C)
q
//
C

t
oo

in which q is a left adjoint and t is a right adjoint, and qt = idC .

76.3. Example (Colimit as an adjoint). Let C be a quasicategory and S a simplicial set, and suppose
C has colimits for all functors S → C. Let p : Fun(S▷, C)→ Fun(S,C) be induced by restriction
along S ⊂ S▷. By hypothesis, every object of Fun(S,C) lifts to a a colimit cone, and hence to some p-
initial object (??). Thus if we take any choice of section Fun(S,C)→ Funcolim(S▷, C) ⊆ Fun(S▷, C)
(??) we obtain a pair of functors

Fun(S,C)
s //

Fun(S▷, C)
p
oo

in which s is a left adjoint and p is a right adjoint, and ps = idFun(S,C).
We can combine this with the previous example, so we have a diagram

Fun(S,C)
s //

Fun(S▷, C)
q
//

p
oo C

t
oo

in which qs is a left adjoint and pt is a right adjoint. The functor pt = π̃S is the “constant-functor
functor”, and the functor qs is a model for the colimit functor colimS : Fun(S,C)→ C.

76.4. Example. Let f : C → D be a functor between quasicategories. Consider the coCartesian path
fibration diagram:

C
s //

C ×D Fun(∆1, D)
p
oo

q
//
D

t
oo

where the fiber product is defined using f and restriction along {0} ⊂ ∆1, the functor q is induced
by restriction along {1} ⊂ ∆1, the functor p is the evident projection, and the functor s is induced
by restriction along ∆1 → ∗.

The functor s sends each object c ∈ C0 to the object (c, 1fc), which is a p-initial object (76.5).
Thus s is a left adjoint and p is a right adjoint.

Recall that since q is a coCartesian fibration, an object of its domain is q-terminal if and only if
it is terminal in its fiber. The fibers of q are exactly

q−1(d) = C ×D D/d,

the pullbacks of the slices D/d → D along f . Thus, f is a left adjoint if and only if each object
d ∈ D0 admits a lift along q to a q-terminal object (gd, ϵd : fgd→ d). Thus, there exists a section
t = (g, ϵ) of q taking values in q-terminal objects. In particular, q is a left adjoint and t is a right
adjoint.

The composite qs = f is the functor we started with. The above discussion shows that if f is a
left adjoint, then the associated functor g = pt is a right adjoint.
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76.5. Lemma. Let f : C → D be a functor between quasicategories, and consider the projection map

p : Fun({0}, C)×Fun({0},D) Fun(∆
1, D)→ Fun({0}, C),

and an object (c, α) in the domain of p, with c ∈ C0 and α ∈ D1. If α is an isomorphism in D then
(c, α) is a p-terminal object.

Proof. The map p is the base-change of the restriction map p′ : Fun(∆1, D) → Fun({0}, D), so

it suffices by (65.2) to show that α is p′-terminal. But p′ = π□({0}⊂∆1) where π : D → ∗, so by
the pullback-hom criterion for Cartesian morphisms (69.2) we see that α is a p′-terminal object
in Fun(∆1, D) iff and only if it corresponds to a π-Cartesian edge in D. But we know that the
π-Cartesian edges are exactly the isomorphisms (66.3). □

Part 13. Appendices

77. Appendix: Generalized horns

A generalized horn32 is a subcomplex Λn
S ⊂ ∆n of the standard n-simplex, where S ⊆ [n] and generalized horn

(Λn
S)k := { f : [k]→ [n] | S ̸⊆ f([k]) }.

In other words, a generalized horn is a union of some codimension 1 faces of the n-simplex:

Λn
S =

⋃
s∈S

∆[n]∖s.

In particular,
Λn
[n] = ∂∆n, Λn

[n]∖j = Λn
j , Λn

{j} = ∆[n]∖j , Λn
∅ = ∅.

In general S ⊆ T implies Λn
S ⊆ Λn

T .

77.1. Proposition (Joyal [Joy08a, Prop. 2.12]). Let S ⊊ [n] be a proper subset.

(1) (Λn
S ⊂ ∆n) ∈ Horn if S ̸= ∅.

(2) (Λn
S ⊂ ∆n) ∈ LHorn if n ∈ S.

(3) (Λn
S ⊂ ∆n) ∈ RHorn if 0 ∈ S.

(4) (Λn
S ⊂ ∆n) ∈ InnHorn if S is not an “interval”; i.e., if there exist a < b < c with a, c ∈ S

and b /∈ S.

Proof. We start with an observation. Consider S ⊊ [n] and t ∈ [n]∖ S. Observe the diagram

∆[n]∖t ∩ Λn
S
// //

��

��

∆[n]∖t
��

��

Λn
S
// // Λn

S∪t // // ∆n

in which the square is a pushout, and the top arrow is isomorphic to the generalized horn Λ
[n]∖t
S ⊂

∆[n]∖t. Thus, (Λn
S ⊂ ∆n) is contained in the weak saturation of any set contaning the two inclusions

Λ
[n]∖t
S ⊂ ∆[n]∖t and Λn

S∪t ⊂ ∆n.

Each of the statements of the proposition is proved by an evident induction on the size of [n]∖ S,
using the above observation. I’ll do case (4), as the other cases are similar. If S ⊂ [n] is not an
interval, there exists some s < u < s′ with s, s′ ∈ S and u /∈ S. If [n]∖ S = {u} then we already
have an inner horn. If not, then choose t ∈ [n]∖ (S ∪ {u}), in which case S ∪ t is not an interval in

32This notion is from [Joy08a, §2.2.1]. However, I have changed the sense of the notation: our Λn
S is Joyal’s Λ[n]∖S .

I find my notation easier to follow, but note that it does conflict with the standard notation for horns. Maybe I should
use something like Λn,S?
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[n], and S is not an interval in [n] ∖ t. Therefore both Λ
[n]∖t
S ⊂ ∆[n]∖t and Λn

S∪t ⊂ ∆n are inner
anodyne by the inductive hypothesis. The proofs of the other cases are similar. □

77.2. Proposition (Joyal [Joy08a, Prop. 2.13]). For all n ≥ 2, we have that (In ⊂ ∆n) ∈ InnHorn.

Proof. We can factor the spine inclusion as hn = gnfn:

In
fn−→ ∆{1,...,n} ∪ In gn−→ ∆n.

