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Higher algebraic K~theory: I

Daniel Quillen*

The purpose of this paper is to develop a higher K-theory for additive categories
with exact sequences which extends the existing theory of the Grothendieck group in a
natural way. To describe the approach taken here, let M be an additive category

embedded as a full subcategory of an abelian category A , and assume M is closed under

extensions in é . Then one can form a new category Q(E) having the same objects as E ,
but in which a morphism from M' to M is taken to be an isomorphism of M' with a
subquotient M1/M° of M, where Moc:'M1 are subobjects of M such that Mo and M/M1
are objects of 5 . Assuming the isomorphism classes of objects of § form a set, the
category QM) has a classifying space BQ(M) determined up to homotopy equivalence.

One can show that the fundamental group of this classifying space is canonically isomor-
phic to the Grothendieck group of M , which motivates defining a sequence of K-groups by
the formula B

KM = =, (3Hn),0) .

It is the goal of the present paper to show that this definition leads to an interesting
theory.

The first part of the paper is concerned with the general theory of these K~groups.
Section 1 contains various tools for working with the classifying space of a small
category. It concludes with an important result which identifies the homotopy~-theoretic
fibre of the map of classifying spaces induced by a functor. In K-theory this is used
to obtain long exact sequences of K-groups from the exact homotopy sequence of a map.

Section 2 is devoted to the definition of the K-groups and their elementary proper-
ties. One notes that the category Q(ﬂ) depends only on § and the family of those
short sequences O —» M' —» N > M" —; O in M which are exact in the ambient abelian
category. In order to have an intrinsic object_of study, it is convenient to introduce
the notion of an exact category, which is an additive category equipped with a family of
short sequences satisfying some standard conditions (essentially those axiomatized in
[Heller]). For an exact category ﬂ with a set of isomorphism classes one has a sequence
of KX-groups Ki(g) varying functorially with respect to exact functors. Section 2 also
contains the proof that KQ(E) is isomorphic to the Grothendieck group of M. It should
be mentioned, however, that there are examples due to Gersten and Murthy showing that in
general K1(§) is not the same as the universal determinant group of Bass.

The next three sections contain four basic results which might be called the
exactness, resolution, devissage, and localization theorems. Each of these generalizes
a well-known result for the Grothendieck group ([Bass, Ch. VIII]), and, as will be
apparent from the rest of the paper, they enable one to do a lot of K-theory.

The second part of the paper is concerned with applications of the general theory to

rings and schemes., Given a ring (reSp. a8 noetherian ring) A , one defines the groups

*Supported in part by the National Science Foundation.
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Ki(A) (resp. K{(A) ) to be the K~groups of the category of finitely generated projec-
tive A-modules (resp. the abelian category of finitely generated A-modules). There is a
canonical map Ki(A) - Ki(A) which is an isomorphism for A regular by the resolution
theorem. Because the devissage and localization theorems apply only to abelian categories,

the interesting results concern the groups Ki(A) . In section 6 we prove the formulas
' -1 .
k) = kalt]) . k@] = ki) @k ()

for A noetherian, which entail the corresponding results for K-groups when A is
regular. The first formula is proved more generally for a class of rings with increasing
filtration, including some interesting non-commutative rings such as universal enveloping
algebras. To illustirate the generality, the K-groups of certain skew fields are computed.

For a scheme (resp. noetherian) scheme X, the groups Ki(X) (resp. Ki(X) ) are
defined using the category of vector bundles (resp. coherent sheaves) on X, and there is
a canonical map Ki(X) - Ki(x) which is an isomorphism for X regular. Section 7 is

devoted to the K'-theory. Especially interesting is a spectral sequence

- | [ K (k@) == k()
cod(x) =p
obtained by filtering the category of coherent sheaves according to the codimension of the
support. In the case where X 1is regular and of finite type over a field, we carry out a
program proposed by Gersten at this conference ([Gersten 3]), which leads to a proof of
Bloch's formula

£x) = B, k(o)

proved by Bloch in particular cases ([Bloch]), where AP(X) is the group of codimension
p cycles modulo linear equivalence. One noteworthy feature of this formula is that the
right side is clearly contravariant in X, which suggests rather strongly that higher
K-theory might eventually provide a theory of the Chow ring for non-quasi-projective
regular varieties.

Section 8 contains the computation of the K-groups of the projective bundle
associated to a vector bundle over a scheme. This result generalizes the computation of
the Grothendieck groups given in [SGA 6], and it may be viewed as a first step toward a
higher K-theory for schemes, as opposed to the K'-theory of the preceding section. The
proof, different from the one in [SGA 6], is based on the existence of canonical
resolutions for regular sheaves on projective space, which may be of some independent
interest. The method also permits one to determine the K-groups of a Severi-Brauer

scheme in terms of the K-groups of the associated Azumaya algebra and its powers.

This paper contains proofs of all of the results announced in Eduillen 1], except for
Theorem 1 of that paper, which asserts that the groups Ki(A) here agree with those
obtained by making BGL{A) into an H-space (see [Gersten 5]). From a logical point of
view, this theorem should have preceded the second part of the present paper, since it is
used there a few times. However, I recently discovered that the ideas involved its proof

could be applied to prove the expected generalization of the localization theorem and
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fundamental theorem for non-regular rings [?ass, p.494,663]. These results will appear
in the next installment of this theory.

The proofs of Theorems A and B given in section 1 owe a great deal to conversations
with Graeme Segal, to whom I am very grateful. One can derive these results in at least
two other ways, using cohomology and the Whitehead theorem as in [Friedlander , and also
by means of the theory of minimal fibrations of simplicial sets. The present approach,
based on the Dold-Thom theory of quasi-fibrations, is quite a bit shorter than the others,
although it is not as clear as I would have liked, since the main points are in the
references. Someday these ideas will undoubtedly be incorporated into a general homotopy

theory for topoi.

This paper was prepared with the editor's encouragement during the first two months
of 1973. I mention this because the results in §7 on Gersten's conjecture and Bloch's
formula, which were discovered at this time, directly affect the papers [Gersten 3, 4]

and [Bloch] in this procedings, which were prepared earlier.
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1. The classifying space of a small category

In the succeeding sections of this paper K-groups will be defined as the homotopy
groups of the classifying space of a certain small category. In this rather long section
we collect together the various facts about the classifying space functor we will need.
All of these are fairly well-known, except for the important Theorem B which identifies
the homotopy-fibre of the map of classifying spaces induced by a functor under suitable
conditions. It will later be used to derive long exact sequences in K-theory from the

homotopy exact sequence of a map.

Let C be a small category. Its nerve, denoted NC , is the (semi—)simplicial set
whose p-simplices are the diagrams in C of the form

Xo — X1 —_— ., X,

P
The i-th face (resp. degeneracy) of this simplex is obtained by deleting the object Xi

{resp. replacing Xi by id : X,—~—» Xi) in the evident way. The classifying space of g,

i
denoted BC, is the geometric realization of NC. It is a CW complex whose p-cells are

in one-one correspondence with the p-simplices of the nerve which are nondegenerate, i.e.
such that none of the arrows is an identity map. (See [Segal 1],[Milnor 1].)

For example, let J be a (partially) ordered set regarded as a category in the usual
way. Then BJ is the simplicial complex (with the weak topology) whose vertices are the
elements of J and whose simplices are the totally ordered non-empty finite subsets of J.
Conversely, if K is a simplicial complex and if J is the ordered set of simplices of
K, then the simplicial complex BJ is the barycentric subdivision of K. Thus every
simplicial complex (with the weak topology) is homeomorphic to the classifying space of
some, and in fact many, ordered sets. Furthermore, since it is known that any CW complex
is homotopy equivalent to a simplicial complex, it follows that any interesting homotopy
type is realized as the classifying space of an ordered set. (I am grateful to Graeme
Segal for bringing these remarks to my attention.)

As another example, let a group G be regarded as a category with one object in the
usual way. Then BG is a classifying space for the discrete group G in the traditional
sense. It is an Eilenberg-MacLane space of type K(G,1), so few homotopy types occur in
this way.

Let X be an object of g. Using X to denote also the corresponding O-cell of
KC, we have a family of homotopy groups ni(Bg,x), i>0, which will be called the homotopy
groups of C with basepoint X and denoted simply ni(g,X). 0f course, nb(g,x) is not
a group, but a pointed set, which can be described as the set nbg of components of the
category g pointed by the component containing X. In effect, connected components of
Bg are in one-one correspondence with components of C.

We will see below that na(g,x) and also the hon;logy groups of BC can be defined
"glgebraically" without the use of spaces or some closely related machine such as semi-
simplicial homotopy theory, or simplicial complexes and subdivision. The existence of
similar descriptions of the higher homotopy groups seems to be unlikely, because so far
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nobody has produced an "algebraic" definition of the homotopy groups of a simplicial

complex.

Coverings of EC and the fundamental group.
Let E bYe a covering space of BC, For any object X of C, let E(X) denote the

fibre of E over X considered as a O-cell of BC. If u : X — X' is a map in ¢, it

determines a path from X to X' in BC, and hence gives rise to a bijection E(u) : B{X)
2 B(X'). It is easy to see that E(fg) = E(f)E(g), hence in this way we obtain a functor
X > E(X) from C to Sets which is morphism-inverting, that is, it carries arrows into

isomorphisms.

Conversely, given F : g» Sets, let F\f’__:= denote the category of pairs {x,x)
with X in C and x€ F(X), in which a morphism (X,x) = (X',x') is amap u : X—sX'
such that Flu)x = x'., The forgetful functor F\g —_ .C, induces a map of classifying
spaces B(F‘\g) ~> BC having the fibre F(X) over X for each object X. Using
[Gabriel—Zisman, App.I, 3.2] it is not difficult to see that when F is morphism-inver-
ting, the map B(F\g )-—»Bg is locally trivial, and hence B(F\g )} is a covering space
of B(__?. It is clear that the two procedures just described are inverse to each other,
whence we have an equivalence of categories

{Coverings of B(;) 2 (Korph.-inv., F : { —> Sets)

where the latter denotes the full subcategory of Funct(g ., Sets), the category of functors
from g to Sets, consisting of the morphism-inverting functors.
Let ¢ = ¢l )™'] denote the groupoid obtained from C by formally adjoining
the inverses of all the arrows [Gabriel—Zisman, I, 1.1] . The canonical functor from S_
to g induces an equivalence of categories
Funct(G, Sets) = (Morph.-inv. F : C —» Sets)
{loc.cit., I, 1.2). Let X be an object of C and let G, be the group of its auto-

X
morphisms as an object of G. When C is connected, the inclusion functor G, —> G is

an equivalence of categories, hence one has an equivalence *
Funct(G, Sets) —» Funct(Gy, Sets) = (Gy-sets).

Therefore by combining the above equivalences, we obtain an equivalence of categories of

the category of coverings of Bg with the category of Gx-sets given by the functor

E > E(X). By the theory of covering spaces this implies that there is a canonical iso-

morphism: T, (g JX) &= Gy. The same conclusion holds when ( is not connected, as both

groups depend only on the component of C containing X. Thus we have established the

following.

Proposition 1. The category of covering spaces of B is canonically equivalent to

the category of morphism-inverting functors F : C — Sets, or what amounts to the same
3hing, the category Funct(G, Sets), where G C [(Arg)_j is the groupoid obtained by
formally inverting the arrows of C. The fundamental group m, (g,X) is canonically

#

isomorphic to the group of automorphisms of X as an object of the groupoid G.

It follows in particular that a local coefficient system L of abelian groups on B_g_
may be identified with the morphism-inverting functor X w» L(X) from g to abelian groups.
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The homolﬂ of R;
It is well-known that the homology and cohomology of the classifying space of a dis-

crete group coincide with the homology and cohomology of the group in the sense of homo-
logical algebra. We now describe the generalization of this fact for an arbitrary small
category.
Let A be a functor from g to Ab, the category of abelian groups, and let
Hp(g ,A) denote the homology of the simplicial abelian group
CHVEE A ax)

Xo—-b. .—bxp
of chains on NE_:_ with coefficients in A. (By the homology we mean the homology of the

associated normalized chain complex.)C Then there are canonical isomorphisms
B (C,4) = lim (4)
where J_L_i_.g% denotes the left derived functors of the right exact functor lim from
Funct(C,Ab) to Ab. This is proved by showing that 4 +» H,(C,4) is an exact D-functor
which coincides with E.“; in degree zero and is effaceable in positive degrees. (see
[Gabriel~Zisman, App.II, 3.3].)
Let H,(BC,L) denote the singular homology of BC with coefficients in a local
coefficient system L. Then there are canonical isomorphisms
HP(E:z 1) = Hp(g L)
where we identify L with a morphism-inverting functor as above. This may be proved by
filtering the CW complex Kj; by means of its skeleta and considering the associated
! =0 for q#0 and Elo = the normalized chain com-
plex assccisted to C*(g RN (Compare [Sega.l 1, 5.1].) The spectral sequence degenerates
yielding the desired isomorphism.
Thus we have

spectral sequence. One has E

C
(1) H(RC,1) = lim (L)
and similarly we have a canonical isomorphism for cchomology
P = 1imP
(2) BP(c,1) = 1amp(L)

where lim; denotes the right derived functors of the left exact functor lim from
e L ]
Funct(C,Ab) to Ab.

Properties of the classifyinﬁ space functor.

From now on we use the letters g N g_)_ ', etc. to denote small categories. If
f: g «ug‘ is a functor, it induces a cellular map Bf : Bg - Bg'. In this way we
obtain a faithful functor from the category of small categories to the category of CW
complexes and cellular maps. This functor is of course not fully faithful. As & particu-
larly interesting example, we note that there is an obvious canonical cellular homeo—
morphism
(3) B o= B°
where (=:° is the dusl category, which is not realized by a functor from g to 20

except in very special cases, €.g. groups.
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By the compatibility of geometric realization with products [Milnor 1] , one knows
that the canonical map
(4) BCx¢') — 2 x I
is & homeomorphism if either Bl or X' 1is a finite complex, and also if the
product is given the compactly ;enerated topology. As pointed out in [Segal 1], this
implies the following,

Propogition 2. A natural transformation € : f —> g of functors from S to C'

induces a homotopy BCx I~ BC' between Bf and Bg.

In effect, the triple (f,g,e) can be viewed as a functor C X 1 C', where 1
is the ordered set {0<1} , and Bt is the unit interval.
We will say that a functor is a homotopy equivalence if it induces a homotopy egqui-

valence of classifying spaces, and that a category is contractible if its classifying
space is.

Corollary 1, If a functor f has either s left or a right adjoint, then f is a
homotopy equivalence.

For if f' is say left adjoint to £, then there are natural transformations
f'f - id, id -» ff', whence Bf' is & homotopy inverse for Bf.
Corollary 2. A category having either an initial or a final object is contractible.

For then the functor from the category to the punctual category has an adjoint.

let I be a small category which is filtering (= non-empty + directed [ Bass, p.M})
and let i > C. be a functor from I to small categories. Let g be the inductive
limit of the C ¢y because filtered inductive limits commute with finite projective limits,
we have ObC = 1im Obci’ ArC = lim Arci, and more generally Ng = }_‘_ulﬂgi . Let Xié
Ob_C__i be a family of objects such that for every arrow i —>»i' in I, the induced
functor gi - ?._ T carries Xi to Xi, , whence we have an inductive system nn(gi,xi)
indexed by I.

Proposition 3. If X is the common image of the Xi in g s then
lig n-n(Czi,Xi) = ”n(g'x)’
Proof. Because I is filtering and Ng = l_i_a Ng i’ it follows that any simplicial
subset of Ng with a finite number of nondegenerate simplices lifts to Ng L for some
i, and moreover the lifting is unique up to enlarging the index i in the evident sense.
As every compact subset of a CW complex is contained in a finite subcomplex, we see that

every compact subset of BC 1ifts to KC

i for some i, uniquely up to enlarging i. The

proposition follows easily from thia.

Corollary 1. Suppose in addition that for every arrow i - i°' in I the induced
functor C -y C. Civ
equlvalence for each i.

is a homotopy equivalence. Then the functor g 1 -y C is a homotopy

Proof., Replacing I by the cofinal category i\I of objects under i, we can
suppose 1 is the initial object of I. It then follows from the proposition that the
map of CW complexes Bg i~ Bg induces isomorphisms on homotopy. Hence it is a
homotopy equivalence by a well-known theorem of Whitehead.
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Corollary 2. Any filtering category is contractible.
In effect, I 4is the inductive limit of the functor i j» I/i , and the category
I/i of objects over i has a final object, hence is contractible.

Sufficient conditions for a functor to be a homotogx equivalence.

Let f : S_ —-)g' be a functor and denote objects of g by X, X', etc. and objectsof
g' by Y, ¥', etcs If Y is a fixed object of g_', let Y\f denote the category con-
sisting of pairs (X,v) with v : Y — fX, in which a morphism from (X,v) to (X',v')
is amap w ¢ X — X' such that f(w)v = v'. In particular, when f is the identity
functor of (_l ', we obtain the category Y\ g ' of objects under Y. Similarly one defines
the category f/Y consisting of paire (X,u) with u : fX —» Y.

Theorem A. If the category Y\f is contractible for every object Y of E_)_ 'y then

the functor f is a homotopy equivalence.
In view of (3), this result admits a dual formulation to the effect that f 4is a
homotopy equivalence when all of the categories f/Y are contractible.

Example. let g : K —» K' be a simplicial map of simplicial complexes, and let
£ :J - J' be the induced map of ordered sets of simplices in K and K', so that g
is homeomorphic to Bf. If & denotes the element of J' corresponding to a simplex o
of K', then f/& is the ordered set of simplices in 3.1(0'). In this situation the
theorem says that a simplicial map is a homotopy equivalence when the inverse image of
each (closed) simplex is contractible.

Before proving the theorem we derive a corollary. First we recall the definition of
fibred and cofibred categories [SGa 1, Exp. VI] in a suitable form. Let £ 1Y) denote
the fibre of f over Y, that is, the subcategory of C whose arrows are those mapped to
the identity of Y by f. It is easily seen that f makes g a prefibred category over
C' in the sense of loc.cit. if and only if for every object Y of C' the functor

) — T\f , X (X, idy)
has a right adjoint. Denoting the adjoint uy (X,v) )—s v"X, we obtain for any map
vi:Y-— Y a functor

oY) — e (Y)
determined up to canoniéal isomorphism, called base-change by v. The prefibred category
g over g ' is a fibred category if for every pair u,v of composable arrows in g ', the

canonical morphism of functors u*v* — (vu)® is an isomorphism. We will call such
functors f prefibred and fibred respectively.

Dually, f makes C into a precofibred category over C' when the functors
! (Y) = £/Y have left adjoints (X,v) k> v, X. In this case the functor v,: f"(Y) —
£ (Y*) induced by v : Y =»Y' is called cobase-change by v, and C is a cofibred

category when (wu) » Q‘,V*u* for all composable wu,v. Such functors f will be called

precofibred and cofibred respectively.

Corollary. Suppose that f is either prefibred or precofibred, and that (1) is

contractible for every Y. Then f is a homotopy equivalence.

This follows from Prop. 2, Cor. 1.
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Example. Let S(g) be the category whose objects are the arrows of C , and in
which a morphism from u : X — Y to u': X' =5 Y' is a pair v : X! —>X? wiY Y
such that u' = wuv. (Thus S(C) is the cofibred category over COXC with discrete
fibres defined by the functor (X,Y) j» Hom(X,Y).) One has functors -

g0« 5(g) —Eng

given by source and target, and it is easy to see that these functors are cofibred. The
categories s (x) = X\g and t-1(Y) = (C/Y)° have initial objects, hence are contrac-
tible. Therefore s and t are homotOpy-equivalences by the corollary. This construc-
tion provides the simplest way of realizing by means of functors the homotopy equivalence
(3).

