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Abstract

A study of Sophie Germain’s extensive manuscripts on Fermat’s
Last Theorem calls for a reassessment of her work in number theory.
There is much in these manuscripts beyond the single theorem for Case
1 for which she is known from a published footnote by Legendre. Ger-
main had a fully-fledged, highly developed, sophisticated plan of attack
on Fermat’s Last Theorem. The supporting algorithms she invented
for this plan are based on ideas and results discovered independently
only much later by others, and her methods are quite different from any
of Legendre’s. In addition to her program for proving Fermat’s Last
Theorem in its entirety, Germain also made major efforts at proofs for
particular families of exponents. The isolation Germain worked in, due
in substantial part to her difficult position as a woman, was perhaps
sufficient that much of this extensive and impressive work may never
have been studied and understood by anyone.

∗Dedicated to the memory of my parents, Daphne and Ted Pengelley, for inspiring
my interest in history, and to Pat Penfield, for her talented, dedicated, and invaluable
editorial help, love and enthusiasm, and support for this project.
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Une étude approfondie des manuscrits de Sophie Germain sur le
dernier théorème de Fermat, révèle que l’on doit réévaluer ses travaux
en théorie des nombres. En effet, on trouve dans ses manuscrits beau-
coup plus que le simple théorème du premier cas que Legendre lui
avait attribué dans une note au bas d’une page et pour lequel elle est
reconnue. Mme Germain avait un plan très élaboré et sophistiqué pour
prouver entièrement ce dernier théorème de Fermat. Les algorithmes
qu’elle a inventés sont basés sur des idées et resultats qui ne furent
indépendamment découverts que beaucoup plus tard. Ses méthodes
sont également assez différentes de celles de Legendre. En plus, Mme
Germain avait fait de remarquables progrès dans sa recherche concer-
nant certaines familles d’exposants. L’isolement dans lequel Sophie
Germain se trouvait, en grande partie dû au fait qu’elle était une
femme, fut peut-être suffisant, que ses impressionnants travaux au-
raient pu passer complètement inaperçus et demeurer incompris.
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1 Introduction

Sophie Germain (Figure 1)1 was the first woman known for important orig-
inal research in mathematics.2 While perhaps more famous for her work
in mathematical physics that earned her a French Academy prize, Germain
is also credited with an important result in number theory towards prov-
ing Fermat’s Last Theorem. We will make a substantial reevaluation of her
work on the Fermat problem, based on translation and mathematical inter-
pretation of numerous documents in her own hand, and will argue that her
accomplishments are much broader, deeper, and more significant than has
been realized.

Fermat’s Last Theorem refers to Pierre de Fermat’s famous seventeenth
century claim that the equation zp = xp+yp has no natural number solutions
x, y, z for natural number exponents p > 2. The challenge of proving
this assertion has had a tumultuous history, culminating in Andrew Wiles’
success at the end of the twentieth century [46, XI.2].

Once Fermat had proven his claim for exponent 4 [14, p. 615ff] [54,
p. 75ff], it could be fully confirmed just by substantiating it for odd prime
exponents. But when Sophie Germain began working on the problem at
the turn of the nineteenth century, the only prime exponent that had a
proof was 3 [14, XXVI] [19, ch. 3] [46, I.6, IV] [54, p. 335ff]. As we
will see, Germain not only developed the one theorem she has long been

1From [3, p. 17].
2A biography of Germain, with concentration on her work in elasticity theory, discus-

sion of her personal and professional life, and references to the historical literature about
her, is the book by Lawrence Bucciarelli and Nancy Dworsky [3].
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Figure 1: Sophie Germain: a bust by Z. Astruc

known for towards proving part of Fermat’s Last Theorem for all primes.
Her manuscripts reveal a comprehensive program to prove Fermat’s Last
Theorem in its entirety.

1.1 Germain’s background and mathematical development

Sophie Germain3 was born on April 1, 1776 and lived with her parents
and sisters in the center of Paris throughout the upheavals of the French
Revolution. Even if kept largely indoors, she must as a teenager have heard,
and perhaps seen, some of its most dramatic and violent events. Moreover,
her father, Ambroise-François Germain, a silk merchant, was an elected
member of the third estate to the Constituent Assembly convened in 1789
[3, p. 9ff]. He thus brought home daily intimate knowledge of events in the
streets, the courts, etc.; how this was actually shared, feared, and coped
with by Sophie Germain and her family we do not know.

Much of what we know of Germain’s life comes from the biographical

3Much of our description here of Germain’s background appears also in [42].
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obituary [35] published by her friend and fellow mathematician Guglielmo
Libri, shortly after her death in 1831. He wrote that at age thirteen,
Sophie Germain, partly as sustained diversion from her fears of the Rev-
olution beginning outside her door, studied first Montucla’s Histoire des
mathématiques, where she read of the death of Archimedes on the sword of
a Roman soldier during the fall of Syracuse, because he could not be dis-
tracted from his mathematical meditations. And so it seems that Sophie
herself followed Archimedes, becoming utterly absorbed in learning math-
ematics, studying without any teacher from a then common mathematical
work by Étienne Bezout that she found in her father’s library.

Her family at first endeavored to thwart her in a taste so unusual and
socially unacceptable for her age and sex. According to Libri, Germain rose
at night to work from the glimmer of a lamp, wrapped in covers, in cold that
often froze the ink in its well, even after her family, in order to force her back
to bed, had removed the fire, clothes, and candles from her room; it is thus
that she gave evidence of a passion that they thereafter had the wisdom not
to oppose further. Libri writes that one often heard of the happiness with
which Germain rejoiced when, after long effort, she could persuade herself
that she understood the language of analysis in Bezout. Libri continues
that after Bezout, Germain studied Cousin’s differential calculus, and was
absorbed in it during the Reign of Terror in 1793–1794. It is from roughly
1794 onwards that we have some records of Germain interacting with the
public world. It was then, Libri explains, that Germain did something so
rashly remarkable that it would actually lack believability if it were mere
fiction.

Germain, then eighteen years old, first somehow obtained the lesson
books of various professors at the newly founded École Polytechnique, and
was particularly focused on those of Joseph-Louis Lagrange on analysis.
The École, a direct outgrowth of the French Revolution, did not admit
women, so Germain had no access to this splendid new institution and its
faculty. However, the École did have the novel feature, heralding a modern
university, that its professors were both teachers and active researchers.
Indeed its professors included some of the best scientists and mathematicians
in the world. Libri writes that professors had the custom, at the end of
their lecture courses, of inviting their students to present them with written
observations. Sophie Germain, assuming the name of an actual student
at the École Polytechnique, one Antoine-August LeBlanc, submitted her
observations to Lagrange, who praised them, and learning the true name of
the imposter, actually went to her to attest his astonishment in the most
flattering terms.
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Perhaps the most astounding aspect is that Germain appears to have
entirely self-educated herself to at least the undergraduate level, capable
of submitting written student work to Lagrange, one of the foremost re-
searchers in the world, that was sufficiently notable to make him seek out
the author. Unlike other female mathematicians before her, like Hypatia,
Maria Agnesi, and Émilie du Châtelet, who had either professional mentors
or formal education to this level, Sophie Germain appears to have climbed
to university level unaided and entirely on her own initiative.

Libri continues that Germain’s appearance thus on the Parisian math-
ematical scene drew other scholars into conversation with her, and that
she became a passionate student of number theory with the appearance of
Adrien-Marie Legendre’s (Figure 2) Théorie des Nombres in 1798. Both La-
grange and Legendre became important personal mentors to Germain, even
though she could never attend formal courses of study. After Carl Friedrich
Gauss’s Disquisitiones Arithmeticae appeared in 1801, Germain took the
additional audacious step, in 1804, of writing to him, again under the male
pseudonym of LeBlanc (who in the meantime had died), enclosing some
research of her own on number theory, and particularly on Fermat’s Last
Theorem. Gauss entered into serious mathematical correspondence with
“Monsieur LeBlanc”. In 1807 the true identity of LeBlanc was revealed
to Gauss when Germain intervened with a French general, a family friend,
to ensure Gauss’s personal safety in Braunschweig during Napoleon’s Jena
campaign [3, ch. 2, 3]. Gauss’s response to this surprise metamorphosis
of his correspondent was extraordinarily complimentary and encouraging to
Germain as a mathematician, and quite in contrast to the attitude of many
19th century scientists and mathematicians about women’s abilities:

But how can I describe my astonishment and admiration on
seeing my esteemed correspondent Monsieur LeBlanc metamor-
phosed into this celebrated person, yielding a copy so brilliant
it is hard to believe? The taste for the abstract sciences in gen-
eral and, above all, for the mysteries of numbers, is very rare:
this is not surprising, since the charms of this sublime science
in all their beauty reveal themselves only to those who have the
courage to fathom them. But when a woman, because of her sex,
our customs and prejudices, encounters infinitely more obstacles
than men, in familiarizing herself with their knotty problems,
yet overcomes these fetters and penetrates that which is most
hidden, she doubtless has the most noble courage, extraordinary
talent, and superior genius. Nothing could prove to me in a
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Figure 2: Adrien-Marie Legendre

more flattering and less equivocal way that the attractions of
that science, which have added so much joy to my life, are not
chimerical, than the favor with which you have honored it.

The scientific notes with which your letters are so richly filled
have given me a thousand pleasures. I have studied them with
attention and I admire the ease with which you penetrate all
branches of arithmetic, and the wisdom with which you general-
ize and perfect. [3, p. 25]

The subsequent arcs of Sophie Germain’s two main mathematical re-
search trajectories, her interactions with other researchers, and with the
professional institutions that forced her, as a woman, to remain at or beyond
their periphery, are complex. Germain’s development of a mathematical the-
ory explaining the vibration of elastic membranes is told by Bucciarelli and
Dworsky in their mathematical biography [3]. In brief, the German physicist
Ernst Chladni created a sensation in Paris in 1808 with his demonstrations
of the intricate vibrational patterns of thin plates, and at the instigation
of Napoleon, the Academy of Sciences set a special prize competition to
find a mathematical explanation. Germain pursued a theory of vibrations
of elastic membranes, and based on her partially correct submissions, the
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Academy twice extended the competition, finally awarding her the prize in
1816, while still criticizing her solution as incomplete, and did not publish
her work [3, ch. 7]. The whole experience was definitely bittersweet for
Germain.

The Academy then immediately established a new prize, for a proof of
Fermat’s Last Theorem. While Sophie Germain never submitted a solution
to this new Academy prize competition, and she never published on Fermat’s
Last Theorem, it has long been known that she worked on it, from the credit
given her in Legendre’s own 1823 memoir published on the topic [3, p. 87]
[31, p. 189] [34]. Our aim in this paper is to analyze the surprises revealed
by Germain’s manuscripts and letters, containing work on Fermat’s Last
Theorem going far beyond what Legendre implies.

We will find that the results Legendre credits to Germain were merely
a small piece of a much larger body of work. Germain pursued nothing
less than an ambitious full-fledged plan of attack to prove Fermat’s Last
Theorem in its entirety, with extensive theoretical techniques, side results,
and supporting algorithms. What Legendre credited to her, known today as
Sophie Germain’s Theorem, was simply a small part of her big program, a
piece that could be encapsulated and applied separately as an independent
theorem, as was put in print by Legendre.

1.2 Germain’s number theory in the literature

Sophie Germain’s principal work on the Fermat problem has long been un-
derstood to be entirely described by a single footnote in Legendre’s 1823
memoir [14, p. 734] [19, ch. 3] [34, §22] [46, p. 110]. The memoir ends
with Legendre’s own proof for exponent 5, only the second odd exponent for
which it was proven. What interests us here, though, is the first part of his
treatise, since Legendre presents a general analysis of the Fermat equation
whose main theoretical highlight is a theorem encompassing all odd prime
exponents, today named after Germain:

Sophie Germain’s Theorem. For an odd prime exponent p, if there exists
an auxiliary prime θ such that there are no two nonzero consecutive p-th
powers modulo θ, nor is p itself a p-th power modulo θ, then in any solution
to the Fermat equation zp = xp + yp, one of x, y, or z must be divisible by
p2.

Sophie Germain’s Theorem can be applied for many prime exponents, by
producing a valid auxiliary prime, to eliminate the existence of solutions to
the Fermat equation involving numbers not divisible by the exponent p. This
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elimination is today called Case 1 of Fermat’s Last Theorem. Work on Case
1 has continued to the present, and major results, including for instance its
recent establishment for infinitely many prime exponents [1, 21], have been
proven by building on the very theorem that Germain introduced.

Before proceeding further, we briefly give the minimum mathematical
background needed to understand fully the statement of the theorem, and
then an illustration of its application. The reader familiar with modular
arithmetic may skip the next two paragraphs.

Two whole numbers a and b are called “congruent” (or “equivalent”)
“modulo θ” (where θ is a natural number called the modulus) if their differ-
ence a−b is a multiple of θ; this is easily seen to happen precisely if they have
the same remainder (“residue”) upon division by θ. (Of course the residues
are numbers between 0 and θ − 1, inclusive.) We write a ≡ b (mod θ) and
say “a is congruent to b modulo θ” (or for short, just “a is b modulo θ”).4

Congruence satisfies many of the same simple properties that equality of
numbers does, especially in the realms of addition, subtraction, and mul-
tiplication, making it both useful and easy to work with. The reader will
need to become familiar with these properties, and we will not spell them
out here. The resulting realm of calculation is called “modular arithmetic”,
and its interesting features depend very strongly on the modulus θ.

In the statement of the theorem, when one considers whether two num-
bers are “consecutive modulo θ”, one means therefore not that their differ-
ence is precisely 1, but rather that it is congruent to 1 modulo θ; notice
that one can determine this by looking at the residues of the two numbers
and seeing if the residues are consecutive. (Technically, one also needs to
recognize as consecutive modulo θ two numbers whose residues are 0 and
θ − 1, since although the residues are not consecutive as numbers, the orig-
inal numbers will have a difference congruent to 0 − (θ − 1) = 1 − θ, and
therefore to 1 (mod θ). In other words, the residues 0 and θ − 1 should be
thought of as consecutive in how they represent numbers via congruence.
However, since we are interested only in numbers with nonzero residues,
this complication will not arise for us.)

We are ready for an example. Let us choose p = 3 and θ = 13, both
prime, and test the two hypotheses of Sophie Germain’s Theorem by brute
force calculation. We need to find all the nonzero residues of 3rd powers
(cubic residues) modulo 13. A basic feature of modular arithmetic tells us

4The notation and language of congruences was introduced by Gauss in his Disquisi-

tiones Arithmeticae in 1801, and Sophie Germain was one of the very first to wholeheart-
edly and profitably adopt it in her research.
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Residue 1 2 3 4 5 6 7 8 9 10 11 12

Cube 1 8 27 64 125 216 343 512 729 1000 1331 1728

Cubic
residue

1 8 1 12 8 8 5 5 1 12 5 12

Table 1: Cubic residues modulo 13

that we need only consider the cubes of the possible residues modulo 13, i.e.,
from 0 to 12, since all other numbers will simply provide cyclic repetition of
what these produce. And since we only want nonzero results modulo θ, we
may omit 0. Brute force calculation produces Table 1.

For instance, the residue of 83 = 512 modulo 13 can be obtained by
dividing 512 by 13, with a remainder of 5. However, there are much quicker
ways to obtain this, since in a congruence calculation, any number (except
exponents) may be replaced with anything congruent to it. So for instance
we can easily calculate that 83 = 64 · 8 ≡ (−1) · (−5) = 5 (mod 13).

Now we ask whether the two hypotheses of Sophie Germain’s Theorem
are satisfied? Indeed, no pair of the nonzero cubic residues 1, 5, 8, 12
modulo 13 are consecutive, and p = 3 is not itself among the residues. So
Sophie Germain’s Theorem proves that any solution to the Fermat equation
z3 = x3 + y3 would have to have one of x, y, or z divisible by p2 = 9.

Returning to Legendre’s treatise, after the theorem he supplies a table
verifying the hypotheses of the theorem for p < 100 by brute force display of
all the p-th power residues modulo a single auxiliary prime θ chosen for each
value of p. Legendre then credits Sophie Germain with both the theorem,
which is the first general result about arbitrary exponents for Fermat’s Last
Theorem, and its successful application for p < 100. One assumes from
Legendre that Germain developed the brute force table of residues as her
means of verification and application of her theorem. Legendre continues
on to develop more theoretical means of verifying the hypotheses of Sophie
Germain’s Theorem, and he also pushes the analysis further to demonstrate
that any solutions to the Fermat equation for certain exponents would have
to be extremely large.

For almost two centuries, it has been assumed that this theorem and its
application to exponents less than 100, the basis of Germain’s reputation,
constitute her entire contribution to Fermat’s Last Theorem. However, we
will find that this presumption is dramatically off the mark as we study
Germain’s letters and manuscripts. The reward is a wealth of new material, a
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vast expansion over the very limited information known just from Legendre’s
footnote. We will explore its enlarged scope and extent. Figures 8 and 9
in Section 7 show all the interconnected pieces of her work, and the place
of Sophie Germain’s Theorem in it. The ambitiousness and importance
of Germain’s work will prompt a major reevaluation, and recommend a
substantial elevation of her reputation.

