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In this paper I give new proofs of the structure theorems for the 
unoriented cobordism ring [12] and the complex cobordism ring [8, 131. 
The proofs are elementary in the sense that no mention of the Steenrod 
algebra or Adams spectral sequence is made. In fact, the only result from 
homotopy theory which is used in an essential way is the Serre finiteness 
theorem in order to know that the complex cobordism group of a given 
dimension is finitely generated. 

The technique used here capitalizes on the fact that there are two 
rather different approaches to defining operations in the complex and 
unoriented cobordism generalized cohomology theories. The first 
proceeds via characteristic classes and leads to the LandweberNovikov 
operations [6, 91, while the second is the analog of the Steenrod power 
method due to tom Dieck [14]. Using the technique of “localization at 
the fixpoint set” (Atiyah-Segal [l], tom Dieck [15, 16]), it is possible to 
derive an equation expressing the Steenrod operation in terms of the 
LandweberNovikov operations in which the Steenrod operation is zero 
modulo terms of high filtration. One thereby obtains nontrivial relations 
involving the action of the Landweber-Novikov operations on the cobor- 
dism ring which can be used to show that the cobordism ring is generated 
by the coefficients of the formal group law expressing the behavior of 
cobordism Euler classes of line bundles under tensor product. From 
this, Lazard’s results [7] on formal group laws can be applied to neatly 
prove that the two cobordism rings are polynomial rings. 

The paper also contains two new results of interest. The main theorem 
of the paper shows that the reduced complex cobordism o*(X) of 
a finite complex is generated by its elements of positive degree as 
a module over the complex cobordism ring. By duality this implies that 

* Supported by the Alfred I’. Sloan Foundation, the National Science Foundation, 
and the Institute for Advanced Study. 
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30 QUILLEN 

the complex bordism of a finite complex of dimension Y is generated 
by its elements of degree 62~ as a module over the complex cobordism 
ring, which answers a question posed by Conner and Smith [3]. The 
other result is the construction of a canonical ring isomorphism 
(announced in [lO])l 

N*(X) z N*(p) @ H*(X; Z,), 

where N* is the oriented cobordism theory. In addition, it is shown how 
the formal group law of N* furnishes a distinguished system of poly- 
nomial generators for the unoriented cobordism ring.’ 

The first two sections contain a review of complex cobordism theory, 
cobordism characteristic classes, and the Landweber-Novikov opera- 
tions. I have been strongly influenced by Grothendieck’s theory of 
motives in algebraic geometry (see [4] for some aspects of this theory) 
and like to think of a cobordism theory as a universal contravariant 
functor on the category of C” manifolds endowed with Gysin homo- 
morphism for a class of proper “oriented” maps, instead of as the 
generalized cohomology theory given by a specific Thorn spectrum. 
One will find a precise assertion in Proposition I .lO which suffices for 
the needs of this paper but which is far from being systematic. The third 
section is devoted to a review of the “localization at the fixpoint set” 
formalism and to the derivation of the basic formula (3.17) relating 
the Steenrod and LandweberrNovikov operations. The proof of the 
main theorem occupies the fourth and fifth sections and the theory of 
formal group laws is brought in at the end. I have included in Section 6 
an exposition of Lazard’s theorem, more intelligible to topologists than 
the one in [7], which was given by Adams at the 1969 Arbeitstagung.2 

I would like to acknowledge the benefit of a year’s study with A. 
Grothendieck at the Institut des Hautes gtudes Scientifiques, and also 
the influence of the papers of T. tom Dieck, who kindly provided me 
with copies of his work. I discovered how to use Steenrod operations 
in conjunction with formal group laws to handle the unoriented co- 
bordism ring while visiting the Mathematics Institute of Aarhus 
University during August, 1969, and I am very grateful for the hospitality 
shown to me by everyone there. The extension to the complex cobordism 
ring was worked out later, and has been done independently by tom 
Dieck. 

1 After writing this paper, I discovered that these results are contained in an old (1967) 

unpublished paper of J. M. Boardman. 

2 Adams’ own account is now available [17] and is better than the one here. 
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I. GEOMETRIC INTERPRETATION OF C*(X) 

By a manifold we mean a C” manifold which can be embedded as 
a closed C” submanifold of some Euclidean space. Maps of manifolds 
will always be C”. 

Given a topological space X, let C’*(X) and C:,(X) be the complex 
cobordism and bordism, respectively, of X, i.e., the generalized coho- 
mology and homology of X with values in the Thorn spectrum MC:. 
One knows very well how to interpret elements of c’,(X) as bordism 
classes of mapsf : M + X where iI4 is a closed weakly-complex manifold. 
It will be convenient to have a similar geometric picture for cobordism 
elements. For this it will be necessary to suppose that X is a manifold; 
however, this assumption does not represent much loss of generality 
since any finite complex is of the homotopy type of a manifold, viz., 
a regular neighborhood of an embedding into Euclidean space. 

Let us recall what is meant by a complex orientation for a map of 
manifolds f : 2 + X, this being a generalization of a weakly-complex 
structure on Z when X is a point. Suppose first that at each point z of Z 
the dimension off, defined to be (dim 2 at Z) - (dim X atf(x)), is even. 
Then by a complex orientation off we mean an equivalence class of 
factorizations off 

Z-LEELX, (1.1) 

where p : E-j X is a complex vector bundle over X and where i is an 
embedding endowed with a complex structure on its normal bundle vi . 
The factorization 1.1 is considered to be equivalent to another one 
denoted by primes, if E and E’ can be embedded as subvector-bundles 
of an E”, such that, in E”, i and i’ are isotopic compatibly with the normal 
complex structure, that is, the isotopy is given by an embedding 
2 ‘II : X x 1-t E” x 1 over I endowed with a complex structure on its 
normal bundle which matches to that of i and i’ in E” at the ends. Given 
a factorization 1.1, where the dimension of E is sufficiently large, 
the standard embedding and isotopy theorems imply that one obtains 
each complex orientation off from exactly one homotopy class of complex 
structures on vi . A complex orientation for a map of odd dimension will 
be defined as one for the map (f, e) : 2 ---f X x R, where ~(2) = 0 or, 
equivalently, an equivalence class of factorizations of the form 1.1 but 
with E replaced by E x R. For a general map, f we define a complex 
orientation to be one for f' : 2’ -+ X and f rr : 2” ---f X, where 
Z= Z’JJ 2” andf’ (resp.,f “) is th e even (resp., odd) dimensional part off. 
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It is clear that iff : 2 -+ X is a complex-oriented map and if g : Y + X 
is a map which is transversal to f, then the pull-back Y x ,Z + Y 
has an induced complex orientation. Let us call two proper (inverse image 
of any compact set is compact) complex-oriented maps fi : Zi + X, 
i = 0, 1, cobordunt if there is a proper complex-oriented map 
b : W+ X x R such that the map l i : X+X x R, Q(X) = (x, i), is 
transversal to b and such that the pull-back of b by ci is isomorphic with 
the induced complex orientation to fi for i = 0, 1. Cobordism is an 
equivalence relation and there is the following generalization of Thorn’s 
celebrated theorem [ 121 expressing cobordism groups as homotopy 
groups. 