We now turn to the proof of Theorem A. We will need a standard fact about the
realization of bisimplicial spaces which we now derive.

Let Q___z:__g be the category of ordered sets p ={0<1< ..<p} , pE N, so that by
definition simplicial objects are functors with domain Oz_zlio. The realization functor

(BX) > [pb> x|

from simplicial spaces to spaces ( [Segal 1]) may be defined as the functor left adjoint
to the functor which associates to a space Y the simplicial space p -+ Hom(AF, ¥),
where Hom denotes function space and Ap is the simplex having p as its set of
vertices. In particular the realization functor commutes with inductive limitas.

let T: p,q }—->qu be a bisimplicial space, i.e. a functor from géd°x25_=_d°
to spaces. Realizing with respect to q keeping p fixed, we obtain a simplicial space
p lq (=d qul which may then be realized with respect to p . Also, we may realize
first in the p~direction and then in the g-direction, or we may realize the diagonal
simplicial space P> Tpp . It is well-known (e.g. [Tomehave] ) that these three
procedures yield the same result:

Lemma. There are homeomorphisms

N e e I T P M
which are functorial in the simplicial space T.

Proof. Suppose first that T is of the form
BFe

xS : (p,q) b Hon(p,®) x Hon(g,s) x S

where S5 is a given space. Then

lpl—) Hom(p,x) x Hom(p,s) x Sl = A"xA%xs.
(This is the basic homeomorphism used to prove that geometric realization commutes with
products l_Milnor 1].) On the other hand, we have

I P > | g ¥» Hou(p,r) x Hom(q,s) x S”

= 'pi—)Hom(p,r) P AN S, = A"xA°xs

and similarly for the double realization taken in the other order. Thus the required
functorial homeomorphisms exist on the full subcategory of bisimplicial spaces of this

form.
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But any T has a canonical presentation

gt
LS s 4 _LLh”x Ty — T
(r,8) =>(x',»') (z,8)
which is exact in the sense that the right arrow is the cokernel of the pair of arrows.
Since the three functors from bisimplicial spaces to spaces under consideration commute
with inductive limits , the lemma follows,

Proof of Theorem A. Let S(f) be the category whose objects are triples (X,Y,v)
with X an object of C and v:Y > fX anapin C', and in which a morphism from
{X,Y,v) to (X',Y',v!') isapair of arrows u : X =» X', w : ¥' > Y such that

= flu)vw. (Thus S(f) 4is the cofibred category over € x C'° defined by the functor
{X,Y) }» Hom(Y,fX).) We have functors

P2 Py
C'0 ¢t S(f) —————pC
given by p, (x,1,v) = X, pZ(X,Y,v) =Y.
Let T(f) be the bisimplicial set such that an element of T(f)pq is a pair of

diagrams
(Yp —F e =Y > X, K = . —-rXq)

in 9__' and (=2 respectively, and such that the i-th face in the p-{resp. g-)direction
deletes the object Yi (resp Xi) in the obvious way. Forgetting the first component gives
a map of bisimpliciel sets

(*) 2e) g —> W

where the latter is constant in the p-direction. Since the diagonal simplicial set of
T(f) is the nerve of the category S{f), it is clear that the reamlization of (*) is the
map Bp1 : BS(f) w BCz . {By the realization of & bisimplicial set we mean the space
described in the above lemma, where the bisimplicial set is regarded as a bisimplicial
space in the obvious way.) On the other hand, realizing (*) with respect to p gives
a map of simplicial spaces

4 sevmpye  — Al -

X -’\..-’X Xo—b..-o)(q

which is a homotopy equivalence for each q because the category ¢ '/on has a final
object. Applying a basic result of May and Tornehave ([Tomehave, A.}] ), or the lemma
below (Th, B), we see the realization of (*) is a homotopy equivalence. Thus the
functor Py is a homotopy equivalence.

Similarly there is a map of bisimplicial sets T(f) - N(g '°)p whose realization
is the map sz BS(£) --)BC'° « Realizing with respect to g, we obtain a map of
simplicial spaces

(») AL sz —  LL s - s,

Yo(--. .<-Y Y o .q-’f

which is a homotopy eqmvalence for each p, because the categories Y\f are contrac-
tible by hypothesis, Thus we conclude that the functor P, is a homotopy equivalence.
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But we have a commutative diagram of categories

P P
10 sl s(f) LI

{19
Tz

i £

P P
2'04.......2_... s(idc') ..._‘_..,

-

1 CY o |
*y

vhere f'(X,Y,v) = (#X,Y,v), The horizontal arrows are homotopy equivalences by what has
been proved, {(note that Y\idc, = Y\Q__ ' is contractible as it has an initial object).

Thus f is a homotopy equivalence, whence the theorem.

The exact homotopy seguence.
Let g : E~»B be a map of topological spaces and let b be a point of B. The

homotopy-fibre of f over b is the space
I
Flg,b) = E xB xB{b}

consisting of pairs (e,p) with e a point of E and p a path joining g(e) and b.
For any e in g“'(b) one has the exact homotopy sequence of g with basepoint e

—> =, (B,b) — u (F(gyb), &) ~> m,(E,6) —Et—p m (B,5) —s-..

where & = (e,B), b denoting the constant path at b.

Let f :C —>C' bea functor and Y an object of C'. If j : Y\f-»( 1is the
functor sending {(X,v : Y ~» fX} to X, then (X,v)}» v : Y = fX is a natursl trasns-
formation from the constant functor with value Y to fj. Hence by Prop. 2 the composite
B{Y\f) = BC —» EC' contracts canonically to the constant map with image Y, and so we
obtain a canonical map

B(Y\f) w3 F(Bf, Y).

We want to know when this map is a homotopy equivalence, for then we have an exact
sequence relating the homotopy groups of the categories Y\f, g and g '. Since the
homotopy-fibres of a map over points connected by a path are homotopy equivalent, it is
clearly necessary in order for the above map to be a homotopy equivalence for all Y, that
the functor Y'\f =p Y\f , (X,v) p>(X,vu} induced by u : ¥ ~aY' be a homotopy
equivalence for every map u in g ', We are going to show the converse is true.

Because homotopy-fibres are not classifying spaces of categories, and hence are some-
what removed from what we ultimately will work with, it is convenient to formulate things
in terms of homotopy-cartesian squares. Recall that a commutative square of spaces

E’.._h__.)g

g’l lg
B! —-——2—-) B

is called homotopy-cartesian if the map

B B xy B xy B, o b (g(et), BETTE, hi(er)

from E' to the homotopy~fibre~product of h and g is a homotopy equivalence.
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When B' is contractible, the map F(g',b') =3 E' is a homotopy equivalence for any b’
in B', hence one has a map E' —p P(g,h(b')) unique up to homotopy. In this case the
square is easily seen to be homotopy-cartesian if and only if EB' —» F(g,h(b')) is a
homotopy equivalence.

A commutative square of categories will be called homotopy-cartesian if the corres-
ponding square of classifying spaces is. With this terminology we have the following
generalization of Theorem A,

Theorem B, Let f : C ~ C' be a functor such that for every arrow Y -+ Y' in

g ', the induced functor Y*'\f —s Y\f is & homotopy equivalence. Then for any object
Y of g ' the cartesian square of categories
INE —Ly ¢ X)) = X
f'i f £'(x,v) = (fX,v)
3t
Y\Ql __Q___’ gl J'(Yl’v)=Yl

is homotopy-cartesian. Consequently for any X in f'-1 (Y) we have an exact sequence

? ni+1

where X = (X,id.y).
As with Theorem A, this result admits a dual formulation with the categories f/Y.

(€' 1) —> = (\1, ©) —L (e, 0) —ts m (g 1) > .

Corollary. Suppose f :C —3 C*' 1is prefibred (resp. precofibred) and that for every

arrow u i ¥ -» ¥' the base-change functor wu*: f”(Y') — f'i{Y), {resp. the cobase-
change functor u,: f-‘(Y) — (Y')) is a homotopy eguivalence. Then for any Y in
(=J ', the category f“‘(Y) is homotopy equivalent to the homotopy-fibre of f over Y,

(Precisely, the square

f“(‘z) i c

Lo,

pt ———> ¢’

where i 4is the inclusion functor, is homotopy~car’cesian.) Consequently for any X in

£7 (Y} we have an exact homotopy sequence

- i {
—m, (€ Y) > (£7(0), %) —p 7 (C,X) —2m (C',Y) —.

This is clear, since £ {Y) > Y\ f is a homotopy equivalence for prefibred f,

For the proof of the theorem we will need a lemma based on the theory of quasi-fibra-
tions [Dold-Laahof] , which is a special case of a general result about the realization
of a map of simplicial spaces [Segal 2 ] A quasi-fibration is a map g ¢ E =~e B of
spaces such that the canonical map g“(b)u—w P(g,b) induces isomorphisms on homotopy
for all b in B. When E, B are in the class E of spaces having the homotopy type of
a CW complex, one knows from LMilnor 2] that P(g,b) is in ¥. Thus if g'.‘(b) is
also in W, and g is a quasi-fibration,we have that g”(b) -» F(g,b) is a homotopy
equivalence, i.e. the square
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g (b) —its E

blg

pt ———eies B

is homotopy~cartesian.

Lemma., Let i | Xi be a functor from a small category I to topological spaces,
and let g : XI -> Bl be the space over Bl obtained by realizing the simplicial space

_I_f Xi - Xi, is a homotopy equivalence for every arrow i —s i' in I, then g isa
guasi-fibration.

Proof. It suffices by Lemma 1.5 of ['Dold—Lashof] to show thatthe restriction of g
to the p-skeleton Fp of BI is a quasi-fibration for all p. We have a map of

cocartesian squares
oy = U Hx 2dA = [x

| | ] l

-1 -1
F ¥ F y F
1 < » g p~1) g ¢ P}

where the disjoint unions are taken over the nondegenerated p-simplices io e ip of
NI. Let U be the open set of F_ obtained by removing the barycenters of the p-cells,
and let V = Fp - Fp_1 « It suffices by Lemma 1.4 of loc. git. to show the restrictions
of g to U, V and UnV are quasi~fibrations. This is clear for V and UaV, since
over each p~cell g 1s a product map.

We will apply Lemma 1.3 of Joc. git. to g|U, assuming as we may by induction that
g]Fp_4 is a quasi-fibration, and using the evident fibre-preserving deformation D of
glU into g}Fp-‘t provided by the radial deformation of A\ minus barycenter onto JAP.
We have only to check that if D carries €U into x'¢ Fp—-’t' then the map g-x(x} —

g (x') induced by D induces isomorphisms of homotopy groups. Supposing x ¢‘ F as

Pl
we may, let x come from an interior point z of the copy of Ap corresponding to the
simplex s = (io-)..»ip), and let the radial deformation push z into the open face of

AP with vertices 3,< ..<jq. Then it is easy to see that 3'1(1:) =X, and Fx) =
[
Xk , K= ij , and that the map in question is the one Xi -~>Xk induced by the face
© o
io—-) k of s. As these induced maps are homotopy equivalences by hypothesis, the proof

of the lemms is complete.

Proof of Theorem B. We return to the proof of Theorem A. The functor Py ¢ s(f )--)g
is a homotopy equivalence as before, but not necessarily the functor Py The map
Bp, : BS(f) = B(C'®) is the realization of the map (**). Thus applying the preceding
lemma to the functor Y p» B(Y\f) from g"’ to spaces, we see that sz is a quasi=
fibration, and hence the cartesian square
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I\f ——— s(f)

P,

Pt _L__) 2'0

is homotopy~cartesian., Consider now the diagram
T\t > 5(£) —S—p C
L o e @ |
Y\g‘-—-—rs(idc.)*—;-*g’

sl () 3|

4]
pt -——f—)g'

in which the squares are cartesian, and in which the sign ‘'~ ' denotes a homotopy
equivalence, Since the square (1) + (3) is homotopy-cartesian, it follows that (1) is
homotopy-cartesian, hence (1) + (2) is also, whence the theorem.

g§2. The K-grougs of an exact category

Exact categories. Let g be an sdditive category which is embedded a3 a full sub-
category of an abelian category ﬁ , and suppose that !;! is closed under extensions in A
in the sense that if an object A of 4 has & subobject A' such that A' and A/A'
are isomorphic to objects of §, then A is isomorphic to an object of 2' let E be
the class of sequences

(1) 0 > M iy M ety T »0

in g which are exact in the abelian category é. We call a map in g an admissible
monomorphism (resp. admissible epimorphism) if it occurs as the map i (resp. j) of some

member (1) of E. Admissible monomorphisms and epimorphisms will sometimes be denoted
MYy M and M ww=3p M", respectively.

The class 2 clearly enjoys the following properties:

&) Any sequence in ¥ isomorphic to a sequence in E is in E. For any N',X" in

E , the sequence

PT.
(2) 0 we —00) |y g o 22 g o >0

is in B. TFor any sequence (1) in E, 4 is a kernel for j and j is a cokernel for
i in the additive category M.

b) The class of admissible epimorphisms is closed under composition and under base-
change by arbitrary maps in M. Dually, the class of admissible monomorphisms is closed
under composition and under cobase-change by arbitrary maps in L‘i

c) Let M -»¥" bea map possessing a kernel in M. If there exists a map N —» M
in M such that N —» M — M" is an admissible epimorphism, then M - M" is an
admissible epimorphism. Dually for admissible monomorphisms.

For example, suppose given a sequence (1) in 2 and amap f : N - M" in K.
Form the diagram in A
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0 wed M' —p M —dy M" — 50

T

0 ——a }i'! =——p P «eep N ——p» 0

where P is a fibre product of f and j in é . DBecause M is closed under exten-
sions in é, we can suppose P is an object of M. Hence the basechange of j by f
exists in M anditis an admissible epimorphism, B

Definition. An exact category is an additive category M equipped with a family

nes

of sequences of the form (1), called the{short) exact sequences of ¥, such that the
properties a), b), ¢) hold, An exact functor F : M —> M' Dbetween exact categories is
an additive functor carrying exact sequences in ri into exact sequences in I;i'.

Examples. Any abelian category is an exact category in an evident way., Any additive
category can be made into an exact category in at least one way by taking E to be the
family of split exact sequences (2). A category which is 'abelian' in the sense of
[Heller] is an exact category which is Karoubian (i.e. every projector has an image), and
conversely.

Now suppose given an exact category l=4. Let A be the additive category of additive
contravariant functors from g to abelian groups w}_xich are left exact, i.e. carry (1) to
an exact sequence

O ——=»F(M") am=p F(M) — F(N") .
(Precisely, choose a universe containing Dzﬁ, and let _é_ be the category of left exact
functors whose values are abelian groups in the universe. ) Following well-known ideas
(e.g. [Gabriel] ), one can prove A is an abelian category, that the Yoneda functor h
embeds !&__ as a full subcategory of 1=1 closed under extensions, and finally that a
sequence (1) ie in E if and only if h carries it into an exact sequence in A. The
details will be omitted, as they are not really important for the sequel.

The category QM.

If § is an exact category, we form a new category Qg having the same objects as
2 but with morphisma defined in the following way. Let M and M' Dbe objects in !
and consider all diagrams
(3) Ne—i— ¥> >N
where Jj 1is an admissible epimorphism and i 4is an admissible monomorphism. We consider

i

isomorphisms of these diagrams which induce the identity on M and M', such isomorphisms
being unique when they exist. A morphism from M to M' in the category QL‘I is by
definition an isomorphism class of these diagrams. Given a morphism from M' to M"
represented by the diagram

M'«, J' N! N\, i';M"

the composition of this morphism with the morphism from M to M' represented by (3)

is the morphism represented by the pair ;j~pr1 s i'epr

5 in the diagram
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It is clear that composition is well-defined and associative. Thus when the isomorphism
classes of diagrams (3} form a set {e.g. if every object of M has a set of subobjects)
then Qg is a well-defined category. We assume this to be the case from now on.

It is useful to describe the preceding construction using admissible sub- and

quotient objects. By an admissible subobject of M we will mean an isomorphism class of

admissible monomorphisms M' )= M, isomorphism being understood as isomorphism of objects
over M, Admissible subobjects are in one-one correspondence with admissible guotient
objects defined in the analogous way. The admissible subobjects of M form an ordered set
with the ordering: M,‘( ﬂz if the unique map Mt - MZ over M is an admissible mono-
morphism. When MN,§M,, we call (rq1 ,MZ) an admissible layer of M, and we call the
cokernel Mz/Mi an admissible subquotient of M.

With this terminology, it is clear that a morphism from M to M' in QM may be

identified with a pair ((1*51 ,MZ), 8) consisting of an admissible layer in M' and an
isomorphism & : M —"1’;1'12/141 . Composition is the obvious way of combining an isomorphism
of ¥ with an admissible subquotient of M' and an isomorphism of M' with an admis-
sible subquotient of M" to get an isomorphism of M with an admissible subquotient of
M,

For example, the morphisms from O to M in QM are in one-one correspondence with
the admissible subobjects of M. Isomorphisms from M to M¥' in QI are the ssme as
isomorphisms from M to M' in H.

If i : M'>=p M is an admissible monomorphism, then it gives rise to a morphism
from M' to M in Q._P__l which will be denoted

i, ¢ M~ N,
Such morphisms will be called injective. Similarly, an sdmissible eépimorphism J : H-#M"
gives rise tc a morphism
1
J M — N

and these morphisms will be called surjective. By definition, any morphism u in QM

] ———— =
can be factored u =1i,j’, and this factorization is unique up to unique isomorphism.

If we form the bicartesian square

N)—i_)}i’

(4) aj: . lj'

M)—ﬁ“'

1
then u = j"i', , and this injective~followed-by-surjective factorization is also unique

up to unique isomorphism. A map which is both injective and surjective is an isomorphism,
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and it is of the form 8, = (9'1)! for a unique isomorphism € in M.

Injective and surjeétive maps in Qg should not be confused with monomorphisms and
epimorphisms in the categorical sense. Indeed, every morphisa in Q_}_f is a monomorphism.
In fact, the category Qg /M is easily seen to be equivalent to the ordered set of ad-
missible layers in M with the ordering: (no,n1) 5.(M8.M1') if MM <M <M.

We can use the operations i p»i, and j+» j° to characterize the category QI=4
by a universal property. First we not:a that these operations have the following

properties:

a) If i and i' are composable admissible moncmorphisms, then (i'i), = i' i
Dually, if j and Jj' are composable admissible epimorphisms then ) '
(330" = 3's' s (iay), = (19 = 14, .

b) If (4) is a bicartesian square in which the horizontal {resp. vertical)maps
are admissible monomorphisms (resp. epimorphisms), then i,j! = j'!i', 8

Now suppose given a category 1_3__ and for each object -H of M an object hM of
C,and for each i : M')>—> M (resp. j : M —»H") amap i, 3 M - hM
(resp. j! : IM" —» hM) such that the properties a), b) hold. Then it is clear that
this data induces a unique functor QM —» S, y Mp>hM compatible with the operations
ip>i, and > .)'! in the two categories.