We show by induction on n that fn, gn, hn ∈ InnHorn, noting that the case n = 2 is immediate.
To show that fn ∈ InnHorn, consider the pushout square

I{1,...,n} // //
��

��

∆{1,...,n}��

��

In //
fn

// ∆{1,...,n} ∪ In

in which the top arrow is isomorphic to hn−1, which is in InnHorn by induction.
To show that gn ∈ InnHorn, consider the diagram

∆{1,...,n−1} ∪ I{0...,n−1} //
gn−1

//
��

��

∆{0,...,n−1}��

��

∆{1,...,n} ∪ In // // ∆{1,...,n} ∪∆{0,...,n−1} // // ∆n

in which the square is a pushout, the top horizontal arrow is isomorphic to gn−1, an element of
InnHorn by induction, and the bottom right horizontal arrow is equal to Λn

{0,n} ⊂ ∆n, which is in

InnHorn by (77.1)(4).
□

78. Appendix: Box product lemmas

Here is where I’l prove various statements mentioned in the text.

• LHorn□Cell ⊆ LHorn (63.2), proved in (78.1) below.
• RHorn□Cell ⊆ RHorn (63.2), proved in (78.1) below.
• Horn□Cell ⊆ Horn, is a consequence of the above, since Horn = LHorn ∪ RHorn and
LHorn ∪ RHorn ⊆ Horn.
• InnHorn□Cell ⊆ InnHorn (21.10), proved in (78.3) below.

78.1. Left and right horns. We prove the case of LHorn□Cell ⊆ LHorn here. Given this
RHorn□Cell ⊆ RHorn follows since op: sSet→ sSet carries LHorn to RHorn and preserves Cell.

Joyal [Joy08a, 2.25]33 observes that (Λn
k ⊂ ∆n) is a retract of (Λn

k ⊂ ∆n)□({0} ⊂ ∆1) when
0 ≤ k < n. The retraction is

∆n s−→ ∆n ×∆1 r−→ ∆n

defined by s(x) = (x, 1) and

r(x, 0) =

{
x if x ≤ k,
k if x ≥ k,

r(x, 1) = x.

Note that r(∆[n]∖j ×∆1) = ∆[n]∖j if j ≠ k, and r(∆n × {0}) = ∆{0,...,k} ⊆ ∆[n]∖(k+1), so this gives
the desired retraction.

33Lurie [Lur09, 2.1.2.6] states this incorrectly in my edition.
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The existence of the retraction reduces showing LHorn□Cell ⊆ LHorn to proving

({0} ⊂ ∆1)□Cell ⊆ LHorn,

since (Λn
k ⊂ ∆n) ∈ Cell and thus (Λn

k ⊂ ∆n)□Cell ⊆ Cell.

78.2. Lemma. We have that ({0} ⊂ ∆1)□Cell ⊆ LHorn.

Proof. . . . Let K = ({0} ×∆n) ∪ (∆1 × ∂∆n), so that ({0} ⊂ ∆1)□(∂∆n ⊂ ∆n) is the inclusion
K → ∆1 ×∆n. We will show that we can build ∆1 ×∆n from K by an explicit sequence of steps,
where in each case we attach an (n+ 1)-sequence along a left horn.

For each 0 ≤ a ≤ n let τa be the (n+ 1)-dimensional cell of ∆1 ×∆n defined by

τa = ⟨(0, 0), . . . , (0, a), (1, a), . . . , (1, n)⟩.
We obtain an ascending filtration of ∆1 ×∆n by starting with K and attaching simplices in the
following order:

τn, τn−1, . . . , τ1, τ0.

The τs range through all non-degenerate (n+1)-dimensional cells of ∆1×∆n, so K∪
⋃
τa = ∆1×∆n.

(Here I am using the same notation for elements τa ∈ (∆1 × ∆n)n+1 and for the corresponding
subcomplex of ∆1 ×∆n which is isomorphic to ∆n+1.)

The claim is that each attachment is along a specified horn inclusion. More precisely, for a ∈ [n]
the simplex τa is attached to K ∪

⋃
k>a τk along the horn at the vertex (0, a) in τa, i.e., via a

Λn+1
a ⊂ ∆n horn inclusion. Note that if when a > 0 this is an inner horn, while when a = 0

this is the inclusion Λn+1
0 ⊂ ∆n; in either case, it is a left horn. Given the claim, it follows that

({0} ⊂ ∆1)□(∂∆n ⊂ ∆n) ∈ LHorn as desired.
The proof of the claim amounts to the following list of elementary observations about τa:

• Every codimension-one face is contained in ∆1× ∂∆n except: the face opposite vertex (0, a),
and the face opposite vertex (1, a).
• The face opposite vertex (1, a) is contained in {0}×∆n if a = n, or is a face of τa+1 if a < n.
• The face opposite vertex (0, a) is not contained in ∆1 × ∂∆n, nor in {0} ×∆n. Nor is it
contained in any τi with i > a (beacuse the vertex (1, a) is in this face but not in τi with
i > a).

Taken together these show that τa ∩ (K ∪
⋃

k>a τk) is the ath horn in the (n+ 1)-simplex τa.
□

78.3. Inner horns. Here is an argument for the key case for inner horns, following the proof of
[Lur09, 2.3.2.1]. I will show the following.

78.4. Lemma. We have InnHorn = (Λ2
1 ⊂ ∆2)□Cell = (Λ2

1 ⊂ ∆2)□Cell.

Given this, to show InnHorn□Cell ⊆ InnHorn it suffices to note that (Λ2
1 ⊂ ∆2)□Cell□Cell ⊆

(Λ2
1 ⊆ ∆2)□Cell, using Cell□Cell ⊆ Cell (22.5).

Proof. We prove this by showing that for each term in the sequence

InnHorn, (Λ2
1 ⊂ ∆2)□Cell, (Λ2

1 ⊂ ∆2)□Cell, InnHorn,

the weak saturation of each term is contained in the weak saturation of the next one in the list.
Case 1: (Λ2

1 ⊂ ∆2)□Cell ⊆ (Λ2
1 ⊂ ∆)□Cell. This is immediate from (21.9), which implies that

S□T ⊆ S□T ⊆ S□T for any sets of maps S and T .
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Case 2: InnHorn ⊆ (Λ2
1 ⊂ ∆2)□Cell. This is proved by exhibiting inner horn inclusions as

retracts. Consider ∆n s−→ ∆2 ×∆n r−→ ∆n, the unique maps which are given on vertices by

s(y) =


(0, y) if y < j,

(1, y) if y = j,

(2, y) if y > j,

r(x, y) =


y if x = 0 and y < j,

y if x = 2 and y > j,

j otherwise.

