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PREFACE

This volume was conceived as the proceedings
of a conference on surgery theory held at Rutgers
University in July, 1983. The editors have taken the
opportunity to considerably expand the subject matter.

The articles in this volume present original
research on a wide range of topics in modern topclogy.
They include important new material on the algebraic
K-theory of spaces (Waldhausen, Vogell), the algebraic
obstructions to surgery and finiteness (Cappell and
Shaneson, Milgram, Pedersen and Weibel, Ranicki,
Sondow) , geometric and chain complexes (Davis, Quinn,
Smith, Weinberger), characteristic classes (Levitt),
and transformation groups (Assadi and Vogel).

A paper of J.Levine on homotopy spheres, written
in 1969 as-the sequel to the classic work of Kervaire

and Milnor but never published, is also included.

Andrew Ranicki
Norman Levitt

Frank Quinn

November, 1984
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SEMIFREE FINITE GROUPS ACTIONS ON COMPACT MANIFOLDS

A. H. Assadi(*) P. Vogel

Department of Mathematics Institut de Mathematiques
University of Vvirginia et d'informatique
Charlottesville, Virginia 22903 Université de Nantes

Usa 44072 Nantes

Cédex, FRANCE
INTRODUCTION

One of the classical problems in transformation groups has been
to study the properties of the stationary point sets of actions on
manifolds, and to characterize them whenever possible. P. A. Smith
theory in combination with various other topological considerations
provide a number of necessary conditions to be satisfied by the
stationary point sets of some restricted classes of actions. 1In the
case of smooth actions of a compact Lie group G on a manifold W, the
stationary point set, say F, is a manifold and its normal bundle in
W, say v, is a G-bundle which determines the action in a (tubular)
neighborhood of F.

For a complete characterization (of the diffeomorphism type) of
F, one needs to show that the above mentioned necessary conditions are
sufficient as well, in the following sense. Assuming that the sub-
manifold F of the prescribed manifold W, and the G-bundle v given, one
tries to find an action on W which would restrict to the given action
in the tubular neighborhood of F provided by the G-bundle v. Special
cases of such problems have been considered under various circumstances
by various authors: (J11, [J2], [Al}, ([A2l, [(A3], [aA-B 1], [aA-B 1],
[L], [D-R], [S] to mention a few. 1In these and other related contexts,
a common hypothesis is that W is simply-connected and this assumption
is indispensable for the techniques and the arguments to be applicable.

In the following, we consider this and some other relevant ques-
tions in the case of non-simply connected compact manifolds on which a
finite group G has a "simple semifree action," i.e. where action is
free outside of the stationary point set, and a certain localized
Borel construction becomes fibre homotopy trivial. Although semifree
actions comprise a restricted class, their understanding seems essential
in developing general theories with more complicated isotropy group
structures. The further restriction of “simplicity" of actions has been

imposed to bring the homotopy-thecretic constructions and algebraic

(*) Partially supported by an NSF grant.



calculations within reach, as well as to provide a satisfactory answer
to the above-mentioned questions in the form of less-complicated nec-
essary and sufficient conditions.

In the presence of the fundamental group of the ambient manifold -
on which the desired G-action is to be constructed — much of the
methods and results of the simply-connected cases (in their various
forms and contexts) are inapplicable. Thus, one is led to construct a
new obstruction group and a new invariant (depending on both nlw and G)
whose vanishing is one of the necessary conditions for the existence
of such actions. The obstruction group fits in a five-term exact
sequence relating various Whitehead groups, and conceivably it can be
defined as the fundamental group of the fibre of a transfer map between
two Whitehead spaces involved in the problem, although its definition
given below is in purely algebraic terms. The above-mentioned invariant

is related to a certain Reidemeister torsion-type invariant.

If7m=1, th becomes simply RO' This functor takes into account
the interaction between K. (the finiteness obstruction in the presence of

0
G-actions) and Wh1 (the Whitehead torsion involving the fundamental

group m; = m) in a way which is necessary to study the above mentioned

problems. Thus, in the geometric context, wh? plays the same role in

the study of finite group actions on non-simply connected compact mani-
folds that RO does in the simply-connected case.

The organization of the paper is as follows. In Section I we
introduce Wh? and state some of its algebraic properties which are used
subsequently to detect the (combined) finiteness and Whitehead torsion
type obstructions as the image of a Reidemeister torsion type invariant.
Section II illustrates some computations of th. (The details of the
results in these sections will appear elsewhere.) Section III considers
semifree simple actions and gives necessary and sufficient conditions
for existence of simple actions in this context. The problem of char-
acterization of the stationary point sets of simple semi-free actions
on compact bounded manifolds and an extension theorem for free simple
actions are reduced to the homotopy theoretic problem of constructing
appropriate Poincaré complexes, which are carried out using mixing the
localizations of diagrams of spaces involved. Section IV gives an in-
dication of the proofs of the theorems of Section III. Section V gives
some useful theorems on constructing free simple actions either by ex-
tending a given action on a subspace or by pulling back actions from a
given space, thus formalizing and generalizing the constructions needed

in Section III. Although these are non-simply connected versions of



analogous results in {A2] and [A3] where free actions are constructed
from homotopy actions on simply-connected spaces (which are not simple
in general), there is little overlap in scope or the methods.

There is somewhat of an 6verlap between some of the results obtain-
ed independently by S. Cappell and S. Weinberger [CW] as well as S.
Weinberger [W], P. LOffler [Ll, P. LOffler and M. RauBen [LR]. The

papers of L. Jones [J] and F. Quinn [Qu] also deal with related problems.

SECTION 1. Let A be a ring and P(A) denote the category of finitely
generated projective A-modules. In the sequel, G will denote a finite
group, and m a discrete group which denotes as well the subgroup

T x{1} =« 7 xG for simplicity of notation. Consider the set

A= {(p,B)|PeP(Z (x xG)), B= Zn-basis for P}. The operation of
direct sum of modules and disjoint union of Z n-bases in the given
order gives A the structure of a monoid with neutral element (0,8).

We introduce the equivalence relation (P,B) ~ (P',B') among the elements

of A if there exists a Z (m X G)-linear isomorphism a : P-=+P' such that
T (@) = 0 with respect to B and B', where T (@) Gwhl(n) is the White-
head torsion. The set of equivalence classes A' = A/~ inherits the

monoid structure of A, and contains the submonoid "of trivial elements";
namely, (P,B) represents a trivial element in A' if P is Z (r x G)-free,
and B is induced by a % (r x G)-basis. The guotient monoid A' modulo

the submonoid of trivial elements is seen to be an abelian group and is
denoted by Wh‘f( T<mx G). We have an obvious homomorphism

o ¢ th (m < 1mx G)— I'(VO(ZZ (7% G)) induced by the forgetful map

(p,B)—/P e‘ﬁo(zz (mxG)). There is a further homomorphism

B : Whl('rr)—*Wh?(n < m xG) which is induced by the operation of "twist-
ing the standard basis;" namely, let x eWhl(w) be represented by

¢ (Z n)“—-»(zz Tr)n. After stabilization, we have a w-linear homomor-
phism ¢ ® id : (Z (7 XG)m-—-> (Z (7 xG))m. Let B be the image of the
standard basis of (Z (7 x G))™ under the Z7- linear map ¢ ® id. Then
B is a %7 -basis for (Z (1 xG))™ and ((Z (TTXG))m,B) represents

B(x)e Whli(vr T xG).

1.1 Theorem. There is an exact sequence

Tr R T o tr
Whl(TT x G) ——'*Whl(’ﬁ)—*Whl(Tr o7 x G)—*Who(”ﬂ x G) ———>Wh0(n)

in which Tr and tr are transfer homomorphisms and Who = I7<0.



The homomorphism Z m ~>%Z 7 induces a homomorphism

def
Whl(ﬂ) —»Whl(n;zq) = Kl(ZZ qﬂ)/{iﬂ} where Zq = 7% /g% . One has a

further map vy : Whl(n;zz q)——> Wh'f(n c 7 xG) defined as follows. Let
)
GLn(ZZ m) be the monoid of (nxn)-matrices which have an inverse in

1
GLn(Z q‘lT) . Given ¢ € GLn(ZZ 7), one has an exact sequence

(C,) : 0—(Zm)¥— (mm)"—M —0

7z (ﬂxG)M < 1, and we
may take a short projective resolution over Z (Il x G) for M, where order

(G) = q:

Thus Mq =MB® qu = 0. It follows that proj dim

L 1
(Cy) 2 0—>Cy—>C——M—0

L} )
such that C, is free and C, is projective over 7 xG. There is a

1 0
i
%Z T-linear chain homotopy equivalence ¢ : C, +C,. Since the finite-
1
ness obstruction of C, over Zm vanishes, Co is stably trivial over Zn7

1] L] 1
also. After stabliization, we choose Zn-basis for C1 and CO' say Bl
and BZ' If we choose the "standard bases Bl and BO in the resolution
(Cy) above for C1 z (Z )" and CO = (Z "lT)n, then it is possible to

T v
arrange for the choices of Bl and BO so that becomes a simple homo-

1 1] 1 1
topy equivalence over Zm. Let y(¢) = [(Cl,Bl)] - [(Cl,Bl)] in
Whlf(ﬂ =m xG). In general, for ¢ eGLn(ZZ qn), we take ¢ = %ﬂ), where
1 1
(s,q) = 1. Then s(1d) e GLn(?Z m) and ¢ € GLn(ZZ m).

Let y(¢) = y(s(1d)).

I.2. Theorem. vy induces a well-defined homomorphism such that the fol-

lowing diagram commutes

Whl(ﬂ) Whrf(vrc: T X G)
canon. Y
Whl(n;z q)

Suppose C, is a chain complex over Z m such that H,(C,®Z q) = 0. Then



the Reidemeister torsion of C, is a well-defined element of Whl(ﬂ;Z(ﬂ
and is denoted by 1(C,). The main algebraic result of this section is
the following:

1.3. Theorem. Let A; be a finite Z n-based chain complex, and A, be a
finite % (7 x G)-based chain complex. Suppose there exists aZ m-linear
map f:A;—a—A* which is a Z m-chain homotopy equivalence. Further, sup-
pose H (A ® Z q) = 0 and that G acts trivially on H,(A), where order
(G) = g. Then there is a finite % (v x G)~based complex B, and a

Z (7 x G}-chain homotopy equivalence h:A, -+ B, such that hf:A, + B, is
m-simple if and only if Y Wa,)) = 0.

The above algebraic theory has the following application which is

crucial in the construction of surgery problems of the next sections.
1.4 Theorem. Suppose we have a commutative diagram

X
| -
X

<
<

oW
o A 12

with the following properties:
i) i,YNand Y are finite connected CW complexes, and X is a con-
nected CW-complex.

i) 7 %) = w (®) =, (X)) = 1 (V) = 1x6.

iii) Y is a covering space of Y and o induces a homotopy egquiva-
lence from X to the covering space of X with the fundamental group w.

iv) H, (i,?;zzq[n]) = 0 and the Reidemeister torsion of (X,¥) is

T(;(,Q) in Whl(v;ZZq) .

v) G acts trivially on H (X,¥);%Z [n]) = H (X,¥;% [v xG]).

Then there exists a homotopy equivalence from X to a finite com-
plex Z such that the composite map X—% X — Z induces a simple homo-
topy equivalence from X to a covering space of Z, if and only if
Y(t(X,¥)) = 0.

Indication of Proof: Let us denote by C,(-;M) the cellular chain com-

plex with (twisted coefficients M. We have a 7-linear homotopy equiva-
lence £ : C,(X,¥;% m)— (C,(X,¥;% [n xG}). If there exists such a Z,

then we have a m-simple homotopy equivalence



Co X, %:2 1)—C (2,Y;% {7 xG])

from a finite T-based complex to a finite 7 x G-based complex. Hence
by Theorem 1.3, Y(T(X,¥)) = 0.

Conversely, suppose that v(1(X,¥)) vanishes. Then there exists a
finite 7 X G-based chain complex B, and a 7 X G-homotopy equivalence g
from C,(X,Y;Z [T xG]) to B, such that g of is m-simple. This implies
that the finiteness obstruction of X vanishes and there exists a homo-
topy equivalence from X to a finite complex 21. Moreover, we can add
2-cells and 3-cells to Zl

obtain a finite complex Z such that the composite map

in order to modify the simple type of Z1 to

-1
B*—S————»c*(x,y;z [71 xG])—>C,(2,¥;Z [t xG]) is a 7 x G-simple homotopy
equivalence. It is easy to see that the composite map ¥ +»X -Z induces
a simple homotopy equivalence from X to the covering space of Z with

fundamental group w.

SECTION II. Let A= Z7m and w = ) g be the norm of G. For simplicity

g G
of notation, let A[G]/wA[G] = A[G]/w,A/qA = Aq, and
Z/2%Zx M = {+1,-1} xM = iM for any group M. Consider the cartesian
diagram:
h
A[G] A[Gl/w
£ (c)
A A

where f is the augmentation and all other homomorphisms are cannonically

defined quotient morphisms. The associated Mayer-Vietories sequence is:

K, (A[G])— K, a) oK, (A[G] /w)—-—-—>K1 (Aq)—+ K, (A[G))—
(MV)
K, (R) 8K, (A[G] /w)—Kg (Aq)

Corresponding to (MV), one has the following exact sequence if G #7Z 2

(U) O tH (1) XH, (G)— H (7)@%H (7)xH, (G)— tH (1) BT © B0
and if G = Z 2 the sequence reads:

0—r :Hl(n)le(G)—-rml(n)eﬂl(n)xﬂl(c)—rnl(n)—g—»z—»2z @ Z—Z —0



The sequences (U) and the corresponding homomorphisms are also obtained
from the diagram (C). The sequence (U) admits an injective homomor-
phism into the sequence (MV) and the guotient sequence is the exact

sequence of the Whitehead groups below:

Whl(ﬂ)(G)—"’Whl(ﬂ) ® Kl(A[G]/w)/iHl(w) XH1(G)——*Wh1(ﬂ;Z(q%—§*

Ky (A[G1)— K, (2) @ K, (A[G]/w)— K, (a,)

For simplicity of notation we write this sequence in terms of Whitehead

groups (by a slight abuse of notation)

3
Whl(A[G])——*Whl(A)$Wh1(A[G]/w)——+Wh1(Aq)—~+Wh0(A[G])

(W)
Wh (A)ewh, (A[G]/w)— Wh, (Aq)

The boundary map 3 in the sequence is related to a generalization of the
Swan homomorphism (Z )X—e-ko(z G) in the case of mn =1, (cf. [Sw] or
[M]). We continue to call 3 the Swan homomorphism.

Let o and Y be as in Theorem I.l. Then the Swan homomorphism is

-aey. To see this, let xewhl(Aq) correspond to the isomorphism
¢ (Aq)n—---»(Aq)n induced by the (injective) homomorphism ¢ : Al A",
As in Section I, it follows that in the exact sequence

0— AP—r A" M— 0

one has proj dimAG(M) < 1. Thus one has the commutative diagram:

0—s At at sM—o0

el 1

0—k—a[g12>Mm—0

where (£)" is induced by the augmentation f£. Thus ay([¢]) = - [K] and
the problem is reduced to show that the following diagram is cartesian:

K i (ALG} /w) ™

X ("

n -

(p) ¢

A ——————————+(A/q)ll--m--»(A/q)n

ok



(Recall the definition of 3 in the Mayer-Vietories sequence; cf.

e.g.). Since Keri = Ker (£)" =

[M]
= Ker{v)™ and (£)%op = ¢on,

one has the
diagram:

0 0 0

e

Kerx————:—————*Ker(f)g——-—i—~—+Ker(v)n

] : |

u
> (A[G]/w)"
l _ (v)
n P n d) n
AN ——————(A/q) —(A/q)
f)n l /n
6 M (p)

A

obtained from diagrams (B) and (C) above, and in which $o(p)no A

()% dor = (M e (£)%ou = (M Pom)®ou = (V)T 4. Thus (B) is

cartesian.
Next, we identify the transfer Ti : Whl(A[G])——*Whi(A) , 1 =20,1

in the 5-term exact sequence of Theorem I. Consider the diagram:

h

A[G] ~———F—— A[G]/uw
£ 8 l v
A 2 a

q

where § is the composite Arf—+A x{1}—— AG— AG/w so that ved = p.
Let p € P{(AG) be given and tensor P over AG by the diagram (C) to obtain
the cartesian diagram:

p—————p'

_—

Po ——— Po/qPo

Thus one obtains four functors from P(AG) to the categories P(A[G]),

P(A[G]/w), P(A), and P(Aq). The above cartesian diagram yields the

commutative diagram:



0 ) P, ®P' +P,/qPg——> 0
] 140 I 1
0 P, Po Po/gPo—— 0
(<)xq

which yields the exact sequence:

0~ Po — P®Po + Po®P' 0

The above sequence defines, in fact, a short exact seguence of the cor-
responding functors due to the functoriality of all the above construc-
tions. It follows from Quillen's theorem on the additivity of functors
(cf.[Q]) that the functor P—P®Ps is the sum of functors P—— Po

and P—— Po®P', which in turn implies that induced homomorphisms on
K-theory satisfy Tr = £, & trh,, Tr : K,(A[G])—+ K, (A) and

tr : K, (AG/w)—+ K, (A) are transfer homomorphisms. Thus on the level of

Whitehead groups, one has the following:

II.1 Lemma. Let T, : Whi(A[G] y— Whi(A) and ty @ Whi(A[G]/w)—>Whi(A)
be transfer homomorphisms. Then T, = f, @ tih*' where £, and h, are
induced from diagram (C) above.

Let ey S py s Whi (A)— Whi(A)—>whi (Aq). Specializing to the case

G =7 ot the above calculation is continued to show

20
IT.2 Lemma: The sequence Whl(ﬁ)—l—»whl(n;zz 2)—Y—>Wh$(ﬂ « x Z 2)—>
—= Kerp-—0 1is exact. 1In particular Kery = Im2p.
=]

This characterizes completely the obstructions which are discussed

in Section I in terms of the Whl(ﬂ) and the mod 2 reduction

Whl(w)—> Whl(n;z To obtain examples of nontrivial obstructions,

o) -

let m = Z Then computations show

8"

= 7 ¢ Z ® Z

Why(Z giZ 5) = Z, 2

T o
I1.3 Corollary: whl(ZZ8 czzsxzzz)= zZ,0Z,87, &z, and kery

consists of the 2-divisible elements of Whl(z 8;ZZ 2) .
Although Whl(ZZ

5) = 7 , one can show that in the case 71 = Z 5

G =2 all the obstructions vanish.

21
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= 7 and Im(y) = 0.

I1I.4 Corollary: Whl(Z S;Z 2) 2 3

Remark: In [Kw] Xwun has shown that the transfer Whl(z 2* Z%T**
Whl(z r) is onto if and only if r = odd or r = 2,4,6. We thank the

referee from bringing Kwun's result to our attention.

SECTION III. Let X be a finite dimensional CW complex with ﬁl(x) =7,

and let G be a finite group of order g acting semifreely on X - i.e.
the action is free outside of the stationary point set. In general,
there is no explicit relationship between H, (X) and H*(XG). The rather
implicit information obtained using the localization theorems of
Atiyah-Borel-Quillen-Segal type does not seem sufficient to yield a
satisfactory characterization of the stationary point set x® under
general hypotheses. In the sequel, we will consider a class of actions
which are encountered often in the geometric considerations, and to
which it is possible to apply the present techniques of algebraic
topology to obtain rather precise information and characterizations of
XG.

Given a connected space X and a subring of rational numbers A or

A= Z(q we denote by XA the localization of X which preserves nlx and

wi(xA) = ﬂi(X) ® A for i > 1. For instance Bousfield-Kan's localiza-

tion [B-K] applied to the universal covering space X yields iA on
which ﬂl(X) operates freely and i——+iA is equivariant. Then XA can be

defined as iA/ﬂl(X). For A = Z(q, A= 2 (q) and A = Z [%] we can use

the notations X and X(é) respectively.

a’ *@
The key observation to reconstruct a space (respectively a diagram
of spaces) from its localizations (respectively its diagrams of locali-

zations) is the following:

III.1. Lemma. For any connected space X the following diagram is

cartesian:

1

X— X_(2)

q 949

Proof: Since H*(xq,x;z /aln}) = 0 it follows that H*(xq,x;z m) 1is
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z [%]—local. Hence the (homotopy) fibre of f is Z [%]—local (CE. [s]).
Since the (homotopy) fibre of f' is also Z [%]—1ocal, f and £' has the

same fibre (up to homotopy).

Definition. Let X be a connected G-CW complex, where G is a finite
group of order q. X 1is called a simple G-space (and the action is

called simple) if (EGXGX)q is fibre homotopy equivalent to (BGxX)q.

For instance, if X has trivial mod g homology, then any G-action
on X will be simple, or if X has the mod g homology of a sphere and
G s . . . .
X" # @, the X-{point} has a simple action if we take out a point from
G
X",

Proposition. Suppose G is a finite group of order g which has a simple
semifree action on the finite dimensional complex X with X = 7. Then

H*(X,XG;Z(qF) = 0, where the homology has local coefficients.

In the case of semifree simple actions on compact manifolds, one
obtains further restrictions imposed on XG. For simplicity, let us
consider the case of a smooth semifree G-action on a compact manifold

k

W with ﬂlw = T, Then the stationary point set WG = F~ is a submani-

fold with normal bundle v which is a G-bundle with a free G-representa-
tion at each fibre. Assume that n-k > 2. We identify the total space
of the disk bundle D(v) with a closed G-invariant tubular neighborhood
of F. Let C" = W-interior D(v). One can choose an appropriate CW
structure for W so that W, C, and D(v) become G-CW complexes, and var-
ious cellular chain complexes have preferred bases. If the action is
simple, then H*(W,F;E‘;ﬂ) = 0, and G acts trivially on Hy(W,F;Z n), as

well as on H,(S(v) ;2 [%] (1)) = H,(S(v)/G:Z [é-] (nxG)). One further

observation is that the geometry provides us with the dotted arrow in

the following diagram in which « = nl(w):

TTl(S(\))/G --------- -

1 (S (v))

For a pair (W,F) as above, we define an element w(W,F) ewmi(wc:n x G)
as follows. Given a free finite % n-based chain complex m;,A') and a
free % G-resolution R, of Z , we form the Z (n x G)~complex A, = A; ® R,
which is Z w-chain homotopy egquivalent to Ax. Suppose Hx (A ® z(q) = 0.
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Then by theorem I.3 there is a finite % (7 xG)-projective complex B,

L} 1
with a 7T-basis B such that (B,,B ) is m-simple homotopy equivalent to
L} ] 1 1 3
(A,,A ). Define w(A,,A ) = Z(-l)l[Bi,Bi] eth(ﬂ<: mTxG) which is seen

to be well-defined. Now let A, be the % T"-chain complex of cellular
t
chains of (W,F) with local Z m-coefficients and let R be the natural
1] ]
preferred bases provided by the cells. Then w(W,F) = w(A,,R ) is well-

1 1 t
defined. From section I, one can compute that w(A,,R ) = YT(A,).

IITI.2. Theorem. Let ¢ : G x W'—w" be a smooth simple semifree action

with Fk = WG, n-k > 2, and v = normal bundle of F in W, 7 = wl(W).

Then:
1) H,(W,F;Z ™) =0,
2) G acts trivially on H,(S(v)/G;Z [%](ﬂ xG)),

3) there is a homomorphism 1 making the following diagram commute:

1 (8(V) /G~ 1

I

Trl(S(v))

4)y w(W,F)e Wh?(ﬂ < mxG) vanishes.
Since C*(Cn,S(v);ZZﬂ) is % w-chain homotopy equivalent to C,(W,F;Z n),

one verifies that w(W,F) is defined under the following more general
situation: FkC w" is a submanifold with normal bundle v, n-k > 2, and

v has G-bundle structure with a free representation on each fibre, and
conditions (1) and (3) of Theorem II.2 are satisfied for (W,F).

The main results of this section are the following two theorems.

III.3. Theorem (Characterization of stationary-point sets of simple

actions).
Let W" be a compact manifold with connected boundary such that
nl(aw) = ﬂl(W) = 1, and let (Fk,aFk)<:(w,aw) be a smooth submanifold

with normal bundle v, n-k > 2, n > 6. Then there is a smooth simple
semifree G-action on W' with (Wn)G = F if and only if P:

1) v admits a G-bundle structure over F with a free representa-
tion on each fibre.

2) H*(W,F;qun) =0,

3) vy1t(W,F) GWhT(HCZN x G) vanishes.
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Remark: Condition (3) is equivalent to w(W,F) = 0. <T(W,F) is the
Reidemeister torsion, and y is the homomorphism of Theorem I.2.

The above theorem follows from the following extension theorem and
I11.2.

ITI.4. The Extension Theorem. Suppose c® is a compact smooth manifold

with 8C = 3,C U 3 C where 7n,(3 C) =z 7w,(C) =7, n > 6.
N 17— 1 -

Suppose that G is a finite group of order g and ¢, + G xa+c——+a+c is

a free smooth action such that:
1) H*(C,8+C;Z qﬂ) = 0,

2) there is a commutative diagram

M (3,8/G) -=mmmmmm - = >

ﬂ1(8+C)

3) G acts trivially on H,(2,0/G;Z [%] (m x G)).
Then there is a free G-action ¢ : G x C »C extending ¢, with G

acting trivially on H,(C/G;Z [%](n x G)) if and only if

YT(C,B+C)€ Wh? (tTe m x G) vanishes. Moreover, this action is unique

up to concordance.

SECTION IV. We indicate an outline of proofs of the main theorems of
Section III. Complete proofs and further applications will appear
later.

Outline of the proof of Theorem III.3. The necessity of condition (2)

follows from an application of the Atiyah-Segal-Quillen localization
theorem for each prime order cyclic subgroup of G to the covering G-
action on the universal covering space of W. Condition (3) is neces-

sary due to Theorem I.3.

Given (W,F) satisfying (1) - (3) of III.3, we can apply The Exten-
sion Theorem III.4 to W-intD(v) = C and the induced action of (1) to
S(v) = 8,C in order to construct a smooth simple semifree G-action on

W with WG = F.
An outline of the proof of III.4 is as follows. Theorems IV.1 and

IV.2 allow us to construct an appropriate Poincare pair (X,Y) such that

surgery problem provided by (X,Y) would yield the candidate for the



the orbit space (C/G, C/G).

IV.1. Theorem. Let C" be a compact manifold with ﬂl(C)

_ n _ n n nfl n _ = -
nl(a_c) = m, 3C = 8+C Us_c ,3+C o C = BOC = 8(8+C) = 3(32_C).

Suppose that ¢ : G XB+C +3+C is a free G-action such that:
1) H*(C,3+C;Z q[ﬂ]) =0

2) ¥ homomorphism ; such that

ﬂ1(8+C)————————————*ﬂ

ﬂ1(8+C/G

commutes.
3) G acts trivially on H*(3+C/G;Z [m x G]), where Z [t x G] is

the local system for 3+C/G via j.

Then there exists a Poincaré complex (X,Y¥) such that
Y = (2,0/6) U(2_X), (3_X) N (3,C/G) = 3,C/G, and (X,¥Y) is homotopy
equivalent to (C,3C) rel 8+C, where (X,Y) is the covering space with

the covering transformation group G and fundamental group 7.

IV.2 Theorem. Keep the notation and the hypotheses of IV.1l. Then
(X,Y) can be taken to be a finite Poincaré pair mw-simple homotopy
equivalent (rela+c) to (C,3C) if and only if YT(C,3+C) = 0.

Assuming the proofs of IV.1 and IV.2, the proof of III.4 proceeds
as follows. By IV.1, we have a Poincaré pair (X,Y) whose covering pair
(X,%) with fundamental group 7 is homotopy equivalent to (C,3C) rel 8+C.
By virtue of IV.2 and condition (3) of the hypotheses, we can choose
(X,Y) so that (i,?) is simple-homotopy eguivalent to (C,3C). Next we
show that the Spivak normal fibre space of (X,Y) has a linear structure
which in turn shows that the set of normal invariants of (X,Y) is non-
empty. Moreover, we can choose a normal invariant such that the

corresponding normal map (V,3V) f—>(X,Y) is relative to B+C/G, i.e.

9,C/G =3V and f|3+C/G:3+C/G +3,C/G =Y is the inclusion (as a normal
map). To see this, let A : X +BG be the classifying map into Stasheff's
classifying space for (stable) spherical fibrations. A|8+C/G has a

life to B0 induced by the given smooth structure of a 8+C/G. Since

G/0 is an infinite loop space, the obstruction to extending this lift
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L3 *
to X is an element aeh (X,3+C/G) where h is the generalized cohom-
ology theory associated with G/0. We need the following lemma to show
that this obstruction vanishes.

IV.3. Lemma. For any generalized cohomology theory hf(x,a+C/G) is
(é)—local. i

Let 1 ¢+ X »X be the covering with the covering transformation
group . Then u*(a) €H*(§,3+C) vanishes since X is homotopy equivalent
to C fe% 3+C and fhe latter is a smooth manifgld. The transfer
t : h (X,8+C) - h (X,8+C/G) is defined and tup is multiplication by g.

*
The above lemma implies that yu is a monomorphism and o = 0 as a con-
sequence. Hence we can choose a 1lift of A to BO which is compatible
with the given life for A[3+C/G so that the resulting normal map

f1 : (vl,avl) +{X,Y) is rel a+C/G as desired.

Let K = Ker(Whl(ﬂ x G) Transfer

Whl(n). Although the Poincaré

pair (X,Y) is not necessarily a simple Poincaré pair, the G-covering
(X,¥) is a simple Poincaré pair since it is rw-simple homotopy equiva-
lent to the manifold pair (C,3C). Consequently the Whitehead torsion

of the duality isomorphism lies in K. Denote by LE the surgery ob-
struction groups of Wall where the homotopy equivalences are required

to have Whitehead torsion belonging to K. Then the 7-7 theorem of Wall
can be modified slightly to show that L§(ﬂ',ﬂ') = 0 for a finitely
presented group w'. Since the hypotheses imply that wl(X) 2 nl(Y-3+C/G),

we may assume that f1 is normally cobordant to a homotopy equivalence
£ : (V,3V) ~(X,Y) rel B+C/G with torsion in K.

Next, we can choose (V,3V) such that the covering space (V,3V)
with group G is diffeomorphic to {C,3C) rel 3+C. We have the commuta-
tive diagram of surgery exact sequences of Sullivan-Wall corresponding
to (X,Y) rel 3+C/G and (ﬁ,?) rel a+c and the maps induced by the cov-
ering projection:

Lo,y (mm) —— $% (&, 1) —— N(X, ¥}~ L] (7, 7)

| | I

LY 1 (1XG, 7xG) S¥ X,y —F s NX,Y)— L

e

(TxG, 7xG)

The horizontal isomorphisms are due to Wall's (w-7) theorem. Now
~ o~ ~ *
N(X,Y) = ho(x,3+C/G) and N(X,Y) = hO(X,a+C) where h is the cohomology
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theory associated with the G/0 spectrum.
Con51der the Carton-Leray-Serre spectral sequence for the G-

covering u : X +X in which the E,~term is H (BG; h (X, C)) and it

2
converges to h (X,3+C/G) = h (X,B+C) . The only nonvanishing terms

0 * ~ * .
are H (BG;h (X,8+C) = h (X,3+C)G. Hence the spectral segquence collapses

*
and h (X,B+C/G)

n

ko
h (X,3+C)G. One can show that G acts trivially on
* * . * * .
h (X,B+C). Hence h (X,3+C) = h (X, %C/G) and yu induces the iso-

morphism. Thus we may choose the normal invariant in N(X,Y) so that
the corresponding homotopy smoothing (V,3V) has the G-covering (&,36)
diffeomorphic to (C,3C) rel 8+C.

G acts freely on (V,3V) as the group of covering transformations
and this action extends the induced action on 3,C.

The idea of the proof of IV.l is to construct a diagram

, :
BOC/G 8+C/G

l l

3 X — X

(In which 8 X, X and the dotted arrows are to be determined) with the
property that the diagram A consisting of various G-covering spaces is

(up to homotopy) the diagram D below:

—_—_—
3,C 3+C

0

3 ¢ ————— ¢

In this vein, one constructs the diagrams Aq and A(é)(of "local-
izations™) such that there is a map A(%}—*Aq(%) which 1ifts to the

appropriate maps of the G-coverings. The existence of such localized
diagrams uses condition (1) and obstruction theory. A modified version

of Lemma III.1 for diagrams yields the diagram A.

In Theorem 1IV.2, consider the diagram
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3, —me-uv— C

+

| l

3,6/6—— X

where X has been determined up to homotopy by Theorem IV.l. This dia-
gram satisfies the hypothesis of Theorem 1.4, hence X is homotopy
equivalent to a finite complex with X being m-simple homotopy equiva-
lent to C if and only if YT(C,3+C)G Wh?(ﬂ'c 1 x G) vanishes. In partic-
ular if (X,Y) is n-simple homotopy equivalent to (C,3C) rel 3,C then

YT(C,3+C) = 0. (Observe that both X and 5_X in the above diagram are

finitely dominated.)
To prove the converse, suppose that YT(C,3+C) = 0. Then by

Theorem I.4, we can replace X in the above diagram by a finite complex
whose covering with fundamental group 7 is m-simple homotopy equivalent
to C. For simplicity of notation, assume that X is such a finite com-
plex, so that X is also finite. Consider the diagram

X

M —— X2

9 —_—
n
3 X—

where 3 _X and n are determined by the diagram A above. By Poincaré

*
duality, C (X,3+C/G;Z [T x G]) is chain homotopy equivalent to

ColX,2 X532 [1m X G]) = Co(mi Z fv x G]). Thus, there exists a 7 x G-chain

homotopy equivalence £ : C,(X,d X;%Z [n x G]) + D,, where D, is a finite

m X G-complex. Since ﬂl(a_X) z ﬂl(X) = 7 x G, by the additivity prop-
erty of finiteness obstructions, it follows that the finiteness obstruc-
tion of C,(5_X;Z [m x G]) vanishes as well. Hence we may assume that
3_X and its covering B_i are finite complexes. At this point, the
argument of Theorem I.4 goes through to show that we can choose 3_X

to be a finite complex such that a_i is m-simple homotopy equivalent to
3_C. The additivity of Whitehead torsions shows that (X,Y) is a finite
Poincaré pair such that (i,?) is m-simple homotopy equivalent to (C,3C)
rel 8+C.

SECTION V. To formalize some of the results of Section IV, in this
section we prove some general results for constructing quasi-simple

free actions on a given homotopy type (see below). The question of
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choosing a particular simple-type can be treated using the algebraic
theory developed in Section I. The analogs of theorem I.4 which de-

scribes the obstructions for the choice of a simple type (lying in
Wh'{(wr < 7w xG)) are valid and may be formulated in the context of

Theorems V.1 and V.2 below.

Definition. A free action G x X -+ X is called quasi-simple if
.M {X/G) = 7, (X) xG and G acts trivially on H,(X;Z [%]) ;9 = |G].

V.l Theorem. (Pushing forward actions.} Suppose ¢: G x A A is a
free quasi-simple action, and f : A-— X induces an isomorphism

*
fo : Ho(A;F 22q[1T]—->H*(X;ZZq[1T]), where 1 = nl(X). Then there exists

a free quasi-simple G-action on a space X', an equivariant map
f : A—:->X', and a homotopy equivalence h : X— X' such that hef—f'.

Outline of Proof: We need to construct a space Y and a map A/G I,y

such that the G-covering Y and the induced G-maps <§ : A +Y satisfy
the property required for X' and f'. Let g :(A/G)q——»Y be constructed

as follows. Since wl(A)—->1T1(X) is surjective with a g-perfect kernel,

we can add free G-cells equivariantly to A to obtain ?q such that
‘lTl(Yq) = ﬂl(X) and the inclusion A— Y induces a Zq[n]-isomorphism
(equivariant plus construction). Then define Yq = i’q/G. Next,
obstruction theory shows that (A/G) (%) = (A x BG) (é) since the action
is quasisimple. Let Y(%) = (X x BG) (%) and let g(é) be the composition

1, ~ 1 1 1, o 1
(A/G) (a)—»(A x BG) (a) —> (X x BG) (—5)_ Then we have a map Y(a)——ﬂ{q (a)

by obstruction theory such that the pull-back diagram

1
Y Y (a)

1
Y ——— Yq (a)

has the G-covering ¥ homotopy equivalent to X via h : X—¥. Let
X' = Y. The G-action on X' is quasi-simple by construction. The maps
g and g(é—) pull back to give the map g : A/G—Y and we let the lift

g : A—Y be £ : A—X'. One verifies that f' and X' satisfy the



required properties.

V.2. Theorem (Pulling back actions). Let A be a free quasi-simple
G-space with nl(A) = . Let £ : X »A be such that

*
fo ¢ Hy(X;f Z [n]) ->H,(A;Z [71]) is an isomorphism. Then there exists
a free quasi-simple G-space X' an equivariant map f' : X' -A' and a
homotopy equivalence h : X' -+ X such that £ o« h = £',

Outline of Proof: As before, we need to construct the orbit space ¥

and g : Y +A/G satisfying the stated properties on the level of G-
coverings. Let Y_ = (A/G)_with g = id and Y(l) = X(l)><BG with g(l)=
1 9 q q q q q

f(E) xid. There exists a map Y(%) +Yq(%) which is up to homotopy the
s 1 1 1 1

composition X(z) xBG > X (=) x BG A (= BG A/G =). Let Y b

p (q) q(q) - q(q)x > (A/ )q(q) e e

pull-back of the diagram:

Y— . (A/G)
x(X) x BG ——— (a/6) _(})
q q g

The Seifert-van Kampen theorem shows that ﬂl(Y) = ﬂl(X)X G. Further-

more, functoriality of pull-backs and the Mayer-Vietoris theorem show
that the G-covering Y is homotopy-equivalent to X. The maps g and
g(é) yield g :+ Y +A/G (via the above pull-back)} and we may define

X »Y and £' = g : ¥ +A the induced map on the covering spaces. One

readily verifies that X' and f' satisfy the desired properties.

V.3. Theorem. (The relative version). Under the hypotheses of V.2

suppose that a subspace X, © X is equipped with a quasi-simple free

0
G-action such that fIXO is equivariant. Then it is possible to

arrange for X, to be a G-invariant supspace of X', le0 = f]Xo, and

0

for h to be a homotopy equivalence rel Xqy-

Proof: This is the quasi-simple analog of [A3] Proposotion 2.III with
a similar obstruction theory argument.

Let A, and A, be the CW complexes. Call A

1 2

L —
1 and A, weakly Z%
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equivalent," if there exists a CW complex C and maps f1 : A1 +C such
*

that fi* : (Hi(Ai;fich[ﬂl(c)]) '*Hi(c;z<q["l(c)]) are isomorphisms.

The equivalence relation generated by weak Z{q—equivalence is simply

called "z(q—equivalence".

V.4 Proposition. Suppose A, and A, are A q—equivalent complexes.

admits a free quasi-simple G-action if and only if A, does.

Then Al

Proof: This follows from V.1, V.2, and the defintion of Z‘q—equiva—

lence.

V.5 Remarks: The above results are valid for diagrams of spaces as

it was needed in Section III.
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Torsion in L-groups

by Sylvain E. Cappe11] and Julius L. Shaneson1

Introduction.

Let L:(n,w) denote the Wall group for the homotopy equivalence problem,
7 a finitely presented group and w: m > {+ 1} a homomorphism. These groups
figure in many geometric problems, and their rank 1is the same as that of
other related surgery groups which have been computed in many important
cases. Their torsion, for m finite, reflects the subtle relation between
signature and discriminant of quadratic forms, discussed below. This paper
contributes two calculations and a sample application to manifoclds with finite

fundamental group.

Theorem A. The torsion of Lgk(Z ) is a vector space over Z, of
2

dimension [2(2r'2+2)/3]-[r/2]-e, e=1 if k is even and 0 if k is odd.

{In Theorem A, [x] = greatest integer in x.)

Theorem B. L2k+1(22r") is a vector space over Z, of dimension 2r-3’

r > 3, and zero for r = 1,2,

Since the rank of Lgk(Z r) is well-known (see [W1]), Thecrem A
2

completely determines this group. Taylor and OTiver, and Milgram have

obtained at least Theorem A independently. Their method involves use of
the computation of projective L-groups and a study of the relation of Lh
to these via an exact sequence whose third term is a cohomology group of Z2

with coefficients in Ko(n). In this paper, we apply some of the algebraic

1Both authors partially supported by NSF Grants.
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results obtained in the course of our study of non-linear similarity. We
use these to analyze the sequence (4.1) in [Sh] ("Rothenberg's sequence")
relating Ls-groups (computed for cyclic groups in [W1]) to Lh-groups. We
believe the independence lemma we use on units in the group ring Z[Z r]
may be of independent interest. :

Here is an application of the methods and resuits of this paper to the
problem of providing a Poincaré Duality (PD) space with a manifold structure.
Let X be a finite complex. Then X is called a PD space of dimension m

if there exists a class [X] e Hm(X) such that for all 1
NIXT:H (X3B) » H._(X,B)

is an isomorphism for every local coefficient system B over X. A closed
manifold is a Poincaré duality space. If X is connected, then X will be
a PD space if and only if there exists [X] e Hm(X) with N[X] an isomorphism
for the local coefficient system (i.e. the anx-module) B = Zw]X.

Now suppose X 1is connected and ﬂ](X) =G s a finite group and m = 2k.
Then an invariant x(X) € R(G) ds defined (in [W2, §13B], this invariant is
denoted o(G,X).) To define it, {compare §3) let p:G - U{(n) be an irreducible
complex representation. Then ¢" becomes a local coefficient system over X,

and the isomorphism

(XD o (656") > KE0Le") = e

k

is easily seen to be the adjoint of a unimodular (-1)" Hermitian form B8

over the complex numbers. Let

B k even

op(x) = signature of
/~T 8 k odd
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Then let

=V

p

the sum over irreducible representations. By a theorem of Atiyah-Bott, as
extended by Wall to the PL and topological case, if X has the homotopy of
a compact manifold, smooth, PL, or even topological, then x(X) is a
multiple of the regular representation.

A stable orientable linear, PL, or topological Euclidean space bundle
{or block bundie) £ over X 1is called reducible if its Thom class is
spherical. If X has the homotopy type of manifold, such a bundle exists,
namely, the stable normal bundie of the manifold.

In §6, the calculations of this paper will be applied to obtain a

precise 1ist of invariants for finding a manifold structure on a PD space

X with v1X =7 . One consequence is:
or

Theorem C. Let X be a connected finite complex, and suppose that X is

1

a PD space, of dimension 2k with u,X =1 ro satisfying the following:
2 o7 » e

(i) x(X) 1is a multiple of the regular representation,

(i1) there is a reducible (PL or TOP) bundle over X.

(ii1) X has the homotopy type of the two-fold cover Y of a finite

complex Y with m,Y » and the image of [X] in HZK(?) is in

=17
1 2r+1

the image of the transfer (from H2k(Y))‘

Then X has the homotopy type of a PL or TOP manifold (with the given

reducible bundle as normal bundle).

We leave a smooth version to the reader. For k even, the usual
condition on the L-polynomial of the bundle is needed to kill the simply-connected

part of a surgery obstruction. For k odd, one has the usual Arf-invariant

difficulties.
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§1. A basis for HO(Wh(Z ).

2

r
The group ring of Z r is the ring R= R = Z[T|T2 = 1], and this

2
ring has the involution p(T) = p(T—]). This involution induces one on the
Whitehead group of Z - and Ho(wh(z r)) denotes the cohomology of 22 with
2

2
respect to this involution; i.e. elements satisfying x = x, modulo elements

of the form x+x. When necessary for clarity, the generator T of Z r

2
R _ 2 : X
will be denoted Tr’ and we suppose Tr = (Tr+]) . A unit u(T) e R(r)’
with u(T) = u(T-]) represents an element of Ho(wh(Z r))' In this section
2
(r) . s-1

we will give some units, U 3<s<m<vr,iz1(md4), 1<i<2,

m,s,i’
which represent a basis of the Z,-vector space Ho(wh(Z r))'
2

To define our units, we first set, for r > 3, i = 1(mod 4)
r-1 r-1 o'

.. . 1 .
Uirl ;=TT ™ - (1+2"72)( 7 TI). To see that Ui v
st j=0 j=0 J=O sls
is a self-conjugate unit, consider the fibered square
Yr 2™
Rr——>Z[T|1+T+...+T = 0]
1.1) lar l a,
7 —> 22",
iy _ -
a (Ja;T") = Ja;. Then ar(Ur,r,i) =1 and also
r-1.. r-1
2+ 2" '+ . -1 r-1.,. r
AT -1 T - . i +1 _ 2 it 2"+
Yr(Ur,r,i) = Ti T T , since (T') T T

if i 1is odd. An element in Rr is determined by its image under a,. and

Y... and is a unit if and only if these images are. But

r

r
2-1 207 if j is odd

(r) (T3] . o
Pik = ;E—T is always a unit in Z[T|1+4T+...+T
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(a "cyclotomic unit") and Eﬁ k - Tk-gp.

5,k It follows that Ur . s

3l
a self conjugate unit of Rr'

Now we define the units U7 ., 3<s <r,1<i<2", iz 1(nod4).
Assume by induction that Uﬁf;13 j has been defined, is self-conjugate, has
image 1 under a__,, and that

{r-1) _ 15 (r-1)
Y Unr,s,i) = Trar Tog

r—l). Note that

is a product of Ti_] and cyclotomic units, with g {k-3) = 28 {mod 2

= (r)y _ = (r-1) r-1
ar(pj,k) = ar-1(pj,k ) mod 2.
- .6 (r), _ -1 r .
Hence a (T T p: ) =1+ g2 mod 2°, where ¢ =0 or 1, Hence there
rrg .k
is a unique element U(r) € R with a (U(r) .) =1 and
rsS,i rir,s,i
-2 ,r-1 €
2" 2"
(ry y_(T°_ (O i) 4 (r).
Yr(Ur,s,1) T-1 T g Pj,k>
clearly Ur s .3 will be a self-conjugate unit, with the appropriate image

under Yy to continue the inductive definition.

Finally, if s <m < r write

2™y
(m) : i
o™ = Y b.T
MsS , is0 1
and then let
2m—1 r-m
(r) _ 2
U = 7 b.T
m,s ,i ko

This inductive definition was given for convenience only. An explicit
formula can be given as follows: Let es(k), k =0,1,2,... be the unique
sequence of zeroes and ones with

es(t-s)

m
(142571 R (142t 1y = 1(mod 2").
=S
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Let

1 s-1, M t-1,e(t-s)

A(m,s)=—m[(1+2 ) T o(1+277) -1].

2 t=s

Let
m
wlm,s,i) = - 7 e(t-s)2t2.25725,
t=s
Then
-1 t
r-m ., 28 r-m;. m  2°-1 r-m; e(t-s)
2
Um " T2 w(m,s,1)( .2 T 13) 1o 'z T2 J)
7 j=0 t=s j=0
21 r-m.
“alms)( 5 TP )
Jj=0
Let Ir:Rr-1 - Rr and nr:Rr > Rr-] be ring homorphisms (preserving 1)
with 1 (T .)=T2 and =.(T.) =T .. Let t:R_>R_., the transfer,
r*or-l r r'r r-1 rr r-1

. L _ 2y _
be defined as follows: if u(Tr) €R., then u(Tr)u(-Tr) = v(Tr) v(Tr_]).

Set TT(U(TT)) = v(TE). Obviously, T, carries units to units,

{1.2) Proposition. Let 3 <s <m<r. Then

Ir(”éféli) - Uérg,i it om<r
-2
nr(Uétg,i) = T;f§(m-5)2r Uér;lg,i if s < m;
Wr(uét%,i) =
S0l = ) e m s
Tr(Uﬁtl’j) =1; and
2
Tp(Uitg,i) = T;f?(r-s)zr Uir;Ig’] if s<r

Proof. The statement about Ir is clear, and so is that about L from

the inductive definition. To prove the 2nd & 3rd statement about Ty write



v

r

(r) y_q8
(UY':‘S,'i) =T {]Ip

as above, with 2§ = § (k-j) mod 2" again, and since i = 1(mod 4), j and k
d

will always be = 1(mod 4) also; hence § is even. It is not difficult to

show that T :Z[T |1+T + 21 0] » Z[T __|1+T .+ +T2r_]'] = 0] is
Tprelln r° o r r-1 r-1 """ r-1

also defined, with TV = Y 1Ty A quick calculation gives

T (p(ra) = p§t;1); and T (Ti) = Té_]. Hence (note p(r-]) = 1)

r-j, Tr 2r']+i,i
-2
- -5)2"
(r) . es(r=s)2" (1 q)
n'ﬁTNrﬁ,ﬂ thﬁrJ Uh]ﬁ,ﬁ s<r
1 S =r

From (1.1), it follows that on units Yoo is a monomorphism (with image
those units having image =1 in Z/Zr_]), for r > 3, which yields the result.
Finally, the first statement concerning T follows from the observation

_ .2
that TrIr(X) = x".