Ix.x particular, an exact functor F : lg e d {4__ ' between exact categories induces a
functor QM ~—» Q', K> P, i, k#(Fi), , 3' > (Fj)' . We note also tnat if MO is
the dual exact category, then we.have an.isomorphism of categories

(5) me) = oM

such that the injective arrows in the former correspond to surjective arrows in the latter

and conversely.

The fundamental group of QE. Suppose now that Li is a small exact category, so
that the classifying space B(Qg) is defined. Let O be a given zero object of 1‘__}.

Theorem 3. The fundamental group 1r1(B(Q§), 0) is canonically isomorphic to the
Grothendieck group KOE_ o

Proof. The Grothendieck group is by definition the abelian group with one generator
[M] for each object M of N and one relation [M] = [M'”M" for each exact sequence
(1) in l_ll + We note that it could also be defined as the not-necessarily-abelian group
with the same generators and relations, because the relations LM'J[ M"] = [M' (Z] M"_] =
LM"_“_M'] force the group to be abelian.

According to Prop. 1, the category of covering spaces of B(Qy_:l) is equivalent to the
category g of morphism-inverting functors F : thﬂ —» Sets, It suffices therefore to
show the group K M acts naturally on F(0) for F in F, and that the resulting func-
tor from E to Kog - sets is an equivalence of categories.

Let :Ly : 0> M and jM : M —»»0 denote the obvious maps, and let g' be the
full subcategory of F consisting of F such that F(i) = F(0) and F(iM!) = idF(o)

for all M. Clearly any F is isomorphic to an object of F', so it suffices to show
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£’ is eguivalent to Koizl - sets.
Given a Kolz_{i - gset 5, let FS : Ql=d —-)S?ts be the functor defined by
F(#) =5, Fg(1,) = idg , Fy(3') = matiplication by [Ker j] on s,
using the universal property of QM . Clearly S :--)Fs is a functor from K°l=l - gets to
£'° On the other hand if Fég', then given i : M'>>»M we have i-iM, = iM , hence
F(i!} = idp (). Given the exact sequence

]

0> W' —tp b Iy " ——»0
1 1 ) ]
we have  § i, = 1,3y, , hence My ) = F(jM'.) ¢ at(F(0)). Also
! .0 .! .
Floy ) = F(33ye) = F(y)F(ya)
so by the universsl property of Kot;i , there is a unique group homomorphism from Ko§ to
]
aut(F(0)) such that [H} [ F(jp'i). Thus we have & natural action of K ¥ on F(0) for
any F in F'. In fact, it is clear that the resulting functor F }»F(0) from F' to

Koli - gets ia an isomorphism of categories with inverse S {9 FS , 80 the proof of the
theorem is complete.

M K~groups. The above theorem offers some motivation for the following
definition of K~-groups for a smsll exact category Ié .

Definition. KM = =, (B(QH),0) .

Note first of all that the K-groups are independent of the choice of the zero object
0. Indeed, given another zero object O', there is a unique map O —» O' in Qf, hence
there is a canonical path from 0 to O' in the classifying space.

Secondly we note that the preceding definition extends to exact categories having a

set of isomorphism classes of objecis. We define Kili to be Kizg', where M' is a small

subcategory equivalent to l,g s the choice of M' being irrelevant by Prop. 2. From now on

we will only consider exact categories whose isomorphism classes form a set, except when
mentioned otherwise. In addition, when we apply the results of §1, it will be tacitly

assumed that we have replaced any large sxact category by an equivalent small ome.

Elementary properties of K-groups. An exact functor f : M —» M' induces a functor
QM —>-QM', and hence a homomorphism of K-groups which will be denoted

" L
(6) £, : KM —> KN .
In this way Ki becomes a functor from exact categories and exact functors to abelian
groups. Moreover, isomorphic functors induce the same map on K-groups by Prop. 2. From

(5) we have
(7 K (M0) = KM .

The product M x M' of two exact categories is an exact category in which a sequence
is exact when its projections in M and M' are. Clearly UM x M) = Qfx Q'. Since
the classifying space functor is compatible with products (g1, (4)), we have

(8) KMxN) &= KEEOKU , x> pry,(x) + pr(x) .
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The functor @: N x ki ~» ¥ , (M,M') > M @ H' 1is exact, so it induces a homomorphism
)

K = i .

M@ KM K1(§ xH) —ts KH
This map coincides with the sum in the abelian group Kig because the functors N b
O@M, Mbs H® 0 are isomorphic to the identity.

Let § p» 2113. be a functor from a small filtering category to exact categories and

functors, and let ];i_ggij be the inductive limit of the I_ﬁj in the sense of Pron. 3.
Then LJJ;I E;j is an exact category in a natural way, and Q(l_% gj) = ?-ii'i Qrgj .

hence from Prop. 3 we obtain an isomorphism
(9) Ki(ig ) = Lig Kl -

Example. lLet A be a ring with 1 and let lj(A) denote the additive category of
finitely generated projective (left) A-modules. We regard P(4) as an exact category in

which the exact sequences are those sequences which are exact in the category of all
A-modules, and we define the K-groups of the ring A by

KA = K (p(a)).

A ring homomorphism A=~ A' induces an exact functor 4'®,7 : P(A)—> P(A') which is

defined up to canonical isomorphism, hence it induces a well-defined homomorphism

[] L . '
(10) (A'®, ?), : KA —> KA'.
making KA & covariant functor of A. From (8) we have

1) o ’
(11) k{axa) = KA @ KA.
If b Aj is a filtered inductive system of rings, we have from (9) an isomorphism
K. (1i )= AL .

(12) 5(18 &) = Lim KA

{To apply (9), one replaces g(Aj) by the equivalent category P(A.)' whose objects are
the idempotent matrices over A, , so that g(@ Aj)’ = lin g(AJ)'. ) Finally we note
that P b= HomA(P,A) is an equivalence of P(A) with the dusl category to g(AoP), where

4°? s the opposed ring to A, hence from (7) we get a canonical isomorphism

(13) K (4) = Ki(AOP) .

Remarks. It can be proved that the groups KiA defined here agree with those

defined by making BGL(A) into an H-space and taking homotopy groups (see for example
[Gersten 5]). In particular, they coincide for i =1, 2 with the groups defined by
by Bass and Milnor, and with the K-groups computed for a finite field in [Quillen 2}.

On the other hand, for a general exact category l=4 , the group K1 (l=4) is not the same as
the universal determinant group defined in [Ba.ss, p.389]. There is a canonical homomor-
phism from the universal determinant group to K1 (}2)’ but Gersten and Murthy have

produced examples showing that it is neither surjective nor injective in general.
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§5. Characteristic exact sequences and filtrations

Let hzl be an exact category and regard the family E of short exact sequences in g
as an additive category in the obvious way. We denote objects of E by E, E', etc. and
let sE, tE, qE denote the sub~, total, and quotient objects of E: whence we have an
exact seguence

0 » sB 5 tE > qE » 0

in M associated to each object E of E . A sequence in E will be called exact if it
gives rise to three exact sequences in M on applying s, t, and q. With this notion of
exactness, it is clear that § is an ex;ct category, and that s, t, and q are exact
functors fram E to Pé .

Theorem 2. The functor (B,q} : QE ~=>» QM x QM is a homotopy equivalence.

Proof. It suffices by Theorem A to show the category (s,q)/(M,N) is contractible
for any given pair M,N of objects of M . Put C = (8,q)/(M,N); it is the fibred
category over QE consisting of triples (E,u,v), where u : sE = M, v : qE =» N are
maps in QLX . Let (=} ' be the full subcategory of g consisting of the triples (E,u,v)
such that u is surjective, and let g" be the full subcategory of triples such that u

is surjective and v is injective.

Lemma. The inclusion functors C'=—»C and C"—»C' have left adjoints.

Consider first the inclusion of C' in C. Let X = (E,u,v)€C; it suffices to show
with X in C°'.

. 4

Let uw=j'i, where i : sE)p M', j : M —» M', and define the exact sequence ik

that there is a universal arrow X - X in

nex

by ‘pushout':

E: (o} ai » tE -+ gB » O
iI I Il
ik 0 > M! » T qE » O .

Let X = (i*E,,j!,v); it belongs to C' and there is a canonical arrow X —> X given by
the evident injective map E - i E .

Now suppose given X -» X' with X' = (E',j'!,v') in C'. Represent the map E—»E'
by the pair E > Eo, Et —» Eo . Since

8 >o—p E_ < sE'eed— 1

represents u, we can suppose Eo chosen so that sE >=» sEo is the map i, and
M—»sEo is Jj. By the universal property of pushouts, the map E - Eo factors
uniquely E>» i,E3—) E , so it is clear that we have a map X —» X' in C' such that
X = X —» X* 1is the given map X —» X'.

It remains to show the uniqueness of the map X -3 X'. Consider factorizations
X = X" = X' of X — X' such that X" is in C'. DNote that C/X' = QBE/E' is equi-
valent to the ordered set of admissible layers in E'. Let (Eo N E1) be the layer
corresponding to X -» X' and (Eg ,Ea‘) the layer corresponding to X" — X' so that
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(Eo .%){(Eg ,E;‘) and sEy = sE'. There is a least such layer (Eg ,E‘{) given by
tE; = tEo N tE;' = gB' + tE:1 s which is characterized by the fact that the map Ei/Eo -
Ei‘/Eg is injective and induces an isomorphism on guotient objects. Thus among the
factorizations X — X" — X' there is a least one, unigque up to canonical isomorphism,
and characterized by the condition that E -4 E" should be injective and induce an iso-
morphism ¢E =9 qE". Since the factorization X — X — %' has this property, it is
clear that the map X x is uniquely determined. Thus g ' =+ C has the left adjoint
X s X, B

Next consider the inclusion of C" in C', and let {E,u,v)EC'. Represent
v :gEep N by the pair j : N' - gE, 1 ¢ N'>> N, and define —j*E by pull-back:

O ety SE ety T wsnes N' ot O

| ! !

0 + sE > tE > QE ——s O .

One verifies by an argument essentially dual to the preceding one that (E,u,v) p—i
(j*E,u,i,) is left adjoint to the inclusion of C" in g'. This finishes the lemms.
By I"rop. 2, Cor. 1, the categories C and C" are homotopy equivalent. Let
(E,,; ,; JéC", and let Jy M —»0 and i : O»»N Ve the obvious maps. A map from
(0,,;M '*N') to (E,:} 1, ) may be identified with an admissible subob;;ect E* of E
such that 8E' = sE and qE' = 0. Clearly E' is unique, so (0,,)M "'N' is an initiel
object of 2"- Thus 9__", and hence 2 is contractible, which finishes the proof of the
theorem.

Corollary 1. lLet M' and M be exact categories and let

o > Ff F P P oy O

ba_an exact sequence of exact functors from M' toc M. Then

Fo= F' +F", Kig' -}Kig .
Proof. It clearly suffices to treat the case of the exact sequence
0 > 8 >t > q » 0
of functors from E to M. Let f : M x M —5E be the exact functor sending (M',M")
to the split exact sequence S -
Qo= B! —> K' QN —p M —> 0,
The functors tf and @ (s,q)f are isomorphic, hence

tfy = Oulsnalf, = (s, +q)f, ¢ (Kin.:)z"" KM .

But f, is a section of (s,,q,) @ KE - (K:i.l;I)2 which is an isomorphism by the theorem.
Thus t, = s, + q,, proving the corollary.

Note that the category of functors from a category g_ to an exact category E is
an exact category in which a sequence of functors is exact if it is pointwise exact., We
thus have the notion of an admissible filtration O = F < F < ..cF =F of a functor
F. This means that F (X)-—) F (X) is an admissible moncmorphism in M for every X

106



99 23

in g » and it implies that there exist quotient functors F P/Fq for q< p, determined up
to canonical isomorphism. It is easily seen that if C is an exact category, and if the
functors Fp/Fp-i are exact for 1g p<n, then all the quotients l-‘p/}i‘ﬁ1 are exact.

Corollary 2. (Additivity for 'characteristic' filtrations) Let F : M' >N be an
exact functor between exact categories equipped with an admissible filtration O = Foc ..

CFn = F such that the quotient functors FP/FP"" are exact for 1¢p¢n. Then
n
F, = E‘ (1%*1,/1:“9_4)dt PEM > KL

Corollary 3. (Additivity for 'characteristic' exact seguences} Ir

Y ;Fo > aes > F » 0

is an exact sequence of exact functors from M' to M, then

n
{:—;o(-”p(%)' =0 : KM —> KM.

These result from Cor., 1 by induction.

Agglications. ¥e give two simple examples to illustrate the preceding results.

let X be a ringed space, and put xix = xigix), where __I:(X) is the category of
vector bundles on X,{i,e., sheaves of gx—modules which are locally direct factors of Exn>
equipped with the ususl notion of exact sequence. Given B in B(X), we have an exact
functor E®? : P(X) = P(X) which induces a homoworphism of K-groups (E 87),: KX -
KiK. It O ~> E' w=p E = E" wp 0 is an exact sequence of vector bundles, then
Cor. 1 implies (EQ7), = (E'®7), + (E"®?), . Thus we obtain products

(1) KXBKX —> KX, [He x> (E@?)x

which clearly make Kix into a module over KOX . {Products Kix® KJX - Ki+jx can
also be defined, but this requires more machinery,)

Graded rings. Let A = A, @A @ .. Ve a graded ring and denote by Ber(a) the
category of graded finitely generated projective A-modules P = @ Pn y n€Z ., The
group Ki(ggr(A)) is a Z[t,t"]-module, vhere multiplication by t is the automorphism

induced by the translation functor P js P{-1), P(-1 )n =P _, .

Proposition, There is a 2 [t,t"‘] -module isomorphiam
R[t.t"]@z KA, -y Ki(ggr(A)) , 18X i (A@A 2), % -
o
Proof. Given P in Pgr(a), let F, P be the A-submodule of P generated by P,
for n§k, and let gq be the full subcategory of Pgr(A) consisting of those P for
which F‘q_1P =0 and FqP = P, We have an exact functor

T : Per(a) —> Bgr(A) , MP) = A ®,P

where Ao is considered as & graded ring concentrated in degree zero. It is known
({Bass], p.637) that P is non-canonically isomorphic to

A8, 7(p) = LLA(-n)@A 2(p),
[+] [+]

n
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It follows that P i—-}FkP is an exact functor from }_’gr(A) to itself, and that there is
a canonical isomorphism of exact functors

BELP = Mm@, 1),
Applying Cor, 2 to the identity functor of gq and the filtration O = F__q_,‘c_..c.Fq = id,
one sees that the homomorphism

I POKA — KE . 0% > (A(-)®, 2)x
-q<A<q =4 °
is an isomorphism with inverse given by the map with components (T ) % » =a§ngq . Since

Per(4) is the union of the P, + the proposition results from {2, (9)

§4. Reduction by resolution

In this section M denotes an exact category with a set of isomorphiam classes, and
P a full subcategory glosed under extensions in M in the sense that P contains a zero
object and for any exact sequence in ¥

(1) 0 > M > M > M »0

if M' and M" are isomorphic tc objects of P, sois M. Such a L_’ is an exact
category where a sequence is exact if and only if it is exact in H. The category QP is
& subcategory of Ql='l which is not usually a full subcategory, as g—adxnlssible monomor-
phisms and epimorphisms need not be P-admissible.

In the following, letters P, P’,-etc. will denote objects of P, and the symbols
>=», => , € will always refer to M-admissible monomorphisms, epimorphisme and
subobjects, respectively. The corres;onding _g_’—admissible notions will be specifieéd
explicitly. For example, P »=3 P' denotes an M~admissible monomorphism between two
objects of P it is P-admissible iff the cokernel is isomorphic to an object of P.

We are interested in showing that the inclusion of P in ¥ induces isomorphisms

Kp KM when every object M of M has a finite P-resolution:

(2) 0--—-)P -—-—-—).....-——>P ey M oy O,

The standard proof for K consists in defining an inverse map K M -3 K P by showing
2R [P 1€ KpP depends only on [M]. By Cor. 3 of the precedmg sectlon, this method
works when there exist resolutions (2) depending on ¥ in an exact functorial fashion.
However, this situation occurs rarely, so we must proceed differently.

The following theorem handles the case where resolutions of length one exist. As an
example, think of 1;1 a8 modules of projective dimension £n, and P as the subcategory of
modules of projective dimension < n. The general case follows by induction (see Cor. 1).

Theorem 3. Let P2 be a full subcategory of an exact category M which is closed

under extensions and is such that

i) For_any exact sequence (1), if M 4isin P, then M' is in P .
ii) For any M" in M, there exists an exact sequence (1) with M in P.
Then the inclusion functor & -» M is a homotopy equivalence, so K, A =K
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Proof. We factor QP -» QM into two inclusion functors
@ £ N Q

where g is the full subcategory of Q,g with the same objects as Qg . We will prove
g and { are homotopy equivalences.

To show g is a homotopy equivalence, it suffices by Theorem A to prove g/P is
contractible for any object P in C . The category &/P is easily seen to be equi-
valent to the ordered set J of E-deissible layers (MO,M1) in P such that n‘/noe 2,
with the ordering (M M )< (M),M!) iff MW!<H <M <M and m/M MM € P . By
hypothesis i), one knows that ¥

in J we have arrows

, and M arein P for every (HO,M’) in J. Hence

(m,M4,) < (0,%) »(0,0)

which can be viewed as natural transformations of functors from J to J joining the
functor (MO.M1) - (O’Mi) to the identity and to the constant functor with value (0,0).
Using Prop. 2, we see that J, hence g/P , is contractible, so g 4is a homotopy
equivalence.

To prove { is a homotopy equivalence, we show H\f is contractible for any M in
QXi. Put £= M\f ; it is the cofibred category over g__ consisting of pairs (P,u) with
u:M-—>P amapin QM. Let F' be the full subcategory consisting of (P,u) with u
surjective. Given X = (P,u) in F, write uw=1,)' with j:P—»N,1: P P,
By hypothesis i), P is in P as the notation suégests. Thus K = (?,j!) is an object
of £', and i defines a map X -» X. OUne verifies easily that X —»X is a universal
arrow from an object of r_Itj’ to X, hence X X is right adjoint to the inclusion of
F' in F . By Prop. 2, Cor. 1, we have only to prove that F' is contractible.

The dual category £‘° is the category whose objects are maps P —» M , and in
which a morphism from P - M to P' ~3»M is a map P —» P' such that the obvious
triangle commutes. By hypothesis ii), there is at least one such object Po-»M .
Given another P -3 M , the fibre product P XMPO is an object of Z , a8 it is an
extension of P_ by Ker (P-»M) which is in P Uy hypothesis i). Hence in F'C we

have arrows
(P—»M) ¢~ (PxP —»H) —> (P —»MN)

which may be viewed as natural transformations from the functor (P k) ko (P 0P, - M)
to the constant functor with value P°-->) M and to the identity functor. Using Prop. 2,
we conclude that F' is contractible, finishing the proof of the theorem.