These explicitly exhibit (Λn
j ⊂ ∆n) as a retract of (Λ2

1 ⊂ ∆2)□(Λn
j ⊂ ∆n), so

InnHorn ⊆ {Λ2
1 ⊂ ∆2}□Cell.

Case 3: (Λ2
1 ⊂ ∆2)□Cell ⊆ InnHorn. This is proved as the following lemma (78.5). □

78.5. Lemma. For all n ≥ 0 we have that (Λ2
1 ⊂ ∆2)□(∂∆n ⊂ ∆n) ∈ InnHorn.

Proof. For each 0 ≤ a ≤ b < n, let σab be the (n+ 1)-simplex of ∆2 ×∆n defined by

σab = ⟨(0, 0), . . . , (0, a), (1, a), . . . , (1, b), (2, b+ 1), . . . , (2, n)⟩.
For each 0 ≤ a ≤ b ≤ n, let τab be the (n+ 2)-cell of ∆2 ×∆n defined by

τab = ⟨(0, 0), . . . , (0, a), (1, a), . . . , (1, b), (2, b), . . . , (2, n)⟩.
The set {τab} consists of all the non-degenerate (n+ 2)-dimensional cells. Note that σab is a face of
τab and of τa,b+1, but not a face of any other τ .

We attach simplices to K := (Λ2
1 ×∆n) ∪ (∆2 × ∂∆n) in the following order:

σ00, σ01, σ11, σ02, σ12, σ22, . . . σ0,n−1, . . . , σn−1,n−1,

followed by
τ00, τ01, τ11, τ02, τ12, τ22, . . . τ0,n, . . . , τn,n.

The τs range through all the non-degenerate (n + 2)-dimensional cells of ∆2 ×∆n, so that K ∪⋃
σa,b ∪

⋃
τa,b = ∆2 ×∆n.

The claim is that each attachment is along an inner horn inclusion. More precisely, each σab gets
attached along the horn at the vertex (1, a) in σab, i.e., via a Λn+1

a+1 ⊂ ∆n+1 horn inclusion, which is
always inner since a ≤ b < n. Likewise, each τab gets attached along the horn at vertex (1, a) in τab,
i.e., via a Λn+2

a+1 ⊂ ∆n+2 horn inclusion, which is always inner since a ≤ b ≤ n.
The proof of the claim amounts to the following lists of elementary observations.
For σa,b:

• Every codimension-one face is contained in ∆2×∂∆n, except the following: the face opposite
vertex (0, a), and the face opposite vertex (1, a).
• The face opposite vertex (0, a) is either contained in Λ2

0 ×∆n if a = 0, or a face of σa−1,b if
a > 0.
• The face of σa,b opposite vertex (1, a) is not contained in ∆2 × ∂∆n, nor in Λ2

0 ×∆n, nor in
any σi,b with i < a (because of the vertex (0, a)), nor in any σi,j with i ≤ j < b (because of
the vertex (1, b) if a < b, or the vertex (0, a) if a = b).

For τa,b when a < b:

• Every codimension-one face is contained in ∆2×∂∆n except the following: the face opposite
vertex (0, a), the face opposite vertex (1, a), the face opposite vertex (1, b), and the face
opposite vertex (2, b).
• The face opposite vertex (2, b) is σa,b, while the face opposite vertex (1, b) is σa,b−1.
• The face opposite vertex (0, a) is either contained in Λ2

1 ×∆n if a = 0, or is a face of τa−1,b
if a > 0.
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• The face opposite vertex (1, a) is not contained in ∆2× ∂∆n, nor in Λ2
1×∆n, nor in any σi,j

(because of the vertices (1, b) and (2, b)), nor in any τi,b with i < b (because of the vertex
(0, a)), nor in any τi,j with i ≤ j < b (because of the vertex (1, b)).

For τa,b when a = b:

• Every codimension-one face is contained in ∆2×∂∆n except the following: the face opposite
vertex (0, a), the face opposite vertex (1, a) = (1, b), and the face opposite vertex (2, b).
• The face opposite vertex (2, b) is σa,b.
• The face opposite vertex (0, a) is contained in Λ2

1×∆n if a = 0, or is a face of τa−1,b if a > 0.
• The face opposite vertex (1, a) = (1, b) is not contained in ∆2× ∂∆n, nor in Λ2

1×∆n, nor in
any σi,j (because of the vertices (0, a) and (2, b)), nor in any τi,b with i < b (because of the
vertex (0, a)), nor in any τi,j with i ≤ j < b (because of the vertex (0, a)).

□

78.6. A pushout-product version of Joyal lifting. We now give a proof of (36.6): we will prove
the case of (x, y) = (0, 0), i.e., given p : C → D an inner fibration of quasicategories, n ≥ 1, and

∆1 × {0} // //

f

,,({0} ×∆n) ∪{0}×∂∆n (∆1 × ∂∆n) //

��

��

C

p

��

∆1 ×∆n //

55

D

such that f represents an isomorphism in C, we will construct a lift. (Note that if n = 0 such a lift
does not generally exist.)

We refer to the proof of (78.2), where we observed that we can build ∆1 × ∆n from K =
({0}×∆n)∪ (∆1 × ∂∆n) by successively attaching a sequence τn, . . . , τ0 of (n+ 1)-cells along horns;
in particular, τa is attached to K ∪

⋃
k>a τk along a horn inclusion isomorphic to Λn+1

a ⊂ ∆n+1.
Given this, we thus construct the desired lift by inductively choosing a lift defined on each τa

relative to the given lift on its Λn+1
a -horn. When a > 0 such a lift exists because p is an inner

fibration and τa is attached along an inner horn, while when a = 0 a lift exists by Joyal lifting
(34.17), as ∆1 × {0} is the leading edge of τ0.