(1.3) Theorem. The elements Uérg i 3<s<m<r,i=1(md4), and

1 <id < 25'], represent a basis for the Zz—vector space Ho(wh(z r))'
< a Tor the £,-vector space )

Since Wh(Z ) 2 RY/{T'} and the involution on Wh(Z ) is actually
2 2
trivial [B], (1.3) can be restated as follows:

. : (r)
(1.3) The units Um,s,i

. X, r6Xy2
basis for Rr/(Rr) .

and the trivial units -1 and T forma

To prove these results, we first recall that

. 0 _ ,r-1
d1m22H (Wh(er)) =2 -r.

1

Since there are exactly 2" v units U

1

1

—_
—

3

o

a

o~
-
-

nas.i° 3<s<m<ur,is=s
LR - - -

1<ic< 25" , it suffices to check the independent of these units. The
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obvious inductive argument, together with Prop. 1.2 (the statements concerning
m.)s shows that it suffices to prove that the units Uér% sp3me,
1<ic< Zm_], i = 1(mod 4) are independent modulo squares and trivial units.

This will follow easily from the independence Temma of the next section.

§2. The independence lemma.

(2.1) Suppose there exist units v e Z[Z r]x and u e Z[Z m_]]x and
2 2 _-—_

m-1 and ¢, so that

integers $,, i=1(mod 4), 1 < i <2

8. 5

r ) 1= iTZuv .

(2.10.1) 1 (ué % 1
-I ? £

Then &, = 0{mod 2) for all i.

In (2.1.1), u is identified with its image under the inclusion

r-m
1 1 (recall T = (Tr)2 }. The proof of (1.3) or (1.3)' is

i
completed with (2.1) and decreasing induction on m.
To prove (2.1), assume (2.1.1) is satisfied and apply the composite
. . 2
T W._y---Tps Projecting Rr to RT’ and then map to R1®ZZ = 22[T1[T] = 0].
Under this map, it follows from (1.2) that the Teft side of (2.1.1) maps to 1.

Clearly Z[Z m_]] will map to Z,, and so the unit u maps to 1 also.
2

If v maps to a+bT], then V2 maps to (atb) e Z2 also. Hence ¢ must
be even. Absorbing the sign into u and TW2 into v, we may therefore

replace (2.1.1) with
5.
(2.2) (Uér% Oyt = uvz.

‘Next, we wish to reduce to the case m = r. Suppose m < r, and Tet

PR > R, be the involution (T = Tr)
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o] a,7) = 1(-1)Ta,T".
1 1

Then o has the fixed point set R _; (= I (R, _;)). Hence, if p fis

applied to (2.1.1), the same equation is obtained, except that v 1is replaced

by »o(v). Hence

(v/o(v))2 = 1.

X
But the torsion of Z[er] consists entirely of the trivial

units {*T1} ([B], see also [M], [W2]). So
v/io(v) = 21 or =T .

Now map to R#:Ez = 22[T|T2r= 0]. In this ring, v and p{(v)
become equal, i.e. v/p(v) maps to 1, where as Tzr‘.1 # 1 even
mod 2. Thus v/p(v) = 21; d.e. v = %#p(v). Hence either v or
Tv is in Z[er_1]x, as p(T) = -1, so p(Tv) ==Tp{v). Replacing
v with Tv if necessary, we therefore obtain an equation of the form
(2.11), but with r replaced by (r-1). (In fact, for the case
v = =p(v), in this equation in Z[er,]], £ =1, It follows from
the argument preceding 2.2 that op(v) = -v could not occur.)

Next we wish to derive from (2.2) an equation of the fo;h of
(5.1) of [CS1, §5]. First apply vy = Y. to both sides of (2.1);
we then obtain, with gq = 2r—2,
p2a*i_\ 81 fr2q+1 L\ ¢ 2

, 1 = y(uv");
i VT -1 T -1

(2.3)

the product is over i with 1 < i < 2q and 3§ = 1(mod 4). This
is just an equation of the form of (5.1) of [CS1], with minor
notational changes,

For a odd, let
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f:10,0 yeeo2T21Y 2 (0,1} = 7/22

be defined by fa(x) = 1 if the least non-negative residue of ax mod 2T

is between 1 and 2r-1’ and fa(x) = (0 otherwise. In 85 of [CS1] it is
shown that (2.3) implies the vanishing of a certain cohomology class

X € H](Ri) = H](ZZ,R:), with respect to the involution p defined above.

From §7 of [CS1], it follows that the vanishing of this class implies the
following equation of functions to Z/2Z (see also the last equation in

the an complete paragraph on page 341 of [CS1]):

; 8;f; + (; si)f] + (2/2)(f1+fZQ+]) = 0.

In this case, £ = 2(} 6i). Again, all sums are over i with 1 <1< o1

i
and i = 1(mod 4). Hence we obtain

(2.8) (] 6450 + (] 8)Fpqpy =0 (a=277),
1 1

However, 27 is a tempered number ([CS2], see also [CS1,3,4]). Hence

all relations among the functions fa are consequences of the "obvious" ones:

fa* f2q+a = f2q+1'

It follows that if 8 Z 0(mod 2), for 1 < i < 2q, (2.4) would have a term
involving f2q+i as well; since the sum is over i between 1 and 2q,
this does not occur. Hence 61 = O(mod 2) for 1 < i < 2q, and (2.4)
becomes 6](f1+f2q+]) = 0. This obviously implies &, = O(mod 2) also

(as f](1) + f2q+1(]) = 1). This completes the proof of (2.1).
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§3. Signatures and determinants.

Let G be a finite group and let p be an irreducible complex
representation, p:6 + U(n). Let o = (H,p,u) be a (—])k Hermitian
unimodu]ar] (quadratic) form over Z[G], H a (stably) free Z[G]-module,
representing an element [a] in Lgk(G). Let ag = a @Z[G] t", a
(—1)k-Hermitian form over the complex numbers, where t" has a Z[G]-module

structure via p. Then let

og k even

op(u) = signature of
V-1 o k odd

Let R(G) denote the complex representation ring of G; then a well-defined

homomorphism (the multisignature)
h
X:LZk(G) + R(G)

is defined by

x([a]) =} a,(aes

p
where the sum is over irreducible representations. Let
S L h
A.LZk(G) LZk(G)

be the natural map, L;k(G) the obstruction group for the surgery problem to

obtain a simple homotopy equivalence. According to [W1], the following holds:

]Throughout this paper "unimodular" is used to mean that the adjoint
Ad ¢:H > H* 1is an isomorphism.
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(3.1) Theorem. Let G be cyclic. Then the composite x\ has the image

isomorphic to Z, for k odd (detected by the Arf invariant).

Now assume G 1is abelian (so that an irreducible representation is
1-dimensional). Let (H,¢,u) = o be as above. Then, upon choice of a

basis for H,

det o ¢ Z[G]*

is defined; a change of basis will multiply det o by a unit of the form

XX.

(3.2) Proposition. Let G be abelian. Suppose o jé_é_(-])k-Hermitian

unimodular form over Z[G] of rank 2r. Let o be an irreducible represen-

tation of G. Then op(u) = 0(mod 2), and op(a) = O(mod 4) if and only if
1T (det o) > 0.

Remark. Since p 1is irreducible, p:G » S]CZ €, and extends to a homomorphism
2[G] » €, also denoted p. Since o is (-1)k-Herm1t1an and H has even

rank, (det a)” = det a. Hence p(det o) is real. Since p(xx) = p(x)o(x)” >0,

the sign of p(det o) 1is unaffected by a change of basis.

This result is nothing more than a simple consequence of an old formula
for computing the signature of a Hermitian form over (C; see e.g. [J]. Given
a Hermitian form over €, one can find a basis so that the (determinants of)
the sequence of principle minors, ordered by size starting with zero, contains

no successive zeroes. By convention, the determinant of the 0x0 minor is 1.

The signature of the form is then given as P-C, where P s the number of
permanences of sign and € the number of changes in the signs sequence of

the principal minors. The sign of a zero is chosen arbitrarily.
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Now apply this to o ®z[e]¢ =oag or VCT'am as above. Then P+C = 2r.
Hence op(a) is also even. For k even, the sign of the largest principal
minor is just that of p(det a), and for k odd it is (-1)"p(det o) = det(/=T aﬁ).
If the sign of the largest minor is positive, then C must be even. Hence
P-C = P+C-2C = 2r-2C will be divisible by 4 if and only if r is even.
Similarly, if the last sign is negative, P-C will be divisible by 4 if
and only if r is odd. The result follows.

A result similar to (3.1) for cyclic groups of odd order {and slightly
misstated) is stated in [W2] and was used there in the classification of

fake lens spaces (see also [BPW]).

(3.3) Proposition. For 3<s<m<r,1<ic< 25'], i = 1(mod 4), there

(r) ., representing an element of
m,$ ,1 — —

is a (-1)k-Hermitian unimodular form o

-

h .
2k(22r)’ with

Zr-]es(m+]—s) )
)= ulr) .

(
dEt(am,s m,s i

51

with respect to a suitable basis. (T =T ).

Notes: 1. In particular,

2r-1

det(cxm’m’i) =72 ylr)

(
mym,i’

2. For k even, it follows that rank{a ) = 0(mod 4), applying

MyS 51
3.2 to the trivial representation. Recall that a unimodular even form over

Z has signature = 0(8).

(3.4) Lemma. Let xe Ri, with x =X and a(x) =1 for k odd. Then

there is a (-1)k symmetric unimodular form g with

zr—l
det R=x or T X,

with respect to a suitable choice of basis.
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Proof: According to [W1, § ], there is a short exact sequence
d

) —> Wh(Z r)822 + 0.

A
5
(3.5) 0~ L2k(Z L )

2 r

2

Of course, Wh(Z r)®ZZ = HO(Wh(Z r))' There is well known surjective
2 2

determinant map (actually an isomorphism in this case [B])
Wh(z ) > RY/{eT' > 1
or r i
and that the composition of the map induced on HO with the appropriate

map of the above exact sequence is a surjective homomorphism
h X i = X
d:LZk(er) > R/ (2T yyly e R,

with d[o] = [det o].

The determinant of a form can be multipiied by yy werely by changing
basis (even by multiplying a single basis element by y). Hence there exists
a form B with det(B) = iTix, with respect to a suitable choice of basis.
Further, det B8 = (det 8) , since B8 is Hermitian or skew-Hermitian of even
rank. (To compute the rank, pass all the way to Z/2Z, to obtain a symmetric
unimodular form with xex = 0. Such a form always has even rank.) Hence
T = T'i, thus i=0 or 2", So det B =+x or iTzr-]x.

If k s even and the minus sign appears, just replace g by its

orthogonal sum with a kernel; i.e. with « = {(k,¢,u), where ¢ has the matrix

0 1
1 0
with respect to some basis. Clearly this will change the sign.

Suppose k is odd. Then B8 @R Z will be a unimodular skew form over
r

the integers. It is well-known that such a form is a sum of kernels; in

this case a kernel will have matrix ( 0 1). Hence det(R @er) = +7.
-1 0
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It follows that under the augmentation ar:Rr + 17, ar(det g) = +1. Hence,

since ar(x) = 1, the minus sign is impossible.

Proof of 3.3. First apply (3.4), but with r replaced by r+l, to obtain a

(-1)k-Hermit1an unimodular form g over Rr+1 with (for a suitable basis)

- ylren) 2" j(r+1)
det 8= Uniys,i O Tralner,s,ic
The map "r+1:Rr+] > Rr = Z[er] provides an Rr+]-m0du]e structure on Rr’

and it is not hard to see that

det(B 8 Rr) = Trrﬂ(det B).
r+l

or
} =1, that o . has the

Let o r+l m,s,1

= B8 R . Since 7w (T
Rr+1 r r

desired determinant now follows from (1.2).

MsS,1

§4. The image of the multisignature (Proof of Theorem A).

Let RZk(G)’ a Z, vector space,be the quotient of the group elements

2(p+(-1)k5), o € R(G), by those of the form 4(p+(-1)k5). Then by (3.1),

(3.2) and the exact sequence (3.5), there is a diagram1
h x(r) k=
L2k(Z p) > {2(p*(-1) odlpe R(Z )}
2
(r)
(4.1) 4(r) ¢ (")
x§r)

Ho(wh(er)) —> Ry (7))

Trecall X(@) = (-1)%x(a).
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(r)
o

Here y is the multisignature, d(r) the determinant map d above

with HWh(z ) identified with RY/(xT'y’|y € R'}; recall that

2
y = ij some j, if y e Ri [BI[W2, §14]). Let o(r) = w(r)x(r) = xér)d(r).

(4.2) Theorem. The elements O(r)( ) (see 3.3), with 3 <s<m<r,

%m,s,i
, 1 = 1(mod 4), and s < 2m-r, form a basis {over 22) for

(r).

1<i<2s

the image of o
(4.3) Corollary. Dim, (Im o(r)) = [2/302" 1) 1-[(r-1)721.
2

The corollary follows by just computing the number of indices m,s,i

with s < 2m-r. It can be restated as follows (see 4.1):
h
(4.4) Corollary. D1mZ L2k( /% " 2k(Z M) =

- T2/3(2" 1) [ (r-1)/21.

Recall 2 = A"V from (3.1). 1In view of (3.1), (3.5), and the fact

that dim HO(Wh(Z r)) = ZY']-r, it follows easily that for k even
2

dim Torsion(Lgk(Z r)) = (2r']-r) - dim(Im x/Im ),
2

and one more than this for k odd.

Clearly the right side is just
f2/73(2 +2] [r/2]-1

which implies Theorem A.

The rest of this section is devoted to the proof of (4.2). Let t.
be the representation of Z r to € determined by
2mif2’

tr(Tr) = e
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21"
Then R(zzr) = It Jt. = 1]. Let

b L h
(1) 2k (Z ) > Ly (2 )

h

) Lo (2 5,
2k Zr-l

4 h
(ﬂr‘)*'LZk(Zz

“ﬁ;LEk(ZZr) LN

2r-1

be the indicated induced maps. <Ir) and ("r) are just induced by the
* *

maps Ir and T, on group rings, and (Tr) is by just the transfer map
*

of surgery theory. The maps Ir’ T and T, also induce maps between the

quotients HO(Wh(Z )) = RX/{tTiyZ} and R* _/{sT] ]yz}, and the obvious
of r r-1 r-

diagrams involving all these maps and d commute.

- . h h
(4.5) Proposition. let xe LZk(er—l) and y e L2k(22r)' Assume that

(r-1) 2y
r-
o k=] Yit{py) and

(r) 2
ot y) = g 8it(r) (v;»8; € 22/42).

Then the following hold:

ZP-]_] R
(4.5.1) o(r)((Ir)*x) = g viltres )
21 -
(4.5.2) o(r-1)((ﬁr) y) = ) 621t1-1; and
* 0
r-1

(r-1) 2 :

(4.5.3) o' ((r) y) = % (51+52r-1+1)tzr-1)‘

These formulas follow from similar formulas for x, whose proofs we

leave to the reader. These formulas obviously provide maps
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(r) Rl ) = RylZ ),
(1) RplZ 1) > Rpl2 ),

() BT ) Rp(E )

with (wr)|c(r) = c(r-])(nr)*, etc.

(r)(

Let wérg CR,(Z r) be the span of the elements o

2
1<i<250, = 1(mod 4).

2 %n,s,i)

(4.6) Proposition. wﬁrl = ker(nr) N ker(rr) , and
] i ! -

{O(r)(

o . =
r,r,i AL AL RA L 4

(P)( (r)

(Note: We write o ) for o applied to the eguivalence class

ur,r,i
of it, and similarly for x, X etc..)

Proof. From (3.3), det(a ) =T U .. By (1.2),

r,r,i
2r-1

(° v ) = 1. Hence (”r)!o(ur, L) =

r-1
T (T2
r,i

U L) =W
r Y‘,Y‘,'I) r r,r,l

- O(r-])(“r)*(ar,r,i) - Xér)“r(dEt By q) = XE;;(1) = 0. Similarly,

(Tr),o(ar,r,i) = 0. Hence wr,r c:ker(nr)I f\ker(rr)'.

However, ker(wr) N ker(rr) is precisely the elements of the form
! !

) y.ti (yi € 21/41), Yi =Y Hence this

and y. = v
jodd T 1

2"-4 zr"+1

Z,-vector space has dimension 2r-3, r>3 (and G, r=1 or 2) therefore

it suffices to prove that the elements o(o } are linearly independent.

ryr,i
This will be done using (3.2).

let ¢ = tr(T), and let



40

— 'iéiiilliéﬂil). hence
WU Nand-n

S G (A I
W (N ) (247

Clearly the denominator is a positive real number. Let 043 be the

- o (r)
coefficient of t° in o (ar,r,i .

k

Now ¢ -C_k = (/~T)z, where z s real and z > 0 1if and only if the

least positive residue of k mod 2" is less than 2r—1. Hence, for

2™ < i< 2", § = 1(nod 4),

Eij < 0 if and only if fj(1) = 1.

Hence, by (3.2), oys = ij(i) (mod 4) for Zr'] <J< 2", and in fact

J

2r-]_.

s s or-1,s
ooy o g) = 1 26,00 (T dae? a2 )

the sum over 21 <j<2", 5= 1(mod 4).

(4.7) Lemma ([CS2]). The matrix (fj(i)), 1< 4,3 < 2r—1, 1 =3 =1(mod &),

is non-singular over ZZ‘

This lemma clearly implies the independence of the elements ofa ),

and this completes the proof.
(4.8) Proposition. ker(wr)l(\ Image(Ir)'C: wr,r'

Proof. It is obvious that (Tr) (Ir) = 0. Hence
1 !

(ker wr)' N Im(Ir)| C (ker ﬂr)! N (ker Tr)! = wr,r, by 4.6.

(4.9) Proposition. For k,t >0 and 2k+t < r-3,
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wr)

{(r)
r-k-t,r-2k-t Z w

-L,r-22"

Proof. By induction on k. Suppose k = 0. Then we must show that

o(am, )€ Wﬁrz for m<wr. But
r-1
G(r)(am,m,i) - (r)(det o m,i) = Xér)(Tz Uét%;i)

r-2
Xér)(lr(Ti—l u

5 - 002§ Vst o0

-1 -1
= (Ir)lc(r )( {r ))

mm1

So o(r)(aéf%,i) ¢ Im(Ir)I.

r-1
- 2 (r) - R
Since Wr(T Um,m,i) 1, a similar argument implies that O(am,m,i) € ker(nr)!,

and then the case k = 0 follows from (4.8).

Suppose k > 0. We claim that

(4.10) (m) (W

r-1
In fact, if s <m, ("r),(cétg,i) = (ﬂr)l(xz(.r)(T2 €Uétg,i)) =

r-2
g,i)) - Xém)(T2 Es(m-S)UéTilg,i) =

-1
_ o (r-1) 2™ e (r
=X (nr(T Um,

) = O(r-])(a(r-1) .), and similarly one gets 0 if m = s.

-1 -1
= Xé;) )(det a(r 3,1 m-1,5,1

m-1,

Similarly, one shows that for m< r, s <m,

-1) . (r-2)
(4.11) Wéf1,3 = (Ir-l) (wmrl s)
Hence
_ (r-2)
(v )'(w(r& t,r-2k- t) B (Ir_1)!(w(:-2)-h-t,(r-2)-2h-t)’

where h = k-1. By induction,
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h

c i ulr2)

W r-2)
r-2)-h-t,(r-2)-2h-t = (r-2)-e,(r-2)-2e’

—~—

But, as we have just seen (with h =e and t = 0),

(r-2) - (r)
(ry) M0 2) e, (ro2)-20) = (1) e (et ez (et
Hence
r) S
(“r)!(wr-k-t,r-Zk-t) C:("r)!(; Weop,r-20)> 1-€
(r) K ()
(4.12) wr-k-t,r-Zk—t C:% Weeg,r-20 * ker(wr)'.
For 1 <2, wsr%,r-ZQ = (Ir)|(w£f£12_22), and similarly
wﬁr&-t,r—Zk-tC: Dnage(Ir)l. Hence these all lie in ker(rr)l, as (Tr),(Ir) = 0.

!
Therefore in (4.12), (ker ﬁr) can be replaced by (ker “r) N (ker Tr) s
! ! !

which equals wirl by (4.6). This completes the proof of (4.9).

),

Proof of 4.2. By the previous proposition (4.9), the elements O(am,s,i
J<samer, 1 <9< 25-1, i = 1(mod 4), and s < 2m-r generate the
image of o. (To see this, note that if m = r-k-t, s = m-2k-t, then

s = 2m-r+t.) Therefore it will suffice to prove their linear independence.

For r = 3, this is a consequence of (4.6). We argue by induction on r.

As in the proof of (4.9), {compare (4.10) and (4.11)), we have

) = o(a&_]lg .) if m=r,s<m

(1,..4) O(a(r—Z) ) if m<r,s <m

It is obvious that (Ir 1) is a monomorphism. It then follows easily from
= 1

the inductive hypothesis, {4.6), and {4.13) that the elements o(aérg 1.) with
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either m=s=r or s<m<r and s <2mr (=2(m-1)-{r-2)) are
linearly independent.

On the other hand

~—
-

-4
3
n
-
[
S

a
3
A
3

For example, for s < r, h‘)day)-)=(T)(QrN¥

r-1 ‘ -
e <o
(r-1)

=X (det u(r_]) ) =

r-1,s,1
similarly, using (1.2).

So the elements o(aérg i) with m=s =r orwith s<m<r and
’ (r)

r,s,i)s M T
s 3

s < 2m-r map to O under (Tr) , whereas the elements ofo

!
{r-1)

map to the elements ofa,_; ¢ ;

), which, since s < (r-1) = 2(r-1)-(r-1),
are linearly independent by induction. This accounts for all the elements

0(a$r3 1) with s < 2m-r and so completes the proof.

§5. Proof of Theorem B.

Consider the exact sequence [Sh, 4.1]

s h 1
Lai1 (2 o) = Lo (2 psm) > HL(UR(Z 1)) =
2 2 2
S A, h
- L4k(22r") = Ly (2 -).

(z
2"

However, in this case the cohomology H1(wh(2 r)) is taken with respect to
2

the involution induced by
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on the level of the group ring R_ = {2 r]‘
2

According to [W1]1, L3,..(z .,-) = 0. Also from [W1], it follows that
4k+1 of

is a monomorphism, since sz(Z -) can be detected by multisignatures

2"
and Arf invariants, whose definition extends to Lgk(Z r) as well. Hence
2

h

=yl
L2k+1(22|",—) = H (wh(z ))a

of
the homology taken with respect to the above-mentioned involution. For

r=1,2, Wh(Z r) =0, so assume r > 3.
) z

Let S ={ue R:]u = U and ar(u) = 1}. Then there is a short
exact sequence

2r-1
1-{1,T } - Sr > Wh(er) - 0.

To see this, just recall again [B] (compare [W2, §14]) that
Wh(Z r) = Rﬁ/{iTl} and the involution on Wh(Z r) induced by ~ s trivial.
2 2
Hence every element of Wh(Z r) is represented by u e R:
2

with ar(u) =1 and

— i
u = =T u,

some i. Since a(u) = a(u) = 1, the sign is positive. Project to Z[Zz];
in this ring the involution ~ maps to the identity. It follows that
).

i=2j. Clearly TJu € Sr and represents the same element of Wh(Z r
2

Hence the map from Sr is surjective, and the kernel is easily identified.
Passing to cohomology, we obtain a Tong exact sequence

r-1
H(s,) » Ho(wh(ZZr)) > 1,18 3 - Hl(s,) -
r-1
- H](Wh(er)) - (1,12 )

> HE(s,) H2(wh(er)).
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As above, every element of Wh(Z r) has a representative u e Ri with

u = u; hence

Hence an element of HO(Wh(Z r)) will be represented by a unit u with
2
u(T) = Tdu(-T). Pass to Z,8R 5 this equation then implies 19 = 1; i.e.
u{T) = u(~T). Hence u represents an element of HO(Sr), and so the map
from HO(Sr) to HO(Wh(Z r)) is surjective, and similarly for H2 as
2
H2 = H0 for cohomology of 22‘ Hence
-1
h . 2"
(5-]) L2k+](22"‘) =H (SY‘)/{]’T }

By definition, H](Sr) consists of elements u of S_ with

u(T) = u(-T)'1, modulo those of the form v(T)v(—T)"], for some v € Sr'

But u(T) = u(—T)'] if and only if rr(u(T)) = u(T)u(-T) = 1. Hence the
inclusion K = (ker Tr) f\Sr C:Sr induces a surjective map

k/KE = H (k) » HI(S,).

Now suppose u € R and W e K. Then rr(uz) =1. So u(T)Zu(—T)2 =

Hence, since the torsion of R?, consists entirely of trivial units,

r-1
u(TMu(-T) = £1 or sT2° ", Hence

W = iTEU(T)/U(—T)—], e=0 or AL

By application of s it is clear that the sign must be positive. Hence
the previous map induces a surjective map

2r-1

2
wik/ (RE) OV K> HI (s )70,

The next step is to apply (1.3)' and (1.2). Since the torsion of Ri

consists entirely of the trivial units, it follows from (1.3)' that the units
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Uérg ; generate a free (abelian) subgroup V of Ri of rank Zr—1-r, i.e.

they are linearly independent. From (1.2) it then follows that VMK has

u

the basis (as a free abelian group) {Uitl,ill < i< zr-1, iz 1(mod 4)}.

It then follows by (1.3)' that these units represent a basis for the image of K in
R),(./(R)r(,)2 as a Z,-vector space. Since K/K f\(R§)2<: Rﬁ/(R?)Z, it finally

follows that K/K M (RY)?

r) .
it 1<ic<2

has as a basis the elements represented the

elements Ui r-l, and in particular, has dimension 2r-3.

Now suppose w(x) 1is trivial. Let x be represented by a product

85
H (Ur r 1) ’
1 EH] ]
with 61 =0 or 1,1 <1< 2r-] Then
51’ £
1, 0 = T,
e=0 or 2" Let v(T) = u(Mu(-T) = = (u(T): v(T) e R _; (= I(R,_;)CR_.
Then
m 1 = (12 pum2u(m)
r.r,i - ful- vill.

Hence by (2.1), 8 = 0 for all 1i; i.e. x 1is trivial. Hence w is an
isomorphism. By (5.1), this proves Theorem B.

Finally here is an exercise for the reader:

h _ h
Prove that Tor(LZk(er,-)) = TOF(LZk(ZZr_]))

§6. Smoothing Poincaré Complexes

Let X be a connected Poincare Duality space of dimension 2k, with

mX =6 let ge Co (X) be a cycle representing [X]. Let C,(X;Z[6])
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be the chain complex C*(i) of the universal covering space, and let
C*(X;Z[G]) be the corresponding co-chain complex (just the usual co-chains

of X if G is finite). Then
NEC*(X52[6]) ~ Cpp , (X5Z[G])

is a chain equivalence which, up to chain homotopy, depends only upon X.
The cells of X determine preferred bases of these chain and co-chain

complexes. Hence NE has a torsion in Wh(G) which depends only on X.
Denote this element A(X). Then A&(X) = &(X)™, and so A(X) represents
O

an element A(X) € H (Wh(G)).

Now suppose G = Z . Then, by (1.3), A(X) has a unigue representative
2

of the form
S .
T ) ™S,
ms,i M,
where the product is over 3 <s<m<r, i = T(med 4), 1 < 1 < 25'], and
dm,s,i =0 or 1. Let
Am,s,i(x) - 6m,s,1

(6.1) Theorem. The connected Poincaré duality space X of dimension 2k > 6

with n]X =17 r has the homotopy type of a PL (or TOP) manifold if and only if
2

(i) there is a reducible PL (or TOP) bundle over X;

(i) x(X) is a multiple of the regular representation;

s-1

(iii) Ais 1.(X) =0 for 3<s<m<vr,iz=1(md4),1<i<2”,

and s > 2m-r.

Proof. Necessity of (i) and (ii) has already been explained. For (iii),
if M is a manifold and h:M > X a homotopy equivalence, then one considers

the diagram
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n representing [M]. Since An is a simple equivalence, it follows that

0
tn(z ).

To prove the converse, suppose & is reducible. Then, by the well-

E(X) = t(h)+t(h)™; i.e. A(X) fds trivial in H
known transversality arguments, there is a degree one normal map

Vi

!

b
—_—
.f‘
M —s

> — ™Mt

into X, with surgery obstruction o(f,b) € Lgk(Z r). Further, the
2

following formulas hold:

x(o{f,b)) = x(M) - x(X) and

(see (4.1)).

"
=
—
>
~—

d{o(f,b))

These can be proven by standard arguments of surgery theory.

Let p denote the regular representation. Then the first equation

and (ii) imply that
x(a(f,b)) = ap,

where q is an integer. On the other hand, if k is even the coefficient
of the trivial representation in x(o(f,b)) 1ds just the difference of the
signatures I(M)-I(X) = 8t; hence g = 8t. Hence we may replace M by

its connected sum with |t] copies of a P.L. manifold of signature

8t/|t], to ki1l x(o(f,b)). If k is odd, since x{(c(f,b}) = -x(c{f,b})",

g =0 automatically. Hence we may assume x(o(f,b)) = 0.



49

It follows from (4.2) (see also (4.1)) that Bn.s 1.(X) =0 for

s< 2m-r. Hence, by (iii), A (X) =0 for all m,s,i; i.e. A(X) is

m,s,i
trivial. Hence by (3.5), o(f,b) actually is in the image of sz(Z r).

2
Hence, by (3.1), if k 1is even o(f,b) = 0. If k is odd, o(f,b) can
be killed by replacing M with its connected sum with a Kervaire manifold.
So a normal map (f,b) with o{(f,b) = 0 1is obtained, hence (f,b) is

normally cobordant to a homotopy equivalence, which completes the proof.

Proof of Theorem C. Let X be as in Theorem C, and let h:X » ? be a

homotopy equivalence. Let [Y] e H2k(Y), with transfer h,[X] e HZk(?).
Then h induces a homotopy equivaience h:X > ?, and it is not hard to

check that ﬁ*([x],\ z) = ﬁ*([Y] N ﬁ*z). It follows that

NLYT:H' (V) ~ Hpp 5 (Y)

is an isomorphism for all i, and hence Y 1is a Poincaré Duality space.

Hence the invariant A(Y) € Ho(wh(Z r+1)) is defined. It is not
2
hard to see that
g 8(Y) = A0,
here Tpt] denotes the map induced on H0 by the transfer. By (1.3)
A(Y) - H(U(r+] ))Am,5,1
- m,s,i

( (r+1))xm,s,i
r+l' m,s,i '

units are trivial in HO(Wh(Z r))' Hence it follows from 1.2 that
2

Hence A(X) = It Note that squares of self-conjugate

Am,s,i(x) (X) =0 for s > 2m-r,

3<s <m< r. Hence Theorem (6.1) applies to conclude that X has the

0 for m# r. In particular, Am,s,i

homotopy type of a manifold.
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Higher Diagonal Approximatlons and
Skeletons of K(m,1)'s

By

James F. Davis*

University of Notre Dame

The cup product is graded commutative on the cohomomology lvel,
but not on the cochain level. The failure of commutativity is measured
by the higher diagonal approximations underlying such invariants as the
‘Bteenrod squares [6] and the symmetric signature associated to a Poin-
care duality space [5].

&n n-skeleton of a K(w,1) 1s a CW complex X of dimension n
with 7,(X) =0 for 1<1<n and mX =7 . For example, X could
be a space form, a manifold whose universal cover is the sphere or
Euclidean space. This paper shows how the geometric higher diagonal
approximations of X can be calculated purely algebraically from the
cellular chains of the universal cover i

This work was motivated by certain questions of John Jones and
R. James Milgram concerning the Cappell-Shaneson detection [1] of a
non-zero element 0(83/Q8) in the symmetric L-group L3(ZIQ8). I wish
to thank Andrew Ranicki for repeatedly bringing these questions to my
attention.

Using the results of this paper one can compute the symmetric sig-
nature o(S7/G) ¢ L™(Z G) for any free action of a finite group G on
s™ . The symmetric sighature appears in Ranicki's product formula for
surgery obstructions. However, algebraic quadratic surgery shows that
the product formula depends only on the chain level Poincare duality map
(depending on A defined below) and not on the higher diagonal approxi-

0
mations.

1. Pre¢limindries.

Let W be the standard free Z [Z /2] - resolution of Z

W ...— ziz /21 X m iz 21 Bz iz 21 FHom iz /2]
Here Z /2 = <T> . Let e, denote the generator of the i-chains of

i
_ i
W . Then S(ei) = (1+(-1) T)ei_1

¥Partially supported by NSF grants.
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Let C be a chain complex. Then Z /2 acts on C 8 C (= C 8& c)
via the interchange map

T: C®RC—sCB®C
T(agb) = (-1)3988 @ deg b 4 o 5
We will consider Z[Z /2] - module chain maps

A: WO C —> C B C

Define #,: C ——— C ® C by Ai(c) = A(ei ® ¢c) . Since A 1is a chain
map the Ai satisfy relations

i _ i
1.1 an, - (1)78,0 = 8y 4+ (<1)7 TA; 4

Thus AO is a chain map, A1 1s a chain homotopy between AO and
TAO R A2 is a chain homotopy between Al and TA1 , ete. Conversely
given a sequence of maps {Ai} satisfying 1.1, they give rise to a

Z [Z /2]-module chain map A

Let S(X) denote the singular chain complex of a topological space

Theorem 1.2.
There exist functorial Z [Z /2] -module chain maps
A: W ® S(X) —— 3(X)} 8 S(X)
such that 4,(e) = ¢ ® ¢ for any singular O-simplex c

Proof. Method of acyclic models. a

If a group m acts on a space X , then functoriality implies
that A 1is a Z[Z /2 x m] -module chain map.

Preposition 1.3.

Let w act freely and cellularly on a connected CW complex X
There is a splitting of % m-module chain complexes S(X) = A & B where
A is isomorphic to the cellular chain complex C(X) and Hy(B) = 0
Proof.

Following Wall [71 let

i-1
i-l(X )
Let Ei(X) = ker(Di(X) _ Ci(X)). Then we have an exact sequence of

- . 1y 1
D, (X) = ker (3: 8;(X7) Sy _1(X7)/8

ZZ m-chain complexes

0 —— E(X) —— D(X) — C(X) —— 0
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Since D(X) —— C(X) induces an isomorphism in homology, H,(E(X)) = 0,
and hence E(X) 1s chain contractible. It then follows that

D(X) = C(X) ® E(X) as chain complexes. Likewise the inclusion

D(X) —— S(X) splits as a map of chain complexes. a

Let £f: C(X) —— S(X) and g: S(X) —— C{X) be splitting maps
in 1.3. Any ZI[Z /2 x w]l-module chain map

Y: W B C(X) —— C(X) ® C(X)
chain homotopic to
(g8g) o & o (18Ff): W B C(X) —— C(X) ® C(X)

is called a geometric w-higher diagonal approximation. The mod 7
reduction of ¢y gives a geometric l-higher diagonal approximation on
X/m . If m =1, ¢ can be used to compute cup products and Steenrod
squares. If X 1s simply connected and X/m is a Poincare complex, then
Y can be used to compute the symmetric signature [5]

o(X/m) ¢ LMz ™)
occuring in the product formula for surgery obstructions.

Let C = {ci,a}i>0 be a chain complex of Z -modules with augmenta-

tion e: Cp—— Z. Let e¢81: C8C—>Z B8C=C . Let

(‘c&c)k ® C, ® cj

i+j=k

and
(cec)® = @ ¢, ® C,
i<k J
Jj<k
Consider Z [Z /2] -module chain maps A: W ® C —— C ® C satisfying
(1) a(wec,) < (cec)” for all i

(i1) (e®1) o A, =1

0
(18e) o Ay =
(i1i) For all 1 , for any ¢ «¢ C; » there is an )
a e C; ®C, suchthat A,(c) - cBc = a+ (-1)'Ta

These conditions are geometrically inspired. Condition (ii) cor-
responds to the fact that for any cohomology class a ,
o ul=1ua=a . Note that (ii1) is satisfled for the Alexander-
Whitney diagonal approximation. Condition (iii) is related to the
identity Sqo(a) = q



Proposition 1.4,

On the category of topological spaces there exist functorial
Z {Z /2] - module chain maps

A: W ® S(X) —— 3(X) ® S(X)
satisfying (i), (ii), (iii).
Proof.

Condition (i) will hold for any functorial map. Let c(a™) be the
simplicial complex of the standard n-simplex. Consider C(An) as a sub-
complex of S(An) . By acyclic model theory there exists a functorial
A such that A(Wec(a™)) < c(a™) ® c(A”) for all n . Induction on n

n n

shows that (e81)(a,(a™) = 2", (18¢) (a4(a™)) = A™ . The proof that
Sq0 = Id (see [6]1) shows that condition (iii) holds for c = A" Then

linearity and functorality shows that (ii) and (iii) always hold. 0O

2. The Main Theorem.

Theorem 2.1.

Let C = {Ci’a}oiiin be a chain complex of free Z m-modules such
that HO(C) = Z and Hi(C) =0 for 0 < i< n . Then there exist
Z{7Z /2 x 7] -module chain maps

A: WRC —>C8C

satisfying conditions (i), (ii), and (iii). Given two such maps they
are chain homotopic.

Here the action of ® on C 8 C 1s given by g(x®y) = gx & gy
Corollary 2.2.

Ir X 1is a skeleton of a K(w,1) and C = C(X) then any map
satisfying (i), (ii), and (iii) is a geometric n-higher diagonal ap-

proximation.
Before we embark on the proof of 2.1, we need a lemma.
Lemma 2.3.

Let e = +l1. If b e (C8C),, 4 1is e-symmetric (Tb=eb) and 2

boundary, then it is the boundary of an e-symmetric chain. If

b e (C@C)21 is €-even (b = a + €Ta for some a ) and a boundary, then
it is the boundary of an e-even chain.

Proof.

Suppose D and E are chain complexes such that D 8 D and
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E ® E satisfy the conclusion of lemma 2.3. Then
(DEE) @ (DBE) =D R D @ (DRE ® ERD) # E ® E also satisfies the conclu-
sion.

Now as a Z -module chain complex C 1s isomorphic to a direct sum
of Hn(C) , HO(C) and elementary chain complexes of the form Z— Z .
If D 1is any one of these chain complexes 1t is easily verified that
D 8 D satisfies the conclusion. The lemma then follows by induction. [

Proof of 2.1.

To construct the Z[Z /2 x n] -module chain map A: W C — C 8 C

it suffices to construct of sequence Ai: C—— C®C of Zm-maps
satisfying the relations 1.1 as well as conditions (1), (ii), and (1ii).
Choose a Z m basis of CO of the form A v {po} where s(oo) = 1 and
e(f) =0 for f ¢ A . Define Ao(po) =y 8 Py - For £ ¢ A , define

Ao(f) =py®8f+f8Ff+fBOp, . Extend to a map of C, Dby linearity.

Fix k > 0 and & < k-1 . Assume now that A has been defined
on W B CJ for j < k and that Ai has been defined on Ck for 1 < 2.
Let x be a basis element of Ck . We first consider the case £=0
Let Zi = ker(d: C1 — Ci—l) . By the Kunneth theorem
Hi((C®C)i) =2,8%Z &2z 82, . Inparticular if b 1s a i-cycle in

(C@C)i with (e®1)b = 0 = (1Be)b then b 1is a boundary in (C@C)i
So Ao(ax) - 9x 8 py - p, ® 3x 1is a boundary in (CE)C)k_1 . Say it is
da . Then define A, (x) = x® Pg * Py ® x +a . For &> 0,

(—l)zAl(SX) + Al—l(X) + (—l)QAl_l(x) is a boundary in (C@C)k say 9da

Define Ag(x) a . Extend to amap A,: C, —— C ® C by linearity.

27 7k
Now fix k > 0 and assume that A has been defined on W ® Cj

for J < k and that Ai has been defined on Ck for 1 < k-1 . Let

X be a basis element of Ck . Then

(DX a,_ Gx) + 8, L0+ (cDF e () - (DM ax @ 3x s a
k-1
(-1) 2k-2

iifts to a + (—l)K—lTa with a ¢ (C@C)k n (C@C)2k_1 . We define

-even boundary in (C@C)k n (C8C) and hence by lemma 2.3

Ay l(X) = a + (—l)k_lTa + 3x ® x . (For the case k = 1 we also have
to guarantee that (s@l)Ao(x) = x and that (l@e)AO(x) = x , but this

can be done by the proof of 2.3.). Extend Ak-l to a map of Ck by
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linearity. Now
(-1)¥

So define Ak(x) = x ® x for the basis element x . Extend by linearity.

8, (3x) + & (x) + (—1)kTAk_1(x) = 3x ® x + (-1D)¥ x 8 ax

This completes the existence part of theorem 2.1.

For the uniqueness part of 2.1 consider Z [Z /2] -module chaln
maps A: W® C —— C ® C satisfying

(i) A(weci) c (c&c)i for all i

(ii") (e®1l) o A 0

0

(1Be) o A 0

0
(111')  For all 1, 4,(C,) < im(1+(-1)'1),

Lemma 2.4,

A ZI[Z /2 x v] -module chain map satisfying (i'), (ii'), and
(iii') is of the form A = 3x + X9 for some degree one map X

Proof.
Define xi(c) = x(ei  ¢) . Then A = 3x + ¥x3 1is equivalent to
2.5 Ay = oaxy + (D Txge + xg g+ DTy
Let x be a basis element of C, . Then AO(X) is even and a

boundary. Thus there is an a « (C@C)1 such that 3(a+Ta) = Ao(x) and
(e®l)a = 0 = (18e)a . Define xo(x) = a + Ta . Extend to a map of C,
by linearity. Replace A& by A - 83Xy - Xg°

We now assume A satisfies (i'), (ii'), and (iii') and that
AO(CO) = 0 . We will now only consider x such that x(Cj) c (C@C)J

Fix k <0 and 2 < k -1 . Assume that x has been defined on

W e Cj for J < k and that X4 has been defined on Ck for i< 2

Furthermore assume
_ 1 i
Agle) = dxg(e) + (=1)7x,(3c) + Xi—l(c) + (-1) Txi_l(c)

for c « Cj », J <k and for c¢ e Ck , 1 <2 . Let x be a basis

element of Ck . Choose an element a « (C@C)k such that

- 2 [
a = 8, (x) ~ (-1)7x, (Bx) - x,_1(x) - (=1)7"Tx, _,(x)
Define XQ(X) = a . Extend to a map of Cp by linearity.

Now fix k > 0 and assume that x has been defined on W 8 Cj

for J < k and that Xy has been defined on Ck for 1 < k -1

Furthermore assume that the relation 2.5 is satisfied for c¢ «¢ CJ R
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J <k and for ¢ ¢ C i<k -1. Choose b ¢ (C@C)k such that

k >
3b = A (x) - x (x) - (-1)k"1g (x)
k-1 k-2 Xg-2
Now Ak(x) - (b+(—l)ka) is a (—l)k—even cycle so by lemma 2.3,

A (x) = b+ (-D¥Tb + ¢ + (-1)¥7e

for some cycle ¢ (C@C)k . Define Xk_l(x) =b + c . Extend by

linearity. This completes the proof of 2.1. 0

There are two cases where one can avoid some of the above homologil-
cal algebra to calculate the geometric higher diagonal approximations.
First, if X is a simplicial complex, one can apply acyclic model theory
in the simplicial category to X directly. Second, if X 1is actually
a K(m,1) , the construction of A follows from the "fundamental lemma"
of homological algebra from a projective complex to an acyclic one.
Indeed, if C 1s acyclic, any two ZI[Z /2 x 1] - module maps

W8C — C8C
commuting with the augmentation are chain homotopic.

If X 1is a n-skeleton of a K(w,1)
X 1s determined by TiXs TpX and the first Eilenberg-MacLane k-invari-

then the homotopy type of

b

ant kn+1(x) e gt (n1X; ﬂnX) . (See, for example, Olum [41). Now

kn+1(x) can be defined algebraically as follows: Let D = {Di’a}i>0

be a projective Z m-resolution of Z . Choose a chain map
;8 — Cy (X)

commuting with augmentation. Induced i1s a map

Dppp — ker(C (X) —— C (X)) = 7 X
This cocycle gilves kn+1(X) . Hence the homotopy type of X 1s deter-
mined by the chain homotopy type of C(X) . Thus every homotopy invari-

ant of X should be computable algebraically. This gives a philosophi-
cal justification for Corollary 2.2.

3. Product Eormulae

Given a product map
Iax £: N x 0P —— " x XU

with N a closed manifold and f: [ A — " a degree one normal
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map, the surgery obstruction o(Id x f) « Lm+n(Z [nl(X)]) is determined
by the symmetric signature o(N) e ™z [nl(N)]) and the surgery ob=
struction o(f) « Ln(Z [nl(X)]). Indeed o(N) can be represented by a sym-
metric Poincare complex (C,$) with C = C,(N) and o(f) by a quadratic
Poincare complex (D,y) with Hy(D) = K,(M). Then according to Ranicki's
product formula [5,II.8.1]

g(Id x f) = (C 8D, ¢ 8 ¢) ,

using the algebraically defined pairing

m
L(z [TrlN]) 8 Ln(Z [TTlX]) — Ln+m(ZZ [nlN] 8 Z [TT1X])

(C,¢) ® (D,p) —— (C ®D, ¢ x ¥) ,
and the identification Z (rN1 @ Z [nX} =12Z [nl(N x X)1

Here ¢ and ¢ are represented by a sequence of maps

(¢,  Hom (e )r ez, 1> 0

|v

Z [wlN]

{y; « Hom nrlip e ez, 1> 0}

Z [n X1 (®

and  (¢00); = 6,80,

A geometric 7,N-higher diagonal approximation

1
A: W 8 C(N) —— C(N) 8 C(N)
determines the symmetric signature a(N) = (C,¢) as follows:

Choose a representative [NJ] ¢ Cm(N;Z t) for the fundamental class of

N . Let =m =X . Apply Z‘t 8 to the A

Z 1 associated to A to

obtain

- t = =
Ay 2 C(N;Z7) —— C(N) 8, C(N)

Then the ¢1 are defined via the slant product

. AN=THi
¢i : C

— C
r

B }— A'i([N])/B

Lemma 3.1: The class of a guadratic Poincare complex (c”,¥v") in Li(A)
depends only on we . 0

Proof: This is an immediate consequence of the algebrailc theory
of surgery [5,I.4.3]

Corollary 3.2: The class of (C ® D, ¢ ® ¥) 1in the product formula
depends only on ¢0 and wo

We now restrict our attention to ¢0 . As a corollary of the proof
of 2.1 we have:
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Corollary 3.3: Let C = {Ci’a}o<1<n be a chain complex of free Z m-module

such that HO(C) = Z and Hi(C) =0 for O <31 <n . Then there exists
a Z [m] - module chain map

A:C—— C B C

0
satisfying conditions (i), (ii), and (1ii), for 1 = 0

Because of its importance in the product formula we make explicit
on algorithm for computing ¢O . A contracting chain homotopy for C
is given by Z -module maps {s,6}

§ : B — CO

5 : Ci—l —_— Ci
satisfying 98 + 8¢ = Id on C0
and as + s3 + Id on Ci for 0 < 1i<n

Choose a 7 m-baslis of C(C
e(f) =0 for f e A

o ©°f the form A v {po} where p, = §(1) and

Define
Ao(po) =0, ® Py

Ao(f) = 0 8f+f®Ff+f8p, for f e A
Extend to a map on C0 by linearity. Now assume AO has been defined
on Cj for j <k . For a #Zm-basis element x of Ck define

AO(X) =x 80,7+, B x+ (s ® 1+ 8 ® Q(AO(BX) - 9% ® py-py ® 9x)

Extend to a map of Ck by linearity. This AO satisfies the deslred

properties.