Corollary 1. Assume P 1is closed under extensions in M and further that

a) For every exact sequence (1}, if M, K" are in P, then go is M'.
b) Given j : M -3» P, there exists j': P'=#P and f : P' ~3» M such that
Jf = j'. (This holds, for example, if for every M there exists P'-3» M o)

let B, be the full subcategory of M consisting of M having P-resolutions of length

<n, i. e. such that there exists an exact sequence {2), and put gm =L}l=>n . Then

KE = KB S o SR
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That P is closed under extensions in ¥ , and hence the groups K P are defined
results from the following standard facts (compe.re [Bass, P. 39])

Lemma. For any exact sequence (1) and integer n3 0, we have

g " L
1) McP o, M'ER . = N'E€P
t " 5,
2) ¥ ' M égm-l He-gnﬂ

3) M, we —Enﬂ = M'¢ gnﬂ *

Assuming this, we apply Theorem 3 to the pair En (= Pmt . Hypothesia ii) is satis-
fied, for given MGP o ? there exists an M——admsszble epimorphism P—» M with PGP H
and by 1) it is _§_n+1~adm1851ble. The other hypotheses are clear, so Kign -»Ki_lfm‘
for each n. The case of P, follows by passage to the limit (g2, ( 9)).

To prove the lemma, it suffices by a simple induction to treat the case n = O.

1)s Since M"& Zt , there exists a short exact sequence P'= P —»M", 80 we can

form the diagram on the left with short exact rows and columns

0 — P' = P R'—— R~ g"
Lol |
M' —sy F ooy P P'—> P'® P" ——P"
[ Lol
H' g M e N7 M—— M "

and with F =M xM"P .« Since P', M are in P and 4 is closed under extensions, we
have FG_P; Since F, P eP we have from a) that M'&P s proving 1).

2): Since M"€}=’1 , there exists P - ", so applying b) to pry ¢ P xM,,M -»P ,
we can enlarge P and find P" -» M factoring into P" —» M -3 M", Thus we can form
the above diagram on the right with short exact rows and columns, and with P, R'Gg as
M'€ P, . Applying 1) we see that R"€P, so REP and MEP, , proving 2).

3): Since M¢ P(» we can form the diagram with short exact rows and columns

P' =—= P'~—>0

Lol

K2 P s M"

L

H'e—— ¥ i YW
As M“¢ §1 , 1) implies Ké}; , 80 M'¢ 21 s proving 3). The lemma and Cor, 1 are done.

As an example of the corollary, take P = P(A) and M= Mod(A), the category of
(left) A-modules. (Better, so that M has a set of isomorphism classes, take N to be
the abelian category of all A-modules of cardinality <<, where o is some infinite
cardinal > card(4).) Let gn(A) be the category of A-modules having P-resolutions of
length < n, and gm(A) = J lzn(A). Then gn(A) = P, as in the corollary, 80 we obtain

Corollary 2. For OgnSw, we have K.A =K (P (A)). In particular if A is

regular, then K;A S K, (Modf(4)), where Modf(4) 1is the category of finitely generated
A-modules.
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We recall that a regular ring is a noetherian ring such that every (left) module has
finite projective dimension. For such a ring A we have gw(A) = Modf{4a).

Similarly, Cor. 1 implies that for a regular noetherian separated scheme the K-groups
of the category of coherent sheaves and the category of vector bundles are the same, since
every coherent sheaf has a finite resolution by vector bundles [SGA 6, 11, 2.21.

Transfer L et f ; A -~ B Ve a ring homomorphism such that as an A-module B
is in gm(A) » Then restriction of scalars defines an exact functor from gm(B) to
gm(A), hence by Cor. 2 it induces a homomorphism of K~groups which we will denote

(3) f,: KB-—>Ka4

and call the transfer map with respect to f. C(learly given another homomorphism
g€:B->C with C€P_(B), we have

(4) (8f)y = f,8, 1 KC —> KA.

We suppose now for simplicity that A and B are commutative, so that we have functors
P(a) x B (4) — B (&) , (PM)r> PON.

for 0sn<ow, which induce a product KA®KA —> K4, [P]@z > (P QA?)*Z , and

i
similarly for B. Then if f* = (B @A?) « ¢ KA —> KB, ve have the projection formuls

(s) £,(f'x-y) = x-f.y

for x¢K A and yE€K;B. This results immediately from the fact that for X in B(a)
there is an isomorphism of exact functors

Y (B@AX)®B‘I = X@A‘{

from gm(B) to gm(A).

Corollary 3. Let T = {Ti , 121} be an exact connected sequence of functors from

an exact category M 1o an abelian category A (i.e. for every exact sequence (1), we
have a long exact sequence

— TZM" — '1‘1

Let P be the full subcategory of T-acyclic objects (T M =0 forsll n21), and
assume for each M in M that there exists P —>»M with P in P, and that ’l‘nM =0
for n sufficiently large. Then Kiz %Kig .

B —> T.M —> T M" .

This results either from Cor. 1, or better by applying Theorem 3 directly to the
inclusion gnC: gn+1 , where _P;n congists of M such that TM =0 for j>n .

Here is an application of this result. Put KiA = Ki(Modf(A)) for A noetherian,
and let f : A -» B be a homomorphism of noetherian rings. If B is flat as a right

A-module, then we obtain a homomorphism of K-groups
2 - ) K
(6) (88,7), : KjA —> KB

because B@A? is exact. But more generally if B is of finite Tor-dimension as a right
A-module, then applying Cor. 3 to K = Modf(s) end T M= Tor’(8,x) ,
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we find that Kilj = KiA » where P is the full subcategory of Modf(A) consisting of
M such that TnM =0 for n>»0. Since B@A? is exact on P , we obtain a homomorphism

(6) in this more general situation.

§5. Devissage and localization in abelian categories

In this section A will denote an abelian category having a set of isomorphism
classes of objects, and 2 will be a non-empty full subcategory closed under taking
subobjects, gquotient objects, and finite products in A Clearly B is an abelian cate-
gory and the inclusion functor 1__3 —> A is exact. We regard é and 2 as exact cate-
gories in the obvious way, so that al—l- monomorphisms and epimorphisms are admissible.
Then Ql; is the full subcategory of QA consisting of those objects which are also
objects of E' B

Theorenm 4. (Devissggg_) Suppose that every object M of é has a finite filtration
0=Hc M1C..Cmn =M such that MJ./MJ._1 is in B for each j. Then the inclusion
functor QB —» QA is a homotopy equivalence, so K. B =» Kié .

i

Proof. Denoting the inclusion functor by f, it suffices by Theorem A to prove
that f/¥ is contractible for any object M of A. The category f/M is the fibred
category over (B consisting of pairs (N,u), where N¢ Q@B and u:N-—>M isamapin
Q. By associating to u what might be called its image, that is,the layer (MO.M1) of
M such that u is given by an isomorphism N & M1/M° , it is clear that we obtain an
equivalence of f/M with the ordered set J(M) consisting of layers (Ho'Mi) in M
such that Mi/noe__g, with the ordering (MO,M1)g(Mé,M1') iff M)CM CM CHY .

By virtue of the hypothesis that M has a finite filtration with quotients in B,
it will suffice to show the inclusion i : J(M') —» J(M) is a homotopy equivalence
whenever M'C M is such that M/M'€ B. We define functors

r:JM) —J@) , (M ,M) s (B AN, KANK)
s : JH) —>3(M) |, (MO,MI) > (MonM', M1) .

These are well-defined because

L] L 1] 1]
BN /Mor\M < M, /Mor\M c m1/noxn/m

and because B is closed under subobjects and products by assumption. Note that ri =

idJ(M ) and that there are natural transformations ir —» s & id represented by

J(M)
AM'Y, K,.NnM') € nM! = .
(Moqm » KN K ) < (Mof\M , M1) (mo, M1)
Hence by Prop. 2, r 1is a homotopy inverse for i, so the proof is complete.

Corollary 1. Let A be an abelian category (with a set of isomorphism classes) such

that every object has finite length. Then

ka > 1l ko
: 1= jeg i1
where {Xj, Jje€ J} is a set of representatives for the isomorphism classes of simple

objects of A , and DJ, is the sfield End(xj)°P.
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Proof. From the theorem we have K B K A » where 1_3 is the subcategory of semi-
simple objects, so we reduce to the case where every object of A is semi-simple. Using
the fact that K-groups commute with products and filtered inductive limits (g2, (8),(9))
we reduce to the case where A has a single simple object X wup to isomorphism. But
then M+ Hom(X,M) is an equivalence of A with E(D), D = End(X)°P, so the corollary

follows.

Corollary 2. If I is a nilpotent two-sided ideal in a noetherian ring A, then
K' (A/1) = K'A , (notation as in §4,(6)).

This results by applying the theorem to the inclusion Modf(A/1)c Modf(A).

Theorem 5., ({Localization) Let B De a Serre subcategory of A, let A/B be the
associated quotient abelian category (see for example [Gabrlel} [Swa.n]), and let

tB=»A, 8:4A-»A/B denote the canonical functors. Then there is a long exact

seguence S* e* S* ‘
freee  —— K1(1=x/§)—>x°§ - KA A,xo(g/g)-—-,\o.

(It will be clear from the proof that this exact sequence is functorial for exact
functors (é.g) — (é',g'). Unfortunately the proof does not shed much light on the
nature of the boundary map O @ Kiﬁ(g/g) --iji(g) , and further work remains to be done
in this direction.)

Before taking up the proof of the theorem, we give an example,

Corollary. If A is a Dedekind domain with quotient field F, there is a long exact

seguence
—> K F —> J'EL X, (4/m) > KA > KF —> ..

where m runs over the maximal ideals of A.

This follows by applying the theorem to A = Modf(4), with B the subcategory of
torsion modules, whence ;5/2 is equivalent to- Modf (F) = g(l“), {compare [ Swan, p. 115]).
We have KA = KA by Cor. 2 of Theorem 3, and KB =_U_Ki(A/m) by Theorem 4, Cor. 1.
Note that the map KiA -— K:LF in the exact sequence is the one induced by the homomor-
phism A —F as in §2, (10), and the map Ki(A/m) —~ KA is the transfer map associ-

ated to the homomorphism A — A/m in the sense of the preceding section.

Proof of Theorem 5., Fix a zero object O in l_} , and let O also denote its image
in .i./g One knows that B is the full subcategory of A consisting of M such that
s & 0, Hence the composite of Qe : Qg ~> QA with QG : &4 — Q(é/g) is isomorphic to
the constant functor with value O, so Qe factors

QB o\aes > QA

M (M, 0= aM), (Nu) b= N .
In view of Theorem B, 8!, it suffices to establish the following assertions.
a) For eve u:V'—V in QA/B), u™: v\as =»V\Qa is & homotopy eguivalence.
b) The functor QB —> O\Q;s is a homotopy equivalence.
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Factoring u into injective and surjective maps, one sees that it suffices to prove a)
when u is either injective or surjective. On the other hand, replacing a category by
its dual does not change the Q-category (§2,(7)). As surjective meps in Q(é/g) become
injective in Q((_@:/g)o) = Q(éo/go), it is enough to prove a) when u is injective, say
w=4d, , i:V'>>V. Finally we have i,iy,, =iy, , 80 it suffices to prove a) for
the injective map iV! for any V in _;A/g .

Let g be the full subcategory of V\Qs consisting of pairs (M,u) such that

v

u; V=sM is an isomorphism. Clearly F::O is isomorphic to QB , so assertion b)

results from the following.

Lemma 1. The inclusion functor EV e d V\Qs is a homotopy equivelence.

Denoting this functor by f, it suffices by Theorem A to show the category /(M)
is contractible for any object (M,u) of V\us. Let themap u : V —»sM in GQ(4/B) be
represented by an isomorphism V &= V1/Vo , where (VO,V1) is a layer in sM. It is
easily seen that the category f/(M,u) is equivalent to the ordered set of layers

_ . . .y .
(no,n‘) in M such that (aMo,sM1) = (vo,v1), with the ordering (MO,M1 )< (no,r,‘) iff

M(')CHOC &1C M{ .« This ordered set is directed because

# 3 i £ ] i} ]
(MO,M‘) < (rionmo ) Mo+ n1) > (MO,M1) .

for some M, CM.

1 1
—> 8¥ can be represented as

It is non-empty because any subobject V1 of sM is of the form sM
In effect, V,‘ =8N for some N in A, and the map V‘
a(g)a(i).1 where i : N'>—3 N has its cokernel in B and g : N' M isamepin 4 ;
then one can take M, to be the image of g. Thus £/(M,u} is a filtering category, so

it is contractible by Prop. 3, Cor. 2, proving the lemma,

The next four lemmas will be devoted to proving that the category gv

equivalent to Q)__;. To this end we introduce the following auxiliary categories., Let N
be a given object of A , and let E, be the category having as objects pairs (M,n),

is homotopy

where h : M —> XN is a mod-B isomorphism, i.e. a map in A whose kernel and cokernel sare
in B, or equivalently one which becomes an isomorphism in A/B. A morphism from (M,h)
to (M',h') in Eﬂ is by definition amap u : M —»M' in QA such that

l‘l1 )--1——) M
(*) il n*

M .....9_9 N

1

commutes if u=1,53'., To each (¥,h) in E, we associate Ker{(h), which is an object
of 2 determined up to canonical isomorphism. To the map (M,h) = (M',h') represented
by (*) we associate the map in QB represented by the maps

Ker(h) €¢——ww—— Ker{hj) >———— Ker(h')

induced by J and i respectively. It is easily checked that in this way we obiain a

functor
ky : B~ Q8 , (M,h) k> Ker(h)

determined up to canonical isomorphism, We prove kN is a homotopy equivalence in two
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steps.

Lemma 2. Let E! be the full subcategory of E, consisting of pairs (M,h) such
that h : M = N is an epimorphism. Then the restriction kﬁ : Eﬁ —-)Qg of kN is a
homotopy eguivalence.

It suffices to prove kN/T is contractible for any T in QB . Put C = x;‘/'r 3 it
is the fibred category over E. consisting of pairs {({M,h),u), with (M, h) in By, and
where u : Ker(h) —»T is amap in QB Let C' be the full subcategory consiating of
({(M,n),u) with u surjective. Given X = (M h),u) in C, write u=j i with

: Ker(h) >»T,, §:T~»T and define (1,M,B) by 'pushout':

Ker(h) >——> ¥ —Tp X
To Dy o M oty N
Let X = ((i,,M,E).;j!); it belongs to C' and there is an evident map X -+ X. One
verifies as in the proof of Theorem 3_that X ~>X is a universal arrow from X to an
object of C'. Hence the inmclusion C'—3 C has the left adjoint X +» X, so we have
reduced to proving that C' is contr;ctibl;. But C‘ has the initial object
({x, id.N), JT), so this is c}.ear. whence the lemma.

Lemma 3. The functor kN : 53 —> QB 1is a homotopy equivalence.

Thanks to the preceding lemma, it suffices to show the inclusion Eﬁ - 526 is a
homotopy equivalence. Let ; be the ordered set of subobjects I of N such that N/I
is in B, and consider the functor f : B —» 1 sending {M,h) to Im(h). One verifies
easily that f is fibred, the fibre over I being EI , and the base change functor from
B! to E! being J x; 21 M I) p> (J x4 -»J). Since J x.? commutes with k

=1 =J I I
and kJ , it follows from Lemma 2 that J xI? is a homotopy equivalence for every arrow
JcI in I. From Theorem B, Cor., we conclude §i is homotopy equivalent to the

homotopy-fibre of f over I. Since 1 is contractible (it has N for final object),
one knows from homotopy theory that the inclusion Ei - EN is a homotopy equivalence
for each 1, proving the lemma.

We now want to show EV is homotopy equivalent to % when sN £ V, First ve note

a simple consequence of the preceding.

Lemma 4. et g 3 N -3 N' be a map in A which is a mod-B isomorphism. Then the

functor g, : By — gN, , {M,h) > (M,gh) is a homotopy equivalence.

One verifies easily that by associating to (M,h)€ E, the obvious injective map
Ker{h} —> Ker(gh), one obtains a natural transformation from ky to kg, . (Observe:
In 'lower' K-theory one calculates with matrices - in ‘'higher' K-theory with functors.)
Thus kN and kN,g, are homotopic, and since kN and kN' are homotopy equivalences,
sc is g, , whence the lemma.

Now given V in Q/E , let ;v be the category having as objects pairs (N,d),
where N is in A and ¢ : sN 3%V is an isomorphism in 4/B, in which a morphism
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(N,d) <> (N',#') is amap g s N = N' such that ¢'s(g) = ¢ . It is clear from the
construction of ;A_,/g that év is a filtering category. For example, given two maps &
g, (N,8) = (N',4") we have 8(51.82) = 0, so Im(gi-gz)eg, hence we obtain a map
(N*,4*) => (N",#") equalizing €08, with N" = N'/Im(g1-gz).

¥We have a functor from I, to categories sending (N,g) to E, and g (N, ¢) -
(N',d') to g, : By — Ey, . Further, for each (N,£) we have a functor

Paig) B By o (Lh) b O s v S e )

P . 1] 1 :
Since P(yt,g1)8 = Py, 4) for any map g : (N,¢f) = (N',#') in I, + we obtain a
functor
(+) s, {00d) > By} > 5,

=V
which we claim is an isomorphism of categories. In effect

(M, @ : V% ait) = p(n’e-1)(l‘l,idﬁ)

for any (M,8) in F, , showing that (**) is surjective on objects. Also given
P(y,g)Meh) = By o (M'h'), then M = X' and s(n) = s(n') .  Letting N' = N/Ia(n-h')
we otain a map & : (N,d) ~» (N',d') such tha: g,(M,h) = g, (H',h'), shoving that (**)

is injective on objects. The verification that (**) is bijective on arrows is similar.
Applying Prop. 3, Cor, 1, we obtain from Lemma 4 and (**) the following.

Lemma 5. For any ¢ : sN &>V, the functor P(x,d) is g homotopy equivalence.
E4

The end is now near. To finish the proof of the theorem, we have only to show
(iv!)* s V\QS - O\Qa is a homotopy equivalence. Choose (N,#) as in Lemma 5 and form
the disgram

B, —ougl, B, <V\&s
| l (150"
@ 52> F,C 0\
The diagram is not commutative, for the lower-left and upper-right paths are respectively
the functors
(M,h) b—e>» (Ker(h), 0 = s(Ker(n)) )
(M,n) s (M, (iam)! 10— aH) .

However it is easily checked that by associsting to (M,h) the obvious injective map
Ker(h) —» M, one obtains a natural transformation between these two functors. Thus the
diagram is homotopy commutative, and since all the arrows in the diagram are homotopy
equivalences except possibly (ivg)* by Lemmas 1, 3, and 5, it follows that (iw}" is
one also. The proof of the localization theorem is now complete.
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§6. Filtered rinﬁs and the homotopy property for regular rinﬁ

This section contains some important applications of the preceding results to the
groups KJZ_A = Ki(Modf(A}) for A noetherian., If A is regular, we have KiA = KiA by
the resolution theorem (Th. 3, Cor. 2), so we also obtain results about KiA for A
regular. In particular, we prove the homotopy theorem: KiA = Ki(A[t]) for A regular.
According to [Gersten 1], this signifies that the groups KiA are the same as the
K-groups of Karoubi and Villamayor for A regular (assuming Theorem 1 of the announcement
(Quillen 1] which asserts that the groups KiA are the same as the Quillen K~-groups of

[cersten 1]).

Graded &‘Es. Let B = _U_ Bn » 120 be a graded ring and put k = Bo + From now on
we consider only graded B-modules N = u Nn with n>0, unless specified otherwise. Put

B
'I‘i(N) = Tori(k,N)
where k is regarded as a right B-module by means of the augmentation B — k. Then
Ti(N) is & graded k-module in a natural way, e.g. To(N)n = k'In/(A1Nn_1 o AnNO).
Denote by F N the submodule of N generated by Nn for n¢p, so that we have
0=F_ NCFNC.., UFPN =N, It is clear that

[¥] n>
(1) To(rpn)n = { r (1) P
ALV ngp
and that there are canonical epimorphisms
(2) B(-p) 8, 'ro(xyz)p —_— FPN/FP_1N

where B(-»p)n = Bn—p .

lema 1. If T,(N) =0 and Torf(B,T(N) =0 forall i)0, then (2) isan
isomorphism for all p.