PROPOSITION 1.2. For a manifold X, W(X) is canonically isomorphic 
to the set of cobordism classes of proper complex-oriented maps of dimension 

-cl* 
The proof follows closely that of Thorn’s theorem, which is the case 

when X is a point and is left to the reader. At the same time, one can 
check that the structure of U*(X) admits the following description in 
terms of cobordism classes. 

1.3. Contravariant variance. Let g : Y + X be a map of manifolds, 
and let f : 2 + X be a proper complex-oriented map. By Thorn’s 
transversality theorem, g may be moved by a homotopy until it is trans- 
versal to f. The cobordism class of the pull-back Y x J + Y depends 
on the cobordism class off, and this gives the map 

for each q. 

g* : W(X) - V(Y) 

1.4. Covariant variance (the Gysin homomorphism). A proper complex- 
oriented map g : X + Y of dimension d induces a map 

g, : UqY) + L--d(Y) 

which sends the cobordism class off : Z + X into the class ofgf : Z -+ Y. 

1.5. Addition. The sum of the maps fi : Zi + X, i = I, 2, is the class 
of the map Z, u Z, +X with components fi . The negative of the 
cobordism class off : Z ---f X is the cobordism class off endowed with 
the negative complex orientation, which is defined for f of even dimension 
as follows. Let the orientation off be represented by a factorization 
Z f C” x X + X with complex structure on vi ; then the negative 
orientation is represented by the same factorization, with the same 



COBORDISM THEORY USING STEENROD OPERATIONS 33 

complex structure on vi, but with the new complex structure on C’” 
given by i(z, ,..., z,,) = (izr ,..., izZn-r , -izn). 

I .6. Products. The external product x1 @ x2 E c’*(X, x X2), 
where xi is the cobordism class of fi : Zi --f Xi , is the class of the map 
fi x fi : 2, x 2, - x, x x, . The ring structure of CT*(X) is given by 
x1 . x2 = A *(x1 @ x2), where L3 : X + X >: X is the diagonal. 

The two variances I .3 and 1.4 can be used to characterize the functor 
Cl’* on the category of manifolds as we shall now describe. Let h be 
a contravariant functor from the category of manifolds to the category 
of sets withg* : h(X) + h(Y) denoting the induced map corresponding to 

. a map g . Y + X. Suppose also that for each proper complex-oriented 
map f : 2 + X, there is given a map f.+ : h(Z) + h(X) such that the 
following conditions are satisfied: 

1.7. Assume that 

IT x J’L,Z 

1’ 1 
4 i 

i 

y --r+ x7 

is a Cartesian square of manifolds, where g is transversal to f and suppose 
that f is proper and complex-oriented and f’ is endowed with the 
pull-back of the complex orientation off. Then 

R*f* = f*g’* : h(Z) + h(Y). 

1.8. If f,, , fi : Y + X are homotopic maps, then fO* =J fi*. 

1.9. If f : 2 ---f X and g : X --, Y are proper complex-oriented maps, 
and if gf is endowed with the composite complex orientation, then 

(gf )* = g*f* . 

PROPOSITION 1.10. Gizsen an element a of h(pt), there is a unique 
morphism 0 : iY* + h of functors commuting with Gysin homomorphisms 
and such that 0 1 = a, where I E LiO( pt) is the cobordism class of the identity 
map. 

Let nx : X-+pt and let x E U*(X) be the cobordism class of the 
manifold X represented by a proper complex-oriented map f  : 2 + X 
(note that x and .f may have components of different dimension). Then 
x = f*n,*l in the notation of 1.4, 1.5. Hence 0 on this class must be 

e(.x) = f*7rz*n in h(X), 

607,'7/1-3 
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which proves the uniqueness of 8. For the existence it is necessary to 
show that the right side depends only on x. Let u : W-t X % R be 
a proper complex-oriented map which is transversal to E< : X ---f X x R 
and is such that fi : Zi a X is the pull-back of u by ci , where f = f. 
and i = 0, 1. Then in h(X) we have 

(1.11) 

f **z*“l : Q*U*?Tw,*l (by 1.7) 

:= E1*U*7rLt’*1 (by 1.8) 

= fi*n;,l (by 1.7) 

showing 0 is well-defined. The proof that 0 commutes with f*, f.+ is 
straightforward from the definitions. 

The universal property of U* expressed by 1.10 will be used later in 
constructing operations. It is possible to characterize the ring structure 
of U* by a similar universal property by adding more conditions to 
1.8-1.10. 

It would have been almost possible to write this paper without ever 
mentioning the Thorn spectrum iI!lU and homotopy theory by defining 
U*(X) in the above geometric way. For unoriented cobordism theory 
N*(X) this would in fact have been possible. However, we need the 
following basic result from homotopy theory which does not as yet have 
a geometric cobordism-type proof. 

PROPOSITION 1.12. If X is of the homotopy type of a jinite complex, 

then V(X) is a jinitely generated abelian group. 

2. CHARACTERISTIC CLASSES IN U* 

In this section, we review the construction of characteristic classes and 
operations in U* [6, 91. A s in the preceding section, we shall suppose X 
is a manifold. Vector bundles are assumed to be complex. 

Let E be a vector bundle of dimension n over X and let i : X + E be 
the zero-section. The element i*i,l E Uzn(X), where 1 E UO(X) is 
the cobordism class of the identity, is called the Euler class of E and will 
be denoted e(E). 

PROPOSITION 2.1. Let f : PE --t X be the projective bundle of lines in E, 
let 6J( 1) be the canonical line bundle on PE, whose fiber at 1 C E is the linear 
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j‘unctions on 1, and let [ == e( I”( I)). Then f  * makes U*(PE) into a free 
U*(X)-module with busis 1, f,..., f”--l, where n =: dim E. Moreover, if 
E -= L, CI ... @L,, , where the Li are line bundles, then 

For a proof, see [2]. Note that this result does not assume anything 
about the structure of l,‘*(pt), and in fact an analogous result holds for 
symplectic cobordism and quaternionic bundles even though the sym- 
plectic cobordism ring is unknown. 

Let t, , t, ,... be a sequence of indeterminates with degree ti z - 2i. 