Let X be an n-skeleton of a K(m,1) . Let Y = K{(m,1) . Naively,
one might try to avold the algebra in 2.1 by constructing a geometric
r-diagonal approximation

A: C(Y) — s C(Y) ® C(Y)

0
(Using, for example, the contracting cgain homotopy
{s®1+6¢c®s, 6§88} on C(Y)®C(Y)) , and then restricting the map

Aol ~ ot C(X) —— C(X) & C(X)
c(x)
to obtain a mw-diagonal approximation for X . However, this AO need
not satisfy the hypothes of 3.3, so there is no guarantee that
AO ~ 1s the correct chain homotopy class. In fact, unpublished com-
c(x)

putations of Jones and Milgram show that the above procedure can lead
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to a geometrically incorrect dilagonal approximation for X . We now
describe this example in some detail as it was the motivation of this
paper.

A fundamental problem in surgery theory is the oozing problem,
the problem of determining which elements of Ly(Z w) arise from surgery
problems over closed manifolds. A critical example is the Cappell-
Shaneson example

3 2

Ia x £ SB/n X T2 —_— S /71 x S

2
where 7=Q(2") 1is the generalized quaternion group and f: 7 S

is the Kervaire problem" representing the non-trivial element of
L2(Z ) = Z /2 . Here o(f) is represented by (D,¢) « LO(Z ,-1) = LZ(Z )

where
¢=(éi)=DO=ZZ ©%Z —— D, =7 67
Using geometric reasoning, S. Cappell and J. Shaneson showed
o(Id x ) # 0 « L?(Z'n) . However, the product formula hints at an

algebraic derivation of this result. In a preliminary attempt at this

problem, Jones and Milgram constructed a map

A C{K{w,1)) —— C(X(m,1)) ® C(K(m,1))

0
and restricted to the 3-skeleton to obtain

AO: C——> CBC

where C = C(Sa/n) . {(Cartan and Eilenberg [2] give an explicit periodilc
Z m-resolution of Z corresponding to a cell decomposition of S3/n)

The above AO lead to a chain homotopy equivalence
3%
¢0: C —> Cyg

Applying the product formula (C ® D, ¢ ® ¥) , they obtained a.trivial
element of L?(Z'n) , seemingly contradicting the Cappell-Shaneson exam-
ple.

The resolution of this dilemma is that the naive approach does not
lead to a geometrically correct result. Unpublished computations of the
author show that the methods of this paper give a formation representing
c(Id x f) ¢ L?(Z'n) , and prove algebraically the Cappell-Shaneson result

that o(Id x £) # 0 ¢ L2(z7) , and im(o(1d x £)) = 0 ¢ IB(Z ™)

For an alternate algebraic approach to this result, see the paper
of R. James Milgram, "The Cappell-Shaneson example," appearing in these

proceedings.
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LECTURES ON GROUPS OF HOMOTOPY SPHERES

J. P. Levine

Department of Mathematics
Brandeis University

Waltham, Massachusetts 02254

Kervaire and Milnor's germinal paper [15], in which they used the
newly-discovered techniques of surgery to begin the classification of
smooth closed manifolds homotopy equivalent to a sphere (homotopy-
spheres}, was intended to be the first of two papers in which this
classification would be essentially completed (in dimensions > 5). Un-
fortunately, the second part never appeared. As a result, in order to
extract this classification from the published literature it is neces-
sary to submerge oneself in more far-ranging and complicated works
(e.g. [7], [161, [30]), which cannot help but obscure the beautiful
ideas contained in the more direct earlier work of Kervaire and Milnor.
This is especially true for the student who is encountering the subject
for the first time.

In Fall, 1969, I gave several lectures to a graduate seminar at
Brandeis University, in which I covered the material which I believe
would have appeared in Groups of Homotopy Spheres, II. Two students,
Allan Gottlieb and Clint McCrory, prepared mimeographed notes from
these lectures, with some extra background material, which have been
available from Brandeis University. The present article is almost
identical with these notes. I hope it will serve to fill a pedagogical
gap in the literature.

The reader is assumed to be familiar with [15], [20]. In these

papers, Kervaire-Milnor define the group 8" of h-cobordism classes of

n+l

homotopy n-spheres and the subgroup bP defined by homotopy spheres

which bound parallelizable manifolds. The goal is to compute an+l
and 6%/pp"* 1L,

Section 1 reviews some well known results on vector bundles over
spheres and the homotopy of the classical groups, as well as some
theorems of Whitney on embeddings and immersions., Since a homotopy n-
sphere :® is h-cobordant tc 8% (the n-sphere with its standard
differential structure) iff Z¥ bounds a contractible manifold, in

bPn+l

order to calculate we are interested in finding and realizing

"obstructions" to surgering parallelizable manifolds into contractible
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ones. Section 2 contains some general theorems for framed surgery and
describes which "obstructions" exist for each n. In [15] it is shown
that bpP*+?
ponding calculatiens for n+1 = 4k and n+1 = 4k +2 respectively.

is zero for n+l odd. Sections 3 and 4 performthe corres-

In section 5, by use of the Thom-Pontryagin construction, the calcula-
tion of Gn/an+1 is reduced to a question of framed cobordism which
is answered by using results from.sections 3 and 4. Many resuits of
these notes are summarized in a long exact seguence

vee o pO*L R g% » A & pP o en-l s e

which is discussed in the appendix.

Throughout these notes all manifolds are assumed to be smooth,
oriented, and of dimension greater than 4. In addition all manifolds
with boundary are assumed to have dimension greater than 5 (so that
the boundary manifold will have dimension greater than 4).

§1. Preliminaries

A) Oriented vector bundles over spheres.

In [28] Steenrcd gives the following method for viewing oriented
k=-plane bundles over S"  as elements of ﬂn_l(SOk). Let £ be such
a bundle. By section 12,9 of [28] the group of & may be reduced from
GL(k,R) to O0Op. Since & 1is oriented Ok may be further reduced to
SOk. Cover S% by two overlapping "hemispheres", Since the bundle is
trivial over each hemisphere, it is determined by the transition funce
tion at each point of the equator. This function, a: sh-1l sok, is
well defined up to homotopy class by the equivalence class of & and
is the obstruction to framing &. In addition the map ([Elw—> [a] sets
up a one-to-one correspondence between (oriented isomorphism) equiva-
n_1(SOk).
For details the reader should see section 18 [28]. By abuse of notation
we refer to [£] € m _,(50,).

lence classes of oriented k-~-plane bundles and elements of

Lemma 1.1. Let [E] & wn_l(SOk) be an oriented k-plane bundle /Sk.

Then [E & €] = i4(E] € nn_l(SOk+1) where we view S0, % SOk+l as

k+1

acting trivially on the last component of IR (i.e. the matrix M

goes to

= O see O



Proof. Cover 87 by two hemispheres as above. At a point X, on the
equation, the transition function for g @el is T xid: Rk+1 > Rk+l

where T 1s the transition function for g at x But this charac-

o"
terizes the element i, as well.

Corollary 1.2, Oriented stable bundles over st are in 1-1 correspon-
dence with elements of T, l(SO).

B) Homotopy of the Classical Groups.

Let (0,...,0,1) = e, € s¥ ¢ BR¥*L,

1 p
sk given by ov»>o(e,) gives a fibre bundle SO, S0, . -5 s, 1If
M is a manifold, let <t{M) denote the tangent bundle of M.
By weaving together the resulting exact sequences one obtains:

0 £ p
Then the p?OJeCtlon SOk+1 —5
k

k-1
M (S0, ,2) M1 (87770
Diagram 1
where dk: nk(Sk) > nk_l(SOk) is the induced boundary map. By direct

computation one checks that under dk the generator is taken to
k . k-1
(8%} € nk_l<sok) and that, under (pk—l)*‘ ﬂn_lﬁSOk) > ﬂn_l(S ), a

k-plane bundle gk over S" is taken to O(gk)

finding a section (c.f. [28] §34.4). When n = k, O0(g
Euler class [28]. Since x('r(Sk
2 k even
{O k odd is the Euler number, we have that the dashed maps are
multiplication by 2 or 0 as indicated. This allows us to calculate the

order of T(Sk) €7 _l(SO

, the obstruction to

Ky = £, the

)) = x(Sk) generator where x(Sk) =

When k 1is even (p, )y takes 1(s¥)  to

k k)l
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k

twice the generator and thus 1(3") has infinite order. When k 1is

odd, twice the generator of 1

kSk is in im p so that T(Sk) has
K kx

order at most 2. Since S® is parallelizable iff k = 1, 3 or 7 [3]
we have
© k even
Lemma 1.3. order T(Sk) = [1 k =1,3,7 .
2 otherwise
From the bundle exact sequence, we know that (ik)*: njsok-+njsok+l
is mono (resp. epi) unless J = k-1 (resp. Jj = k). Thus
ker(nk_l(SOk) > ﬂk_l(SO)) = ker((ik)I: nk_l(sok) > nk_l(sok+l)) =

im(dk: ﬂkSk - nk_lSOk). Applying Lemma 1.3 we obtain the first part of
Z k even

Theorem 1.4, (1) ker(ﬂk_l(SOk) > ﬂk_l(SO)) =z [O k =1,3,7
22 otherwise

22 k = 1,3,7

0 otherwise
(3) Let VN Nk be the Steifel manifold of N -k frames
,N- ;
in N space. We have a bundle S0, S0y Ry

(2) coker(ﬂk(SOk) + nk(SO)) z [

N,N-k* If N 1is large

Px .
and k = 3,7, ﬂk(SON) — ﬁk(VN,N-k) is onto.

i
. . k¥
Proof. To prove (2} we need only investigate TrkSOk _ wkSOk+l

kel o the 1 i SO. (i
—> M50, ,, as e last group is also mS0. lk+l)*

is always
epi, If k is even we see, from Diagram 1, that dk: ﬂkS > ﬂk_l(SOk)
is mono and thus that ik* is epi. If k is odd but unequal to 1,

3, or 7 the relevant part of Diagram 1 is

k¥
S0, —— m S0, ; —> 2Z

™SO0k 42

and a trivial diagram chase shows that (ik+lik)* is epi. If k =1,

3 or 7 we have



y/4
X ~
\\ X2
Idk+l NS
ik* A
ﬂkSOk — nkSOk ;] — Z
|
N
| Gker s
v
MeS0up2

which concludes the proof.
{3) The bundle structure is given in [28] §7. This gives the
sequences:
Py
M (SOg) — m (V ) = m (S0 ) = m (S0,.)

ki, ek k-1'"°"N

and the result now follows from (1).
We conclude this section by giving some results of Bott and

Kervaire.

Theorem 1.5.
(1) me(U) is periodic with period 2, ﬂOU = 0, and m U = Z
(2) wg0 1is periodic with period 8 and the actual homotopy groups

are

i mod 8 0 1 2 3 4 5 6

niO Z zZ 0 Z 0 0 0 /A

(3) For all j, ﬂj(U/SO) = LIPS (S0O)
(4) For all j, “Zj(Ui) z Z

Proof. (1) is proved in complete detail in [21] where a proof of (2)
is also indicated. Both (2) and (3) can be found in [4] and (4) occurs
in [51].

C) Some theorems of Whitney

Definition. An embedding M €N of manifolds is proper if 3N MM = 3M

and M 1is transverse to 3N.

2 m

Theorem 1.6. Let L and M be compact proper submanifolds of Nn,
£ +m = n, such that L and M intersect transversely and the inter-

section number of L and M 1is zero. (The intersection number is an
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integer if L, M and N are oriented, and changing orientations changes

its sign. If L, M or N is nonorientable, the intersection number is

in 22.) If ¢,m>2 and N is simply connected, then there is an
ambient isotopy ht of N such that hl(L) M= 0,
Proof. Whitney's intersection removal technique is in [31]. See also

Milnor [20].

The same technique yields

Theorem 1.7. Let f£: Mo y°0

intersection number zero. (If m is even and M and N are oriented,

be an immersion, M closed, with self-

the self intersection number is an integer. If M 1is odd, of if M or
N is nonorientable, it is in 22.) If m>2 and N is simply con-
nected, then f is regularly homotopic to an embedding.

As a corollary of this theorem {(and the approximation of continuous
maps by immersions, and the fact that the self intersection number of an
immersion can be changed arbitrarily without changing its homotopy type)
we have:

Theorem 1.8. If N2k
can be represented by an embedded sphere.

is simply connected, k >2, then any a € m (N)

Zm_l,aN) be a continuous map such

Theorem 1.9. Let f: (M™,3M) + (N
that f£|8M is an embedding. Then f is homotopic to an immersion keep-

ing f|aM fixed.

Proof. See [32].

Definition. Let M and N be closed manifolds. Immersions fi: M-+ N,
i =0,1, are concordant if there is an immersion f: MxI *» NxI such
that F(Nx{i}) = Mx{i} and F[Mx{i} = F,, i = 0,1.

Corollary 1.10. Let M® and N°™
f.: M+ N, i = 0,1, are homotopic if and only if they are concordant as

i
immersions.

be closed manifolds. Two embeddings

Proof. If F: MxI » NxI 1is a concordance, then 7o¢F: MxI > N 1is a
homotopy, where m: NxI » N is projection onto N. If h: MxI ~ N

1» let H: MxI >N xI be given by H(x,t) =
(h(t),t). Applying Theorem 1.9 to H, we obtain a concordance from fO
to f

is a homotopy from fo to £

1°
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§2. Some theorems on framed surgery

Let M be an oriented smocoth manifold. Suppose that surgery is

performed via the embedding f: Sk an_k
M' = (M - f(Sk an-k)) U Dk+l xsn—k-lu
f(Sk an'k) C Int M.) The "trace"™ W of the surgery is obtained by
k+1 n-k

X

> MY to obtain a manifold

(We will always assume

attaching the "handle" D D to MxI by identifying
(aDX*1) x DK yith (¥ xDPK) x{1}. Thus W = M' - M. Let € (X)
denote the trivial N-plane bundle over X. (We will write eN when

the base space is clear from the context.)

Definition. A framed manifold (M,F) is a smooth manifold M together
N

with a framing F of +1(M) ® ¢ (M) for some N > 0. A framed surgery

of (M,F) 1is a surgery of M (as above) together with a framing G of
T(W) @& ek(W) (k > N-1), where W 1is the trace of the surgery, satis-
fying G|M = F & tk'N+1, where tXN-1 i5 the standard framing of
ek_N+l. (Here M 1is identified with Mx0 € W, and T(W)|M 1is identi-
fied with t(M) & et

Restricting G to 3W-M = M' we obtain a framed manifold (M',F'),

the result of the framed surgery on (M,F). ({(t{W)|M' = t(M') & el via

by using the inward normal vector field on MC2aW,)

outward normal field on M'.)

Remarks.
1) There is a corresponding definition of framed cobordism. Two
closed framed manifolds (M,F) and (M',F') are framed cobordant if

there is a compact framed manifold (W,G) such that B8W = M-M',
GIM = F, and GIM' = F'. (More precisely, this means there exist inte-

gers i,j,k > 0 such that G @ t'|M = F @ tJ and G @ ti[M = F' @ tX,

Again we identify T(W)|M with (M) @ e¥, and T(W)|M' with

T(M') & el.) It is easy to check that framed cobordism is an equiva-
lence relation. Clearly if (M',F') 1is obtained from (M,F) by a
finite sequence of framed surgeries, then (M',F') is framed cobordant
to (M,F). Conversely (M',F') is framed cobordant to (M,F) implies
that (M',F') .can be obtained from (M,F) by a finite sequence of
framed surgeries (compare Milnor [2]).

If (Ml,Fl) and (M2,F2) are framed manifolds, (Ml,Fl) #(M2,F2)
denotes their framed connected sum. (See [10]}.)} The set of framed
cobordism classes of framedclosed manifolds forms an abelian group
under #.

2) If F 1is homotopic to F', then clearly (M,F) is framed
cobordant to (M,F'). By an easy obstruction argument, homotopy classes

N

of framings of T(M) & ¢ for any fixed N are in one-to-one corre-
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spondence with homotopy classes of framings of tT(M) & el. Thus our
definition of framed cobordism gives the same equivalence classes as
the definition in Kervaire-Milnor [15].
3) The following conditions are equivalent:
i) M 1is s-parallelizable ("framable™)--i.,e. the bundle
(M) & sN is trivial for some N. (M 1is parallelizable

if (M) is trivial: "s-parallelizable” means "stably
parallelizable".)
ii) (M) & el

Milnor [15] gives for s-parallelizable.)

is trivial. (This is the definition Kervaire-

iii) M is a T7-manifold (i.e. there is an N such that M
embeds in RN with trivial normal bundle). (See [15]
and [20].)
(i) & (iii) can be strengthened as follows: Let 1i: M? > R
be an embedding, k large. Then

(Rn+k n+k

(M) & v(i) = 1 )IM = € (v = normal bundle)

30

N

Ve ot(M) @ v(i) = NNtk

4) A manifold with boundary is s-parallelizable and only if it
is parallelizable. (See [15].)

Lemma. Suppose N 1is large. Then if F 1is a framing of eN & t(M),

~ tN+n+k

there exists a framing F' of wv(i) such that F & F' , and

any two such F' are homotopic. Conversely, if F' is a framing of

v(i), there exists a framing F of e & T(M) such that F @ F' =

tN+n+k, and any two such F are homotopic.

Proof. We will show that if gk and gg are vector bundles over the

manifold M® with & > n+l, such that Ek @ nl B ek+l
framing of Ek, then there exists a framing F' of nQ, unique up to
homotopy, such that F & F' = tk+l.
Since Vk+2,2 is 2-1 connected, n < 2 implies that ¢ is null

homotopy (by obstruction theory). Thus by the homotopy l1lifting property

of Vk+l > Vk+l,l’ ¢ ) k+2,k+2°
Suppose F" is another framing of n such that F & F" 2 t
F' and F" differ by a map o: M = SOl, and if 1i: SOl - Sok+l’
iea = 0. But iy: m;80, £ 7,30, ., for 1 <2-1, so since n < -1,
iglal = 0 > [a] = 0 (by obstruction theory). Thus F" I F.

, and F 1is a

F defines a map ¢: M =+ Vk+l,k'

Thus F' exists.
K+L ' Then

extends to amap M+ V

Definition. Suppose that (Ml’Fl)’ (MZ,F2) are normally framed manifolds
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(i.e. F, is a framing of an embedding f: Mi < RN, N 1large).

(Ml,Fl) and (Mz,FZ} are normally framed cobordant if the;e is a
manifold W with 8W = M, U M2 and an embedding g: W ~ R* xI such
that int W M 3(R® xI) = @ and gIMi = £y, with a framing G of v(g)
such that GIMi = F,.
The set of normally framed cobordism classes of closed normally
framed manifolds forms a group Q? under connected sum. By the lemma
and remark 2) above, Q? is canonically isomorphic to the group of
(tangentially) framed cobordims classes of (tangentially) framed mani-
folds. Pontryagin proved that Q? is isomorphic to the n-stem ﬂn(S),
the correspondence being the Thom-Pontryagin construction., For a proof,
see [22]. 1In these notes, a "framed manifold" will usually mean a
manifold with a framing of its stable tangent bundle. Normal framings

are used only when the Thom-Pontryagin construction is needed.

Theorem 2.1, Let M be a compact framed manifold of dimension n > 4
such that 38M 1is a homology sphere. By a finite sequence of framed
surgeries M can be made [E%A] connected.

Proof. This is 5.5 and 6.6 of Kervaire-Milnor [15].

This theorem says that for a compact framed manifold, surgery can be
done to kill all homotopy groups "below the middle dimension." There-
fore, by Poincaré duality, we have:

Corollary 2.2. 3uppose that M? is compact, framed, n odd > 5, and

®M is a homotopy sphere (resp. oM = @), By a finite sequence of
framed surgeries M can be made contractible (resp. a homotopy sphere).
Thus bP" = 0 for n odd.

Surgery can be completed in the middle dimension of an even dimen-
sional framed manifold if the middle homology group can be represented
in a special way:
Theorem 2.3. Let M2k
manifold, &M a homotopy sphere (resp. aM = @). Suppose there is a
basis UpyeeerQp,y Bl,...,sr of Hk(M) such that

(1) ui-uj = 0, Bi-Bj = Gij for all 1i,j ("™ 1is intersection
number. Such a basis is called (weakly) symplectic).

(2) The a, can be represented by disjoint embedded spheres with

i
trivial normal bundles. (Note that the a; are spherical by the

, kK > 3, be a compact framed (k-1)-connected

Hurewicz theorem.)
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Then M can be made contractible (resp. a homotopy sphere) by a finite
sequence of unframed surgeries, The surgeries can be framed unless
k =3or/7.

Proof. All but the last statement is included in the proof of Theorem 4
of Milnor [20]. As shown in §6 of Kervaire-Milnor [15] (see also the
proof of 4.2b below), the obstruction to framing a surgery performed via
k k 2k
xD" > M

obstruction can be altered by any element in the image of the map

an embedding f: S lies in "k(So2k+N) = nk(SO), and this
1y nk(SOk) > nk(SO). But i, 1is surjective for k # 1,3,7 (l.4), so
any surgery can be framed.

When can the hypotheses of this theorem be satisfied? If k is
even (i.e. n = 0(4)), we will see that Hk(M) has a symplectic basis
if and only if the signature {(index) of M is zero. However, (2) always
holds for k even, assuming (1) (see §3), If k is odd, k # 3,7,
Hk(M) has a symplectic basis, and the normal bundles of embedded spheres
representing this basis are trivial if and only if the Kervaire (Arf)
invariant of M 1is zero (§4). If k = 3 or 7, (1) and (2) both hold,
but there is an obstruction to framing the surgery. In §4 this obstruc-

tion and the Kervaire invariant are shown to be manifestations of a
single invariant which can be defined for all odd k.

6 14

Corollary 2.4. DbP~ = bP = 0.
. 4k
§3. Computation of bP
In this section we compute bPl+k by defining a surjective map

bP4k, and determining its kernel.

from Z to

Let £ € bP** say 1 - aM* with M parallelizable. If I also
bounds a contractible manifold, I = 0 1in bPAk, thus I = 0 1if we can
kill the homotopy of M by framed surgery. Theorem 2.1 allows us to
assume that M is (2k~l)-connected, which places us in the situation
described by Theorem 2.3, the hypotheses of which are satisfied iff the

signature of M 1is zero.

Definition. Let th be a compact oriented manifold with szM free
{e.g, M (2k=-1l)-connected). The signature (index; of M o{M) 1s the
situature of the quadratic {i.e. symmetric bilinear) form < , >:

H,y M B H2kM + Z given by the intersection pairing <a,B> = a°*B.

2k
Remark. o(M#M') = o(M) + o(M') where # 1is connected sum.

Proof., < , > 1is dual to cup product, i.e.
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< >

Hoy\ M v B M Sy oz
ElPD& PD lE commutes
12Ky, M) 8 HEK (M, 0M) —=2 B¥¥(m, 810)

and (c.f. Milnor [19]) the signature of the cup product is additive
with respect to connected sums.

Theorem 3.1, Let (Mﬁk,F) be a compact framed (2k-1)-connected mani-
fold with 9M a homotopy sphere (resp. oM = @#). Then (M,F) <can be
framed surgered into a contractible manifold (resp. a homotopy sphere)
iff o(M) = 0.

Corollary 3.2. The Hirzebruch index theorem (below) implies that, if
M¥  is framed and M = @, then o(M) = 0 and hence M is framed
null cobordant.

Proof. (=) If a closed manifold qu
o(N) = 0 (c.f. [17]1). By the above remark, ¢ 1is thus an invariant

bounds a compact manifold, then

of oriented cobordism. Therefore, if 8M = @ and M can be surgered

into a homotopy sphere £, o(M) = o(X) = 0.
Now suppose that N4k is compact and 3N = Z = 3D with D con-
tractible. We claim that o(N) = o(N WD), Let V = NUD and let
)X b

i: N - V be the inclusion. Then we have the commuting diagram

2

ueky g 5Ky —~ 5 §¥(y) =z
EJ/i*za i¥ Eli*
BK (v, o) e 02Ky, aN) —2s BYK(N,8N) T 2 .

As <,> 1is dual to <, the claim follows, If 3M = I and M can be

surgered to D, let W be the union of the traces of the surgeries.

Then 3W = Mu (D UWZIXI), Thus, by our claim, o(M) = o(0W) 0.

(&) We will verify (1) and (2) of Theorem 2.3. Since o(M) = 0, 3 a

pr BiyeesyB for Hy (M) (c.f. [261). By

the Hurewicz theoregﬁ eaclz”lk oy is spherical and can be represented by
+ M

fi(SZK) can be isotoped s0 as to be disjoint (Theorem 1.6). Let v(fl)

symplectic basis, Ogyeses
an embedding f;: 3

(Theorem 1.8). Since ai-aj = 0, the

be the normal bundle. [v(f])] € “2k-1(502k)’ and we have the commutative
diagram (c.f. §1B)
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d (i )
2k 2k 2k=1'%
————e =
o (ST == My 1 (805, Mor-1505,1) = Ty 1 (S0)
2 lp2k-l
2k=1
Tok-1 (ST
Now T(SZk) & v(f;) = fi*(T(M)), so since T(M) and r(SZk) are
stably trivial, so is v(fi), i.e. i*[v(fi)] =0e€ n2k_l(SO). Thus
[v(fi)] € Im «. But ka_l[v(fi)] = X(v(fi))°gen = (ui-ai)gen = 0, and
Im d2k M Ker Pop1 = 0, since p2k-ld2k is multiplication by 2, so
[v(f;)] = 0, i.e. v(f;) 1is trivial.
4k

Theorem 3.3, Let M
boundary is empty or a homotopy sphere. Then o(M) is a multiple of 8.

be a framed (2k-1) connected manifold whose

Proof. Pick o € HyM and let o' € HK(4,3M) be its Poincaré dual.
The mod 2 computation a' Ua' = quka' = V2k Ua' =0 (ng, the
Zktth class, is zero since 1(M) 1is stably trivial) shows that

o Ua {and hence its dual < ,> ) 1is always even i.e. < ,> is an
even quadratic form (c.f. [20] for a more geometric proof). Since the
signature of an even unimodular integral quadratic form is a multiple

of 8 (c.f. [26]), we need only show the:
Assertion., <, > 1is unimodular.

Proof., We have the commuting diagram

*

E 3 1, =
B (M, am) 2y w80 E2 s w, (M, M) s Hy, (M)
A S~e—e—~—D O a \JUM:OLWQ

e

Hom(HakM,Z) <o, *>

Where we have abused notation by not distinguishing between elements in
isomorphic absolute and relative groups (uM is the fundamental class
of M). < ,> 1is unimecdular iff the map

H2kM —— Hom(szM,Z)

0~~~ <0, * >
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is an isomorphism. But the above diagram factors this map into the
composition of three isomorphisms.

Theorem 3.4. Let k > 1 and t € Z. Then 3 a framed 4k manifold
(M,F) with 3M a homotopy sphere o{M) = 8t.

A very complete proof can be found in [7] {(see also [23]1). The mani-
folds are constructed by plumbingdisc bundles over spheres.

We now describe the map mentioned in the first paragraph of §3.

SR A bP*¥ s defined as follows. Let b (t) = [aM

where M K is a framed manifold with signature 8t having boundary a

Definition. b Ak]

homotopy sphere.

In the Appendix we will see that b can be thought of as a

k
"boundary" map.
Lemma 3.5. (1) b, 1is well defined, i.e. if M, and M, are as above,

8Ml is cobordant to aMz.
(2) bk is surjective.

Proof. For (1), it suffices to show that the connected sum 3M# dM', a
homotopy sphere, is cobordant to zero. From the boundary connected sum
W=M#-M" (c.f. [1]). B8W = 3M#3M'. But o(W) = 0 so, by Theorem
3.1, W can be (interior) surgered into a contractible manifold. (1)
follows from (2) is immediate from Theorem 3.4.

Corollary 3.6. bqu Z Z/ker by .

We now try to determine ker bk'

Suppose t € ker bk' Then we have a framed manifold (M,F) with
signature 8t whose boundary, I, is a homotopy sphere that bounds a
contractible manifold D. Attaching D to M by identifying 3M
with 3D gives an almost framed closed manifold N of dimension 4k
with o(N) = 8t, (An almost framed manifolid is a pair (N,G) where G
frames T(N) N-{x} for szﬁe x € N.,} Conversely, given an almost
framed closed manifold N with o(N) =8t, let D C N be any embedded
disc. Then N -~ intD 1is framed and has signature 8t and boundary

SAk'l. This gives:
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Theorem 3.7. t € ker b
with signature 8t.

X if d an almost framed closed 4k-manifold

This theorem leads us to investigate the signature of almost framed
closed manifolds. Our tool is of course the:

Hirzebruch signature (née index) theorem. For any closed manifold th,

g(M) 1is the Kroneker index <Lk(Pl(M),...,Pk(M)),uM> where L, 1s a

rational function and the P;'s are the Pontrjagin classes (see [19] or
f12]). The only fact that we will use about L, is that

k
Lk(xl""’xk) = s %, + terms not invelving x, where
22k<2k—l _l)Bk
Sk =
(2x)!
(B, is the k"M Bernoulli number.)
Let (MAk,F) be an almost framed closed manifold. Since pi(M) =0

i<k, o(M) = skpk(M). We will see that the obstruction to extending

the almost framing to a stable framing of M (i.e. a framing of
(M) & eN) actually determines o(M) and is thereby useful in calcu-
lating ker bk and consequently bPAk.

The obstruction 0OI(M,F) € ﬂqk-l(so) £ Z (Theorem 1.5 {2}) can be
defined as follows. Let x €M be the point where F 1is not defined.

Next choose x € U = D4k 4k

D4k

and let F' be the usual framing of D
consistently with M). O(M,F) G—n4k_l(SO) is the
obstruction to forcing agreement of the stable framings F and F' on
U - {x} = stKL

Let 1: M > BSO be the classifying map of the stable tangent

(which orients

bundle of M. Since M - {x} 1is stably parallelizable, T|M - {x} is
null-homotopy and thus factors {up to homotopy) as

M — B30

N

where ¢ collapses to a point the complement of an open disk containing
Xx. Hence I E, a stable oriented vector bundle /SAk 3 ¢*£ is the stable
tangent bundle of M. As usual (c.f. §14) we view [E] € ﬂ4k_1(50).
one checks that [&] = = O(M,F).

The above factorization of 1 shows that the Pontryagin classes

of almost framed 4k-manifolds can be determined by examining the kth

Pontryagin class of stable vector bundles /Sak.
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Theorem 3.8. (c.f. [18]). If & is a stable vector bundle over SAk,
1 k even

then pk(g) = ¢ ak(2k -1)¥1{g]l where a, = .
2 k odd

Proof. One task is to make sense of the above equation as a priori the
two sides lie in different groups. We will see that each group is iso-
morphic to Z and hence, up to sign, they are canonically isomorphic
to each other.

By definition pk(g) = % Czk(gc) (the 2kth Chern class of the
complexification of &) and, just as [&] € ﬂAk—l(SON)’ [Ec]
Tye_q (Uy) € (N large). In fact € s 1,(€) where 1: SOy » Uy is

the inclusion.

Let wm 3 be the space of complex orthonormal & frames in ch
’

(cf. [28]).

Cope((8N6) € BT my Oy o 4x-1 My ne2ke1 )
obstruction to extending an N-2k+1 dimensional complex framing of
£° from the 4k-1 skeleton to s°K
obstruction to extending an N-2k+1 dimensional framing of EC from
Sgk. Since Ec is the obstruction to
extending to complete framing from the southern hemisphere to qu, we
see that CZk(gc) = P*(EC) where p: U > Un/U

jection., We have the exact sequence:

)) = o is the

itself. Equivalently it is the
the southern hemisphere to

is the usual pro-

n 2k=1

p* a
Tur-1 Uy} = 141 (W ) —— 7 (U ) —=> T o (Uy)

N,N-2k+1 4k=2"'Y2Kk-1

By (1.5) (m (W

3 l) is calculated in [3]) the above sequence becomes
’

Py
=22 —>25 1)) —>0.

Hence py 1is multiplication by (2k=1)!. Since we have

z 7 z
l . i b alf
* *
Mhi=1 (SOy) == gy (Uy) = Ty 1 Wy ye2ka1)

§ o> £ iy, (50) = 2y (E)

it remains to show that i, is multiplication by ta. As N 1is large

we may work with the stable map 14: 7., (SO) » m, (U). But we have the

k
exact sequence
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i*
M (U/S0) —= m, L (S0) —= my 1 (U) —> m, (0/80)

Ul sil
z z

and in §1B we have also shown that "Ak(U/SO) E “Ak-Z(SO) £ 0 and

that (U/8)

(SO0) = {O k- even The result follows.

Thk-1 = k-3 0 % odd

Let M be an almost framed closed manifold. We have:
Corollary 3.9, pk(M) = £ ak(Zk-l)!O(M,F).

Corollary 3.10. O(M,F} 1is independent of F.
2k-l(22k—1 _

* ak2 l)BkO(M,F)

Corollary 3.11, ao(M) =

k

Corollary 3.12., M is s=parallelizable if o(M} = O.

In order to completely determine bPAk

the J-homomorphism are needed (c.f. {13]).

some basic properties of

e . ) _ . 9
Definition. Given n and £ we define J = Jn,l' nm(SOQ) > nm+2(s )
Sm+2

as follows: Let [a] & nm(SOQ). J(a): > SQ is constructed in

m+2 3

two stages. We view S as (8™ xD") U (Dm+l xSl'l) and first

. m_ % L m_o %Y Lg o
define J(a) on S" xD as the composition S" xD D S where
Y(x,y) = a(x)(y) and c collapses s0* to a point. The second
stage, extending J(a), is trivial as ¢ ow(B(Sm xDl

point. J([a]) 1is defined as [(J(a)]. One then verifies the

)) is just one

Lemma 3.13. View S® as S®x{0} ¢ s®xd* c s™* yitn F, the stan-

dard normal framing S" c s™ « p*. Given [a] € T, (80,0, let F, be

the framing obtained by "twisting FO via o" (i.e. at x € 3P,
Fa(X) = a(x)(FO(x))). The Thom-Pontryagin construction applied to
(8" ¢ SQ,FG) gives = J(fal).

Since

J 2
ﬂm(SOQ) —_—

e 7

J

2+1
ﬂm(SOQ+l) > ‘"m+SL+l(S

)

commutes (£ 1is the suspension homomorphism), we obtain the stable J
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2 2+1

homomorphism Jtﬂm(SO) +nm(S), where ﬂm(S) :1im{nm {(S™) En (S 1}

+% m+2+1
is the m-stem. The relevance of the J homomorphism to our work to

the following:

Theorem 3.14. Given o € nm_l(SO), 3 an almost framed closed manifold
(M",F) with O(M,F) = a iff J(a) = O.

Procf. =» We may assume that F is a framing of M® - int D™ with
D" a closed disc. Now imbed M™ in RN(N large) so that D™ 1is the

northern hemisphere of the standard m-sphere in RN. Let FO be the

usual (outward) normal framing of D" ¢ FN. Let Fa = FO me1 twisted
§-
via o. Hence the Thom-Pontryagin construction applied to (Sm’l,Fa)
gives tJ(a). Since « = O(M,F),F = F| . Taus (s"1,F ) =
gm-

a(Mm - int Dm,F) S0 (Sm—l,Fa) is framed null cobordant. Therefore,
the Thom-Pontraygin construction yields o € wm_l(S).

&= sl e pM,  Let F, be the standard framing of p" < N
(N large). Since J(a) = 0, a framed manifold (Nm,F) such that
2™, F) = (S™L,F ). Let M'c m .1 D" Then (M™,F) is an almost

gm-

framed closed manifold and O(Mm,F) = a.

If we let jk be the order of the image of the stable J homo-

morphism Z = nqk_l(SO) d ﬂ4k_l(8) we get the following:

Corollary 3.15. The possible values for O(M,F) are precisely the

multiples of jk.

Corollary 3.16. The possible values for o¢(M) are precisely the

ak22k-1(22k-l _l)Bkjk
multiples of
k
In order to (finally) get exact information about bPAk we need a

hard

Theorem ¢f Adams 3.17. [1] [33] Let J: wm(SO) > w,(S).
1) If m# 34), J 1is injective,
2) Jg = denominator (Bk/4k).

Although our primary interest in in 2}, 1) also has important con-
sequences.
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Corollary 3.18. If M 1is an almost framed closed manifold and dimM#

0(4) then the almost framing of M extends to a complete framing.

Since homotopy 4k spheres have signature 0, we get:

Corollary 3.19. Any homotopy sphere is s-parallelizable.

4k

We have already seen that bGP is a finite factor group of Z.

Let t, be the order of that group, we have (using 3.7 and 3.16) that

a 22K-152k=1 _1yp
ot - ok Kk
K E
k
Thus t, = 2,2°572(22%°1 _1)(B /4k)j, and, applying 3.17, this gives
the final
Corollary 3.20. bPAk = Zt where t, = ak22k'2(22k'l -1) numerator -
(B, /4K) . K

§4. Computation of bPP® for n = 2modé4.

We proceed as in §3, computing pp? by studying the kernel of a

surjective map 22 + bPo,

Suppose that I & bP", i.e. I = oM%K, where Kk is odd, and M
is a parallelizable manifold. By Theorem 2.1, M <can be made (k-1)=~
connected by a finite sequence of framed surgeries. We wish to discuss

the "obstruction" to a compact, framed (k-1)-connected manifold
(MZK,F), k odd, satisfying the hypotheses of Theorem 2.3.

First notice that the intersection pairing HkM sHkM + Z 1is skew=-
symmetric (since k 1is odd} and unimocdular {by the proof of Theoren
3.3). Therefore [26] there is a symplectic basis for HK(M), i.e,

there is a basis « "ar’sl""’sr for Hk(M) with intersection

19
matrix

-I 0

As in §3, each oy is spherical by the Hurewicz theorem, and so if

k > 2, the a; are represented by disjoint embedded spheres (by 1.7

and 1.8). Furthermore any two embeddings f: Sk > M2k representing
2k

an element o € Hk(M ) are concordant as immersions by 1.10. Now
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¥ - k
f (M} = t(S™) & v()

50

eNis¥y @ £t 2 NisK) @ 1(s¥) 8 vir)

k N

# *
eN(S ) & £ 1(M) = f (e & t(M)), so the framing F of ¢N & t(M) pulls
N

* *
back to give a framing f F of ¢ & f t(M). If Fo is the usual

framing of -1 g T(Dk+l), FO[Sk gives a framing of

=L g rpk*ly sk o N sk,
*
(%) el e rM = N e (sK) @ vir)
* K
fF fO|S

*
Thus since f F gives a trivialization of eN [ T(Sk) ® v(f), the

X k . . . k
framing FOIS assigns to each point in S an element of V2k+N,k+N'
Thus we get an element
= Z

®(f) € ﬂk( (k odd)

V2k+n,k+n) 2

depending on M, F, and f. We will show that &(f) does not in fact
depend on the cholce of the embedding f representing a. Suppose

. «k
fo,fl. S
be an immersion concordance between them (1.10). Then we have the

+ M are embeddings representing a. Let H: Sk xI > MxI

following bundles and framings over the space Sk x I

- * -
(%) Mo ntrMx1) = Nl e v(sKx1) @ vin) .-
| N ___) \ - o
¥ k
HG Gols®x1
where G 1s the framing of eN’l ® T(MxI) corresponding to F under
the identification T(MxI) = el @ (M), and Gy corresponds to Fy
under T(Sk xI) = el + T(Sk). Thus GO|Sk x I determines a map
.k ) ) )
f: S5 xI ~» V2k+N,k+N’ which is a homotopy from @(fo) to @(fl) since
(¥%) restricted to S" x {i} yields (¥), 1 = 0,1. Therefore we obtain

a well-defined element ¢(a) € “k(V2k+N,k+N) = 22.

Remark 1. In fact it is true that if the embeddings FO,Flz Sk > M2k

are homotopic, then they are regularly homotopic. This is an easy

corollary of Smale-Hirsch immersion theory [27] [11]. (In fact for

M = R2k, ¢ 1is identical with Smale's obstruction to homotoping an

k

immersion of S to the standard embedding.) Thus if fo,fl are
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2k

)y v(fo) =z v(fl), and so (¥) de-

fines &(a) indepdnently of the choice of embedding.

embeddings representing o € Hk(M

Remark 2. There 1is an alternate way to define ¢, using Smale-Hirsch
theory. Given o € Hk(MZK), M s-parallelizable, there is a certain
regular homotopy class of immersions f: Sk ka + M such that F oi
ko s®xpX by i(x) = (x,0) (see [24]).

d(a) is defined to be the self-intersection number of the immersion

represents o, where 1i: S

foi, For a presentation of this definition, see [24] and [30].

Theorem 4.2. (a) For k # 3,7, &(a) = 0 if and only if v 1is
trivial, (b) For k =3 or 7 (i.e. dim M = 6 or 14), v(f) 1is
trivial, and ¢(a) = 0 1if and only if the surgery on M via

2k

f: Sk ka - M can be framed.

Proof of (a):. Consider the long exact homotopy sequence of the bundle

SO, * S05pN * Vo, ken®

Py

i*
©rr == M S0 ——> M (805 n) > T Vo, kan!

K
Iy ix
> M1 (80 ) = My S0y —> 000

It is clear from the definitions that 84%(a) = [v(f)] € Me_1 (80,0
For k # 3,7, 1iyg is surjective (1.4), so py 1is 0, so 34 1is in=-
jective. Thus @®(a) = 0 & [V(f)] = 34%(a) = 0.

Remark. Thus for k # 3,7, @(a) can be defined directly as the ob-
struction to trivializing v(f), i.e. @¢(a) = [v(f)}] € Ker ij £ 22,
and the two definitions correspond via the isomorphism

gt “k(v2k+N,k+N) + Ker i.

Proof of (b). wv(f} is trivial because ker i} = 0 for k = 3 or 7
(1.4). As stated in the proof of Theorem 2.3, the obstruction to fram-
ing the surgery lies in Coker iy, For k = 3 or 7, Im iy 1is a sub-
group of “k(SOZk+N) = nk(SO) of index 2 (1.4), i.e. Coker iy = 22.
Furthermore, since Ker ig = 0, py 1is surjective, i.e. Dpg: Coker iy=
“k(v2k+N,k+N)' To see that pg(0) = ¥(a), recali thﬁ definition of 0:
A trivialization of v(f) gives an embedding S" xD
s k+1 k
like to frame the trace W = MxI A_J D x D

via this embedding: sk x p¥

€ M, and we would
of the surgery of M
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Oka

u Dk+l 0

///////A)‘ ///// /

We have a framing of the stable tangent bundle of MxI which restricts

to the given framing F of (M) & No= xI)| Mx {1}. We also have
Dk+l y Dk)

a canonical framing Fo xFé of 1

with F on Sk x0, we get a map g: Sk > SOZk+N' Changing the framing
of v(f) by an element of ﬂk(SOk) changes the homotopy class of g

. . '
Thus comparing FO xFO

by an element in the image of ig: =, (SO, ) »- = (30 ). This defines

k k k 2k+N g D
0 € Coker iy. Now pg(0) is the homotopy class of st V2k+N,2k+N
Vorsn,ken: P .
with F on S"x0 and thus ([pogl = ¢{a) é.nk(v
completes the proof of 4.2.

forgets the last k vectors, so pog compares FO

okl keN! = Zp- This

Let ¢,: H, (M;Z > Z be the map

g (M525) 2

. = . ¢ ®id
H (M32, —=——> H, (M;2) 82, ——> Z,

We will show that ¢, 1is a "honsingular quadratic function."

Definition. Let V be a finite dimensional vector space over 22,
<,> a symmetric bilinear form on V. A guadratic function with asso-

ciated pairing < ,> 1is a function ¢: V - Z, such that

Yla+8) = Y(a) + P(B) + <a,B> .

Y is called nonsingular if < ,> 1is nonsingular, Let Oyeres@py
Bl""’Br be a symplectic basis for (V,<,>}). Define the Arf invar-

iant of (y,<,>) by

Remark. It's not hard to show that A is independent of the choice of

symplectic basis.
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Proposition 4.3. A and rank V are complete invariants of the iso-

morphism class of (V,<,>,y). (Isomorphism class means the obvious
thing.)

Proof. See [2].

Proposition 4.4. Let M,® be as above. Then for a,B € Hy (M)

represented by embedding spheres,
d{a+B) = ®(a) + O(B) + (a'B)Z,

where (a-B)2 is the intersection number of o and B8 reduced mod 2.

ks, M Dbe embeddings representing «,B respectively.

k

Proof, Let f,g: S
Joining f(Sk) and g(S") by a tube gives an immersion f #g repre-
senting o +8. Observe that the definition of & makes sense for an
immersion (it is an invariant of regular homotopy) and it is not hard

to see that
(#) P(f#g) = o(Ff) + o(g)

The self-insersection number of the immersion f#g is just (a*8),.
Thus if (a°8)2 = 0, f#g 1is an embedding (after isotopy) representing
o +B, so the proposition is true by (¥). If (aB), = 1, let h: SX + M
be a small null-homotopic immersion with self-intersection number

I(th) = 1. Then by 1.7 f#g#h 1is regularly homotopic to an embedding
representing a +8, so

(o +B) = ¢(f#g#h) = &(f) + ¢(g) + ®(h) = d(a) + ®(B) + &(h)

Thus we must show that &(h) = 1 = (a'B)Z.

For a given manifold M, h 1s obtained by composing a fixed

k 2k

immersion hyt ST -+ R having self-intersection number 1, with a

coordinate embedding R2k > M, (For a definition of h,, see [(61.)
Since @(h) = ¢(hy), it is enough to check that ®(h) = 1 for some

particular choice of M. Let M = sk xsk. m (sK XSk) 2728 Z, with

generators a,B represented by the embedding: a,b: Sk > Sk xSk given
by a(x) = (x,xo), b(x) = (xo,x). Clearly (a,b)2 = 1. Let

a: s¥ » sk xsK pe the diagonal map d(x) = (x,x). d 1is an embedding
representing o+ B. Therefore &¢(d) = ®(a) + ¢(b) + o(h) for any

framing F of el oo T(Sk xSk). Let F be the framing of

' @ T(Sk xSk) which is the restriction of the standard framing of
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R2k+l 2k+1

to the standard embedding sk xSk C R Then it is clear
that ¢(a) = ¢(b) = 0, so &(h) = &(d). (Or one can produce a framing
F such that &(a) = ¥(b) = 0 by the proof of Proposition 4.11 below.)
For k # 3,7, @(d) = [v(d)] = (1(s¥)1 = 1. It remains to show that
d(d) =1 for k = 3 or 7.

It should be possible to give a direct proof that &(d) = 1. In
lieu of such, here is an alternative proof of Proposition 4.4 for
k =3 or 7. It is sufficient to show that if h: Sk > RZk
immersion with self-intersection number 1, then ¢(h) = 1, But it is

easily seen that for any immersion f: SQ > RZQ,

is an

¢(f) 1is precisely

Smale's obstruction to regularly homotoping f to the standard embed-
L 2Y [27]. (It follows that 6(f) equals the self-
intersection number of f -~-this is immediate when & 1is odd, because

ding of S in S
$(f) and the self-intersection number are in 22. (See [27]1.) There-
fore ¢(h) = 1.

Corollary 4.5. ®2: Hk(M;ZZ) > 22 is a nonsingular gquadratic function
with associated pairing <a,B8> = (a-B)2.

Zk,F), i odd be a compact framed (k-1)-connected

Definition. Let (M
manifold such that Hk(M;Z) is free abelian. The Kervaire (Arf)
invariant c¢(M,F) 1is defined as

Alo (y),) €2

2! 2°

Remark. By a previous remark, for k # 3,7, ¢(M,F) does not depend

on F, so for k # 3,7 we let c¢c(M) = c(M,F).

Theorem 4.6. Let (M2k

connected manifold with 8M a homotopy sphere (resp. empty). (M,F)

,F), k odd, be a compact framed (k-1)-

can be made contractible (resp. a homotopy sphere) by a finite sequence
of framed surgeries if and only if c¢(M,F) = 0.

Proof. (&) Let OpreeesQniByye.eyB be a symplectic basis for

H (M;Z). Suppose c(M,F) = 0, i.e. g ©{a;)0(8;) = 0 € Zy.

Claim. We can find a new symplectic basis ai,...,a;,Bi,...,Bé for
Hk(M;Z) such that ¢(a{) = 0 for all 1i. Assuming this, Theorem 4.2
(a) implies that the ai are represented by embedded spheres with
trivial normal bundles. By Theorem 2.3, the homotopy groups of M can
be killed by surgery. By 4.2 (b) the surgery can be framed even when

k =3 or 7.