Proof. For any ke-module X we have
(3)  Torf(B,X) =0 for i>0 === 7.(B@X) =0 for 1>0.

In effect,if P. is a k-projective resolution of X, then B & P. is a B-projective
resolution of B®X , and Ti(B QkX) = Hi(k 888 P.) = Hi(P.) =0 for i»0. In
particular by the hypothesis on TO(N), we have

(4) Ti(B QkTO(N)) = 0 for i>0 .

Let RP be the kernel of {(2). Since (2) clearly induces an isomorphism on To, we

obtain from the Tor long exact sequence an exact sequence
7, (B(-p) QkTo(N)p)n — T (FpN/Fp_1N)n-2>- To(Rp)nm—) 0.
The first group is zero by (4), so O is an isomorphism.

Pix an integer s. We will show that (2) is an isomorphism in degrees s and
also that T, (F N)n =0 for ngs by decreasing induction on p. For large p, this is
true, because T, (Fpﬁ}n =T, (N}n for pzn, and because T, (N) = 0 by hypothesis.
Assuming T, (I“pN)n =0 for ns<s, we find from (1) and the exact sequence
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'r1(1vpn)n -1, (FpN/Fp_lN)n — TO(FP_1N)n —_ TO(FPN)n
- Py _ " P :
that T, (FpN/Fp-1N)n = TO(R )n =0 for n<s. It follows that R® is zero in degrees
<'s, showing that (2) is an isomorphism in degrees <s as claimed. In addition we
i = - oL
find O = TZ(B( p) ﬁkTo(N)p)n T2(FpN/Fp—1N)n for ngs, whence from the exact sequence
Tz(FpN/Fp_,‘N)n — '1‘1(1"?_11”n — T, (FPN)n
we have T1(Fp-1N)n =0 for ngs, completing the induction. Since s is arbitrary,
the lemma is proved.

Suppose now that B is (left) noetherian, and let Modfgr(B) be the abelian
category of finitely generated graded B-modules. Its K-groups are naturally modules
over Z[t], where the action of t is induced by the translation functor N }» N(-1).
The ring k is also noetherian, so if B has finite Tor dimension as a right k-module,

we have a homomorphism (§4,(6))

(5) (Bo?), : Kik —> K, (Modfgr(B))

induced by the exact functor B ® ? on the subcategory F of Modf(k) consisting of

X
k-modules F such that Torli‘(B,F) =0 for i>0.

Theorem 6. Suppose B is a graded noetherian ring such that B has finite Tor

dimension as & right k-module, and such that k has finite Tor dimension as a right
B-module. Then (5) extends to a Z[t]-module isomorphism

zlt] &, Kik =% K, (Moafgr(B)) .

(Tne hypothesis that k be of finite Tor dimension over B is very restrictive.
For example, if k is a field and B is commutative, then B has to be a polynomial
ring over k. In all situations where this theorem is used, it happens that B is flat
over k. Does this follow from the assumpltion that B and k are of finite Tor dimen-
sion over each other?)

Proof. lLet N ' be the full subcategory of Modfgr(B) consisting of N such that
Ti(N) =0 for i>»0, and let N" be the full subcategory of lzi' consisting of N such
that TO(N)EE . By the finite Tor dimension hypotheses and the resolution theorem (§4)
e, KN"=KN' = Ki(Modfgr(B)). Let N" be the full

i
subcategory of Ii" consisting of N such that FnN = N. We have homomorphisms

one has isomorphisms Kig =K

KR = K (B~ & (1) S (K, F)"
induced by the exact functors (Fj , 0<jsn) > _L[ B(-3) aij (this is in N" by (3))
and N} (TO(N)j) respectively. Clearly cb = id. On the other hand, by Lemma 1 any N
in g;'x has an exact characteristic filtration OCFONC..CFHN =N with FPN/FP_1N =
Bi{~p) ﬂkTo(N)p , 80 applying Th, 2, Cor. 2, one finds that bc = id, Thus b is an
isomorphism, so by passing to the limit over n we have Z[t]ﬁ Ki}-"__ :»Ki{_{", which proves
the theorem.

The following will be used in the proof of Theorem 7.
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Lemma 2. Suppose B is noetherian, k is regular, and that k has finite Tor

dimension as a right B-module. Then any N in Modfgr(B) has a finite resolution by

finitely generated projective graded B-modules.

Proof. Starting with N =N, we recursively construct exact sequences in Modfgr(B)

O-—-»I‘II_—»PI‘_1 ——>Nr_1 — O

where Pr—1 is projective. We have to show Nr is projective for r large. Since
Ti(Nr) = Ti+1 (Nr-‘l) for i>0, it follows that Ti(l\lr) =0 for i>0 and r2d, where
d 1is the Tor dimension of k over B. Then for r>d we have exact sequences

0 -—-»To(Nr) —-»To(pM) —>T°(Nr_1) w—— 0,

As k is regular, To(Nd) has finite projective dimension s, so To(Nr) is projective
for r2> d+s . It follows from Lemma 1 that Nd+s is projective, whence the lemma.

Filtered rings. Let A be a ring equipped with an increasing filtration by subgroups
0=F ACFACRAC... suwhthat 16FA, RAFACE A, ad UFAa=a. Let
B=gr(a) =1 FPA/FP-1A be the associated graded ring and put k = FA=B . Bya
filtered A-module M we will mean an A-module equipped with an increasing filtration
O=F MCFMC.. suhthat FAFMCF N and UFPM =M . Then gr(M) =
u FpM/Fp_1M is a graded B-module in a natural way.

Lemma 3. i) If gr(M) is a finitely generated B-module, then M is a finitely

generated A-module. In particular, if every graded left ideal in B is finitely

generated, then A is noetherian.

ii) If gr(M) is a projective B-module, then M is a projective A-module.

iii) if gr(M) has a resolution by finitely generated projective graded B-modules
of length <n, then M has a P(A)~resolution of length < n.

Proof. We use the following construction. Suppose given k-modules LJ. and maps

of k-modules L.~ F M for each j2>0 suchthat the composition
J J -
L, = FM —> M) —» T (gr(¥)),
;5 5 &r (1) o ler( )y

is onto. Let P be the filtered A-module with an = R Fn—,jA Qij and let ¢ :P—M
be such that d restricted to A QkL. is the A-linear extension of the given map from
L, to FM. Then To(gr(P))j =L , and ¢ is a map of filtered A-modules such that
To(gr(ﬂf)) is onto. It follows that gr(g) is onto, hence Fn(d) is onto for all n,
and so ¢ is onto. Thus if K = Ker(d) , FK=KnFM, we have an exact sequence of
A-modules

[¢] > K > P M > 0
such that

o] ———>FnK ——»FnP "'"FnM — 0
(6) ] ——)g‘rnK — grnP — grnM — 0

are exact for all n.

i): If gr(M) 4is a finitely generated B-module, then To(gr(M)) is a finitely
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generated k-module, hence we can take LJ, to be a free finitely generated k-module
which is zero for large j. Then P is a free finitely generated A-module, so M is
finitely generated, proving the first part of i). The second part follows by taking M
to be a left ideal of A and endowing it with the induced filtration FnM = MnFnA .

ii): If gr{M) is projective over B, then To(gr(l‘i)) is projective over k, and
we can take Lj = To(gr(m))j . Then To(gr(d)) is an isomorphism, so from the exact
sequence

T, (gr(M)) —> To(sr(K)) ~—> T (gr(P)) —>1 (gr(M))

we conclude that To(gr(K)) =0, Then gr{K) =0, 80 K=0,M=P, and M is
projective over A, proving ii).

iii): We use induction on n, the case n = 0 being clear from i) and 3i),
Assuming gr{K) has a resolution of length € n by finitely generated graded projective
B-modules, choose P as in the proof of i), so that gr(P) is a free finitely generated
B-module. From the exact sequence (6), and the lemma after Th, 3, Cor. 1, (or Schanuel's
lemma), we know that gr{K) has a resolution of length < n-1 by finitely generated
graded projective B-modules. Applying the induction hypothesis, it follows that K bhas
a E(A)—resolution of length < n-1, s0 M has a z(A)-resolution of length < n, as was

1o be shown.

Lemma 4, If B is noetherian, k is regular, and if k has finite Tor dimension
as a right B-module, then A is regular.

This is an immediate consequence of Lemma 2 and Lemma 3 iii).

We can now prove the main result of this section.

Theorem 7. Let A be a ring equipped with an increasing filtration

0= F_1A < FQA < F1AC eee Such that 1€ FOA ’ FpA-FqAC Fp+qA »and UFPA = A, Suppose
B = gr(A) is ncetherian and that B is of finite Tor dimension as a right module over

BO = FOA, (hence FOA and A are noetherian and A is of finite Tor dimension as a
right FOA-module). Suppose also that F A is of finite Tor dimension as a right
B-module. Then the inclusion FOACA induces isomorphisms K:!L(I"OA) = K!A . If further

i
FOA is regular, then so is A4, and we have isomorphisms Ki(FoA) =% L

Proof., Put k = FOA. Since B is noetherian, we know A is also by Lemma 3 i).
4lse if B has Tor dimension d over k, then FnA/Fn_1A has Tor dimension <d for
each n, s0 the same is true for FnA » and hence also for A. Thus the map Kik -> Kj'_A
is defined, and we have only to prove that it is an isomorphism. Indeed, the last asser—
tion of the theorem results from Lemms 4 and the fact that KiA = Kj'_A for regular A4 by
the resolution theorem (Th. 3, Cor. 2).

Let 2z be an indeterminate and let A' be the subring ﬂ(f‘nﬁ.)zn of Afz]. We
show the graded ring A' satisfies the hypotheses of Theorem 6, The fact that A' has
finite Tor dimension over k is clear from the preceding paragraph. Since z is a
central non-zero-divisor in A', we have that B = A'/zA' is of Tor dimension one over
A'. As k has finite Tor dimension over B, it follows that k has finite Tor dimension
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over A', Finally to show &' is noetherian, we filter A' by letting FPA' consist of
those polynomials whose coefficients are in FpA. The ring
e(a) = L (e p)e®
p<n
is isomorphic to gr(4)[z], which is noetherian, hénce A' is noetherian by Lemma 3 i).
Let F be the full subcategory of Modf(k) consisting of F such that Tor}i‘(B,F)
=0 for i>0, whence K.F = Kk by the resolution theorem (Th.3, Cor. 3). Applying

b
Theorem 6 to B and A', we obtain th]-module isomorphisms

- z[x]axig = Ki(Modfgr(B)) , 18x > (B ﬁk?)*x
aft)e KF o X (Moafer(a')) , 12x p> (4'8,2),x .
Let B be the Serre subcategory of A= Modfgr{A') consisting of modules on which
z is nilpotent, The functor

J ¢ Moafgr(A') —> Modf{A) , M > M/(z~1)M

is exact and induces an equivalence of the quotient catsgory _;é/é with Modf(a). (Compare
[Swan, p. 114, 130]; note that if S = {zn} , then S-1A' is the Laurent polynomial ring
A[z,z"), and a graded module over A[z,z-i] is the same as a module over A = A'/(z-1)A'.)
Since A'/zA' = B, we have an embedding

i : Modfgr(B) —> Modafgr(a')

identifying the former with the full subcategory of the latter consisting of modules
killed by 2. The devissage theorem implies that K, (Modfgr(B)) = K, 4B - Thus the exact
sequence of the localization thorem for the pair (A B) takes the form

(8) — K, (Modfgr(B)) ———91{ (Modfgr(a')) —--a»KiA —

We next compute i, with respect to the isomorphisms (7). Associating te F in P
the exact sequence

0 —m> 4'(-1) @, F 2o At & F B@F —p0

we obtain an exact sequence of exact functors from F to Modfgr{a'). Applying Th. 2,
Cor. 1, we conclude that the square of Z[t]-module homomorphisms

alt] e KF —==— X, (Hodfgr(s))
1-t iy
aft] @ K,F =5 K, (Moafer(a'))
is commutative. Since 1~t is injective with cokernel KL_E , we conclude from the exact
sequence (8) that the composition
K ——> K (Modfgr(a’)) —a, KjA

induced by P b A° ﬁkF pp A ﬁki" is an isomorphism. Since xig = K{k , this proves

the theorem.
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The preceding theorem enables one to compute the K-groups of some interesting
non-commutative rings.

Examgles. Let ﬁg, be a finite dimensional Lie algebra over a field k, and let
U(Og/} be its universal enveloping algebra. The Poincare-Birkhoff-witt theorem asserts
that U{Lg/) is a filtered slgrebra such that gr(U{(gr)) is & polynomial ring over k.
Thus Theorem 7 implies that Kik = KiU(lg/). Similarly if Hn is the Heisenberg-Weyl
algebra over k with generators p, , q; , 1sign, subject to the relations B:i.pj] =

[qi.qj] =0, [pi.qj] = Si;j » then ve have Kk = KH .

Theorem 8. If A is noetherian, then there are canonical isomorphisma
i) Ki(A[t]) X Kia

: ] -1 fd ] el
ii) Ki(A[t,t 1) KIA@K! 4

Proof. i) follows immediately from the preceding theorem.
ii): Applying the localization theorem to the Serre subcategory B of Modf{A[t])
consisting of modules on which t is nilpotent, we get a long exact sequence

— KB —> Kl — GGl —
§ )
Kia Kia /

where the first vertical isomorphism results from applying the devissage theorem to the
embedding ‘Modf(A) = Modf(a[t]/ta[t]) € B . The homomorphism alt, 7] >4 sending ¢
te 1 makes A a right module of Tor dimension one over ﬁ.[t,t"], so it induces s map
Ki(A[t,t-i]) —>KiA  left inverse to the oblique arrow, Thus the exact sequence breaks
up into split short exact sequences proving ii).

Corollary. (Fundamental theorem for regular rings) If A is regular, then there
are canonical isomorphisms Ki(A[t]) = KA and Ki(A[t,t-1] ) = KADK, 4.

This is clear from Th. 3, Cor. 2, since A[t] and A[t,t-1] are regular if A is.

Exercise. Let pf be an automorphism of a noetherian ring A, and let A¢, [t],
A [t,t"] be the associated twisted polynomial and Laurent polynomial rings in which
tea = g(a)-t ,([Farreli-Hsiang]). Show that KA = Kj(4 d{t]) and that there is a long
exact sequence

! 1.¢* ' I 1 -1 '
(9) —> K4 Ka —s KAt —> K 4 — .

We finish this section by showing how the preceding results can be used to compute
the K-groups of certain skew-fields. Keith Dennis points ocut that this has some interest
already in the case of K2 » Since a non-commutative generalization of Matsumoto's theorem
is not known. (Here and in the computation to follow, we will be assuming Theorem 1 of
the announcement [Quillen 1] , which implies that the KzA here is the same as Milnor's,
and that the groups Ki}i‘q are the same as the ones computed in lQuillen 2}.)

Example 1, Let k be the algebraic closure of the finite field B‘p, and let A be
be the twisted polynomial ring k d[F] with Fx = x%¥ for x in k, where q = pC.
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Then A is a non-commutative domain in which every left ideal is principal. Let D be
the quotient skew-field of 4, whence Modf(D) = Modf(A)/B, where B is the Serre sub-
category consisting of A-modules which are torsion, or equivalently, which are finite

dimensional over k. The localization theorem gives an exact sequence

i
(10) ——>Kil=3-—4> KA — K. D —-+ K, B —s

i i=1=
(A and D are regular), and we have KA =Kk by Theoren 7.

An object of B is a finite dimensional vector space V over k equipped with an
additive map F : V —» V such that F(xv) = x%F(v) for x in k and v in V. It is

well-known that V splits canonically: V V°@V1, where F is nilpotent on Vo and

bijective on V‘l » and moreover that

fad

k ﬁmqV'F = V,I
where V = {VGV I v = v} is a finite dimensional vector space over the subfield E‘q
of k with q elements. Thus we have an equivalence of categories
B 2 U roar(a/aF®) x Modf (E ) .
n
Applying the devissage theorem to the first factor, we obtain Kig = Kik@ KiK" .
Let # : k =»k be the Frobenius automorphism: ¢#(x) = x%, and let ¢(V) denote the

base extension of the k-vector space V with respect to ¢, i.e. &(V) =k QkV, where

k 1is regarded as a right k-module via g. If V is regarded as an A-module killed by

F, we have an exact sequence of A-modules
0 — 28, 4(V) — AV — V — 0
a®(x@v) > axFRv

On the other hand, if W is a finite dimensional vector space over Fq, we have an

exact sequence of A-modules
O-—»AQFW——->AQTW—ﬁkﬂFW——-+O
q q
a®w > a(F-t)ew

where P acts on the cokernel by F(x @ w) = x1 @ w . Applying Th. 2, Cor. 1, to these

“characteristic" sequences, one easily deduces that the composite

i,
KikﬁKim‘q = Kg — KA = Kik

i i
is zero on the factor KiE‘q and the map 1 -~ ;z{* on Kik . From [Quillen 2] one has
exact sequences d
1 - x
0 — KiE‘q > Kik Kik — 0

for i» 0. Combining this with (10) we obtain the formulas

KD = Z , KD = Z@Z
_ 2 i 2 .
(11) KD = (K21_1E‘q) = (&/(q-1)z) i%»o
2 )
Koy = (K F)° = 0 i>0.
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Example 2. Let H be the Heisenberg-weyl algebra with generators p,q such that
Pq - qp = 1 over an algebraically closed field k, and let D be the quotient skew-field
of H. In this case, one can prove that the localization exact sequence associated to

Modf(H) and the Serre subcategory of torsion modules breaks up into short exact sequences

0 ~—>Kk — KD — K _k —» 0

i1
where the direct sum is taken over the set of isomorphism classes of simple H-modules.
The proof is similar to the preceding, the essential points being a) torsion finitely
generated H-modules are of finite length, because H has no modules finite dimensional

over k, and b) k is the ring of endomorphisms of any simple H-module ({huillen 3]).

87. K'-theory for schemes

1. If X dis a scheme, we put KqX = qu(X), where g(X) is the category of vector
bundles over X (= locally free sheaves of gx—modules of finite rank) equipped with the
usual notion of exact sequence. If X is a noetherian scheme, we put K&z = KQQ(X),
where g(x) is the abelian category of ecoherent sheaves on X. The following theory
concerns primarily the groups KéX, 80 for the rest of this section we will assume all

schemes to be noetherian and separated, unless stated otherwise.

As the inclusion functor from P(X) teo M(X) is exact, it induces a homomorphism
(1.1) KX KX .
¢ > %

¥hen X is regular this is an isomorphism. In effect, one knows that any coherent sheaf
F is s quotient of a vector bundle {SGA 6 I1 2.2.3 - 2.2.7.11 , hence it has a resolution

by vector bundles, in fact a finite resolution as X is regular and quasi-compact (see
[SGA 2 VIII 2.4]). Thus 1.1 is an isomorphism by the resolution theorem (Th. 3, Cor. 1).

If E is a vector bundle on X, then Fpr+ E® F is an exact functor from Q(X) to
itself, hence as in §3,(1), we obtain pairings

1.2 KX8KX —> KX
(1.2) o 8 K .

making Kéx a module over the ring KOX. (In a later paper I plan to extend this idea to
define a graded anti-commutative ring structure on KX such that KJX is a graded
module over K/X.)