Using 2.1, it is well-known how to associate to a bundle E over X 
an element c,(E) of l’*(X)[t] in a natural way such that 

Ct(E <J I : “ )  - -  r , (E)  .  r,(B’), 

C,(L) - -  1 tje(Id)‘, f , ,  ~~ 1 ,  

,  0 

(2.2) 

where I, is a line bundle. In fact, we have the formula 

c,(E) Norm (21 ,;e(C.(l))j , 
,. ,I 

where the norm of n is the determinant of the linear transformation of 
multiplication by a, and this is well-defined since 2.1 implies that 
U*(PE)[t] is an algebra which is projective and finitely-generated as 
a li*(X)[t]-module. Letting 01 = (No , 01~ ,...) range over all sequences 
of nonnegative integers with all terms but a finite number equal to 
zero, we have 

c,(E) = 2 m,(E) 
(2.3) 

where t* = t;lt?... and c,(E) E Ii2 0 (X) with ~ ~1 :=: C jaj . 
If f : 2 + X is a complex-oriented map of even dimension whose 

orientation is represented by a factorization 25 E + X as in I .I, then 
the difference f*E - vi represents an element vf of K(Z), the Grothen- 
dieck group of complex vector bundles on 2, which depends only on 
the complex orientation 0f.f. When f is of odd dimension with orientation 
represented by Z A E x R -+ X, let vf -1.f *E -- vi in K(Z). The 
Landweber-Novikov operation 

St --: c 1’s, : 1 .*(A-) - lyY)[t] (2.4) 
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is the operation which sends the cobordism classf, 1 of a proper complex- 
oriented map f : Z + X into 

To see st is well-defined, one can use the reasoning I. 11. In fact, if one 
introduces a new Gysin homomorphismf! on the functor X I+ U*(X)[t] 
by the formula 

f!(4 = f*(Ct(?) . 47 

then st is the map 0 of 1.10 which is compatible with the new Gysin 
homomorphism, and, moreover, we have the Riemann-Roth type 
formula 

Q-*4 = f*(ctW . St4 

for any proper complex-oriented map f. 
Recall that a power series F( T1 , T,) with coefficients in a commutative 

ring R is said to be a formal (commutative) group law if the identities 

hold. 

F(0, T) = F(T, 0) = 0, 

F(T, , F(T2 , Ts)) = WV, > T,), TJ, (2.6) 

E’V,, T,) = V”, , Td 

PROPOSITION 2.7. There is a unique series F( T, , T,) = &>,, cii T: Tzj 
with cij E Uz-2i-2j(pt) such that 

4% 0 ~5,) = F@&), 49) (2.8) 

for any two lines bundles over the same manifold X. Forever, F is a formal 
group law. 

From 2.1 it follows that 

U*(CP x CP) = u*(pt)[Z, , xJ/(z; 11, z;+y 

where zi is the Euler class of pr,*0(1), hence there are unique elements 
cc such that 
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One checks that c$ does not change as n + cc and so one gets a well- 
defined power series F( T, , T,) with coefficients in C*(p). Since any line 
bundle is induced from 6( 1) by a map to CP” for some n, 2.8 holds. 
The associativity identity is proved by evaluating the Euler class of 
pY1*ql) @pyz*O(l) @pYa*P(l) over CP x CP >: CP in two ways 
and letting n --f 2. The other identities are proved in similar fashion. 

3. THE FIXPOINT FORMULA AND STEENROD OPERATIONS 

In this section, we review the technique of localization at the fixpoint 
set [I, 151 and use it to derive a basic formula (3.17) expressing the 
Steenrod power operations [ 141 in terms of the Landweber-Novikov 
operations. 

Let Y, 2 be closed submanifolds of X which intersect cleanly, that is, 
W = I’ n 2 is a submanifold of X and at each point x of W the tangent 
space of W at x is the intersection of the tangent spaces of Y and 2. 
Let F be the excess bundle of the intersection, i.e., the vector bundle over 
W which is the quotient of the tangent bundle of X by the sum of the 
tangent bundles of Y and Z restricted to IV. Thus F = 0 if and only if 
Y’and Z intersect transversally. If the relevant inclusion maps are denoted 

then F fits into an exact sequence 

0 -* vi’ --f j’*V, + F - 0. (3.2) 

Suppose that vi’ , vi , and F are endowed with complex structures 
compatible with this exact sequence. Then there are Gysin-Thorn 
isomorphisms 

i, : c,-(z) 2 c* ‘“(X, x ~ Z) 

i,’ : pp’) r$ c!*+b(I’, I’ ~~ q, 

where a, b are the real dimensions of vi and vi' , respectively. (When A 
is a nice closed subset of a manifold X, i.e., A is a strong deformation 
retract of some neighborhood, then 1.2 generalizes to show that the group 
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U*(X, X - A) can be identified with cobordism classes of proper 
complex-oriented maps Z + X with image contained in A.) We have 
the following “clean intersection” formula: 

PROPOSITION 3.3. If x E c’*(Z), then 

j*i,z = i,‘(e(F) . j’*z) 

in C’*+r’( Y, Y - W). 

For the proof it is clear that we can replace X by a tubular neighbor- 
hood of W. Thus we may suppose that 3.1 is of the form 

where E, is a real vector bundle over W with zero section j’, E, is 
a complex vector bundle with zero section i’, and i and j are the obvious 
inclusions. Let ;, : E, -E,@Ea,e= I,2 and k : E, @ E, ---f 
E, 3 E2 @F be the inclusion maps. Then 

j*i*z = i,*m*i,*z = i2*(e(u,,.) . i,*z). 

Since i,*(vk) - n*F where n : E, + X is the projection, this last term 
can be written 

n*(e(F)) . i,*i,*z = n*(e(F)) i,j“*z 

= i*‘(i’*TT*e(F) . j’ *z) 

= i,‘(e(F) .j’*z) 

(by l-7) 

which proves the proposition. 
Let G be a compact Lie group and let i : Z + X be an embedding 

of G-manifolds. Then the fixpoint submanifold Xc and Z intersect 
cleanly, and we get a diagram 

ZG~5-t 
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like 3.1 except that the whole situation is equivariant for G. 4s Y~*(vJ 
is a G-bundle over a trivial G-space, there is a decomposition 

/.z*(l’,) = I’,C ‘5, pL, ) (3.5) 

where ,wi is the sum of the eigenbundles corresponding to the nontrivial 
irreducible representations of G. From 3.2, one sees that pLi is the excess 
bundle of the intersection. 