Proof of Claim. If ¢&¢{c.)d(B.,) = 0, take

i i
- [ui if @(ai) =0
i~ .
Bi if ¢(ai) Z 0 (and hence @(Bi) = 0)
o1 - Bi if @(ai) =0
. a. if d(a,) # 0

Since |} ®(a;}8(8;) = 0, o(a;)o(B;) £ 0 for an even number of values
of i. Suppose @(ai)é(Bi) £ 0 and @(az)@(ez) # 0. Let

aj = 0y * a, ] =B

It is easy to check that replacing al,a2,81,82 by ai,aé,si,eé gives

) = ¢(al

a new symplectic basis with ¢(a! 2) =

= 0. Thus for each pair of

1
values of i such that @(ai)®(Bi) = 0, we can replace the four basic
elements involved with new ones such that ¢(ai) = 0.
(=). By an argument completely analogous to the one given in

the proof of 3.1, it suffices to show that if (M,F) 1is as in the
theorem and there is a framed manifold (V,G) with 23V = M and

G|avV = F, then c{M,F) = 0. Let 1yt Hk(M) > Hk(v) be induced by
inclusion.

Assertion (1). ig(a) = 0 = ¢(a) = 0. Represent o by an embedding
£ Sk + M., Since V is framed, we can perform surgery to make V

(k-1)-connected (without touching M = V) by Theorem 3.1. Now iy{a) =
0 = iof is a null-homologous singular sphere in V, and therefore

ief 1is null-homotopic, since Hkv = “kv by the Hurewicz theorem.
Therefore 1 ocF extends to a continuous map g: Dk+1 - V. By 1.9 g
Kk

is homotopic rel S to an immersion. Consider the following commu-
tative diagram of bundle isomorphisms and framings (where 1iof = f

for simplicity):

Kk
h G §O[s

\
% = N
N1 g n*rvy sk =5 Nl g okt

2HT Nﬂ\

Ve iy s Ve sk & v(f)
—— e —

* Kk
fF fOIS

115X & vin)|s®
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This diagram shows that the map Sk >

1ifts to a map Dk+l >V

tion (1).

V2k+N,k+N representing ¢(a)

Skl kAl ? i.e. &(a) = 0, which proves asser-
H

Assertion (2), There is a symplectic basis al,...,aP,Bl,...,Br for
H (M;Z) such that aj € Ker iy for all i. Together with (1), this
implies that c¢(M,F) =} ?(a;)@(B;) = 0, as desired.

i

For (2), consider the commutative diagram (Z coefficients)

5 1g Jx
e > H (VM) —= H (M) —> H (V) —— H (VM) —>

/[ﬁ pv Tm um Tﬂ uv Tﬂum
* §

cee — 5w ) Aok L el S Kty —s e

Now (u N Uyl * (v r‘uM) = (uuv) Ny, (intersection is dual to cup
product), so it will suffice to find a symplectic basis Upspeesyll

for Hk(M;Z) such that u; € Ker §,, i=1,...,r.

r'

VigeeoaVy,

Lemma 4.7. Ker Gk is its own annihilator with respect to the cup pro-
duct pairing, i.e. uuUv = 0 for all v € Ker 8, ©u &€ Ker Sk'

*
Proof. 62k(i a UB) = o LJGkB for every a € Hk(V), B & Hk(M) [29].
Now 62k: sz(M) 5 H2k+l(V,M) (both groups are Z, and sz is sur-
*
Jjective by the diagram), so u € Ker 6k =Imi =uuUvz=20 for all

v € Ker Gk. Conversely, if u € Hk(M) and u Uv = 0 for all

* *

v € Ker Gk = Imi , then o U Gku = 62k(i o Uu) = sz(o) = 0 for all
o € Hk(M). Since the cup product pairing is nonsingular, éku = 0.
Remark. The proof of this lemma used only that V and M2k = 3V are

oriented manifolds and Hk(M) is free.

Corollary 4.8. Ker Gk is a direct summand of half rank of H (M).

*
Proof. Consider the following diagram with exact rows (A = Hom(A,Z)):

0 —> Ker §, —— H(M) —> R —_—0 (R = Coker f)
| i
3“5 l 2N
)

k

0 —s R —=s@*M — (ker &) —3 0
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The middle arrow is an isomorphism since U 1is a nonsingular pairing
(by Poincaré duality). The left dotted arrow exists because Ker 8y
annihilates itself under U. It is an isomorphism because Ker Gk
equals its annihilator. A diagram chase then proves that the second
dotted arrow is well-defined and injective. Therefore R 1is free,

and so Ker ék 5 H* Z R. (Thus the right dotted arrow is an isomorphism
and both sequences split.)

To complete the proof of assertion (2), let Uggeessl be any

r
basis of Ker §, ., and let vy,...,v, be a "dual basis" of R ¥

*
(Ker dk) y .60 ug L)vj = Gij' Ker §, annihilates itself under U,
0 u; U u‘j = 0. However, v; Uvy; may be nonzero. Let vi =
vy - (vi U Vi)ui‘ Then it'skeasy to check that ul,...,ur,vi,...,r;
is a symplectic basis for H™M.

This completes the proof of Theorem 4.6,

Now we apply Theorem 4.6 to the computation of bP? for n = 2k,
k odd, # 3 or 7. (Recall that bP® = bP'% - 0 (Corollary 2.4).)
We wish to define a map

2k

b > bP

k' %2
by bk(t) = 3M, where M 1is any compact framed (k-1)-connected =Z2k-
manifold with 8M a homotopy sphere and c¢(M) = t. To show that bk
is well-defined, we must prove:

Theorem 4.9. (a) c(Ml) = C(MZ) = aMl is h-corbordant to BMZ.
(b) For each odd k # 3 or 7 and each t € 22 there is a framed
manifold MZ¥
Thus bk is surjective.

such that &M is a homotopy sphere and c(M) = 5.

-

Proof. (a) Let F; and F, be framings for M; and My, and let

(N,G) = (Mqy,F}) #(MZ’F2) be the framed boundary connected sum (cf. §6).
N = aMy # -aMZ, and c¢(N) = c(Ml) + c(M2)
4.6, N can be made contractible by framed surgeries. Thus

= 0. Therefore, by Theoremn

3M, # - 3M, bounds a contractible manifold, i.e. 3M; is h-cobordant

‘to M,
(b) If t = 0, take MZ¥ = D?K, Ifr t =1, M
by plumbing two copies of the tangent disc bundle of s¥  (see [7] or

[23]).
This theorem shows that bPe = 0 if b, = 0 and pp2K - z, if

2k is constructed
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bk # 0, so we would like to determine when bk = 0. This happens if

and only if there exists a compact framed (k-1)-connected 2k-manifold
M with boundary the standard sphere S‘?k'l such that c¢(M) = 1.
Attaching a disc to the boundary of such an M we obtain an almost
framed closed 2k-manifold N with c¢{(N}) = 1, By Corollary 3.18, N
is framed. Thus bk = 0 & there is a closed framed (k-1)-connected
2k-manifold N with <¢(N) = 1. By the proof of Theorem 4.6, c¢ 1is
well-defined on framed cobordism classes. The framed cobordism group
Q? is isomorphic to the n-stem nn(S) = ﬂn+k(sk) for k large (§2).
Thus for each odd k, the Kervaire invariant gives a map

(S) » Z

C m

k' Mok 2

and for k # 3,7, by = 0&cy £ 0. According to Browder [6], ¢ =0
:O;
= 0.) Mahowald and Tangora

if k # 22 -1. (Kervaire [14] originally showed Cg = 0 and g
then Brown and Peterson [8] showed Coel
have shown that Cig # 0, and Barratt, Mahowald and Jones have shown

€3y # 0 (see [6], [33], [34]). Therefore we have

o [Z5 Kk # b o1
Theorem 4.10. For k odd bP =
0 k = 3,7,15, or 31

The following proposition, which extends our discussion of the
existence of closed framed 2k-manifolds with nonzero Kervaire invar-
iant to the case k = 3 or 7, will be needed in §5:

Proposition 4.11. For k = 3 or 7 there is a framing F of Sk xSk
such that c(S¥xs¥,F) = 1.

Proof. Hk(Sk xSk) £ Z & Z, with generators o,8 represented by the
embedded spheres Sk X %, ¥ xSk respectively. Let G be any framing
of t(skxsK) @ el, c(s¥xs¥,c) = o(a)o(B). Claim (1): G can be
altered so as to realize any values of ¢{a) and &(8). This implies
the proposition. Let f: Sk + SO . Claim 2: chainging G on
Sk x% by f alters &(a) by thgk;ip EE_I—Egzk > Vo .

+1 2k+1,k+1
Assuming this, we prove (1) as follows: For k = 3 or 7, m{SOy) +
”k(VN,N-k) is surjectiﬁe (i,4). Now Sk xSk = (Sk~/Sk) LJ£2k.k Thus
we can change G on S"vS to obtain a framing F on S VvS such
that 9®(a) = (B) = 0. The obstruction to extending F over the

2k-cell is an element of SON) =0 for k=3co0r 7 (1l.5).

Top-1!

Proof of (2). This follows from the definition of &. Suppose
g: Sk -+ V2k+l,k+l represents ®(a). It is clear that changing G by
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f changes g to the map g(x) = f(x) g(x), where acts on

S0
2k+1

V2k+l,k+1 by rotation. But we can assume that g(x) is the standard

(k+1l)-frame for x in the northern hemisphere, and that f(x} 1is the

identity element of SO for x in the southern hemisphere, so

2k+1
[g] = [g] + [h], where h(x) is the standard (k+l)-frame in R
rotated by f{(x), i.e. h(x) = nf(x), m: 802k+1 > v2k+l,k+l'
[E) = [g] = myl[f], which proves (2),

Remark. We can define c¢(M,F) for any compact framed 2k-manifold,
k o0dd, with 3M empty or a homotopy sphere, as follows. Convert
(M,F) to a (kel)-connected framed manifold (N,G) by a finite se-
quence of framed surgeries, and let c¢(M,F) = c(N,G). The proof of
Theorem 4,6 shows that c¢(M,F) 1is well-defined, and that it is an
invariant of framed surgery. For k = 3 or 7, c¢ is not an invariant
of unframed surgery by Proposition 4.11, since sk xSk is null-
corbordant, Theorem 4.10 implies that ¢ is not an invariant of un-
framed surgery for some other values of k. Since C1g # 0, there is
a closed framed l4-connected 30-manifold N with ¢(N) = 1. However,
since N 1is framed it has zero Stiefel-Whitney and Pontryagin numbers,
so N is unframed (oriented) null-corbordant. (In contrast, recall
that the signature of a 4k-manifold is an invariant of unframed
surgery.)

Recall that if k # 3, 7 and M°X is (k-1)-connected, then
c(M,F) does not depend on F. However, it is not known whether c(M,F)
depends on F for arbitrary+- M.

§5. Computation of en/an+l.

The results of this section are all in Kervaire-Milnor [15].

Suppose that the homotopy sphere i is embedded in Rn+k

(k large)
with a framing F of its normal bundle (recall that homotopy spheres
are mw-manifolds by Corollary 3.19). Then the Thom construction

applied to (Z,F) yields an element T(Z,F) of nn+k(Sk
invariant of the normal cobordism class of (Z,F). T{(Z,F) #(Z',F"})) =

T(Z,F) + T(Z',F).

), which is an

Lemma 5,1. Let f: £ =+ SOk, and let a = [f] &€ ﬁnSOK. Then if F
is altered to F' wvia o,

T(L,F') = T(I,F) & J(a) .

Proof. Recall (Lemma 3.13) that T(Sn,Fa) = ¢ J(a), where F, is the
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standard framing FO of s" altered by a. Thus
(Z,F') = (I,F') # (S7,Fy) = (E,F) # (S",F ) ,
and the lemma follows by applying T to both sides.

Corollary 5.2. T(Z) = {T(Z,F), F a framing of bl Rn+k} is a

. k
coset of J(nnsok) in ”n+ks .

Therefore we can define T: 6% » Coker Jn’ where Jn: nnSO hd nnS is
the J-homomorphism.

bPn+l

Proposition 5.3. = Ker T.

Proof. I € an+l <> I bounds a parallelizable manifold. TI = 0 &>
there exists a normal framing, F, of I such that (Z,F) Dbounds a
normally framed manifold.

Thus we have an exact sequence

n+1

0 —s bP™1 507 T3 coker I

Corollary 5.4. 6" is a finite group (n > 4).

Now en/an+1 £ Im T. Suppose & &€ Coker Jn' & €ImT if and
k

only if @& 1s represented by o € Tn+kS (k large) such that o =
T(Z,F) for some (I,F). By the inverse Thom construction, and

o €T Sk equals T(M,F') for some framed manifold (M,F'). o =

n+k
T(Z,F) 1is and only if (M,F') 1s framed cobordant to a homotopy
sphere (Z,F), Define
odd
Pn = = 0(4)
Z, = 2(4)

(so that bP™d = Im(b), b: PP* » 6™ as in §3 and §4, and define
o: 9l » P% by

6 (M, F) = o(M) n
c{M,F)

=

e
NN o
S
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¢ 1s well-defined, since o and ¢ are invariants of framed cobord-
ism, and ¢(M,F) = 0 & (M,F) 1is framed cobordant to a homotopy sphere

(Corollary 2.2 and Theorems 3.1 and 4.6). Let ¢' = ¢T'l:
nnS
N
of 25 pn
Clearly ¢'(Im Jn) = 0, so ¢' induces a map

o": Coker J_ > ph

By the above analysis of Coker Jn we have:

Theorem 5.4, The sequence

"
prtl b gt Ty coper J, > ph

is exact.

The new information here is that 6%/bP™*l = Ker ¢". If n is
odd, of course ¢" = 0, since P - 0. If =n = 0(4), we have seen
that ¢" = 0 (by Corollary 3.12). If n = 2(4), 6" = 0 for n #
Zi -2, and ¢ # 0 for n =6, 14, 30, or 62 (by the discussion pre-
ceding Theorem 4.10).

pphit+l (except for n+1l = 2t -2,

In summary, we have computed
i > 6), and we have 8" = Coker Jn except when n = 2% -2, Then we
have computed g up to group extension.
Remark. Brumfield and Frank have then proved that for n # 2k -1 or
k
25 =2

n+l —> gl — ol —_—0

0 —> bP
splits. (See e.g. [9].)

Appendix. The Kervaire-Milnor long exact seguence.

The results of these notes can be elegantly expressed by means of
a long exact sequence
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(i) cor AL By p0#l Dy gn 1 0 Dopn 5 L,
8™ is the group of homotopy n-spheres [15]. AP is the group of

"almost framed" cobordism classes of almost framed {i.e. framed execcpt

at a peint) closed n-manifolds. (If Ml is framed except at X and
Mo
and M2 is a corbordism W between M1 and M2 and a framing of

is framed except at X5, an almost framed cobordism between My

We-ay o an arc in int W from Xp to x5 which restricts to the
given framings on the ends of the corbordism.) P? is the group of
framed cobordism classes of parallelizable n-manifolds with boundary
a homotopy sphere. (A framed cobordism between Ml and M2 is a

framed manifolds W with boundary M, U N U M,, where N is an
Lom o oam, °

h-corbordism between aMl and 3M and the framing of W restricts

’
to the given framings of Ml and 2M2.)

b is induced by the boundary map, and it is well defined by the
definition of PP, i is induced by "inclusion", i.e. any homotopy
sphere is s-parallelizable, and so is almost framed. i is clearly
well-defined. p 1s induced by "punching out a disc" containing the
non-framed point to obtain a parallelizable manifold with boundary sh.
p 1is clearly well defined.

The discussions preceding Theorems 3.5 and 4.10 show that Ker(b) =
Im{p). It is clear from the definition of A" that Ker(i) = Im(b).

It is also easy to see that Ker(p) = Im(i).

Corollary 2.2 implies that P? = 0 for n odd. Theorems 3.1,
3.2, and 3.3 imply that P?" 2 Z for n = O(4). Theorems 4.6 and 4.9
imply that PP 2 Z_, for n = 2(4).

2
Now AP 1lies in the exact sequence

. e J t n 0 J ‘e
(11) —_— nn(SO) - ﬁn(S) —> AT - ﬁn_l(S) — wn_l(8> —

where J is the stable J-homomorphism, t 1is the inverse Thom con-

struction which takes nn(S) = Q? (the framed cobordism group), fol-
lowed by the inclusion of Q? in A". Theorem 3.14 says that Ker(J) =
Im(0). Ker(0) = Im(t) 1is clear. Ker(t) = Im(J) 1is easy to show
(cf. Lemma 3.13).

Corollary 3.16 determines Im[aA"” —Es pP = Zl, n = 0(4). (This

map assigns to an almost framed closed manifold its signature divided

by 8.) Theorem 4.10 determines Im[A" -Jla Pl = 22] for almost all

n = 2(4). (This map assigns to a manifold its Kervaire invariant.)
The results of §5 can be interpreted as follows. By the exact

sequence (ii), Coker (J) % Im(t) C A%,  The discussion following 5.3
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shows that 1Im(i) C Im(t), so we have the exact sequence

n

po*l By gn Ly coker (J) 25 P0

where T(I) = i(Z) and ¢: Coker (J) C A" B> p

8? be the group of framed hecorbordism classes of framed

homotopy n-spheres. Then we have the exact sequences

Remark. Let

(1ii) cor s PP Q? —s P — 6?'1 —_— e
(Q? > P% is "punching out a disc"; P9 = e?‘l is "taking the bound-
ary"), and
: ces n n 0 -
{(iv) —_— ﬁnSO — Sf —_—> § —> wn_lSO —>

(1 SO > e? sends o to S" with its standard framing changed by a;
o » 8" forgets the framing).
Combining the long exact sequences (i), (ii), (iii), (iv) (replacing

Q? by 7 S in (iii)), we obtain the Kervaire-Milnor "braid":

. /\/\e
“ N

>

g1

\\\\\\////)7 \\\\\\/////ﬂ r- lii\\\y/////”
This braid is isomorphic to a braid of the homotopy groups of G, PL,

and 0 (see e.g. [24]1). Levine [16] has a nonstable version of the
Kervaire-Milnor braid.
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Some Remarks on Local Formulae for Pq

by Norman Levitt

§0. Introduction

A well-known paper [GGL1] of Gabrielov, Gelfand and Losik,
which was further explicated by MacPherson [M] and Stone [S7,S2],
shows how a rational cocycle representing the first rational
Pontrjagin class Py of a manifold may be computed directly
from a combinatorial triangulation of the manifold, provided
that certain other data, viz, "configuration" and "“hyper-
simplicial" data, are given as well. There has been, in
addition, a further attempt by Gabrielov [G] to extend these
ideas to the higher Pontrjagin classes. But this is only
partially successful in that there is a conceptual obstruction
to carrying out the suggested procedure which resides in the
fact that the topology of certain configuration spaces, in
particular the rational homology thereof, is not at all well
understood.

The point of the present paper is that much of the apparatus
of the original Gabrielov-Gelfand-Losik work is needlessly
complicated and obscures what is, at base, a relatively straight-
forward geometric concept. The essentials of the methodology
can, in fact, be transcribed into a framework that has been in
the literature for forty years: the Cairns proof [Ca 1] [Ca 2] of
the smoothability of PL 4-manifolds. For that matter it is not
too much to say that a prescription for determining local
formulae for Py is already implicit in Cairns' foundational
work on smoothing theory. Recall that this work [which
contained some minor lacunae subsequently repaired by J.H.C.

Whitehead [W] considered combinatorially triangulated manifolds
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simplex-wise convex-linearly embedded in general position in a
high-dimensional Euclidean space. The main question posed by
Cairns was whether a transverse hyperplane field can be

found; for the existence of such a field was shown to imply
smoothability. (In more modern language, Cairns was essentially
demonstrating that a vector-bundle reduction of the PL normal
bundle of a PL manifold yields a smoothing.) For our purposes,
the most salient fact is Cairns' discovery that there is no
obstruction to obtaining a normal field over the 4-skeleton of
the dual cell-structure. This fact reduces to a theorem about
the path-connectedness of certain configuration spaces which was
proved in [Ca 2].

We shall show in what follows that the rather explicit
construction of transverse -plane fields readily allows the local
calculation of a real 4-cocycle representing the real
Pontrjagin class Pye In fact, by slightly amplifying the
combinatorial data, we may in fact obtain an integral cocycle
representing the integral Py

It should be emphasized that the formulae we obtain are

quite similar in spirit to those of [GGL1].

Perhaps one should raise, at this point, the question of
explicitness. The methods developed below for evaluating
a cocycle representing p, are formulated in such a way as to
involve appeal to an explicit transverse field over the dual
4-skeleton. While it is shown that the value of the cocycle on
a typical 4-cell depends only on the restriction of the field on
the boundary 3-sphere (where it can easily be constructed
explicitly), the actual computation would seem to depend on

having a specific field on the 4-cell itself. Cairns'
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construction is, essentially, an "existence proof" rather than
an explicit algorithm. However, we show in the concluding
section how this difficulty can be avoided in principle so that
the computation can go forward quite constructively in the
presence of the appropriate data. Moreover, our derivation is
far more transparent than that of [GGL1] and, in particular,
avoids the "“hypersimplicial" formalism of that paper. The
superfluous complexity of the Gabrielov-Gelfand-Losik approach
is, as we have intimated, an artifact of its failure to exploit
directly the work of Cairns on transverse fields., Finally, this
outline, read in conjunction with [G], makes it clear why the
attempt to extend this approach to higher Pontrjagin classes

runs into difficulty.

§l. Transverse fields

Let MM be a topological manifold embedded in RNtk
Recall [Ca 1, Whl that a linear k-plane P in RNM*K 4is said to
be transverse to M7 at x e M0 provided that there exists an
open neighborhood U of x in MR such that for any two
distinct points

e U, - U, ¢ p. Here, subtraction

Upsly Uy
denotes ordinary vector-subtraction in RPHK.  We et Gk,n

denote the usual Grassmannian of k-planes in RM*k_, A continu-
ous assignment F:MPD » Gg,n such that F(x) 1is transverse to

MN at x s called a transverse field. Clearly, if we view F

as the classifying map of a k-dimensional vector bundle v over
Mp, v is then a vector-bundle reduction of the stable TOP
normal bundle of MM, Cairns and Whitehead showed that the
existence of such a transverse field implies that MM s
smoothable and, in fact, that it allows an isotopy of the

embedding, pointwise arbitrarily small, to an embedding whose
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image is a smooth submanifold of RNM*K,

We next consider a closed n-form w ¢ Q(Gk’n) representing
a stable real characteristic class for vector bundles (so,
implicitly, n = 0(4)). Consider, now, a combinatorially-
triangulated oriented n-sphere N together with a distinguished
equatorial (n-l)-sphere zn-1_ assumed to be a subcomplex.
We also assume a PL embedding of N in RM*+K  and a transverse
k-plane field ¢:20N » Gk,n (which is piecewise-smooth on the
n-simplices of <IN). We orient <IN and distinguish one of the

hemispheres into which £" 1 divides it as DS, so that

n _ .n-1
aD+ = I .

n

We now define a real number =n = n(Z", I -l,w,¢) by:

Lemma 1. For a given embedding of I din RN*K, = depends

only on ¢|DT, where DE is the hemisphere of " opposite

n

to D+.

Proof. Since ¢ <classifies a stably-trivial vector
bundle (the normal bundle of a sphere in Euclidean space), it

follows that [ ¢"w = 0. Consequently, if ¢ and ¢  are
N

. . n
transverse fields which agree on D_, we have:

J ¢%w = -] ¢%w o= -]  ¢Tw =]
n n 1

n
D, b 0" D,

Lemma 2. For a given embedding of ", n depends only

on ¢|zn-1,
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Proof. By the same reasoning as in Lemma 1 above, n

depends only on ¢ID:. Let ¢,y now be transverse fields

- n
"L,

which agree on Let b 50 _ denote restriction to D+,

DT respectively, and similarly for Yo _. Let n(a) abbrevi-

2n-l

ate n(z", , a,w) for any transverse field a. Then, by

the preceding observations:

n{¢) = n(o4+Uvp.) = n{vSv) = nv).

In 1ike manner, we have the following:

Lemma 3. n depends only on the restriction to a neighbor-

hood of N-1 of the embedding and the transverse field ¢.

. n+k . N n+k
1 TR s ¢1 and fz. tNepR , ¢2

both be pairs consisting of an embedding and a transverse

Proof. Let f

field. Assume first that f1,¢1 coincides with f2,¢2 on

a neighborhood of DT. By the reasoning of Lemma 1, the
respective n's agree. Then, extending the reasoning of

Lemma 2, we see that the n's still agree on the weaker
assumption that (f1,¢1), (f2,¢2) merely agree on a neigh-
borhood of M-l in SN, Note that for this last part of

the calculation, we may have to refer to a field transverse to

an immersed, rather than embedded M. But this makes no

difference, practically speaking.

Corollary. n depends only on the restriction of the

embedding to a neighborhood of N-1 and on ¢|zn-1,

Proof. Given an embedding and two fields ¢1,¢2 which

agree on n-1 4t s easy to deform both ¢, 29, to transverse
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fields ¢;,¢; such that on a collar neighborhood £N-1xI,
¢;(x,t) = ¢i(x), x € zn=1, and so that n(¢;) = n(¢i) (for
i =1,2). Therefore n{¢ ) = n(¢,) since, by the lemma
n(4;) = nl4,).

From the discussion above, it follows that an invariant n
may be defined by data consisting of:

an embedding i of in-1 x 1,

a transverse field ¢ to the embedded In-1 x I;

a closed form w on Gy, q

(Provided, of course, that it is understood that the
embedding i and the transverse field ¢ extend, in some
fashion, to an embedding and a transverse field on IN. We
also assume, obviously, that -1 x I is oriented.)

Thus, we shall revise our notation and speak of n{(i,¢,w).

We may then note the following, understanding that in so
doing, we identify "l wien 2" {%4<:zn—l x I,

Let MM be a compact oriented n-manifold with boundary
aMn = gn-1. jet f: MM » RN*K be an embedding (or even an
immersion) of M" which agrees with i on "l & {O,%}
(thought of as a collar of xIM-1 in MM, Let y be a
transverse field to the embedded MM which agrees with ¢ on

n-1 1 . .
z x {0,7}. Let Y denote the real characteristic class

represented by w. Finally, let Mz denote the closed

manifold MN czn-1,

Lemma 4. The characteristic number y[Mi] is given by the

formula Y[M:] = anw*w - n(i,¢,w).
+

This is almost self-evident. The reader should note the

formal analogy to the n-invariant of oriented Riemannian
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{4j-1)-manifolds defined by Atiyah, Patodi, and Singer [APS].
The idea is that Riemannian data has now been replaced by
geometric data consisting of the embedding i and the
transverse field.

Finally, we develop a slight extension of these ideas.

Rather than an (n-1)-sphere Zn-l and an embedding

« 1= Rk, Consider a (j-1)-sphere £d-1 and an

Zn—l
embedding i:097 w1 o "I rNTE, o will now be a transverse
field to this embedding, and w becomes a j-form on Gy p. It
is understood that i and ¢ extend, in some fashion, to

g3« p"7d,

Then n(i,¢,w) is defined as [ .p*w, where 0J s
DJ *
identified with Di x {0} in 30", The statements

analogous to Lemmas 1,2, and 3 are then easily proved.

§2. Real cocycles representing Py

We now consider explicitly the case of 4-dimensional
characteristic classes, which reduces, in essence, to a
discussion of Py-

Let MM be a PL triangulated manifold embedded in RN¥kK
so that each simplex is convex-linearly embedded. Suppose a

4)

k-plane field ¢ 1is defined on M£ = A4-skeleton of the cell

complex Poincare dual to the given triangulation. We assume
that for every x e M£4), ¢(x) is transverse to M" at «x.

Let w be a closed differential 4-form on the Grassmannian Gy p
representing some real characteristic class y (e.g. p1 or

Py of the complementary bundle). Define an oriented real 4-

cochain ¢ on M* by stipulating for any oriented 4-cell e of

M

*

cle) = fe¢*w
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Lemma 5. ¢ 1is a cocycle representing vy(M) ¢ H¥(MN;R).

Proof. Let v denote the PL normal (block) bundle of

M. Quite clearly, the vector bundle over M£4) defined by
a4
¢ constitutes a vector-bundle reduction of v|M£ ) so that

4
regarded as a cochain, and hence a cocycle, of Mi ), c

certainly represents Y(v|M£4)). Since H4(Mn;R) > H4(M£4);R)

is monic it follows that we need merely show that ¢ 1is a

cocycle of M* itself, for then its cohomology class must
coincide with y(M). To see this, we need merely consider an
arbitrary oriented 5-cell d of M*. Since ¢|ad is easily
s4, it

follows that [ ¢*w = 0. But [ ¢%e = § [ ¢* = Jc(e*).
3d ad etcad e e'c ad

seen to represent the stable normal bundle of 2ad

"

Hence, &8c = 0 and we are done.

We now recall the work of Cairns [Ca 1] and Whitehead [W]
to remind the reader of how a transverse k-plane field ¢ on
M£4) can always be constructed under the very weak assumptions
(1) The embedding of MM 4in RNtk 45 in general
position, i.e., the images of the vertices of any star form a
linearly independent set of (n+k)-vectors.

{2) Every star of an (n-4)-simplex is a Brouwer star,
iee., st(o”'4) embeds in RM with the embedding convex linear
on each simplex.

(It is well known that any combinatorially triangulated
manifold admits a subdivision wherein all stars are Brouwer
stars.)

If we consider an abstract Brouwer star of the form
Ap*zn-p-l’ 2:n-p-l

where denotes a triangulated (n-p-1)-

sphere, we note that the property of being a Brouwer star is

Zn—p—l

equivalent to the fact that the complex ¢ embeds in
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n_
R""P 5o that the embedding is convex-linear on each simplex.
n-p-l)

We define the configuration space CF(Z to be the space

(with the obvious topology) of all such embeddings (normalized
so that the cone-point % » 0) modulo the action of GL(n-p,R).
The role of configuration spaces in analyzing transverse fields
is revealed by the following:

Lemma 6 (see [W]). Let the Brouwer star Ap*zn—p-l be

embedded in RN*k in general position convex-linearly on
simplices. Let N Gk,n denote the set of k-planes P such

that P is transverse to Ap*zn-p-l at b = barycenter of

aP !

n—p-l) x R', where

. Then N is homeomorphic to. CF(Z
i = nk - q(n-p) and g = number of vertices of gh-p-1,
(By convention, if p = n, i.e., gh-p-l o W then

CF(z" P Ly - o+

Let us review Cairns' proof of the smoothabjlity of
A-manifolds, assuming the crucial result that the existence of
a transverse field implies smoothability. We need only
analyze, in a rather straightforward way, the obstructions to
obtaining a field transverse to a simple%-wise convex~-linear,
general position embedding of Mi in Rafk.

First, to each simplex o assign, in arbitrary fashion, a
k-plane P45 transverse to M4 at the barycenter by, Next, we
try to extend this to a transverse field defined everywhere. An
obvious fact is that if x ¢ M% and o(x) denotes the unique
simplex such that x e int o, and if we let N{(x) denote the
set of k-planes transverse to M4 at x, then
N{x) = N(bq(x)) ~ CF(s2ko).

Now, since 2ko is of dimension < 3, there are only a few

cases we need analyze.
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Lemma 7. If dim 2ko < 2, i.e dim ¢ = 2,3 or 4, then
CF(%2koc) s contractible; if dim(2ke) = 2, di.e., dimo =1,
then CF(f%ks) 1is path connected.

The first part of the lemma is a triviality. The second
part, however, is far from trivial; it represents the substance

of a separate paper of Cairns [Ca 2].

Remark: As of this writing, it remains an open question
whether CF(£2) 14s, in fact, contractible for a triangulated
2-sphere 2, We may reformulate this question slightly by
characterizing CF(EZ) as the space of geodesic triangulations
of the standard SZ2 realizing the simplicial complex 2 such
that each simplex is contained in an open hemisphere and such
that one particular 2-simplex, o2, is realized in a fixed way.
Block, Conolly and Henderson [BCH] have proved the following:
Let K2 be a subdivision of the standard 2-simplex such that
K triangulates the boundary S! 1in the standard way. Let C
denote the set of simplex-wise convex linear homeomorphisms
K2 » a2 which are the identity on the boundary. Then C s
contractible. This can be read as strong evidence for a
positive answer to the stated open question.

Returning to Cairns' proof of smoothability for 4-
manifolds, we exploit Lemma 7 in the following way. Consider

the first barycentric subdivision K of the given triangulation
of M4,

We wish to construct a transverse field ¢ on M such
that ¢(by) = P, for simplices o of the original triangula-
tion. The assignment bg+— P, defines ¢ on the O-skeleton

of K. Now consider a l-simplex 1t of K; extending ¢ to
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T 1is tantamount to finding a path between two points in

N(bg) ~ CF{tko), where ¢ is the smallest simplex of the
original triangulation such that tCo. Lemma 7 guarantees
that we can do this, the most difficult case occurring when
dim o = 1. Proceeding to the s-skeleton we must, for any
2-simplex t of K, find a way of extending ¢, now defined
on Tt to all of <. Again, with o the smallest original
simplex containing =T, this is a question of contracting a
loop in a space homotopy equivalent to CF(2ko); but since
dim o > 2, Lemma 7 tells us that CF(2ko) 1is contractible.
We continue in like manner to define ¢ on the 3-skeleton and
then the 4-skeleton of K, which is to say, all of M., Hence
as asserted, a transverse field does exist.

Transposing this argument to the more general context of
triangulated n-manifolds (for arbitrary n), we see that
exactly the same procedure works to construct a transverse
field over the union of all simplices t of the first sub-
division such that the smallest original simplex o

containing =t satisfies dim o > n-4. 1In other words, the
method works to construct a transverse k-plane field ¢ over
the 4-skeleton Mi4) of the cell-complex M, Poincaré dual
to the original triangulation.

Given now a closed 4-form w e 2(Gy,p) whose deRham
class is the real characteristic class vy, it follows from

Lemma 5 that the real 4-cochain C defined on oriented 4-cells

e of M by:

*

is a cocycle representing y(M).

We may now, without loss of generality, make the following
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assumptions about the plane-field ¢. Let e be a 4-cell of
M, with boundary 3e. Then, typically, e is Poincare dual
to an (n-4)-simplex ¢ and is identified with a particular
subspace of bg*tk(o)C st{o). Thus, e naturally has the
structure of a cone , viz., cse where by corresponds to the
coné point. Let CZ denote a collar neighborhood of 3e in
cde = e. We can assume that, for x € C;, 6(x) = ¢(px), where
p denotes projection of CZ upon 3de.

Now, let C; denote a collar neighborhood of 3e in
{bg*tko) - int e, It is then easily seen that ¢ may be
extended to a field ¢; defined on euC_, again by letting
o(x) = ¢(px) for x e C;. Now it is quite obvious that the
embedding of the 4-ball ex/c; into Rn+k extends to an

embedding of a sphere 24 = e C;(J ca1 {(where al denotes

the copy of 23e bounding e UCé, at least if k is large
enough. If we consider further the product neighborhood of

eLlCé in Mn, it is clear that this embedding of a

4-ball x Dn-4 extends to an embedding i: 24 x D"'4C Rn+k

As for ¢,, this extends to a k-plane field % on o

transverse to the embedded 24 x Dn_4‘

Thus, we are in the
situation alluded to at the end of §l, and, reverting to the
notation of that section, we have c¢(e) = n(i,% ,0). It
follows that c(e) depends only the embedding of M in a
neighborhood of 3e% and on ¢]3e.

Qur main objective, be it recalled, is to characterize a
local formula for y. Thus, taking w, for the moment, as a
given, we need to Took a bit more closely at the actual
construction of ¢ on de. Taking e, as usual, to be the

cell dual to a simplex o, we see that ¢|de has been

specified in the following way according to the procedure
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devised by Cairns:

(1) For each simplex p with p > o we have picked a
point in CF{&ke) (which yields a particular k-plane P
transverse to MM at b, 1lying within the (n+k-dim p)-
plane comprised of all vectors perpendicular to rt.)

(2) For dimp = n, n-1, n-2 P can, in fact, be chosen
canonically., That is, for p of dimension n, the obvious

choice is to make P the k-plane perpendicular to p; for
dim p = n-1 we take P to be the k-plane determined by the

"obvious" configuration of the cone on the O-sphere in RI1,
viz., the two points of S0 at -1,1 respectively with the
cone point at 0. Finally, for dim p = n-2, the choice of
configuration of cf2kp s almost equally obvious; we embed
cakp in RZ2 as a regular polygon inscribed in the unit
2-disk.

(3) Note, in contrast to the foregoing, that, for dim
p = n-3, the choice of P, J.e. of an element in CF{ fkp),
is not, in any obvious way, canonical. We must therefore rest
content with an arbitrary choice.

(4) To complete the construction of ¢ over de we must
now choose contractions of the configuration spaces CF(%kp)
to the aforementioned canonical points for p of dimension n,
n-1, n-2. Fortunately, these choices are also canonical, or
very nearly so. To remove lingering ambiguities, it is helpful
to make use of the notation of local ordering (introduced in

[L-R]).

Definition. A local ordering on a locally-finite
simplicial complex X is a partial ordering on the vertices of

K such that the vertices of st(o) are linearly ordered for
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any simplex a.
We will assume, henceforth, that the triangulations we

work with are locally ordered in this sense., I.e., the Tinear

order on each star will be assumed as part of the local data,
in addition to the underlying combinatorial data, per se.

With the assumption that st{e) 1is linearly ordered, it
is easy to construct canonical contractions of CF(f2kp) for
dim o = n, n-1, n-2. This may be done trivially in the first
two cases. For the case dim p = n-2, we may view CF(2kp)
in the following way: Think of CF(&kp) as the space of all
simplex-wise 1inear embeddings of the triangulated disc c2kp
in RZ which put the cone point at 0 and which take the
"earliest" simplex of fkp to an edge of the standard regular
j-gon (j = # of vertices of 2kp). Specifically, "earliest"
means with respect to the induced lexicographic ordering on
pairs of vertices. We choose the "standard" regular j-gon to
have one edge lying in the right half plane and with the ususal
x-axis as perpendicular bisector. If (VO’vl) is the
earliest edge of 2kp (vO < Vi in the given ordering), Yo is
assigned to the endpoint of the standard edge lying below the
x-axis, and Vi to the endpoint above the x-axis. The point
is [see W] that any element a & CF{&kp) is represented by one
and only one embedding with this property; thus the space of
all embeddings with this property is, in fact, identical to
CF{2kao), Thus, the "canonical" element of CF(fkp) 1is the one
which, subject to this condition, embeds fkp as the standard
regular j-gon. Now, if f is some arbitrary embedding satis-
fying the given constraint, then we form a one-parameter

family of embeddings connecting f and the canonical embedding



Clearly we can slide f(v) to s(v) by first sliding it
along a circle of radius |f(v)! 1in the proper angular
direction until it is radially in line with s{(v) and then

sliding radially until it coincides. Do the "angular slide at

% and the “radial® slide
A

uniform angular velocity for 0 t <

= | A

at uniform linear velocity for t 1. Doing this simul-

I A

taneously for all v deforms f through configurations to the
standard configuration.

This is jointly continuous in f and t and thus yields
the desired contraction of CF(%kp).

We may conclude, on the basis of (1)-(4) above that the
only data needed to specify a cocycle ¢ representing vy are

(1) The local ordering of M

(2) The form w

(3) The choice of an element of CF(p) for (n-3)-
dimensional simplices p.

Clearly, « being assumed, c{e) will only depend on
the data on st(o), o dual to e. That is, we need only know
the linear order on st(c), the embedding of st(c) in RNk,
and the choice of an element in CF(&kp) for pN-3cst(o).

In order to obtain a purely local formula, i.e. one
depending on the structure of st(o) as a simplicial complex,
and on that alone, there are a number of simplifications
available. First, we can take the form w to be invariant
under the action of 0(n+k) on Gg,n. Moreover, we might as
well assume that we have chosen w ¢ Q4(Gk,n) consistently

for all n,k. This means that in the natural double sequence
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the choice of o
Next, given MD
pick an embedding MM c RNtk

of the standard simplex

assigning vertices v of MR

RN+K

to a map on M~,

by embedding MD
antk~1 ¢ pntk,
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}
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k+1l,k

-+ -) oo e

k+1l,n+1

!

.

is consistent with pullback on a4,

merely as a triangulated manifold, we may

as a subcomplex

This amounts to

to standard basis vectors of

in arbitrary fashion and then extending convex-linearly

Having done this, we obtain a transverse k-plane field on

M£4) upon choosing a local

an element in

each on-3,

order for M

and choosing, for

CF(2ko).

If we have proceeded as above it is clear that we obtain a

4-cocycle ¢

depends only on the combinatorial structure of g£ko (o

e), on the linear ordering of

element in for all

ce)

M7 per se.

CF(zkt)

write

such that, for a typical dual 4-cell e,

«n-=3

cl{e}
dual to
st o, and on the choice of an

with o < t., Thus we may

as a function of such data without reference to

Now we may write down a formula:

c(e)

where E
order on st o

-3 -» o e CF(%kT).

E{c(e))

denotes expected value over all choices of a linear
and all choices of configurations

Here we are implicitly assuming that the
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manifold CF{&kt) has the natural structure of a measure
space; but this is not at all hard to justify.

The following result is immediate:

Theorem 1. Let MM be a combinatorially-triangulated
manifold. Then the assignment e = c(e)n 1is well-defined on
oriented 4-cells and the resulting oriented cochcain with real
coefficients, <¢c{(M), 1is a cocycle representing the character-
istic class vy(M) e H¥(M;R).

So, in particular, if y designates the first (tangential
or normal) Pontrjagin class, we see that Theorem 1 gives us a
local fgrmula, one which is, the author trusts, less obscure

than that in [GGL1].

§3. A local-ordered formula for the integral Py
In the foregoing section, we constructed a reasonably
explicit local formula for the real first Pontrjagin class. On

the other hand, the work of the author and C. Rourke [L-R] gives
theoretical grounds for asserting the existence of a local

formula for the integral P> provided that the local data is
now understood to encompass a linear order of stars. I.e., we
should expect to find, for any triangulated locally-ordered
manifold MM, an oriented integral 4-cocycle g representing
the integral (tangential or normal) Py such that, given an
an oriented dual 4-cell e, g(e) e Z depends only on the
combinatorial type of the complex st(a"-4) (o"-4 dual to e)
and on the linear order on st{o).

The claim is that the ideas of the previous sections can
be somewhat extended in order to create just such a formula,

which we call a local-ordered formula. It is slightly
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unfortunate that in order to create it, we must restore some of
the arbitrary choices that were "averaged away" at the end of
the previous section., That is, given an oriented dual 4-cell e,
in order to know the value of the formula on e one would
have to know not only the a 1linear order on st(o) but, as
well, a specific choice of configuration a«(t) ¢ CF(2kt) for
every -3 < g, Therefore, in a strict sense, we only have a
local ordered formula for p1 once we have made, a priori, a
choice of «(22) e CF(z2) for every possible triangulated
2-sphere. Thus we create not one but rather a multiplicity of
local-ordered formulae, one for each such assignment.

The basic idea, once more, is to call upon Cairns' work on

construction of transverse fields over M£4). But rather than
using such a field to pull back a 4-form from Gy n to be

integrated over 4-cells, we use it to define certain intersec-
tion numbers which are, perforce, integers.

As a preliminary step, we recall the work of Thom [T] on
dual characteristic cycles in Grassmannians. Consider once more
the Grassmannian Gy n of linear k-planes in RNM+K, k > n. Let
Q be an arbitrarily chosen linear n-plane in RN*K,  We then have

defined a certain subset V(Q)C Gy, by
V(Q) = {P & 6 nldim(PNQ) > 2}.

V(Q) 1is a manifold of dimension nk-4 (i.e., of codimension 8)
away from certain low-dimensional singularities. Moreover V(Q)
is a naturally-co-oriented cycle. That is to say, the normal
bundle in Gy n of the non-singular part of V(Q) has a
natural 4-dimensional integral Thom class p. For a given
k-plane bundle &t over an arbitrary C+W complex K <classified

by f:K + Gg,n, pl(g) may be computed as follows: assume f
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is in general position, so, in particular, f(K(3))f\V(Q) = R.
Then, for any oriented 4-cell e of K, the intersection
number d{(e) = f(e)+V(Q) 1is well-defined, using the natural
co-orientation of V(Q) as well as the orientation of e. The
assignment ew— d(e) 1is an oriented cocycle of M", and
pl(g) is its integral-cohomology class.

We now update some ideas from §l. Let 4 x Dn-4 pe

embedded in RM*K; $3  is taken to be the equatorial sphere;
ie€a, 23 = Dfl\Di, 24 = th}Di. As before, we assume that
4 x pn-4  admits a transverse k-plane field ¢. We make a
choice of reference n-plane QCRN*k and assume ¢ is in
general position, viz, ¢{(z3) V(Q) = 0. We then obtain an
integer

n o= e(D)) - V(Q).

In analogy to the work of §1 where integrals of forms,
rather than intersection numbers, were used to define n, we

have:

Lemma 8. n depends only on the embedding and the field
¢ on a neighborhood of £3,

In view of Thom's result, we may easily obtain the
following consequence.

Let MM be a triangulated manifold embedded simplex-wise
convex-linearly in RMK in general position. For each simplex
o of codimension < 4, pick an element af(sc) e CF{fko).
Assuming a local ordering of MM, follow the procedure of §2
to obtain, over M£4), a transverse field ¢ to M". Now

let Q be a generic n-plane in RNtk i.e., one chosen such

that ¢(23e)NV(Q) = hv for any dual 4-cell e. We then define
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dfe) = ¢(e) - V(Q).
Essentially, d(e) 1is the value of n determined by the

embedding and the field ¢ in a neighborhood of 3e, as well

as by the reference plane Q.

Lemma 9. d 1is an integral 4-cocycle whose cohomology
class is the first integral Pontrjagin class p1 of the stable
normal bundlile of MN.

The proof proceeds much as in the case of Lemma 5.

Remark: At this point, we could, effectively, claim to
have obtained another local formula for the real first
Pontrjagin class. Again, the formula would emerge through an
averaging procedure, i.e., by choosing a "standard" embedding of
MM and by averaging over the set of reference planes Q as
well as the ordering and configuration data which lead to the
explicit construction of ¢. Details are omitted.

Comparison with [GGL2] suggests that this formula might be
replacable by one which involves only a finite averaging pro-
cedure, rather than one expected value over a measure space.
This we leave as a conjecture, observing only that the key
point seems to be this: Pick a reference plane Q and con-
figuration data at the simplices 1t > o, (oN=* dual to e").
We see that d(e), provided that it is well defined (i.e.,
provided that the field ¢|3e determined by configuration data

has image disjoint from V(Q)) remains constant under small

perturbations of Q and of configuration data. This would seem
to suggest that averages (perhaps weighted) should be taken over
connected components of the set of all possible choices for Q

and for configuration data, rather than an expected value whose
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determination involves an integral. Whether this would, in
practice, represent an actual computational improvement is not
clear.

It is now our purpose to sharpen Lemma 9 to the extent of
obtaining a local formula for the integral (normal) first
Pontrjagin class which disregards all data save the local
ordering, the combinatorics of links of (n-4)-simplices and the
choice of configuration for links of (n-3)-simplices.

OQur first observation is directed towards eliminating the
role of the arbitrarily-chosen reference plane Q@ from our

existing formula.

Lemma 10. Let ¢ be a transverse k-plane field to MnN
RI*K. Let gq: MM » Gy be a homotopically trivial map. Let
V(q) € M" x Gg p denote the set {(x,P)|dim(PMq(x)) > 2}. Let
¢ be the section of MDD x Gk,n p[ﬂg' MPD induced by ¢, i.e.,
®(x) = {x,¢(x)). Finally, assume ¢ is in general position
with respect to V{(q). Then pl(an) is the primary
obstruction in H4(MN;Z) to deforming ¢ off V(q).

The proof 1is trivial. For the case of gq = the constant
map q(x) = Q € Gy ,k, the lemma is merely a slightly roundabout
statement of Thom's result. But if 9,59 , are homotopic maps
then V(ql) and V(q2) are homologous cycles in Mnka,n from
which it readily follows that the primary obstructions to
deforming ¢ off V(ql) and V(q2) respectively must
coincide. The lemma is then immediate.