Before considering Germain’s own writing, we note that the historical
record based solely on Legendre’s footnote has itself been unjustly portrayed.
Even the limited results that Legendre clearly attributed to Germain have
been understated and misattributed in much of the vast secondary litera-
ture. Some writers state only weaker forms of Sophie Germain’s Theorem,
such as merely for p = 5, or only for auxiliary primes of the form 2p + 1
(known as “Germain primes”, which happen always to satisfy the two re-
quired hypotheses). Others only conclude divisibility by the first power of
p, and some writers have even attributed the fuller p2-divisibility, or the
determination of qualifying auxiliaries for p < 100, to Legendre rather than
to Germain. A few have even confused the results Legendre credited to
Germain with a completely different claim she had made in her first letter
to Gauss, in 1804 [51]. We will not list all these failings here. Fortunately
a few books have correctly stated Legendre’s attribution to Germain [14, p.
734] [19, ch. 3] [46, p. 110]. We will not elaborate in detail on the huge
related mathematical literature except for specific relevant comparisons of
mathematical content with Germain’s own work. Ribenboim’s most recent
book [46] gives a good overall history of related developments, including
windows into the intervening literature.

1.3 Manuscript sources, recent research, and scope

Bucciarelli and Dworsky’s mathematical biography of Germain’s work on
elasticity theory [3] utilized numerous Germain manuscripts from the archives
of the Bibliothèque Nationale in Paris. Many other Germain manuscripts
are also held in the Biblioteca Moreniana in Firenze (Florence) [7, pp. 229–
235, 239–241] [8].5 While Bucciarelli and Dworsky focused primarily on her

5The story of how Germain’s manuscripts ended up in the two archives is an ex-
traordinary one, a consequence of the amazing career of Guglielmo (Guillaume) Libri,
mathematician, historian, bibliophile, thief, and friend of Sophie Germain [7, 48].

Exactly how Libri originally obtained Germain’s manuscripts remains uncertain. We
note, however, that Germain was not affiliated with any institution that might naturally
have taken them, while Libri was a good friend of hers. After his expulsion from Tuscany
for his role in the plot to persuade the Grand-Duke to promulgate a constitution, Libri
traveled for many months, not reaching Paris until fully six months after Germain died.
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work on elasticity theory, many of the manuscripts in these archives are on
number theory. Their book also indicates there are unpublished letters from
Germain to Gauss, held in Göttingen; in particular, there is a letter written
in 1819 almost entirely about Fermat’s Last Theorem.

It appears that Germain’s number theory manuscripts have received lit-
tle attention during the nearly two centuries since she wrote them. We
began working with them in 1994, and published a translation and anal-
ysis of excerpts from one (Manuscript B below) in our 1999 book [31, p.
190f]. We demonstrated there that the content and proof of Sophie Ger-
main’s Theorem, as attributed to her by Legendre, is implicit within the
much broader aims of that manuscript, thus substantiating in Germain’s
own writings Legendre’s attribution. Since then we have analyzed the much
larger corpus of her number theory manuscripts, and we present here our
overall evaluation of her work on Fermat’s Last Theorem, which forms a
coherent theory stretching over several manuscripts and letters.

Quite recently, and independently from us, Andrea Del Centina [12] has
also transcribed and analyzed some of Germain’s manuscripts, in particular
one at the Biblioteca Moreniana and its more polished copy at the Bib-
liothèque Nationale (Manuscripts D and A below). While there is some
overlap between Del Centina’s focus and ours, there are major differences in
which manuscripts we consider, and in what aspects of them we concentrate
on. In fact our research and Del Centina’s are rather complementary in what
they analyze and present. Overall there is no disagreement between the main
conclusions we and Del Centina draw; instead they supplement each other.
After we list our manuscript sources below, we will compare and contrast
Del Centina’s specific selection of manuscripts and emphasis with ours, and
throughout the paper we will annotate any specifically notable comparisons
of analyses in footnotes.

Nonetheless, it seems he ended up with almost all her papers [7, p. 142f], and it was
entirely in character for him to manage this, since he built a gargantuan private library
of important books, manuscripts, and letters [7].

It appears that many of Germain’s manuscripts in the Bibliothèque Nationale were
probably among those confiscated by the police from Libri’s apartment at the Sorbonne
when he fled to London in 1848 to escape the charge of thefts from French public libraries
[7, p. 146]. The Germain manuscripts in the Biblioteca Moreniana were among those
shipped with Libri’s still remaining vast collection of books and manuscripts before he
set out to return from London to Florence in 1868. These latter Germain materials are
among those fortunate to have survived intact despite a long and tragic string of events
following Libri’s death in 1869 [7, 8]. Ultimately it seems that Libri was the good fortune
that saved Germain’s manuscripts; otherwise they might simply have drifted into oblivion.
See also [9, 10, 11] for the story of Abel manuscripts discovered in the Libri collections in
the Biblioteca Moreniana.

13



Germain’s handwritten papers on number theory in the Bibliothèque Na-
tionale are almost all undated, relatively unorganized, and unnumbered ex-
cept by the archive. And they range all the way from scratch paper to some
beautifully polished finished pieces. We cannot possibly provide a definitive
evaluation here of this entire treasure trove, nor of all the manuscripts in
the Biblioteca Moreniana. We will focus our attention within these two sets
of manuscripts on the major claims about Fermat’s Last Theorem that Ger-
main outlined in her 1819 letter to Gauss, the relationship of these claims
to Sophie Germain’s Theorem, and on presenting a coherent and compre-
hensive mathematical picture of the many facets of Germain’s overall plan
of attack on Fermat’s Last Theorem, distilled from the various manuscripts.

We will explain some of Germain’s most important mathematical devices
in her approach to Fermat’s Last Theorem, provide a sense for the results
she successfully obtained and the ones that are problematic, compare with
the impression of her work left by Legendre’s treatise, and in particular
discuss possible overlap between Germain’s work and Legendre’s. We will
also find connections between Germain’s work on Fermat’s Last Theorem
and that of mathematicians of the later nineteenth and twentieth centuries.
Finally, we will discuss claims in Germain’s manuscripts to have actually
fully proven Fermat’s Last Theorem for certain exponents.

Our assessment is based on analyzing all of the following, to which we
have given short suggestive names for reference throughout the paper:

• Manuscript A (Bibliothèque Nationale): An undated manuscript
entitled Remarques sur l’impossibilité de satisfaire en nombres entiers
a l’équation xp + yp = zp [25, pp. 198r–208v] (20 sheets numbered in
Germain’s hand, with 13 carefully labeled sections). This is a highly
polished version of Manuscript D (some, but not all, of the marginal
notes added to Manuscript A have been noted in the transcription of
Manuscript D in [12]);

• Errata to Manuscript A (Bibliothèque Nationale): Two undated
sheets [25, pp. 214r, 215v] titled “errata” or “erratu”;

• Manuscript B (Bibliothèque Nationale): An undated manuscript en-
titled Démonstration de l’impossibilité de satisfaire en nombres entiers
à l’équation z2(8n±3) = y2(8n±3)+x2(8n±3) [25, pp. 92r–94v] (4 sheets);

• Manuscript C (Bibliothèque Nationale): A polished undated set of
three pages [26, pp. 348r–349r] stating and claiming a proof of Fermat’s
Last Theorem for all even exponents;
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• Letter from Germain to Legendre (New York Public Library):
An undated 3 page letter [27]6 about Fermat’s Last Theorem;

• Manuscript D (Biblioteca Moreniana): A less polished version of
Manuscript A [28, cass. 11, ins. 266] [7, p. 234] (25 pages, the 19th
blank), transcribed in [12];

• Letter of May 12, 1819 from Germain to Gauss (Niedersächsische
Staats- und Universitätsbibliothek Göttingen): A letter of eight num-
bered sheets [24], mostly about her work on Fermat’s Last Theorem,
transcribed in [12].

Together these appear to be Germain’s primary pieces of work on Fer-
mat’s Last Theorem. Nevertheless, our assessment is based on only part
of her approximately 150–200 pages of number theory manuscripts in the
Bibliothèque, and other researchers may ultimately have more success than
we at deciphering, understanding, and interpreting them. Also, there are
numerous additional Germain papers in the Biblioteca Moreniana that may
yield further insight. Finally, even as our analysis and evaluation answers
many questions, it will also raise numerous new ones, so there is fertile
ground for much more study of her manuscripts by others. In particular,
questions of the chronology of much of her work, and of her interaction with
others, still contain enticing perplexities.

Before beginning our analysis of Germain’s manuscripts, we summarize
for comparison Andrea Del Centina’s recent work [12]. He first analyzes an
appendix7 to an 1804 letter from Germain to Gauss (for which he provides a
transcription in his own appendix). This represents her very early work on
Fermat’s Last Theorem, in which she claims (incorrectly) a proof for a cer-
tain family of exponents; this 1804 approach was mathematically unrelated
to the coherent theory that we will see in all her much later manuscripts.
Then Del Centina provides an annotated transcription of the entire 1819 let-
ter to Gauss, which provides her own not too technical overview for Gauss
of her later and more mature mathematical approach. We focus on just a
few translated excerpts from this 1819 letter, to provide an overview and to
introduce key aspects of her various manuscripts.

6Although we have found nothing else in the way of correspondence between Legendre
and Germain on Fermat’s Last Theorem, we are fortunate to know of this one critical
letter, held in the Samuel Ward papers of the New York Public Library. These papers
include, according to the collection guide to the papers, “letters by famous mathematicians
and scientists acquired by Ward with his purchase of the library of mathematician A. M.
Legendre.” We thank Louis Bucciarelli for providing us with this lead.

7Held in the Biblioteca Moreniana.
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Finally Del Centina leads the reader through an analysis of the mathe-
matics in Manuscript D (almost identical with A), which he also transcribes
in its entirety in an appendix. Although Manuscript A is our largest and
most polished single source, we view it within the context of all the other
manuscripts and letters listed above, since our aim is to present most of Ger-
main’s web of interconnected results in one integrated mathematical frame-
work, illustrated in Figures 8 and 9 in Section 7. Also, even in the analysis
of the single Manuscript A that is discussed in both Del Centina’s paper and
ours, we and Del Centina very often place our emphases on different aspects,
and draw somewhat different conclusions about parts of the manuscript. We
will not remark specially on numerous aspects of Manuscript A that are dis-
cussed either only in his paper or only in ours; the reader should consult
both. Our footnotes will largely comment on differences in the treatment of
aspects discussed in both papers.8 Del Centina does not mention Germain’s
Errata to Manuscript A (noted by her in its margin), nor Manuscripts B or
C, or the letter from Germain to Legendre, all of which play a major role
for us.

1.4 Outline for our presentation of Germain’s work

In Section 2 we will examine the interaction and mutual influences between
Germain and Gauss, focusing on Fermat’s Last Theorem. In particular we
will display Germain’s summary explanation to Gauss in 1819 of her “grand
plan” for proving the impossibility of the Fermat equation outright, and
her description of related successes and failures. This overview will serve as
introduction for reading her main manuscripts, and to the big picture of her
body of work.

The four ensuing Sections 3, 4, 5, and 6 contain our detailed analysis
of the essential components of Germain’s work. Her mathematical aims
included a number of related results on Fermat’s Last Theorem, namely
her grand plan, large size of solutions, p2-divisibility of solutions (i.e., So-
phie Germain’s Theorem, applicable to Case 1), and special forms of the
exponent. These results are quite intertwined in her manuscripts, largely
because the hypotheses that require verification overlap. We have separated
our exposition of these results in the four sections in a particular way, ex-
plained below, partly for clarity of the big picture, partly to facilitate direct
comparison with Legendre’s treatise, which had a different focus but much

8In particular, in section 4.1.4 we examine a subtle but critical mistake in Germain’s
proof of a major result, and her later attempts to remedy it. In his analysis of the same
proof, Del Centina does not appear to be aware of this mistake or its consequences.
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apparent overlap with Germain’s, and partly to enable easier comparison
with the later work of others. The reader may refer throughout the paper
to Figures 8 and 9 in Section 7, which portray the big picture of the inter-
connections between Germain’s claims (theorems), conditions (hypotheses),
and propositions and algorithms for verifying these conditions.

Section 3 will address Germain’s grand plan. We will elucidate from
Manuscripts A and D the detailed methods Germain developed in her grand
plan, the progress she made, and its difficulties. We will compare Germain’s
methods with her explanation and claims to Gauss, and with Legendre’s
work. The non-consecutivity condition on p-th power residues modulo an
auxiliary prime θ, which we saw above in the statement of Sophie Germain’s
Theorem, is key also to Germain’s grand plan. It has been pursued by later
mathematicians all the way to the present day, and we will compare her
approach to later ones. We will also explore whether Germain at some
point realized that her grand plan could not be carried through, using the
published historical record and a single relevant letter from Germain to
Legendre.

Section 4 will explore large size of solutions and p2-divisibility of so-
lutions. In Manuscripts A and D Germain proved and applied a theorem
which we shall call “Large size of solutions”, whose intent is to convince
that any solutions which might exist to a Fermat equation would have to be
astronomically large, a claim we will see she mentioned to Gauss in her 1819
letter. Germain’s effort here is challenging to evaluate, since her proof as
given in the primary manuscript is flawed, but she later recognized this and
attempted to compensate. Moreover Legendre published similar results and
applications, which we will contrast with Germain’s. We will discover that
the theorem on p2-divisibility of solutions that is known in the literature as
Sophie Germain’s Theorem is simply minor fallout from her “Large size of
solutions” analysis. And we will compare the methods she uses to apply her
theorem with the methods of later researchers.

Section 5 addresses a large family of prime exponents for the Fermat
equation. In Manuscript B, Germain claims proof of Fermat’s Last Theo-
rem for this family of exponents, building on an essentially self-contained
statement of Sophie Germain’s Theorem on p2-divisibility of solutions to
deal with Case 1 for all exponents first.

Section 6 considers even exponents. Germain’s Manuscript C, using a
very different approach from the others, claims to prove Fermat’s Last Theo-
rem for all even exponents based on the impossibility of another Diophantine
equation.

We end the paper with three final sections: a précis and connections for
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Germain’s various thrusts at Fermat’s Last Theorem, our reevaluation, and a
conclusion. The reevaluation will take into account Germain’s frontal assault
on Fermat’s Last Theorem, her analysis leading to claims of astronomical
size for any possible solutions to the Fermat equation, the fact that Sophie
Germain’s Theorem is in the end a small piece of something much more
ambitious, our assessment of how independent her work actually was from
her mentor Legendre’s, of the methods she invented for verifying various
conditions, and of the paths unknowingly taken in her footsteps by later
researchers. We will conclude that a substantial elevation of Germain’s
contribution is in order.

2 Interactions with Gauss on number theory

Number theory held a special fascination for Germain throughout much of
her life. Largely self-taught, due to her exclusion as a woman from higher
education and normal subsequent academic life, she had first studied Leg-
endre’s Théorie des Nombres, published in 1798, and then devoured Gauss’s
Disquisitiones Arithmeticae when it appeared in 1801 [35]. Gauss’s work
was a complete departure from everything that came before, and organized
number theory as a mathematical subject [30] [40], with its own body of
methods, techniques, and objects, including the theory of congruences and
the roots of the cyclotomic equation.

2.1 Early correspondence

Germain’s exchange of letters with Gauss, initiated under the male pseudonym
LeBlanc, lasted from 1804 to 1808, and gave tremendous impetus to her
work. In her first letter [2]9 she sent Gauss some initial work on Fermat’s
Last Theorem stemming from inspiration she had received from his Disqui-
sitiones.

Gauss was greatly impressed by Germain’s work, and was even stimu-
lated thereby in some of his own, as evidenced by his remarks in a number
of letters to his colleague Wilhelm Olbers. On September 3, 1805 Gauss
wrote [49, p. 268]: “Through various circumstances — partly through sev-
eral letters from LeBlanc in Paris, who has studied my Disq. Arith. with
a true passion, has completely mastered them, and has sent me occasional
very respectable communications about them, [. . .] I have been tempted

9Relevant excerpts can be found in Chapter 3 of [3]; see also [51].
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into resuming my beloved arithmetic investigations.”10 After LeBlanc’s true
identity was revealed to him, he wrote again to Olbers, on March 24, 1807
[49, p. 331]: “Recently my Disq. Arith. caused me a great surprise. Have
I not written to you several times already about a correspondent LeBlanc
from Paris, who has given me evidence that he has mastered completely all
investigations in this work? This LeBlanc has recently revealed himself to
me more closely. That LeBlanc is only a fictitious name of a young lady
Sophie Germain surely amazes you as much as it does me.”

Gauss’s letter to Olbers of July 21 of the same year shows that Germain
had become a valued member of his circle of correspondents [49, pp. 376–
377]: “Upon my return I have found here several letters from Paris, by
Bouvard, Lagrange, and Sophie Germain. [. . .] Lagrange still shows much
interest in astronomy and higher arithmetic; the two sample theorems (for
which prime numbers11 is [the number] two a cubic or biquadratic residue),
which I also told you about some time ago, he considers ‘that which is most
beautiful and difficult to prove.’ But Sophie Germain has sent me the proofs
for them; I have not yet been able to look through them, but I believe they
are good; at least she has approached the matter from the right point of
view, only they are a little more long-winded than will be necessary.”

The two theorems on power residues were part of a letter Gauss wrote
to Germain on April 30, 1807 [22, vol. 10, pp. 70–74]. Together with these
theorems he also included, again without proof, another result now known
as Gauss’s Lemma, from which he says one can derive special cases of the
Quadratic Reciprocity Theorem, the first deep result discovered and proven
about prime numbers.12 In a May 12, 1807 letter to Olbers, Gauss says
“Recently I replied to a letter of hers and shared some Arithmetic with her,
and this led me to undertake an inquiry again; only two days later I made
a very pleasant discovery. It is a new, very neat, and short proof of the
fundamental theorem of art. 131.” [49, pp. 360] The proof Gauss is referring
to, based on the above lemma in his letter to Germain, is now commonly
called his “third” proof of the Quadratic Reciprocity Theorem, and was
published in 1808 [23], where he says he has finally found “the simplest and
most natural way to its proof” (see also [32, 33]).