Suppose that vi is endo\ved with an equivariant complex structure, 
so that 3.5 is a direct sum of complex G-bundles. Let h be a multiplicative 
equivariant cohomologv theory for G-spaces with Thorn classes for 
complex G-bundles, such as equivariant & theory or the theory r;;* 
of tom Dieck [I 5, 161. IVe have in mind the theory S + C;*(Q A ,,AU), 
where Q is given a principal G-bundle over a manifold B, and M here 
the Gysin homomorphism ,f, : k(S) ---f /I( 1.) associated to a proper 
G-map with equivariant complex orientation (defined just as in Section 1) 
is the Gysin homomorphism C.:*(Q p. .9) + I’*(0 . ,;I-) associated to 
the map Q ‘. J. We let e(pLi) E h(ZG) be the Euler class in the theory Iz. 
Exactly the same reasoning used in proving 3.3 works equivariantly, and 
in fact for I:*(0 >: c ?) one can apply 3.3 directly to the square obtained 
by applying Q \,\ (, ? to 3.4. One obtains the following “restriction to 
the fixpoint” formula. 

PROPOSITION 3.6. If: E h(Z), thefz 

r,y*i,z = i*G(e(p,) . rz*z) 

This formula for an embedding generalizes to an arbitrary proper 
complex-oriented G-map f : 2 ---f X by the “Riemann--Koch” argument. 
Suppose for simplicity that f is of even dimension and that the complex 
orientation is represented by a factorization 

Z -& E -% -I-, (3.7) 

where E is a complex G-bundle over X and i is an embedding with an 
equivariant complex structure on its normal bundle. Let p(E) be the sum 
of the eigen bundles of yx *E corresponding to the nontrivial irreducible 
representations of G, where, as before, rX is the inclusion of the fixpoint 
submanifold Xc in X. 
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PROPOSITION 3.8. lj x E h(Z), then 

4PW) . ~.r*f*~ = fG*($4 rz”4 
in h(XG). 

To see this, recall that f* : k(Z) + k(-U) is the composition 

h(z) “+ h(E, E - DE) 2% k(X), 

where DE is the disk bundle of E for some Riemannian metric chosen 
such that z(Z) is contained in the interior of DE. Here p, is the inverse 
of the Thorn isomorphism j* : h(X) 2; h(E, E - DE). Applying 3.6 
to i, j we obtain 

v,*i,z = iG,(e(pi) . rz*z), 

yE*j*fcz = jC*(4@)) . yx*f*4. 

Since j, f.+ = i, , jG, fG* = iG.+ and jG* is an isomorphism, the 
proposition follows. 

Remark 3.9. In order to have a formula independent of the choice 
of the factorization (3.7), it is convenient to form the localized theory 
S-‘h (see [15, 161, where S is the set of Euler classes in h(pt) of the 
nontrivial irreducible representations of G. Then the formula of the 
proposition can be written as a RiemannRoch type formula 

where e(p,) = e(pJ * e(p(E))-’ is now well-defined since S has been 
inverted. 

We are going to apply 3.8 to the Steenrod operations in U* [14]. 
Let G be a group acting on the set (1, 2,..., kj and let h be a G-equivariant 
theory as above. The external Steenrod operation 

P e?ct : C-y-) ---f h-WC (- ) y?, 

is defined by the formula 

Pext(f*l) =f”‘*l. 

(3.10) 

Here f : Z + X is a proper complex-oriented map of even dimension 
24 and f k : Zk + Xk is its k-fold product regarded as a G-map, where G 
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permutes the factors, and where ,f k has a natural equivariant complex 
orientation since the dimension off is even. To see Pcxt is independent 
of the choice of the map f, one can use the argument 1.11. Composing 
with the diagonal A : X + -57’ we obtain the (internal )Steenrod operution 

(3.11) 

The analogy of this definition with Steenrod’s construction in ordinary 
cohomology [ 1 l] is especially apparent when h =.. I:*@ - G ?), where Q 
is a principal G-bundle over B. In this case, P(f,l) is represented by 
the map g in a pull-back diagram 

ki’ -----f Q :< J” 

gl , (Id& , v 
B I\ s -d- r;> x pl-” 

where d, the analog of the “diagonal approximation”, is homotopic to 
(id, A), and transversal to (id,f”), . 

PROPOSITION 3.12. Suppose G acts transitizjely on {I,..., k], and let p 
denote the corresponding representation of G on the subspace of (zl ,..., 2,;) 

in Ck such that x xi = 0, where G permutes the coordinates. Suppose 
f  : Z-+X is a proper complex-oriented map of dimensiorl 2q and that m 

is an integer larger than the dimension of Z, so that me f  vI is a sector 
bundle over Z, well-dejined up to isomorphism, where l is the trivial complex 
line bundle. Then 

e(p)“’ P(f* I) = f*e(p (3 (??lC + Vf)) (3.13) 
in ]~2r~L(k-l)-2~k(X). 

Since ~1 is large, the complex orientation off can be represented by 
a factorization Z & mE z X together with a complex structure on vi , 
and we have that vi = rn< + vi in the notation of the proposition. Let us 
apply 3.8 to the equivariant map f k = pkik : Z” + Xk. Then pcir) = 
p @ vi , p((mc)k) = p @ me and A : X--f Xk is the fixpoint submanifold 
for the G-action, since G acts transitively. Hence 3.8 yields the formula 
3.13 and the proposition is proved. 

Let G = Z,. be the cyclic group of order k acting cyclically on 
{I,..., k} and let 7 denote the representation of Z,. on C, where the 
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generator multiplies by exp(2-iri/k). Let F( Tl , T,) be formal group law of 
2.7 and let C be the subring of Cref( pt) generated by the coefficients of F. 
If i is an integer let [ilF( T) E C[[ T]] be the operation of “multiplication 
by i” for the formal group, so that we have the following formulas 

[ilF( 7’) = F( T, [i - I]F( T)), 

[11,(1’) = 7’, 

[iIF = iT + higher terms. 