We may paraphrase Lemma 10 as follows: Assume that ¢ is
in general position with respect to V(q) in the sense that
@(M£3)) V(gq) = B and <I>|e4 is transverse to V(q), for any

oriented dual 4-cell e#. Then the intersection number d(e) =

¢(e)-V(q) is well-defined if e be oriented. (In fact,
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strictly speaking, we need not assume <I>|e4 is transverse to
V(q) to have this intersection number well defined.) The
assignment e — d{e) 1is then an oriented integral cocycle

representing the first Pontrjagin class (an).
P

We may even go further: the observation above remains
valid provided merely that ¢ arises from a transverse field ¢
defined over M£4).

We now construct a locally-determined map q: My » Gp k.
using only data provided by the local ordering, so that g
will turn out to be globally trivial. In fact, we define a
frame~-field over MW, First consider the barycentric sub-
division of MN, and a typical vertex by (= barycenter of o)
where o 1is a simplex of the initial triangulation. We let
q(bs) be defined as the n-frame (vl(o)"’Vn(O)) where
vl(c)...vn(c) represent the earliest vertices of st(d¢) in the

presumed ordering. To define gq more generally, recall that

the generic point x of MM may be uniquely denoted

X = albo tooeot asb
1 o‘S

where o > 0, faj = 1. (I.e., bgy... bgg are the vertices
of the unique simplex of the barycentric subdivision of M~

which contains x as an interior point; thus O <Oyt < os).

Let vj(x) = Zajvj(oi) € RN*K  for j = 1,2 ... n.

Lemma 1l1. For any x, {vl(x),---,vn(x)} is a linearly
independent set.

Proof. Suppose there is a dependence relation:

(i) crtvy(x) + eee v (x) =0
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for some x and some set of coefficients Cytrre, not all o0,

Let us remember that vj(x) is a linear combination
of vertices of st{oj). Since St(cl):j st(oz) vee > st(og) it
follows that the left side of (i) may be rewritten as a linear
combination of the vertices of st(al). But since this set, by
the general position assumption concerning the embedding Mhc RNk
is linearly independent, we see that in this reformulation atll
coefficients must be O,

Consider the earliest coefficient in (i) which is nonzero;
call it €Cj. Consider now the vertex Vj(ol). In general, for
any p, vp(ci) > VP(°1) in the order on st(ol). We use this
fact to examine the coefficient of Vj(ol) in the reformulation

of the right-hand side of (i) in terms of the vertices of st(ol).

First of all,
¢jvilx) = cjroyvylo)) + cjuyvylo,) «oe

Since c¢j # 0, aj > 0, it follows that Cj’Vj(X) = A'Vj(ol) +
{other terms} where the additional terms do not involve VJ(°1)
and A # 0. On the other hand, consider the term cp-vp(x) =
cprZaj-vp(oj) for p > j. Now vploi) > vplo,) > vj(o,). So
Cp-vp(x), rewritten as a linear combination of vertices of
st{o,), does not involve VJ(°1)‘ Thus ¢ v (x) <= cpevpix) =
A'Vj(ol) + B where B does not involve VJ(°1)’ A # 0. But
this contradicts the presumed linear independence of the vertices
of st(ol). Hence the lemma follows.

Thus we may define gq(x) for any x as the n-frame
(vl(x) +++ vp(x)). By slight abuse of notation, we also use (¢
to denote the map MM » G, y defined by

X b= span(vl(x),"',vn(x)). Clearly, q represents a trivi-
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alized bundle and is thus null-homotopic in Gp k.

Consider once more the k-plane field ¢ transverse to MP
defined over M£4) by data consisting of a local order on M"
and configuration data for simplices of dim > n-4, We have,
simultaneously, the n-frame field q. Thus, by the remarks
following Lemma 10, we shall have a well-defined cocycle d(e)
(depending on the embedding as well as the afore-mentioned data)
simply provided that @(M&S))I\V(q) = 8. We claim that this
last condition will hold for a generic choice of configuration
data, though the proof will be omitted.

As to dependency on the embedding, this may be eliminated
simply by picking any "standard" embedding of MM as a sub-
complex of antk-1_ j e, by assigning each vertex of M to an
element of the standard basis for RT*K and then extending
convex linearly. It turns out that d(e) 1is independent of the
particular embedding, and so d(e)} is now seen to be intrinsic,

depending only on the local ordering and the configuration data.

We may emphasize the intrinsic nature of the formula we
have by freeing it entirely from the notion of embeddings and
transverse fields.

Consider the typical dual 4-cell e* dual to ohn-4.
Decompose it into sub-cells {d;}gcy, defined by
dy = st(bT,M")r\e4 where st{ ,M") refers to the combina-
torial star in the second barycentric subdivision of M.

Omitting details, we note that we may slightly modify the
definition of the frame-field gq so that for x e d¢, vj(x)
will lie in the vector subspace spanned by the vertices of
st(1). We also assume: ¢{(x) 1is transverse to M at by if
x € d¢y «+ These modifications in the definitions of ¢ and ¢

are relatively simple to make and leave d(e) unaffected.
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Concentrating on dyNe, we let ¢(x) denote the
CF(%kt)~coordinate of ¢(x). For convenience, we shall think of
¢(x) as an embedding ¢{(x): stt,br < R",0 where the embedding
is convex linear on simplices and is the "standard embedding"” on
8N where &" denotes the n-simplex of st t smallest with
respect to the lexicographic ordering induced by the linear
ordering of the vertices of st t. In fact, rather than using
the standard RP, we think of the n-plane P parallel to &N
passing through the origin. So therefore, if we consider the
direct-sum decomposition of RN*k as P @ ¢(x), the configura-
tion of st t in P comes merely by projection Tp onto the

P-factor of t-b: for all vertices t. i
Having oriented e and therefore d; we may define an

integer g(e,t) as the algebraic number of points x e dt

such that
(ii) dim span (ﬂpvl(x) «e. Tpvp(x)) < n-2.

The point is that given the configuration of st t in P
we can determine Tp in purely algebraic terms (without
reference to the embedding or the normal field). For these
purposes, we may, without loss of generality assume that RN*K
is spanned by the vertices {t} of st t. Now, from &N pick
the earliest vertices among the t's (label them ul,...,un)
so that {yi} = {uj-bg} spans P. Label the remaining vertices
Wiseoo,Wk. Consider z; = wj - wj - by where Wwj, a linear
combination of y's, is the image of wj under the
configuration embedding % (x). Let B be the matrix

(yl,...,yn, 21...zk) (writing vectors as columns with respect

to the ordered basis t;,...,t ., ). Llet Q = B-1, and set

ntk

first n rows of Q. Write R1 = (g) an nxn matrix so R1
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is a projection expressed in y,z <coordinates and BR1 =10 is
projection Tp expressed in t-coordinates. @, of course,
depends on x. So g{e,t) 1is the algebraic number of points x

such that

(ii1) rank H(x)(vl(x),...,vn(x)) < n-2,

Now define ~n{e) by

Theorem. The assignment e v n(e) is an integral
oriented cocycle representing the first integral normal

Pontrjagin class pl(vM).

We omit an explicit proof, but we do note that the formula
for n(e) represents, essentially, a computation of what we
previously denoted as d(e). This computation is a rather
routine working out of consequences of the characterizations
given in [Ca 1] and [W] of the space of k-planes transverse to
M at a point in terms of configuration spaces.

This formula should be compared with the formula of [GGL].

There remains the slight problem of deriving a formula for
the integral "tangential" first Pontrjagin class. Suffice it to
say that the same general approach will work. 1I.e., in
constructing a "normal" field over M£4)--the transverse k-plane
field ¢--the Cairns procedure simultaneously constructs a
"tangent" plane field ¢l. By the same token, gq must be

replaced by a locally determined trivial k-plane bundle.



122

§4. Computational considerations

In the various local formulae we have exhibited above,
there remains the problem of explicitness. That is, -we have
shown that given, say, an embedding of MM in R"*k, together
with a local ordering a choice of configuration data at
simplices of dimension > n-4, we may construct a field

" over M£4), from which a cocycle

transverse to M
representing Py (with real or integral coefficients) may be
computed. Note, however, these contrasting facts: We have shown
that the value of the cocycle on a dual 4-cell e depends only
on the given data on 3de. (Strictly speaking, it depends on

data for simplices 1t of dimension > n-3 to which o, the

dual simplex to +t, 1is incident.) Yet, in point of actual
computation our formulas refer to data defined over all of e.
Thus, by way of concrete example, if we adopt the approach of §2
and make use of a differential 4-form o on Gk ,pn we see that
the value of the associated Pontrjagin cocycle on a typical e?
is given as fe“¢*m’ even though this number is an invariant of
¢ restricted to sed. So, to compute this number, we should
have to know ¢ explicitly on ed, i.e., we should have to
carry out the Cairns construction in detail using the detailed
methods, as well as the actual results, of [Ca 2]. In some

ways, the situation is analogous to what one finds for the
Atiyah-Patodi-Singer n-invariant of an oriented Riemannian

4j-1 manifold M. ~n(M) is, of course, dependent only upon M
but is in general quite difficult to compute merely in terms of
M. However, if M is known to be the boundary of the Riemannian
4j-manifold W {with the product metric near the boundary) then
the value of n(M) may be computed with relative ease.

In what follows, we indicate a computational alternative to
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specifying the transverse field ¢ explicitly on the interior
of eh. Again, for simplicity's sake, we work in the context of
real coefficients and differential forms.

The general idea is that one wants to avoid the difficulties
of making Cairns' construction of the field ¢ over the 4-cells
explicit, What is proposed, instead, is to use configuration data
at (n-4)-simplices, together with the explicitly-constructible
transverse field ¢ over the dual 3-skeleton to construct a
certain field F over 4 cells e (one for each dual 4-cell e)
so that integration can be done over e in place of fe¢*m with
essentially the same result, albeit F is not to be understood as
a transverse field to e. Rather, F arises from constructing a
l-parameter family of embedded 3-spheres bounding a one-parameter
family of 4-cells so that, for each 3-sphere in the family, we
have an explicit field extending, in principle, to a field over
the corresponding 4-cell, The process begins with ¢ and ends
with a constant field so we can, for computations sake, regard it
as a field over a 4-cell. The integral we get therefore
represents the difference between the invariant [g¢*w defined
by ¢ itself and the invariant one gets from a constant field over
a "flat" 3-sphere, i.e. one which bounds a "“flat" 4-cell. Since
the latter is obviously 0, we will have computed the former. The

point is that F is, in principle, directly constructible without

appeal to Cairns' theorem on connectivity of configuration spaces
of cones on a-spheres.

Once more, assume that the combinatorially triangulated
manifold MN 1is simplex-wise linearly embedded in RP*K  §n
general position. We assume further data consisting of a
local ordering on the triangulation and a choice, for every

simplex o of dimension > n-4, of an element in CF(%ko).
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With this data in hand, as we have noted continually, we obtain,
by a perfectly straightforward construction, a k-plane field ¢
transverse to MPD  over M£3). This, of course, makes no use of
the configuration data at (n-4)-simplices. Rather than
concerning ourselves with extending the transverse field to
M£4), however, we now make use of the remaining data in a
different way.

Given an ({n-4)-simplex o, the choice of a configuration
of ko is essentially a choice of a k-plane P transverse to
MD at bgs. Choose an n-simplex p of st o, e.g., the
smallest in the lexicographic order induced by the linear order
on the vertices of st o. It follows, then, that every vertex
v of st o may be represented uniquely (in the conventional
(n+k)-vector notation) as: v = by + ry + ny where r, is a
vector in the linear n-plane Q parallel to p and ny, e P,
Since P s, as assumed, transverse to MM at bs, 1t follows
that the projection map ve by + ry is not only 1-1 but
extends, in fact, by convex-linear extension, to an embedding

st ocbgy + Q. Furthermore, if we let wut be defined as the

convex-linear extension of the map v+ bgs + ry + (1-t)+ny

for 0 <t <1, we obtain a simplex-wise linear embedding

st oCRN*k, If t <1, wugy is in general position; therefore

by Lemma 6 for such t we may use the configuration data on
simplices of dimension > n-3 to construct a k-plane field ¢¢ on
ut(8e4) - ut{st o}, where el is the 4-cell dual to o, such
that ¢4(x) s transverse to ug{st o) at ug{x). This

process is continuous on 3e% x [0,1). Moreover,

4 .
1im ¢t(x) = ¢3(x) exists for x e 3e and we obtain thereby
t-1

a vector bundle on 3e% x I, in fact a map ¢: sed x 1 » Gk ,n-
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Finally, ¢1(x) is transverse to the n-plane by + Q.

Now we may deform 9, further (regarding it as a map
aed o Gk,n) to a trivial map, i.e., the constant map Xp— QL.
We think of this deformation {which may, of course, be con-
structed explicitly in terms of N without difficulty) as
defining a map Y¥: caed » Gg,n with w(8e4 = ¢,. Thus con-
catenating with ¢, 1i.,e., taking F = oy V¥: ded x Tu cael =
caet » Gk,ns we get a map from a topological 4-cell to Gg,n.
Call this 4-cell & . Now let w e @%(Gy,n) be, as in §2, a
closed form representing the real Pontrjagin class Py in DeRham

cohomology. We then have the following.

Theorem: Let § be any extension of ¢ to e% with §
transverse to M. Then
f “.a*w = j_.F*w.
e e
We omit a proof. Suffice it to remark that what is being
exploited here is a principle cognate to, though much simpler
than, the well-known fact that, although the Atiyah-Patodi-
Singer n-invariant of a 4j-3 dimensional Riemannian manifold
is not the integral of a locally-determined form, nonetheless
the difference between the n-invariants of two Riemannian
structures which differ by deformation can be represented as
such an integral over the manifoid x I.
As a final note, we observe that this method for computing
a cocycle representing p, may easily be adapted to the integer
coefficient case studied in §3 above, where intersection numbers

are used in place of integrals.
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EVALUATING THE SWAN FINITENESS OBSTRUCTION
FOR PERIODIC GROUPS
by
R. James Milgram¥

In [j7] R. Swan introduced the finiteness obstruction On(G) for free
actions of a periodic group G on finite complexes having the homotopy
type of the sphere Sn—1. It takes its value in a certain quotient of
iG(Z(G)), §O(Z(G))/T, and was one of the main motivations in the develop-

ment of algebraic K-theory.

More recently Ib Madsen, C. Thomas, and C.T.C. Wall [22], [20],
‘jo] proved a sharpened version of one of Swan's theorems, roughly that
if G has period n then G acts freely on a homotopy Sn-1 or S2n_1, and
no examples were known for which 2n-1 was actually necessary. Indeed
it was somewhat hesitantly suggested that n-1 is always correct.

In[4], [5], [6], IB], [14], [15], a subgroup D(G) < §O(Z(G)) was
studied and shown to be computable in terms of determinants or reduced
norms and the structure of units in certain algebraic number fields.

D(G) contains T and we prove
Theorem 2.B.1: on(G Y€ D(G)/T.

In particular, we relate On(G) to the behaviour of these groups

i
Tor 72(G

In §3 we calculate these Tor groups for hyperelementary groups (this

)(M,Z) where M is a maximal order containing Z(G) in Q(G).

section may have independent interest), and in §4 we study D(G) for
a class of periodic groups of period 4, Q(4p,q,1).
The Swan obstructions for these groups are written down in

Theorem 4.B.6, and we have

Theorem A (4.C.2, 4.C.5, and 4.C.8): The Swan obstruction 04(G) # 0 for
G = Q(12,5,1), Q(12,7,1), or Q(12,11,1). (The groups Q(a,b,c) are defined
in §3.B, but the notation is standard.)

In fact we have

Theorem B: Among periodic groups of period n and order < 280 only one

group of each order 120, 168, 240, and 264 fails to act freely on a

* Research supported in part by NSF MCS76-0146-A01
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finite complex having the homotopy type of Sn-1.

However, for the next group in the series of theorem A we have

Proposition 4.C.1: 03(Q(12,13,1)) = 0.
Hence there is a 3-complex homotopic to 53 on which Q(12,13,1) acts

freely.

The number theory involved in these questions is subtle since
Theorem A shows that Q(12,5,1), 0(12,7,1) and Q(12,11,1) can't even
act freely on a homclogy 3-sphere.

Remark D: The proof that 0 (G) € D(G)/T came out of several conversat-
T n

ions with R. Oliver, and I also profited from a conversation with

H. Bass. The initial question which led to this work came up in dis-

cussions with I. Hambleton.

This paper was originally written in 1978. For various reasons it
has not been previously published but it has been circulated privately.
It initiated a vigorous attack on the space form problem for the last
and demonstrably most interesting class of groups, the Q(8a,b,c) with
a,b,c odd coprime integers.

The initial theorem A and B above were quickly extended in [25] by
constructing large numbers of odd index subgroups of the units in the
cyclotomic fields (D()\p) P Q0 )y Q(Ap,)\q) studied here. Indeed the
proofs of the result in [25] are direct extensions of the proofs here.
The only thing preventing their being given in this original paper was
the fact that the unit theorems had not yet been proved.

The main result of [25] as slightly extended in [26] is

Theorem C: Let Kn be the maximal 2-abelian extension of @ contained in

the cyclotomic field Q(;n). If K is Kp’ qu with the guadratic symbol

1
2n+22n‘1lg z ) P 3’ 1(8)!

o
! p P
then the cyclotomic units have odd index in the units of K.

Fﬂ= -1, or the maximal 2 extension in Q(g

Next, by the technigues developed here and in [25] we obtain

Theorem D: Let p be a prime and

a) suppose p = 3(4) then 64(q(8p,q,1)) =0
for g prime if and only if

(i} g = 1(8) or
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(ii) g = 5(8) but p’ = Z1(q) for some 0dd v.
b) 0,(Q(8p,q,1)) = 0 if p = g = 1(4)

but [F]= -1.
— |4

Using this as a starting place a spirited attack by the author
and Ib Madsen on the actual surgery problems took place. (Preliminary
results had already been indicated in %Eﬂ).

Again the results depended on finding sufficient units, hence had

to be restricted to the cases covered by theorem C. The results [26]
are

Theorem E: Let p,q be distinct odd primes and suppose p = -1 (mod 8);
then

a) Q(8p,g,1) acts freely on R?k+4-(pt) (k 2 1) if g = 1(mod 4}
and p has odd order (mod q).

b) Q(8p,qg,1) acts freely on &§k+4—(pt) but not on S8k+3
if g = 5(8) and p has odd order (mod q).

c)Q(8p,q,1) acts freely on S°¥*3 (k » 1) if q = 1(8) and p has

(k z 1)

odd order (mod qg).

For special classes of numbers there are further results [27]. But
all these results rest on the idea of identifying the Swan obstruction
studied here as the image under 3 of an element @ where

3

, A ~
0€—2— im (X, ( (6) ~ Ky (z(6)))

Prq
which is developed here. This class 0 rather than its image is shown to
correspond to the surgery obstruction for certain surgery problems over
the Poincaré complex constructed here, and using recent results on the
calculation of these groups, if ( as usual) one has sufficient inform-
ation about units, Theorem E follows.

I would like to thank A. Ranicki and the other editors of this
Proceedings for giving me the opportuniry to finally publish this
work.

Edinburgh
September, 1984
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§1. KO(Z(G) and D(G) for G a finite group.

A. Preliminary remarks on KO(Z(G))
Let Mn(D) be a matrix ring over a division algebra D whose center

F is a finite extension of the rationals @ or the complete local field

6p. The reduced norm homomorphism

~
N:GL_(D) = F
n

is given by linear embedding M (D)< M (K) for some extension K of F

and taking the determinants of the 1mages Then Wang's theorem [21]

identifies
1.A.1: K, (M (D)) = K, (D) & F
n N
where im (K(D)) is all those elements of F which are positive at all

@ places at which D is a quaternion algebra.

Next, let M be a maximal order in M (D) so M = Mn(N) where N
n
is a maximal order in D. The reduced ?O(M) = §O(N) is
1.A.2: ker i: KO(M)-+ KO(D) = 2

and Swan has shown in [18] that K (N) is the ray class group of the
center O of N consisting of all 1deal<~ modulo those principal ideals
which are positive at all finite primes at which D is a guaternion

algebra.

B. D(G) and E(G).

Let M be a maximal order in Q(G) containing Z(G). Then the in-

duced map
~ -~
1.B.1: J: KO(Z(G))‘* KO(M)

does not depend on the particular M chosen and j is surjective (see e.qg.

Lsh.

Definition 1.B.2: DI(G) is ker(j) in 1.B.1. so we have an exact sequence
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0 » D(G) »%O(z(c;n > Kyt - 0.

A second group E(G) can be introduced which depends only on re-
duced norms. Let Mp be a maximal order in 6P(G) containing QP(G), and

define
1.B.3: U CK, (@ (G)
. L@

as the image of K (Mp). Writing

{(‘JP(G) = || M (D;)

i

we have = | I M (N )
n,

and K (Q {(G)) 1‘ (F vhere F is the center of D;. Thus {one

could use for example Qulllen s locallzatlon seguence b2] to show this)

1.B.4: Up = Ill VU(F,)

the product of the units of the Fi‘s

1

The composite maps

r.
: -+ K >
oy K1(zp(G)) 1(Mp) Up

Bp: K1(M) - K1(Mp) > LJp
then give

Definition 1.B.6: The local defect Ep(G) at p EE‘Jp/im(@p)-

A

Remark 1.B.7: If p%ﬂG then M = Zp(G) so E_(G) = 1. In any case Ep(G)
is a partial measure of the dev1atlon of Z (G) from Mp and is finite
for every finite group G.

Ep(G) consists of a p primary part which is difficult to analyze
and a somewhat easier part of order prime to p. To obtain this second

part we can use the map

' AL
1.B.8: K_](ZP(G)/J)-* iU(Fi)/(1+(m‘J)

A
where J is the Jacobson radical in ZP(G) andrni is the maximal ideal

in U(Fi).



132

Returning to 1.B.5 the map,

.B.9: =_LJ_ H -> G
1 B sp K, ) ‘ l Ep( )

pl [c] PI ||

defines the quotient

1.B.10: E(G) =_1J___Ep(G)/im(8).

[

Thus E(G) is the pLoduct of the local defects factored out by the image
of global units coming from KT(M)' Its calculation is difficult but in

specific cases presents no insuperable obstacles.

Theorem 1.B.11: E(G) = D{(G)
(See for example [5].)

Remark 1.B.12: When the author initiated this work he was unaware of
1.B.11 and so derived his own proof, which we present in outline from
here, as it may be easier for some people to reconstruct. Note, to begin,
that there is a k so 'le MCZ(G). So set LS(G) = im(Z(G) }eM /| G| kSM, and
we have the pullback diagram

%.B.13: Z2(G)———»

m
S

L (6) ———2u /g ksy

Moreover, m ¢ is onto so Milnor's Mayer-Vietoris sequence can be applied

obtaining
e Vo w w

1.B.14: K, (2(6)) > K (L_(6)) @ K, () > K 0/ 6 %) =B K (z(e)) > Ko -0
so im 9 s = D(G). Now let s become large and pass to limits. In the limit
we need some information about K1(M), K1(Mp). This may be supplied using
Quillen's exact sequence of a localization to show that the kernels of
the local reduced norm maps are in the image of the elements in K1(M).
§2. Swan's finiteness obstruction.

A. The definition and basic properties ||

Let T(G) € D(G) C K (2(G))be defined as the image of U(%;)

Pl el
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A
where Z;C:Mp corresponds to the trivial representation., Now suppose G

is periodic of period n. That is, there is an exact sequence

€
2.A.1: 0>2>C 5 >...>C »>2(G)~+ Z~>0
where the C, are projective Z(G) modules. In [17]Swan defined an in-
variant on(G) (3 ?O(Z(G))/T which is zero if and only if G acts freely
on an n-1 dimensional complex having the homology type of Sn—1. In

fact, gn(G) is the Euler class in fO(Z(G))/T of 2.A.1.

2.A.2: o, (6) = [co] - [c1] * [c2] . [cn_1 1.

If n is even then sequences 2.A.1 may be spliced either together to

give osn(G) = SGN(G). Also if HC G is a subgroup then by restriction
~ [a'd

Z2{G) projectives become Z(H) projective so r :KO(Z(G)) > KO(Z(H))

induces EH:R’O(Z(G))/T + X, (2(8)) /T and

H

2.A.3: IH(Gn(G)) = on(H)

Swan's induction theorem [16] valid for arbitrary finite groups

is
2.h.4: J_L Ty: K, (2(6)) —> H
H hyperelementary HEG

H hyperelementary

KO(Z(H))

is injective. This relates on(G) with the on(H) for all H. It must be

handled carefully, however, since T (H) may not be equal in T(G), see

e.g. [23], [24]. HG

Finally, the types of hyperelementary subgroups of G are very re-

stricted. For a discussion see e.g. [22].

B. on(G) € D(G)/T(G).

Theorem 2.B.1 represents the fruit of several discussions with
R. Oliver. It resulted from Oliver's attemps to provide counterexamples

to the author's initially naive feeling that cn(G) should lie in D(G) /T.

Theorem 2.B.1: an(G) € D(G)/T.
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Proof:It suffices to consider hyperelementary subgroups since _u~rH

in 2.B.2 is injective.

T(G) 1L T
H
D(6) 1l pm
2.B.2 H
l 1]
~ H -
K (2(6)) Jﬁ[ K (2(®)
Pe 1 1 ey
-J—-L rHl )

jﬁL K (At

Let N be a finitely generated torsion M module. By [15] N has project-

ive length 1 so there is a short exact sequence

0 -P, ~P >N~ 0
1 0

with Po’P1 finitely generated projective, and
xmy = [p] - [2.] €%,

is well defined. We now have (and this is the heart of the matter)

-1 . .
_ i i
Lemma 2.B.3: P,(0 (G)) = E (-1)" x(Tor Z(G) (M(G),Z)).

Proof: Tensor 2.A.1 over Z(G) with M obtaining

€
2.B.4: 0 »-¢C ® Mr...»M > Z > 0

n-1 .
The homology of 2.B.4 is z fgrlZ(G)(M,Z) which differs from the
0
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usual Tor group only in the part of involving z* which is, in any case,
a P.I.D. Clearly, P (o (G)) = & (—1)j(cj® M), but this is given by the
Tor formula in 2.B.3.

By results in [22], on(H) is zero except for H a 2-hyperelementary
subgroup with 2-Sylow subgroup a generalized quaternion group.

For this group write M =-l§-M.l whe;e the Mi corresponq to the irre-
ducible representations of Mi 50 Tor%(G)(M,Z) =_JJ_ Tor%(G)(Mi,Z).

In $3.6 we prove 1

Lemma 2.B.5

o)

Torj(Mi,Z) is a g-torsion abelian group with qI‘G

If g is not prime then Mi = Z.

c. 1If g is an odd prime then M; = M, (0 j) withU'j
g9 d

_1 A
Z{p s+tp .) or M. =2Z (p .).
qj qJ 1 q qJ

d. If g is 2 then M, = MZ(O'j) or L where L is the maximal

order in the usual quate%nion algebra over ®(p .+p_1).

2 2J
(Here Py is a primitive zth root of umity, and (a) is well known.)
Now the proof of 2.B.1 follows directly since io(z) = 0 and the
prime ideal over p in Y(¢ j+p 51) is principal. The only remaining
. P p
case is 2.B.5 (d), but there the results of [18] identify K (L) with
Ko(ﬁTp j+p_;)) (using Weber's theorem see e.g. [7])). This completes

the prdof 8f 2.B.1.

C. The value of o _(G) in DI(G) /T (G)

We suppose the groups Toer(G)(M,Z) are known for the periodic
group G, and local sclutions

A -

2.C.1: 0~+~72 ~»C EEL_E_la C > .. C _p.2 7 (G) & % 0.
p p,n-1 p,n-2 p.1 p P

of 2.A.1, with the C_ . free are also given.

r
Next, let the complex of free M-modules

2.C.2: 0 ~» Z'—>Mn_1 +Mn_2 > ..M 2 > 0

be given with homology the Tor]Z(G)

(M,Z). Localizing we have

A
Lemma 2.C.3: Let N be a maximal order in a simple algebra over 2

Then an isomorphism classification of finite chain complexes of free

Np modules C = {Ci »C, 4> +.- »Cy >0 }is given by the groups H, (C)
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and the ranks dim y (C.).
P J
Proof: This follows in the same way as the analogous theorem for free
Z-chain complexes proved using the diagonalization theorem for
matrices with coefficients in Np. (See e.g.[13]' p. 173, Theorem 17.7)
In particular, we assume 2.C.2 is a direct sum of complexes one
for each simple order in M, and rank MMj = rank? (C_ .) = kj for

Z_(G) ""p.]
all p}|G|. Then we have P

Lemma 2.C.4: There are elements aje [[ GLk (Mp) which make 2.C.5
commute for each i ] L
pllc]
L
0o 4
P>l 1
2.C.5
oy 3
c . I p 3 gl
1 A . M
pllg] Pt ——— 7.1 i-1
|
3.1 9,1 (&'1) l i
%4-1
c  — U g ‘—%_LL.”
and
-1 -1 e ]
0, (G) = {a1a2 Gg04  wev O g }

Proof: The existence of the oy is given by 2.C.3. Now let Ci(Z(G)) be
obtained as the pullback diagram

3
¢, (2(6)) M,
i
i
i [
in ’ Lose, o
| "
1
1

-U— Cp,i J_L/f/

p p)i
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Then C;(Z(G)) is projective and represented by {ai} in D(G). Moreover
the following sequence of complexes is exact

0 > C (Z2(G)) > (£, -in) M (] _LL(C *MJ_M + T 0

P

and passing to homology, since Oy induces isomorphisms (as Tor

. z(G)
{M,2) is torsion) in positive degrees, and in 0 HO(C*(Z(G)) = Z we
have Hj(C*(Z(G)) = 0 j » 0 and the sequence obtained is a periodic

resolution

Remark 2.C.6: We should be more explicit about the classes a;¢ ll
aut (M, . Note that since M = M@®... PM we have an ev1dent map

Cp i g (c)q; GDZ (GY ~ M it This identifies Mp,i with Cp’iC§ Mp.

It is with respect to this that oy is defined.

D. Wall's finiteness obstruction.
In {23, especially pp. 64- 68] a finiteness obstruction fn(X) for .com-

plexes in a homotopy type satisfying "Dn.Hi(X) =0 i>n, n+1(X B) =0
for all abelian coefficient bundles B(n»2)", was defined which genral-
izes Swan's obstruction. It makes its values in QO(Z(ﬂ1(X)), and for
n1(X7 finite we have the result corresponding to 2.B.3.

=2
Lemma 2.D.1: pﬂ1(x)(fn(X)) = go -1+ X(Hi(xl”))°

ié
(The proof is completely analogous to 2.B.3.)

Similarly, in case p_ (f (X)) = 0, analysis of the Wall obstruct-

(x)
ion in terms of local piecing analogous to that in 2.C. may be casried

through.

§3. Calculations of TorlZ(H)(M(H),Z) for H a Hyperelementary Periodic

Group.
A, Reduction to local cases.

The formal reduction

i oA i ~
3.A.1: Tor gp(H)(Mozp,zp) Tor (M,z)@zp

Z {H)

allows us to calculate the Tor™ locally. Thus, to begin we study the
structure of the local group rings.
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Lemma 3.A.2 Suppose p prime and (p,?t) = 1, then

”rj

A A A

7 (Z2/) = Z_@® “ Z_ (p.), where
P p j|2 j=1 P PJ

rj = Q—Tﬁfj(p) and Yj(p) is the least positive integer _for which

(p) _ .
Q/ = -
p'f 1(3)

A
Proof: This is standard. Indeed since (4,p) = 1 Zp(z/z) is a maximal
% order. Also, the global maximal order is Zz_ {p.} and
i
A
3.A.3 z®z(pj)=_u.§(p)
i=1

Compare with [9, p. 39].
More generally

Corollary 3.A.4: Write n = pml with (2,p) = 1 then

r.

A _ A j 'J_\
Zp(Z/n) Zp(Z/pm)O Jit Ap(pj)(Z/pm)-

jle
Now suppose we are given a g-hyperelementary subgroup H. That is,

H has a normal cyclic subgroup z/n ¢H with quotient the Sylow g sub-

group Hq of H. Then H is determined by a homomorphism
3.A.5: A:Hy > Aut(z/n) = (Z/n)

and we can write H as an extension

3.A.6: 0 - Z/nx ker » > H - (imx) - 0.
A A
Thus we can write Z (H) = Zp(Z/n X ker)) x T(im)\) and the splitting
in 3.A.4 of ﬁp(z/n) implies an analogous splitting
A ~ Ls oA a
3.A.7: Z (H) =| (2_(2/ m) J 7 (p.)(2/ m Z_ (ker; )]x im)
p [(p/peg%-gl' pl03) (#/gm) @ B (rern[x o hmi]

In particular, assuming p # g the argument of 3.A.2 shows

7 (kern) = 2 @V (keri)
eri =
P po MptkeTh
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and
3.A.8: Z ) = 2z (z/_m [im]en
B p p 'p
Factoring still further, we have the restriction map
r_: Aut(Z/n)—>»Aut(Z/ _n)
P p
and applying the above argument to the first factor in 3.A.8 (Which

is %p(z/pm X T(imM) we obtain

A A
3.A.9: Zp(H) = Zp(Z/pm b4 Trp(lm)\)) ®N1@N.

Of course, when p = g, 3.A.8 takes the form

“ A
3.A.10: Zq(lH) = Zq(lHq) ® N.

We call the various summands in 3.A.9, respectively 3.A.10, the
p-blocks, respectively g-blocks of H. Further, on tensoring with (Bp
the p-blocks each become direct sums of simple algebras, and we dis-
tinguish the block containing the trivial representation (the left-
most block in 3.A.9 or 3.2.10) and write it

B .
p(IH)

Proposition 3.A.10: Tor*Z(H) (Mi,Z) contains p-torsion only if
Mi/'\ Bp H) # 0

Proof: We check locally. Now Bp (#H) is a direct summand of %p (#) , hence

projective. Moreover, the augmentation factors as

A £
Zp =) >, D

Bp(lH).

Thus, a suitable resolution of the augmentation is obtained by resolv-
ing €| over B_(H). Finally, tensoring this resolution with Mi gives

zero identically unless Mi n Bp ) # 0.
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Corollary 3.A.11: Torl = i 2
Y ° o U5rPp = T ) et 7).

This reduces tor calculations for these H to those for Z/Pm X v

V € Aut (Z/p), for which calculations are easy, or in case p = g, for

al-

B. Calculations for Bp( HH) where HH is a 2-hyperelementary group
with H, generalized gquaternion, p # 2.

In Milnor's notation H = Z/m x ngin, kfg }. This means Q(Zin, k, )
has a presentation{ x,y,z,w,v|x" = y21_1, y21 =1, xyx-1 = y_1, z" = wk
= vy =1, xzvx | =z v T, y(wv)y_1 - w vt yzy_1 =z, xwx_1 = w and
z, w, Vv commute}. Morecover, in order that H be periodic, m, n, k,
must be coprime odd integers.
QP(Z/pR) if p/m
The block Bp( H) =

ﬁp(z/pK X TZ/2) if p + m.

The first case is well understood so we concentrate on the second case.

{(Note though that the first case gives the ﬁp(p i) in 2.B.5 (c).) We
have
3.B.1:  0(z/p' x ,3/2) = M0 (p .10 )@ 0 @g
e PP T = L M@0 5re g p o p
1532 Pt P
SO
A A -1 Ay A
3.B.2 M_N B_(@H = M, (2 o L) z_® 7z
P p( )& Qp 2(p(opJ ppj ) D p p
15958

Note that 3.B.2 is already sufficient to prove all of 2.B.5 but (d}.
However, for our calculations in §4, we will need complete evaluations

A
N .
of the Toer(H) (Mp,Zp) so we give those results now.

£
[0}
et
>
1

o} j+p~;, then the representation
1Y p P

[a}

A
3 BPGH) —_—> MZ(ZP(Apj))

is given by
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r. ( =
5 g)
-1 A 5
P
3.B.3 0 1
.{t) =
rj()
1 0
Similarly
At
r : B (H) —> 2
* P( ) P

is given by r (g} = 1, r+(t)‘= I 1. These representations define act-
ions of Z/pQ X 2Z/2on " M. (3 ( .)) or 2 , and we have

T 2 p 3 p

p
2 .
r (Z2/p) i even
: ] - -
Lemma 3.B.4: Hi (z2/ o M2(ZP(A j)))
b P 0 i odd

Moreover the action of t on the groups above is via t(x) = (—1)1/2x.

Proof: Take the usual resolution of Z(Z/ K) with one copy of Z(Z/ 2) in

P p
2 pl—1
each degree,azi+1 g;1,82i = 1+g+g + ... +g :Zg.
Then, tensor with MZ(Zp(A j)) over r, and we have
D J
-1 1 o
~ _ a B
9341 © ropy T 0
-1 A=1
This means
-1 1 a, —a+b(r-2)
321+1(d) = o =

-1 A-1 c, —c+d(A=-2)
and the cokernel is Z/p x Z/p since A- 2 is a uniformizing parameter
A
for Zz_(X).
P
Representing generators can be chosen as ’ ,

0 0 0 1

0 1
and A<» A(t) = A( )fixes these generators mod im(82i+1).
1 0
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Next note that the periodicity is given by capping with a generator

A A (r.)

2
e of H (Z/pl'zp) =2/, U, p. 1s). thenenm I 02/ my (B 00 )
P P
(r.) 4
S HU3@ M, (2 (0 0))), tla A B) = tla) A t(B) and t(e) = -l(e),
i [} P pj

b

so 3.B.4. fcollows.

R (z/p)% 1= 0(4)

i
Corollary: 3.B.5: Tor M, (Z ()Y, 2) = )
Bp(m) 2'p p‘Q p 0 otherwise.

Proof: In the Hochschild-Serre spectral sequence

D
3zt my 0 )
P

(r
ES = Hi(Z/Z, Hk

which collapses to Eg « Since p # 2. But

2 J ] ; -
EO,k = Hk(Z/p ’ M2(Zp(k j)))/1m (t-1)
P
and im(t-1) = 0, k¥ = 0(4) but im(t-1) = im(-2) if k = 2{(4) so 3.B.5.
follows.

Similarly, for r_ = we have

‘ N R Zp i=0
Corollary 3.B.6: (a) TorlB (ﬁ)(Z;’ Zp+) =
P 2/p" i =3(4)
0 otherwise.
% .-
(b) ToriB (H)(%;' %;) = “/e P
P 0 otherwise .

Remark 3.B.7: Exactly the same chain of ideas works to calculate the

Tor's in the case of Z/pﬁ X TZ/qS where qs | (p=1) . Here

S

. q A
3.B.8: M= _U_M S(%p(o .>‘1“V’)Q>_LL %y
1

|3 1€5EL g pI
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A
the latter terms corresponding tc embeddings Z/qS <L4>(Zp); taking the

generator to the varions qs'th roots of unity.

C. The situation at 2 and the completion of the proof of 2.B.5

A A 2 2
B, ®) = Z,(H,) = Zz({x,y|x = y° , xyx =y '}
and we have

Lemma 3.C.%1: The maximal order of Bz(m) is

-1 A (4)
(a) —U—M2(22(pzj+p2j ) ® Z,

12922

(4)

A
(b)) @ Z, , where @is the maximal order %2(p3)0 Z2(p3)ﬂr TT2

= =2, and A = ¥Y(A)7m for Aag
£ 7 (p,)
ot 4ytP3t-

2(p3) where ¥ is the Galois automorphism

(This follows from the results of[11]. However, for i > 2 the explicit
representations are given easily. In particular the faithful represent-

ation (i=3j) is given by

0 1 1 C=x
3.C.2 g - , t -
-1 P c -1
21
where C is a root of
2
3.C.3: C™ - X .C+2 = 0.
i
2
Indeed 3.C.3 splits inside éz(x i) for i > 2 since its discriminant
2
d=2%-8:z2r2w4n

and is thus a square. The remaining representations are given by the
same formulae as 3.B.3.)
This completes the proof of 2.B.5 since the only representations

which restrict non-trivially at both 2 and at least one other prime
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are the 4 copies of 2.

D. Calculations for BZGH)

A minimal resclution of 1 can be found on page 253 of [2]. it is
periodic and has the form
5 % 92 2, e
> Z(Hz)e B Z(le)C QZ(IHZ)C'———'Z('HZ)b ® Z(\HZ)b'——PZ(HZ)a > 2

where
i (e) = (y-1t)lc - (yx-1)c’
35(c’)= (yx+1)b + (y-1)b"
3.D.1:
3,(c) = (1+y+y2+...+y2+...+yzi_1—1)b - (x+1)b"'
81(b')= (x-1)a
a,(b) = (y-1a.

1

We can use 3.D.1 to calculate Tor groups explicitly in this case. The
only ones we need are for the group of order 8 where the results are

given by the table.

Toro Torl Tor2 Tor3
S 22 Z/2 +z/2 ] 0 zZ/8
3.D.2 e
Z 2/2 z/2 zZ2/2 0]
-+
z z2/2 | z/2 2/2 {0
z | z/2 ] z/2 - z/2 |0
2 Fa F4 F, 0

§4. Evaluating the Swan obstruction for the groups Q{4p,g,1), p,gq odd
primes.

In this section we calculate the Swan obstruction for some of the
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groups Q(4p,q,1). We begin in 4.A. with partial calculations of the

local defects. The method is to do it separately for each p-block and
the maximal orders associated with it. As the methods and the results

are rather technical they are summarized in Table 4.A.11. Using 4.A.11
the reader can skip to 4.B. where the Swan obstruction is calculated

for these groups. Finally, in 4.C we give examples of specific calculat-
ions chosen mainly to illustrate the types of complexities encountered.
In particular, these examples imply all the results mentioned in the

introduction.

A. The local defects.

The p-blocks have the form

4.A.1: (a) C(z2/p) x TZ/2 X 7/2

(b) L(z2/p) x ;2/2

here C = 2, 2 (p.) or (% (p ))? and £% = -1, while L = 2
where = . or a. = =1, wWwnile =
p’ “p Pq o Pq n p !
M, (2 (o +o ") M, (2 (o))
or .
2% Pq Pq 217 Pq
The second case occurs in C and L if pV z -1(q) for some v, and the

third case occurs otherwise.

Lemma 4.A.2: The non p-primary part of the local defect of a block of
type 4.A.1. is

. -1
F (p +
p'PqPq )

in cases 2 and 3 in C or L and F in the first case.
p

Pa
Proof: Let R be the maximal order for 4.A.1 in QE>éb { ). Then R contains

N = CG&T 72/2 x TZ/2 or L(Z2/2) as a direct summand, and
R=N®M

A
where M is the maximal order in 6p® C(pp) X TZ/2 x Z2/2 or Qp ®L(pp)

X W2/2.

T

Let J be the Jacobson radical of the block B, then
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BlJ ~ N/J

and hence the local defect C away from (p) for B is obtained from the

diagram
4.4.3: TR L S YR RSN SV L
Pye L2o1

NH1T' AT

Thus, factoring out by imB/J simply identifies N/J with its image
under Py o 29 1 in M/J. Finally, observe that any element in one of
the Jacobson radicals is p-adic so contributes only p-torsion to the
local defect.

At 2 the situation is slightly more involved.

There are 3 types of blocks.

C X H
(@) p,g T "2

(b) Cp X, Hz

A
(c) Z20H2)
A
Here C is 2 or 4 <copies of Z2(p ,p_ ) and C_ is one or two copies
A

of Z_(p.)

~
Lemma 4.A.5: The local defect for the block Z,{H,) is Z/2 and the

2772
generator corresponds to <3> at the trivial representation (hence is

in the image of T).
(This may be directly obtained from the calculations of [6], [8].)

Lemma 4.A.6: The 2 primary part of the local defect for a block of

type 4.A.4 (a) is zero.

Proof: A block of type 4.A.4 (a) has a maximal order M4(U) ® M4(m

where O is one of 2.(p_,0 ), Z.(p +p =1 p 5 0 o e
2 [ ) Y, Z.¢ + or
p’'"q PP g 2 Uprgt g )
~ 1

Zz(ppq+ppq ). The two idempotents for these representations are
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1 2 2 A

= _ = = = tak
> (y -1) e , (v™ + 1) e, .- Suppose CP:q (Zz(pp,pq)), and take
o

1+2a 0 0 O
1+2a 0 O
2e_a+ 1+ 0 @ , I
- 0 o 1 o0
0 0 90 1
which has the image (N(1 + 2a),1). But since the 4 possible extensions

A
of 22 which form the centers are all unramified, the units of the center

»
are all obtained as norms of units in Zz(pp,pq), and 4.A.6 follows. A
A
) .

Finally we evaluate the local defect for 4.A.4(b).

similar argument holds in case C = (Zz(pp,pq

Lemma 4.A.7: The 2 primary part of the defect for 4.A.4(b) is

A -1 +
(Zz(pp +p - )/m) . The generators come from the representation

2
CP XTZ/2 (t” = 1), and are represented by units of the form 1 + 2V.

The relation with the maximal representation in the block is, in case

c =2 (o)

1+ (o +2) (1- 1) €% 1 + 2(a + a)
A 2
and in case c =2z _{p ),
—_ 2 "p
T+ (@ + i B) (1 - 1)e—>1 + 2(a +1).

Remark 4.A.8: The non-triviality of the local defect in this case is
crucial to the calculations, as without it it would be routine to evalu-
ate the Swan obstruction. Thus the reader is advised to check the proof

of 4.A.7 most carefully.

Proof: The maximal order for 4.A.4(b) is

" _
4.A.9: Mz(d) ® M, (&) @® M (1
A -
when, in case Cp = %2(pp)' ﬁ': Z2(pP + Dpl)
=3 -1
22(94 + D4p)
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A
while if c_ =3z (Dp)2 § -

2" 4p
Also
C x ®.)/3 = M_(2/2(p_ + 0_1)) or M_(z/2(p )).
p T 2 2 p P 2 p
Thus
* 2
c, *¥M, = M) (F) @n, (1 [y-1,2] @my () Le-1 %4, 2(y-1] @ .
writing it in filtered form. 1
[
The 2 primary component of SLZ(F) =( = W and since we are
0 1

only interested in 2 torsion it suffices to analyze the image of

1 « 2 (iv)
Do+ B(y-1) + 8 + 8 (y=1)° + Briva(y-1) + O a s ... ).
1
. . 1 2 1,.2 .
Next, using the idempotents 5 (y -1), §(¥ -1) we find that
4.a.10 ¢/ 5 % a/ 5 X o/ o)
m m m

surjects only the 2 primary defect. Then we use in turn each of the
S remaining generators (y-1),2, etc., to obtain alltthe relations in
4.2.10 and complete the proof of 4.A.7.

We summarize the results of §4.A in the following table
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~

z
p
z
AP
z
‘e
z
g
Zy

~
zn
Z

Zy

Block
- +
(z/p VTZ/Z)
(z/p XTZ/2)
” +
(z/q XTZ/b)

(Z/q XTZ/2)

- -1
M, (Zp(oq%q N/ *p2/2)

. -1
1"12(2(1(c>p+pp ))(Z/q *p ZR2)

(op) XTHB

(cq) *rHg

()

2,4 (2/p) X B,

~ t-_
2,60, (2/2) " B,

2,(p,-P2) pH g

-1
. -1 +
F -+ x F +,
Z(Dp Dp ) 2(pp Dp ),

; -1 -1+
F + xF +
2(pq fq ) 2(0q Pq )

Representations
-+ -1+
z ,Z , M2(2(0p+(0p ))

R — .
Z ,2 , MZ(Z(Dp+pp »

AR MZ(Z(QqﬂJ;l))+
7, 2T, wy e

My (200 b0 )T 1y (200 ton )
M, (Z( ot 0 0 1))
M, (2(o+o 1)
My (2G040 1))

W, (2C o7 T, o %0 )
My (z (ot 1)

-1..—-
M, (Z (o + W
5 ¢ (opop)) b

-1+
M, (Z(o 40 "))

I
M, (Z(p +p W
22 *e )

I e
2, T, 0,2
W W

q Psq

W W

P P.q

-1

q))

-1
M, (Z(o +p: ", ¢ to
45 TPp 0 My

W
D.q
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Remark 4.A.12: wris the maximal order in
Q(pr) XTHS
2
£ =-1
and W is the maximal order in
r
H
Q(qu) xT 82
t =-1

B The Swan Obstruction.