We shall see in Germain’s manuscripts that the influence of Gauss’s Dis-
quisitiones on her work was all-encompassing; her manuscripts and letters
use Gauss’s congruence notion and point of view throughout, in contrast to

10Throughout the paper, any English translations are our own, unless cited otherwise.
11as modulus.
12Gauss was the first to prove quadratic reciprocity, despite major efforts by both its

discoverer Euler and by Legendre.
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her Paris mentor Legendre’s style of equalities “omitting multiples” of the
modulus. Her work benefits from the ease of writing and thinking in terms
of arithmetic modulo a prime enabled by the Disquisitiones [30] [40, 56].
Germain also seems to have been one of the very first to adopt and inter-
nalize in her own research the ideas of the Disquisitiones. But her work,
largely unpublished, may have had little influence on the next generation.

2.2 Letter of 1819 about Fermat’s Last Theorem

On the twelfth of May, 1819, Sophie Germain penned a letter from her
Parisian home to Gauss in Göttingen [24]. Most of this lengthy letter de-
scribes her work on substantiating Fermat’s Last Theorem.

The letter provides a window into the context of their interaction on
number theory from a vantage point fifteen years after their initial corre-
spondence. It will show us how she viewed her overall work on Fermat’s
Last Theorem at that time, placing it in the bigger picture of her mathe-
matical research, and specifically within her interaction with and influence
from Gauss. And the letter will give enough detail on her actual progress on
proving Fermat’s Last Theorem to prepare us for studying her manuscripts,
and to allow us to begin comparison with the published historical record,
namely the attribution by Legendre in 1823 of Sophie Germain’s Theorem.

Germain’s letter was written after an eleven year hiatus in their corre-
spondence. Gauss had implied in his last letter to Germain in 1808 that
he might not continue to correspond due to his new duties as astronomer,
but the visit of a friend of Gauss’s to Paris in 1819 provided Germain the
encouragement to attempt to renew the exchange [3, p. 86, 137]. She had a
lot to say. Germain describes first the broad scope of many years of work, to
be followed by details on her program for proving Fermat’s Last Theorem:

[...] Although I have worked for some time on the theory of
vibrating surfaces [...], I have never ceased thinking about the
theory of numbers. I will give you a sense of my absorption with
this area of research by admitting to you that even without any
hope of success, I still prefer it to other work which might interest
me while I think about it, and which is sure to yield results.

Long before our Academy proposed a prize for a proof of
the impossibility of the Fermat equation, this type of challenge,
which was brought to modern theories by a geometer who was
deprived of the resources we possess today, tormented me often.
I glimpsed vaguely a connection between the theory of residues
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Figure 3: “Voici ce que ja’i trouvé:” From Germain’s letter to Gauss, 1819
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and the famous equation; I believe I spoke to you of this idea
a long time ago, because it struck me as soon as I read your
book.13

Germain continues the letter by explaining to Gauss her major effort
to prove Fermat’s Last Theorem (Figure 3), including the overall plan, a
summary of results, and claiming to have proved the astronomically large
size of any possible solutions. She introduces her work to him with the words
“Voici ce que ja’i trouvé:” (“Here is what I have found:”).

Here is what I have found: [...]
The order in which the residues (powers equal to the ex-

ponent14) are distributed in the sequence of natural numbers
determines the necessary divisors which belong to the numbers
among which one establishes not only the equation of Fermat,
but also many other analogous equations.

Let us take for example the very equation of Fermat, which
is the simplest of those we consider here. Therefore we have
zp = xp + yp, p a prime number. I claim that if this equation
is possible, then every prime number of the form 2Np + 1 (N
being any integer), for which there are no two consecutive p-th
power residues in the sequence of natural numbers,15 necessarily
divides one of the numbers x, y, and z.

13“Quoique j’ai travaillé pendant quelque tems a la théorie des surfaces vibrantes [. . . ],
je n’ai jamais cessé de penser a la théorie des nombres. Je vous donnerai une idée de
ma préoccupation pour ce genre de recherches en vous avouant que même sans aucune
esperance de succès je la prefere a un travail qui me donnerait necessairement un resultat
et qui pourtant m’interresse . . . quand j’y pense.

“Longtems avant que notre academie ait proposé pour sujet de prix la démonstration de
l’impossibilité de l’équation de Fermat cet espece de défi—porté aux théories modernes par
un géometre — qui fut privé des resources que nous possedons aujourd’hui me tourmentait
souvent. J’entrevoyais vaguement une liaison entre la théorie des residus et la fameuse
équation, je crois même vous avoir parlé anciennement de cette idée car elle m’a frappé
aussitôt que j’ai connu votre livre.” (Letter to Gauss, p. 2)

14i.e., power residues where the power is equal to the exponent in the Fermat equation.
15Germain is considering congruence modulo an auxiliary prime θ = 2Np + 1 that has

no consecutive nonzero p-th power residues. While the specified form of θ is not necessary
to her subsequent argument, she knows that only prime moduli of the form θ = 2Np + 1
can possibly have no consecutive nonzero p-th power residues, and implicitly that Gauss
will know this too. (This is easy to confirm using Fermat’s “Little” Theorem; see, for
instance, [46, p. 124].) Thus she restricts without mention to considering only those of
this form.
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This is clear, since the equation zp = xp + yp yields the
congruence 1 ≡ rsp − rtp in which r represents a primitive root
and s and t are integers.16 [...]

It follows that if there were infinitely many such numbers,
the equation would be impossible.

I have never been able to arrive at the infinity, although I have
pushed back the limits quite far by a method of trials too long to
describe here. I still dare not assert that for each value of p there
is no limit beyond which all numbers of the form 2Np + 1 have
two consecutive p-th power residues in the sequence of natural
numbers. This is the case which concerns the equation of Fermat.

You can easily imagine, Monsieur, that I have been able to
succeed at proving that this equation is not possible except with
numbers whose size frightens the imagination; because it is also
subject to many other conditions which I do not have the time to
list because of the details necessary for establishing its success.
But all that is still not enough; it takes the infinite and not
merely the very large.17

16Here Germain is utilizing two facts about the residues modulo the prime θ. One
is that when the modulus is prime, one can actually “divide” in modular arithmetic by
any number with nonzero residue. So if none of x, y, z were divisible by θ, then modular
division of the Fermat equation by xp or yp would clearly produce two nonzero consecutive
p-th power residues. She is also using the fact that for a prime modulus, there is always
a number, called a primitive root for this modulus, such that any number with nonzero
residue is congruent to a power of the primitive root. She uses this representation in terms
of a primitive root later on in her work.

17“Voici ce que j’ai trouvé :
“L’ordre dans lequel les residus (puissances egales a l’exposant) se trouvent placés dans

la serie des nombres naturels détermine les diviseurs necessaires qui appartiennent aux
nombres entre lequels on établit non seulement l’équation de Fermat mais encore beaucoup
d’autres équations analogues a celle là.

“Prenons pour exemple l’équation même de Fermat qui est la plus simple de toutes
celles dont il s’agit ici. Soit donc, p étant un nombre premier, zp = xp + yp. Je dis que si
cette équation est possible, tout nombre premier de la forme 2Np + 1 (N étant un entier
quelconque) pour lequel il n’y aura pas deux résidus pième puissance placés de suite dans
la serie des nombres naturels divisera nécessairement l’un des nombres x y et z.

“Cela est évident, car l’équation zp = xp + yp donne la congruence 1 ≡ rsp − rtp dans
laquelle r represente une racine primitive et s et t des entiers.

“. . . Il suit delà que s’il y avoit un nombre infini de tels nombres l’équation serait
impossible.

“Je n’ai jamais pû arriver a l’infini quoique j’ai reculé bien loin les limites par une
methode de tatonnement trop longue pour qu’il me soit possible de l’exposer ici. Je
n’oserais même pas affirmer que pour chaque valeur de p il n’existe pas une limite audela
delaquelle tous les nombres de la forme 2Np + 1 auraient deux résidus pièmes placés de
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Several things are remarkable here. Most surprisingly, Germain does not
mention to Gauss anything even hinting at the only result she is actually
known for in the literature, what we call Sophie Germain’s Theorem. Why
not? Where is it? Instead, Germain explains a plan, simple in its concep-
tion, for proving Fermat’s Last Theorem outright. It requires that, for a
given prime exponent p, one establish infinitely many auxiliary primes each
satisfying a non-consecutivity condition on its nonzero p-th power residues
(note that this condition is the very same as one of the two hypotheses re-
quired in Sophie Germain’s Theorem for proving Case 1, but there one only
requires a single auxiliary prime, not infinitely many). And she explains to
Gauss that since each such auxiliary prime will have to divide one of x, y,
z, the existence of infinitely many of them will make the Fermat equation
impossible. She writes that she has worked long and hard at this plan by
developing a method for verifying the condition, made great progress, but
has not been able to bring it fully to fruition (even for a single p) by ver-
ifying the condition for infinitely many auxiliary primes. She also writes
that she has proven that any solutions to a Fermat equation would have to
“frighten the imagination” with their size. And she gives a few details of
her particular methods of attack. The next two sections will examine the
details of these claims in Germain’s manuscripts.

3 The grand plan

Our aim in this section is to study Germain’s plan for proving Fermat’s Last
Theorem, as outlined to Gauss, to show its thoroughness and sophistication,
and to consider its promise for success.

As we saw Germain explain to Gauss, one can prove Fermat’s Last Theo-
rem for exponent p by producing an infinite sequence of qualifying auxiliary
primes. Manuscript A (Figure 4) contains, among other things, the full de-
tails of her efforts to carry this plan through, occupying more than 16 pages
of very polished writing. We analyze these details in this section, ending
with a comparison between Manuscripts A and D.

suite dans la serie des nombres naturels. C’est le cas qui interesse l’équation de Fermat.
“Vous concevrez aisement, Monsieur, que j’ai dû parvenir a prouver que cette équation

ne serait possible qu’en nombres dont la grandeur effraye l’imagination ; Car elle est encore
assujettie a bien d’autres conditions que je n’ai pas le tems d’énumérer a cause des details
necessaire pour en établir la réussite. Mais tout cela n’est encore rien, il faut l’infini et
non pas le très grand.” (Letter to Gauss, pp. 2–4)
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Figure 4: Beginning of Manuscript A

3.1 Germain’s plan for proving Fermat’s Last Theorem

We have seen that Germain’s plan for proving Fermat’s Last Theorem for
exponent p hinged on developing methods to validate the following qualifying
condition for infinitely many auxiliary primes of the form θ = 2Np + 1:

Condition N-C (Non-Consecutivity). There do not exist two nonzero
consecutive pth power residues, modulo θ.

Early on in Manuscript A (Figure 5), Germain claims that for each fixed
N (except when N is a multiple of 3, for which she shows that Condition N-
C always fails18), there will be only finitely many exceptional numbers p for
which the auxiliary θ = 2Np + 1 fails to satisfy Condition N-C (recall from
footnote 15 that only primes of the form θ = 2Np + 1 can possibly satisfy
the N-C condition). Much of Germain’s manuscript is devoted to supporting
this claim; while she was not able to bring this to fruition, Germain’s insight
was vindicated much later when proven true by E. Wendt in 1894 [14, p.
756] [46, p. 124ff] [55].19

18See [46, p. 127].
19Germain’s claim would follow immediately from Wendt’s recasting of the condition in

terms of a circulant determinant depending on N : Condition N-C fails to hold for θ only
if p divides the determinant, which is nonzero for all N not divisible by 3. There is no
indication that Wendt was aware of Germain’s work.

25



Figure 5: From the introduction of Manuscript A
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Note that a priori there is a difference in impact between analyzing Con-
dition N-C for fixed N versus for fixed p. To prove Fermat’s Last Theorem
for fixed p, one needs to verify N-C for infinitely many N , whereas Ger-
main’s approach is to fix N and aim to verify N-C for all but finitely many
p. Germain was acutely aware of this distinction. After we see exactly what
she was able to accomplish for fixed N , we will see what she had to say
about converting this knowledge into proving Fermat’s Last Theorem for
particular values of p.

Before delving into Germain’s reasoning for general N , let us consider
just the case N = 1, i.e., when θ = 2p + 1 is also prime, today called a
“Germain prime”. We consider N = 1 partly because it is illustrative and
not hard, and partly to relate it to the historical record. Germain knew well
that there are always precisely 2N nonzero p-th power residues modulo an
auxiliary prime of the form θ = 2Np + 1. Thus in this case, the numbers 1
and 2p = θ − 1 ≡ −1 are clearly the only nonzero p-th power residues, so
Condition N-C automatically holds. Of course for N > 1, with more p-th
power residues, their distribution becomes more difficult to analyze. Re-
garding the historical record, we remark that the other condition of Sophie
Germain’s Theorem for Case 1, namely that p itself not be a p-th power mod-
ulo θ, is also obviously satisfied in this case. So Sophie Germain’s Theorem
automatically proves Case 1 whenever 2p+ 1 is prime. This may shed light
on why, as mentioned earlier, some writers have incorrectly thought that
Sophie Germain’s Theorem deals only with Germain primes as auxiliaries.

3.1.1 Establishing Condition N-C for each N , including an induc-
tion on N

In order to establish Condition N-C for various N and p, Germain engages
in extensive analysis over many pages of the general consequences of nonzero
consecutive p-th power residues modulo a prime θ = 2Np + 1 (N never a
multiple of 3).

Her analysis actually encompasses all natural numbers for p, not just
primes. This is important in relation to the form of θ, since she intends to
carry out a mathematical induction on N , and eventually explains in detail
her ideas about how the induction should go. She employs throughout the
notion and notation of congruences introduced by Gauss, and utilizes to
great effect a keen understanding that the 2Np multiplicative units mod θ
are cyclic, generated by a primitive 2Np-th root of unity, enabling her to
engage in detailed analyses of the relative placement of the nonzero p-th
powers (i.e., the 2N -th roots of 1) amongst the residues. She is acutely
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aware (expressed by us in modern terms) that subgroups of the group of
units are also cyclic, and of their orders and interrelationships, and uses
this in a detailed way. Throughout her analyses she deduces that in many
instances the existence of nonzero consecutive p-th power residues would
ultimately force 2 to be a p-th power mod θ, and she therefore repeatedly
concludes that Condition N-C holds under the following hypothesis:

Condition 2-N-p (2 is Not a p-th power). The number 2 is not a p-th
power residue, modulo θ.

Notice that this hypothesis is always a necessary condition for Condition
N-C to hold, since if 2 is a p-th power, then obviously 1 and 2 are nonzero
consecutive p-th powers; so making this assumption is no restriction, and
Germain is simply exploring whether 2-N-p is also sufficient to ensure N-C.

Always assuming this hypothesis, whose verification we shall discuss in
Section 3.1.3, and also the always necessary condition mentioned above (Sec-
tion 3.1) that N is not a multiple of 3, Germain’s analysis initially shows
that if there exist two nonzero consecutive p-th power residues, then by
inverting them, or subtracting them from −1, or iterating combinations of
these transformations, she can obtain more pairs of nonzero consecutive p-th
power residues.20

Germain proves that, under her constant assumption that 2 is not a
p-th power residue modulo θ, this transformation process will produce at
least 6 completely disjoint such pairs, i.e., involving at least 12 actual p-
th power residues.21 Therefore since there are precisely 2N nonzero p-th
power residues modulo θ, she instantly proves Condition N-C for all auxiliary
primes θ with N = 1, 2, 4, 5 as long as p satisfies Condition 2-N-p. Germain
continues with more detailed analysis of these permuted pairs of consecutive
p-th power residues (still assuming Condition 2-N-p) to verify Condition N-
C for N = 7 (excluding p = 2) and N = 8 (here she begins to use inductive
information for earlier values of N).22

At this point Germain explains her general plan to continue the method
of analysis to higher N , and how she would use induction on N for all
p simultaneously. In a nutshell, she argues that the existence of nonzero
consecutive p-th power residues would have to result in a pair of nonzero

20In fact these transformations are permuting the pairs of consecutive residues according
to an underlying group with six elements, which we shall discuss later. Germain even
notes, when explaining the situation in her letter to Gauss [24], that from any one of the
six pairs, her transformations will reproduce the five others.

21Del Centina [12, p. 367ff] provides details of how Germain proves this.
22Del Centina [12, p. 369ff] provides details for N = 7, 8.
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consecutive p-th powers, x, x + 1, for which x is (congruent to) an odd
power (necessarily less than 2N) of x + 1. She claims that one must then
analyze cases of the binomial expansion of this power of x + 1, depending
on the value of N , to arrive at the desired contradiction, and she carries out
a complete detailed calculation for N = 10 (excluding p = 2, 3) as a specific
“example”23 of how she says the induction will work in general.24

It is difficult to understand fully this part of the manuscript. Germain’s
claims may in fact hold, but we cannot verify them completely from what
she says. Germain’s mathematical explanations often omit many details,
leaving much for the reader to fill in, and in this case, there is simply not
enough detail to make a full judgement. Specifically, we have difficulty with
an aspect of her argument forN = 7, with her explanation of exactly how her
mathematical induction will proceed, and with an aspect of her explanation
of how in general a pair x, x+1 with the property claimed above is ensured.
Finally, Germain’s example calculation for N = 10 is much more ad hoc than
one would like as an illustration of how things would go in a mathematical
induction on N . It seems clear that as this part of the manuscript ends,
she is presenting only a sketch of how things could go, indicated by the fact
that she explicitly states that her approach to induction is via the example
of N = 10, which is not presented in a way that is obviously generalizable.
Nonetheless, her instincts here were correct, as proven by Wendt.