(3.14) 

In 3.12 we take h to be the equivariant theory U*(Q A c ?). If L is a line 
bundle over 2 on which G acts trivially, then in our notation e(p @L) 
is the Euler class in C:*(B x 2) of the bundle over B x 2 which is 
the tensor product of the bundle induced from p and the bundle L. 
Thus setting z! = e(T) E U’(B) we have an expression of the form 

where aj( T) E C[[ T]] and 

zu=e(p)=(k-l)!v’--l+ c b,d 
,: 1, 

(3.15) 

(3.16) 

with b,EC. If E=L,@**+@L, is a sum of line bundles, then with 
the notation 2.3 one computes that 

where Z(a) = C aj . By the splitting principle this formula holds for any 
vector bundle of dimension r. Putting this in the right side of 3.13 and 
using the definition of the operation s, (2.5) we obtain the following. 
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PROPOSITION 3.17. Let 0 + B be a principal Z,L.-bundle and let 

p : (- “‘(-y)- [,T W(R < S) 

be the Steenrod k-th power operation. Let nil be the Euler class of the line 

bundle over B inducedfrom the character sending thegenerator to esp(2vi,lk), 
and let w be the Etller class of the bmdle irtdaced jiiom the redaced replar 
representation p. Then the Steenvod operntion is related to the Landweber 
Noeikoc operations by the fornIuln 

where x E cT-2’t(A\7). Here FL is anq’ integer saficientl~v large with respect to 
the dimension C$ S and q, and the aj( 7’) ( see 3.15) are power series with 
coefficients in the sztbring C of I’“‘( pt) g enerated bjj the coeficients of the 
formal group law F of 2.7. 

4. L\ TECHNICAL LEMMA 

In order to be able to use the formula 3. I8 we need a result (4.4) which 
is derived in this section. 

Fix a positive integer k and let 

_ k + d,T’ + (jJ2 -!- . . . , (4.1) 

where dj E (: and we use the notation of 3.14 and 3.17. 

PROPOSITION 4.2. Let f:Q + B be a principal &,.-bundle and let 
I, = 0 ,/ .,C be the line handle associated to the character 7. Then 
f&I = @(e(i)) in Lro(B). 

Let j : ,Q + I, be the obvious embedding, so that elements of L may 
be expressed as products zj(q) with z E C and q E Q modulo the equiva- 
lence relation (&)j(q) = zj(qu), where 0 is the generator of Z,,. and 
< = exp(2A/k). Let i be the zero-section of L and let g : L + B be the 
projection. Then the line bundle g*L(=L :, gL with projection prr) 
comes with a tautological section s, which is transversal to zero and 
vanishes on i(B). Thus g*L with the trivialization off i(B) furnished by s 
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extends to a line bundle M over the one-point compactification L u {co}, 
where for simplicity we suppose B is compact, and e(M) = i,l, where 

is the Thorn isomorphism. Now the bundle g*L :‘k trivialized off i(B) by 
the section s’;‘J~ extends to the bundle Milk, Consider the section t of 
g*L’rjk given by t(zj(q)) = (xj(q), ,$j(p)!x’” -j(q)‘, “). This section extends 
to a section of M’- k, which is smooth off cc and is transversal to zero 
with zero-set j(Q). Thus 

j*l = e(M?J/c) 

= [W*l) 
= i*l * B(i*l) 

= i*g(i*i* 1). 

Since i*i,l = e(L), i,f, = j, and i, is an isomorphism, we conclude 
that f* 1 = 0(e(L)), p roving the proposition. 

Let 3’ be a fixed manifold and let h be the theory h*(X) = U*(X ,b’ 1’). 
To explain what is happening in the rest of this section, suppose that 
we are willing to work with the cobordism of infinite complexes such as 
BZ, , the classifying space of Z, . Then there is an exact sequence 

h”( pt) d% h’r(BZ,) L h~f”(BZk), (4.3) 

where ‘u is the Euler class of the line bundle associated to 7 and where 
the maps are multiplications by the indicated elements. Indeed this 
follows from the commutative diagram 

where the top row comes from the Gysin sequence of 7, where the bottom 
arrow is the suspension isomorphism, and where the vertical isomorphism 
is the map induced by the projection pr, : S” x zbS1 + S/Z,;, which 
is a homotopy equivalence since the fiber is contractible. Although 
the steps in this argument with infinite complexes can be justified, 
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vve have preferred to derive a slightly less conceptual variant of 4.3 using 
only manifolds and, therefore, more in the spirit of this paper. 

Let 2,; act on S2+l C C” with the generator multiplying by exp(2ni/k), 
and let u,, E h’(S z+1/Z,J be the Euler class of the line bundle induced 
from 7. Let j,, : PP1/Z,. + ,!P+l/Z,; be induced by the inclusion of C” 
in CM--l. The variant of 4.3 that vve shall prove is the following. 

PROPOSITION 4.4. Let s E hq(S2” + l/Z,,.) satisfy; s * v,,+~ ~ 0. Then 
there exists an element y E hY( pt) such that y * o(c:,,) = j,, *s in hff( S”“+‘/Z,,.). 

Recall that if E is a complex vector bundle of dimension IZ over X and 
r : SE 4 X is its sphere bundle for some Riemannian structure, then 
there is an exact Gysin sequence 

where the first map is multiplication by the Euler class of E. We can 
consider the map p,[ : P--l n z,, S + F/Z,, induced by the projection 
on the second factor as the sphere bundle of the bundle over S1/Zk 
induced from the representation q. Hence there is, a diagram of Gysin 
sequences 

wherej,&’ is induced by the inclusion of C” in C”+l. The commutativity of 
the diagram is clear except for the square (*), which is commutative 
by the following: 

LEMMA 4.6. Let E, F he complex uector bundles over X, and let 
f: S(E @F)+X, g : SE + 9 be the associated sphere bundles. If 
j : SE+ S(E OF) is the inclusion, then 

g* j*z = e(F) * f*z 

for any z E h*(S(E OF)). 
In effect, the projection p : S(E OF) ---f F is transversal to the zero- 

section s : X + F and the pull-back of s by p is isomorphic to j, hence 
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j*l -p*s,l =f *s*s* 1 = f *e(F), where we have used that p and sf are 
homotopic. Therefore, 

g* j*z = f* j,j*z = f*( j, I . z) = f*(f *e(F) . z) = e(F) .f*zz, 

proving the lemma. 
The element z’i E h2(S1/Z,.) comes from an element of U2(S1/Z,.) which 

is zero for dimensional reasons. Thus 7-1~ = 0 in the diagram (4.5). If 

=,v71 . 
. s2,,+1 .$-+s 2,r+1 Z is the map induced by the projection / ,,.' 

on the first factor, then 7~,~ .1 is the sphere bundle of the line bundle 
induced from ye, so there is an exact Gysin sequence, 

/f/ +l(s2n+l y z,csl) """-z+ /fJ(p~klp,) ?!LT+ /pY(pil//&J~ 

Let x be as in the proposition. Then x = rr,,-,i.*z for some z, so 
j,, *x = x,z *j;l*z; by 4.5 j:F.z = pn*z’ for some .z’ E h~+l(Si/Z,.). Let 
i : pt - S1/Zk be the inclusion induced by the isomorphism of Zk with 
the h-th roots of unity. Then 2’ = y’ . 1 + y . i, 1, where y’ E h*+l( pt) 
and y E Izq( pt). Suppose we have proved the formulas 

~,*P,“l = 0, 

“n* n P *i* I = Id(%). 
(4.7) 

Then it follows that j,,*x = rrTTI, *P,~ *z’ = y . @(e>,,) proving the proposi- 
tion. 