78.7. A pushout-product characterization of (co)Cartesian edges. We now give a proof of
(69.3): we will prove the case of (x, y) = (0, 0). In fact, the proof is exactly as in (78.6): construct a
lift inductively by choosing a lift defined on each (n+1)-cell τa, where a lift exists for a > 0 because
p is an inner fibration, and a lift exists for a = 0 because the edge f is coCartesian.

78.8. Another pushout-product version of Joyal lifting. We show that given p : C → D an
inner fibration of categories, n ≥ 1, and

{0} ×∆{0,1} // //

f

,,(∂∆1 ×∆n) ∪∂∆1×Λn
0
(∆1 × Λn

0 ) //

��

��

C

p

��

∆1 ×∆n //

55

D

such that f represents an isomorphisms in C, we can construct a lift.
We refer to the notation of the proof of (78.2), so that τ0, . . . , τn are the nondegenerate (n+1)-cells

of ∆1 ×∆n. I claim that ∆1 ×∆n can be built from K = (∂∆1 ×∆n) ∪ (∆1 × Λn
0 ) by successively

attaching the sequence τ0, . . . , τn along generalized horns, so that

• τ0 is attached along a horn inclusion isomorphic to Λn+1
1 ,
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• τa, 0 < a < n, is attached along a generalized horn inclusion isomorphic to Λn+1
[n+1]∖0,k+1, and

• τn is attached along a horn inclusion isomorphic to Λn+1
0 .

In each except the last case the inclusion is a generalized inner horn, while the leading edge of τn is
precisely ∆1 × {0}.

79. Appendix: Weak equivalences and homotopy groups

In this appendix we give a proof of (56.8), that the weak homotopy equivalences between Kan
complexes are precisely the π∗-eqivalences.

79.1. Models for the simplicial sphere. We first note that we can replace ∆n/∂∆n in the
definition of πn(X,x) := π0 Fun∗(∆

n/∂∆n, X) with any other “model” of a a simplicial n-sphere.

79.2. Proposition. Let (S, s) be a pointed simplicial set which is weakly homotopy equivalent to
(∆n/∂∆n, ∗) in sSet∗, i.e., such that there exists a zig-zag of basepoint preserving weakly homotopy
equivalences

(S, s)← (S1, s1)→ (S2, s2)← · · · ← (∆n/∂∆n, ∗).
Then there exists a bijection πn(X,x) ≈ π0 Fun∗(S,X), functorial in X.

Proof. Immediate using (56.2)(1). □

For instance, the boundary of an (n+ 1)-simplex is a simplicial n-sphere.

79.3. Proposition. There is a weak homotopy equivalence (∂∆n+1, {0})→ (∆n/∂∆n, ∗) of pointed
simplicial sets, and thus natural isomorphisms πn(X,x) ≈ π0 Fun∗((∂∆

n+1, {0})), (X,x) for Kan
complexes X.

Proof. The inclusion {0} ⊆ Λn+1
0 is anodyne (79.4) and thus a weak homotopy equivalence (52.5).

Therefore by application of good pushouts (50.12) the induced map ∂∆n+1 = ∂∆n+1/{0} →
∂∆n+1/Λn+1

0 is a weak homotopy equivalence. The claim follows because we have an isomorphism

∂∆n+1/Λn+1
0 ≈ ∆n/∂∆n, induced by ⟨1, . . . , n + 1⟩ : ∆n → ∂∆n+1. The description of πn is

immediate from (56.2)(1). □

79.4. Exercise. Define subcomplexes Fk ⊆ ∆n for 0 ≤ k ≤ n, so that Fk is the union of all ∆S ⊆ ∆n

such that (i) 0 ∈ S ⊆ [n] and (ii) |S| ≤ k + 1. Show that each inclusion ∆{0} = F0 ⊂ F1 ⊂ · · · ⊂
Fn = Λn

0 is anodyne, whence {0} ⊆ Λn
0 is anodyne.

79.5. π∗-equivalences.

79.6. Proposition. The class of π∗-equivalences between Kan complexes satisfies 2-out-of-6, and
thus satisfies 2-out-of-3.

Proof. This is much like the proof that functors which are essentially surjective and fully faithful
share this property. One ingredient is to prove that if f0, f1 : X → Y are functors which are naturally
isomorphic, then f0 is a π∗-equivalence if and only if f1 is. Another ingredient is the observation
that to check that f is a π∗-equivalence, it suffices to check πk(X,x)→ πk(Y, fx) for x ∈ S where
S ⊆ X0 is a set of representatives of π0X. □

Since every weak homotopy equivalence f : X → Y between Kan complexes is a π∗-equivalence,
to show (56.8) we can reduce to the case when f is a Kan fibration. In fact, we will show that f is
a trivial fibration, using the following.

79.7. Proposition. Let p : X → Y be a Kan fibration between Kan complexes, and consider n ≥ 0.
Then Cell≤n � p if and only if, for all 0 ≤ k < n and all x ∈ X0, the induced map

πk(X,x)→ πk(Y, p(x))

is a bijection, and is a surjection for k = n.
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Proof. This will be immediate from (??) and (79.9) below. □

In the following, given a vertex x ∈ X0, we write x : K → X for any constant map with value x,
i.e., any map of the form K → {x} → X.

79.8. Lemma. Let p : X → Y be a Kan fibration between Kan complexes. Let n ≥ 0 be such that
p∗ : πn(X,x)→ πn(Y, px) is surjective for all x ∈ X0. Then (∗ ⊂ ∆n/∂∆n) � p.

Proof. Suppose given a lifting problem (u, v) of type (∗ ⊂ ∆n/∂∆n) � p. Note that u = x for some
x ∈ X. We will show that we can deform this lifting problem to one of the form (x, y) where
y = f(x) ∈ Y0, which tautologically admits a lift (i.e., the constant map x : ∆n/∂∆n → X), so that
the claim follows by covering homotopy extenison (39.8).