3.1.2 The interplay between N and p

Recall from above that proving Condition N-C for all N , each with finitely
many excepted p, does not immediately solve the Fermat problem.

What is actually needed, for each fixed prime p, is that N-C holds for
infinitely many N , not the other way around. For instance, perhaps p = 3
must be excluded from the validation of Condition N-C for all sufficiently
large N , in which case Germain’s method would not prove Fermat’s Last
Theorem for p = 3. Germain makes it clear early in the manuscript that she
recognizes this issue, that her results do not completely resolve it, and that
she has not proved Fermat’s claim for a single predetermined exponent. But
she also states that she strongly believes that the needed requirements do
in fact hold, and that her results for N ≤ 10 strongly support this. Indeed,
note that so far the only odd prime excluded in any verification was p = 3
for N = 10 (recall, though, that we have not yet examined Condition 2-N-
p, which must also hold in all her arguments, and which will also exclude

23(Manuscript A, p. 13)
24Del Centina [12, p. 369ff] also has commentary on this.
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certain combinations of N and p when it fails).
Germain’s final comment on this issue states first that as one proceeds

to ever higher values of N , there is always no more than a “very small
number”25 of values of p for which Condition N-C fails. If indeed this, the
very crux of the whole approach, were the case, in particular if the number
of such excluded p were bounded uniformly, say by K, for all N , which
is what she in effect claims, then a little reflection reveals that indeed her
method would have proven Fermat’s Last Theorem for all but K values of p,
although one would not necessarily know for which values. She herself then
states that this would prove the theorem for infinitely many p, even though
not for a single predetermined value of p. It is in this sense that Germain
believed her method could prove infinitely many instances of Fermat’s Last
Theorem.

3.1.3 Verifying Condition 2-N-p

We conclude our exposition of Germain’s grand plan in Manuscript A with
her subsequent analysis of Condition 2-N-p, which was required for all her
arguments above.

She points out that for 2 to be a p-th power mod θ = 2Np + 1 means
that 22N ≡ 1 (mod θ) (since the multiplicative structure is cyclic). Clearly
for fixed N this can only occur for finitely many p, and she easily determines
these exceptional cases through N = 10, simply by calculating and factoring
each 22N − 1 by hand, and observing whether any of the prime factors are
of the form 2Np+ 1 for any natural number p. To illustrate, for N = 7 she
writes that

214 − 1 = 3 · 43 · 127 = 3 · (14 · 3 + 1) · (14 · 9 + 1) ,

so that p = 3, 9 are the only values for which Condition 2-N-p fails for this
N .

Germain then presents a summary table of all her results verifying Con-
dition N-C for auxiliary primes θ using relevant values of N ≤ 10 and primes
2 < p < 100, and says that it can easily be extended further.26 The results
in the table are impressive. Aside from the case of θ = 43 = 14 · 3 + 1 just
illustrated, the only other auxiliary primes in the range of her table which

25(Manuscript A, p. 15)
26The table is slightly flawed in that she includes θ = 43 = 14 · 3 + 1 for N = 7 despite

the excluding calculation we just illustrated, which Germain herself had just written out;
it thus seems that the manuscript may have simple errors, suggesting it may sadly never
have received good criticism from another mathematician.
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must be omitted are θ = 31 = 10·3+1, which she determines fails Condition
2-N-p, and θ = 61 = 20 · 3 + 1, which was an exception in her N-C analysis
for N = 10. In fact each N in her table ends up having at least five primes
p with 2 < p < 100 for which θ = 2Np + 1 is also prime and satisfies the
N-C condition.

While the number of p requiring exclusion for Condition 2-N-p may ap-
pear “small” for each N , there seems no obvious reason why it should nec-
essarily be uniformly bounded for all N ; Germain does not discuss this issue
specifically for Condition 2-N-p. As indicated above, without such a bound it
is not clear that this method could actually prove any instances of Fermat’s
theorem.

3.1.4 Results of the grand plan

As we have seen above, Germain had a sophisticated and highly developed
plan for proving Fermat’s Last Theorem for infinitely many exponents.

It relied heavily on facility with the multiplicative structure in a cyclic
prime field and a set (group) of transformations of consecutive p-th powers.
She carried out her program on an impressive range of values for the neces-
sary auxiliary primes, believed that the evidence indicated one could push
it further using mathematical induction by her methods, and she was opti-
mistic that by doing so it would prove Fermat’s Last Theorem for infinitely
many prime exponents. In hindsight we know that, promising as it may
have seemed at the time, the program can never be carried to completion,
as we shall see next.

3.2 Failure of the grand plan

Did Germain ever know that her grand plan cannot succeed? To answer this
question we examine the published record, Germain’s correspondence with
Gauss, and a letter she wrote to Legendre.

Published indication that Germain’s method cannot succeed in proving
Fermat’s Last Theorem, although not mentioning her by name, came in work
of Guglielmo (Guillaume) Libri, a rising mathematical star in the 1820s. We
now describe Libri’s work in this regard.

3.2.1 Libri’s claims that such a plan cannot work

It is a bit hard to track and compare the content of Libri’s relevant works
and their dates, partly because Libri presented or published several different
works all with the same title, but some of these were also multiply published.
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Our interest is in the content of just two different works. In 1829 Libri
published a set of his own memoirs [37]. One of these is titled Mémoire
sur la théorie des nombres, republished later word for word as three papers
in Crelle’s Journal [36]. The memoir published in 1829 ends by applying
Libri’s study of the number of solutions of various congruence equations to
the situation of Fermat’s Last Theorem. Among other things, Libri shows
that for exponents 3 and 4, there can be at most finitely many auxiliary
primes satisfying the N-C condition. And he claims that his methods will
clearly show the same for all higher exponents. Libri explicitly notes that his
result proves that the attempts of others to prove Fermat’s Last Theorem
by finding infinitely many such auxiliaries are in vain.

Libri also writes in his 1829 memoir that all the results he obtains were
already presented in two earlier memoirs of 1823 and 1825 to the Academy
of Sciences in Paris. Libri’s 1825 presentation to the Academy was also
published, in 1833/1838 [39], confusingly with the same title as the 1829
memoir. This presumably earlier document27 is quite similar to the pub-
lication of 1829, in that it develops methods for determining the number
of solutions to quite general congruence equations, including that of the
N-C condition, but it does not explicitly work out the details for the N-C
condition applying to Fermat’s Last Theorem, as did the 1829 memoir.

Thus it seems that close followers of the Academy should have been
aware by 1825 that Libri’s work would doom the auxiliary prime approach
to Fermat’s Last Theorem, but it is hard to pin down exact dates.28 Much
later, P. Pepin [43, pp. 318–319] [44] and A.-E. Pellet [41, p. 93] (see [14,
p. 750, 753] [46, pp. 292–293]) confirmed all of Libri’s claims, and L. E.
Dickson [15, 16] gave specific bounds.

3.2.2 What Germain knew and when: Gauss, Legendre, and
Libri

Did Germain ever know from Libri or otherwise that her grand plan to prove
Fermat’s Last Theorem could not work, and if so, when?

We know that in 1819 she was enthusiastic in her letter to Gauss about
her method for proving Fermat’s Last Theorem, based on extensive work

27One can wonder when the document first published in 1833, but based on Libri’s 1825
Academy presentation, was really written or finalized. Remarks he makes in it suggest,
though, that it was essentially his 1825 presentation.

28For completeness, we mention that Libri also published a memoir on number theory
in 1820, his very first publication, with the title Memoria sopra la teoria dei numeri [38],
but it was much shorter and does not contain the same type of study or results on the
number of solutions to congruence equations.
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exemplified by Manuscript A.29 In the letter Germain details several specific
examples of her results on the N-C condition that match perfectly with
Manuscript A, and which she explicitly explains have been extracted from
an already much older note (“d’une note dejá ancienne”30) that she has not
had the time to recheck. In fact everything in the extensive letter to Gauss
matches the details of Manuscript A. This suggests that Manuscript A is
likely the older note in question, and considerably predates her 1819 letter
to Gauss. Thus 1819 is our lower bound for the answer to our question.

We also know that by 1823 Legendre had written his memoir crediting
Germain with her theorem, but without even mentioning the method of
finding infinitely many auxiliary primes that Germain had pioneered to try
to prove Fermat’s Last Theorem.31 We know, too, that Germain wrote
notes in 1822 on Libri’s 1820 memoir,32 but this first memoir did not study
modular equations, hence was not relevant for the N-C condition. It seems
likely that she came to know of Libri’s claims dooming her method, based
either on his presentations to the Academy in 1823/25 or the later memoir
published in 1829, particularly because Germain and Libri had met and
were personal friends from 1825 [3, p. 117] [7, p. 140], as well as frequent
correspondents. It thus seems probable that sometime between 1819 and
1825 Germain would have come to realize from Libri’s work that her grand
plan could not work. However, we shall now see that she determined this
otherwise.

29Near the end she even expresses to Gauss how a brand new work by L. Poinsot [45]
will help her further her efforts to confirm the N-C condition by giving a new way of
working with the p-th powers mod θ = 2Np + 1. She interprets them as the solutions of
the binomial equation of degree 2N , i.e., of x2N −1 = 0. Poinsot’s memoir takes the point
of view that the mod θ solutions of this equation can be obtained by first considering the
equation over the complex numbers, where much was already known about the complex
2N-th roots of unity, and then considering these roots as mod p integers by replacing the
complex number

√
−1 by an integer whose square yields −1 mod p. Del Centina [12, p.

361] also discusses this connection.
30(Letter to Gauss, p. 5)
31Del Centina [12, p. 362] suggests that a letter from Legendre to Germain in late 1819,

published in [51], shows that he believed at that time that Germain’s work on Fermat’s
Last Theorem could not succeed. However, we are not certain that this letter is really
referring to her program for proving Fermat’s Last Theorem.

32Germain’s three pages of notes [28, cass. 7, ins. 56] [7, p. 233], while not directly
about Fermat’s Last Theorem, do indicate an interest in modular solutions of roots of
unity equations, which is what encompasses the distribution of p-th powers modulo θ.
Compare this with what she wrote to Gauss about Poinsot’s work, discussed in footnote
29.
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3.2.3 Proof to Legendre that the plan fails for p = 3

Beyond arguing as above that Germain very likely would have learned from
Libri’s work that her grand plan cannot succeed, we have actually found
separate direct evidence of Germain’s realization that her method of proving
Fermat’s Last Theorem will not be successful, at least not in all cases.

While Manuscript A and her letter of 1819 to Gauss evince her belief
that for every prime p > 2, there will be infinitely many auxiliary primes
satisfying the N-C condition, there is an undated letter to Legendre [27] (de-
scribed in the introduction) in which Germain actually proves the opposite
for p = 3.

Sophie Germain began her three page letter by thanking Legendre for
“telling” her “yesterday” that one can prove that all numbers of the form
6a+1 larger than 13 have a pair of nonzero consecutive cubic residues. This
amounts to saying that for p = 3, no auxiliary primes of the form θ = 2Np+1
satisfy the N-C condition beyond N = 1, 2. At first sight this claim is
perplexing, since it seems to contradict Germain’s success in Manuscript A
at proving Condition N-C for almost all odd primes p whenever N = 1, 2,
4, 5, 7, 8, 10. However, the reader may check that for p = 3 her results
in Manuscript A actually only apply for N = 1 and 2, once one takes into
account the exceptions, i.e., when either θ is not prime, or Condition 2-N-p
fails, or when she specifically excludes p = 3 for N = 10. So the claim
by Legendre, mentioned in Germain’s letter, that there are only two valid
auxiliary primes for p = 3, is conceivably true. Germain immediately writes
a proof for him.

Since this proof is highly condensed, we will elucidate her argument here
in our own words, in modern terminology, and substantially expanded. Our
aim is to verify her claim, and at the same time experience the mathematical
level and sophistication of Germain’s thinking. Figure 6 displays the end of
the letter. The reader may notice that her last paragraph of proof takes us
fully twice as long to decipher and explain below.

The grand plan cannot work for p = 3. For any prime θ of the form
6a+1, with θ > 13, there are (nonzero) consecutive cubic residues. In other
words, the N-C condition fails for θ = 2Np + 1 when p = 3 and N > 2, so
the only valid auxiliary primes for p = 3 for the N-C condition are θ = 7
and 13.

Proof. We consider only the nonzero residues 1, . . . , 6a. Suppose that N-C
is true, i.e., there are no consecutive pairs of cubic residues (c.r.) amongst
these, and suppose further that there are also no pairs of c.r. whose difference
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Figure 6: End of Germain’s letter to Legendre
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is 2. (Note something important here. We mean literally residues, not
congruence classes, with this assumption, since obviously 1 and −1 are cubic
congruence classes whose difference is 2. But they are not both actual
residues, and their residues do not have difference 2. So they do not violate
our assumption.) There are 2a c.r. distributed somehow amongst the 6a
residues, and without any differences of 1 or 2 allowed, according to what
we have assumed. Therefore to separate adequately these 2a residues from
each other there must be 2a − 1 gaps containing the 4a nonzero non-cubic
residues (n.c.r.), each gap containing at least 2 n.c.r. Since each of these
2a− 1 gaps has at least 2 n.c.r., utilizing 4a− 2 n.c.r., this leaves flexibility
for allocating only 2 remaining of the 4a n.c.r. This means that all the gaps
must contain exactly 2 n.c.r. except for either a single gap with 4 n.c.r., or
two gaps with 3 n.c.r. in each.

We already know of the specific c.r. 1 and 8 (recall θ = 6a+1 > 13). and
we know that 2 and 3 cannot be c.r. by our two assumptions. If 4 were a
c.r., then so would 8/4 = 2 (alternatively, 8−4 = 4 would violate N-C), so 4
is also not a c.r. Now Germain writes down a pattern for the sequence of c.r.
that we do not understand, and claims it is obviously absurd for θ > 13.33

We can easily arrive at a pattern and an absurdity ourselves. From what
Germain already has above, the c.r. sequence must clearly be the list 1, 5,
8, 11, . . . , 6a− 10, 6a− 7, 6a− 4, 6a, since the c.r. are symmetrically placed
via negation modulo θ = 6a + 1, and we know the gap sizes. Notice that
the two exceptional gaps must be of 3 missing numbers each, located at the
beginning and end. To see this is absurd, consider first, for θ ≥ 6·5+1 = 31,
the c.r. 33 = 27. Notice it contradicts the pattern listed above, since it is
less than 6a ≥ 30, but is not congruent to 2 modulo 3, as are all the lesser
residues in the list except 1. Finally, the only other prime θ > 13 is 19, for
which 43 = 64 has residue 7, which is not in the list.

So one of the two initial assumptions must be false. If N-C fails, we
are done. Therefore consider the failure of the other assumption, that there
are no pairs of c.r. whose difference is 2. Let then r and r′ be c.r. with
r − r′ = 2. Let x be a primitive root of unity modulo θ, i.e., a generator
of the cyclic group of multiplicative units represented by the nonzero prime
residues. We must have 2 ≡ x3f±1, i.e., the power of x representing 2 cannot
be divisible by 3, since 2 is not a c.r.

Now consider r + r′. We claim that r + r′ 6≡ 0, since if r + r′ ≡ 0, then
2 = r − r′ ≡ r − (−r) = 2r, yielding r ≡ 1, and hence r = 1, which violates

33Germain writes that the list is (presumably omitting those at the ends) 1 + 4, 5 + 3,
8 + 3, 11 + 3, 14 + 3, . . . , 6a− 17, 6a− 4 [sic], 6a− 11, 6a− 8, 6a − 5.
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r−r′ = 2. Here it is critical to recall that we are dealing with actual residues
r and r′, both nonnegative numbers less than 6a+ 1, i.e., the requirements
r ≡ 1 and r − r′ = 2 are incompatible, since there are no 0 < r, r′ < 6a+ 1
for which r ≡ 1 and r − r′ = 2; this is related to the observation at the
beginning that the congruence classes 1 and −1 are not violating our initial
assumption.

Since r + r′ 6≡ 0, it is a unit, and thus must be congruent to some
power xm. If m were divisible by 3, then the congruence r+ r′ ≡ xm would
provide a difference of c.r. yielding another c.r., which violates N-C after
division by the latter. So we have r + r′ ≡ x3g±1. Now the sign in 3f ± 1
must agree with that in 3g ± 1, since if not, say r + r′ ≡ x3g∓1, then r2 −
r′2 = (r − r′) (r + r′) ≡ 2x3g∓1 ≡ x3f±1x3g∓1 = x3(f+g), again producing a
difference of c.r. equal to another c.r., a contradiction. Finally, we combine
r − r′ ≡ x3f±1 with r + r′ ≡ x3g±1 to obtain 2r ≡ x3f±1 + x3g±1, and
thus x3f±1r ≡ x3f±1 +x3g±1, becoming r ≡ 1+x3(g−f), again contradicting
N-C. Thus the original assumption of Condition N-C must have been false.
q.e.d.

This is quite impressive for a proof developed overnight.
These dramatic failures of Condition N-C for p = 3 presumably greatly

sobered Germain’s previous enthusiasm for pursuing her grand plan any
further. We mention in passing that, optimistic as Germain was at one
point about finding infinitely many auxiliary primes for each p, not only is
that hope dashed in her letter to Legendre, and by Libri’s results, but even
today it is not known whether, for an arbitrary prime p, there is even one
auxiliary prime θ satisfying Condition N-C [46, p. 301].