2. Functorial behavior., If f : X -=» Y is a morphism of schemes (resp. a flat

morphism), then the inverse image functor f* : E(Y) ~» P(X) (resp. f£* : M(Y) = M(X) )

is exact, hence it induces a homomorphism of K-groups which will be denoted
(2.1 £f* : KY wp KX resp. £* : K'Y — K'X ) .,
) K ( resp . q)

It is clear that in this way Kq becomes a contravariant functor from schemes to abelian
groups, and that K& is a contravariant functor on the subcategory of schemes and flat
morphisms.
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Proposition 2.2, Llet i j» Xi be a filtered projective system of schemes such that

the {ransition morphisms X. -» X. are affine, and let X = lim X,. Then
i 3 o2 4y 204
(2.3) KX = limKX, .
q -~ 913

If in addition the transition morphisms are flat, then

{2.4) KX = lim K'X, .
q = qi

Proof. We wish to apply §2 (9), using the fact that P(X) is essentially the
inductive limit of the E(Xi) by [EGA v 8.5]. In order to obtain an honest inductive
system of categories, we replace g(xi) by an equivalent category using Giraud's method
as follows., Let I Dbe the index category of the system Xi , and let I' be the
category obtained by adjoining an initial object ¢ to I. We extend the system Xi to
I' by putting Xﬁ = X, and let z be the fibred category over I' having the fibre
E(Xi) over i. Let P, be the category of cartesian sections of P over I1'/i. {an
object of P, is a family of pairs (Ej, Qj) with Ejeg(xj) and ej an isomorphism
(3 >i)ms, = E; for each object j »1i of I'/i.) Clearly P, is equivalent to P(X,)
and i k> P, is a functor from 1° to categories. Using [Eca 1v 8.5] it is not hard

to see that we have an equivalence of categories
1:«;::: (i1 B} — 2(x)

such that a sequence is exact in g{X} if and only if it comes from an exact sequence in
some P.. Thus from §2 {3) we have qu(X) = lim qui , proving 2,3. The proof of 2.4
is similar.

2,5, Suppose that f : X =» Y is a morphism of finite Tor dimension (i.e, O, is

=X
of finite Tor dimension as a module over f-1(gy) }» and let P(Y,f) be the full sub~

category of M(Y) consisting of sheaves F such that
- Q.
Tor, “'(Q,,F) = 0 for 150 .

Assuming that every F in M(Y) is a quotient of a member of P(Y,f), the resolution
theorem (Th. 3, Cor. 3) implies that the inclusion P(Y,f) ~>M(Y) induces isomorphisns
on K-groups. Combining this isomorphism with the hom;morphism induced by the exact
functor £* : g(Y,f) - M(X), we obtain a homomorphism which will be denoted

(2.6) % 1 K'Y e K'X .
q q

The assumption holds if either f is flat (whence PB(Y,f} = M(Y)} }, or if every coherent
sheaf on Y is the quotient of a vector bundle {e.g. if Y has an ample line bundle).
In both of these cases the formula (fg)* = g*f* is easily verified.

2.7, let f :X Y be a proper morphism, so that the higher direct image functors
Rif* carry coherent sheaves on & to coherent sheaves on Y. Let E(X,f) denote the
full subcategory of M(X) consisting of F such that Rif*(F) =0 for iMd0. Since
Rif* =0 for i lar;e [EGA I11 1.4.12], we can apply Th. 3, Cor. 3 +to the inclusion
E(X,f)°-+ Q(X)O to get an isomorphism qu(x,f} SQ—KéX, provided we assume that every
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coherent sheaf on X can be embedded in a member of F(X,f). Composing this isomorphism
with the homomorphism of K-groups induced by the exact functor f, : F(X,f) —» M(Y), we
obtain a homomorphism which will be denoted

(2.8) f, : K'X — K'Y .
q q

The assumption is satisfied in the following cases:

i) when f is finite, in particular, when f is a closed immersion. In this case
Rif,t =0 for i>0 [EGA III 1,3.2], so F(X,f) = M(X).

ii) When X has an ample line bundle [EGA II 4.5.3]. In effect if L is ample
on X , then it is ample when restricted to any open subset, and in particular, it is
ample relative to f. Replacing L by a high tensor power, we can suppose L is very
ample relative to f , and further that L is generated by its global sections. Then for
any n we have an epimorphism (gx)m—) Lﬁn, hence dualizing and tensoring with Lﬁn, we

obtain an exact sequence of vector bundies
0 — o, — WM™ % & — 0.
Hence for any coherent sheaf F on X we have an exact sequence

(2.9) 0 == F ~—» FMn)™ > FRE — 0

where F(n) =F ® 1®, But by Serre's theorem [EGA III 2.2.1] » there is an n_ such

that Rif*(F(n)) =0 for i>0, n2 n, so F(n) € E(X,f) for n2n . Thus F can be
embedded in a member of E(X,f ) as asserted.

The verification of the formula (fg), = f,g, in cases i) and ii) is straight-
forward and will be omitted.

Proposition 2.10. (Projection formula) Suppose f : X — Y proper and of finite
Tor dimension, and assume X and Y have ample line bundles so that 2.6 and 2.8 are

defined. Then for x € KX and yé€ K"IY we have f (x.f*y) = £ (x).y in K'Y , where
£, (x) is the image of x by the homomorphism f, : KOX —>K°Y of [SGA 6 2.12.3}.
Proof. We recall that if x = LE] is the class of a vector bundle E, then f *(x)

is the class of the perfect complex Rf,(E). Arguing as in case ii) above, one sees
that KOX is generated by the elemgnts [E] such that Rif*(E) =0 for i>0. Then
RE,(E) ¥ £,E, and £,(x) = L(-1)7[P,)€ K X , where {P.} is a finite resolution of f,E
by vector bundles on Y. Let L denote the full subcategory of _DQ(Y) consisting of F
such that - B

& %
Tor, " (f,E,F) = 0 = Tor,” (0;,F) i>0 .

By the resolution theorem we have qu_‘ = K&Y. Moreover, applying Th. 2, Cor. 3 to

0 o= PnﬂF —_— .. = POQF — fERF —» O

for F¢ L, one sees that y | f,(x).y is the endomorphism of K('lY induced by the
exact functor F» f E@F from J=J to l;i(‘l). L L

From the projection formula in the derived category: Rf,(E DYF) = Rf*(E) ﬁY F
(see [5G 6 III 2.7]), we find for F in L that
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0 q#0

fEeF qg=0.

RY, (B @ £*E) =

Thus E @ £*F is in F(X,f), so by the definition of 2.6 and 2.8, we have that

¥ b» £,(x-f*y) is the endomorphism of Kc';Y induced by the exact functor F > f (E Rf%F)
from L to Q(Y). Since we have an isomorphism f,(E @ f*F) &2 f.E ® F, the projection
formul; follows.

Proposition 2.11, Let

'
X'—-—é—*x

o T

Y s Y

be a cartesian square of schemes having ample line bundles. Assume f jis proper, g is

of finite Tor dimension, and that Y' and X are Tor independent over Y, (i.e.

=1,y -
Tor, (QY',y"gx,x) = 0 for i»O0

for any x€X, y'€Y', y¢1 such that f(x)

y = gly').) Then
g f, = £ g™ ¢ KX — Kyt

Sketch of proof. Set L = P(X,g')nF(X,f). From the formula Lg*Rf, = Rf' Lg'¥

in the derived category [SGA 6 IV 3.1 .0]. one deduces that for F€L we have that
tF€ E(Y,g), g'F € E(X‘,f‘), and that there is an isomorphism g*f (F) = ' g'*(F).
Thus everything comes to showing that X _I_;& x;ix . Since qu(x,g’);"»KéX , we have
only to check that the inclusion L—? X,g') induces isomorphisms on K-groups. But
this follows from the resolution tl—ieorem, because the exact sequence 2.9 shows that the

functors le* on the category P(X,g') are effaceadble for i>O0,

3. Closed subschemes, Let < be a closed subscheme of X, let i : Z —» X be the

canonical immersion, and let I be the coherent sheaf of ideals in .—OJ( defining Z. The
functor i, : M(2) =» M{(X) allows us to identify coherent sheaves on Z with coherent
sheaves on X killed by I.

Proposition 3.1. If I is nilpotent, then i : x{;z — K&X is an isomorphism. In
§ ] Yy o t
particular, xq(xre = qu .

This is an immediate consequence of Theorem 4.

Proposition 3.2, let U Dbe the complement of Z in X, and j : U —»X the
canonical open immersion. Then there is a long exact sequence

(3.3 K' .U K12 Xy KK S KU
) K — ki 0

Proof. One knows [Gabriel,Ch. V] that j* : M(X) — M(U) induces an equivalence
of g(U) with the quotient category g(x)/g, where B 1is the Serre subcategory consis-
ting of coherent sheaves with support in Z. Theorem 4 implies that i, : M(Z) =3 B

127



120 “

induces isomorphisms on K-groups, so the desired exact seguence results from Theorem 5.

Remark 3.4. The exact sequence 3.3 has some evident naturality properties which

follow from the fact that it is the homotopy exact sequence of the "fibration"
BA(M(z2)) ——> BUM(X)) —> Bu(M(V)) .

For example, if 2' is a closed subscheme of X containing 2, then there is a map from
the exact sequence of (X,Z) to the one for (X,Z'). Also a flatmap f : X' > X
induces a map from the exact sequence for (X,2) to the one for (X',f“Z).

Remark 3.5. From 3.3 one deduces in a well-known fashion a Mayer-Vietoris sequence

K (UnvV K {Uuv K'U & X'V K{UnV) ——
-—->q+1( )—"’q(”)""’q q—*q( )

for any two open sets U and V of X. Starting essentially from this point, Brown and

Gersten {see their paper in this procedings) construct a spectral sequence
Pq _ P —
EY = E (x, 5*_q) == K’ X

which reflects the fact that K'~theory is a sheaf of generalized cohomology theories in
a certain sense. In connection with this, we mention that Gersten has proposed defining
higher K-groups for regular schemes by piecing together the Karoubi-Villamayor theories
belonging to the open affine subschemes (see [Gersten 2]). Using the above Mayer-Vietoris
sequence and the fact that Karoubi-Villamayor K-theory coincides with curs for regular
rings, Gersten has shown that his method leads to the groups KqX = Kéx studied here.

4, Affine and projective space bundles,

Proposition 4.1. (Homotopy property) Let f : P —»X be a flat map whose fibres

are affine spaces (for example, a vector bundle or a torsor under a vector bundle). Then
£* 3 Kéx — K&P is an isomorphism.

Proof. If Z 1is a closed subset of X with complement U, then because f is flat

we have a map of exact sequences

w3 K'Z wmed K'X s KU =y
q q q

¢ 3
e K'P ity K'P e K'P e
qZ q qu

By the five lemma, the proposition is true for one of X, Z, and U if it is true for the
other two. Using noetherian induction we can assume the proposition holds for all closed
subsets Z # X. We can suppose X 1is irreducible, for if X = Zitlzz with Z’,Z2 £ X,
and X -4, = &, - (21/122), hence also for X. We

1 1 2
can also suppose X reduced by 3.1,

then the proposition holds for 2

Now take the inductive Jimit in the above diagram as Z runs over all closed subsets
X‘ " . : ] = KY 3 Kt = ] 1
£ Then by 2.4, lim KqU Kq(k(x)) and iﬁﬂihg?u Kq(k(x) xXP), where k(x) is the
residue field at x, and where x is the generic point of X. Thus we have reduced to
the case where X = Spec(k), k a field, and we want to prove Kék ZiaKé(k[t1...,tn]).
But this follows from §6 Th. 8 , so the proof is complete,
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4.2, Jouanolou's device. Jouanolou has shown that at least for a quasi-projective

scheme X over & field, there is a torsor P over X with group a vector bundle such
that P 1is an affine scheme. He defines higher K-groups for smooth X by taking the
Karoubi-Villamayor K-groups of the coordinate ring of P and showing that these do not
depend on the choice of P. From 4.1 it is clear that his method yields the groups
KqX = KéX considered here.

ProEosition 4.3, Let E be a vector bundle of rank r over X, let PE = Proj(SE)

be the associated projective bundle, where SE is the symmetric algebra of E, and let
f : PE =3 X be the structural map., Then we have a Kb(PE)—module isomorphism

(4.4} KO(PE} QKOX K&X oy K&(PE)

given by ¥ & x > y-f*x . Equivalently, if zé€ KO(PE) is the class of the canonical
line bundle O(-1), then we have an isomorphism

r-1 .
)T e o o — i
(4.5) (KqX) = Kq(Pr.) , (xi)Os,i,( N —> iézo z - f¥*x, .

Sketch of proof. The equivalence of 4.4 and 4.5 results from the fact that
KO(PE) is a free K X-module with basis 1,..,z”’1, (scA 6 VI 1.1] . Using the exact
sequence 3.3 as in the proof of 4.1, one reduces to the case where X = Spec{k), k a
field. By the standard correspondence between coherent sheaves on PE and finitely
generated graded SE-modules, one knows that Q(PE) is equivalent to the quotient of
Modfgr{SE} by the subcategory of M such that Mn =0 for n large. This subcategory
has the same K-groups as the category Modfgr(k) by Theorem 4, where we view k-modulesas
SE-modules killed by the augmentation ideal. Thus from the localization theorem we have

an exact sequence
(4.6) —_— Kq(Modfgr(k)) —, Kq(Modfgr(SE)) o K (PE) —>
where i 1is the inclusion and J associates to a module M the associated sheaf H on
PE. From Theorem 6 we have the vertical isomorphisms in the square

Kq(Modfgr(k)) ~2* 5 K (Modfgr(SE))

fs s

zft] @ ke —2—s z[t] @ Kk

Using the Koszul resolution
0> SE(-r) 2 ATE®M —> ..... ~~>SE@MN ~—> M —> O

and Th. 2, Cor. 3, one shows that the map h rendering the above square commutative is
miltiplication by A_,(E) = 3. («t)*[A'E] . Tms i, is injective, so from 4.6 we
get an isomorphism

1l dexx =% w(em

Oxi<r 4 4
induced by the functors M > (-1)% @M, O¥i<r from Moaf(k) to N(PE). This
gives the desired isomorphism 4.5,
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The following generalizes 3.1.

Proposition 4.7. Let f : X' =» X be a finite morphism which is radicial and

surjective (i.e. for each x in X- the fibre f—1(x) has exactly one point x' and

the residue field extension k(x')/k(x) is purely inseparable). Let S be the multi-

plicative system in Z generated by the degrees [k(x'):k(x)] for all x in X. Then
£, + K{(X') = KX induces an isomorphisn S-1K€1(X') ~ S'1K<'1X .

Proof. If Z is a closed subscheme of X with complement U, and if 2' and U'
are the respective inverse images of Z and U in X', then we have a map of exact
sequences

— K(‘l(Z')-—-—) K'(X') e K'(U')

1(1‘2)* l £, [(fu),

> K'Z > K'X KU —
q q q

Localizing with respect to S and using the five lemma, we see that if the proposition

holds for two of f, , f, fU it holds for the third. Thus arguing as in the proof of 4.1

Z'
we can reduce to the case where X = Spec(k), k a field. By 3.1 we can suppose
X' = Spec(k'), where k' is a purely inseparable finite extension of k. Thus we have

reduced to the following.

Proposition 4.8. Llet f : k-> k' be a purely inseparable finite extension of

degree p®. Then f,f* = multiplication by p° on K and £*f, = miltiplication by
on K (k').

p oo K (k')
Proof. The fact that f f* = multiplication by [ ':k] is an immediate consequence

of the projection formula §4 (5) and does not use the purely inseparable hypothesis.
The homomorphism f*f, is induced by the exact functor

Vi xev= (ke k)e,V
frow P(k') to itself. Since k'/k is purely inseparable, the augmentation ideal I of
k! ﬁk k' is nilpotent. Filtering by powers of I, one obtains a filtration of the above
functor with

el e ke, v) = L] @™ e v.
k k n k'
But because the two k'-module structures on In/In+1 coincide, this graded functor is
isomorphic to the functor V j» V', where r = dimk.(gr(k' £, x')) = pd. Applying Th. 2,

Cor, 2 to this filtration, we find f*f, = multiplication by pd, completing the proof,

5. Filtration by support, Gersten's conjecture, and the Chow ring. Let gp(x)

denote the Serre subcategory of g(X) consisting of those coherent sheaves whose support
is of codimension > p. (The codimension of a closed subset Z of X is the infimum of
the dimensions of the local rings Qx,z where z runs over the gemeric points of Z.)
From §2 (9) and 3.1, it is clear that we have

(51) K () = lim ks
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where Z runs over the closed subsets of codimension 2 p. We also have
(5.2) f*(gp(x)) < n_«p(x') if £ :X'—»X is flat.

In effect, one has to show that if Z has codimension 2> p in X, then f-1Z has
codimension > p in X'. But if z' is a generic point of f-1Z, and z = £(z'), then

the homomorphism gx,z ‘ﬁ'QX',z' is a flat local homomorpﬁism such that rad(gx,z)'QX',z'

is primary for rad(Q , _,); hence dim(0, ) = dim(Q., _,) by [EGa IV 6.1.3], proving
=A",2 =X,z =AT,Z

the assertion.

If X =1lim X, where i > Xi is a filtered projective system with affine flat

i
transition morphisms, then we have isomorphisms

(5.3) KM(K)) = lim K (M (X)) .

In view of 5.1 this reduces to showing that any Z of codimension p in X is of the

form f;‘(Zi) for some 1, where 4, is of codimension p in X, , and where

i

fi X - Xi denotes the canonical map. But for i 1large enough, one has 2 = f;1(zi)
with Zi = the closure of fi(Z). Hence any generic point z' of Zi is the image of a

generic point z of 2, so the local rings at z' and 2z have the same dimension by the

result about dimension used above. Thus Zi also has codimension p, proving 5.3.

Theorem 5.4. Let Xp be the set of points of codimension p in X. There is a

spectral sequence

pq '
(5.5) E X)) = _le;l(_p_qk(x) —> K' X
X
P

which is convergent when X has finite (Krull) dimension. This spectral sequence is

contravariant for flat morphisms. Furthermore, if X = %}E Xi , where i ka»Xi is a

filtered projective system with affine flat transition morphisms, then the spectral

sequence for X is the inductive limit of the spectral sequences for the Xi .

In this spectral sequence we interpret Kn as zero for n<O. Thus the spectral
sequence is concentrated in the range p>0 , ptq g O.

Proof. We consider the filtration
Hx) = B (X) D K(X)D ...
of g(x) by Serre subcategories. There is an equivalence

10/ 0 22 LL U wosr(gy /raaley )

x€X B
P
so from Th. 4, Cor, 1, one has an isomorphism

K00, ) = 1L ke

x€X
P
where k(x) is the residue field at x. From Th. 5 we get exact sequences

— kW &) — KE X)) — IE[X Kk(x) — K (1, (X)) —
X
P
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which give rise to the desired spectral sequence in a standard way. The functorality

assertions of the theorem follow immediately from 5.2 and 5.3.

We will now take up a line of investigation initiated by Gersten in his talk at this
conference [Gersten 3].