The hypothesis that p∗ is surjective says exactly that there exists a map ẽ : (∆n/∂∆n)×∆1 → Y
such that (i) ẽ|(∆n/∂∆n)×{0} = v, (ii) ẽ|(∆n/∂∆n)×{1} = y, where y is the unique map factoring
through {y = px} → Y , and (ii) ẽ| ∗ ×∆1 = y is also a constant map. By adjunction, we see that
this exactly gives the data of an edge e in Fun(∗, X)×Fun(∗,Y ) Fun(∆

n/∂∆n) with e0 = (x, v), and
e1 = (x, y), as desired. □

79.9. Lemma. Let p : X → Y be a Kan fibration between Kan complexes. Let n ≥ 0 be such
that πn(X,x) → πn(Y, px) is injective for all x ∈ X0. Then (∗ ⊂ ∆n+1/∂∆n+1) � p implies
(∂∆n+1 ⊂ ∆n+1) � p.

Proof. Suppose given a lifting problem (u, v) of type (∂∆n+1 ⊂ ∆n+1) � p. We show that this can
be deformed to a lifting problem (u′, v′) such that u′ = x for some x ∈ X, i.e., so that the lifting
problem (u′, v′) factors as

∂∆n //
��

��

∗ x //
��

��

X

p

��

∆n // ∆n/∂∆n

v′′
//

::

Y

Then by hypothesis the lifting problem (x, v′′) admits a solution, so the claim follows using covering
homotopy extenison (39.8).

Let x := u(⟨0⟩) ∈ X0 and y = p(x). Recall that ∂∆n+1 is weakly homotopy equivalent to
∆n/∂∆n (79.3), so that we have natural isomorphism π0 Fun∗((∂∆

n+1, {0}), (T, t)) = πn(T, t) (79.2).
In particular, u : ∂∆n+1 → X represents an element of πn(X,x). Consider the composite

∂∆n ×∆1 → ∆n ×∆1 γ−→ ∆n v−→ Y

where γ represents the natural transformation id∆n → ⟨n . . . n⟩. This gives an edge in
Fun∗((∂∆

n, {0}), (Y, y)) connecting pu with y, i.e., pu represents the trivial element of πn(Y, y).
By hypothesis we conclude that u represents the trivial element of πn(X,x), so there exists
h : ∂∆n+1 ×∆1 → X so that h|∂∆n+1 × {0} = u, h|∂∆n+1 × {1} = x, and h|{0} ×∆1 = x. Now
consider

(∂∆n+1 ×∆1) ∪∂∆n+1×{0} ∆
n+1 × {0}

(ph,v)
//

��

i
��

Y

∆n+1 ×∆1

k

44

which is well-defined since ph|∂∆n+1 × {0} = pu = v|∂∆n+1 × {0}. Not that that since i is the
pushout product (∂∆n+1 ⊂ ∆n+1)□({0} ⊂ ∆1) which is in Cell□Horn ⊆ Horn (??), and Y is a Kan
complex, a lift k exists. Therefore the pair (h, k) represents an edge in Fun(∂∆n+1, X)×Fun(∂∆n+1,Y )

Fun(∆n+1, Y ) connecting (u, v) with (x, v′) where v′ = k|∆n+1 × {1}. This is what we needed. □



INTRODUCTION TO QUASICATEGORIES 187

79.10. Group structures. We give some exercises which lead to a proof that πn(X,x) is a group
when n ≥ 1, and abelian when n ≥ 2. We have already noted that π1(X,x) = HomhX(x, x), so has
a natural group structure (56.5).

Write ∂(∆p ×∆q) := (∆p × ∂∆q) ∪ (∂∆p ×∆q).

79.11. Exercise. Show that ∂(∆n×∆1), with any choice of basepoint, is weakly homotopy equivalent
to ∆n/∂∆n in sSet∗. (Hint: let S := (∆n × {0}) ∪ (∂∆n ×∆1), and note that S is weak homotopy
equivalent to ∆0, and that ∂(∆n ×∆1)/S ≈ ∆n/∂∆n.)

79.12. Exercise. Show that (∆n ×∆1)/∂(∆n ×∆1) is weakly homotopy equivalent to ∆n+1/∂∆n+1

in sSet∗. (Hint: use (79.3).)

79.13. Exercise. Show that πn(X,x) ≈ πn−1(mapX(x, x), 1X) for all n ≥ 1. Conclude that πn(X,x)
is a group if n ≥ 1.

80. Appendix: Sets generating weakly saturated classes

We show that the weakly saturated classes CatEq ∩ Cell and GpdEq ∩ Cell are each generated
by some set S, and so in particular are parts of weak factorization systems

(CatEq ∩ Cell, CatFib) and (GpdEq ∩ Cell, GpdFib).

In either case, we will show that the weakly saturated class is generated by the class of injective
maps K ↣ L in the class for which the number of cells in K and L is bounded by some explicit
regular cardinal. We obtain S by choosing one representative for each isomorphism class in this
class; then S is a set because of the cardinality bound.

80.1. Lemma. Let U be any weakly saturated class of maps of simplicial sets. Suppose Y is a
simplicial set with subcomplex X ⊆ Y . Then there exists a subcomplex X ′ ⊆ Y which is maximal
with respect to the properties that (i) X ⊆ X ′ ⊆ Y and (ii) (X → X ′) ∈ U .

Proof. Let P be the set of all subcomplexes Z of Y such that X ⊆ Z and (X → Z) ∈ U . Say that
Z ≤ Z ′ for Z,Z ′ ∈ P if Z ⊆ Z ′ and (Z → Z ′) ∈ U . Then P is a partially ordered set since U
is closed under composition (but note that Z ⊆ Z ′ need not imply Z ≤ Z ′). Furthermore, P is
non-empty since X ∈ P.

I claim that P satisfies the hypothesis of Zorn’s lemma. In fact, suppose C ⊆ P is a non-empty
chain. Using the axiom of choice we can choose an ordinal λ and a cofinal map f : λ→ C (i.e., one
such that for all Z ∈ C there exists α ∈ λ with Z ≤ f(α)). Then B := colimα<λ f(α) =

⋃
α<λ f(α)

is such that (f(0)→ B) ∈ U since U is closed under transfinite composition, and thus B ∈ P . Since
B is clearly an upper bound for C, Zorn’s lemma applies, and P has a maximal element X ′. □

80.2. Lemma. Let T be a weakly saturated class of monomorphisms. Suppose that there exists
a regular cardinal κ with the following property: for any inclusion X ⊆ Y of simplicial sets with
(X → Y ) ∈ T , Y is equal to the union of the collection of all subcomplexes B ⊆ Y such that (i) B
is κ-small, and (ii) (B ∩X → B) ∈ T . Then T = S where S ⊆ T is the subclass of maps whose
codomains are κ-small simplicial sets.