Let us consider ®(12,5,1). The local defects may be presented in

an array as follows

4.B.1 z/3 = B(B (H)) /2 = E(B,(H)) z/5 = E(BS(H))
2/3 = E(By(H)7) Z/5 = E(Bg(H)")
2/2 = E(8,(2,(0,) (B )
P 2/ = E(Zy () ()
1;9 2/5
236 %= - 2/5¢t% = -1y
%9(y2 = -1) 77502 = -1y

The last 2 rows correspond to the blocks of type 4.A.4(b) and 4.A.4(a)
respectively, which at odd primes are obtained from the blocks of type

4.A.1(b) with Y2 = -1 or 4.A.1(a) respectively.

Remark 4.B.2: Lemmas 4.A.2 and 4.A.5 together imply that im T is precise-

ly the first row of 4.B.1, and we have

Lemma 4.B.3 : The units in xow 2 of 4.B.1 may be identified with the

corresponding units in row 1 on factoring out by global units.

Proof: Take the global representation

)) . Its units go to the generators of Z/5 in row 2,

to some elements in F, x (Z/2)2 and to Fg‘ But the corresponding units

- + .
of Mz(Z(p5 + p51)) hit F5 on row one and are identified with the images
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of M2(Z(p5 + p;l)) in rows 3 and 4. The same argument works for

-1

M (Z(p3 + p3

5 ).

Thus, since the Swan obstruction is in D(@H)/T, we may ignore the
first two rows in 4.B.1. But these rows contain all the information from
the 4 copies of Z. Now, by 2.B.5, the only remaining Mi which give
torsion give it only for 2,3, or 5 separately.

We now describe the Swan obstruction. Choose periodic resolutions

of BBGH), BSGH), Bz(m), which can all be chosen of the form
A € A
p A > A2 > A2 - A > ZP and otherwise, on the higher blocks the re-

zZ
solution locally are

id id

Now, the complex of maximal order is

(i-1) o GE-D
(a) ) — 2 Do I
& -1 e
4.B.4 2 2 -1
2-(p_+p ") O
) SN P P
‘b) MZ(Z(DP + Py N =A,6-= 0 1
and
A—34 A A—2 A
& . e
A—1d A

Then, using §2.C. we have 04(Q(12,5,1)) given by

4.B.5 * * *
* *
-1 -
2=p_~ I_n = 1
57Ps <R30,
-1
2-egm0y
g —p-1
2-05-05
2 2
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-1

Additionally,03+p;1: -1 and on Fa, 2 = -1 so 2—05—0;1=-DS (pg—l)/(DS-l).

2 - 2
Also, at level 4, Pt 1p52at Z(p20) xTZ/2‘t = -1 has norm

2+ 1p, - 1p;1

which is congruent to 2 mod the maximal ideal over 5.

At level 5 note that pg + p;zis the image of 22 + yz~2 (in the

notation of 3.B) which, at the maximal representation goes to

Pg 0 05 0

0 0;2 0 o
‘052 0 o§ 0

0 -p;' 0 p;z

and the determinant of this is (p; + 9;2)2= 2 4+ ps + p;l .

At level 3 and in the 2 local part

2
-2 -
o2 + o5 0 P5 = Ps x
2 -2 .
z +yz 0 p;2+ ) Pg ~ Py

* * *
* *
—2+p5+og -3
1
1
1 1
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Actually, the procedure outlined above is general and we have

Theorem 4.B.6: In EPQ Eq OEZ the lift of the Swan obstruction (04)

for p(4q,p,1) can be chosen to be

% * *

* *
B

-1 ~1
-2 +p + im(-2 + + )
im( pq pq ) 111:( OP Op

1 1

-1.2 -
+ N
(oq + °q ) (pp P

C. Examples.

Proposition 4.C.1: The Swan obstruction 04(8) for W = @(12,13,1) is

Zero.

Proof: In 2(913) the ideal (3) splits as (3) = P1 P2 P3 P4 and these
are interchanged in pairs by conjugation. Hence the image of —2+pl3+pI

at the 2 primes over (3) in 2(013 + p;;) are respectively

-1 2 _2
T2 4 pyg v Pyy and =2 4 pig 4Dy

-1
+ =
but Z(p13 013)/1’1 F27 and we have

3 9
03 21\ /&0.-1\ /o..-1
-1 13 13 _
N1+ 015*% P13) = 013( -1) ( 3 ( 5 =1,

1+ S ; 4 similarly for 1+p2_+p -
hence p13 p13 1s a sguare 1in F27 an similarly (o] 013 p13 .
3 th
Again 37 = -3(13) so -3 is a square but not a 4 power mod (13).

Note in particular that 2 is a primitive generator mod (13) and

1
3
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-1.10 _ 1.2
(P13 * Pi3

) = —3(p13—1). Now use the unit (013 +p 13) at
M. (Z( v o7l si it s it 1 (1 + p5. + 075 equal
5 p13 p13 . Since it is a square i eaves Pqs p13 q

= -1.-2
to a square and sets -3 = 1. The only remaining obstruction is (013+01§)

at level 5. But this is a square in each F27.

Hence, an odd multiple of OBGH) is trivial. But there is an ortho-
gonal, free representation of Q(21a,b,c) in 0(8) (see e.qg. [22]),
hence 203(m) = 0 and 4.C.1 follows.

In marked contrast to 4.C.1 we have

Proposition 4.C.2: The Swan obstruction 03(m) for the group (12,5,1)

is non-zero.

Proof: We begin by noting that all global representations at levels 4

| . R 2
and bare guaternionic ate . This is evident for Q(p4p) xTZ/Q& =-1,

and proved in [11] for the faithful representation. Hence, the global
units which occur for them must be positive at all infinite places.

The centers in guestion are

_ -1 _ -1 _ -1
Ky =00y T Pyl Ky = 000y 0p0), Ky = 0005+ PgT)
U(K1)= Z x z/2, \J(K2) -z X Z2/2, VO (KB) =2 x 2/2.
Lemma 4.C.3: a. The generating unit of VU (Kl) is positive at all in-

finite places, and N(p3 + lpgl) is an odd power of this generator.
2
b. The positive elements of WU (K2) are generated by U (K2) B
-1
N(p5 + 105 ).

2
c. The positive elements of L)(KB) are U(K3) .

Proof: Consider the units of Q(pn) as compared with those in the max-
imal real subfield @(p +p;1). By the Dirichlet unit theorem the ranks
of the torsion free parts are equal, and H. Hasse [7} has proved index
{torsicon free part U(Q(on + 9;1))} in {torsion free part \3(Q(pn}))

is 2 if n is composite, and one if n is a prime power. In particular,
-1
P

represents this extra unit. Clearly, its norm is positive, and evidently,

for n = 4p the extra unit v has the property v = iv. Hence, pp + ip

a nom=-square. This proves (a).
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To show (b) we check the signs of the quotients pp + lp;l/p;

lp;J = Aj. These are invariant under conjugation, so contained in the

real subfield, and we easily check that the signs are independent for

a suitable subclass of them. Thus, the Aj and N{(v) generate U (Kz) up

to odd index, (b) follows.

(c)

so
-1
5

-1+/%
is similar, but easier. p + P = =5 has norm -1. Hence,

5

the signs of its infinite embeddings are (+,-).

We now return to the proof of 4.C.2.

2
of 4.B.6. An element Aj changes

-1 -2 -1, -2~ 4
(05 + Pg ) to (p5 t Py ) (A) .
But in F9 (DS + p;l) has order 8 since taking norms gives
o.~1
-1 -1{ "5 -
4.c.4: N(pg + pc7) = N | og (95_1) = -1
R , -1,- . -1
Thus, the only possible element for removing (QS t Py ) is (95 + 95:

in \J(K3). But at 5 this is 4 =-1(5) and these are no remaining global

" units to convert this -1 to a 1. 4,.C.2. follows.

For 9(12,5,1) the Swan obstruction was non-zero in level 5. Our

next example shows the obstruction can also be non-trivial in level 3.

The Swan obstruction o, (H) for ¢(12,7,1) is non-

Proposition 4.C.5:

zZexro.

3

A A
Proof: Referring to 4.B.6, and noting that 93(p7) has degree 6 over 93,
we apply a calculation analogous to 4.C.4 to show that an odd multiple

of OB(H) is represented by

.6

Look at the level 4 and 5 part

2
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-1
We must, as before, study units, this time for K4 = Q(p7 *+p 7 )

-1
and K5 = Q(028 + 928)' We have

Lemma 4.C.7: a. The units of K, are generated up to odd order by

4
-1 3 -3
p7 + D7 ’ 07 + 07 , =1

o . . 2 -1
b. The positive units in K, are generated by (L)(KS) ), N(p7+1p7 ))

(a) is well known, see e.g. {3], and (b)) follows as in 4.C.3.

Now, we cannot use -1 to cancel the -1 in 4.C.6, as we easily

check. Moreover, the effect of N(p7 + 19;1) at E has already been not-

2
ed, and the remaining positive units of K5, being squares, have no effect.
-1 3 -3

Hence, the only remaining candidates are Py + o7 + Py + g However
- ’

a calculation analogous to 4.C.4 shows

-1 3 -3
N(p7+p7)=N(p7+p7)=1

from F27 to F3 and 4.C.5 follows.
Remark 4.C.8: A similar calculation in the case of @(12,11,1) shows
g(H) is non-zero in this case as well. As the details are similar to

those in 4.C.3, 4.C.5 we omit them.

Remark 3.C.9: In view of Wall's result that all remaining p-hyperelement-
ary periodic groups of period n have on(H) = 0, we see that for hyper-
elementary groups of order less than 280 = ]Q(20,7,1)| the only groups
with On(ﬁ) # 0 are Q(12,5,1), @(12,7,1), ©(24,5,1) and Q(12,11,1).(Note
that Q(24,5,1) © 9(12,5,1) as a subgroup so restriction shows its Swan
invariant is non-zero.)

In addition, we obtain an infinite number os composite groups with
non-trivial Swan obstruction, for example 9(12,5,q), ©(12,5q,1) etc.
But at present we don't have an infinite number of groups Q{(4p,q.,1) for

which the obstruction 03(m) vanishes.

Remark 4.C.10: The theoxem in the introduction follows from 4.C.9 and

Wall's results [22].

Remark 4.C.11: Further progress in these gquestions would seem to in-

volve identifying some odd index subgroups of V(@ _)) and (9l 1),
Pp Pap
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but these appear to be very difficult problems.
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THE CAPPELL-SHANESON EXAMPLE

by R. James Milgram,

Stanford University

Introduction

In this note we shall be considering the quaternion group
Qg = {X,y|x2= y2= (xy)2}, denoting it by w. From [6] we have that

ﬁO(Z(n)) = Z/2 with generator the Euler characteristic of the trivial
Z (1)-module %Z/3, which we denote <3% '>.

From e.g. [5] we have that L?(Z(n)) = Z/206Z/2 with a
canonical non-zero c¢lass [A] given by the image of the non-trivial
class in ﬁev(Z/Z;ﬁo(Z(n))) in thg Ranicki-Rothenberg exact sequence.

Now, m acts freely on S~, and in [2] Cappell and Shaneson
prove that the surgery obstruction in LT(Z(n)) of the map

I.1 Ixf : 83/mx kYT 2l /p 5432

is non-trivial, and given by [A], with f representing the
simply-connected Kervaire problem. However, their proof proceeds by an
intricate "peeling" argument, and it has seemed desirable for a number
of reasons to have a purely algebraic proof of their result.

In the current volume Jim Davis' paper ([3] is concerned with
this question, and provides a general recognition principle by which
one can decide if a symmetric Poincaré strué&ture on a chain complex
(necessary for the application of the surgery product formula of [7])
is "geometric". Also Hambleton and Ranicki in as yet unpublished joint
work have obtained other algebraic proofs based on "peeling".

In this note we first construct a 3-dimensional chain
complex C, of f.g. free Z(n)-modules and a chain eguivalence
& :C3_&—*—+C*. We then analyze the class of ¢ in ZEZMn)(C*EC*> and
note that this class determines ¢ up to chain homotopy. Comparing this
class with that of the diagonal chain map gives that ¢ is the base map
of a suitable symmetric Poincaré structure on C,, so taking the product
of (C,:¢) and the algebraic Kervaire problem gives an explicit quadratic
Poincaré complex whose surgery obstruction is that of I.l.

This problem is then quickly evaluated (the procedures used
here may have independent interest) and the Cappell-Shaneson example
is the result. Indeed, by way of illustrating this last comment the
final section indicates how to extend these results to the remaining

compact space forms.
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A. The complex C, and the map ¢

There is exactly one chain homotopy class of finitely
generated free Z(m)-module chain complexes with the homology of 53
(since the set of such classes is given by U(Z/8)/<tl,imT> = {1},
with T the Swan subgroup, see e.g. [4]). A representative is given in

[1] and is specified as follows

A.l i Ci Generators 3
0 Z(m) a o
1 Z(Tm)®7Z (1) b (x-1)a
b' (y-L)a
2 ZATYBZZ(T) c (1+x)b -~ (y+1)b'
c' (xy+1)}b + (y+1)b’
3 Z(7) | e (x-1)c - (xy-1)c'

Then C* is specified by the formulae

A.2 $(c*) = (x3-l)e*

Slc'*)y = —(yx-1l)e*

S(b*) = (1+x°)c* + (yx+l)c'*

J(b'*) = —(y +lyex + (x>-1)c'*

s(a*) = (x3—l)b* + (y3—l)bV*
The chain equivalence ¢:C3_*——)C* is given by the equations
A.3 b(e*) = a

o(c*) = -x°b

o(c'*) = —(yb+b")

0(b%) = (yx-(y>+1) Q+x))e’ + (2y°-y)c

d(b'*) = x—lc'

$(a*) = (2y3-y)e
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B. ¢.is the beginning map inh the Mishchenko-Ranicki symmetric structure
on Szfﬂ
The set of chain homotopy classes of Z(7m)-module chaih maps

—-%
$ 3

> Cy

is in 1-1 correspondence with H3(ZE (C4RBC,)), where Z(m) acts on

Z{m)
C,BC, via the diagonal map

B.1 A ZEm)——> Z(M)RZ (1) = Z(1x7w) ; gr—>gRI .
This is well known, see e.g. [7].

Proposition B.2 H3(ZEZHH)(C*®C*)) = Z®7Z with generators A,B (say)

and the projection p:C,RC,—7ZR (C,RC,) induces an injection

ZZ(m)
Py ¢ H3(C*®C*) _— H3(Zﬂz(ﬂ) (CLRCL))
e®l + 1Re +——8A , eRlt+——>B .

Proof: There is a spectral sequence converging to H*(ZEZZ“”(C*EC*H
with

Ef 5 = Hj(7,H (CLBC,))

S0 E? 5 # O only for j = 0,3,6. Moreover H4(ﬂ,Z) = 0, so
r’

d, =0 : E —E and H3(Z@ZZ

4,0 0,3 (CLRC,)}) 1s given as an

(m)
extension

i
B.3 0O —>E o> H

0,3 ek (C,BC,)) —> E, ,—>0

3( 7ZZ(m) 3,0

where E = ZO®Z and E = %Z/8. Moreover 1 in B.3 is the map p,-
0,3 3,0

To determine the extension in B.3 note that the geometric
diagonal d:83~——$ S3><S3 is m—equivariant, sc that there is an

algebraic chain approximation .such that the diagram below commutes

9
C, - C,RC,
B.4 Py P
Vo
9
Z&Z(W)C*-—->ZZEZ(“)(C*®C*) .
But H3(C*) = Z and HB(ZEZHH)C*) = Z , with Po* multiplication by 8.

On the other hand d,:H5(C,)-—>H,(C,RC,) sends the generator e to
e®l + 1Re, and B.2 follows.

[1
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Corollary B.5 The map ¢ defined in A.3 is chain homotopic to the map

corresponding to the diagonal in B.4. More exactly [¢] = a*(f) where f
(Z® Cye) e

is a generator of H

3 Z(m)
Proof: Tt suffices to show that [¢] € H,{C,BC,} is d,(e) from B.2. But

this is the case if and only if

(6) 4 @ H>(C) ——5H_(C)

is dual to (¢), : HO(C)————+H3(C) and both are isomorphisms. This is

easily checked and the result follows since the desired symmetric
structure on C, restricts to the class of the diagonal map in degree O.

[

Remark B.6 In this case the class of the lifting in B.4 determined the
class. In general this is not true as there may be many classes in
Hn(zxzmﬂ)(c*ﬂc*)) which lift to the same class in Hn(C*EC*). (Here

"class" means d#,a# and "lift" multiply by the order of 7).
{1

C. The evaluation of the surgery obstruction fér I.1

Proposition C.1 Let 1 be a finite 2-group, and suppose C,,D, are

finitely generated free Z(1)-module chain complexes, with a chain

equivalence A#:C*——+D*. If Z/Z@Z(T)C* and Z/ZEZ(T)D* both have trivial

boundary maps then X# is an injection. Moreover, for each i Di/im)\i

is a finite odd torsion module.

Proof: Since A# is a chain isomorphism

A ot H (Z/2R,, o C) ——>H, (Z/28,, D

*)

(1) (1)

is an isomorphism, but since Z/Z@Z(T)d = O in both complexes it
follows that

/28 Z/28 c, ——> z/28

i 72 (1) z (1) "1

is an isomorphism for each i. Now apply Nakayama's Lemma and C.l
follows.

[

Corollary C.2 Let (D,}) be the (4i+2)-dimensional quadratic Poincaré

complex over Z with Kervaire invariant 1,

D2i+l = Zew Dj O for j # 21+l

1 1 .
= 21+1
1l’o--< >:D
o 1

and consider the product (4i+5)-dimensional gquadratic complex

il

il

zezZ —>D Zeu ,

2i+1 ©

c.3 (CLBD, 68Y) .
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The chain equivalence

1 —%
c.4 oRY - g*mp* : (C,&p) T 5 coap

is an injection in each degree with odd torsion cokernel.

Proof: A direct application of C.1.

In dimension O

3 —l+2y—y3 -1
Ay = 0BV - ¢ RY* =
© © 2y—y3 —l+2y—y3 ,
while in dimension 1
X +2y—y3 x3 * *
2 2y—y3 x3+2y—y3 * *
A= 0,8V - ¢TmyR =
0] 0] x+1 1
O O X x+1

Hence the order of an odd torsion quadratic form representing the

surgery obstruction of the product (C,RD,¢8Y) is
: 2 3
det(¢1®W‘-¢ ®$*)/det(¢o®w"¢ BY*) '

where det(8) means the class ¢f O in K, (Q(m)). Restricting to the

five irreducible representations of 7 we have the table

Representation ++ +- -+ -- Q
C.5 XO 1 3 1 3 73
xl g -3 1 4 -3 73 .

Hence the form in question is represented by a torsion module of order
9 at the trivial representation and O at all other representations.
Since the form is SKEW SYMMETRIC this must be Z/3®@%Z/3 with each Z/3
a torsion lagrangian.

But this torsion class exactly represents the image of the
class <3++> from ﬁev(z/Z,ﬁo(Z(n))) in L?(Z(ﬂ)) and we have proved that
the surgery obstruction for I.1 is non-trivial.
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D. The algebraic evaluation of the surgery obstruction for other space

forms

Let T be one of the groups Z/im or
22 2
an = {x,yl X = y° = (xy)7}, so that T acts freely preserving

2m+1 4n+1

orientation on the sphere S in the first case or S in the second.

Each such action corresponds to a finite chain complex with the chain
homotopy type unambiguously specified by the first k-invariant Kivl of
the resulting quotient Sl/T. (See e.g. [4] for discussion and references).

For these compléxes C{T,K Proposition B.2 generalizes,

m+l}
and the only change in the statement is

D.1 p, (e®l + 1Re) = |1|a

D.1l together with C.1 provide an effective method for determining the

obstruction. When T = Z/2m here is the result.

Proposition D.2 Let T = 2/2m and_suppose C(T,u2n+2) is the Z (1)-module

chain complex of dimension 2n+1

x -1 X X x-1 z x-1
ZzZ(T) > Z (1) > ... > Z(T) ——Z(T) — > Z(T) ———>Z (1)

2n+1-*

with Poincaré duality chain equivalence ¢:C(T,u2n+2)

—%C(T’u2n+2) r

for some unit u in the ring Z/2n.Then

a. For n+l odd 0((C(T,u2n+2),¢)®Kervaire) = 0 € L2n+3(Z(T)) P

b. For n+l even 0((C(T,u, ,.),¢)8Kervaire) 7 O € L2n+3(z(r)) and has
non~trivial image in Lg(Z(T)) = Z/2 .

Proof: The geometrically induced ¢ is such that ¢O = id. and

¢2n+l = (—)n+l.id. Hence a suitable ¢ is given by the table
dimension ¢
0] id
1 l+x+...+xm—u—l
2 (m-u)
5.3 3 -(m-u)x T
4 - {m-u}
5 (m—u)x_l
6 (m~-u)
7 .
2n (-1) Pt (1ex Tl ek (mmuml)y
2n+1 (-1) Pt .
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Moreover (C*,¢) satisfies the conditions of C.1, so
. +
D.4 (C*®Kerva1re,¢®¢~(—l)n l@*EW*)

satisfies the hypothesis of C.1 as well. Hence the answers come from
evaluating the alternating product of the images in Kl of the

(0,80 - (-1)"*Tos

* ] 1 1 =
2n+l—i®w ) through dimension 1 =n.

This calculation is direct. The matrices which appear are

u-1
( o 1 > in degree 0, ( © Lixt. . +x ) in 1, and
- / =

Tex+..+x97 0 0

-1
u( 1-x 1 —l) otherwise. The result is alternately

2 -1 -2
u (d-x _+x )(§ n+l even

(14x+..+x971)2

D.5

{(l+x+..+xu—l)2} n+1 odd

The odd case clearly gives 0. For the even case we check at the trivial

. . N
representation and the -1 representation r_(xl) = (-1)

+ -\
D.6 (uz 3u2)

which represents the non-trivial element in Lg(z/2m).

obtaining
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A Nonconnective Delooping of Algebraic K-theory
by

*
Erik K. Pedersen and Charles A. Weibel

Abstract: Given a ring R, it is known that the topological space
BGl(R)+ is an infinite loop space. One way to construct an infinite
loop structure is to consider the category F of free R-modules, or
rather its classifying space Bf , as food for suitable infinite loop
space machines. These machines produce connective spectra whose
zeroth space is (B§)+ = ZXBGI(R)+ . In this paper we consider
categories Qo(g) = F, gl(g),... of parametrized free modules and
bounded homomorphisms and show that the spaces (Bgo)+ = (B£)+,
(Bgl)+,... are the connected components of a nonconnective

N-spectrum BC(F) with xiBg(F) = Ki(R) even for negative i.

0. Introduction.

Given a ring R, let E be the category of finitely generated
free R~modules and isomorphisms. Form the "group completion"
category E-lg of FE (see ([G]); it 1is known that its classifying
space Bg_lg is the algebraic K-theory space BGl(R)+ X2 . The purpose
of this paper is to produce a nonconnective delooping of BGl(R)+

XK _(R) by using the parametrized versions g (E ) = E , G ;(E ),... of

E sgiven in [P]. Our main result is this:

Theorem A. Write B, for the classifying space of the category

Q-lg , except that Bo = BGI(R)+ . Then thé spaces Bi are connected,

and for 1 2 0 we have

OB ., = B;XK_,(R).

* Partially supported by an NSF/grant
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~

Thus the s8sequence of spaces Bi = BixK—i(R) forms a nonconnective

~
Q-spectrum B with homotopy groups

~
x; (B> = K, (R) , i any integer.
~
In particular, the negative homotopy groups of B are the negative

K-groups of Bass [B].

Actually, we work in the generality of a small additive
category A, rather than just with the additive category JF of
finitely generated free R-modules. For example, one could take {,
the category of finitely generated projective R-modules. The
category (# is the idempotent completion of F, and we recover the

lp is BGL(RD™

same spectrum g if we replace ¥ by (. Note that BE-
XKO(R) , where B is the category of isomorphisms in (V.

Given f, we consider the additive categories Ci(ﬂ) of Zi-graded
objects and bounded homomorphisms (see section 1 for details). If
A = F this definition specializes to the groups Ci of [P]. Let 81 be
the idempotent completion of Ci(A) , and let A , 91’ § be the
subcategories of isomorphisms in §, Ci and Ei , respectively. Our

second result is this:

~
Theorem B. Write B, for the classifying space of the category
~alA -1
€, &4 and B, for the classifying space of C."C. . Then
~ ~
0Biey = By

~ ~ +
0" B, = B = "group completion" (BA ) of Bj .

i o
~
The connected component of Bi is Bi (except for i=0 ), and the
-~ ~
sequence of spaces Bo’Bl"" is a nonconnective Q-spectrum. In

~

particular, Bi is an i-fold delooping of (BA )+ .

The outline of this paper is as follows. In section 1 we give
the definitions of the Zi-graded categori Ci(ﬂ) . In section 2, we
recall the passage from categories to spectra, and review the main
points of Thomason's paper [T] that we need. In section 3, we prove
Theorems A and B.

The authors would 1like to thank Bob Thomason for his lucid

exposition in [T], which clarified a number of technical points.
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The second author would also like to thank the Danish Natural
Science Research Council and Odense University for its hospitality

during the writing stage.

l. The categories Ci.

In this section we give the definition of the categories Ci(ﬂ)
associated to a small additive category f. We also review the
notions of filtered additive categories and of the idempotent

completion of f for the convenience of the reader.

Definition 1.1. An additive category f] is said to be filtered if
there is an increasing filtration

F (A,B) € F;(A,B) G...C F_(A,B) G...
on Hom(A,B) for every pair of objects A,B of f. Each Fn(A,B) is to
be a subgroup of Hom(A,B) and we must have VU Fn(A,B) = Hom(A,B). We
require 0A and lA to be in FO(A,B), and assume that the composition
of morphisms in Fm(A,B) and Fn(B,C) belongs to Fm+n(B,C). We also
assume that the projections A®B - A, and inclusions A - A®B and
coherence isomorphisms all belongs to F . If ¢ is in Fd(A,B) we say

that ¢ has filtration degree d.

The reason for concerning ourselves with filtered categories is
that the categories Ci come with a natural filtration. Of course
.every additive category has a trivial filtration, obtained by
setting FO(A,B) = Hom(A,B).

1

Example (1.1.1). Given a 2-graded ring A such as R{t,t "], let A

be the category of graded A-modules. We can filter A by legislating

that homogeneous maps of degree +d have filtration degree d.

We now give our definition of the filtered category Ci. Let the
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distance between points J = (jl""’ji) and K = (kl""’ki) in Z1 be

given by

13-K1 = max |3 kg1

Definition (1.2). Let 4 be a8 (filtered) additive category.We

define Ci(ﬂ) to be the category of Zi-graded objects and bounded
homomorphisms. This means that an object A of Ci is a collection of

objects A(J) in f, one for each J in Zi. A morphism ¢ : A - B in Cf
of filtration degree d is & collection

$(J,K) : A(J) - B(K)
of p-morphisms, where we require ¢(J,K) = 0 unless [J-K| € d. If 4

is filtered, we also require each ¢(J,K) to have filtration degree
€ d. Composition of 4 = A - B with ¢ : B > C is defined by

(¢‘°¢)(J’L) = z ¢(K,L)°¢(J,K) -
K
Note that composition is well-defined because only finitely many

elements in this sum are different from 0. It is easily seen that

e (A = A

Example (1.2.1). If F is the category of finitely generated free

R-modules (with trivial filtration), the category C,(¥) is the same
as the category Ci(R) constructed in [P}. In that paper it was

proven that

K€, (R)) = K_,(R) , 13 0.
This indicated that ei+l might be a delooping of K-theory, and was
the original motivation for this paper. That it cannot be exactly

the case follows from (1.3.1) below.

Example (1.2.2). Since Ci(ﬁ) ig filtered, we can iterate the

construction. It is easy to see that

€ (8 (A = €5, CA) .

However, if we forget the filtration on Cj(ﬂ) this is no longer the
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case.

Remark (1.2.3). If V is any metric space, we can define a category

CV(A) in a way generalizing the case V = 2. an object A of &, is a
collection of objects A(v), one for each v in V, subject to the
following constraint: for every d > 0 and v, A(w) # 0 for only
finitely many w of distance less than d from v. Morphisms are
defined as for Ci. It is easy to see that if V = Ri then Cv is
naturally equivalent to its subcategory €;-This shows that the
difference between Ci and Ci+1 is the rate of growth in d of the

number n(d,J) of points K within a distance of d from J.

Example (1.2.4). If we take V = (0,1,2,...) then we will let E_(4)

denote CV(A). This is the full subcategory of Cl(ﬂ) whose objects
satisfy A(j) = 0 for j < 0. Similtarly, if we take V = (0,-1,-2,...),
we will write E€_(f) for €, (A). We can identify €, (4) N €_(A) with A

in the obvious way.

There is a shift functor T : Cl(ﬁ) - Cl(ﬂ) sending A to TA
with TA(3j) = A(j-1), and T restricts to an endofunctor of C+(A)-
There is an obvious natural isomorphism t from A to TA in both Cl
and €,- We include the following result here for expositional

purposes, and will generalize it in section 3 below.

Lemma (1.3). Every object of €, (f)) is stably isomorphic to 0. In

particular, the Grothendieck group KO(C+) is zero.

Proof. Given a in e let B =5 T" a. That is,

+.
B(j) = A(§)BA(F-1)®...9A(0). It is clear that AHTB = B.The result

follows from the observation that t : B  TB is an isomorphism in
C+(ﬂ).
Corollary (1.3.1). If 1 # 0 then every object of Ci(ﬁ) is stably

isomorphic to 0. In particular, Ko(Ci) = 0.

Proof. By (1.2.2) we can assume that i = 1. But every object of
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Cl can be written A+$A_ with A+ in € and A_ in €_. Hence KO(CI) is

+
2 quotient of K (& )@OK_(Z_) = 0.

Here is a quick discussion of idempotent completion, as applied

to the Ci construction.

Definition (l1.4) (see, e.g., [F, p.61]). Let A be an additive

A
category. The idempotent completion f of 4 has as objects all

morphisms p : A - A of 4 satisfying pz = p. An g—morphism from p; to
Py is an A-morphism @ from the domain A1 of P, to the domain A2 of
Py satisfying ¢ = p2¢p1. It is easily seen that E is an additive
category and that Hom(pl,pz) is a subgroup of Hom(Al,Az). Hence E
inherits any filtered structure that f might have. There is a full

-~
embedding of f in f sending A to 1 if this is an equivalence ogf

A
categories, we say that 4 is idempotent complete.

Example (l.4.1). The idempotent completion of the category F of

free R-modules is equivalent to the category () of projective

R-modules.

Lemma (1.4.2). The categories fJ and Ci(ﬂ) are cofinal in their

~ ~
idempotent completions f and Ci(ﬂ). Moreover, Ci(ﬂ) is cofinal in

e, (A)-

Proof. This is an easy computation. For example, if p is an object

of Ci(a), define q by q(J) = 1-p(J). Then p®q belongs to &, (4).

To compute the K-theory of f, we need to know which sequences
are "exact": a different embedding of # in an ambient abelian
category will result in a different family of short exact sequences
(see [Q]). In particular, we cannot talk about chi(ﬂ) unless we
know which sequences in €, are "exact". It is not clear what the
notion of "exact" should be, unless either (a) all exact sequences
in f split (we insist the same is true of Ci), or (b) A is embedded
in an abelian category E closed under countably infinite direct sum

(for then Ei is embeddable in E). In either case, it follows from
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(1.4.2) and Theorem 1.1 of [Gr] that

~ -~
K. E(A) = K& (A =K EMA , n2l.
Note that our proofs of theorem A and B only apply to situation

(a).

Example (1.5). Let p_ be the idempotent natural transformation in

Cl(ﬂ) given by
(6p : A4, b (50 = {§

Given an object A of f. let A_ denote the image of p_ on the

if i=kx <0
otherwise

constant object A(j) = A of CI(A). Thus A_(j) = 0 if j > 0 and
A_(j) = A if j € 0. The map t is an endomorphism of the constant
object A = TA; write s for the restriction of p_t to A_. Then

l-s : A_ > A_ is both a monomorphism and an epimorphism in CI(A),

but not an isomorphism. This is because its "inverse" £s™ is not

bounded. In particular, CI(A) can never be an abelian category, even

if A is.

We conclude this section with the following result, which
provides motivation for our Theorem B. It is also a consequence of
Theorem B. Since we will not use this result, we merely sketch the

proof.

Proposition (l1.6). If all short exact sequences in A split, then

K (€, (A)) = Ko(&,(A)). In particular, K,&, () = K (A).

Sketch of proof. This is proven in section 1 of [P)], modulo

terminology.

First of all, we can assume that ﬂ is idempotent complete and that
i = 0 by (1.4.2) and (1.2.2). The map from KO(A) to chl(ﬁ) sends
the object A of f to the shift automorphismt of the constant object
A(j) = A of Cl(ﬂ). The map ¢ : Kl(Cl) - Ko(ﬂ) is defined by sending

the class of o € Aut(A) to the difference (for d » 0) in KO(A)

2d 2d
#Ca) = [Cap_a"1)C @ A - (p_C ® A .
4m-2d j=-2d

If a has filtration degree less than d, one shows as in [P,(1.11)]
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that this map ¢ is well-defined and independant of d. Clearly the
composition is the identity on KO(A). The proof of (P, (1.20)]

applies to show that ¢ is monic, which proves the proposition.

Example (1.6.1). Again, let F be the category of finitely

generated free R-modules. Then for i 2 1 we have

K €. (R) = 0 but K _E,(R) = K& . ,(R) = K_,(R).

Note: Example (1.6.1) follows from (P}, not from (1.6).

2. The pasage to topology.

In this section we recall various results on the passage from
the categories fj, Ci etc. to infinite loop spaces and spectra. We
also recall Thomason's simplified double mapping <cylinder from

section 535 of [T]. We urge the reader to consult [T] for more

details.

A symmetric monoidal category § is a category together with a

functor @& : SXg -8 and natural isomorphisms
a : (A@B)SC = AP(BHC)

Y : A®B = BHA .
These natural isomorphisms are subject to coherence conditions that
certain diagrams commute. We refer the reader to (Mac] for a more

detailed definition, contending ourselves with:

Example (2.1). If f is an additive category then f is a symmetric

monoidal category under & = direct sum. The subcategory A of the
isomorphisms in f is also symmetric monoidal under & = direct sum.
It follows that Ci(ﬁ) and its category (,(f) of isomorphisms are

also symmetric monoidal.
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There is & functor Spt from the category of small symmetric
monoidal categories to the category of connective ()-spectra (i.e.,
sequences of spaces Xn with Xn being (n-l)-connected and with
Xn = 0N Xn+l ). This functor satisfies

(a) A functor 4 - B preserving @& up to coherent natural
transformation , a "lax" functor, induces a map Spt(A) =——— Spt(B)
of infinite loop spectra.

(b) The zeroth space Spto(é) is the "group completion” of BjA ,

the classifying space of the category §-.

The construction of Spt is basically due to May and to Segal,
and Spt is wunique up to homotopy equivalence. See {a]). One

description of Spt may be found in the Appendix of [T}.

Lemma (2.2). Suppose that A > B is a lax functor of small
symmetric monoidal categories, and that BA - BB is a homotopy
equivalence of topological spaces. Then Spto(é) - Spto(g) is a

homotopy equivalence.

Proof. See (2.3) of [T].

Lemma (2.3). Suppose that 4 is a full, cofinal subcategory of the
small symmetric monoidal category B. Then the connected components

of Spto(é) and Spt(B) are homotopy equivalent.

Proof. This is wellknown. The point is that

Hy[Spt_(A)_ ] = colim H, B Aut(A)
A€A

= colim Hy B Aut(B)
BEQ

= Hul[spt (B)_ ] .

Lemma (2.4) (Quillen). Let § be a small symmetric monoidal category

in which all morphisms are isomorphisms, and assume that all

translations S® : § > § are faithful. Then there is a category §_l

s
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whose objects are pairs (SI’SZ) of objects in §, such that B§_1§ is

homotopy equivalent to Spt°(§).
Proof. See [{G, p.221) or p. 1657 of [T].

Corollary (2.4.1). If A is a small additive category, let A denote
1

the category of isomorphisms in 4. Then Bé- A is homotopy equivalent

to Spto(é).

Example (2.4.2). Let R be a ring for which Rm = R"™ implies that

m = n, and let E be the category of finitely generated free

R-modules and isomorphisms. The basepoint component of g-lg has

objects R™ = (R™,R™) and

m+n)

Hom(R™,R = G1 (R)

m+n 1m+n(R).

X G
Gln(R)
In particular, Hom(O,R™) 1is Glm(R). The family of the Hom(O,R™)

gives a map from BGl1(R) to the basepoint component BGI+(R) of BE—IE

The main ingredient in the proof of Theorem B is the simplified
double mapping cylinder construction of R.W. Thomason, described in
(5.1) of ([T)]. Let A be a symmetric monoidal category with all
morphisms isomorphisms and u : A->B, vVv: A > strong functors of
symmetric monoidal categories (i.e. functors preserving direct sum
up to natural isomorphism). Define P = P(A,B,L,u,v) to be the
category with objects triples (B,A,C) with A an object of A, B of B,
and [od of G- A morphism (B,A,C) - (B',A',C") is a S-tuple
(¢5¥1s¥,,0,V) where U,V are objects of 4, ¢ : A = UBA'®V,
¢, ¢ Bdul - B' and ¥, : COVV > C'., U and V may be varied wup to
isomorphism. Composition of (¢,¢1,¢2,U,V) : (B,A,C) » (B',A',C")
with (J,@l,iz,ﬁ,G) : (BY,A',C') - (B",A",C") is given by

A X UBA'QV X (USU)GA"®(VOV)

BOu(UBU) = (B@uU)@ulU) - B'@ulU - B"

1

v(VeV)I®C = vVVVEC » vVec' - C"
and direct sum in P is induced by direct sum in 4§, B and ¢. We then

have
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Theorem 2.5 (R.W. Thomason [T,(5.2)) . Up to homotopy the diagram

Sptoé —— Sptog

P

Sptog ——— Spto=

is a pullback diagram.

3. The proof of Theorem A and B.

In this section we prove Theorems A and B. We make the standing
assumption that f is a small filtered additive category and that j
is the (symmetric monoidal) category of isomorphisms of f. Similarly
we write C., C, and ¢_ for the categories of isomorphisms of Ci(ﬂ),

€,(A) and €_(A). The idea is to show that the diagram

|

) e |>

|

1

induces a pullback diagram of spectra, and to use the following

result:

Proposition (3.1). Spto(g+) and Spto(g_) are contractible.

Proof. By symmetry it is enough to consider ¢, . Recall from the
discussion before (1.3) that there is a shift functor T : g+ - Q+

and a natural transformation t from A to TA. The category ¢,  has an

%
endofunctor Z T with

s 3
(Z T YA(H) = eao A(j-n) .

n=0 n=
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00 n
(Recall that A(j) = 0 for j < 0 .)We can define X T similarly. The
n=]
2] n
natural isomorphism t induces a natural isomorphism t from Z TA
n=0
o0 n ©0 n o« n
to L T A. But as endofunctors of g, we have 1 @ £ T =% T .
n=} n=1 n=0

Hence as self-maps of the H-space Bg, we have

00 n ) noo,
1 ~(% T)Y-((Z T)=20.
n=0 n=1
This shows that B is contractible. But then Spt°(§+) is contractible

by Lemma (2.2).

~ ~
Proof that Theorem B implies Theorem A. Write Bi for Spto(gi).
~
Since we have xo(Bi) = K-i(R) by (1.6.1) and since translations are
~ ~
faithful in Qi’ it follows that Bi is homotopy equivalent to

-~
BixK—i(R)' Since QBi - QBi’ the result is now immediate.

We now begin the proof of theorem B by making a series of

reductions. Since

"o (B,) = x Spt_(4,) = K_(4,) ,

connectedness of the B for 4 # 0 follows from (1.3.1). Now 91 is

i
-~
full and cofinal in Qi by (1.4.2), so by (2.3) the connected space
~ -~ -~
B1 = Spto(gi). By construction (or by (2.4.1)), Bo - Spto(é) is the
~ .
group completion of BA. Thus the proof of Theorem B is reduced to
-~
= B

~
showing that QB for i 2 0.

i+l i
-~ AN A
Next, observe that Ci+l(ﬁ) - CICi(A), so that
~ ~ ~ ~ ~
Bisp = Spt (G (8 (A)) and B, = Spt (&, (4)).
~
Since we can replace f§ by Ci(ﬂ), it is enough to prove that

-~ -~ ~
o] Bl = Bo - Spto(ﬁ).There is also no loss in generality in assuming
that ﬂ is idempotent complete, since
>~ ~ ~ "~
Q B, = 0 Spt_(C,(A)) = 0 spt_(g,(A))
by (2.3). In fact, by (2.3) we also have

a spt_(G,) = 0 spr_(g,) -

Therefore, Theorem B will follow from:
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Theorem (3.2). Let § be a small, filtered additive category which

is idempotent complete. Then 0 Spto(gl) is homotopy equivaleat to

Spto(é).

Lemma (3.3). Let 4 be a small filtered additive category. Recall
that ¢, and ¢_ are subcategories of o5} whose intersection is j. Let

E be the simplified double mapping cylinder construction applied to

A = C_ and A > g+. Then [0] Spto(g) is homotopy equivalent to
Spto(é).
Proof. This is immediate from Thomason's Theorem (2.5), since by

(3.1) the spaces Spto(g+) and Spto(g_) are contractible.

By the universal mapping property of P (see p. 1648 of ([T]),

there is a strong symmetric monoidal functor I : P > ¢ This

= =1
functor is defined on objects by

Z(a7,A,8%) = a-eaea,

where A~ ,A,A" are objects of

g

g+, and C_, respectively. A morphism
(¢_,¢,¢+,U-,U+) in P from (a”,a,a%) to (B7,B,BY) is sent by E to the

composite

g tOWOL L vTeteyt
A QAPA — A QU GAOU A ——————— B DOBOB .
Theorem (3.4). Let A be idempotent complete, and let E be the

double mapping cylinder of Lemma (3.3). Then the functor E : f - g,
induces a homotopy equivalence between the classifying spaces BP and
BG, -

Note that Theorem (3.4) immediately implies Theorem (3.2) by (3.3)
and (2.2). Thus we have reduced the proof of Theorem B to the proof

of Theorem (3.4).

Proof. We will show that this functor satisfies the conditions of
Quillen's Theorem A from [(Q]. Fix an object Y of €13 we need to show

that Y|E is & contractible category. To do this, we use the bound d
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for Cl(ﬁ) to filter Y|{Z as the increasing union of subcategories
Fil,, and show that each Fil, has an initial object *d' Therefore
Fild is contractible; their union Y|L must also be contractible by
standard topology.

The category Fild is the full subcategory of all

1

a: Y - Z(A-,A,A+) where both ¢ and o ° are bounded by d. Define Yd'

Y; and Y; in A, ¢_ and C,_ respectively by setting

= ¥Y(-d)®...8Y(d) in &

=X

Y(3) if j < -d , and = 0 otherwise

Y

Y(j) if j > -d , and = 0 otherwise.

a+ ol

The obvious isomorphism ¢ : Y = Y;@YdQY; in Ql is bounded by d, and
- + .
forms the object *d : ¥ o Z(Yd,Yd,Yd) of Fil

is an initial object of Fil .

s *
d° We will show that d

Given the object a : Y - 2(A_,A,A+), we have to show that there
is a unique morphism

n o= (et e (Y, e ((Y ) (Y5, Yy, YY) - (aT,a,a)
in B so that E(p) = (1(7-1 in ;. Let pr_, pr, pr, be the projections
of Z(A_,A,A+) onto A, A and A+, respectively. Since a'l is bounded
by d, a-l(A) is contained in Yy, or rather in the image a_l(Yd) of
Yd in Y. Hence it makes sense to let e be c;va—l(pr)tuy"l restricted to
Yd’ and it is c¢lear that e is an idempotent of Yd. Similarly,

aa—l(A_) is contained in Y;QYd, and a_l(A+) is contained in YdQY:.
Let e_ and e, be a(J,-l(pl.'_)a.or_1 and au"(pr+)aa-1 restricted to Yd.

These maps are also idempotents of Yy and it is easy to see that

e_ + e + e, = 1. Since § is idempotent complete, the composition

Yy 2 e (Y,) @ e(¥y) & e (Y,)
makes sense in J. Define ¢y to be the composite

Y, = e _(Y)) 6 e(¥y) 6 e (v,) —8IL, o (v )ea0e, (1)

Similarly, define maps

-1
VAR Y; @ e_(Yd) L9 __, A" in C

-1
¢t e (1) @ vy 22— At in g
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This completes the definition of the map 2 : (Y;,Yd,Y;) - (A-,A,A+)

in P. By definition of I we have ZE(pn) = aa_l. Because all maps in 4,

¢_ and ¢, are isomorphisms, it is an easy task to verify that p is

the unique map with ZT(p) = aa_l. It follows that *d is an initial

object of Fild. Q.E.D.

-3
>

n overview,

To place our construction in perspective, it is appropriate to
review a little history. The definition of the functors K_,(R) was
given by Bass [B] in 1966 during an attempt to formalize his
decomposition of Kl(R[tl,tIl,...,tn,tgll). In 1967, Karoubi [K-1]
gave another definition of K-i(R) by defining K—i(ﬂ) for any abelian
category. A third and fourth definition of K-i(R) were given
independantly by Karoubi Villamayor [K-V] using the ring S(R) and by
Wagoner [(W-1)] using the subring u(R) of S(R). Happily all these
definitions were shown to agree by Karoubi's axiomatic treatment in
[K=-136].

In 1971, Gersten [Ger] constructed a nonconnective delooping of
K (RI)XBG1T(R) using the fact that OBG1T(S(R)) = K_(RIXBG1*(R).
Wagoner (W-2] then constructed the (Q-spectrum Ko(ui(R))xacl+(ui(R))
and showed that the inclusions g(R) - S(R) induced an equivalence of
spectra. To our knowledge, nonconnective deloopings of the K-theory
of other additive categories besides ¥ has not been studied until
now.

The construction in [P] is very much in the spirit of the early
definitions of the K—i(R)’ but works for any additive category.
Needless to say, an open questiom in our work is whether or not the
QBQCn(ﬁ_)A yield a nonconnective delooping of any (idempotent
complete) additive category with exact sequences. A major difference
between the categories Ci(ﬂ) and Karoubi's categories Siﬂ is that SA
is defined as a quotient of the flasque category CA (see [K-136])

while Cl(ﬂ) may be viewed as an enlargement of the flasque category
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C+(A). It would be interesting to see if the natural inclusion of Cf

in C+(ﬂ) could be made to induce an isomorphism between K-groups.
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Introduction

In this paper we develop a hybrid sort of algebra, whose morphisms involve paths
in a space. The primary purpose is to elucidate and extend the algebra with € estimates
developed in [3, 4-4, 1]. The setting is also fruitful for investigating relationships

between the topology of a space X, and the algebra of R[n{X] modules.

The first section presents the definitions of geometric R-modules on a space, and
their morphisms. We show that by allowing appropriate "homotopies® of morphisms we
can recover either ordinary R[m,X] homomorphisms of free modules, or € homomorphisms
of geometric modules. Then we show that if K — X is a map from a CW complex to a
space, the cellular chains of K can be seen in a very natural way as a geometric chain

complex on X.

Section two gives decompositions of R{#n] chain complexes, corresponding to
amalgamated free product decompositions of #. The approach is to geometrically realize
the free product structure as the structure induced on the fundamental group of a space
X by a codimension i subspace Y. Then we use the egquivalence of i.1 to represent chain
complexes by geometric ones on X. Intersections of the geometric structure of the
complex with Y then show how to decompose the complex. The main purpose of this is to

illustrate the technique, which we anticipate will apply to algebraic K and L theory.

Finally in section three, geometric versions of the Whitehead group are defined.
These are shown to be the obstruction groups for the thin hi-cobordism theorem, a con-

trolled version of the usual result.

Bection 1: Geometric modules and morphisms

Suppose that X is a topological space and R a ring. A Geometric R-module on X is
defined to be a free module R[S] and a map of the basis f:8 — X. We require that
geometric modules be (ocally Ffinite in the sense that every point in X has a neigh-
borhood whose preimage in 8 is finite. So for example a geometric module on a compact

space has a finite basis.