It remains to prove 4.7. The first equation follows from the Gysin 
sequence since 1 = 7~~~ *I. For the second, we compute in CT* using 
cobordism classes and use that the canonical map 

pr,* : C”( ?) - u*( ? x Z) = h*( ?) 

commutes with Gysin homomorphisms, Euler classes, etc. Now i,l is 
the cobordism class of the map Zk/Zk C, S1/Zk , so p,,*i,l is the cobor- 
dism class of the composite S2n-1 g S?n-l x Z,Zh. c+ S2n-1 ‘< z,S1, 
hence n,,*p,,*i,l is the cobordism class of the projection map S”“-’ + 
S2”-l/Z,,. . By 4.2, this is @(zI,~). This completes the proof of Proposition 
4.4. 

5. THE MAIN THEORE~LI 

Let o*(X) denote the ideal in c;*(X) consisting of elements which 
vanish when restricted to any point of X. Recall that C C rTe’( pt) is 
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the subring (with unit) generated by the coefficients of the formal group 
law F of 2.7. 

THEOREM 5.1. If  -Y is of the IzonlotopJl t>pe of n finite complex. tJler1 

It is trivial to show that I:“( pt) = Z and C’q( pt) m= 0 for y 
1.2, so the theorem implies the following: 

COROLLARY 5.2. C”“(pt) = C and IT’B(i(l(pt) = 0. 

For the proof of the theorem it suffices to show that 

pyzy) = c . 2 [yy), 
f, a,, 

0 using 

(5.3) 

(5.4) 

where * and x,, are basepoints and ,Y is assumed connected. Let R be the 
right side of 5.3. It suffices to show that Ro,) = @““(X)(,,, for any given 
prime number p and where the subscript denotes the localization at 
the prime ideal (p) in 2. Let us assume as induction hypothesis that 
R-” = op2j(X),,, for j < 9, this equality being clear if q = 0. Let (PI 
x E np2q(X). By the key formula 3.18, for some large integer rz we have 

in lJ2”+2q(S2m+1/Z,, x S) for all m, where uj(T) E C[[T]], where 2’ 
(= the z’,,,,.~ of 4.4) is the Euler class of the line bundle induced from 7, 
and where w is a power series in z’ with coefficients in C and leading term 
(p ~ l)! z:“+l by 3.16. As p is a prime number, (p - l)! becomes a unit 

in %,A 7 so z!P--1 zzz w . B(T) where B is a power series with coefficients 
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in Cc,,) . For x > 0, s,,x E R by induction hypothesis, hence 5.5 yields 
equation of the form 

V”‘(WQP”X - At) = l)(v) in C;*(Sznrtl/Zg ‘* X)(,j , (5.6) 

where WI E R~,,~lI~ll. SUPP ose m is the least integer > 1 for which 
there is an equation such as this. Let i* : U*(SP’r~+l/Z,, :< X) --f U*(X) 
be the ring homomorphism induced by the inclusion of a point in 
SZnl+l/Z,, . Applying i* to both sides of 5.6, we see that Q/J(O) = 0, hence 

#(T) = T+,(T) with A E RdTll and 

v(v”‘-yzu”P.~ - x) - l,&(v)) = 0. 

By 4.4 there is a y E E:*(X)(,) of degree Z(m - I) - 2q such that 

v”--l(w”P.u - x) = $&J) + y0(v) in U*(S”“l-l/Z, X S)(,j . (5.7) 

Restricting this equation from X to its basepoint, we obtain y’@(v) = 0, 
where y’ is the component of y in c!*(pt)c,,, . Subtracting y’ from y, 
we can suppose y E O*(X),,,, . If m > 1, then y E R(,], by induction 
hypothesis, and the right side of 5.7 is in Rc,,,[[v]], contradicting the 
minimality of m. Thus m = 1, so applying i* again we obtain 

--x = th(O) + PY if q > 0, 

x" - x = #l(O) + py if q = 0, 
(5.8) 

in oP2Q(X)(,,) . If q > 0, then as x is arbitrary, it follows that P@(X) C 
R?z + p U-2q(X)(1,j , whence U-@(X) (,,) = R;I;ZP as V2*(X) is a finitely 
generated abelian group by homotopy theory (I. 12). If q = 0, then it 
follows that x I+ xp - x kills OO(X)/(RO + p@(X)). But the ideal 
DO(X) is nilpotent, so x ct XI’ is a nilpotent endomorphism of 
OO(X)/pT?O(X). Thus in either case, ??2q(X),,,, = R$y, which completes 
the induction and finishes the proof of the theorem. 

The theorem can be used to answer a question posed by Conner and 
Smith[3]. 

COROLLARY 5.9. Let X be a jinite complex which can be embedded in 
a weakly complex man$old M of dimension n. Then U,(X) is generated 
as a U*(pt)-module by elements of degree <r~, and even <n if none of 
the components of M are compact. 
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If N is a closed regular neighborhood of X in M then by duality 
U*(X) cz lP*(N, i?N) as U*(pt)-modules. If none of the components 
of N are closed, then Nji3N is connected and U*(N, 8N) ‘v o*(N/aN), 
so U,(X) is generated by elements of degree <n by the theorem. Other- 
wise, one needs elements of degree <n, so the corollary follows. 

COROLLARY 5. IO. If X is a finite complex of dimension Y, tlten Cr,(zY) 
is generated as a li*(pt)-module by its elements of degrees ,<2r. 

Since X embeds in Rz’~‘~l, this follows from 5.9. 

6. STRUCTURE OF U*(pt) 

In this section we show how the known structure theorem for U*(pt) 
follows from 5.2 and a theorem of Lazard about formal group laws. 

Consider the functor which associates to a commutative graded ring 
R = OR,, p E 2, the set of formal group laws (2.6) x aijTliT,j with 
aij E Ri+j-1 . This functor is obviously representable; we let Laz be 
a ring representing it and let Funiv be the universal group law over Laz. 
We shall need the following theorem of Lazard [7]: 

PROPOSITION 6.1. Laz is a polynomial ring over Z with one generator 

of degree q for each q > 0. 

Let E : U*(X) + H*(X) be the Thorn homomorphism from complex 
cobordism to ordinary integral cohomology. In terms of 1.10, it is 
the unique natural transformation compatible with Gysin homomor- 
phisms. Let 

p : u*(s) + H*(x)[t] 

be the Boardman map; it is the Landweber-Novikov operation st followed 
by E and satisfies the formula 

for a proper complex-oriented map f : Z + X, where, to avoid confusion, 
we let c,” resp., c,[:) denote the characteristic classes in H* (resp., U*) 
constructed in the manner of 2.2. When X is a point, this formula shows 
that /3x is the polynomial whose coefficients are the Chern numbers of x. 