Proof. Let S be the class decribed in the statement. We want to show that any element of T is
in S. Since the maps in T are monomorphisms, it suffices to consider inclusions of subcomplexes
K ⊆ Y which are in T , and to show that these are in S.

Apply (80.1) with the class S to obtain K ⊆ K ′ ⊆ Y maximal with respect to the property
that (K → K ′) ∈ S. If K ′ = Y we are done. If not, then by hypothesis applied to K ′ ⊆ Y there
exists a κ-small subcomplex B ⊆ Y with B ̸⊆ K ′ and (B ∩ K ′ → B) ∈ S ⊆ T . This implies
(K ′ → B ∪K ′) ∈ S since this is a cobase change of B ∩K ′ → B, and therefore (K → B ∪K ′) ∈ S.
This contradicts the maximality of K ′. □
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80.3. Detection functors. Let C be a class of morphisms in sSet. A detection functor for C detection functor

is a functor F : Fun([1],Set)→ Fun([1], sSet) on arrow categories such that there exists a regular
cardinal κ, with the following properties:

(1) For any map f of simplicial sets (i.e., object of Fun([1], sSet)) we have f ∈ C if and only if
F (f) : F0(f)→ F1(f) is a bijection of sets.

(2) The functor F commutes with κ-filtered colimits.
(3) The functor F takes maps between κ-small simplicial sets to maps between κ-small sets.

80.4. Proposition. Let F be a detection functor for C, with associated infinite regular cardinal κ.
Suppose f : X ⊆ Y is an inclusion of a subcomplex which is an element of C. Then Y is a union of
all subcomplexes B ⊆ Y such that (i) B is κ+-small and (ii) (B ∩X → B) ∈ C. (Here κ+ is the
successor cardinal to κ, which is also regular.)

Proof. (Adapted from [Joy08a, D.2.16].) Let P be the poset of subcomplexes of Y , so that the
detection functor gives a composite functor

P → Fun([1],Set), A 7→ F (fA), fA : A ∩X ↣ A,

which commutes with κ-filtered colimits since F does. For any cardinal α let Pα ⊆ P be the subset
consisting of subcomplexes A ⊆ Y with |A| < α. We will show that that every A ∈ Pκ is contained
in some B ∈ Pκ+ such that F (fB) is a bijection. Since Y =

⋃
A∈Pκ

A = colimA∈Pκ A this proves
the claim.

Suppose given A ∈ Pκ. Note that Pκ is κ-filtered and tthus

colimA∈P F (fA) ≈ F (f)
since F preserves κ-filtered colimits. Furthermore since f ∈ C we have that F (f) : F0(f)→ F1(f) is
a bijection of sets. Therefore, for any A ∈ Pκ we can choose A+ ∈ Pκ with A ⊆ A+ such that a lift
exists in

F0(fA) //

��

F0(fA+)

��

F1(fA) //

s
99

F1(fA+)

Now define a functor A• : κ→ Pκ by transfinite induction, so that

• A0 := A,
• Aλ+1 := A+,
• Aλ := colimi<λAi if λ ≤ κ is a limit ordinal.

Let B := colimi<κAi =
⋃

i<κAi, which will be an element of Pκ+ . Since F preserves κ-filtered
colimits, we have F (fB) = colimi<κ F (fAi), which is seen to be a bijection. Thus we have proved
that A ⊆ B with |B| < κ+ and (B ∩X → X) ∈ C as desired. □

80.5. Corollary. Suppose C is a class of maps in sSet for which there exists a detection functor,
and suppose T := C ∩ Cell is weakly saturated. Then T = S for some set S.

80.6. Construction of detection functors. It remains to construct detection functors for the
classes CatEq and GpdEq. We obtain the detection functor as a composite of several intermediate
steps, so F := F (4)F (3)F (2)F (1).

Step 1: Recall (18.9) that the small object argument gives a functorial way to factor a map f as
f = pi, with i ∈ S and p ∈ S� for some set S.

We can apply this with with S = InnHorn, so that we obtain a functor sSet →
Fun([1], sSet) sending X to iX : X → X ′, where iX is a categorical equivalence and X ′

is a quasicategory. Alternately we can apply this with S = Horn, so that iX is a weak
homotopy equivalence and X ′ a Kan complex.
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In either case, for any map of simplicial sets f : X → Y we obtain a commutative square

X
iX //

f
��

X ′

f ′

��

Y
iY
// Y ′

so that we get a functor F (1) : Fun([1], sSet) → Fun([1], qCat) ⊆ Fun([1], sSet), which on
objects sends f 7→ f ′. If S = InnHorn we have that f ′ is a categorical equivalence if and
only if f is, while if S = Horn we have that f ′ is a categorical equivalene if and only if f is
a weak homotopy equivalence.

Step 2: Define a functor F (2) : Fun([1], qCat)→ Fun([1], qCat) which on objects sends f : C → D

to the path factorization p = F (2)(f) : Funiso(∆1, C) ×C D → D. We have that p is an
isofibration, and is a categorical equivalence if and only if f is. Therefore, f is a categorical
equivalence if and only if p is a trivial fibration (40.8).

Step 3: Define a functor F (3) : Fun([1], qCat)→ Fun([1], Set) sending f : X → Y to the map of sets

F (3)(f) :
∐
n≥0

Hom(∆n, X)→
∐
n≥0

Hom(∂∆n, X)×Hom(∂∆n,Y ) Hom(∆n, Y ).

Thus, f is a trivial fibration if and only if F (3)(f) is surjective.

Step 4: Define a functor F (4) : Fun([1], Set)→ Fun([1], Set) sending f : X → Y to

F (4)(f) : colim
[
X ×Y X ⇒ X

]
→ Y.

Thus, f is a surjection if and only if F (4)(f) is a bijection.

It is clear that the composite functor F is such that F (f) is a bijection if and only if f is a categorical
equivalence (or weak homotopy equivalence). We can choose an infinite regular cardinal such that

each of F (i) preserves κ-filtered colimits and takes κ-small simplicial sets to κ-small sets or simplicial
sets as the case may be. In fact, any infinite regular cardinal > ω satisfies when i = 2, 3, 4, while for
for i = 1 we choose κ greater than the size of the domains and codomains of objects in S.