3.3 Germain’s grand plan in other authors

We know of no concrete evidence that anyone else ever pursued a plan similar
to Sophie Germain’s for proving Fermat’s Last Theorem, despite the fact
that Libri wrote of several (unnamed) mathematicians who attempted this
method. Germain’s extensive work on this approach appears to be entirely,
independently, and solely hers, despite the fact that others were interested
in establishing Condition N-C for different purposes. In this section we will
see how and why other authors worked on Condition N-C, and compare with
Germain’s methods.
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3.3.1 Legendre’s methods for establishing Condition N-C

Legendre did not mention Germain’s full scale attack on Fermat’s Last The-
orem via Condition N-C in his memoir of 1823, and we will discuss this later,
when we evaluate the interaction between Germain and Legendre in Section
8.3.3. However, even ignoring any plan to prove Fermat’s Last Theorem
outright, Legendre had two other reasons for wanting to establish Condition
N-C himself, and he develops N-C results in roughly the same range for N
and p as did Germain, albeit not mentioning her results.

One of his reasons was to verify Case 1 of Fermat’s Last Theorem for
many prime exponents, since, recall, Condition N-C for a single auxiliary
prime is also one of the hypotheses of Sophie Germain’s Theorem. Indeed,
Legendre develops results for N-C, and for the second hypothesis of her
theorem, that enable him to find a qualifying auxiliary prime for each odd
exponent p ≤ 197, which extends the scope of the table he implicitly at-
tributed to Germain. Legendre goes on to use his N-C results for a second
purpose as well, namely to show for a few small exponents that any solutions
to the Fermat equation would have to be very large indeed. We will discuss
this additional use of N-C in the next section.

Having said that Legendre obtained roughly similar N-C conclusions as
Germain, why do we claim that her approach to N-C verification is entirely
independent? This is because Germain’s method of analyzing and proving
the N-C condition, explained in brief above, is utterly unlike Legendre’s.34

We illustrate this by quoting Legendre’s explanation of why Condition N-C
is always satisfied for N = 2, i.e., for θ = 4p + 1. As we quote Legendre,
we caution that even his notation is very different; he uses n for the prime
exponent that Germain, and we, call p. Legendre writes

One can also prove that when one has θ = 4n+ 1, these two
conditions are also satisfied. In this case there are 4 residues r
to deduce from the equation r4 − 1 = 0, which divides into two
others r2 − 1 = 0, r2 + 1 = 0. The second, from which one must
deduce the number µ, is easy to resolve35; because one knows
that in the case at hand θ may be put into the form a2 + b2,
it suffices therefore to determine µ by the condition that a+ bµ
is divisible by θ; so that upon omitting multiples of θ, one can
make µ2 = −1, and the four values of r become r = ± (1, µ).

34Del Centina [12, p. 370] also remarks on this.
35From earlier in the treatise, we know that µ here means a primitive fourth root of

unity, which will generate the four n-th powers.
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From this one sees that the condition r′ = r + 1 can only be
satisfied in the case of µ = 2, so that one has θ = 5 and n = 1,
which is excluded. ... [34, §25]

We largely leave it to the reader to understand Legendre’s reasoning
here. He does not use the congruence idea or notation that Germain had
adopted from Gauss, he focuses his attention on the roots of unity from
their defining equation, he makes no use of the 2-N-p condition, but he is
interested in the consequences of the linear form 4n + 1 necessarily having
a certain quadratic form, although we do not see how it is germane to his
argument. In the next case, for N = 4 and θ = 8n + 1, he again focuses
on the roots of unity equation, and claims that this time the prime 8n + 1
must have the quadratic form a2+2b2, which then enters intimately into an
argument related to a decomposition of the roots of unity equation. Clearly
Legendre’s approach is completely unlike Germain’s. Recall that Germain
disposed of all the cases N = 1, 2, 4, 5 in one fell swoop with the first
application of her analysis of permuted placements of pairs of consecutive p-
th powers, whereas Legendre laboriously builds his analysis of 2N -th roots of
unity up one value at a time from N = 1. In short, Legendre focuses on the
p-th powers as 2N -th roots of unity, one equation at a time, while Germain
does not, instead studying their permutations as p-th powers more generally
for what it indicates about their placement, and aiming for mathematical
induction on N .36

3.3.2 Dickson rediscovers permutation methods for Condition N-
C

Many later mathematicians worked to extend verification of the N-C con-
dition for larger values of N .37 Their aim was to prove Case 1 of Fermat’s
Last Theorem for more exponents by satisfying the hypotheses of Sophie
Germain’s Theorem.

In particular, in 1908 L. E. Dickson published two papers [17, 18] (also
discussed in [14, p. 763]) extending the range of verification for Condition

36Despite the apparently completely disjoint nature of the treatments by Germain and
Legendre of the N-C condition, it is quite curious that their writings have a common
mistake. The failure of N-C for p = 3 when N = 7 is overlooked in Legendre’s memoir,
whereas in Germain’s manuscript, as we noted above, she explicitly calculated the failure
of 2-N-p (and thus of N-C) for this same combination, but then nonetheless mistakenly
listed it as valid for N-C in her table.

37Legendre went to N = 8 and Germain to N = 10, and actually to N = 11 in another
very much rougher manuscript draft [25, pp. 209r–214v, 216r–218v, 220r–226r].
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N-C to N < 74, and also 76 and 128 (each N excepting certain values for
p, of course), with which he was able to apply Sophie Germain’s theorem to
prove Case 1 for all p < 6,857.

In light of the fact that Germain and Legendre had completely different
methods for verifying Condition N-C, one wonders what approach was taken
by Dickson. Dickson comments directly that his method for managing many
cases together has “obvious advantages over the procedure of Legendre” [18,
p. 27]. It is then amazing to see that his method is based directly (albeit
presumably unbeknownst to him) on the same theoretical observation made
by Sophie Germain, that pairs of consecutive p-th powers are permuted by
two transformations of inversion and subtraction to produce six more. He
recognizes that these transformations form a group of order six, which he
calls the cross-ratio group (it consists of the transformations of the cross-
ratio of four numbers on the real projective line obtained by permuting its
variables [50, pp. 112–113]), and is isomorphic to the permutations on three
symbols). Dickson observes that the general form of these transformations
of an arbitrary p-th power are the roots of a sextic polynomial that must
divide the roots of unity polynomial for any N . This then forms the basis
for much of his analysis, and even the ad hoc portions have much the flavor
of Germain’s approach for N > 5. In sum, we see that Dickson’s approach
to the N-C condition more than three-quarters of a century later could have
been directly inspired by Germain’s, had he known of it.

3.3.3 Modern approaches using Condition N-C

Work on verifying the N-C condition has continued up to the close of the
twentieth century, largely with the aim of proving Case 1 using extensions
of Sophie Germain’s Theorem.

By the middle of the 1980s results on the distribution of primes had
been combined with extensions of Germain’s theorem to prove Case 1 of
Fermat’s Last Theorem for infinitely many prime exponents [1, 21]. It is
also remarkable that at least one yet more recent effort still harks back
to what we have seen in Germain’s unpublished manuscripts. Recall that
Germain explained her intent to prove the N-C condition by induction on N .
This is precisely what a recent paper by David Ford and Vijay Jha does [20],
using some modern methods and computing power to prove by induction on
N that Case 1 of Fermat’s Last Theorem holds for any odd prime exponent
p for which there is a prime θ = 2Np+ 1 with 3 ∤ N and N ≤ 500.
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3.4 Comparing Manuscripts A and D: Polishing for the prize

competition?

We have analyzed Sophie Germain’s grand plan to prove Fermat’s Last The-
orem, which occupies most of Manuscript A. Manuscript D has the same
title and almost identical mathematical content and wording. Why did she
write two copies of the same thing? We can gain some insight into this by
comparing the two manuscripts more closely.

Manuscript D gives the impression of an almost finished exposition of
Germain’s work on Fermat’s Last Theorem, greatly polished in content and
wording over other much rougher versions amongst her papers. And it is
perfectly readable. However, it is not yet physically beautiful, since Ger-
main was clearly still refining her wording as she wrote it. In many places
words are crossed out and she continues with different wording, or words
are inserted between lines or in the margins to alter what has already been
written. There are also large parts of some pages left blank. By contrast,
Manuscript A appears essentially perfect. It is copied word for word almost
without exception from Manuscript D. It seems clear that Manuscript A was
written specifically to provide a visually perfected copy of Manuscript D.

One aspect of Manuscript D is quite curious. Recall that Manuscript A
contains a table with all the values for auxiliary primes satisfying Condition
N-C for N ≤ 10 and 3 < p < 100. Germain explicitly introduces this table,
referring both ahead and back to it in the text, where it lies on page 17 of
20. Manuscript D says all these same things about the table, but where the
table should be there is instead simply a side of a sheet left blank. Thus
Germain refers repeatedly to a table that is missing in what she wrote. This
suggests that as Germain was writing Manuscript D, she knew she would
need to recopy it to make it perfect, so she didn’t bother writing out the
table at the time, saving the actual table for Manuscript A.

This comparison between Manuscripts A and D highlights the perfection
of presentation Sophie Germain sought in producing Manuscript A. Is it
possible that she was preparing this manuscript for submission to the French
Academy prize competition on the Fermat problem, which ran from 1816 to
1820? We will discuss this further in Section 8.3.4.

4 Large size of solutions

While Germain believed that her grand plan could prove Fermat’s Last
Theorem for infinitely many prime exponents, she recognized that it had
not yet done so even for a single exponent. She thus wrote that she wished
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Figure 7: Beginning of the final section of Manuscript A, p. 17

at least to show for specific exponents that any possible solutions to the
Fermat equation would have to be extremely large.

In the last four pages of Manuscript A, Germain states, proves and ap-
plies a theorem intended to accomplish this (Figure 7). She actually states
the theorem twice, first near the beginning of the manuscript (Manuscript
A, p. 3), where she recalls that any auxiliary prime satisfying Condition
N-C will have to divide one of the numbers x, y, z in the Fermat equation,
but observes that to produce significant lower bounds on solutions this way,
one would need to employ rather large auxiliary primes. Then she says

fortunately one can avoid such impediment by means of the fol-
lowing theorem:38

Theorem (Large Size of Solutions). “For the equation xp+yp = zp to be
satisfied in whole numbers, p being any [odd] prime number, it is necessary
that one of the numbers x+y, z−y, and z−x be a multiple of the (2p−1)th

power of the number p and of the pth powers of all the prime numbers of
the form [θ =]Np+ 1, for which, at the same time, one cannot find two pth

power residues [mod θ] whose difference is one, and p is not a pth power
residue [mod θ].”39

38“heureusement on peut éviter un pareil embarras au moyen du théorème suivant:”
(Manuscript A, p. 3)

39“Pour que l’équation xp+yp = zp soit satisfaite en nombres entiers, p étant un nombre
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(N.B: The theorem implicitly requires that at least one such θ exists.)
It is this theorem to which Germain was undoubtedly referring when, as

we noted earlier, she wrote to Gauss that any possible solutions would consist
of numbers “whose size frightens the imagination”. Early in Manuscript A
she says that she will apply the theorem for various values of p using her
table. She mentions here that even just for p = 5, the valid auxiliary primes
θ = 11, 41, 71, 101 show that any solution to the Fermat equation would
force a solution number to have at least 39 decimal digits.

We will see below that, as given, the proof of Germain’s Large Size
theorem is insufficient, and we will discuss approaches she made to remedy
this, as well as an approach by Legendre to large size of solutions. But
we will also see that Sophie Germain’s Theorem, the result she is actually
known for today, validly falls out of her proof.

4.1 Germain’s proof of large size of solutions

Note first that the two hypotheses of Germain’s Large Size theorem are the
same N-C condition she already studied at length for her grand plan, and a
second:

Condition p-N-p (p is Not a p-th power). p is not a pth power residue,
modulo θ.

Of course this is precisely the second hypothesis of Sophie Germain’s
Theorem.

We now present a direct English translation of Germain’s proof.

4.1.1 The Barlow-Abel equations

The proof implicitly begins with the fact that the N-C condition implies
that one of the numbers x, y, z has to be divisible by θ. We also provide
additional annotation, since Germain assumes the reader is already quite
familiar with many aspects of her equations.

Assuming the existence of a single number subject to the
double condition, I will prove first that the particular number
x, y or z in the equation xp + yp = zp which is a multiple of the

premier quelconque; il faut que l’un des nombres x+ y, z − y et z − x soit multiple de la
(2p−1)ième puissance du nombre p et des pièmes puissances de tous les nombres premiers de
la forme Np+1, pour lesquels, en même tems que l’on ne peut trouver deux résidus pièmes

puissances dont la difference soit l’unité, p est non résidu puissance pième.” (Manuscript
A, p. 3 and p. 17)
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assumed number [θ], must necessarily also be a multiple of the
number p2.

Indeed, if the numbers x, y, z are [assumed to be] relatively
prime, then the [pairs of] numbers

x+ y and xp−1 − xp−2y + xp−3y2 − xp−4y3 + etc
z − y and zp−1 + zp−2y + zp−3y2 + zp−4y3 + etc
z − x and zp−1 + zp−2x+ zp−3x2 + zp−4x3 + etc.

can have no common divisors other than p.40

For the first pair, this last claim can be seen as follows (and similarly for
the other pairs). Denote the right hand expression on the first line by ϕ(x, y).
If some prime q other than p divides both numbers, then y ≡ −x (mod q),
yielding ϕ(x, y) ≡ pxp−1 (mod q). Then x and x + y are both divisible by
q, contradicting the assumption that x and y are relatively prime. This
excludes all primes other than p as potential common divisors of x+ y and
ϕ(x, y).

If, therefore, the three numbers x, y, and z were all prime to

40“En supposant l’existence d’un seul des nombres assujettis à cette double condition,
je prouverai d’abord que celui des nombres x, y et z qui dans l’équation xp + yp = zp

sera multiple du nombre supposé, devra necessairement être en même tems multiple du
nombre p2.

“En effet lorsque x, y et z sont premiers entr’eux, les nombres

x+ y et xp−1 − xp−2y + xp−3y2 − xp−4y3 + etc
z − y et zp−1 + zp−2y + zp−3y2 + zp−4y3 + etc
z − x et zp−1 + zp−2x+ zp−3x2 + zp−4x3 + etc.

ne peuvent avoir d’autres diviseurs communs que le nombre p.” (Manuscript A, p. 18)
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p, then one would have, letting z = lr, x = hn, y = vm:41

x+ y = lp xp−1 − xp−2y + xp−3y2 − xp−4y3 + etc = rp

(1)

z − y = hp zp−1 + zp−2y + zp−3y2 + zp−4y3 + etc = np

(2)

z − x = vp zp−1 + zp−2x+ zp−3x2 + zp−4x3 + etc = mp.
(3)

Equations like these were given by Barlow around 1810, and stated ap-
parently independently by Abel in 1823 [46, ch. III].

One can derive these equations as follows. In the first line, the as-
sumption that x, y, z are each relatively prime to p, along with the Fermat
equation, forces x+ y and ϕ(x, y) to be relatively prime. Since the product
of x + y and ϕ(x, y) is equal to zp, each of them must therefore be a pth
power, as she writes. The other lines have parallel proofs.

4.1.2 Divisibility by p

The next part of Germain’s proof will provide a weak form of Sophie Ger-
main’s Theorem, proving that one of x, y, z must be divisible by p.

Without loss of generality I assume that it is the number z
which is a multiple of the prime number [θ] of the form 2Np +
1, assumed to exist. One therefore has that lp + hp + vp ≡ 0
(mod 2Np + 1). And since by hypothesis there cannot be, for
this modulus, two pth power residues whose difference is 1, it
will be necessary that it is l and not r, which has this modulus
as a factor. Since x+ y ≡ 0 (mod 2Np+ 1), one concludes that
pxp−1 ≡ rp (mod 2Np + 1), that is to say, because x is a pth

41“Si on voulait donc que les trois nombres x, y, et z fussent tous premiers a p on aurait,
en fesant z = lr, x = hn, y = vm:

x+ y = l
p

x
p−1 − x

p−2
y + x

p−3
y
2 − x

p−4
y
3 + etc = r

p

z − y = h
p

z
p−1 + z

p−2
y + z

p−3
y
2 + z

p−4
y
3 + etc = n

p

z − x = v
p

z
p−1 + z

p−2
x+ z

p−3
x
2 + z

p−4
x
3 + etc = m

p.”

(Manuscript A, p. 18)
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power residue, p will also be a pth power residue, contrary to
hypothesis; thus the number z must be a multiple of p.42

The N-C condition and the congruence lp + hp + vp ≡ 0 (mod θ =
2Np+1) imply that either l, h, or v is divisible by θ. If one of h or v were,
then x or y would also be divisible by θ, contradicting the assumption that
x, y, z are relatively prime. This implies that l is the number divisible by
θ, and thus y ≡ −x (mod θ). Substituting, we have ϕ(x, y) ≡ pxp−1 ≡ rp

(mod θ), as claimed. Furthermore, since z ≡ 0 (mod θ), we conclude from
z − x = vp that x is a pth power modulo θ. Therefore, p is also a pth power
modulo θ, a contradiction to the other hypothesis of the theorem.