607171'1-4 
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It is clear from 6.2 and 2.2 that 

/3eU(L) = C t,(e”(L))j+l, t, = I, 
j ;-0 

for any line bundle L. Hence putting L, @L, in for L in this formula and 
arguing universally as in the proof of 2.7, we obtain the formula 

@w4(~1)7 4(Td = UT1 + T,), where B,(T) = 1 tjT’j+l. (6.3) 
j>O 

Therefore, there are ring homomorphisms 

(6.4) 

where 6 is the homomorphism sending the universal law to F (note that 
6 Laz, C V2”(pt)) and where * denotes conjugation of a group law by 
a power series. 

THEOREM 6.5. The homomorphism 6 is an isomorphism and the 
homomorphism p of 6.4 is injective. Consequently U*(pt) is a polynomial 
ring over 2 with one generator of degree -2q for each q > 0, and any 
element of U*(pt) is determined by the set of its Chern numbers. 

By 5.2, the map 6 is surjective. On the other hand, the composition ,8S 
induces an isomorphism Q @ Laz + Q[t]. To see this consider the 
morphism of functors represented by ,G. A map u : Z[t] + R may be 
identified with the power series 8,, = C u(tj) Tj+-l, and the composite 
u/38 may be identified with the formal group law ti,,*(T, + T,). If R is 
a Q-algebra, one knows by formal Lie theory [5, p. 961 that any formal 
group law over R is of the form e,*(T, + TJ for a unique 0,, , the so- 
called logarithm of the law. Thus for Q-algebras R, ,8S induces a one-one 
correspondence between maps Z[t] + R and maps Laz --f R, which 
implies that Q @ (/36) is an isomorphism. By Lazard’s theorem (6.1), 
the ring Laz is torsion-free, hence PS is injective. Consequently, 6 is 
an isomorphism and p is injective, so the theorem is proved. 

For the benefit of topologists, we shall indicate what is involved in 
the proof of Lazard’s theorem.3 

3 The exposition follows a talk by J. F. Adams at the Arbeitstagung, 1969. 
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Let us denote by a : Laz + Z[t] the composition /3S of 6.4 and adopt 
the algebraic grading, so that deg t, = q. We compute the induced 
homomorphism 

t),W) - Q,(z[~l), 9 ‘1 0, (6.6) 

on indecomposable elements. AA homomorphism from Q,(I,az) to an 
abelian group A may be identified with a forma1 group law over the ring 
ZW~,, where Ed is an element of dimension q such that E,,~ = 0. 
Such a law is of the form T, + T, + G(T, , T,) E,~ , where G is a home- 
geneous polynomial of degree q + I with coefficients in A satisfying 
the identities 

G(0, T,) = G(T, , 0) 0, 

G(T, , T2) : G( T2 , II’,), 

G(T, , Ta) - G(T, + 7’2 , TJ + G(I[‘, , Tz + TJ ~ G(T, , TJ = 0. 

E;EY LEMMA 6.7. There is a unique element a E A such that 

,*411 G‘(T, , T,) = a $, [(T, + T2)‘+’ ~ 1, ~ p], 

where yu = p if q + 1 = p” f or some prime number p and a > I, and 
yn = I otherwise. 

For an efficient proof see [5, p. 621, or better, [17]. This lemma implies 
that $&(Laz) ‘v Z for each q > 0. On the other hand, a homomorphism 
from Q,(Z[t]) to the abelian group A may be identified with a power 
series T + bc,Tq+l with b E A, and the map 6.6 induced by LY. sends this 
power series to the group law 

(T + be,T’-‘)*(Tl + TJ = T, + T2 + br,[(T, -1 TJ’+’ - T;+’ - &=I]. 

In other words, we have proved the following: 

PROPOSITION 6.8. The homomorphism 6.6 is isomorphic to multiplica- 
tion by ylr : Z --f Z. 

Choose an element xq E Laz, whose image in &(Laz) is a generator. 
Then the homomorphism Z[X, , X2 ,...I + Laz sending X, to xy is 
surjective. However, it is also injective since on tensoring with Q the 
element m(x,) form a system of polynomial generators for Q[t] by 6.8. 
This proves 6. I. 
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7. UNORIENTED COBORDISM THEORY 

In this section we sketch the modifications needed for unoriented 
cobordism theory. 

Let N*(X) be the unoriented cobordism ring of X. When Y is a 
manifold, an element of Nq(X) may be identified with a cobordism class of 
proper maps f : Z --) X of dimension -9. For a real n-dimensional vector 
bundle E over X there is an Euler class e(E) E N”(X) and the projective 
bundle theorem analogous to 2.1 holds so that characteristic classes 
and operations 

c,(E) = c t’YC,(E), c,(E) E NlyA-), 

St : N*(x) 4 N*(s)[t] 

can be defined by the same method. There is a formal group law 
F( T, , T,) = C cijTliT,j with c.. E N1-i-j( Pt) giving the behavior of 11 
the Euler class of a line bundle under tensor product. Since the square 
of a real line bundle is trivial, we have the identity 

F(T, I’) = 0. (7.1) 

THEOREM 7.2. The unoriented cobordism ring N*(pt) is generated 

by the coeficients of the formal group law F. 

This is proved in exactly the same way as 5.1, using the Steenrod 
squaring operation 

P : N*(S) + Wq(RP” x A-) 

defined as in 3.11. Here things are simpler, since by the projective bundle 
theorem 

N*(RP” x X) ‘v N*(X)[[v]]/(z+), 

where ‘u is the Euler class of the real line bundle induced from the 
nontrivial character of Z, . Put another way, the power series 0 of 4.1 is 
identically zero by 7.1, so that when one gets to 5.8 there is no py term. 
Consequently it is not necessary to suppose known that N*(pt) is finitely 
generated and the whole argument can be carried out independently 
of homotopy theory. 

It is also possible to prove a statement about a finite complex X 
analogous to 5.1, but as we shall see, a better assertion can be proved 
using the classification of formal group laws satisfying 7.1. The relevant 
fact is the following: 
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PROPOSITION 7.3. Let R be a commutative ring of characteristic p 
where p is a prime number, aud let F(T, , T,) = C rijTliT,j be a formal 
group law with coeficients in R such that [p]JT) = 0 (notation as in 3.14). 
Then there is a unique power series l(T) = T + xi 1 ajTj+l such that 

(i) 1(F(T, , T,)) -= 1(7’,) + I(?‘,) 

(ii) a, = 0 if j =~: p* - ] for some i .3i 0. 