Proposition 5.6. The following conditions are equivalent:

i) For every p»0, the inclusion igp_n x) ._,»zgp(x) induces zero on K-groups.
ii) For all g, qu(x) =0 if p #0 and the edge homomorphism KLQX —_— qu(x)
is an isomorphism.

iii) For every n the seguence

d a
5.7 0 — kx 2> | i K k(x) . | i K k(x) S N
x€X° xéX1

is exact. Here d, is the differential on E,(X) and e is the map obtained by

pulling-back with respect to the canonical morphisms Spec k(x) = X.

This follows immediately from the spectral sequence 5.5 and its construction.

Proposition 5.8. (Gersten} Let §A denote the sheaf on X associated to the

. . . .
presheaf U > K'U . Assuve that Spec(gx’x) satisfies the equivalent conditions of 5.6

for all x in X. Then there is a canonical isomorphism

pq p
E2 (X) = H (X.E'q)
with qu(x) as in 5.5.

Proof. We view the sequences 5.7 for the different open subsets of X as a sequence
of presheaves, and we sheafify to get a sequence of sheaves
(5.9) 0 = & — 11 ),k — 1] ),&_xx) — ..
xe X x€X
[<] 1
where ix : Spec k{x) -» X denotes the canonical map. The stalk of 5.9 over x is the
sequence 5.7 for Spec(gx'x) , because Spec(gx’x) = &im U , where U runs over the
affine open neighborhoods of x, and because the spectral sequence 5.5 commutes with
such projective limits, By hypothesis, 5.9 is exact, hence it is a flask resolution of

KA » 80

EP(%,K)

BP st [(x, 11 (10,8 _Jk(x) )}
xeX

s
Hp{s}.-,. Ef"n(x)} = BB 7Nx)
as asserted.

The following conjecture has been verified by Gersten in certain cases [Gersten 3}.

Conjecture 5.10. (Gersten) The conditions of 5,6 are satisfied for the spec trum

of a regular local ring.

Actually, it seems reasonable to conjecture that the conditions of 5.6 hold more

generally for semi-local regular rings, for in the cases where the conjecture has been
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proved, the arguments also apply to the corresponding semi-local situation. On the other
hand there are examples suggesting that it is unreasonable to expect the conditions of
5.6 to hold for any general class of local rings besides the regular local rings.

We will now prove Gersten's conjecture in some important equi-characteristic cases.

Theorem 5.11, Let R be a finite type algebra over a field k, let S be a finite

set of primes in R such that Rp is regular for each p in S, and let A be the
regular semi-local ring obtained by localizing R with respect to S. Then Spec A

satisfies the conditions of 5.6.

Proof. We first reduce to the case where R is smooth over k. There exists a
subfield k' of k finitely generated over the prime field, a finite type k'-algebra
R', and a finite subset S' of Spec R' such that R=k Qk,R' and such that the primes
in $ are the base extensions of the primes in S'. If A' is the localization of R!
with respect to S', then A =k ﬁk,A' and A' is regular. Letting ki run over the
subfields of k containing k' and finitely generated over the prime field, we have
A =liw k.8 ,A' and K*(g (a)) = }EELK,(Ep(kiﬁk,A')) by 5.3, where here and in the
following we write QP(A) instead of QP(Spec A). Thus it suffices to prove the theorem
when k is finitely generated over the prime field. In this case A is a localization
of a finite type algebra over the prime field, so by changing R, we can suppose k is
the prime field. As prime fields are perfect, it follows that R is smooth over k at
the points of S, hence also in an open neighborhood of S. Replacing R by Rf for
some f not vanishing at the points in S, we can suppose R is smooth over k as
asserted.

We wish to prove that for any p>»O0 the inclusion §p+1(A) - EP(A) induces zero on

K-groups. By 5.3 we have

K ,,(4) = lig K (Re))
where f runs over elements not vanishing at the points of S, hence replacing R by Rf,
we reduce to showing that the functor §p+1(R) -9-@p(A) induces zero on K-groups. As

KM 4 (R)) = lig K,(gp(n/ta))

where t runs over the regular elements of R, it suffices to show that given a regular
element t, there exists an f, not vanishing at the points of S, such that the functor
M Fava from gp(R/tR) to gp(R) induces zero on K-groups.

We will need the following variant of the normalization lemma.

Lemma 5.12, Let R be a smooth finite type algebra of dimension r over a field

k, let t be a regular element of R, and let S be a finite subset of Spec R . Then

there exist elements XiseerX of R algebraically independent over k such that if
B = k[xi,..,xr_1] CR, then i) R/tR is finite over B, and ii) R is smooth over B
at_the points of S.

Granting this for the moment, put B' = R/tR and R' =R ®,8' so that we have

arrows
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R' «—> R
b
B' —> B
where the horizontal arrows are finite. Let S' be the finite set of points of Spec R'
lying over the points in S. As u is smooth of relative dimension one at the points of
S, u' is smooth of relative dimension one at the points of S'., One knows then

[S6a 1 II 4.15] that the ideal I = Ker (R'—>B') is principal at the points of S,
hence principal in a neighborhood of S'. Since R'/R is finite, this neighborhood
contains the inverse image of a neighborhood of S in Spec R, Thus we can find f in

R not vanishing at the points of S such that I, is isomorphic to R', as an R'_-

by f
is smooth, hence flat, over B'.

£
module. We can also suppose f chosen so that R'

f
Then for any B'-module M we have an exact sequence of Rf-modules
* [
() 0 —> I8 M — R' B M —> K. —> 0.
: v s P s s ' , c s '
Since R ¢ 1is flat over B', if M is in QP(B ), then R fQB'M is in EP(R f), so
viewed as an R -module, we have R' @ M is in gp(Rf). Thus (*) is an exact sequence

of exact functors from ﬁp(B') to QP(Rf). Applying Th. 2, Cor. 1, and using the isomor-
phism If > R'f , we conclude that the functor from gp(B') to gp(Rf) induces the
zero map on K-groups, as was to be shown.

Proof of the lemma. Choosing for each prime in S a maximal ideal containing it, we
can suppose S is a finite set of maximal ideals of R. Let 173 be the module of Kahler
differentials of R over k. It is a projective R-module of rank r, and for R to be
smooth over B = k[x1..,xr_1] at the points of S means that the differentials dxié.fz1
are independent at the points of S. Let J be the intersection of the ideals in S. As
R/J" = TT ®/a" , meS, is finite dimensional over k, we can find a finite dimensional
k-subspace V of R such that for each m in S, there exists VirersVy in V whose
differentials form a basis for .121 at m vanishing at the other points of S. We can
suppose also that V generates R as an algebra over k.

Define an increasing filtration of R/tR by letting Fn(R/tR) be the subspace
spanned by the monomials of degree £ n in the elements of V. Then the associated
graded ring gr{R/tR) is of dimension r-1. To see this, note that Proj(J_LFn(R/tR))
is the closure in projective space of the subscheme Spec (R/tR) of the affine space
Spec S(V). Since R/tR has dimension r~1, the part of this Proj at infinity, namely
Proj{gr(R/tR)), is of dimension r-2, so gr(R/tR) has dimension r-1 as asserted.
Let z,,..,2__, be a system of parameters for gr(R/tR) such that each z; is
homogeneous of degree > 2. Then gr(R/tR) is finite over k[z1,..,zr_1], so if the z,
are lifted to elements xi of R, then R/tR is finite over k[x{,..,x;_1] .

By the choice of V, we can choose VireerVo g in V such that x; = xi + Vo
1gi<r, have independent differentials at the points of S, whence condition ii) of the
lemma is satisfied. On the other hand, the X
so R/tR is finite over k[x1,..,xr_1]. The proof of the lemma and Theorem 5.11 is
now complete,

have the leading terms z, in er(R/tR),
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Theorem 5.13. The conditions of 5.6 hold for Spec A when A is the ring of

formal power series kEX‘,..,Xn]] over a field k, and when A is the ring of convergent

power series in X1,..,Xn with coefficients in a field complete with respect to a

non-trivial valuation.

The proof is analogous to the preceding. Indeed, given O£ t € A = k[{)(1 ,,,Xn]] ,
then after a change of coordinates, A/tA becomes finite over B = kﬁx1 ,..,Xr_d] by the
Weierstrass preparation theorem. Further, if we put A4' = A QBA/ tA, then Ker(A' — A/ta)
is principal, so arguing as before, we can conclude that gj_p(A/ th) - QP(A) induces zero
on K-groups. The argument also works for convergent power series, since the preparation

theorem is still availsble.

We now want to give an application of 5.11 to the Chow ring. We will assume known
the fact that the K1A defined here is canonically isomorphic to the Bass K,‘ , and in
particular that K1A is canonically isomorphic to the group of units A®, when 4 is a

local ring or a Buclidean domain.
Proposition 5.14. Let X De a regular scheme of finite type over a field. Then the

image of
d, : _LL Kk(X)———>_L_LKk(x =_,I__L

x€X XGX xeX
p—

in the spectral sequence 5.5 is the subgroup of codmenslon r cycles which are

linearly equivalent to zero. Consequently E‘z’"P(x) is canonically isomorphic to the

roup AP(X) of cycles of codimension p modulo linear equivalence.

Proof. Let P’ be the projective line over the ground field, and let t denote the
canonical rational function on P1. Let CP(X} denote the group of codimension p
cycles. The subgroup of cycles linearly equivalent to zero is generated by cycles of the
form Wo - ‘im, where W is an irreducible subvariety of X x P1 of codimension p such
that the intersections W = ¥n{X x 0) and W = ¥n{X x ®) are proper, We need a
known formula for Ho - ‘«'m which we now recall. .

Let Y be the image of W under the projection X x P ~» X, so that dim(Y) =
dim(W) or dim(W) - 1 . In the latter case we have W =Y x P and W= W = 0, s0
we may assume dim(W) = dim(Y), whence Y has codimension p -1 in X. Let y be the
generic point of Y and w the generic point of W, so that k{w) is a finite extension
of k(y). Let t' be the non-zero element of k(w) obtained by pulling t back to W,

and let x be a point of codimension one in Y, whence O is a local domain of

=Y,x
dimension one with quotient field k{(y). Then the formula we want is

s _ - '
(5.15) (multiplieity of x din W - W_) °rdyx(N°mk(w)/k(y) e
where cm*lyx : k(y)® —Z is the unique homomorphism such that

ordyx(f) = length(gy' x/fgy’ )

for f¢ QY <! £ #' 0. Por a proof of 5.15 see [Chevalley, D 2-12].
=i
From 5.15 it is clear that the subgroup of cycles linearly equivalent to zerc is
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the image of the homomorphism

¢+ sy — 1l z
P

yeé )(p_1 x¢ X
where if f€k(y)", then #(f) = Jord (f)-x and we put ord _ = O if x¢{_ﬁ». Since
Kik(y) = k(y)*, we see ¢ is a map from Bf—i"p(x} to Ef’"p(x), 80 all that

remains to prove the proposition is to show that ¢ = 4

cP(x)

1
Let d1 have the components

(d1)yx P k(y)* = Kk(y) — Kk(x) =2z

for y in Xp—1 and x in Xp + We want to show that (d1)yx:ord . Pix y in
X 1 and let Y be its closure. The closed immersion Y - X carries Déj(‘{) to
r£3+p—1 (X) for all j, hence it induces a map from the spectral sequence 5.5 for Y to
the one for X augmenting the filtration by p-1. Thus we get a commutative diagram
d
B — BPG) = oP(x)
0,1 4 4,a 1
Kkly) = E'7{Y) —— E7(Y) = ¢(¥)

which shows that (d1 )yx =0 unless x is in Y. {n the other hand, if x is of
codimension one in Y, then the flat map Spec(g,{ x) ~>71 induces a map of spectral
iy

sequences, so we get a commutative diagram

d
ke(y) = 27— ElNw) - ¢
I l l multiplicity
of x
0,1 4 1,-1 _

K1k(y) -~ E1 (gy’x) > E1 ((:)Y,x) = Z

which shows that (d‘ )yx is the map d1 in the spectral sequence for QY x * Therefore
R 4

the equality (d1 )yx = Ordyx is a consequence of the following.

Lemma 5.16. let A be an equi-characteristic local ncetherian domain of dimension

one with guotient field F and residue field k, and let

-eK;A—rK@-B-,KOk—»KéA — KF —> 0

be the exact sequence 3.3 associated to the closed set Spec k of Spec A. Then

d: K1F —'*Kok is isomorphic to ord : P* -» Z , where ord is the homomorphism such
that ord(x) = length(s/xA) for x in 4, x # O.

Proof, We have isomorphisms K1F =F and KA = A* since A and F are local
rings. We wish to show 3(x) = ord(x) for x in A,x #0. If x 4is in A", this is
clear, as O(x) = O since x is in the image of the map KA => KA > KF . Ths ve
can suppose X 1is not a unit. By hypothesis A is an algebra over the prime subfield
ko of k., If x were algevbraic over ko , it would be a unit in A. Thus x is not
algebraic, so we have a flat homomorphism ko[t] ~» A sending the indeterminate t to

X. By naturality of the exact sequence 3.3 for flat maps, we get a commutative diagram
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—a-ka —

-1

—_— Kiko[t] — K1k°[t,t ] o

l * l '
°

\F

— Kok —
such that u(t) = x. The homomorphism v is induced by sending a ko—vector space V to
the A-module

— K{A — K

AR V = A/xA® V
k,[t] k

and using devissage to identify the K-groups of the category of A-modules of finite
length with those of g(k). Thus with respect to the isomorphisms Koko = Kok =4, v
is multiplication by length(A/xA) = ord{x) . Therefore it suffices to show that in the
top row of the above diagram, one has B(t) =+ 1. But this is easily verified by
explicitly computing the top row, using the fact that KOR =Z and K1R =R* fora
Euclidean domain. gq.e.d.

Remark 5.17. In another paper, along with the proof of Theorem 1 of [Quillen 1],

I plan to justify the following description of the boundary map 3 : KnF -> Kn— k for a

1
local noetherian domain A of dimension one with quotient field F and residue field
k. By the universal property of the K-theory of a ring, such a map is defined by giving

for every finite dimensional vector space V over F a homotopy class of maps
(5.18) B(aut(V)) — BQ(p(k))

compatible with direct sums. To do this consider the set of A-lattices in V, i.e.
finitely generated A-submodules L such that F QAL = V. Let X{(V) be the ordered set
of layers (LO,L1) such that L,/L  is killed by the maximal ideal of A, and put
G = Aut(V). Then G acts on X(V), so we can form a cofibred category X(V)G over G
with fibre X(V). One can show that X(V) is contractible (it is essentially a
*building'), hence the functor X(V)G -» G is a homotopy equivalence. On the other hand
there is a functor X(V)G — Q(g(k)) sending (LO,L1) to L1/Lo , hence we obtain the
desired map 5.18.

It can be deduced from this description that the Lemma 5.16 is valid without the

equi-characteristic hypothesis.

Combining 5.8, 5.11, and 5.14 we obtain the following.

Theorem 5.19. For a regular scheme X of finite type over a field, there is a

canonical isomorphism

Hp(x,gp) = AP(x) .

For p=0 and 1 this amounts to the trivial formulas H°(X,Z) = C°(X) and
H1(X'2i) = Pic(X). For p =2 this formula has been established by Spencer Bloch in
certain cases (see his paper in this procedings).

One noteworthy feature about the formula 5.19 is that the left side is manifestly
contravariant in X, which suggests that higher K-theory will eventually provide the tool

for a theory of the Chow ring for non-projective nonsingular varieties.
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§8. Projective fibre bundles

The main result of this section is the computation of the X-groups of the projective
bundle associated to a vector bundle over a scheme. It generalizes the theorem about
Grothendieck groups in [§GA 6 VI] and may be considered as a first step toward a higher
K-theory for schemes (as opposed to the K'~-theory developed in the preceding section).
The method of proof differs from that of [éGA 6] in that it uses the existence of
canonical resolutions for sheaves on projective space which are regular in the sense of
[Mumford, Lecture 14]. We also discuss two variants of this result proved by the same
method. The first concerns the 'projective line' over a (not necessarily commutative)
ring; it is one of the ingredients for a higher K generalization of the ‘Fundamental
Theorem' of Bass to be presented in a later paper. The second is a formula relating
the K-groups of a Severi-Brauer scheme with those of the associated Azumaya algebra

and its powers, which was inspired by a calculation of Roberts.

1. The canonical resolution of a regular sheaf on PE, Let S be a scheme

(not necessarily noetherian or separated). let E be a vector bundle of rank r over
S, and let X = PE = Proj(SE) be the associated projective bundle, where SE is the
symmetric algebra of E over 28' Let gx(1) be the canonical line bundle on X and
f : X - S the structural map. We will use the term "X-module" to mean a quasi-coherent
sheaf of gx-modules, unless specified otherwise.

The following lemma summarizes some standard facts about the higher direct image
functors qu* we will need.

Lemma 1.1. a) For any X-module F, qu*(F) is an S-module which is zero for
q2r.

b) For any X-module F and vector bundle E' on S, one has

R, (F) @Bt = R, (Fegs') .
c) For any S-module N, one has
0 q#0, r-1
R%,(0,(n) B.N) = snri 8N . a= 0
(sr_ns) es/\ E N q=r-1

where "w~" denotes the dual vector bundle.

d) If F is an X-module of finite type (e.gz. a vector bundle), and if S is
k
)

for some n, k.

affine, then F is a quotient of (gx(-1)ﬁn

Parts a),c) result from the standard Cech calculations of the cohomology of projec—
tive space [EGA 111 2]. Part b) 4is obvious since locally E' is a direct sum of
finitely many copies of 0g+ For d), see [EGA II 2.7.10].

Following Mumford, we call an X-module F regular if R%,(F(-q)) =0 for q>0,
where as usual, F(n) = gx(1)QanF . For example, we have gx(n) @M is regular for
n>0 by c).
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lemma 1.2, let O > F' =3 F —» F" - O be an gxact sequence of X-modules.

a) If P'(n) and PF"(n) are regular, so is F(n).

b} If F(n) and F'(n+1) are regular, so is M(n).

¢) If F(n+l) and F'(n) are regular, and if f,(F(n))~> £,(F"(n)) is onto, then
F'(n+1) is regular.

Proof. This follows immediately from the long exact sequence

RIGF* (neq)) —= R, (F(n-q)) —» RYf,(F'(n-q)) —» B¥'f, (F'(n-q)) —» R%'s, (F(nmg)) .

The following two lemmas appear in [Humford, Lecture 14] and in [SGA 6 XII1 1.3],
but the proof given here is slightly different.

Lemma 1.3. I1f F is regular, then F(n) is regular for all n20.

Proof. From the canonical epimorphism QX QSE —9-gx(1) one has an epimorphism
(1.4) o(-1)eE —> o
so we get an exact sequence of vector bundles on X
r
{(1.5) 0— O(-r) e AE —» ... - (1)@ —» 0 —> 0

by taking the exterior algebra of -1) QSE with differential the interior product by

0y (
1.4. Tensoring with F we obtain an exact sequence
(1.6) 0 s F(-r) as/\"a ~ ... —»F(-1)8E —=F —0.

Assuming F to be regular, then (F(-p)as/\pE)(p) is seen to be regular using 1.1 b).
Thus if 1.6 is split into short exact sequences

0 — 2z, —> F{-p) es/\PE — 2, —>0

we can use 1.2 b) to show by decreasing induction on p that Zp(p+1) is regular.
Thus Z°(1) = F(1) is regular, 8o the lemma follows by induction on n.