Thus we have derived a contradiction to the assumption that x, y, z
are all prime to p, which indeed forces one of x, y, z to be a multiple of p.
This is already the weak form of Sophie Germain’s Theorem. But it is not
clear why z, the number divisible by θ, has to be the one divisible by p; this
uncertainty is indicative of a flaw we will shortly observe.

In order to continue the proof, Germain now in effect implicitly changes
the assumption on z to be that z is the number known to be divisible by p,
but not necessarily by θ, which in principle is fine, but must be kept very
clear by us. She replaces the first pair of equations by a new pair, reflecting
this change. (The remaining equations still hold, since x and y must be
relatively prime to p.)

4.1.3 Sophie Germain’s Theorem as fallout

Next in her proof comes the stronger form of Sophie Germain’s Theorem.

Setting actually z = lrp, the only admissible assumption is
that

x+ y = lppp−1, xp−1−xp−2y+xp−3y2−xp−4y3+etc = prp.
(1′)

Because if, on the contrary, one were to assume that

x+ y = lpp, xp−1−xp−2y+xp−3y2−xp−4y3+etc = pp−1rp,

42“Pour fixer les idées je supposerai que c’est le nombre z qui est multiple du nombre
premier de la forme 2Np+1 dont on a supposé l’existence, on aura alors lp + hp + vp ≡ 0
(mod 2Np+ 1); et puisque par hypothèse il ne peut y avoir pour ce module deux résidus
puissances pièmes dont la difference soit l’unité, il faudra que ce soit l et non par r qui
ait le même module pour facteur. De x + y ≡ 0 (mod 2Np + 1), on conclut pxp−1 ≡ rp

(mod 2Np + 1) c’est à dire, à cause de x résidu pième puissance, p aussi résidu pième

puissance, ce qui est contraire à l’hypothèse, il faut donc que le nombre z soit multiple de
p.” (Manuscript A, p. 18)
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then
(x+ y)p−1 − {xp−1 − xp−2y + xp−3y2 + etc}

would be divisible by pp−1. Observe that in the equation 2z −
x − y = hp + vp the form of the right-hand side forces it to be
divisible by p or p2. Consequently, one sees that with the present
assumptions z has to be a multiple of p2.43

To see Germain’s first assertion one can argue as follows. Since zp =
xp + yp must be divisible by p, we need only show that ϕ(x, y) is divisible
by exactly the first power of p. If we set x+ y = s, then

ϕ(x, y) =
(s− x)p + xp

s
= sp−1−

(

p

1

)

sp−2x+· · ·−

(

p

p− 2

)

sxp−2+

(

p

p− 1

)

xp−1.

Now observe that all but the last summand of the right-hand side is divisible
by p2, since p divides s = x + y ≡ xp + yp = zp (mod p) by Fermat’s Little
Theorem, whereas the last summand is divisible by exactly p, since x is
relatively prime to p.

Finally, to see that this forces z to be divisible by p2, observe that the
equation 2z − x− y = hp + vp ensures that p divides hp + vp. Furthermore,
p divides h + v by Fermat’s Little Theorem, applied to h and v. Now note
that, since h ≡ −v (mod p), it follows that hp ≡ −vp (mod p2). Thus p2

divides z, since p2 divides x + y by Germain’s new first pair of equations
above.

This much of her proof constitutes a valid demonstration of what is called
Sophie Germain’s Theorem.

4.1.4 A mistake in the proof

Germain continues on to prove the further divisibility she claims by θ.

43“En prenant actuellement z = lrp, la seule supposition admissible est

x+ y = l
p
p
p−1

, x
p−1 − x

p−2
y + x

p−3
y
2 − x

p−4
y
3 + etc = pr

p
,

car si on fesait au contraire

x+ y = l
p
p, x

p−1 − x
p−2

y + x
p−3

y
2 − x

p−4
y
3 + etc = p

p−1
r
p
,

(x+ y)p−1 − {xp−1 − x
p−2

y + x
p−3

y
2 + etc}

serait divisible par pp−1, parconséquent si on observe que dans l’équation 2z − x − y =
hp + vp la forme du second membre veut qu’il soit premier a p, ou multiple de p2 on verra
que, dans les suppositions presentes, z aussi doit être multiple de p2.” (Manuscript A, p.
18)
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The only thing that remains to be proven is that all prime
numbers of the form [θ =]2Np+1, which are subject to the same
conditions as the number whose existence has been assumed, are
necessarily multiples [sic]44 of z.

In order to obtain this let us suppose that it is y, for example,
and not z, that has one of the numbers in question as a factor.
Then for this modulus we will have hp − lp ≡ vp, consequently
v ≡ 0, z ≡ x, pzp−1 ≡ mp, that is to say, p is a pth power
residue contrary to the hypothesis.45

Here Germain makes a puzzling mistake.46 Rather than using the equa-
tion (1′), resulting from the p-divisibility assumption on z, she erroneously
uses the original equation (1) which required the assumption that all of
x, y, z are relatively prime to p. Subtracting (1) from (2) and comparing the
result to (3), she obtains the congruence hp − lp ≡ vp (mod θ), since y ≡ 0
(mod θ). Although this congruence has been incorrectly obtained, we will
follow how she deduces from it the desired contradiction, partly because we
wish to see how the entire argument might be corrected. Since neither h
nor l can be divisible by θ (since neither x nor z are), the N-C Condition
implies that v ≡ 0 (mod θ), hence z ≡ x. Thus, pzp−1 ≡ mp follows from
the right-hand equation of (3). Further, z ≡ hp follows from (2), since y ≡ 0,
and, finally, this allows the expression of p as the residue of a p-th power,
which contradicts the p-N-p Condition.

Except for the mistake noted, the proof of Germain’s theorem is com-
plete. If instead the correct new equation (1′) had been used, then in place
of the N-C Condition, the argument as written would need a condition anal-
ogous to N-C, but different, for the congruence

hp − lppp−1 ≡ vp

resulting from subtracting (1′) from (2) instead of (1) from (2). That is, we
could require the following additional hypothesis:

44Germain wrote “multiples” here, but presumably meant “divisors”.
45“La seule chose qui reste à prouver est que tous les nombres premier de la forme

2Np + 1 qui sont assujettis aux mêmes conditions que celui de la même forme dont en a
supposé l’existence sont necessairement multiples [sic] de z.

“Pour y parvenir supposons que ce soit y, par exemple et non pas z, qui ait un des nom-
bres dont il s’agit pour facteur, nous aurons pour ce module hp − lp ≡ vp, parconséquent
v ≡ 0, z ≡ x, pzp−1 ≡ mp, c’est a dire p residu puissance pième contre l’hypothèse.”
(Manuscript A, pp. 18–19)

46Del Centina [12, p. 365ff] does not seem to notice this mistake.
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Condition N-p−1 (No p−1 differences). There are no two nonzero pth-
power residues that differ by p−1 (equivalently, by −2N) modulo θ.

Clearly, adding this condition as an additional hypothesis would make
the proof of the theorem valid.

4.1.5 Attempted remedy

Did Germain ever realize this problem, and attempt to correct it?
To the left of the very well defined manuscript margin, at the beginning

of the paragraph containing the error, are written two words in much smaller
letters and a thicker pen. These words are either “voyez errata” or “voyez
erratu”. This is one of only four places in Manuscript A where marginal
notes mar its visual perfection. None of these appears in Manuscript D,
from which Manuscript A was meticulously copied. So Germain saw the
error in Manuscript A, but probably later, and wrote an erratum about it.
Where is the erratum?

Most remarkably, not far away in the same archive of her papers, tucked
apparently randomly in between other pages, we find two sheets [25, pp. 214r,
215v] clearly titled “errata” or “erratu” in the same writing style as the
marginal comment.

The moment one starts reading these sheets, it is clear that they address
precisely the error Germain made. After writing the corrected equations (1′),
(2), (3) (in fact she refines them even more, incorporating the p2 divisibility
she just correctly deduced) Germain notes that it is therefore a congruence
of the altered form

lpp2p−1 + hp + vp ≡ 0

that should hopefully lead to a contradiction. It is not hard to see that the
N-p−1 and p-N-p conditions will suffice for this, but Germain observes right
away that a congruence nullifying the N-p−1 condition in fact exists for the
very simplest case of interest to her, namely p = 5 and N = 1, since 1 and
−1 are both 5-th powers, and they differ by 2N = 2.47

Germain then embarks on an effort to prove her claim by other means,
not relying on assuming the N-p−1 condition. She develops arguments and
claims based on knowledge of quadratic forms and quadratic reciprocity,
including marginal comments that are difficult to interpret. There is more

47In fact the reader may check in various examples for small numbers that the N-p−1

condition seems to hold rather infrequently compared with the N-C condition, so simply
assuming the N-p−1 condition as a hypothesis makes a true theorem, but perhaps not a
very useful one.
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work to be done understanding her mathematical approach in this erratum,
which ends inconclusively. What Germain displays, though, is her versatility,
in bringing in quadratic forms and quadratic reciprocity to try to resolve the
issue.

4.1.6 Verifying Condition p-N-p: a theoretical approach

We return now from Germain’s erratum to discuss the end of Manuscript
A. Germain follows her Large Size of Solutions theorem with a method for
finding auxiliary primes θ of the form 2Np+1 satisfying the two conditions
(N-C and p-N-p) required for applying the theorem.

Even though we now realize that her applications of the Large Size the-
orem are unjustified, since she did not succeed in providing a correct proof
of the theorem, we will describe her methods for verifying its hypotheses,
in order to show their skill, their application to Sophie Germain’s theorem,
and to compare them with the work of others.

Earlier in the manuscript Germain has already shown her methods for
verifying Condition N-C for her grand plan. She now focuses on verifying
Condition p-N-p, with application in the same range as before, i.e., for aux-
iliary primes θ = 2Np + 1 using relevant values of N ≤ 10 and odd primes
p < 100.

Germain first points out that since θ = 2Np+1, therefore p will be a p-th
power modulo θ if and only if 2N is also, and thus, due to the cyclic nature
of the multiplicative units modulo θ, precisely if (2N)2N − 1 is divisible by
θ. Yet before doing any calculations of this sort, she obviates much effort
by stating another theoretical result: For N of the form 2apb in which a+1
and b+1 are prime to p, she claims that p cannot be a p-th power modulo θ
provided 2 is not a p-th power modulo θ. Of course the latter is a condition
(2-N-p) she already studied in detail earlier for use in her N-C analyses.
Indeed the claim follows because 2a+1pb+1 = 2Np ≡ (−1)p, which shows
that 2 and p must be p-th powers together (although the hypothesis on b
is not necessary for just the implication she wishes to conclude). Germain
points out that this result immediately covers N = 1, 2, 4, 8 for all p. In
fact, there is in these cases no need for Germain even to check the 2-N-p
condition, since she already earlier verified N-C for these values of N , and
2-N-p follows from N-C. Germain easily continues to analyze N = 5, 7, 10 for
Condition p-N-p by factoring (2N)2N−1 and looking for prime factors of the
form 2Np+1. Astonishingly, by this method Germain deduces that there is
not a single failure of Condition p-N-p for the auxiliary primes θ = 2Np+1
in her entire previously drawn table of values satisfying Condition N-C.
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Germain ends Manuscript A by drawing conclusions on the minimum
size of solutions to Fermat equations for 2 < p < 100 using the values for θ
in her table. Almost the most modest is her conclusion for p = 5. Since her
techniques have verified that the auxiliaries 11, 41, 71, 101 all satisfy both
Conditions N-C and p-N-p, Germain’s Large Size theorem (if it were true)
ensures that if x5 + y5 = z5 were true in positive numbers, then one of the
numbers x + y, z − y, z − x must be divisible by 591154157151015, which
Germain notes has at least 39 decimal digits.

4.2 Condition p-N-p and large size in other authors

Legendre’s footnote credits Germain for Sophie Germain’s Theorem and for
applying it to prove Case 1 for odd primes p < 100 [34, §22]. For the
application he exhibits a table providing, for each p, a single auxiliary prime
satisfying both conditions N-C and p-N-p, based on examination of a raw
numerical listing of all its p-th power residues.

Thus he leaves the impression that Germain verified that her theorem
was applicable for each p < 100 by brute force residue computation with
a single auxiliary. In fact, there is even such a residue table to be found
in Germain’s papers [25, p. 151v], that gives lists of p-th power residues
closely matching Legendre’s table.48 Legendre’s table could thus easily have
been made from hers. This, however, is not the full story, contrary to the
impression received from Legendre.

4.2.1 Approaches to Condition p-N-p

Both Legendre and Germain analyze theoretically the validity of Condition
p-N-p as well as that of N-C for a range of values of N and p, even though, as
with Germain’s grand plan for proving Fermat’s Last Theorem via Condition
N-C, Legendre never indicates her efforts at proving large size for solutions
by finding multiple auxiliary primes satisfying both Conditions N-C and
p-N-p.

Moreover, since all Legendre’s work at verifying N-C and p-N-p comes
after his footnote crediting Germain, he is mute about Germain developing

48There are a couple of small differences between Legendre’s table of residues and the
one we find in Germain’s papers. Germain states that she will not list the residues in
the cases when N ≤ 2 in the auxiliary prime, suggesting that she already knew that such
auxiliary primes are always valid. And while Germain, like Legendre, generally lists for
each p the residues for only the single smallest auxiliary prime valid for both N-C and
p-N-p, in the case of p = 5 she lists the residues for several of the auxiliaries that she
validated in Manuscript A.
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techniques for verifying either condition. Rather, the clear impression his
treatise leaves to the reader is that Sophie Germain’s Theorem and the brute
force table are hers, while all the techniques for verifying Conditions N-C
and p-N-p are his alone.

As we have seen, though, Germain qualifies auxiliaries to satisfy both
N-C and p-N-p entirely by theoretical analyses, and her table in Manuscript
A has no brute force listing of residues. In fact she developed general tech-
niques for everything, with very little brute force computation evident, and
was very interested in verifying her conditions for many combinations of N
and p, not just one auxiliary for each p. In short, the nature of Legendre’s
credit to Germain for proving Case 1 for p < 100 leaves totally invisible her
much broader theoretical work that we have uncovered in Manuscript A.

We should therefore investigate, as we did earlier for Condition N-C, how
Legendre’s attempts at verifying Condition p-N-p compare with Germain’s,
to see if they are independent.

4.2.2 Legendre on Condition p-N-p

Legendre’s approach to verifying Condition p-N-p for successive values of
N is at first rather ad hoc, then based on the criterion whether θ divides
p2N − 1, slowly evolving to the equivalent divisibility of (2N)2N − 1 instead,
and appeals to his Théorie des Nombres for finding divisors of numbers of
certain forms.

Unlike Germain’s methods, there is no recognition that many N of the
form 2apb are amenable to appeal to Condition 2-N-p. Suffice it to say that,
as for Condition N-C, Legendre’s approaches and Germain’s take different
tacks, with Germain starting with theoretical transformations that make
verification easier, even though in the end they both verify Condition p-N-p
for roughly the same ranges of N and p. There are aspects with both the
N-C and p-N-p analyses where Germain goes further than Legendre with
values of N and p, and vice versa.

Even their choices of symbols and notation are utterly different. Legen-
dre never uses the congruence notation that Gauss had introduced almost
a quarter century before, while Germain is fluent with it. Legendre quotes
and relies on various results and viewpoints from the second edition of his
Théorie des Nombres, and never considers Condition 2-N-p either for N-C or
p-N-p analysis, whereas it forms a linchpin in Germain’s approach to both.
Germain rarely refers to Legendre’s book or its results, but uses instead
her intimate understanding of the multiplicative structure of prime residues
from Gauss’s Disquisitiones.
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We are left surprised and perplexed by the lack of overlap in mathemati-
cal approach between Germain’s Manuscript A and Legendre’s treatise, even
though the two are coming to the same conclusions page after page. There
is nothing in the two manuscripts that would make one think they had com-
municated, except Legendre’s footnote crediting Germain with the theorem
that today bears her name. It is as though Legendre never saw Germain’s
Manuscript A, a thought we shall return to below. Four factors leave us
greatly perplexed at this disparity. First, years earlier Legendre had given
Germain his strong mentorship during the work on elasticity theory that
earned her a prize of the French Academy. Second, Legendre’s own research
on Fermat’s Last Theorem was contemporaneous with Germain’s. Third,
Germain’s letter to Legendre about the failure of N-C for p = 3 demon-
strates detailed interaction. Fourth, we shall discuss later that Legendre’s
credit to Germain does match quite well with her Manuscript B. How could
they not have been in close contact and sharing their results and methods?
In the end, at the very least we can conclude that each did much indepen-
dent work, and should receive separate credit for all the differing techniques
they developed for analyzing and verifying the N-C and p-N-p conditions.

4.2.3 Legendre’s approach to large size of solutions

Legendre describes not just Sophie Germain’s Theorem and applications, but
also large size results similar to Germain’s, although he makes no mention
of his large size results having anything to do with her. Thus we should
compare their large size work as well.

Germain presents a theorem about large size, and quite dramatic specific
consequences, but the theorem is flawed and her attempts at general repair
appear inconclusive. Legendre, like Germain, studies whether all qualifying
auxiliary primes θ must divide the same one of x, y, z that p2 does, which
is where Germain went wrong in her original manuscript. Like Germain in
her erratum, Legendre recognizes that the N-p−1 condition would ensure
the desired θ divisibility. He, like Germain, also presses on in an alternative
direction, since the condition is not necessarily (in fact perhaps not even
often) satisfied. But here, just as much as in his differing approach to
verifying the N-C and p-N-p conditions, Legendre again chooses a completely
different alternative approach than does Germain.