Fllrthermore if R = @Rj , j E Z, is graded azd rij E RiejPl , then aj E Rj 

By a successive approximations argument using essentially only the 
key Lemma 6.7 [5, p. 671, one constructs a series I(T) = T + C ajTjfl 
which is a logarithm for F, i.e., it satisfies condition (i). Nou 
(T+aTf’“) .1(T)’ is another logarithm whose coefficient of T/j’” is al+$oI. 
From this one sees that Z(T) can be modified until all the aj with 
j = pi - 1 for some i > 0 are zero. This proves the existence of I. For 
uniqueness, note that if I, is another such, then the series U(T) = ,ll(lkl( T)) 
satisfies u( T, + TJ = u( T,) + U( T,); hence u has only terms of degree 
p”. If U(T) = T + NT))- + higher terms and I~ f 0, then the coefficient 
of TfJn in Zi is 01, contradicting the assumption that I, satisfies (ii). Thus 
u(T) = T and uniqueness is proved. The last assertion follows from 
the uniqueness and the observation that if aj is replaced by its homo- 
geneous component of degree j then one obtains another series such as 1. 
Thus the proposition is proved. 

The series I(T) will be called the canonical logarithm of F. I,et r be 
a ring of characteristicp which represents the functor assigning to an R 
the set of formal group laws F as in the above proposition, and let FuIliv be 
the universal such law over r. It is clear from the proposition that to give 
such a law is the same as giving the coefficients of its canonical logarithm, 
hence r is a graded ring which is a polynomial ring with one generator 
of every degree not of the form pi - 1, and where generator in degree j 
is the coefficient of Tj-l m the canonical logarithm of the universal law. 

For the applications to N* we take p =: 2 and change the signs of 
the grading according to the familiar rule rj = Pi. We are going to show 
that the map r ---f N*(p) corresponding to the formal group law of N* 
is an isomorphism. 

Given a graded (commutative) ring R over Z, let 9(R) be the 
following category. Its objects are the formal group laws F as in the 
proposition with rij E Rl-‘-j. Such laws are in one-one correspondence 
with graded ring homomorphisms w : r---f R; we let F,, denote the image 
of FuniT. under u. A morphism in the category*(R) from F,, to F,, is 
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defined to be a power series O(T) = 2 YjTj+l j > 0, Y,, = 1, rj E R-j 
such that 

F,,(Vl)> YT,)) = V,,(Tl > T,)), 

i.e., F,, = 0 c F,. in the notation of the preceding section. Composition 
is given by composition of power series; it is clear that every morphism 
in this category is an isomorphism. 

If 11 : r+ R is a homomorphism, let 

h,*(S) = R 8, N*(S) (7.4) 

be the corresponding base extension. Although h,,* is not a priori 
a generalized cohomology theory because of the exactness axiom, 
it is a contravariant functor on manifolds to graded rings over R which 
inherits Gysin homomorphisms for proper maps and characteristic 
classes from N*. We use a superscript u to avoid confusion with the 
characteristic classes of N*, e.g., e”(E) = 1 @e(E). Note that by con- 
struction the formal group law of h,,* giving the behavior of Euler classes 
of line bundles under tensor product is F,,( T, , T2). Let O(T) = 1 rjTj+l 
be a morphism in the category .F(R) from F,, to F,, . The composition 

N*(x) -“I, N*(x)[t] -2 h,*(X), 

where g(x) = 1 @ x if x E N*(X) and g(tj) x ri , sends e(L) into 
O(ev(L)) and is a ring homomorphism, hence it carries the formal group 
law F of N* into the law 8 *F,. = F,, . By definition (7.4) this composition 
induces an R-linear natural ring homomorphism. 

B : h,,*(x) + h,*(X). (7.5) 

We claim that 4 is characterized by the fact that it is R-linear, multiplica- 
tive, and, on Euler classes of line bundles, is given by 

B@(L) = e(eyL)). (7.6) 

Indeed given another such operation #J, $ and 4 coincide on Euler classes 
of vector bundles by multiplicativity and the splitting principle, hence $ 
and 4 coincide on Thorn classes which are examples of Euler classes. 
This implies that $ and e^ coincide on elements coming from N*(X), and 
hence # and 4 are equal by R-linearity. Using this characterization, one 
sees immediately that (0, O)- = 6, 4, i.e., that u I+ A,,* is a functor on 
9(R). Since all morphisms of 9(R) are isomorphisms, it follows that 
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t? is a natural ring isomorphism. Of course, 4 is not compatible with 
Gysin homomorphisms, but it does commute with the suspension 
homomorphism since st does. 

We apply these considerations in the following situation. Let R = r, 

let u be the identity map of r, and let II be the homomorphism corre- 
sponding to the law T, + Tz over r. For 6’ u-e take the canonical loga- 
rithm of the universal law. Note that II factors into maps r-t Z, + r, 
and therefore we obtain a natural isomorphism of r-algebras 

compatible with the suspension homomorphism. Taking X to be a point 
and using Z, Or N*(pt) z Z, , by 7.2, we obtain the following more 
precise version of Thorn’s theorem on the structure of the unoriented 
cobordism ring. 

THEOREM 7.8. The homomorphism r + N*(pt) given 6)) the formal 

group law F of N* is an isomorphism, and hence F is a universal law over 
a ring of characteristic two satisfying 7. I. Furthermore N*(pt) is a poly- 
nomial ring over Z, with one generator aj of degree -j for each posit&e 
integer j not of the form 2’ - 1, where aj is the coeficietlt of Tj ‘I ill the 

canonical logarithm of F. 

On the other hand, 7.7 implies that Z, Or N*(A) is a direct summand 
of N* and is, therefore, a generalized cohomology theory. Hence the map 

z, f& N*(s) 5 H”(S, Z,) (7.9) 

given by the Thorn homomorphism from N* to ordinary cohomology 
mod 2 is a map of generalized cohomology theories inducing an isomor- 
phism for X = pt by 7.2, and which, therefore, is an isomorphism by 
the Eilenberg-Steenrod uniqueness theorem. Combining this with the 
definition of the isomorphism 7.7 we obtain the following. 

‘I’HEOREIM 7.10. There is a unique natural ring homomorphism from 

H*(X, Z,) to N*(X) h’ 1 w zc 1 sends an element x of degree one to l(e(L)), 

where I, is the real line bundle classi$ed by x arid where 1 is the canonical 
logarithm qf the f  ormal group law of N*. This homomorphism extends to 

an isomorphism of N*( pt)-algebras 
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