81. Stuff

Just dumping some stuff here that may make it into a future new section.

81.1. Proposition. Let C be a quasicategory, and let i be the inclusion

i : A = ∂∆m ×∆n ×∆1 ∪ ∆m × ∂∆n ×∆1 ∪ ∆m ×∆n × {1} → ∆m ×∆n ×∆1,

with m,n ≥ 1. Then any f : A→ C which sends the edge {(m,n)} ×∆1 to an isomorphism in C
extends over i.

Proof. We have already proved the case of n = 0. Prove the general case by building ∆m×∆n from
its boundary by attaching cells. □

Here’s a better statement of the previous.

81.2. Proposition. Let C be a quasicategory and i : K → L a monomorphism which is a bijection
on vertices. Let S ⊆ L0 be the subset of vertices of the form ak, for all a ∈ Lnd

k ∖Knd
k . Then in any

diagram

K
f
//

��

��

Fun(∆1, C)

��

L //

::

Fun({1}, C)
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if f sends each vertex in S to a vertex in Fun(∆1, C) corresponding to an isomorphism in C, then a
lift exists.

81.3. Corollary. Let C be a quasicategory, and let p : Fun(∆n, C)→ Fun(∂∆n, C) be the restriction
map, with n ≥ 1. Then an edge α of Fun(∆n, C) is p-Cartesian iff its corresponding to natural
transformation α : f ⇒ f ′ of functors ∆n → C is such that α(n) : f(n)→ f ′(n) is an isomorphism
in C.

81.4. Lemma. Let p : C → D be an inner fibration of quasicategories. In any commutative diagram

∆m × ∂∆n ∪ ∂∆m ×∆n u //
��

i
��

C

p

��

∆m ×∆n //

66

D

with m ≥ 0 and n ≥ 1, if u(m,n) ∈ C0 is a p-terminal object, then a lift exists.

Proof. Consider the skeletal filtration of i. The non-degenerate k-cells of ∆m × ∆n not in the
image of i are the pairs (a, b) where a : [k]→ [m] and b : [k]→ [n] are both surjective functions. In
particular k ≥ 1 since n ≥ 1. The restriciton

∂∆k (a,b)|∂∆k

−−−−−−→ ∆m × ∂∆n ∪ ∂∆m ×∆n u−→ C

to the boundary of ∆k sends the vertex k to the object u(m,n) ∈ E0, which is p-terminal by
hypothesis. Thus we can inductively construct a lift cell-by-cell along the skeletal filtration of i. □

Let i : K → L be a monomorphism of simplicial sets. Say that a vertex in L is i-right critical if i-right critical

it is of the form an for some n ≥ 1 and some a ∈ Lnd
n ∖ i(Knd

n ). Likewise, a vertex is i-left critical i-left critical

if it is of the form a0 for some n ≥ 0 and some a ∈ Lnd
n ∖ i(Knd

n ).

81.5. Proposition. Let p : E → B be an inner fibration of quasicategories, and i : K ⊆ L an
inclusion of simplicial sets. Write q := p□i : Fun(L,E)→ Fun(K,E)×Fun(K,B) Fun(L,B) for the
pullback-hom map

(1) Consider a map f : L→ E, regarded as an object of Fun(L,E). If for each i-right critical
vertex s ∈ L0 the object f(s) ∈ E0 is p-terminal, then f is q-terminal.

(2) Consider an object (u, v) of Fun(K,E) ×Fun(K,B) Fun(L,B). If (i) u takes every i-right
critical vertex in K to a p-terminal object of E, and (ii) v takes every i-right critical vertex
in L∖K to an object of B which is the image of some p-terminal object of E, then there
exist a q-terminal object s in Fun(L,E) such that q(s) = (u, v).

Proof. We need to produce a lift in every commutative square of the form

∂∆n u //
��

��

Fun(L,E)

q

��

∆n

(v,w)
//

55

Fun(K,E)×Fun(K,B) Fun(L,B)

with n ≥ 1 such that u(n) = f , which by hypothesis implies that u(n)(s) ∈ E0 is p-terminal for each
i-right critical vertex s ∈ L0. Such a lifting problem is equivalent to one of the form

K
ṽ //

��

i

��

Fun(∆n, E)

q′

��

L
(ũ,w̃)

//

44

Fun(∂∆n, E)×Fun(∂∆n,B) Fun(∆
n, B)
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with the property that for each i-right critical vertex s ∈ L0, the object ũ(s)(n) ∈ E0 is p-terminal.
We can construct such a lift inductively using the skeletal filtration of i, and thus reduce to the
special case when i is the inclusion ∂∆m → ∆m for some m ≥ 0. This special case is equivalent to
the one whose solution is provided by the lemma. □

81.6. Example. If C is a quasicategory with terminal object x, and if q : C × C → C is projection
to the second factor, then any object of the form (x, y) is q-terminal. This is just the proposition
applied to p : C → ∗ and i : {1} → ∆1.

81.7. Proposition. Let p : C → D be an inner fibration of quasicategories, and i : K ⊆ L an
inclusion of simplicial sets which is a bijection on vertices. Let S ⊆ L0 denote the set of vertices of
L which have the form an for some n ≥ 1 and some a ∈ Lnd

n ∖Knd
n . Write q = p□i : Fun(L,C)→

Fun(K,C)×Fun(K,D) Fun(L,D) for the pullback-hom map.
If α : F → f ′ is a morphism in Fun(L,C) such that for each s ∈ S, the restriction α(s) : f(s)→

f ′(s) is a p-Cartesian morphism in C, then α is a q-Cartesian morphism.

Proof. We need to solve a □

81.8. Proposition. Let C be a quasicategory and K a simplicial set, and consider the restriction
functor

p : Fun(K▷, C)→ Fun(K ∪ {v}, C),
where v is the cone point of K▷. Then for any edge α ∈ Fun(K▷, C)1, if α(v) is an isomorphism in
C, then α is p-Cartesian.

81.9. Corollary. If C is a quasicategory and K a simplicial set, the restriction functor

q : Fun(K▷, C)→ Fun(K,C)

is a Cartesian fibration.

81.10. Corollary. If C is a quasicategory and K a simplicial set, and q : Fun(K▷, C)→ Fun(K,C)
is restriction, then an object in Fun(K▷, C) relatively q-initial iff it is an initial object in its fiber.