Legendre analyzes the placement of the p-th power residues more deeply
in relation to the various expressions in equations (1′), (2), (3) above, and
finds additional conditions, more delicate than that of N-p−1, which will en-
sure the desired θ divisibility for concluding large size of solutions. Specifi-
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cally, for example, when p = 5 Legendre has the same auxiliaries θ = 11, 41,
71, 101 satisfying N-C and p-N-p as had Germain.49 However, as Germain
explicitly pointed out for θ = 11 in her erratum, Condition N-p−1 fails; in
fact Legendre’s calculations show that it fails for all four auxiliaries. While
Germain attempted a general fix of her large size theorem using quadratic
forms and quadratic reciprocity, Legendre’s delicate analysis of the place-
ment of 5-th powers shows that 11, 71, 101 (but not 41) must divide the
same one of x, y, z as p2, and so he deduces that some sum or difference
of two of the indeterminates must be divisible by 591157151015, i.e., must
have at least 31 digits. This is weaker than the even larger size Germain
incorrectly deduced, but it is at least a validly supported conclusion. Leg-
endre successfully carries this type of analysis on to exponents p = 7, 11, 13,
concluding that this provides strong numerical evidence for Fermat’s Last
Theorem. But he does not attempt a general theorem about large size of
solutions, as did Germain. As with their work on Conditions N-C and p-N-p,
we are struck by the disjoint approaches to large size of solutions taken by
Germain and Legendre. It seems clear that they each worked largely inde-
pendently, and there is no evidence in their manuscripts that they influenced
each other.

4.2.4 Rediscovery of Germain’s approach to Condition p-N-p

Later mathematicians were as unaware of Germain’s theoretical analysis
of Condition p-N-p as they were of her approach to Condition N-C, again
because Legendre’s published approach was very different and introduced
nothing systematically helpful beyond basic calculation, and Germain’s work
was never published [3, ch. 8].

In particular, the fact that for values of N of the form 2apb for which p
and a are relatively prime, Condition p-N-p follows from 2-N-p, was essen-
tially (re)discovered by Wendt in 1894 [55], and elaborated by Dickson [17]
and Vandiver50 [53] in the twentieth century.

49Although Legendre never mentions the grand plan for proving Fermat’s Last Theorem,
he is interested in how many valid auxiliaries there may be for a given exponent. He claims
that between 101 and 1000 there are no auxiliaries for p = 5 satisfying the two conditions,
and that this must lead one to expect that 101 is the last. This presages Libri’s claims
that for each p there are only finitely many auxiliaries satisfying N-C, and is the one hint
we find in Legendre of a possible interest in the grand plan.

50For comprehensive views of Vandiver’s contributions, especially in relation to Case 1,
see [4, 5].
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5 Exponents of form 2(8n± 3)

We will consider now what we call Manuscript B, entitled Démonstration
de l’impossibilité de satisfaire en nombres entiers à l’équation z2(8n±3) =
y2(8n±3) + x2(8n±3). By the end of the manuscript, although it is written
in a less polished fashion, it is clear that Germain has apparently proven
Fermat’s Last Theorem for all exponents of the form 2 (8n± 3), where p =
8n ± 3 is prime.

Germain states and proves three theorems, and then has a final argument
leading to the title claim. We shall analyze this manuscript for its approach,
for its connection to her other manuscripts and to Legendre’s attribution to
her, and for its correctness.

Although Germain does not spell out the big picture, leaving the reader
to put it all together, it is clear that she is proceeding to prove Fermat’s
Last Theorem via the division we make today, between Case 1 and Case 2,
separately eliminating solutions in which the prime exponent p = 8n ± 3
either does not or does divide one of x2, y2, z2 in the Fermat equation
(

x2
)p

+
(

y2
)p

=
(

z2
)p
.

5.1 Case 1 and Sophie Germain’s Theorem

Germain begins by claiming to eliminate solutions in which none are divisible
by p, and actually claims this for all odd prime exponents, writing

First Theorem. For any [odd] prime number p in the equation
zp = xp+yp, one of the three numbers z, x, or y will be a multiple
of p2.51

Today we name this Case 1 of Fermat’s Last Theorem, that solutions
must be p-divisible (Germain claims a little more, namely p2 divisibility).
Note that there are no hypotheses as stated, since Germain wishes to evince
that Case 1 is true in general, and move on to Case 2 for the exponents
at hand. She does, however, immediately recognize that to prove this, she
requires something else:

To demonstrate this theorem it suffices to suppose that there
exists at least one prime number θ of the form 2Np+1 for which
at the same time one cannot find two pth power residues [mod

51“Théorème premier. Quelque soit le nombre premier p dans l’équation zp = xp + yp

l’un des trois nombres z, x ou y sera multiple de p2.” (Manuscript B, p. 92r)
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θ] whose difference is one, and p is not a pth power residue [mod
θ].52

Today we recognize this as the hypothesis of Sophie Germain’s Theorem,
whereas for her it was not just a hypothesis, but something she believed was
true and provable by her methods, since she goes on to say

Not only does there always exist a number θ satisfying these
two conditions, but the course of calculation indicates that there
must be an infinite number of them. For example, if p = 5, then
θ = 2 · 5 + 1 = 11, 2 · 4 · 5 + 1 = 41, 2 · 7 · 5 + 1 = 71,
2 · 10 · 5 + 1 = 101, etc.53

Recall that Germain spends most of Manuscript A developing powerful
techniques that support this belief in Conditions N-C and p-N-p, and that
confirm them for p < 100, so it is not surprising that she wishes to claim
to have proven Case 1 of Fermat’s Last Theorem, even though she still
recognizes that there are implicit hypotheses she has not completely verified
for all exponents.

Germain’s proof of her First Theorem is much like the beginning of her
proof of the Large Size theorem of Manuscript A, which we laid out in Section
4. Recall that the Large Size proof went awry only after the p2 divisibility
had been proven, so her proof here,54 as there, proves p2 divisibility without
question. This is the closest to an independent statement and proof we find
in her manuscripts of what today is called Sophie Germain’s Theorem.

However, most curiously, at the end of the proof of the First Theorem she
claims also that the p2 divisibility applies to the same one of x, y, z that is
divisible by the auxiliary prime θ, which is the same as the claim, ultimately
inadequately supported, where her Large Size proof in Manuscript A began
to go wrong. While she makes no use of this additional claim here (so that it
is harmless to her line of future argument in this manuscript), it leads us to
doubt a conjecture one could otherwise make about Manuscript B. One could

52“Pour démontrer ce théorème il suffit de supposer qu’il existe au moins un nombre
premier θ de la form 2Np + 1 pour lequel en même tems que l’on ne peut trouver deux
residus puissances pième dont la difference soit l’unité p est non residu puissance pième.”
(Manuscript B, p. 92r)

53“Non seulement il existe toujours un nombre θ qui satisfait à cette double condition
mais la marche du calcul indique qu’il doit s’entrouver une infinité p = 5 θ = 2 ·5+1 =
11, 2 · 4 · 5 + 1 = 41, 2 · 7 · 5 + 1 = 71, 2 · 10 · 5 + 1 = 101, etc.” (Manuscript B, p.
92r

54The proof of Theorem 1 in Manuscript B is largely reproduced, in translation, in [31,
p. 189ff].
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imagine that the First Theorem was written down as a means of salvaging
what she could from the Large Size theorem, once she discovered the flaw in
the latter part of its proof. But since the confusion linked to the flawed claim
there appears also here (without proof), even though without consequent
maleffect, we cannot argue that this manuscript contains a corrected more
limited version of the Large Size theorem argument.

5.2 Case 2 for p dividing z

The rest of Manuscript B deals with Case 2 of Fermat’s Last Theorem, which
is characterized by equations (1′), (2), (3) in Section 4.1. For completeness,
we mention that Theorem 2 contains a technical result not relevant to the
line of proof Germain is developing. Perhaps she placed it and its proof here
simply because it was a result of hers about Case 2, which is the focus of
the rest of the manuscript.55

As we continue with Case 2, notice that, by involving squares, the equa-
tion

(

x2
)p

+
(

y2
)p

=
(

z2
)p

has an asymmetry forcing separate consideration
of z from x or y in proving Fermat’s Last Theorem. Germain addresses the
first of these, the p-divisibility of z, in her Theorem 3, which asserts that z
cannot be a multiple of p, if p has the form 8n + 3, 8n + 5, or 8n + 7. She
proves Theorem 3 by contradiction, by assuming that z is divisible by p.
Her proof actually begins with some equations that require some advance
derivation. Using the relative primality of the key numbers in each pair of
the Case 2 equations (1′), (2), (3) of Manuscript A, for pairwise relatively
prime solutions x2, y2, z2 (once the extra p2 divisibility is built in), the
reader may easily verify that the left trio of these equations becomes56

x2 + y2 = p4p−1l2p

z2 − y2 = h2p

z2 − x2 = v2p.

The text of Germain’s proof begins with these equations.
Germain quickly confirms Theorem 3 for p = 8n+3 and 8n+7 using the

fact, long known from Fermat’s time, that a sum of squares can contain no

55Theorem 2 asserts that in the equations (1′), (2), (3) pertaining in Case 2, the numbers
r, m, n can have prime divisors only of the form 2Np + 1, and that moreover, the prime
divisors of r must be of the even more restricted form 2Np2 + 1. Legendre also credits
this result to Germain in his footnote.

56We do not see how she obtains 4p− 1 as exponent, rather than just 2p− 1, even after
including the stronger p2 divisibility; but 2p− 1 suffices.
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prime divisors of these two forms. For p = 8n+5 she must argue differently,
as follows.

Because z − y and z + y (respectively z − x and z + x) are relatively
prime, one has z+y = (h′)2p and z+x = (v′)2p, whence y2 ≡ (h′)4p (mod p)
and x2 ≡ (v′)4p (mod p), yielding (h′)4p + (v′)4p ≡ 0 (mod p) since x2 + y2

is divisible by p. This, she points out, is a contradiction, since −1 is not a
biquadratic residue modulo 8n + 5.

The unfortunate flaw in this proof is perhaps not obvious at first. The 2p-
th power expressions for z+y and z+x rely on z−y and z+y (respectively
z − x and z + x) being relatively prime. This would be true from the
pairwise relative primality of x, y, z, if the numbers in each difference had
opposite parity, but otherwise their difference and sum have precisely 2 as
greatest common divisor. Writing (xp)2 + (yp)2 = (zp)2 and recalling basics
of Pythagorean triples, we see that opposite parity fails either for z − y or
z − x. Suppose without loss of generality that it is z − y. Then either
z − y or z + y has only a single 2 as factor (since y and z are relatively
prime), so it cannot be a 2p-th power. One can include this single factor of
2 and redo Germain’s analysis to the end, but one then finds that it comes
down to whether or not −4 is a biquadratic residue modulo 8n+5, and this
unfortunately is true, rather than false as for −1. So Germain’s proof of
Theorem 3 appears fatally flawed for p = 8n + 5.

5.3 Case 2 for p dividing x or y

In her final argument after Theorem 3, Germain finishes Case 2 for p = 8n+3
and 8n− 3 by dealing with the second possible situation, where either x or
y is divisible by p. This argument again builds from enhanced versions of
equations similar to (1′), (2), (3), but is considerably more elaborate, rising
up through detailed study of the specific cases p = 5, 13, 29, until she is able
to end with an argument applying to all p = 8n + 3 and 8n − 3. However,
since the argument proceeds initially as did the proof of Theorem 3, it too
relies on the same mistaken assumption about relative primality that misses
an extra factor of 2, and one finds that accounting for this removes the
contradiction Germain aims for, no matter what value p has.

5.4 Manuscript B as source for Legendre?

In the end we must conclude that this proof of the bold claim to have proven
Fermat’s Last Theorem for many exponents fails due to an elementary mis-
take. But what is correct in Manuscript B fits extremely well with what
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Legendre wrote about Germain’s work. The manuscript contains precisely
the correct results Legendre credits to Germain, namely Sophie Germain’s
Theorem and the technical result of Theorem 2 about the equations in the
proof of Sophie Germain’s Theorem. Legendre does not mention the claims
in the manuscript that turn out not to be validly proved. If Legendre used
Germain’s Manuscript B as his source for what he chose to publish as Ger-
main’s, then he vetted it and extracted the parts that were correct.

6 Even exponents

Another direction of Germain’s is provided by three pages that we call
Manuscript C.57 These pages contain highly polished statements with proof
of two theorems.

The first theorem claims that the “near-Fermat” equation 2zm = ym+xm

(which amounts to seeking three m-th powers in arithmetic progression) has
no nontrivial natural number solutions (i.e., other than x = y = z) for any
even exponent m = 2n with n > 1. In fact Germain claims that her proof
applies to an entire family of similar equations in which the exponents are
not always the same for all variables simultaneously. Her proof begins with a
parametric characterization of integer solutions to the “near-Pythagorean”
equation 2c2 = b2+a2 (via c = zn, b = yn, a = xn), similar to the well-known
parametric characterization of Pythagorean triples (solutions to c2 = b2+a2)
used by Euler in his proof of Fermat’s Last Theorem for exponent four [31,
p. 178]. The characterization of near-Pythagorean triples, stemming from a
long history of studying squares in arithmetic progression, would have been
well known at the time [14, ch. XIV].

We will not analyze Germain’s proof further here, nor pronounce judge-
ment on its correctness, except to say that it likely flounders in its fullest
generality near the beginning, as did the proof above of Theorem 3 in
Manuscript B, on another unjustified assumption of relative primality of
two expressions. However, this would still allow it to apply for “Case 1”,
i.e., when x, y, z, are relatively prime to n. Someone else may wish to pursue
deciphering whether the entire proof is valid in this case or not. There is a
substantial history of research on the near-Fermat equation 2zm = ym+xm.

57Yet one more manuscript, claiming to dispense with even exponents by quite ele-
mentary means, is [25, pp. 90v–90r]. It contains a mistake that Germain went back to,
crossed out, and corrected. But she did not carry the corrected calculation forward, likely
because it is then obvious that it will not produce the desired result, so is not worth
pursuing further.
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It was finally proven in 1997 by Darmon and Merel [6] to have no nontriv-
ial solutions for m > 2, after partial results by Ribet [47] and Dénes [13],
among others. Much earlier, Euler had proved its impossibility for m = 4
[13] [14, ch. XXII] [47], and then for m = 3 [13] [14, ch. XXI]. So Germain’s
claim is now known to be true, and it would be interesting to understand
her method of proof well enough to see if it is viable for Case 1.

Germain’s second claim is to prove Fermat’s Last Theorem for all even
exponents greater than two, i.e., for z2n = y2n + x2n with n > 1, and
her proof relies directly on the previous theorem. It seems to us that this
proof too relies on the unsupported relative primality of two expressions, in
this case the two factors z − y and zn−1 + yzn−2 + · · · + yn−2z + yn−1 of
zn − yn, under only the assumption that x, y, and z are pairwise relatively
prime. It does seem to us that Germain’s proof is fine, though, for “Case
1” (modulo appeal to the previous theorem, of course), i.e., provided that
x, y, z, are relatively prime to n, in which case the two factors above will
be relatively prime. We note that it is under an almost identical hypothesis
that Terjanian proved Case 1 of Fermat’s Last Theorem for even exponents
in 1977 [46, VI.4] [52].

7 Germain’s approaches to Fermat’s Last Theo-

rem: précis and connections

Our analyses above of Sophie Germain’s manuscripts have revealed a wealth
of important unevaluated work on Fermat’s Last Theorem, calling for a re-
assessment of her achievements and reputation. To prepare for our reeval-
uation and conclusion, we first summarize (see Figures 8, 9) what we have
discovered mathematically in these manuscripts, and how it is related to
other documentary evidence.

7.1 The grand plan to prove Fermat’s Last Theorem

In Manuscript A, Germain pioneers a grand plan for proving Fermat’s Last
Theorem for any prime exponent p > 2 based on satisfying a modular non-
consecutivity (N-C) condition for infinitely many auxiliary primes. She de-
velops an algorithm verifying the condition within certain ranges, and out-
lines an induction on auxiliaries to carry her plan forward. Her techniques
for N-C verification are completely different from, but just as extensive as,
Legendre’s, although his were for the purpose of proving Case 1, and were
also more ad hoc than hers. That Germain, as opposed to just Legendre,
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Figure 8: Conditions (hypotheses) for theorems

Figure 9: Algorithms and propositions for satisfying conditions
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even had any techniques for N-C verification, has been unknown to all subse-
quent researchers who have labored for almost two centuries to extend N-C
verification for proving Case 1. Germain likely abandoned further efforts at
her grand plan after Legendre suggested to her that it would fail for p = 3.
She sent him a proof confirming this, by showing that there are only finitely
many valid N-C auxiliaries.

Unlike Legendre’s methods and terminology, Germain adopts Gauss’s
congruence language and points of view from his Disquisitiones, and thus her
techniques have in several respects a more group-theoretic flavor. Germain’s
approach for verifying N-C was independently discovered by L. E. Dickson in
the twentieth century. He, or earlier researchers, could easily have obtained
a jump start on their own work by taking their cue from Germain’s methods,
had they known of them. Recent researchers have again approached N-C by
induction, as did Germain.

7.2 Large size of solutions and Sophie Germain’s Theorem

Also in Manuscript A, Germain writes a theorem and applications to force
extremely large minimal sizes for solutions to Fermat equations, based on
satisfying both the N-C and p-N-p conditions. She later realized a flaw in the
proof, and attempted to repair it using her knowledge of quadratic residues.
The valid part of the proof yields what we call Sophie Germain’s Theorem,
which then allows proof of Case 1 by satisfying the two conditions.