A geomelric morphism of geometric modules is defined to be a locally finite

Partially supported by the National Science Foundation
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algebraic sum of paths between generators. More specifically suppose :5; — X are
bases for geometric modules, i = 0,1. A morphism h:R[Sg] — R[S] is a sum EmJAJ- where
mJeR and Ajis a path. The data for a path consists of elements %;e5; and a map A:[0,t]
—t X with Al0)=fq(xp) and Alt)=F,{x,), Here t is a real number tz0. Finally we require that
for each yeSy there are only finitely many paths Aj starting at y which have nonzero

coefficient.

In a morphism we allow deletion of a path with coefficient ¢ (or conversely

insertian of such a path). We alse identify (m+n)a with (mAY+(nA).

We describe how to compose two morphisms. If § = EZmjaR[S¢] — R[Sz}, and g =
znkuk:R[SO] — R[S, then g = Z(mjnk)(AJuk). The sum is taken over all pairs (j,k) such
that the end of x; is equal to the starting point of A in §y. The Moore composition of
paths is used: given a:[0,t] — X and «:[0,u] — X then Awx:[0,t+u] — X is defined by
Ax(s)=x(s) for szu and ax(s}=als~t) for sru. Notice we are writing compositions of paths

from right to left, so that it will agree with the notation for composition of functions.

The composition is associative, angd there is a unit (the unit in the ring times the
canstant paths defined on [0,0)). Geometric modules and morphisms therefore form a

category. This is not a directly useful cateqory because there are too many paths.

There is a forgetful functor from geometric morphisms to ordinary R-module
homomorphisms, defined by forgetting the paths. Explicitly, if h = EmJAJ:R[SOJ ~— R[S§]
then we can define an R-homomorphism h*:R[S3] — R[S;1 by h'(s) = Zi(zjmj)ti. Here the
outer summation is over t;e5y, and the inner summation is over Jj such that the path Aj
goes from s to ty-

We will define several notions of "homotopy" of geometric morphisms. The goal is
to obtain useful intermediate stages between the rigidity of geometric morphisms and

the laxity of ordinary algebra over R.

1.1 Unrestricted homotopy of morphisms A homotopy of a morphism is
obtained by changing all the paths in the morphism by homotopy holding the endpoints
fixed. Since we are using Moore paths, a "homotopy" is allowed to change the interval
on which the path is defined. Form the category whose morphisms are homotopy classes
of morphisms of geometric R-modules on X. We claim that if X is connected and locally
{-connected then this category is naturally equivalent to the category of free R{m X]
modules, with a restriction on rank. (I X is compact, the modules are finitely generated.
If X is noncompact and separable the modules are countably generated, etc.) To simplify

the discussion assume that X is compact.

Let ¥ denote the universal cover of X, which exists since X is locally i-connected.

Given a geometric module R[S], with map S — X, form the pullback
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0D e— 0N
5¢ 4— 5}

then the action of #;X on g gives RI5) the structure of a finitely generated free R{mX]
maodule.

Next suppose that EMJAJZR[SO] — R[Si] is a morphism of geometric R~modules on
X. The paths lift into the universal cover to give & 'an equivariant family of paths from
§o to §1. This defines a lift of the morphism itself to an equivariant morphism R[go] —
R[§i]. Forget the paths to get a R{n(X] homomorphism.

Notice that there is a unique homotopy class of paths between any two points in %
s0 no information is lost in forgetting the paths in the lifted morphism.

Now we go the other way, from n X modules to geometric modules. To a free module
Rn,X3[S] we associate the geometric module R{8], with § — X the map to the basepoint.
To a w(X homomorphism Em;p; with pjem X, choose representative loops & for p; and

form the geometric morphism Zm;«;.

It is straightforward to see that the constructions are inverses, and define an
equivalence of categories. The benefits of thinking of X modules this way are explored

in section 2,

1.2 € homotopy Suppose X is a metric space, and €>0. We say a Aomatopy h:¥xl
— X has radius less than € if for each yeY the arc h(yxI) lies in the ball of radius ¢
about h(y,0). In particular this gives a notion of € homotopy of morphisms of geometric
modules. This notion is most useful when the morphisms themselves are small. We say
a morphism has radius less than € if each path Ay in the morphism lies in the ball of
radius € about its starting point A;(0),

Notice that € homotopy is not an equivalence relation: the composition of ¢
homotopies has radius at best 2¢. In fact the situation is often worse than this. If X is
not compact then it is necessary to use control Functions €:X — (0,0)y (in which case
the ball of radius € at x means the ball of radius €(x)). When € is a function the
composition of two € homotopies may be much larger than 2e. We describe how to deal
with this in section 3.1.

1 the paths in an € morphism are discarded, we get a homomorphism :R{5;] —
R[S,] with the property that if we write f'(s;} as z'“i..itj then the coefficient m,j is zero
if tj is not in the e ball about s;. This is an € homomorphism in the sense of Connell and
Hollingsworth [3], and Quinn [4, 5]. Morphisms which are € homotaopic determine the same
€ homomorphism. As with ;X homomorphisms if X is locally 1-connected there is a

converse to this construction; at least in the appropriate € sense.
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Suppose X is locally {-connected. Then given €>0 (a function if X is not compact)
there is 8>0 such that any two points within & can be joined by a path of radius e. This
means paths can be chosen to represent a homomorphism of radius less than & as an €
geometric morphism. Similarly there is ¥ so that locops of radius less than y are
nullhomotopic by homotopies of radius less than €. This means that any two
representations of a homomorphism by geometric morphisms of radius less than y are €
homotopic. Together these observations imply that for sufficiently small y, ¥
homomorphisms determine geometric morphisms well defined up to € homotopy.

If X is not locally i-connected then this correspondence between metric and
geometric € theories breaks down. For many purposes it is the geometric theory which
is more fundamental. A precursor of geometric morphisms was developed by Chapman {1]
to allow non-locally {-connected control spaces X in certain controlled manifold

theorems, as in section 3.

1.2 Controlled homotopy This is a combination of {.4 and 1.2: suppose f:E
—+ X is a map, X is a metric space, and €>0. Consider homotopies of morphisms in E whose

compositions with f have radius less than € in X0,

Suppose f is a projection of a product XxY — X. If Y is locally {—-connected we can
use the universal cover as in 1.1 to obtain Rln,Y] homomorphisms of geometric modules
over X. If X is alsoc locally t-connected, then we can proceed as in {.2 to see that the
geometric theory of R-modules on XxY with € control in X is essentially equivalent to the

€ metric theory of RImyY]l-maodules on X.

In some more general situations we can generalize from the product situation and
think of geometric algebra on E with = control in X as being like R[ﬂif'i(x)] metric
algebra. In other words let the coefficient ring vary from point to point in X. In some
ctases (eg. if E is a “stratified system of fibrations over X", Quinn [5)) this can be made

precise. In general, however, it seems best to stick with the geametric description.

The controlled version will be applied in section 3.

1.4 Geometric cellular chains Suppose that K is a CW complex, and f:K —
X is a map. We interpret the cellular chain complex of K as a geometric Z complex over
X.

The cellular chain group C) (K} is the free abelian group generated by the k-cells of
K. To give this the structure of a geometric module we introduce notation for the cells
in K. Let KX denote the k-skeleton. Let 6_:DX — KK denote inclusions of k-cells, where
s is in an index set S, . Cp is then by definition Z[S)]. Define functions S, — X by
mapping s to 0eDK, applying 8. to get a point in K, and then applying f to get a point in
X. To ensure that this is locally finite we should assume something like: each peint in
X has a neighborhood U such that LU is contained in a finite subcomplex. Assuming
this the C; become geometric Z-modules.
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The next step is to define geometric boundary homomorphisms 8:Cy — Cp,_¢. In the
definition of a CW complex the maps of the k-cells carry the boundary into the k-i
skeleton: aeszsk'i — kK1, These are the attaching maps for the k-cells, so in fact Kk
is defined to be KX~ ! with cells attached by these 86 . If kx»1 then the boundary
homomorphism is defined by as; = Edi'jtj, where s;€8;, tf-sk—i’ and di,j is the degree of
the map 26_; on the cell Busz'i — kK1,

Assume that the attaching maps for the k-cells are transverse to the center points
of the k-1 cells. The inverse image (aes)“(ot) is then a finite set of points, and at each
point there is a sign +{ or -1 depending on whether 38 preserves or reverses arientation
at that point. The degree of 86_ on the cell @, is the sum of these signs. Define paths
in X by taking the radial lipe in DX from 0 to the peoints (665)'1(0t) and composing with
©g and f. The geometric boundary morphism is defined by adding up these paths times the
sign of 38 on the endpoint. It is clear from the construction that forgetting the paths

yields the ordinary boundary homomorphism.

The boundary 8:C4y — Cp is defined slightly differently, since degrees are not
defined for O-cells. The i-cells are arcs, and the ordinary boundary of a {-cell is
defined to be the beginning point minus the endpoint. The geometric boundary is defined

ta be the arc from the center to the beginning, minus the arc from the center to the end.

It is suggested that the reader draw a picture of a 2-simplex, and draw in the

geometric chain groups and boundary maorphisms.

Next consider the composition 3d. In traditional complexes this is equal to zero. In
the geometric context there is a homotopy to 0. To see this note that the center points
in the k~2 cells are codimension k-2 in KX72, in the sense that they have neighborhoods
which are products with DX™2, Form a i-complex in gk-1 by adding to these points the
rays to the centers of the k-1 cells. Since the attaching maps are transverse to the

centers, this 1-complex is also codimension k-2, except at the centers of the k-1 cells.

rays to centers

(k-1)-cells

Assume the attaching maps of the k-cells are transverse to this {-complex, The inverse

images in sk-1 are then i-complexes. The vertices are the inverses of the centers of the
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k-1 cells, There are arcs between these, and disjoint circles. The circles are not useful
to us. The cone on the arcs (union of radial lines from the centers of the k-cells) define

maps of 2-disks into K,

«— center of k-cell

These define a homotopy of 33 to 0. In more detail, each of these 2-disks can be

deformed to a map of a square into K. One vertex goes to the center of a k-cell, the
adjacent edges to radial lines to centers of (k-1)-cells, and the remaining edges go to'
radial lines in (k—1)-cells to the center of a (k-2)-cell (see the illustration above). This
is a homotopy between two of the paths in the composition 8d. Consideration of
orientations shows that these paths have opposite sign, so the pair of signed paths are
homotopic to a single path with coefficient 0. Therefore up to homotopy they cancel.
Finally it is not hard to see that each path in 89 occurs in exactly one of these squares,

so the entire composition is homotopic to 0.

This entire collection of data, geometric modules Cy, geometric morphisms 3, and

the homotopy of dd to 0, forms a geometric chain complex.

Note that if each cell in K has image of sufficiently small diameter in X then the
morphisms and homotopies in the geometric complex have radius less than e. Forgetting
paths then gives the € chain complexes constructed in Quinn [6, p.271). Passing to

unrestricted homotopy classes gives the classically defined Z[n;X] chain complex.

Section 2: Splitting of chain complexes

In this section we suppose that m is a group which is a generalized free product,
and construct corresponding splittings of chain complexes over Riw]. The result itself is
not particularly striking. Rather the proof is supposed to suggest benefits of the
geometric point of view even in purely algebraic situations. For example it may be that
the decompesition theorems for algebraic K-theory (cf. Waldhausen [7, 8] could be
obtained this way. 1 am told that early preprints of Waldhausen's work have

constructions similar to ones used here.
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Proposi tion Suppose 1 s a homotapy pushout of marphisms «:A — B of
groupoids, and the composition A — 1 is an injection on each component of A. Then
any finitely generated fFree RIn] chain compler is chain squivalent to a pushoul
a,b:E@, R{n]) — F&gRIn], where E, F are complexes aver Z{AY, Z[B), and a, b are chain

maps over « B.

Froof The homotopy pushout hypothesis on m means that there is a space (CW complex)
X with a subspace Y with a neighborhood homeomorphic to YxR. The fundamental group of
X is m, the fundamental groupoids of Y, X-Y are A, B respectively, and x, B are induced
by the inclusions ¥ — Yx(0,*ew) — X-Y. (Groupoids are disjoint unions of groups. Here
they occur as the union of fundamental groups of components of disconnected spaces, see
{732

Suppose that Cy is a finitely generated free chain complex over R[w;X]. Represent
Cy as a geometric R-complex on X. Tha data for this are bases 5; — X for the chain
groups Ci' geometric morphisms 8:R[5;] ~— R[5;_41, and homotopies aZn~0, For simplicity
we will assume that all paths in the morphisms are defined on the unit interval 1. The
homotopies then consist of maps of squares 12 — X; the (0,0) corner goes to an element

of 5,44+ the adjacent sides to paths in 9;4+4» and the remaining sides to paths in 9.

We will say that a geometric complex is "special” if the paths A:I — X have A MY)
either 1, {13, or ¢, and the homotopies h:1Z — X have h-1{Y) either 12. or properly

contained in 3(I2). We claim that such a complex splits in the desired way.

Suppose C, has this special form. Define E, to be the submodule of C, generated
by basis elements which map inte Y. E, and the restriction of the boundary morphisms
in C, define a geometric complex on Y; by hypothesis if a path in 8 starts in Y it stays
in Y. The composition a2 is homotopic to 0 in X, but the homotopies are squares with
entire boundary mapping to Y. Such squares are required to map to Y, so a? is

nullhomotopic in Y.

Next define F, by "doubling" E inside C: replace each basis element of C with image
in Y by two elements, with images yx{-1} and yx{+4} in YxR € X. The boundary marphism
is that of F in each copy of F, and unchanged in the rest of C except for paths which
terminate at a point in Y. Such paths by hypothesis intersect Y in only the fimal
endpoint. Just before the path hits Y, it is either on the + or ~ side of Y in YxRR. Push
the path off Y, to ;cerminate at the appropriate yx{ti}. The homotopies of 32 to 0 also

can be pushed off Y. F is therefore a geametric complex over X-Y.

There are chain maps a;b:Ey, ~— Fo defined by inclusions of the copies of E over
Yx{+1}. C, is the quotient of F, by the image (a-b)E,, hence chain equivalent to the
pushout. Passing to homotopy classes of morphisms gives complexes over RimyY],

Rln (X-Y)]. This gives the decomposition required for the proposition.
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The proposition therefore will follow if we show that an arbitrary geometric chain

complex on X is equivalent to a special one.

The underiying 2~complex of a geometric chain complex C, is formed from the
geometric data. The vertices are the union of the generators for the chain groups. The
edges are the paths with nonzero coefficient in ine boundary homomorphisms. The
2-cells are the squares in the homotopy @ 2,9. Denote this underlying complex by UC. The
maps of the pieces fit together to give a map UC — X. The underlying complex is filtered
by dimension in the chain complex; define U;C to be U(C,, #£i). Finally note that the

1-cells are oriented, in that one end has lower filtration than the other.

We say a filtered Z-complex mapping to X is “special” if $-MY) is a subcomplex, and
if the vertex of highest filtration of a cell is in 1Y) then the entire cell is also. In
these terms the proof of the proposition is reduced to: show that every geometric chain

complex is equivalent to one whose underlying 2-complex is special.

Assume, as an induction hypothesis, that the i-1 filtration U;_4C is special. By
small homotopy holding U;_y fixed we may assume that there is a neighborhood N of U;_
4 in U; such that N-U;_y € X-Y. Then we may assume that U;-U;_, is transverse 1o Y. The
inverse image will therefore be a 1-complex. Squares in U;~U;_4 intersect this

i-complex in arcs with ends on the upper edges, and circles.

«~—— vertex in Sy

B

=

inverses of Y
-—— a square

== vertices in Si-?;‘

The first step in simplifying the intersection is to note that if there is an arc with both

ends on one side of a square, then it encloses a disk in the square. We can push the edge
across this disk (draging along any other squares which share that edge). This operation
may generate new arcs and circles, but it reduces the number of intersections with the

edges.
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il

push across

By induction on the intersections with edges, we may assume there are no such arcs.

Next we eliminate the circles interior to each square. These circles map to Y, and
the map on the disk the circle bounds in the square gives a nullhomotopy in X. By the
hypothesis of injectivity of the fundamental group of Y, these circles are alsc
nullhomotopic in Y. Using the nullhomotopy in Y we can redefine the map to take the disk
the circle bounds to Y. This disk can then be pushed off Y.

These changes in the CW complex define changes in the chain complex. Note that the
edges, and therefore the boundary morphisms, are changed by homotopy. The homotopies
32,0 are changed by more than homotopy, but that is acceptible; only their existence is
part of the data.

Now consider one edge with vertex v in S;, and consider the point intersection
nearest to v of the edge with the inverse of Y. Let L C U; be the component of inverse
of Y containing this intersection point. We claim that the region in U; between v and L
is isomorphic with the cone v*L (see the illustration below). For this it is sufficient to
show that every intersection of L with an edge is the first intersection of the edge with
the inverse of Y. To see this, suppose there is one which is not the first. Choose a path
(=sequence of {-cells) in L from the intersection which is a first, to one which is not.
Somewhere in the path there is a single arc so that one end is a first intersection ang
the other iz not. This implies the existence of an arc with both ends on one edge, which

contradicts the earlier improvement.

Now construct a new complex U’; by inserting an arc between v and the cone on L. There
is a map U; — U’; defined by mapping the cone v#L to the arc. We modify the map U —
X so that U; — X factors through this map.
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cone an L

\ / /’ >

Choose a maximal tree in L, and a collapse of it to a vertex w. Let vw denote the edge

between v and w. Then the collapse defines a homotopy of the cone on the tree into
Lu(vw). The remaining edges in L define loops in Y which are nullhomotopic in X. The
injectivity hypothesis implies that they are alse nullhomotopic in Y. A nullhomotopy
gives a new map of the cone on this edge, inta Y union the image of vw. This factors the
map through U’. Push U’ off Y as in the picture above, to leave an intersection point with

the arc.

The next step is to define a new complex C’ equivalent to C, which has U’; as
filtration i in the underlying 2-complex. For this we introduce some notation in U’. Let
z denote the mew cone point, so the arc has been inserted between v and z. Let y denote
the intersection point of the arc vz with Y, and let vy, zy dencte the paths in vz from
the endpoints to y. Let D denote the complex with RIy] in dimension i-{, R[z] in
dimension i, and boundary {(zy). C’ will be defined by modifying the boundary homo-
morphisms in C&D,

Write 8:C; — Cj~y @8 8 = a+b, where a consists of the pieces of 8 whose paths pass
through L in Ujs and b is all the rest. Note that the homotopy a(a+bl~0 breaks into
homotopies da~0 and db~0: since L is an entire component of the intersection with Y,
any square in the homotopy with one edge on a path in a must have the other edge on a
path in a as well. Note a is defined on the module R[v]. Define a’:R[z2] — C;_ so that
a is homotopic to a‘lvz). We use this to construct isomorphisms of the chain groups of
C@éD, and define C’ to have boundary morphisms obtaimed by conjugation by these

isomorphisms. Explicitly C’ is the bottom line in the diagram:

(51 AN [a0]
—— Cy4yy ——— C;®R(2] —— ", C,_ @RIy] 4+ Ciop ——b
: o G s
——+Cjyy —— C{@R[z:) ———— 4 C,_,@RI[y] +Cyp +

[22a] s, 21 [a 0]
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The vertex y is special in C’, and there are fewer components of the inverse image of
Y in UyC’. Therefore by iterating the construction we can get a complex equivalent toc C

with filtration i special.

This completes the induction step, and shows that we can find an equivalent
complex whose entire underlying Z-complex is special. As indicated above, this implies

the propesition.

Section 3: The controlled h—cobordism theorem

The classical h-cobordism theorem states that an h-cobordism with vanishing
Whitehead torsion is isemorphic to a product. In the contolled version of this there is
a map to a metric space X, >0 is given, and we want a product structure such that the
image in X of each product arc lies in the ball of radius € about its beginning point.
Another way to say this is that the product structure has radius less than € as a
homotopy. We will see that the obstruction to this lies in a controlled version of the

Whitehead group.

The section begins with some generalities on control functions, necessary on
noncompact control spaces. Then ¢ Whitehead groups are defined, and the theorem is

proved.

3.1 Control functions Suppose Xis a metric space, and =:X — (0,0) is 2 Mmap.
If f,0:Y — X are functions then we say g is within € of + and write d(f,g)<e, if
d(${y),gly)) < e(fly)) for each yeY. Notice that this usually does not imply that d(g,f)«e,

and the triangle ineguality does not hold. To deal with this we introduce some notation.

Suppose «;@ are maps X — (0,c0), Define aHB() to be man{uaG)+B{y), di,y)zxbe). T4

«, B are constant then x#B = x+8.

It follows easily that if d{f,g)<x and d(g,h)<R then d(f,h) « x#B. Also for functions
o0y 3:8, x#(BHE) < (x#HBI¥E (both expressions are maxima of x(x)+B(y)+8(z), and more values
of 2z are allowed in the second expression). Denote by n¥@ the n-fold iteration of this
operation, with parentheses arranged to give the largest value. For example 4#B means
((BHEIHRIHB, and m#*(n*R)) = (mn)#R. [ B is constant then r#B is the ordinary product nB.

These expressions are usually used as upper bounds. Note that if an expression
with any arrangement of parentheses is an upper bound, then the largest arrangement is

an upper bound as well. This is why the notation n#8 is useful.

In the geometric algebra context note that if f,g are geometric morphisms with
radius less than «,8 respectively, and gf is defined, then gf has radius less than «#@.

Compositions of homotopies behave similarly.

3.2 Whitehead groups Suppose E is a space. The Whitehead group Wh(R[nED}

is defined to be the set of equivalence classes of isomorphisms of free based modules



193

over R[‘rriE]. The equivalence relation is generated by direct sums with identity
isomorphisms, and by composition with triangular automorphisms. In this context an
automorphism is triangular if there is an ordering of the basis of the module so that the
matrix expression is zera below the diagaonal, and the diagocnal entries are units in R

times elements of mE.

Usually a triangular matrix is required to have diagonal entries all equal to 1. The
group obtained with this definition is the reduced K-group ﬁi(R[ﬂiE]). The Whitehead
group is obtained from this by dividing by the subgroup generated by the automorphisms
of R[m,E] given by products (unit in R)(element of m4E). But this is equivalent to

allowing such products on the diagonal of triamgular matrices.

Using the equivalence of section 1.1 we can describe Wh(R[n E]} as equivalence
classes of geometric isomorphisms of finitely generated geometric R-modules on E. We

obtain a version with € control by adding € to this description, as in 1.3.

Suppose p:E — X is a map, and X is a metric space. A geomelric € isomorphism of
geometric R-modules on Eis a morphism of radius <€ (measured in X} with an "inverse"
also of radius <e, such that the compositions are € homotopic to the identity morphisms.
Unfortunately it is possible to have a morphism of radius <e which is an isomorphism,
but whose inverse has very large radius. Therefore the estimate on the radius of the

inverse must be included in the definition.

Suppose M = R[S] is a geometric R-module on E. A geometric morphism A:M — M is
(upper) triangular provided there is an ordering of the basis of M such that A has no
paths from t to s unless t<s, and if t = s there is exactly one path, whose coefficient

is a unit in R.

We observe that a triangular morphism is an isomorphism: it can be written as
D(I+B) where D is diagonal with entries a unit times a loop, and B has entries strictly
above the diagonal. D! is obtained by inverting the units and reversing the loops, and
{(I+B)-1 = I+ET(-B)i, where n is large enough so that BNt = 0. Note that the radius of the

inverse depends on the radius of the original, and this n.

We define a deformation of a geometric module to be a seguence AjA _y....Ay of
triangular morphisms. We write it as a product, and think of it that way, but actually
need to keep track of a little more information than is retained in the product. What is

needed is a refined version of the radius.

The underlying 1-complex of a morphism is the collection of paths which occur in
the morphism. We think of these as trees eminating from the basis of the module, by
identifying the beginning points of all paths coming from a given basis element. The
underlying i—cor\nplex of a sequence ApA; again consists of a tree for each basis
element: start with the tree for A, beginning at the element, and at the end of each

branch add a copy of the tree of A, which begins there. Trees for a sequence with n
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terms are built up similarly. We now say that @ seguence ApA_4...A has radius less
than e if for each basis element s the tree in the underlying {-complex starting at s lies
inside the ball of radius e(s) about s. As with the radius of isomorphisms, we must
require that the trees for the inverse sequence Al A-1,...A7 lie inside the € balls

about their starting points as well,

Notice that the paths which occur in the composition of the sequence are just paths
in these trees. The radius of the composition is therefore less than or egual to the
radius of the sequence. The difference is that in the composition we allow deletion of
paths when the coefficients cancel, whereas no cancellations are allowed in the

underlying {~complex, Therefore the radius of the composition may be strictly smaller.

Finally if A is a geometric morphism, an ¢ deformation of A is a composition DyAD,,

where Dy, Dy are = deformations of the range and domain modules of A.

Definition Suppose p:E — X (s a map to a metric space, and €:X — (0,0) is
given. Then WhiX,p,e) is defined to be equivalence classes of geometric isomorphisms
on E with radius <€ in X, with eguivalence relation generated by direct sum with

identity morphisms, and homotopies and deformations of radius < 3*e.

The next lemma shows this to be a convenient place to work. However, see the

comments following the proof.

Lemma Direct sum induces an abelian group structure on WhiXp,e). Further if &
icomorphisms are equivalent in this sense, then there is a 9%e deformation between

isomarphisms %€ homotopic to appropriate stabilizations of the originals.

Proof af the lemma Since direct sum clearly induces an abelian monoid structure, the
point of the first statement is that there are inverses. If A is an isomorphism there is

a matrix identity

G110 P10 %00 10 1 1 -0 9
If A is a geometric morphism of radius <€, the left side of the eguation is a 3#¢
deformation of A®A-1, (The left three, and right three, terms are triangular.) When the
left side is multiplied out there are terms like A-AA-1A, so the composition is actually
3#e homotopic to I®] rather than equal to it. This shows that A-l is a 3#e¢ additive

inverse for A.

Next suppose that there is a sequence A; of € isomorphisms, such that there is a
3#e deformation from A; to Aj,, and i goes from { to n+!. Consider the sequence of

deformations
- -1 -
Ay ~ ALBENIBD ~ A @ZNA; T 1@A) ~ AOENA;TIBA L) =

[EMA;@A;71I8A g ~ [EJUSDIBANL ~ Apyy.
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The first and last are stabilizations, the second and fifth are the 3%e deformations
which cancel inverses, and the third is the sum of the deformations A; ~ Aj,(. The
composition of these give a 9#e deformation from a stabilization of Ay to a stabilization

of An+i'

Usually there will be stabilizations in the deformations A; ~ A ,y. These are

easily incorperated in the above argument.

Remarks The point of the second statement in the lemma is that geometric control is not
lost by allowing arbitrarily many deformations. If we simply compose the sequence of
deformations Aj ~Aj,y we get a deformation of radius 3n#g, which can be arbitrarily
large. The method for getting a short deformation comes from Guinn [3, lemma 4.4]; its

use in this context is due to Chapman {2, theorem 3.5].

In general the groups WhiX,p,e) are quite mysterious. If € is much larger than & then
the image of Wh{p,8) in Wh{X,p,e) is sometimes more accessible. Chapman [2] gives
criteria for this image to be trivial, in terms of vanishing of ordinary Whitehead groups
of w4(p2(U)), for open sets U in X. In a more rigid setting (p a stratified system of
fibrations) but no condition on 'ni(p-l(U)), Quinn [S] shows the image to be a generalized

homology group of X.

3.3 Controlled h—cobordisms Suppose 8:X — (0s0) is given. Then a manifold
triad (WyagWyd W) with a map f:W — X is a (8,h)~cobardism if ¥ is a proper map, and

there are deformation retractions of Wtoad {W which have radius =8 in X.

The question we consider is: when does a (8,h)-cobordism have a product structure
W = (3;Wix] of radius <€ in X7 This has been considered at length in the literature; the

objective here is just to see the obstructions in geometric aigebraic terms.

Some local control of the fundamental group is necessary. For this fix a map p:E —
X. A map f:W — E is relatively 8,1 connected (over X) if for every relative 2-complex

(KyL) and commutative diagram

there is a map K — W which agrees with the given map on L, and whose composition with

f is within & of the given map into E, measured in X.

Theorem Suppose :W — E, p:E — X, and 8:X — (0,0) are given, so that pt is a
(8, h)-cobordism over X. Then there is a well-defined invariant qy{W,dW € WhiX,p,7#8)
which vanishes if W has a 8 product structure. Conversely there is a function k(n)

such that if nzé and qq{(W,3pW) = 0 then W has a product structure of radius < k(n)#§.
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Proaf This is theorem 3,4 of Quinn [S], with some minor refinements in estimates and
the use of geometric instead of metric algebra. We outline that proof. A similar
statement, with a more geometric definition of the Whitehead group, is given by Chapman
[2, 14.21.

Choose a handlebody structure on (W,3,W) with handles whose images in X have
diameter less than 8. By diameter less than 8 we mean here that if % and y are in the
set, then d(x,y) < 8(x), If W is smooth or PL such a handle structure can be defined from

a fine triangulation.

A handlebody structure has a spine, which is a CW complex structure on (W,35Wl.
For example the spine of a handlebody structure obtained from a triangulation is just
the triangulation itself. We require that the CW structure also have cells of diameter

less than 8. This is automatic if the handles are small enough.

We also require the CW structure to be saturated. This means that the attaching
map 8:87 —= K7 for an n+1 cell has image a union of cells. In other words, if a cell
intersects the image of ©, it is contained in the image. If the CW structure is a
triangulation it is automatically saturated. In the topological case it is not hard to

arrange saturation.

The saturation condition is used to push things rapidly into skeleta. Suppose that
K — X is a saturated complex of dimension n whose cells have diameter less than 3 in
X. Suppose h:L — Kis a maps L a j~complex with j<n. L can be pushed off the n-cells of
K, to obtain a map hp-y of L into the n-1 skeleton with dth,h,_4) < & (measured in X, as
always). Similarly we can push L off the n-{ cells, and repeat until we have hj mapping
L into the j-skeleton of K. Since L has been moved n—j times, in general we only know
that d(h,hJ-) < (n-j)#8. However if K is saturated, then a point which is moved out of the
interior of a cell in one push stays in the image of the boundary of that cell during later

pushes. Therefore d(h.hJ-) < 8.

Choose a 8 deformation retraction of W to 33W, h:Wxl — W. Put the product CW
structure on (WxI,(3pWixkD). Use the fact that the structure on W is saturated to get a
deformation retraction h’ with dth,h") < &, dth’;h) < &, and which preserves skeleta. In

particular note that images of cells under h’ have diameter < 3#3.

Apply the cellular chain construction of 1.4 to obtain C, = Cu(W,35W), a geometric
chain complex of radius <8. The deformation retraction h’ defines a chain homotopy s:Cy

— Cyyq of radius =3#8, such that sd+ds is 4#8 homotopic to the identity map of Cy.

Cansider the morphism (sas+asa):£(J even)cj — Z(J- Ddd)cj' This is a 9#8 isomor-
phism; it has radius <7#8 and the same formula from odd j back to the even ones is a ?%8

inverse. We define q{W,3,W) to be the equivalence class [sds+asa] in Wh(X,p,7#8).

The first step in proving the theorem is to show the invariance. If s’ is another 4%§

chain contraction then s’ is 4%8 homotopic to s+(s’sd-3s’s). Using this we can write
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(s’d5’+ds’d) as (I+D)(sds+dsd), where for example D = dss’dss’dsds. D raises dimension in
Z(j og)Cj 50 1+D is triangular. It has radius less than 3(9)#8 so is an equivalence in

WhiX,p,9#8). This shows that q is independent of the deformation retraction.

Now suppose there is another handle decomposition of (W,3pW) satisfying the
conditions above. Then there is a 1-parameter family of handlebody structures, all of
diameter less than 8, joining them. In this family the handles can change by isotopy,
cancelling pairs can be introduced or be cancelled, and handle additions can occur.
Isotopy changes the chain complex anly by homotopy. The other changes occur at isclated
points in the parameter arc. Choose points between these and apply the construction.
This gives a seguence cof 9%8 isomorphisms, with adjacent ones related by homotopy and
a single modification. Cancelling pairs change the complex by addition of an identity
morphism. Handle additions change the boundary morphisms by product with a triangular
morphism, so change the isomorphism in the same way. We conclude that adjacent
isomorphisms in the sequence are equivalent, hence the ends are equivalent in
Wh(X;p,9%8).

This shows that q is well defined. If W has a & product structure then the product
structure is a handle structure with no handles. The chain complex is therefore trivial,

and the invariant equal to 0.

The converse is essentially proved in section &6 of Quinn [4), which is independent
of the rest of that paper. The estimate there is kin) = {5443n)N, but this can be improved

quite a lot using the "saturation" idea above.

The idea of the proof is to first show that (W,33W) has a handlebedy structure with
handles only in two adjacent dimensions. In this case the boundary morphism between
the geometric chain groups is an isomorphism, which when mapped to E represents *q.
The hypaothesis that gy = 0 implies, by the lemma in 3.2, that there is an &1#8
de_for‘mation of the image of the boundary morphism to the empty morphism. This
deformation takes place in E. Since W — E is relatively (&,1)-connected, the paths and
homotopies of the deformation lift back to give a deformation in W. The proof of [4,

section 6] then shows how to use such a deformation to cancel the remaining handles.

This completes the sketch aof the controlled h—cobordism thearem. We remark that
recent work of M, Freedman and the author shows that this theorem also applies to
S5-dimensional topological h-cobordisms, provided the local fundamental groups are
‘poly~(finite or cyclio)®.
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THE ALGEBRAIC THEORY OF TORSION I. FOUNDATIONS

by Andrew Ranicki,

Edinburgh University

Introduction

The algebraic theory of torsion developed here takes values
in the absolute Kl—group Kl(A) of a ring A, with & torsion invariant
T(f) € Kl(A) for a chain equivalence f:C——D of finite chain complexes
of based f.g. free A-modules with zero Euler characteristic.

Whitehead [24] defined the torsion 1(C) € Kl(A) of a
contractible finite chain complex C of based f.g. free A-modules,
assuming (as we do here) that A is such that f.g. free A-modules have
well-defined rank: The algebraic mapping cone C(f) of a chain
equivalence f:C———>D of finite chain complexes of based f.g. free
A-modules is a contractible chain complex, so that the torsion
T(C(f)) € Kl(A) is defined. However, the expected sum formula for the

composite gf:C —+D ——E of chain equivalences f:C——D, g:D —E
T(C(gf)) = t(C(£f)) + 1(C(g)) € Kl(A)
only holds in general on passing to the reduced Kl-group
Ky (d) = coker (K (Z) ——K (A)) = K (A)/{1(-l:A—>a)} .
The reduced torsion of the algebraic mapping cone
T(E) = T(C(f)) € K (B)

is the torsion invariant usually associated to a chain equivalence f.
In particular, the Whitehead torsion T(f) €Wh(m) (m = ﬂl(X)) of a
homotopy equivalence f:X——Y of finite CW complexes is the image of
T(F:c(X)—aC(¥)) € I?l(z[n]) in the Whitehead group
Wh(m) = KI(Z[W])/{iN}. The theory of torsion developed here can be
used in certain circumstances to lift the Whitehead torsion to an
absolute torsion invariant T(ffe Kl(z[n]), which enters into product
formulae for Whitehead torsion.

The Euler characteristic of a finite chain complex C of

f.g. free A-modules is defined as usual by

x(€) = ] (-)'rank,(c) € z

fh~718

The complex C is round if
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The assumption on A that f.g. free A-modules have well-defined rank
ensures that KO(Z)-——aKO(A) is injective, so that the Euler

characteristic may be identified with the absolute projective class
x(C) = [C)] € Z = KO(E) < KO(A)

The absolute torsion of a chain equivalence f:C ——D of

round finite chain complexes of based f.g. free A-modules is defined
in §4 by a formula of the type

T(f) = 1(C(f)) + Bt (-1:A——>A) € K, (A)

1
with the sign term B = O or 1 depending only on the ranks (mod 2) of
the chain modules of C and D. It is quite reasonable that a Kl—valued
invariant should only be defined when Ko—valued obstructions vanish!
Actually, the absolute torsion is also defined if C,D are such that
the Euler characteristic is O(mod 2). For contractible C,D the torsion

of £ is just the difference of the torsions of C and D

T(f) = 1(D) - T(C) € K, (A) .

l(
The main result of Part I is the logarithmic property of

absolute torsion with respect to composition
T(gf:C—>D ——E) = 1(f:C——>D) + 1(g:D—>E) € Kl(A)

As such this is not very prepossessing. The applications of absolute
torsion are more interesting, but will be dealt with elsewhere.
Parts II and III will deal with products and lower K-theory. Some
of the applications to L-theory are contained in a forthcoming joint
paper with Ian Hambleton and Larry Taylor on "Round L-theory".

The following preview of the applications of the absolute
torsion to topology may help to motivate the paper.

Define a connected finite CW complex X to be round if
Xx{X) = 0 € Z and the cellular f.g. free Z[ﬂl(X)]~module chain :complex
C(X) of the universal cover X is equipped with a choice of base in the
canonical class of bases determined by the cell structure of X up to the
multiplication of each base element by tg (ge'nl(x)). Thus C(X) is a
round finite chain complex of based f.g. free Z[nl(X)]—modulesr

The absolute torsion of a homotopy equivalence f:X——Y of round finite

CW complexes is defined by
T(f) = 1(F:C(X)——C)) € K (Zn(X)]),

and 1is such that the reduction T(f)(SWh(ﬂl(X)) is the usual Whitehead

torsion of f. A round finite structure on a topological space X is an

equivalence class of pairs
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(round finite CW complex K, homotopy equivalence f : K——>X)

under the equivalence relation

(K, £f) ~ (K',f") if T(f'_lf:K——arX———éK') =0 ¢ Kl(Z[nl(X)])

For example, the mapping torus of a self map ¢:X— X of a finitely
dominated CW complex X

T(z) = Xx [0,11/{(x,0) = (¢(x),1)]|x€x}

has a canonical round finite structure, by a generalization of the
trick of Mather [9])], with T(fzg:Y——>Y) a round finite CW complex in
the round finite homotopy type of T(z) for any domination of X

(Y, f:X——>Y,g:Y¥Y—>X,h:gf=1:X—X)

by a finite CW complex Y. (Furthermore, if X = M is an infinite
cyclic cover of a compact manifold M with :X——X a generating
covering translation then the projection T(g)——M is a homotopy
equivalence such that the Whitehead torsion TEEWh(nl(M)) is the N
obstruction of Farrell [3] and Siebenmann [20] to fibering M over S,
giving M the finite homotopy type determined by a handlebody

decomposition and assuming dim(M) » 6). The product structure theorem

is that the product FxB of a finitely dominated CW complex F and a
round finite CW complex B has a canonical round finite structure,
such that the absolute torsion of a product homotopy equivalence is

given by
T(fx b:FxB——>F'xB') = [F]Rt(b)
€ Kl(Z[ﬂl(F><B)])= Kl(Z[ﬂl(F)]EZ[ﬂl(B)]) '

with [F] = [F'] € KO(Z[ﬂl(F)]) the absolute projective class and
T(b) € Kl(Z[ﬂl(B)]) the absolute torsion. The circle

st - T(id. : {pt.}—>{pt.})
has the canonical round finite structure in which the base elements
51643(§1)i = Z[nl(sl)] = Z[z,z_l] (i = 0,1) are such that
aet) =% - 0.

For any finitely dominated CW complex F the product round finite
structure on F x Sl = T(l:F—>F) agrees with the mapping torus round
finite structure. Ferry [4] defined a geometric injection

1

B' : Ro(z[n])»———swmnxz); [F]——T(1 x-1:Fx 8§ ——-—)FxSl)

for any finitely presented group 7, with [F]GEEO(Z[n]) the wall

finiteness obstruction of a finitely dominated CW complex F with
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nl(F) = 7, The image of B' consists of the elements 1€ Wh (7 x Z)
invariant under the transfer maps associated to the finite covers of Sl.
The map vl:Sl————>Sl reflecting the circle in a diameter has absolute

torsion

(=18t — sty = t(czimizz Y iz 2 T € Kl(z[z,z‘l]) ,

so that by the product structure theorem B' is given algebraically by

B' = -Rt(-z) : K(Z[n])r——>Wh(nx2Z) ;

[P]p————»T(-z:P[z,z—l]—————?P[lenl])

with [P] the reduced projective class of a f.g. projective Z[n]-module P.
Thus B' does not coincide with the traditional algebraic injection of

Bass, Heller and Swan [2]
B = -B7(z) : R (Z[n])—— Wh(nx2Z) ;
(P] ——> 1(z:P{z,2 "] ———>Plz,z 1]) .
The recent algebraic description due to Llck [8) of the transfer map

1
pi:Kl(Z[nl(B)])—————»Kl(Z[ﬂl(E)])induced in the Kl—groups by a

Hurewicz fibration

P
F E B

with finitely dominated fibre F allows the product structure theorem

to be extended to the twisted case: the total space E of a fibration
with finitely dominated fibre F and round finite base B has a canorical
round finite homotopy type, and if

£
For——————F'

b
B———>B'

is a fibre homotopy equivalence of such fibrations the homotopy

equivalence e:E-~——E' has absolute torsion

T(e) = pj(T(b)) € K (Z[ny(E)])



203

The absolute torsion of a round finite n-dimensional geometric

Poincaré complex B is defined by

T(B) = t([B]n-:CE" T ——>C(B) € Kk (Zlr) (B)])

1 ¢

"I (B). The Poincaré complex

satisfying the usual duality 1(B)* = (-)
version of the twisted product structure theorem is that the total

space of a fibration F——> E —P B with a round finite n-dimensional
Poincaré base B and a finitely dominated m-dimensional Poincaré fibre F
is an (m+n)-dimensional Poincaré complex E with a canonical round finite

structure, with respect to which the torsion of E is given by

|
T(E) = Pl(T(B)) € KI(Z[WI(E)])
In particular, for the trivial fibration E = F xB this is a product
formula
T(F xB) = [F]RT(B) € Kl(Z[TTl(FxB)]) .

The torsion of the circle Sl with respect to the canonical round finite

structure 1is

1sh =tz s = iz, ) € k(@I (8D 1) = K @Iz,
so that for any finitely dominated m-dimensional Poincaré complex F
wExsh) = (F1er(st) = [FIRT(-2) = B'([F})
€ Ky (z[7mxz]) = K (ZIr]iz,z "]) (1 = 7 (F))
with B':K (Z([7])——K. (Z(1]1{z,2 *1) ; [Pl——1(-2:P[z,2 “]—Plz,2 1]

0 1
the absolute version of the injection g':KO(Z[n])»—~?Wh(an)

described above. More generally, the mapping torus T(z) of a self

. . . ) 1
homotopy equivalence [:F—=>F is the total space of a fibration over S
P
F T (1) st

such that ﬂl(T(C)) = nxaz (a=¢g, : m—>m), and T(z) is an
{(m+l)-dimensional geometric Poincaré complex with a canonical round
finite structure with respect to which

TT(E)) = py(sh) = T(-28:C(F) (2,2 ') ——C(F) lz,27 1))

€ K z[nxazzn = Kl(ZZ[ﬂ]a[Z,Z 1)

1 ¢

(gz = zal(g) (ge€m, T:a CF)——>C(F))
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The algekraic theory of surgery of Ranicki [17] has a version
for round finite algebraic Poincaré complexes, corresponding to the
variant L-groups of Wall [22] in which only based f.g. free modules of
even rank are considered (cf. the joint work with Hambleton and Taylor
mentioned above). In particular, the round L-theory shows that the

algebraic injections of Ranicki [16]

B Lmr——Lf, (nxz) (k) = (h,s) or (pih))
do not coincide with the geometric injections
B' i L) (m——LS (nx2) 5 ol ((£,0) :M —X) 0% ((£,b) xL:MxsT—>xxs™)

of Shaneson [19] (for (h,s)) and Pedersen and Ranicki [l14] (for (p,h)).
The algebraic expression for B' is given by product with the round
finite symmetric Poincaré complex of Sl, defined using the canonical
round finite structure on Sl.

This paper is a sequel to the algebraic theory of the Wall
finiteness obstruction developed in Ranicki [18]. As there we work with
chain complexes in an arbitrary additive category A, although the case
A = {based f.g. free A-modules} for a ring A is the one of main interest

In §1 the isomorphism torsion group Kiso(ﬂj of an additive
category f is defined by analogy with the automorphism torsion group
K§Ut(ﬁ) = Kl(ﬁJ, using all the isomorphisms infl. §2 is devoted to
the isomorphism torsion properties ot the permutation isomorphisms
MON — N®M ; (X,¥)+—>(yV:X). §3 deals with the torsion of con;ractible
chain complexes. In §4 there is defined the tcrsion T(f)(EKiSO(AJ of a
chain eqguivalence f:C——>D of finite chain complexes in A which are
round, that is [C] = [D] = O € K (®). In §5 it is shown that if A is
such that stably isomorphic objects are related by canonicalAstable
isomorphisms then Kl(ﬂj is canonically a direct summand of Kiso(ﬂ).

In particular, such is the case for A = {based f.g. free A-modules},
allowing the definition of the absolute torsion T(f)éEKl(A) = Kl(A)

for a chain equivalence f:C——D of round finite chain complexes of

based f.g. free A-modules.

I am grateful to Chuck Weibel for a critical reading of an
earlier version of the paper, and for several suggestions of a
categorical nature (such as the use of permutative categories to
avoid potential problems with coherence isomorphisms).
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§1. The isomorphism torsion group Kiso(ﬁ)

In order to define the torsion of a chain equivalence it is
necessary to first define the torsion of an isomorphism. To this end we
shall now define the isomorphism torsion group K'S°(A) of an additive

1
category, by analogy with the automorphism torsion group Kiut(JU =Kl(JU.

Let then A be an additive category, with direct sum @.

isomorphism Kiso(fh
The torsion group is the abelian
. aut
automorphism K] (A

isomorphism f£f:M ——> N
group with one generator T1(f) for each in‘A,
automorphism £:M—M

subject to the relations

T(gf:M—> N ——>P) T(f:M——>N) + T(g:N ——>P)

i)
T(GE MM —— > M) = T(f) + 1t(g), T(ifi T:M'—sM—3M—3M') = 7(£)
T(EBF' :MOM'— >NON') = T(f:M——3N) + T(F':M'— 3N')

ii)
2(T(fefaf':Me;aM'____—>Me1>M') = T(f:M——>M) + T(f':M' —>M')

The automorphism torsion group K?Ut(ﬂ) is just the Whitehead
group of A in the sense of Bass [1,p.348]. There 1is defined a forgetful
map

aut iso

K]' () ——> K (R i T(E) T (£)

which in certain circumstances {investigated in §5 below) is a split
injection.
Remark: In order to avoid having to keep track of the coherence
isomorphisms (M®N)®P—>M® (NSP) in Kisoﬁﬂ) we shall assume that A is
a permutative category, so that (M@N)®P = M®(N®P). There is a .standard
procedure for replacing any symmetric monoidal category by an equivalent
permutative cateqgory {(cf. Proposition 4.2 of May {10]).

(]

Let now t be an exact category. The torsion group Kl(f)

was defined by Bass [1,p.390] to be the abelian group with one

generator T(f) for each automorphism f:M——>M jjlﬁﬂ subject to the

relations
i) 1(gf:M—>M) = T{£:M—>M) + T{(g:M —»M)
ii) T(f":M"—a3M") = T(f:M—M) + T(f':M'——3 M') for any

automorphism of a short exact sequence in t
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i J
0 > M > M" > M' >0
fl £ fi
i J
0 —3> M > M" — M' 5> O

An additive category~A'can be given the structure of an
exact category by declaring a sequence in A
i 3
0 > M > M" >M!' > O

to be exact if ji = 0 : M——>»M' and there exists a morphism
k : M' ———>M" such that

) 3k = Ly, M ——
ii) (i k) : M&M'———>M" is an isomorphism.

We shall always use this exact structure.

Weibel [23] showed that the torsion group Kl(A) of an
additive category A with the above exact structure agrees with the
. _ 1 .
case i = 1 of the general definition Ki(ﬁ) = ni+l(B; ) (i3 0) due
to Quillen (Grayson [6]) of the algebraic K-groups of an exact

category X.

Proposition 1.1 (Bass [1,p.397]) There is a natural identification

of torsion groups K§Ut(ﬂ) = KlLA) for an additive category A.