Given a functor p : C → D between quasicategories, we obtain functors

q : Fun({0}, C)×Fun({0},D) Fun(∆
1, D)→ Fun({1}, D)

and
q′ : Fun({1}, C)×Fun({1},D) Fun(∆

1, D)→ Fun({0}, D),

where all maps are induced in the evident way by p and by restriction to subcomplexes of ∆1. I will
call these the coCartesian path fibration and Cartesian path fibration respectively. This coCartesian path fibra-

tion

Cartesian path fibra-
tion

terminology will be justified soon.

81.11. Lemma. Let p : C → D be a functor between quasicategories. Then the coCartesian path
fibration and Cartesian path fibration associated to p are inner fibrations.

Proof. We prove the case of the coCartesian path fibration q. Consider the commutative diagram

(C ×D)×D×D Fun(∆1, D)
r′ //

��

C ×D π //

��

D

Fun(∆1, D) r
// D ×D

in which r is restriction along ∂∆1 ⊂ ∆1 and π is projection to the second factor, and the square is
a pullback. Then both π and r, and hence r′, are inner fibrations (??). The claim follows because q
is isomorphic to πr′. □
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81.12. Lemma. Let p : C → D be a functor between quasicategories, and consider the coCartesian
path fibration

q : Fun({0}, C)×Fun({0},D) Fun(∆
1, D)→ Fun({1}, D).

If f : ∆1 → Fun({0}, C)×Fun({0},D)Fun(∆
1, D) is such that the composite ∆1 → Fun({0}, C)×Fun({0},D)

Fun(∆1, D)→ Fun({0}, C) represents an isomorphism in C, then f is a q-coCartesian morphism.

Proof. We again refer to the commutative diagram

(C ×D)×D×D Fun(∆1, D)
r′ //

��

C ×D π //

��

D

Fun(∆1, D) r
// D ×D

in which πr′ = q. To show that f is q-coCartesian, by (??) it suffices to show that (i) r′(f) is
π-coCartesian, and (ii) f is r′-coCartesian. Since f is an isomorphism, (i) is immediate from (??).
For (ii), since r′ is a basechange of r, it suffices to show that the edge represented by pf : ∆1 → D
is r-coCartesian. This is immediate from (??). □

81.13. Proposition. Let p : C → D be a functor between quasicategories. Then the coCartesian
path fibration is a coCartesian fibration.

82. Mapping spaces in alternate slices

Let C be a quasicategory with morphisms g : b→ x and f : a→ x to a common object x. The
morphisms f and g also correspond to objects of the alternate slice C/x, which we will also denote by
f and g. The goal of this section is to identitfy the mapping space mapC/x(g, f) as the “homotopy
fiber” over g of a “map”

f∗ : mapC(a, b)→ mapC(a, x)

which corresponds to “postcomposition with f”. In fact, we construct f∗ not as a single map but as
a zig-zag of maps in which the backwards map is an equivalence.

Consider the subcomplex

K := {(0, 0)} ∪ {1} ×∆1 ∪ ∆1 × {1},
define map′C(a, b) to be the pullback in

map′C(a, b) //

��

Fun(∆1 ×∆1, C)

��

{f ′} // Fun(K,C)

where f ′ : K → C is the map with f ′|{(0, 0)} = a, f ′|{1} ×∆1 = f , and f ′|∆1 × {1} = 1x.

82.1. Lemma. Restriction along ∆1 × {0} ⊂ ∆1 × ∆1 induces an equivalence map′C(a, b) →
mapC(a, b).

Proof. We are comparing the fibers of the vertical maps in

Fun(∆1 ×∆1, C) //

��

Fun(∆1 × {0}, C)

Fun(K,C) Fun(∂∆1 × {0}, C)

□
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We can construct the following commutative diagram

mapC/x(g, f) //

��

map′C(a, b) //

��

mapC(a, b)

{g} // mapC(a, x)

Let K ⊆ ∆1 ×∆1 be the subcomplex

K := {(0, 0)}⨿
where map′C(a, b) is defined to be the pullback in

map′C(a, b) // Fun(∆1 ×∆1, C)

{(a, 1b, f)} Fun(K,C)

83. Additional stuff

83.1. Large vs. small. I have been implicitly assuming that certain categories are small; i.e., they small

have sets of objects and morphisms. For instance, for the nerve of a category C to be a simplicial
set, we need C0 = obC to be a set.

However, in practice many categories of interest are only locally small; i.e., the collection of locally small

objects is not a set but is a “proper class”, although for any pair of objects HomC(X,Y ) is a set.
For instance, the category Set of sets is of this type: there is no set of all sets. Other examples
include the categories of abelian groups, topological spaces, (small) categories, simplicial sets, etc.
It is also possible to have categories which are not even locally small, e.g., the category of locally
small categories. These may be called large categories. large

We would like to be able to talk about large categories in exactly the same way we talk about
small categories. This is often done by positing a hierarchy of (Grothendieck) “universes”. A
universe U is (informally) a collection of sets which is closed under the operations of set theory. We
additionally assume that for any universe U , there is a larger universe U ′ such that U ∈ U ′. Thus, if
by “set” we mean “U -set”, then the category Set is a “U ′-category”. This idea can be implemented
in the usual set theoretic foundations by postulating the existence of suitable strongly inaccessible
cardinals.

The same distinctions occur for simplicial sets. For instance, the nerve of a small category is a
small simplicial set (i.e., the elements form a set), while the nerve of a large category is a large
simplicial set.

I’m not going to be pedantic about this. I’ll usually assume categories like Set, Cat, sSet, etc.,
are categories whose objects are “small” sets/categories/simplicial sets/whatever, i.e., are built
from sets in a fixed universe U of “small sets”. However, I sometimes need to consider examples of
sets/categories/simplicial sets/whatever which are not small. I leave it to the reader to determine
when this is the case.

In practice, a main point of concern involves constructions such as limits and colimits. Many
typical examples of categories C = Set,Cat, sSet, etc., in which objects are built out of small sets
are small complete and small cocomplete: any functor F : D → C from a small category D has small complete

small cocompletea limit and a colimit in C. This is not true if D is not assumed to be small. In this case care about
the small/large distinction is necessary.
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