Germain’s efforts to satisfy the p-N-p condition are based on her the-
oretical result showing that it will often follow from the 2-N-p condition,
which she has already studied for N-C. This then makes it in practice very
easy to verify p-N-p, once again unlike Legendre. Germain’s result obtaining
p-N-p from 2-N-p was also independently discovered much later, by Wendt,
Dickson, and Vandiver in their efforts to prove Case 1.

7.3 Exponents 2 (8n± 3) and Sophie Germain’s Theorem

In Manuscript B, Germain makes a very creditable attempt to prove Fer-
mat’s Last Theorem for all exponents 2p where p = 8n±3 is prime. Germain
begins with a proof of what we call Sophie Germain’s Theorem, in order to
argue for Case 1. Manuscript B provides us with our best original source for
the theorem for which she is famous. Her subsequent argument for Case 2
boils down to knowledge about biquadratic residues. This latter argument
contains a flaw related to relative primality. The manuscript fits well as a
primary source for what Legendre credited to Germain.
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One could imagine that the appearance here of Sophie Germain’s The-
orem might indicate an effort to recover what she could from the flawed
Large Size theorem in Manuscript A, but the details of the proof suggest
otherwise, since they betray the same misunderstanding as in Manuscript A
before Germain wrote its erratum.

7.4 Even exponents

In Manuscript C, Germain writes two theorems and their proofs to establish
Fermat’s Last Theorem for all even exponents, by methods completely unlike
those in her other manuscripts. She plans to prove Fermat’s Last Theorem
by showing first that a slightly different family of Diophantine equations has
no solutions. So she begins by claiming that the “near-Fermat” equations
2z2n = y2n+x2n (and whole families of related equations) have no nontrivial
positive solutions for n > 1. This has only very recently been proven in the
literature. Her proof suffers from the same type of flaw for Case 2 as in
Manuscript B, but may otherwise be correct. Her proof of Fermat’s Last
Theorem for even exponents, based on this “near-Fermat result,” also suffers
from the Case 2 flaw, but otherwise appears to be correct.

8 Reevaluation

8.1 Germain as strategist: theories and techniques

We have seen that Germain focused on big, general theorems applicable to
infinitely many prime exponents in the Fermat equation, rather than simply
tackling single exponents as usually done by others. She developed general
theories and techniques quite multifaceted both in goal and methods. She
did not focus overly on examples or ad hoc solutions. And she also used
to great advantage the modern point of view on number theory espoused
by Gauss. The significance of Germain’s theoretical techniques for verifying
conditions N-C and p-N-p is indicated by their later rediscovery by others,
and a recent reapproach by mathematical induction. Moreover, her ap-
proach was more systematic and theoretical than Legendre’s pre-Gaussian
and completely different methods.

For almost two hundred years, Germain’s broad, methodical attacks on
Fermat’s Last Theorem have remained unread in her unpublished papers.
And no one has known that all the results published by Legendre verifying
conditions N-C and p-N-p, quoted and used extensively by others, are due
but uncredited to Germain, by more sophisticated and theoretical methods.
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These features of Sophie Germain’s work demonstrate that, contrary to
what has been thought by some, she was not a dabbler in number theory
who happened to light upon one significant theorem. In fact, what we
call Sophie Germain’s Theorem is simply fallout from two much grander
engagements in her papers, fallout that we can retrospectively isolate, but
which she did not. It is we and Legendre, not Germain, who have created
Sophie Germain’s Theorem as an entity. On the other hand, Legendre in
this sense also performed a great service to Germain and to future research,
since he extracted from her work and published the one fully proven major
theorem of an enduring and broadly applicable nature.

Germain’s agenda was ambitious and bold. She tackled what we now
know was one of the hardest problems in mathematics. It is no surprise
that her attempts probably never actually proved Fermat’s Last Theorem
for even a single new exponent, although she seems to have come close at
times.

8.2 Interpreting errors in the manuscripts

Mathematicians often make errors in their work, usually winnowed out
through reactions to presentations, informal review by colleagues, or the
publication refereeing process. We have found that several of Germain’s
manuscripts on Fermat’s Last Theorem contain errors in her proofs. Let us
examine these in light of the unusual context within which we have found
them.

First, we are short-circuiting normal publication processes by peeking at
Germain’s private papers, works she chose never to submit for publication,
even had she shown them to anyone. Perhaps she knew of the errors we see,
but chose to keep these papers in a drawer for later revival via new ideas.
We can see explicitly that she later recognized one big error, in her Large
Size of Solutions proof, and wrote an erratum attempting remedy.

Second, let us consider the mathematical nature of the mistakes in her
manuscripts. In elasticity theory, where the holes in her societally forced
self-taught education were serious and difficult to remediate on her own [3,
p. 40ff], Germain suffered from persistent conceptual difficulties leading to
repeated serious criticisms. By contrast, Germain was very successful at self-
education and independent work in number theory. She was able to train
herself well from the books of Legendre and Gauss, and she shows careful
work based on thorough understanding of Gauss’s Disquisitiones Arithmeti-
cae, despite its highly technical nature. The mistakes in her number theory
manuscripts do not stem from conceptual misunderstanding, but rather are
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slips overlooking the necessity for relative primality in making certain de-
ductions, even though elsewhere she shows clear awareness of this necessity.
In particular, Germain’s entire grand plan for proving Fermat’s Last Theo-
rem, including algorithms for verifying Conditions N-C and p-N-p, is all very
sound. Even though Germain’s mistakes were conceptually minor, they hap-
pen to have left her big claims about large size and proving Fermat’s Last
Theorem for various families of exponents unproven.

Further, we should ask what evaluation by peers Germain’s manuscripts
received, that should have brought errors to her attention. Here we will
encounter more a puzzle than an answer.

8.3 Review by others versus isolation

8.3.1 Germain’s elasticity theory: praise and neglect

There is already solid evidence [3, Ch. 5–9] that during Germain’s long
process of working to solve the elasticity problem in mathematical physics,58

she received ever decreasing collegial review and honest critique of her work.
In fact, towards the end perhaps none.

Publicly praised as genius and marvel, she was increasingly ignored pri-
vately and institutionally when it came to discourse about her elasticity
work. There is no evidence of any individual intentionally wishing her harm,
and indeed some tried personally to be quite supportive. But the existing
system ensured that she lacked early solid training or sufficiently detailed
and constructive critique that might have enabled her to be more successful
in her research. Germain labored continually under marginalizing handi-
caps of lack of access to materials and to normal personal or institutional
discourse, strictures that male mathematicians did not experience [3, Ch.
7–9]. The evidence suggests that Germain in effect worked in substantial
isolation much of the time.

8.3.2 Germain’s interactions about Fermat’s Last Theorem: the
evidence

Given the social features dominating Germain’s work in elasticity theory,
what was the balance between collegial interaction and isolation in her work?

58The Academy’s elasticity prize competition was announced in 1809, twice extended,
and Germain eventually received the award in 1816. Thereafter she carried out efforts at
personal, rather than institutional, publication of her work on elasticity theory, stretching
long into the 1820s.

65



Specifically, we will focus on what to make of the disparity between the
techniques of Germain and Legendre for their many identical results on the
Fermat problem. And we will ask what of Germain’s work and results was
seen by Legendre, or anyone?

We have no actual published work by Germain on Fermat’s Last Theo-
rem. Even though much of the research in her manuscripts would have been
eminently publishable, such as her theoretical means of verifying the N-C
and p-N-p conditions for applying Sophie Germain’s Theorem to prove Case
1, it never was. While we could speculate on reasons for this, it certainly
means that it did not receive any formal institutional review. Nor presum-
ably could Germain present her work to the Academy of Sciences, like her
male contemporaries.

Despite having analyzed a wealth of mathematics in Germain’s manuscripts,
we still have little to go on when considering her interactions with others.
Her manuscripts say nothing directly about outside influences, so we must
infer them from mathematical content.

Germain’s 1819 letter to Gauss focused on the broad scope of her work
on Fermat’s Last Theorem, but did not mention direct contact with others,
and apparently received no response from Gauss. Gauss had earlier made
clear his lack of interest in the Fermat problem, writing on March 21, 1816
to Olbers [49, p. 629]: “I am very much obliged for your news concerning
the [newly established] Paris prize. But I confess that Fermat’s theorem as
an isolated proposition has very little interest for me, because I could easily
lay down a multitude of such propositions, which one could neither prove
nor dispose of.” This could by itself explain why Germain did not receive a
response from Gauss to her 1819 letter.

Thus the Fermat problem was in a very curious category. On the one
hand, from 1816–1820 it was the subject of the French Academy’s prize
competition, thereby perhaps greatly attracting Germain’s interest. After
all, with no access to presenting her work at the Academy, her primary
avenues for dissemination and feedback were either traditional journal pub-
lication or the Academy prize competition, which she had won in elasticity.
On the other hand the Fermat problem was considered marginal by Gauss
and others, and topics such as the investigation of higher reciprocity laws
certainly involved developing important concepts with much wider impact.
So Germain’s choice to work mostly on Fermat’s Last Theorem, while un-
derstandable, contributed to her marginalization as well.

Regarding Germain’s interaction with Legendre about her work on Fer-
mat’s Last Theorem, we have two important pieces of evidence. First, while
Legendre’s published footnote crediting Sophie Germain’s Theorem to her
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is brief, we can correlate it very precisely with content found in Germain’s
manuscripts. Second, we have one critical piece of correspondence, Ger-
main’s letter to Legendre confirming that her grand plan will not work.
Starting from these we will now draw some interesting conclusions.

8.3.3 Legendre and Germain: A perplexing record

Legendre’s footnote and Germain’s letter to him indicate that they had
mathematically significant contact about the Fermat problem, although we
do not know how frequently, or much about its nature. What then does our
study of her most polished manuscripts suggest?

First, it is a real surprise to have found from Manuscript A that Germain
and Legendre each had very extensive techniques for verifying Conditions
N-C and p-N-p, but that they are completely disjoint approaches, devoid of
mathematical overlap. Their methods were obviously developed completely
independently, hardly what one would expect from two mathematicians in
close contact.

This phenomenon dovetails with a counterview about the effects of iso-
lation suggested to us by Paulo Ribenboim. If one works in isolation, one
is not so much influenced by others, so one has the advantage of originality,
provided one has fresh, good ideas. Clearly Germain had these, since we
have seen that she developed her own powerful theoretical techniques for
verifying Conditions N-C and p-N-p, not derived from anyone else’s.

In contrast to Manuscript A, Legendre’s crediting footnote details ex-
actly the results that are correct from Germain’s Manuscript B, namely
Sophie Germain’s Theorem and an additional technical result about the
equations in its proof. So while Manuscript B, along with her separate table
of residues and auxiliaries, is an extremely plausible source for Legendre’s
credit to her, Germain’s Manuscript A shows completely independent but
parallel work left invisible by Legendre’s treatise.

So where does this leave Manuscript A? It contains Germain’s grand
plan, along with all her methods and theoretical results for verifying N-C
and p-N-p, and her large size theorem. This seems like her most substantial
work, and yet we can find only a single speck of circumstantial evidence in
Legendre’s 1823 treatise suggesting that he might even be aware of the math-
ematics in Germain’s Manuscript A, despite her manuscript being placed by
her letter to Gauss at prior to 1819. But even this speck is perplexing and
can be viewed in opposing ways, as follows.

Recall from footnote 49 that Legendre, in his treatment of large size
of solutions, comments that for p = 5 his data makes him “presume” that
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there are no auxiliary primes larger than 101 satisfying Condition N-C.
This indicates that he was at least interested in whether there are infinitely
many auxiliaries, although he does not mention why. Why would he even
be interested in this issue, if it weren’t for interest in the grand plan? And
why would he even imagine that there might only be finitely many, unless
he already had some evidence supporting that, such as Germain’s letter to
him proving failure of the grand plan for p = 3? On the other hand, if he
had her letter before writing his 1823 memoir, why did he not say something
stronger for p = 5, such as that he knew that for p = 3 there are only finitely
many primes satisfying N-C, supporting his presumption for p = 5?

The only direct evidence we have that Legendre knew of Germain’s grand
plan is her letter to him proving that it will not work for p = 3. But even
if Germain’s letter proving failure of the grand plan for p = 3 occurred
before Legendre’s 1823 treatise, so that the known failure was his reason
for not mentioning the plan in his treatise, why is Legendre mute about
Germain through the many pages of results identical to hers that he proves,
by completely different means, on Conditions N-C and p-N-p for establishing
Case 1 and large size of solutions? Extensions of these results have been
important to future work ever since, but no one has known that these were
equally due to Germain, and by more powerful methods.

If Legendre had seen Manuscript A, he knew all about Germain’s meth-
ods, and could and should have credited her in the same way he did for what
is in Manuscript B. We must therefore at least consider, did Legendre, or
anyone else, ever see Manuscript A and so comprehend most of Germain’s
work, let alone provide her with constructive feedback? It is reasonable to be
skeptical. Earlier correspondence with Legendre shows that, while he was a
great personal mentor to her initially during the elasticity competition, and
seems always to have been a friend and supporter, he withdrew somewhat
from mentorship in frustration as the competition progressed [3, p. 63]. Did
this withdrawal carry over somehow to contact about Fermat’s Last Theo-
rem? Without finding more correspondence, we may never know whether
Germain had much extensive or intensive communication with anyone about
her work on Fermat’s Last Theorem.

8.3.4 The Fermat prize competition

There was one final possible avenue for review of Germain’s work on the
Fermat problem.

At the same session of the Academy of Sciences in 1816 at which Sophie
Germain was awarded the elasticity competition prize, a new competition
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was set, on the Fermat problem. Extended in 1818, it was retired in 1820
with no award, and Sophie Germain never made a submission [3, p. 86].
And yet, together, our manuscript evidence and the 1819 date of her letter
to Gauss strongly suggest that she was working hard on the problem during
the years of the prize competition.

Why did she not submit a manuscript for this new prize, given the enor-
mous progress on the Fermat problem we have found in her manuscripts, and
the meticulous and comprehensive appearance of her work in Manuscript A,
which appears prepared for public consumption? Was Germain’s reluctance
due to previous frustrating experiences from her multiple submissions for
the elasticity prize through its two extensions—a process that often lacked
helpful critiques or suggested directions for improvement [3, Ch. 5–9]? Or,
having been particularly criticized for incompleteness during the elasticity
prize competition, did she simply know she had not definitely proved Fer-
mat’s Last Theorem in full, and hence felt she had nothing sufficient to
submit?

8.4 Amateur or professional?

Goldstein [29] analyzes the transformation of number theory from the do-
main of the amateur to that of the professional during the 17th to 19th
centuries. By Germain’s time this transformation had shifted number the-
ory mostly to the professional world, and to be successful Germain needed
to interact and even compete with degreed professionals at institutions. Was
she herself an amateur or a professional?

Germain had many of the characteristics of a professional, attained
through highly unusual, in fact audacious, personal initiatives injecting her-
self into a professional world that institutionally kept her, as a woman (and
therefore by definition uncertified), at arm’s length. Her initiatives would
hardly be dreamt of by anyone even today. She attained some informal uni-
versity education first through impersonation of LeBlanc, a student at the
École Polytechnique, an institution that would not admit women, leading to
mathematicians like Lagrange and Legendre serving as her personal mentors.
She devoured much professional mathematical literature in multiple disci-
plines, to which however she presumably had only what access she could
obtain privately. And she initiated an also impersonated correspondence
with Gauss. Germain appears to have devoted her adult life almost entirely
to mathematical research, having no paid employment, spouse, or children.
She competed against professional mathematicians for the Academy prize
on elasticity, she achieved some professional journal publications, and she
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self-published her elasticity prize research when the Academy would not.
On the other hand, Germain had some of the characteristics of amateurs

typical of earlier periods, such as great reliance on personal contact and
letters. Most importantly, she was not employed as a professional math-
ematician. And after her death no institution took responsibility for her
papers or their publication, one substantial reason why much of her ex-
tensive work has remained unknown. However, it seems that all this was
ultimately due precisely to her being a woman, with professional positions
closed to her. One could say that Germain was relegated to something of the
role of an amateur by a world of professionals and institutions that largely
excluded her because of her sex, a world to which she aspired and for which
she would have otherwise been perfectly qualified.

9 Conclusion

The impression to date, the main thesis of [3], has been that Germain could
have accomplished so much more had she enjoyed the normal access to
education, collegial interaction and review, professional institutions, and
publication accorded to male mathematicians. Our study of her manuscripts
and letters bolsters this perspective.

The evidence from Germain’s manuscripts, and comparison of her work
with that of Legendre and later researchers, displays bold, sophisticated,
multifaceted, independent work on Fermat’s Last Theorem, much more ex-
tensive than the single result, named Sophie Germain’s Theorem, that we
have had from Legendre’s published crediting footnote. It corroborates the
isolation within which she worked, and suggests that much of this impressive
work may never have been seen by others. We see that Germain was clearly
a strategist, who single-handedly created and pushed full-fledged programs
towards Fermat’s Last Theorem, and developed powerful theoretical tech-
niques for carrying these out, such as her methods for verifying Conditions
N-C and p-N-p.

We are reminded again of her letter to Gauss: “I will give you a sense
of my absorption with this area of research by admitting to you that even
without any hope of success, I still prefer it to other work which might
interest me while I think about it, and which is sure to yield results.”59

Sophie Germain was a much more impressive number theorist than anyone
has ever known.

59(Letter to Gauss, p. 2)
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