Proof: In order to verify that the natural abelian group morphism
t -
KIVT () —— K ) 5 () ——y T(E)

is an isomorphism it suffices to show that for any morphism e:M'——M

in A the elementary automorphism

1 e
£ =< > : MGM' ———> MeM '

0 1
is such that T1(f) = 0 € KTUt(A). The automorphisms

1 0o 1

g = O 1 O MOM ' @M ———— > MaM ' &M
0 1
1 0

h = 0O 1 o : MOM'OM ——— > MoM 'eM
0O e 1

are such that
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£01, = ghg"lh‘l : M&M'OM ———> MM ' M

(a particular example of a Steinberg relation). It follows that

TE) = T(fely) = t(ghg *h Yy =0 e K3U*

(R) .

(1
Example Let A be an associative ring with 1 such that f.g. free
A-modules have well defined rank (e.g. a group ring Z([n]). Let A be the
additive category of based f.g. free A-modules and A-module morphisms.
The automorphism torsion group of A is just the usual Whitehead group

of A
R39S () = K (A = K (&) = GL(A)/E(A)
iso
1 iso
summand, with the natural map Kl(A)————«)Kl (A) split by the surjection

The isomorphism torsion group K (A) contains Kl(A) as a direct

K150 —» K (A) ; T(£:M —3N) —— T((£;))
sending the isomorphism torsion 7 (f:M——3N) eKiso(ﬁ) to the torsion
r((fij)) € Kl(A) of the invertible nxn matrix (fij) [S GLn(A)

(n = rankAM = rankAN) representing f.
[]

iso(ﬁo of an additive category

A is considerably larger than the automorphism torsion group Kl&R}, and

The isomorphism torsion group K

is introduced here for the sole purpose of providing a home for the
torsion t(f) € Kiso(ﬁ) of a chain equivalence.

§2. Signs

In dealing with the torsion of chain complexes and chain
eguivalences we shall be making frequent use of the following elements
in KiSO(JU.

The sign of an ordered pair (M,N) of objects of Ais the
isomorphism torsion
0 1

e{M,N) = 1{ ( 1

N>: MON — > N@M) € KL1SO(A)

lM 0

Example Let f = {based f.g. free A-modules}. The sign of objects M,N
in A is given by
e(M,N) = rank, (M)rank, (N)t(-1:A —>A) € Ky (A) K °°(A) ,

depending only on the parities of the ranks of M and N.
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Proposition 2.1 The sign function (M,N)+———>¢(M,N) has the following

properties, for any additive category A :

i) €(M®M',N) = €(M,N) + €(M',N) € Kiso(}‘(),

ii) e(M,N) = e(M',N) € Kiso(ﬂ) if M is isomorphic to M',
iii) e(M,N) = -e(N,M) € K1°°(R),
iv) e(M,M) = T(-1_:M—>M) € K:°°(A .

M 1

Proof: i) For any objects M;M',N of 4

N
€ (MBM',N) = T( lM 0 O
0 lM‘ o]
o] 1> (o 1>
N N
lM@<1M, 0 lM 0 eBlM'
M&M' &N > MONOM' —————— 3 NOMSBM ')

= e(M,N) + €(M',N) € Kiso(ﬁ)

ii) Let £f:M——>M' be an isomorphism inAl, and let N be an object.

It follows from the commutative diagram of isomorphisms inA
0] lN
1, ©
MON —————— N&M
1. ef
N <o 1N> N
1.,0
MUON — s NeM!

fol

that

€e(M',N) - ¢(M,N) = T(lN@f) - T(f@lN)
= T(f) - 1(f) = O € K:iLSO(R)
iii) For any objects M,N in-A

il

o 1y o 1y
e{M,N) + e(N,M) T : MON ——>NOM) + 1 ( : NGM —5 MON)

lM (0] lN 0]
@] lM 0] lN
= 1 =1 MOGN ——— MON)
1.0 1.0 MoN
N M
=0 e K °PW
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iv) It is immediate from Proposition 1.1 and the identity

(G OENEDE D) e

that
iso

T(<—l O>: MOM >MOM )} = 1(-1:M—>»M) € Kl (A)

i

e(M,M)

o 1

[]
The isomorphism class group KO(A) of an additive category.A

is defined as usual to be the abelian group with one generator [M] for
each isomorphism class of objects M inf, subject to the relations
[MON] = [M] + [N] € KO(ﬁ) .

Example The projective class group of a ring A is the isomorphism class
group of the additive category P = {f.g. projective A-modules},
Ky(a) = KO(P) -
[1
Example The isomorphism class group KO(R) of the additive category
R = {based f.g. free A-modules} is such that there is defined an
isomorphism

Ko(ﬁ) —> Z ; [M] +——+rankA(M)

{assuming as always that the rank of a f.g. free A-module is well
defined).
(]

Proposition 2.2 Sign defines a symplectic form on the isomorphism

(A) of an additive category A taking values in the
iso

120w

class group KO

isomorphism torsion group K

iso
1

Proof: Immediate from Proposition 2.1.

€ : K (A)QKO(A)————éK

0 (A) ;5 MIBIN]—— e (M,N)

[]
The reduced isomorphism torsion group 6f A is the gquotient

group of KiSO(JD defined by

R1%7() = coker (e:K, (R BK, A) ——> K5O (A)) .
Example The reduced isomorphism torsion group RS W) of

1
A = {based f.g. free A-modules} contains the reduced torsion group

R () = coker (Ky (Z) —— K| (A)) = Ky (A)/{1(-1:A—>A)} as a direct
summand, with the natural map Rl(A)-—~»RiSOLﬁ); T(f)—>T (f) split by

(SRR —» & (A) 5 T(EM—s N —> T(Eg )

(1<1i,34n = rank, (M) = rank,(N)).
(]
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§3. Torsion for chain complexes

Let iso(A) denote the set of isomorphisms in an additive
category A, and let K be an abelian group. A function t1:iso(A) ——>K
is logarithmic if for all (f:M~—3N), (g:N—>P) € iso(A)

t(gf) = 1(f) + 1(g) € K
A function T:iso(A)—>K is additive 1if for all (f:M—>N),
(£':M'—=N') € iso(A)
T(EBf') = T(f) + T(f') € K
The isomorphism torsion function

T - iso(ﬂ)—————-)KiSO(A) i fe— T(f)

is both logarithmic and additive, by construction, and is universal

with respect to functions with these properties.

We shall now define logarithmic torsion functions
T:is0(&)~——3K for various additive categories ¥ of chain complexes in
an additive category A (with morphisms either chain maps or chain
homotopy classes of chain maps), such that K is one of the Kl—groups
of A considered in §§1,2. In general these torsion functions will not
be additive.

We refer to Ranicki [18] for an exposition of the chain
homotopy theory of chain complexes in an additive category A, adoptlnc
the same terminology and sign conventions.

Let Z(ﬂ) be the additive category of finite chain complexes
in A

a d
C: ...—=>0 —->Cn ’Cn—l

and chain maps.
The torsion of an isomorphism f:C——=D in T(A) is defined
by

T(f) =
r

il ~18

r iso
O(—) T(£:C_—>D ) € K; Ay .

Proposition 3.1 The torsion function

T iso(}f(ﬂ))——)KiSO(ﬁ) 7 £ ——> T (f)

is logarithmic and additive.
Proof: Immediate from the logarithmic and additive properties of

T:iso(.A)——-»Kiso(ﬁ).



211

The torsion of a contractible finite chain complex C in &

is defined by

0 0 .
t(Cc) = r(@+r = T 4 O ..
O T 4 .
Cogq = C10C,8Cd...——C_ = C8C,8C,6...)
iso
€ KT,

using any chain contraction I':0 = 1:C—>C of C. The morphism

d+l: € >C is an isomorphism since there is defined an
odd even
inverse
1 o o . -1 a0 )
_l FZ l O s e 1" d .
L . o o
CeVen = CO$C2$C4®. .. ——écodd = Clec3@c5@_ L.

If T':0=1:C——>C is another chain contraction of C the morphisms
defined by

A= (F' =TT : C,—>C_ . (ry0)
are such that

Ad - daA r*-rT: Cr————>Cr+l

(r%0)

(defining a homotopy of chain homotopies A:T =T':0= 1:.C—>C).

The simple automorphisms

1 (e} ) e
A 1 (o} RN
h =
even 0] A 1
= _—> =
Ceven CO$C2®C4@... Ceven CO®C2®C4® ,
1 Q e} N
1 e} .
h =
odd 0] A 1

.
.
.

Codd = C1®C3®C5$...——————>Codd = C1®C3®C5®‘..

are such that the diagram of isomorphisms
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da+T

Codd Ceven

odd heven
a+r'

—_—
Codd Ceven

commutes up to a simple automorphism of the type

1 O (0]
? 1 O
(@+T) " *h7  (a+Tyn = 20?2 1
even odd ) :
COdd = C1®C3®C5®...—————>Codd = Cl$C3$C5®... .
As usual, simple means T = 0. It follows that the torsion of C is

independent of the choice of chain contraction I', with

_ . _ . iso
T(C) = T(d+F.Codd————)Ceven) = 1(d+T 'codd____>ceven) € Kl (A)

Example For f = {based f.g. free A-modules} the component of the
isomorphism torsion T(C) € KiSO(A) in the automorphism torsion group
is the torsion T(C)tSKiUt(A) = Kl(A) originally defined by

Whitehead [24], with C a contractible finite based f.g. free A-module
chain complex.

(1

Proposition 3.2 The torsion of an isomorphism £:C——D of contractible

finite chain complexes in an additive category & is given by

T(f) = T(D) - T(C) € Kiso(ﬁ)

Proof: Given a chain contraction FC:O *1:C——>C of C define a chain
contraction of D by
1

FD = ffcf : O 1 : D—>D
There is then defined a commutative diagram of iscomorphisms in A
dc+1‘C
J = = - s e
Codd Cl®c3@c5e"'-————____——)Ceven CO®C2$C4@
fodd = fl®f3®f5®... feven = fO@f2$f4®...
dD+FD
= .« o o = . e o
Dodd D1®D3$D5® ———————————)Deven DO®D2@D4®

so that
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(D) - 1(C) = T(dD+I‘D:DOdd———>Deven) - r(dC+I‘C:Codd——-¥ Ceven)
= T(fev<—:-r1:Ceven Deven) - T(foddzcodd Dodd)
= 1(f) € KI°°W).

1
(]

The intertwining of finite chain complexes C,D in A is
the linear combination of signs defined by
_ . _ iso
B(C,D) = igj(e(c?_i,nzj) €(Chiy1iDpy4y)) € KpT (A
This invariant plays an important role in gquantifying the failure of
‘the torsion of chain complexes to be additive. Note that g(C,D) is
the difference of the torsions of the permutation isomorphisms

(C®D) —> C @D and (CG)D)O —> C @DO

even even ~even dd odd dad-

Proposition 3.3 The torsions of contractible finite chain complexes

in an additive category ﬂ:appearing in a short exact sequence
i J
o} > C > C" c!' > 0

are related by the sum formula

T(C") = 1(C) + T(C") + E (-)rT((i k)=Cr$C£~——*C;) + B(C,C")
r=0
iso
€ K] R

with {k:C;————»C;lr y O} ‘any sequence of splitting morphisms such that
jk =1 : C;———»C;_ (r 0) and each (i k):CKQBCLi——>C; (r20) is an
isomorphism.
Proof: Consider first the special case
l)'C——)C"=CEBC'
o/ " Tr r rr '
. [T 1 1
(0 1) : Cr CrGBCr—————->Cr ;

-
1]

.
Il

k =(O>: C'l——»C" = C 8C' ,
r r r r

1
so that
d e
(LR . 0o t n = ]
d o a'/ Cp = Cp8C,—>Cry = G186
for some morphisms e:Cé———%»Cr_l {r ;l} such that de + ed’ = O.

Given chain contractions of C and C'
r+0=1:C———sC , ' : 01 : C'l—>aC'
define a chain contraction of C"

r“~:o0=1:¢C"——>C"
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by

I -T(el'+le)
o= 1 Cl = C 8C! ————>C}

p— L}
o . r+1 = Cr+1®C

r+l

There is then defined an isomorphism of short exact sequences in A

j
odd N " odd N v
> Coaa > Coaa

i

0> CO > O

dd

a+r dll+1‘\ll d|+1—|l

i j
even even
- > ; Y
© Ceven Ceven Ceven >0 !

so that

T(C") = T(A"4T":iCh > CL )

dad even
N LI ]
)+ r(d'+r .Co

1

. 3 pu——e ]
T(d+r'codd 'Ceven aad Ceven)

+ t((1i k : C 6C! —>C?
(¢ even even) “even' -even even)

i . ' "
oaa Koad) * C0aa®daa > Claa)

= T(Q) + T(C) + B(C,C) € KW

verifying the sum formula in the special case.

T(

In the general case let C" be the finite chain complex
defined by
_ (i k) a" (i k)7t

a" Cr = Cr€BCr > Cr )Cr_l — C

) ~ n
r—l$cr—l Cr—

1
so that there are defined an isomorphism of chain complexes
(1 k) : C" ——>C"

and a short exact sequence of contractible finite chain complexes

i _ 3
0 > C > C* > C! > 0
with
_ (l _
1 = o Cr——>C =C]:€9Cr B
J = (0 1) : Cr = Cr$Cr ——)Cr .

By the special case

T(C") = 1(C) + T(C') + g(C,C') € KiSO(JU

and by Proposition 3.2
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ey - 1@ = ¥ (9% (i k) :c eCc —C") € K% .
£ ror r 1
r=0
The sum formula in the general case follows.

[

~1sS0

The reduced torsion T(C) € Kl (A) of a contractible finite
chain complex C in A is the reduction of the absolute torsion

T(C) € Kiso(k). The intertwining term 8(C,C') in the sum formula of
Proposition 3-.3 vanishes in the reduced torsion group, so that

()T ((i k):C_@&C' ——>C") € R1°°
o r r r 1

T(C") = 7T(C) + T(C") + ()

N1 8

r

Remark For A = {based f.g. free A-modules} the sum formula for
reduced torsions in ?l(A) was first obtained by Milnor [11}, and the
sum formula for absolute torsions in Kl(A) was first obtained by
Fossum, Foxby and Iversen [5].

[1

Let tf(JU be the additive category of finite chain complexes
in A and chain homotopy classes of chain maps, i.e. the derived category.
The isomorphism set iso(tf(ﬁ)) consists of the chain homotopy classes
of chain eguivalences. The appearance of the intertwining term B(C,C")
in the sum formula of Proposition 3.3 implies that it is not in general

possible to extend the universal isomorphism torsion function

T iso——> K1) ;£ (D)

to an additive function |
. £ i
T iso (PN (A) —— K157
such that féor every contractible finite chain complex C in A

T(0——3C) = 1(C) € Kiso(ﬁ) .

If there were such an extension, and if C,C' are contractible finite
chain complexes in A such that B(C,C') # O € Kiso(ﬂ), then

T(0 —— C8C") T(CBC")

T(C) + T(C') + B(C,C")

Z 1(0 —>C) + 1T(0 —>C") € Kiso(.}l) ’

a contradiction.
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Example Let A = {based f.g. free A-modules} for some ring A (such as

a group ring Z(n)}) for which Z ——>A ; 1+——>1 induces an injection
Kl(Z) = er-—>Kl(A) ; 1 (-l Z—>Z)—> 7 (-1:A ——> A)

The contractible finite chain complexes in A defined by

1
cC - ... —> O > A —» A ~—> O
1

c': ... >0 —> 0 > A > A
are such that g(C,C') # O € Kiso(ﬂ), with automorphism torsion
component

B(C,C') = 1(-1:A—>A) £ O € K‘i‘“t(ﬁ) = K ().
(On the other hand g(C',C) = 0 € Kiso(ﬁ)).

(1

In §4 below we shall define a logarithmic torsion function
T:iso(gr(ﬂ))——~—+ KiSO(A) on a certain full subcategory gr(ﬁ)<ftf(ﬂ).
We shall be making frequent use of the following properties of B.
Proposition 3.4 The intertwining function (C,D)—>g(C,D) € Kisocﬂ)
is such that
i) B(C®C',D)
ii) B(C,D&D'")

g(C,D) + g(C',D) .
g(C,D) + g(C,D") ,

iii) g(C,D) - B(D,C) + § (-)Te(C_,D )
r=0 rr
= E;(Ceven’Deven) - E(Codd’Dodd) '
. by r _ _
iv) B(C,8C) + KZO( ) el(C,C 1) = e(C ,Cprgq) where SC = C _y,
v} B(sC,C) = E(Codd’ceven) ’
Vl) B(SCISD) = _B(CID) ’
vii) B(C,D) = B(C',D') if C is isomorphic to C' and D is isomorphic
to D'.

Proof: These properties of B follow from the properties of the sign
function (M,N) p—— ¢(M,N) obtained in Proposition 2.1.
(1
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§4. Torsion for chain equivalences

The algebraic mapping cone of a chain equivalence f:C—D
is a contractible chain complex C(f). The torsion T(f)(SKiSO(A) will
now be defined in the case when C and D are finite complexes such that
[C}] = [D] = O € KO(A), as the sum of the torsion 1(C(f)) and a sign
term.

The algebraic mapping cone C(f) of a chain map £:C——>D

in A is the chain compiex in A defined as usual by
a. (- te
d =P
C(f)
C

C(f) = D _@&C —> C(f) =D
r rr

-1 r-1 r-1

A chain map f is a chain equivalence if and only if C(f) is chain
contractible.

A chain homotopy in A
g: £f=f'":C~———>D
determines an isomorphism of the algebraic mapping cones

h : C(f) —> C(f")

with
1 (=) %g '
h = : C(f)_ =pDec _,——>C(f") =D&C _,
0 1
(The sign convention is that dDg + gdc = f' - f : Cr—————>Dr).

Proposition 4.1 The algebraic mapping cone C(f) of a chain equivalence

f:C~——D of finite chain complexes in A is a contractible finite
iso

chain complex C(f) in A such that the torsion T(C(f)) € Kl (A) is a
chain homotopy invariant of £, with 1(C(f)) = t(C(f')) for chain

homotopic f£,f':C——>D.
Proof: Given a chain homotopy g:f = f':C —>D apply Proposition 3.2
to the isomorphism h:C(f)—> C(f') defined above, to obtain

T(C(f")) - T(C(f)) 1(h)

) Loih:iC(f) —>C(£") )
re

(-)
o r r

0 e k1%
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The following results determine the behaviour of the
torsion T(C(f)) €‘Kiso(ﬂ) under the composition and addition of chain

equivalences.

Proposition 4.2 i) The torsion of the algebraic mapping cone C(gf) of

the composite gf:C——>D-——">E of chain equivalences f;C——>D,

g:D—>E of finite chain complexes in A is given by
T(C(gf)) = T(C(£)) + T(C(9)) + Y(C,D,E) € K] T (A) ,

with the sign term y defined by

y(C,b,E) = B(E,SC) - B(D,SC) - B(E,SD)
* <€“'):eve‘n’codc]) E(Dodd’ceven))
* (E(Deven’Eeven) - E(Dodd'Eodd))
* (E(Codd’Eeven) - E(Ceven’Eodd))
* (E(Deven’Dodd) - E(Deven’Deven))

€ im(e : K. (f)BK (ﬁ)————»Kiso

o (A))

C

ii) The torsion of the algebraic mapping cone C(f®f') of the sum
f6f':CO6C'——> D®D' of chain equivalences £:C——>D, £':C'——> D' of
finite chain complexes in A is given by
T(C(fBf')) = T(C(£f)) + T(C(f')) + B(D®SC,D'®SC")
v . , iso
+ 1 (9)e(C,_1.Dl) €RITA .

r=0

iii) For a chain equivalence f£:C —>D of contractible finite chain

complexes in A

T(C(f)) = (D) - T(C) + B(D,SC) € KiSO(JD .

iv) The torsion of the algebraic mapping cone C(l) of the identity

chain map 1:C——=C on a finite chain complex C in A is given by

= _ iso
T(C(l)) = B(C,8C) + £(C_34'Coaa’ e(ceven,codd) € K (A)

Proof: i) Given a chain complex C let 2C be the chain complex
defined by

a = . _ _
Qc dC : ch - Cr+l > ac, 4 = Cr .
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Given chain equivalences f:C——D , g:D——E of finite

chain complexes in A define a chain map
h : QC(g)——>C(f)
by

o -1
h =( ) : 9C(g), = E 80 ————> C(f) = D 6C__;

The algebraic mapping cone C(h) is a contractible finite chain complex

which fits into two short exact sequences of such complexes

i J
0 —>C(f) C(h) -+ C(q) 0
il jl
O0——» C(gf) > C(h) C(-15:D—>D) ——>0
with
1
i = o : C(f)r———>C(h)r = C(f) 8C(g) ,
j = (0 1) : C(h)r = C(f)rEBC(gu)[———)C(g)r '
0 0
0] 1
1' = L o : C(gf)r = Erﬂ)Cr_l———————->C(h)r = DrQCr_leEr®Dr_l ,
0 f
1 0 0 0
it o=
o =~f (6] 1
C(h), = D& _,®E 6D ,——>C(-1) =D6D , .

The morphisms j,j' are split by the morphisms

o]
k = ( ): C(g)r——————)C(h)r = C(f)[@C(g)r ’

1
1 0
o 0
k' =
0 0
o 1

C(-1,), = D @& _,———C(h), = D &C _,6E @D
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and
1 0
T((1 k) = (o l>: C(f) ®C(g) ——>C(h) = C(f) 8C(g) ) =0,
o o 1 o©
o] 1 o o
T((ii kl) =

) = E_&C ®D_&D
r r ror

D r-1 -1
——————éC(h)r = Dr®c'r—l®Er@Dr—l)
= iso
= e(Ereacr_l,Dr) + e(E ,C _q) € Ky (R

Applying the sum formula of Proposition 3.3 twice
T(C(F)) + T(C(q)) + ¥ (=) t((i k) :C(f) ®C(g) ——>C(h) )
r=0

T(C(h))

+ B(C(£),C(q))

= T(C(gf)) + T(C(-1L)) + B(C(gf),C(-1p))
+ I ()t k'yiC(gf) 8C(-1p) —>C(h) )
r=0
e k1%°W

Eliminating T(C(h)), substituting the values obtained above for
T((1i k)), T((i'" k')) and also

I ~18

T(C(—lD)) = ¢(D D ) -

r
- (D _,D
even’' “even ) ( !

1)
o r-1

r
T({C{f).C(g)) = B(D®SC,E®SD) ,
T(C(gf) ,C(~1)) = B(E®SC,DBSD) € Kiso(ﬂj

leads to the required expression for T(C(gf))EEKiSO(ﬁ)-

ii) The algebraic mapping cone C(f®f') of the sum f&f':C6C'——>DOD'
of chain equivalences fits into a short exact sequence of contractible
finite chain complexes
i 3
0 ————> C(f) —— > C(fef") > C(f"') O

with
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1 0
o o
i =
o 1
o o
- = 1 = 1 1
: C{f), =D _®C _|——C(f6f') = D OD!&C _ 6C. , ,

0 1 o] 0
j =
o 0] o 1

' = 1 ' 4 = Tl
C(f®f') = D @D'®C _,8C!_,——>C(f') = D&C! ) .
Define a splitting morphism for j by
0 0]
1 0]
k =
e} e}
0] 1
1 = 1 ) ) = ] t
C(f') = D®C!_;———>C(f0f') =D OD&C _,eC' , ,
with
1 6} o} 0
0] 0] 1 0
T((i k) =

0 0 0 1

: C(£) ®C(£') = D ®C__,8D'®C’ .
———> C(fef') = D @D 8C ,6C' ;)
iso
1

It is now immediate from the sum formula of Proposition 3.3 that

= e(c__;,Dl) € K77

T(C(f®f')) = T(C(f)) + T(C(f')) + B(D®SC,D'dSC")
+ 1 (=)%ec,_ )0l € k17O®)
r=0

iii) Set E = O in the composition formula 1i).

iv) Set £ =1 : C—>D=C, g=1:D=C~———E =2C in the

composition formula i).
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The reduced torsion of a chain equivalence f:C———>D of

finite chain complexes in A is defined by

T(£) = () e R
that is the reduction of the absolute torsion T(C(f)) € KiSO(JD of the

algebraic mapping cone C(f).

Example For A= {based f.g. free A-modules} the automorphism
component ?(f)EEKl(A) of the reduced torsion is just the torsion
of a chain equivalence f:C—>D in the sense of Whitehead [24] and
Milnor [11].

[

Proposition 4.3 i) The reduced torsion function

7 oiso(3T ) ——RI%P%)  f— T(D)

is logarithmic and additive.

ii) The reduced torsion of an isomorphism f:C ——D is the reduction

of the absolute torsion T(f) = z (—)rT(f:Cr———»Dr) € Kisohﬁ), that is
r=0

[ee] .

T(f) = ¥ (-)fT(f:c——D ) € KI%°W) .
= r r 1
r=0

iii) The reduced torsion of a chain equivalence f:C ———D of

contractible finite chain complexes is the difference of the reduced

torsions of C and D

T(f) = T(D) - T(C) € Riso(.e) .

Proof: i) Immediate from the formulae of Proposition 4.2, since all the
sign terms vanish on passing to the reduced torsion group Risogk).

ii) Define an isomorphism of contractible finite chain complexes
18f : C(f)———> C(1:D ~—D)

and apply Proposition 3.2.
iii) Apply the logarithmic property of T given by i) to the composite

£f:C ¢} —> D

(up to chain homotopy).
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The class of a finite chain complex C in A is the element

of the isomorphism class group of A defined by

©

- .\ r _ _
[cy = rzo( )TIC, ) = [C 0] - [Cugq) € KglA)

a chain homotopy invariant of C.

Example For A = {based f.g. free A-modules} the class of a finite

chain complex C is just the Euler characteristic of C
[ee]

r
[C] = y(C) = rEzo(—) rank, (C ) € Ry(A) = Z .

A finite chain complex C in A is round if
[C] = 0 € Ko(ﬁ.)
In particular, a contractible finite chain complex is round.

The torsion of a chain equivalence f:C——D of round

finite chain complexes in A is defined by

T(£) = T(C(E)) - §(D,SC) € K% .

‘Remark This formula can be used to define the torsion 7 (f) EKiSO(.A.)
of a chain equivalence f:C——D of any finite chain complexes in A,
but the resulting function T:iso(tf(.ﬂ))-——»Kiso(A) is neither
logarithmic nor additive (cf. Proposition 4.2, and the Example just
before Proposition 3.4). There does not appear to be a reasonable
way to define either a logarithmic or an additive torsion function
T:iso(ff(ﬁ))-—) Kiso(ﬁ) in general.
{1

Let Kr (A) be the additive category of round finite chain

complexes in A and chain homotopy classes of chain maps, a full

subcategory of the derived category L‘f(./l) .

Proposition 4.4 i) The torsion function

T iso (PN ) ——KI U fey T ()
is legarithmic, that is t(gf) = 1(f) + 1(9).

ii) The torsion function T:iSO(tr (.}U)—»Kiso(ﬁ) is not additive in

general, with the torsion of a sum f@®f':C8C'——>DOD' given by
iso
1

iii) The torsion of an isomorphism f:C——D of round finite chain

T(f®f') =-1(f) + t(f') - B(C,C') + B(D,D') €K (R)

complexes agrees with the previous definition
iso

] (A .

T(f) = ) (-)yft(f:c —>D ) € K
£=0 r r
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iv) The torsion of a chain eguivalence f:C—~—>D of contractible
finite chain complexes is the difference of the torsions of C and D
iso
w(f) = «(D) - «(C) € K77 (A)
v) The torsion of a chain equivalence f:C————D of round finite chail
complexes which fits into a short exact sequence

f g
o) c 5D E o)

is related to the torsion of the contractible finite chain complex E
by the formula

(-)"T((£ B):C 8B —>D ) + B(C,E) € K°°(H)
0 rr r
with {h:Er——+Dr|r » 0} splitting morphisms for {g;Dr———+Er|r>(H.

T(f) = 1(E) +

ne-18

r

Proof: i) For round C,D,E the sign term y(C,D,E}) in the composition
formula of Proposition 4.2 i) is given by

v(C,D,E) = B(E,SC) - 8(D,SC) - B(E,SD) € K;°°(A) .
ii) By the sum formula of Proposition 4.2 ii)

T(f®f') = T(C(fBEf')) - R(DBOD',SCHBSC')

T(C(£f)) + T(C(f')) - B(DBD',SCBSC')

+ B(D®SC,D'®SC') + | (-)'e(C, _y,D))
r=0

T(C(E)) + t(C(£'y) - B(D,SC) - B(D',SC")

- B(C,C") + B(D,D")
(by Proposition 3.4)
= t(f) + t(f') - B(C,C") + B(D,D") € K~ (A)

iii) Given an isomorphism f:C———D of round finite chain complexes

in A define an isomorphism of contractible finite chain complexes

£' = 10f : C' = C(f) ———> D' = C(1,:D—>D)
By Proposition 3.2
T(D') - 1(C) = [ (5)fr(f:Cc]—>D))
r=0
ST (F .
réo( ) T(18f:D &C | — DrQ)Dr_l)
= _ r R
= rzo( ) T(f.Cr_l———+Dr_l)
= - v _\r i is0
=~ Z () Fr(£:c——Dp ) € K °%A) .

r=0
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By the logarithmic property of torsion proved in i)

T(f) = 1(f) - T(lD)
= (t(C') - 8(D,8C)) - (T(D') - B(D,SD))
= 1(C") - 1(D")
- ? .\ r i 1s0
L (=) T(f.Cr-———"Dr) € Kl (A)
r=0
iv) Immediate from the logarithmic property of t applied to the
composite o:c —f5p —0, noting that T(C—0) = -1(C) € K% .

1
v) Apply the sum formula of Proposition 3.3 to the short exact sequence
of contractible finite chain complexes
i J
0 ‘*C(lc) > C(f) ——— > E ————> O

with

£ 0
1 = : = —_— =
i < }. C(lC)r CIGBCr C(f)r Dr®Cr

0 1 -1 -1
i = (g 0) C(f), = D &C _|—E,
to obtain
g . f O h)
T(C(£)) = T(C(L1.)) + T(B) + rEO(—) T(<O 1 o)iC,9C, (8B ——D 6C__,)

+ B(C(Ly),E)

B
B(C,5C) + T(B) + | ()"(T((f h):C BE ——D) + e(C _),E))
r=0

+ B(C®SC,E) € Kiso(ﬂ)

It follows that

T(f) = t(C(£)) - B(D,SC)
= 1(B) + } (=)'1((f h):C ®E —>D ) + B(C,E)
r=0 r r r
+ (8(SC,E) - 8(E,8C) + [ (m1Te(c,_,.E)) € KI%®)
r=0

By Proposition 3.4 iii)

v r
B(SC,E) - B(E,SC) + r_Z;O<—) €(C _1/E )

= ¢(C ) — e(C

odd’Feven even’Eodd)

=0¢€ Kiso(ﬂ) (since C,E are round).
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An element XGKOW is even if
e(x,y) = 0 € Ko(ﬂ) ’

for every yGKO(A). The even elements of KO(.R) define a subgroup,
the kernel of the adjoint map of the sign form of Proposition 2.2

Ko (R) —> Hom,, (Ko () K150 () 5

(M] —— ([N]——> e (M,N)) .
Example For A = {based f.g. free A-modules} the isomorphism
Koy ———2z ; [M] - (N] s rank, (M) - rank, (N)

sends the subgroup of even elements in K. (R) to the subgroup 2Z<C Z of

0]
even integers.

(1

A finite chain complex C in A is even if the class (C] €Ky
is even. In particular, a round finite complex is even, since OGKO(,A_)
is an even element.

Let 'Ce(d\) be the additive category of even finite chain
complexes in A and chain homotopy classes of chain maps. Thus & W is
a full subcategory of ng(Jl) , and " (A) is a full subcategory of £%(R).

The torsion of a chain equivalence f:C ——=D of even finite
chain complexes in R is defined in exactly the same way as for round

complexes, by the formula
T(f) = t(C(f)) - B(D,SC) € K

Proposition 4.5 The torsién function T:i'so(&e(‘A_))—%K]l_so(Jl)

has all the properties stated for :iso (&' (ﬁ))——ﬂ(iso(ﬂ) in
Proposition 4.4, in particular the logarithmic property.
Proof: The proof of Proposition 4.4 depended on the sign properties

of round complexes which are the same for even complexes.

[
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Given an object A of A and an integer n »0 define the
elementary contractible finite chain complex in A

1
A{n,n+l) : ...——> 0 A A 0 v

concentrated in degrees n,n+l. For any finite chain complex C in A

the inclusion

1
i = ( ) : C ————>CBA{n,n+tl)
o}

is a chain equivalence such that

. _ n _
T(C(1)) = T(C(Lo)) + ()T (e(C _1,B) ~ €(C ,A) + e(C 1.A))

€ im(e:Ky (R EK A —>K % W)

and such that for round finite C

i) = I () ferc,,m) € k]

r>n+l

(A)

Working exactly as in Whitehead [24] (the special case

A= {based f.g. free A-modules}) it can be shown that the reduced
torsion T(f) = T(C(f)) € iiso(ﬂ) of a chain equivalence f:C—*D of
finite chain complexes in R is such that T(f) = O if and only if
there exist elementary complexes Ai(mi,mi+l) {1€igp),s Bj(nj,nj+l)
(1 €£€J €9) such that the chain equivalence

q
lAi(mi,mi+l) — D' = D$jZlBj(nj,nj+l)

f&0 : C' = C®
i

[[Narer 1re)

is chain homotopic to an isomorphism f£':C'—» D' such that

~ t . 1 _ ~igo
T(f .Cr———)Dr) =0 € Kl () (r 20)

There does not appear to be a corresponding interpretation of the
189(A) of a chain

1
equivalence f£:C-——>D of round finite chain complexes, except in the

vanishing t(f) =0 of the absolute torsion 1(f) €K

trivial case when the classes [Cr]’[Dr]G K.(A) (r »0) are all even

0
and the siagn terms vanish.
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§5. Canonical structures

The isomorphism torsion group Kiso(ﬁ) is too large (and

insufficiently functorial) for practical applications, as compared to

the automorphism torsion group Kaut(A) = K. (A). We shall now investigate

(
1 1
structures on an additive category A which ensure that the natural map

Kl(.A)——>KiSO(.A) is a canonically split injection, with a splitting
map Kiso(ﬂ)——>Kl(A) allowing an automorphism torsion component

TaUteKl(}L) to be split off from any isomorphism torsion 1.€ Kiso(ﬁ) .

A canonical structure ¢ on an additive category HAis a

collection of isomorphisms {¢ :M ——N}, one for each ordered pair

M,N
(M,N) of isomorphic objects in R, such that

i) ¢M,M=1:M———>M,

ii) (bM,P = ¢N,P¢M,N M——>»N——>P ,

= MBM' —— > NON' .

L) byemt nent = O, n®Mr, N

Example Let A = {based f.g. free A-modules}, assuming (as always) that
A 1is such that f.g. free A-modules have well defined rank. Based f.g.
free A-modules M,N are isomorphic if and only if they have the same

rank, n say, in which case there is defined a canonical isomorphism
n n

o,y P M— N Jaxe—>Tay (2 €2
r=1 r=1
with (Xl’x2"""xn) ’ (y'l,yz,...,yn) the given bases of M,N.
The collection ¢ = {d)M N} defines a cancnical structure on A .
14

[

Proposition 5.1 A canonical structure ¢ on an additive category A

determines a splitting of the natural map Kl(A)—)KJl_SO(fL)

K359 — > K (A TUEM— N) ——> T(0y (Fill—sN — M)
iso _
so that Kl (A) = Kl(ﬁ,)e)?

Proof: Trivial.

In fact, canonical stable isomorphisms are sufficient
to split Kl(A)——>KiSO(A), as follows.
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A stable isomorphism between objects M,N in an additive

category A

[f] : M—>N

is an equivalence class of isomorphisms f:M&X——>N®X under the

equivalence relation

(f:MOX —3NOX) ~ (g:MBY ——> N@®Y) if the automorphism
o 1
Y -1
f@lY lNEB (lx o ) g G)lX
h : MBXOY ————> NOXDY > NOYDHX ———> MOY DX
o 1
X
1@ ( )
M lY e}
> M@X8eY
is simple, that is t(h) = O € Kl(A).

Proposition 5.2 Stable isomorphisms are the morphisms of a category
A%, with the same objects asA.

Proof: The composite of the stable isomorphisms
[f] : M —>» N , [g] ¢+ Ne———> P
is the stable isomorphism
[gl[f] = [e] : M———>P
represented by the isomorphism
O lY
N 1@ <1 o) 901,

e : MOX@Y ——— > NOXSY ———X~———) N@YDX —— > POYDX

o 1
X
lpe’(l o)

Y —> PEXBY

[]
Although the stable category A® is not additive it is
possible to define the sum of stable isomorphisms [f]:M—>N,

[f'] :M'—> N' to be the stable isomorphism

{f1®(£f'] = [£"] : MBM' ————>»NON'
represented by the isomorphism
O lX
1M® <lm' o > @lX, fof’

£" ¢ MeM'sXex' > MOXOM 'HX ' ————— > NBXON'DX'

o 1,
1y® 1,0 &Ly

— NON'OXeX'
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isomorphism [f]:M——N
The torsion of a stable
automorphism [f]:M—>M

is defined by

T (£:MOX —>NOX) € KO (R)

T([f]) = T(f:MOX —>MBX) € Kiut(ﬁ)

T{[£f])

W

Kl(ﬁ) '
using any representative isomorphism f. In both cases
T([gl [£f1) = t([£]) + T(lgl) , T([E1B[£']) = T((f1) + T([£"'])

A canonical stable structure [¢] on an additive category A

Oy N]:M-———»N}, one for each
’

ordered pair (M,N) of stably isomorphic objects in A, such that

is a collection of stable isomorphisms {[

D Loy, = (L] £ H—m
1i) I¢M,P] = M’N,P]N’M,N] M——3N-—3P ,
1i1) [oygy ,nen') = (oM, n!®000 ! ¢ MEM' —> NON'

Thus [¢] is a canonical structure on the stable category-ﬂs. An actual
canonical structure ¢ on A determines a canonical stablée structure [¢]

on A with

[0y, N = [Oyex,nex! * M * N

for any objects M,N,X -in# such that M®X is isomorphic to N6&X.

Proposition 5.3 A& canonical stable structure [$] on an additive

iso

category A determines a splitting of the natural map KlL&)———;Kl (A)
Kiso(m_ﬂ_;r(l(\}\) P TE M N) b T ([ ] [E]:M—>N—>M)

so that Kiso(_ﬁ) = Ky (R)®?.
Proof: Trivial.
[
An additive category A which is equipped with a sufficiently
‘additive "Eilenberg swindle" has a canonical stable structure, .as
follows.
A flasque structure {%,0,p} on an additive category A

consists of
i) an object $M for each object M of R,
ii) an isomorphism Oy MOIM —— IM for each object M of A,
iii) an isomorphism pM,N:Z(MQN)————ézMQZN for each pair of
objects M,N in&, such that
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Lyen® M, n
-
Oygy | MON®I (MON) MONS MO IN
(o} 1
hit
19 ( ) ol -1
M 1N o IN 0M®0N pM,N

——> MOIMON®IN —————FIMOIN ———> I (MON) .

The terminology derives from Karoubi [7,p.147].

An additive category A admits a structure {I,c} satisfying i)
OLA) = 0, or
equivalently if each object M is stably isomorphic to O. The isomorphisms
:MBIM——>»IM represent stable isomorphisms [oM]:M-————?O.

and 1i) (but net necessarily iii)) if and only if K

M
Example If A is an additive category with countable direct sums then
KOLA) = O by the original Eilenberg swindle (cf. Swan [21,p.66]), which

is incorporated in the flasque structure {I,0,p} defined on A by

0

i} TP = 'P = PGPOP®... ,
1

ii) op : P&IP ——> 1P ; (x,(yl,yz,...))p———»(x,yl,yz,.q

iii) L(P®Q) ——> ZPBIQ ;

((Xl,yl) ’ (X2,y2) ,--.)"‘—'7( (Xllle'-°) I(yllyZl-..)) .

°p,0 °

In particular,\ﬂ = {projective A-modules} is an additive category with
countable direct sums, for any ring A.

[
Remark In the above example ¥ can be extended to an exact endofunctor

I : A——>A such that ¢ defines a natural equivalence of functors
o : 1,00 rI i A—" A,
by defining I(f:P ——Q) to be
If : IP —— 3 2Q ; (xl,xz,...)h————+(f(xl),f(Xz),---) .

It follows that K, (A) = O. A flasque category in the sense of Karoubi [7]
is in particular an additive category A for which there exists an exact
endofunctor I: A—>A such that 1g®J is naturally equivalent to L. Such
structures were considered in connection with formal delopping procedures
abstracting the Bott periodicity theorem. Ir the lower algebraic K-theory
examples below the flasque structures {I,c,p} are such that I does not

in general extend to morphisms, and the flasque structure only guarantees

that K

¢ = O for the additive categories A in question.

[]
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Proposition 5.4 A flasque structure {Z,c,p} on an additive category A

determines a canonical stable structure [¢] on A by

- -1 .
[¢M,N] = [ON] [oM] : M — 0 >N ,
so that the natural map K, (R) %—misom) splits and Kiso(ﬁ) = Ky (A 82,
Proof: The stable isomorphism [¢M N]:M—————-?N is represented by the
r
isomorphism
-1
oy®lsy Lym®y
¢M N MOIMBIN ——M IMOIN — > IMONBOIN
r

o Iy ol
1.0

M

NOIMOIN

The conditions i) [¢M M] = [lM], i1) oy P} ] for a

oy, p) IOy, n

canonical stable structure [¢] are clear from the definition of the
stable category A (Proposition 5.1). As for the additivity condition

iii) | 18 this follows on observing that the

Omomt , nonwtd T Loy, gl®L0y. ]

isomorphism

o, ®0y, N
£ : Z(MBM')®I (NON') —> FMOIM' OINOIN'

0 1
IN
1. @ Bl _,
oM (lzm' o > IN

—> IMOINGIM'BIN'

is such that there is defined a commutative diagram of isomorphisms

in A

Lyem  Of
MOM' @5 (MBM') &5 (NON') Y MOM ' OIMBINOIM ' @IN ',
oM’ , NON O, 500, N
Lygy ®f
NON'®5 (MOM') O (NON ') > NON ' OIMBINGIM'OIN’

Thus [¢] is a canonical stable structure on~H, and Proposition 5.3
applies.
{]
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Flasque structures arise naturally in lower algebraic
K-theory, as follows.

Given a ring A letlki(A),fPi(A) (i »1) be the additive
categories defined by Pedersen [12). The objects of ﬁ}(A) are Zl—graded

A-modules

M= ] M)
JEZ,

with each M(J) a f.g. free A-module. The morphisms of ﬁi(A) are the

A-module morphisms

£= ) LfW@,K M= |  MIJ)—N =] . N(K)
J,KeZ Jez

which are bounded in the sense that there exists an integer s » O such
that
£(J,K) =0 : M(J)——N(K) if J = (§y,3pr--0rdy) ¢ K = (kKyskyrenosky)
are such that max{[jr—kr[[l< r<i} >s .

?i(A) is the idempotent completion of ﬁ}(A), with objects (M,p) the

2

projections p = p M——-»M in ti(A)’ and morphisms

£ : (M,p) —(N,q)

defined by morphisms f:M—>N in ﬁ}(A) such that qfp = £ : M—N.
Also, let fb(A) = {f.g. free A-modules}, and let4?o(A) be the
idempotent completion of ﬁb(A), so that up to natural egquivalence

P (a) = {f.q. projective A-modules}
The main result of [12] is that there are natural identifications

= P = i
Ky (F 1 (A)) = Ky(P, (A)) = K_,(A)  (i320)

with K_,(a) (i 21) the lower algebraic K-groups of Bass [l].
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Example The bounded Zl—graded A-module category Ei(A) (1 1) admits
a flasque structure {I,o,p}, with

0 if jl =-1,0
Jl_l
EM(3yrdpeeeidg) = ¥ M(KiGpreeendy) if 321
k=0
-1
1 M(Kedgseeesdy) if 3, € -2
_ 2 1 1
k—jl+l
Oy ¢ M(]l'jzl---,]i)@ZM(Jl,jzr---,]i)—>ZM(Jl+l,]2,---rJi) ;
(xj ,(xo,xl,...,xj _l))r—————é(xo,xl,...,xj ) if jl> 0]
1 1 1
OM : M(jlrj2l--or]i)@ZM(]lrjzl-o-lJi)__—_$ZM(jl+lr]21---rji);
(X- I(X' P X I---IX_ ))F——*—*(X~ IR l---rx_ ) if j ES _ll
iy jl+l 31+2 1 3y jl+l 1 1
AN T
ou N ${MBN) —— IMOIN ; ﬁ(xk,yk)-——wﬁxk,;yk) .

This flasque structure {for which I am indebted to Chuck Weibel)
determines by Proposition 5.4 a canonical stable structure ([¢] on,&i(A),

and hence a direct sum decomposition

iso _ paut
K] (]:i(A)) = Ky ().?i(A))fB?

aut

The automorphism torsion component T(C) € Kl (ti(A)) = Kl—i(A) of the

iso

isomorphism torsion t1(C) € Kl (Ei(A)) of a contractible finite chain

complex C in‘ti(A) is an absolute version of the reduced torsion

invariant T(C) € ?l_i(A) (= K (A) for i1i>1) obtained by Pedersen [13].

1-1
In particular, for i = 1 the splitting map is given explicitly by

K50 (k) (a) ——»k3UE () = Ko (A)

(0]
s+1 -1

T{(f:M——N) ——[( ¥ M(J))InE
3o 3

8

S-:l
Y1 -0 ) M(3)]
o j=0

) 1
2

with s3% 0O a bound for f_l:N————aM, such that

_l S
£O(N(I)) € 7 M(j+k) (iez) .

k=-s
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The flasgue structure isomorphisms oM:MeBZM——?ZM are such that

IM(j), and ot

has bound s =1, so that the
o M

18

oy (I M(3)eIM(3)) =
j=0 j

(F, (&) has image O in K$"S(f) (A)) =K (A).

(]

iso

isomorphism torsion T(OM) €Kl

Given a filtered addiltive category A let ‘I:i (A) (12 0) be the
filtered additive category of Zl—graded objects in A defined by
Pedersen and Weibel [15], with £ (A) =A, and let B (R) (i»0) be the
idempotent completion of Ei(m . By the main result of [15] there are

natural identifications of algebraic K-groups

K (E

n+l W) =K (P, ) =K ;P (RA) for n,iz0

i+l n

K (E; (1)) for ny1l

= Kn_i(}{) for n-1i 21

with the higher K-groups defined using the split exact structure, and
the lower K-groups K_j(?o(ﬁ)) (j 1) as defined by Karoubi [7].

Example The bounded ZZl—graded category ti (A) (i21) admits a flasque
structure {%,0,p}, defined exactly as in the previous Example, which

is the special case A= {f.g. free A-modules}. The splitting map for
aut iso

Ky >———->Kl in the case i = 1 is given by
iso . aut _ o .
K17 (B (A) ———»K]7 (B (W) = Ky (P A))
s—1 -1 s—1
T(E:M—N) ——— [ § M), £ p ,f1 -1 § M(3), 1]
j:—s N J-_—O
with p N the projection
N
P,:N= [ NG ———nN; [ x(G)— ] x(d)
N J==e Jj=- 3=0
and s 30 a bound for f_l:N—————)M,
_l 5
£O(N(I)) € ] MGI+k) (e z)
k=-g

iso
1
the most significant one, since 'Ei (A = kl(z;

Again, T{oy) €K (g’l {(A)) has image OGK?Ut(Zl(A)). The case 1=1 is

i_l(Jl)) for iz1.
[]

A more detailed account of the applications of the

algebraic theory of torsion to lower K-theory will appear elsewhere.
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Equivariant Moore Spaces

by
Justin R. Smith®

Introduction.

This paper studies the following problem, originally proposed by Steenrod in 1960:
Given a group T, a right Zn-module M and an integer n>1, does there exist a

topological space X with the properties:

Low (X)=m;

2. H(X) = 0,iz0, n;
3H(X) -2

4. H (X)-M?

where X is the universal covering space of X, equipped with the usual n-action. The
space X, if it exists, is called an egusvariant Moore space of type (M, n; 7/ or justa

spaceof type (M, n; w). A triple (M, n; u) for which such a space exists will be said to be
topologically realizable.

Section i of the present paper develops an obstruction theory for the existence of
equivariant Moore spaces and proves that:

Theorem: Let (M, n; ) be a triple as des