Lemms 1.7. 1f F is regular, then the canonical map Oy 8.f,(F)—>F is surjective,

Proof. From the preceding proof one has an exact sequence

O —> Z, —» F(-1)QSE —» F—»0

1
where Z1(2) is regular. Thus R‘f*(Z1(n)) =0 for n%1!, s0 we find that the canonical
map f*(F(n-1))QSE — £ (F(n)) is surjective for nx>1. Hence the canonical map of
SE-modules

SE 8., (F) ~> 1 £,(7))
n20

is surjective. The lemma follows by taking associated sheaves.
Suppose now that F is an X-module which admits a resolution
0 —> Q_X(-r+1)@s’l‘r_1 — 0> 0BT —s F—>0

where the Ti are modules on S. Breaking this sequence up into short exact sequences
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and applying 1.2 b), one sees as in the proof of 1.3 that F has to be regular.
Moreover, the above exact sequence can be viewed as a resolution of the zero module by
acyclic objects for the & ~functor qu*(?(n)), where n is any fixed integer > O. Thus

on applying f* we get an exact sequence

0 -5 _ Ee T  — ... S B 8,7 — £, (F(n)) —> ©

for each n>0. In particular, we have exact sequences

(1.8) 0 = T = EQT  —... — f,(Fn)) — 0

for n=0,..., r-1 which can be used to show recursively that the modules Tn are
determined by F up to canonical isomorphism.

Conversely, given an X-module F, we inductively define a sequence of X-modules
Zn = Zn(F) and a sequence of S-modules Tn = Tn(F) as follows. Starting with Z_1 =F,
let T = f*(Zn_1(n)), and let Zn be the kernel of the canonical map gx(—n)@érn-ﬁ> ZuJ'
It is clear that Zn and Tn are additive functors of F.

Supposing now that F is regular, we show by induction that Zn(n+1) is regular,

this being clear for n = -1, We have an exuct sequence
c
(1.9) 0 — 2@ — 0,8 ~ 2z (n) — 0

where the canonical map ¢ is surjective by 1.7 and the induction hypothesis. By 1.3,

1.2 ¢) we find that Zn(n+1) is regular, so the induction works. In addition we have
(1.10) £,z (n)) = 0 for n20

because ¢ induces an isomorphism after applying f, .
From 1.9 and the fact that f, is exact on the category of regular X-modules,
one concludes by induction that F Fo-Tn(F) is an exact functor from regular X-modules
to S-modules.
We next show that Zr_1 = 0. From 1.9 we get exact sequences

(2, ) L B G () — B (g (00, )

which allow one to prove by induction on q , starting from 1.10, that qu*(Zm_q(n)) =0
for q,n2»0. This shows that Zr_1(r-1) is regular, since Rq'f,P is zero for g>r. By

1.10 and 1.7 we have Zr_1(r-1) =0, so 2 = 0 as was to be shown.

r-1
Combining the exact sequences 1.9 we obtain a canonical resoclution of the regular

sheaf F of length r - 1. Thus we have proved the following.

Proposition 1,11. Any regular X-module F has a resolution of the form

0 — O-ret)ol (F) — ... — 0,81 (F) —> F —> 0

where the Ti(F) are S-modules determined up to unigue isomorphism by F. Moreover

Fis Ti(F) is an exact functor from the catezory of regular X-modules to the category

of S-modules.

The next three lemmas are concerned with the situation when F is a vector bundle

on X.
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lemma 1.12. Assume S5 is quasi-compact. Then for any vector bundle F on X,

there |exists an integer n_ such that for all S-modules N and nano , One has
a) R, (F(n)eN) =0 for q>0
b) f*(F(n))@Su o £, (F(n)aN)

¢) f£,(F(n)) is a vector bundle on S.

Lf’roof. Because S 1is the union of finitely many open affines, it suffices to prove
the lemma when S is affine. In this case F is the quotient of L = g)__x(-n)k for some
n and k by 1.1 d). Thus for any vector bundle F on S, there is an exact sequence
of vector bundles

Q0w F! el i F o O
such that the lemma is true for L by 1.1. Since
1
0 —> F'(n)gN = L(n)glN —> F(n)gfl =0
is exact, we have an exact sequence
R, (L(n)egN) —> R (F(m)ay) — BY'6 (5 (n)eg)

so part a) can be proved by decreasing induction on q, as in the proof of Serre's
theorem (EGA II1 2.2.1]. Using a) we have a diagram with exact rows

£,(F'(n))e N —> £,(L(n))eN —> 1£,(F(n))eN —> ©
u' § u

0 — £,(Fn)gN) — 1,(Ln)eN) — £,(Fn)ey) — 0

for n 2> some n, and all N. Hence u is surjective; applying this to the vector
bundle F', we see that u' is surjective, hence u is bijective for n 2 some n,

and all N, whence b). By a), f*(F(n)ﬁsN} is exact as a functor of N for sufficient-
ly large n, whence using b) we see £, (F(n)) is a flat Qg-module. On the other hand,
£,(F(n)) is a quotient of f,(L(n)) for n > some n, so £f,(F(n)) 1is of finite type.
Applying this to F' we see that f,(F(n)) is of finite presentation for all sufficiently

large n. But a flat module of finite presentation is a vector bundle, whence ¢,

Lemms 1.13. If F is a vector bundle on X such that R%,(F(n)) =0 for q20,
n>0, then f,(F(n)) is a vector bundle on S for all n>O0,

Proof. The assertion being local on S, one can suppose S affine, whence f,(F(n))
is a vector bundle on S for large n by 1.12 ¢). Consider the exact sequence

0 —» F(n) wwmim F(n+1)ﬂSEv--->. . — F(n+r)ﬁs/\rEv ez O

obtained by tensoring F(n) with the dual of the sequence 1.5, For n20, this is a
resolution of the zero module by acyclic modules for the J -functor qu* s hence one

knows that on applying f, one gets an exact sequence
0 — £,(F(n) — ... —> £,(Floer))agNE —> 0.

Therefore one can show f,(F(n)) is a vector bundle for all n30 by decreasing

induction on n.
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Lemma 1.14. If F is a regular vector bundle on X, then Ti(F) is a vector

bundle on S for each 1i.

This follows by induction on i, wusing the exact sequences 1.8 and the lemma 1.13,

2. The projective bundle theorem. HRecall that the K-groups of a scheme are
naturally modules over Ko by §3 (1). The following result generalizes [SGA 6 Vi 1.1].

Theorem 2.1, Let E be a vector bundle of rank r gver s scheme S and X =

Proj(SE) the associated projective scheme., If S is guasi-compact, then one has

isomorphisms 1
(ks)T &% KX ,  (ay) > 2 7zt t*a
4 q i i i

O0gigr
where z¢ KOX is the class of the canonical line bundle

structural map.

O(~1) and f:X >S5 is the

Proof. Let gn denote the full aubcategory of g(X) consisting of vector bundles
F such that qu*(F(k)) =0 for q#0 and k2n. Let R denote the full subcategory
of P(X) consisting of F such that F(n) is regular. Each of these subcategories is

closed under extensions, so its K-groups are defined.

Lemma 2.2. For all n, one has isomorphisms: Kq(_l}n) = Kq(gn) o Kq(E(X))
induced by the inclusions R C P C P(X).

To prove the lemma, we consider the exact sequence
(2.3 0——>F—F1)&E —> ... —>Fr)a/N'E —>0.

For each p>0, F i F(p)ﬁs/\pE is an exact functor froo P to P . , hence it
induces a homosorphism u : Kq(gn) —)Kq(gn-t}‘ From Th. 2, Cor. 3 it is clear that
pa p >o(~1 )p"‘u is an inverse to the map induced by the inclusion of P , in P .
Thus we have Kq(zn-i) 5K (gn) for a1l n. By 1.12 a), g(X) is the union of the
{ ~ r o
P, soby §2(9) we have X, (2, )= xq(__xg(x)) for all n. The proof that hq(gn)

Kq(g(x)) is similar, whence the lemma.

Put Un(N) = Qx(—n)ﬁsN for N in P(S). For 0&n<r, Un is an exact functor
from E(S) to P by 1.1 c), hence it induces a homomorphism LU Kq(g(s)) - Kq(go).

In view of 2.2, it suffices for the proof of the theorem to show that the homomorphism
-1 -
. r
wi K (BDT = k() (o . P é“; u (a)

is an isomorphism.
From 1.1% we know that Vn(F) = £, (F(n)) is an exact functor from B to 1=>(S)

for n30, hence we have a homomorphism

v Kq(go) -_ Kq(z(S)) , x (vn(x»Oén(r ’

where vy is induced by Vn. Since

v () = £,(0 (n-m)eN)

LY
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by 1.1 ¢), it follows that the composition vu 1is described by a triangular matrix with
ones on the diagonal, Therefore wvu is an isomorphism, so u is injective.
On the other hand, Tn is an exact functor from go to g(S) by 1.11 and 1.14,

hence we have a homomorphism

r n

t:K(B) —> K (K)T , x o ()7,
where tn is induced by Tn' Applying Th. 2, Cor. 3 to the exact sequence 1.11, we
see that the composition ut is the map Kq(go)-’.xq(go) induced by the inclusion of

50 in zo . By 2.2, ut is an isomorphism, so u is surjective, concluding the proof.

3. The projective line over a rinﬁ. Let A be a (not necessarily commutative) ring

let ¢ be an indeterminate, and let
i i

aft] — afe,t7'] —2— a[t"]
denote the canonical homomorphisms. When A is commutative, a quasi-coherent sheaf on
PL Proj(afx ,x.]) may e identified with a triple F = (M',N7,0), where K'€ Moa(a[t]),
M e Mod(alt™ 1_] ) and ©: *(M ) & i5(H7) is an isomorphism of Ale,t” ']-nodules. Fol-
lowing [Bass XII §9J, we deflne Mod(Pl) for A non-commutative to be the abelian
category of such triples, and we define the category of vector bundles on PL , denoted

E(Pl), to be the full subcategory consisting of triples with M'¢ B(A[t]), ¥ € (alt™']).

Theorem 3.1. Let ho: P(a) — g(PA) be the exact functor sending P to the
: N ol = -1
triple consisting of P[t] = alt]e,P , P[t '], and multiplication by t™ on P[t,t”].
Then one has isomorphisms

ka? =k (D) L (6y) b)) + (1))
and_the relations

(3.2) (h )y -2 _ ), +( ), =0

n

for all n.

When A is commutative, this follows from 2.1, once one notices that hn(P) is the
module Qx(n)ﬁsP . For the ron-commutative case, one modifies the proof of 2.1 in a

straightforward way. For example, if F = (M*,M”,8), we put F(n) = (M",0,t™0), and let
X X 2 F(n-1) —> F(n) be the homomorphisms given by X, =1 on M" and +™) on M,
X1 =t on M and 1 on M ). Then we have an exact sequence

(X, ,~% ) X oPF

+ X, pr
0 —— F(n—2) —————-’F(n"‘l)z 12

L 2, Fln) —»0

corresponding to 1.6, which leads to the relations 3,2, Also using the fact that qu*
can be computed by means to the standard open affine covering of P1, we can define
qu*(F) in the non-commutative case to be the homology of the complex concentrated in
degrees O , 1 given by themap d : M x M o i;(M—) , d(x,y) = e(1ex) -~ 18y .
One therefore has available all of the tools used in the proof of 2.1 in the non-commu-

tative case; the rest is straightforward checking which will be omitted.
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4. Severi-Brauer schemes and Azumaya algebras. Let S be a scheme and let X be

a Severi-Brauer scheme over § of relative dimension r-i. By definition X is an
b |
] S

(see [Grothendieck}). and it is essentially the same thing as an Azumaya algebra of rank

Swscheme locally isomorphic to the projective space P for the etale topology on S.

" over S. We propose now to generalize 2.1 to this situation.

When there exists a line bundle L on X which restricts to O(~1) on each
geometric fibre, one has X = PE, where E is the vector bundle f*ﬁv on 3, f:X =935
being the structural map of X. In general such a line bundle L exists only locally for
the etale topology on X. However, we shall now show that there is a canonical vector

bundle of rank r on X which restricts to 0(~1)r on each geometric fibre.
s act on gg in the standard way, and put Y = P§"1 =
Proj(S(gg)). The induced action on Y factors through the projective group

s L r
PGLr,S = GLr,S/bm,S . Since Gm,S acts trivially on the vector bundle QY(_1)ﬁ52 )

the group PGLr g operates on this vector bundle compatibly with its action on Y. As
b

X 1is locally isomorphic to Y for the etale topology on S and PGLr S is the group
r

Let the group scheme GLr
r

of automorphisms of Y over S, one knows that X is the bundle over S with fibre Y
associated to a torsor T under PGLr,S locally trivial for the etale topology. Thus
by faithfully flat descent, the bundle QY(-i}ngg on Y gives rise to a vector
bundle J on X of rank r.

It is clear that the construction of J is compatible with base change, and that

J = QX(-1)QSE if X = PE. In the general case there is a cartesian square

where g 1is faithfully flat (e.gz. an etale surjective map over which T becomes trivial)
such that X' = PE for some vector bundle E of rank r on S', and further
g*J) = gx,§~1)es,a .
Let 4 be the sheaf of (non—commutative) gswalgebras given by
A = f1,(End, (7))°P

where ‘'op' denotes the opposed ring structure. 4s g is flat, we have g*f, = flg'* .
Hence we have

g ()P = £, (Bna, (0, (-1)8,E)) = £,(0,8,,Bna ,(B) = Ena,(E),
hence A 1is an Azumaya algebra of rank r2 over S. Moreover one has
f*A = End (7)°P
as one verifies by pulling back to X'.

Let J_ (resp. An) be the n-fold tensor product of J on X (resp. 4 on §), so
that A is an Azumaya algebra of rank (rn)2 such that
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A, = £,(Bng (3 NP, £(a)

op
End, (3 )77 .
Let g(An) denote the category of vector bundles on S which are left modules for A .
Since Jn is a right f*(An)-module, which locally on X is a direct summand of f*(An),

we have an exact functor

J & 7 : Pla) ——> P(X) , N T (M) .
n.&n =""n = nf*(An>

and hence an induced map of K-groups.

Theorem 4.1. If S is quasi-compact, one has isomorphisms

-1 r-1
(L5 = 60, () b 5 6,8, 20y
n=20 =0 o

This is actually a generalization of 2.1 because if two Azumaya algebras 4 , B
represent the same element of the Brauer group of S, then the categories g(A), E(B) are
equivalent, and hence have isomorphic K-groups. Thus Ki(g(An)) = Ki(S) for all n if
X 1is the projective bundle associated to some vector bundle.

The proof of 4,1 is a modification of the proof of 2.1. One defines an X-module
F  to be regular if its inverse image on X' = PE is regular. For a regular F one

constructs a sequence

(4.2) 0 =—>J @

Ar.1Tr_1(F) —> ... > 08D (F) => F — O

recursively by

1) = rCemy (2, (F))) 5 2,05) = er 5,8, 7,(7) — 1z, ()}

starting with Z_1(F) = F. It is easy to see this sequence when lifted to X' coincides
the the canonical resolution 1.11 for the inverse image of F on X'. Since X' is
faithfully flat over X, 4,2 is s resolution of ¥,

We note also that there is a canonical epimorphism J -# QX obtained by descending

1.4, and hence a canonical vector bundle exact sequence
0—> AT — ... =T > g —0

on X corresponding to 1.,5. Therefore it should be clear that all of the tools used in
the proof of 2.1 are available in the situation under consideration; the rest of the
proof of 4,1 will be left to the reader.

Example: Let X Dbe a complete non-singular curve of genus zero over the field
k = HO(X,QX) , and suppose X has no rational point. Then X is a Severi-Brauer scheme
over k of relative dimension one, and J is the unique indecomposable vector bundle of

rank 2 over X with degree ~2. The above theorem says
K () = & (k) @K (4)

where A 1is the skew-field of endomorphisms of J. This formula in low dimensions has
been proved by Leslie Roberts ([hoberts] ).

145



138 62

References
S—

H. Bass: Algebraic K-theory, Benjamin 1968.
S. Bloch: K2 and algebraic cycles, these procedings.
K. Brown and S. Gersten: Algebraic K-theory as generalized sheaf cohomology, these

procedings.

C. Chevalley: Les classes d'equivalence rationelle I, Exp. 2, Séminaire Chevalley 1958,

Anneaux de Chow et applications, Secrétariat mathématique, Paris.

A, Dold and R, Lashof: Principal quasifibrations and fibre homotopy equivalence of
bundles, I1l. J. Math. 3 (1959) 285-305.

F. T. Farrell and W, C. Hsiang: A formula for Kiﬂq[T] , Applications of categorical
algebra, Procedings of symposia in pure mathematics XVIII (1970), Amer. Math. Soc.

E. Friedlander: Fibrations in etale homotopy theory, Publ. Math. I.H.E.S. 42 (1972).
P. Gabriel: Des categories abeliennes, Bull. Math. Soc. France 90 (1962) 323-448.

P. Gabriel and M. Zisman: Calculus of fractions and homotopy theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 35, Springer 1967.

S, Gersten 1: The relation between the K-theory of Karoubi and Villamayor and the
K-theory of Quillen (preprint).

«=—— 2: K-theory of regular schemes, Bull. Amer, Math. Soc. (Jan. 1973).

———=— 3: On some exact sequences in the higher K-theory of rings, these procedings.
——-—— 4: Problems about higher K-functors, these procedings.

—-——— 5: Higher K-theory of rings, these procedings.

A. Grothendieck: Le groupe de Brauer I, Dix expos@s sur la cohomologie des schémas,
North~Holland Publ. Co. 1968.

A. Heller: Homological algebra in abelian categories, Ann. of Math. 68 (1958) 484-525.

J. Milnor 1: The realization of a semi-simplicial complex, Ann. of Math. 65 (1957)
357-362.

~-=— 2: On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90
(1959) 272-280.

D. Mumford: Lectures on curves on an algebraic surface, Annals of Math. Studies 59 (1966).

D. Quillen 1: Higher K~theory for categories with exact sequences, to appear in the

procedings of the June 1972 Uxford symposium "New developments in topology".

~———= 2: On the cohomology and K-theory of the general linear groups over a finite
field, Ann. of Math. 96 (1972) 552-586.

--=—-- 3: On the endomorphism ring of a simple module over an enveloping algebra, Proc.

146



139 6

Amer. Math. Soc. 21 (1969) 171-172.

L. Roberts: Real quadrics and K, of a curve of genus zero, Mathematical Preprint No.

1
1971-60, Queen's University at Kingston.

G. Segal 1: Classifying spaces and spectral sequences, Publ, Math. I.H.E.S. 34 (1968)
105-t12.

~——— 2: Categories and cohomology theories, preprint, Oxford 1972.
R. G. Swan: Algebraic K-theory, Lecture notes in Math. 76 (1968).
J. Tornehave: On BSG and the symmetric groups (to appear).

EGA: Elements de Géométrie Algébrique, by A. Grothendieck and J. Dieudonné
EGA II: Publ. Math, I.H.E.S. 8 (1961)
EGA III (first part): ~—— 11 (1961)
EGA IV (third part): =-—e— 28 (1966) .

SGA: Séminaire de Géométrie Algébrique du Bois Marie, by A. Grothendieck and others
SGA 1: Lecture Notes in Math. 224 (19T1)
SGA 6: — 225 (1971)
SGA 2: Cohomologie locale des faisceaux cohérents et Théoremes de Lefschetz locaux
et globaux, North-Holland Publ. Co. 1968.

Massachusetts Institute of Technology

147



