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ABSTRACT GOERSS-HOPKINS THEORY

PIOTR PSTRĄGOWSKI, PAUL VANKOUGHNETT

Abstract. We present an abstract version of Goerss-Hopkins theory in the setting of a
prestable ∞-category equipped with a suitable periodicity operator. In the case of the ∞-
category of synthetic spectra, this yields obstructions to realizing a comodule algebra as a
homology of a commutative ring spectrum, recovering the results of Goerss and Hopkins.
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1. Introduction

Goerss-Hopkins obstruction theory gives obstructions to realizing an algebra in E∗E-comodules
as E-homology of a commutative ring spectrum [GH04], [GH05].

A famous application of these results is the Goerss-Hopkins-Miller theorem, which states
that Morava E-theory spectrum admits an essentially unique structure of an E∞-ring spectrum,
which is strictly functorial in the underlying formal group law, producing an action of the Morava
stabilizer group. This action, and the corresponding fixed point spectra constructed by Devinatz
and Hopkins [DH04], are essential in modern chromatic homotopy theory and have led to many
results of both conceptual and computational power, such as the construction of the spectrum
of topological modular forms [GHMR05], [Rog05], [Beh14], [BH11], [BGH17].

In this note, we give an independent and more general account of Goerss-Hopkins theory, suit-
able for realizing objects from homological data in a wide class of stable∞-categories. Moreover,
our approach is also simpler and more direct, making it interesting even in the classical case,
since the original papers [GH04], [GH05] are well-known for their technicality.

The second author was supported by the National Science Foundation Grant No. 1440140, while he was in
residence at the Mathematical Sciences Research Institute in Berkeley, California, during the spring semester of
2019, as well as under Grant No. 1714273.
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Roughly, one can divide our work into two parts, the first being a construction of an ap-
propriate ∞-category of synthetic objects, where one can work with "resolutions". In the case
relevant to realizing commutative ring spectra, one needs an appropriate theory of synthetic
E-local spectra; these have been constructed by the first author in [Pst18b].

The second part, to which this note is devoted, takes such an ∞-category of "resolutions" as
an input and defines an appropriate tower of moduli of potential n-stages, the definition of which
goes back to the fundamental work of Blanc, Dwyer and Goerss [BDG04]. The obstruction theory
is then derived from the detailed study of this tower; essentially, the obstructions are obtained
from the deformation theory of algebras in synthetic objects.

1.1. Existence of realizations

Suppose that C is a graded symmetric monoidal, complete Grothendieck prestable∞-category;
that is, C is the subcategory of connective objects in a well-behaved stable ∞-category.

We say a commutative algebra A ∈ CAlg(C) is shift if we have a map τ : ΣA[−1] → A of
A-modules which induces an isomorphism π∗A ≃ (π0A)[τ ]. We say an A-module M is periodic
if π∗M ≃ π∗A⊗π0A π0M ≃ (π0M)[τ ] and that it is flat if additionally π0M is flat over π0A.

Let A be a shift algebra such that ModA(C) is generated under colimits by flat modules. In
this note, we present Goerss-Hopkins obstruction theory as giving obstructions to constructing
a periodic A-algebra with prescribed homotopy groups.

Theorem 1.1 (5.5, 5.6). Let S be a commutative π0A-algebra in C
♥. Then, there exists a

sequence of inductively defined obstructions

θn ∈ Extn+2,n
ModS(C♥)

(LE∞

S/π0A
, S), where n ≥ 1,

which vanish if and only if there exists a periodic commutative A-algebra R such that π0R ≃ S
as π0A-algebras.

The Ext-groups appearing in the statement are a form of André-Quillen cohomology; more
precisely, it is the André-Quillen cohomology of S considered as an E∞-π0A-algebra. These
groups are completely algebraic and relatively computable, giving the statement its power.

In the body of the paper, we also prove variants of Theorem 1.1 which give obstructions
to constructing periodic Ek-algebras for k <∞, as well as a “linear” version relating to periodic
A-modules, see Theorem 4.9 and Corollary 4.10.

The notions of shift algebra and periodic module are very general, and not necessarily of
interest in their own. Rather, the usefulness of Theorem 1.1 comes from the fact that for
specific choices of the ∞-category C, periodic A-modules can be identified with various kinds of
topological objects, yielding a variety of obstruction theories.

The classical case considered by Goerss and Hopkins is obtained by letting C be the ∞-
category Syn of synthetic spectra, as described in [Pst18b], which informally plays the role of
the “derived ∞-category of spectra”. There is an ∞-category of synthetic spectra associated to
each Adams-type homology theory E, and its monoidal unit 1 is a shift algebra.

The fundamental property of Syn is that its heart Syn♥ is equivalent to the category of
E∗E-comodules, while the ∞-category Modper

1

(Syn) of periodic objects is equivalent to E-local
spectra. Thus, synthetic spectra act as an intermediary between the world of spectra and the
world of comodules. Specialized to Syn, Theorem 1.1 takes the following familiar form.

Theorem 1.2 (Goerss-Hopkins, 6.6, [GH04]). Let E be Morava E-theory and let S be a com-
mutative algebra in E∗E-comodules, where E∗E = π∗(E ∧ E). Then, there exists a sequence of
inductively defined obstructions

θn ∈ Extn+2,n
ModS(ComodE∗E)(L

E∞

S/E∗
, S), where n ≥ 1

which vanish if and only if there exists an E∞-ring spectrum E such that E∗R ≃ S as comodule
algebras.
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In the statement of Theorem 1.2 we restrict to the case of Morava E-theory, since to prove
a result at this level of generality one needs to know that the ∞-category of synthetic spectra
based on E has convergent Postnikov towers. This additional assumption does not appear in the
original papers [GH04], [GH05]; we believe that this is a mistake, see Remark 6.11.

To fill the gap, we prove in Theorem 7.4 that synthetic spectra based on Morava E-theory
have convergent Postnikov towers, which is related to the fact that the the E-local Adams-
Novikov spectral sequence always converges [HS99, 5.3]. This is enough to yield the Goerss-
Hopkins-Miller theorem, whose proof we also review in the interest of being self-contained.

On the other hand, we suspect that Postnikov convergence does not hold in general for
synthetic spectra based on either BP or HFp. In such cases, which are often of interest, variants
of Theorem 1.2 for a fixed comodule can be obtained by adding in an additional step which
establishes the needed convergence by hand.

This phenomena of additional conditions is familiar from the classical Toda obstruction theory
to the existence of spectra realizing a given module M over the Steenrod algebra, as explained in
[BE16], [Mar11]. To show that these convergence issues can be dealt with, we use Goerss-Hopkins
theory to prove a homological version of a classical result of Toda.

Theorem 1.3 (Toda, 8.6). Let H = HFp be the Eilenberg-MacLane spectrum and let M be
a H∗H-comodule which is bounded below. Then, there exists a sequence of inductively defined
obstructions

θn ∈ Extn+2,n
ComodH∗H

(M,M), where n ≥ 1

which vanish if and only if there exists a spectrum X such that H∗X ≃M as comodules.

To prove the convergence of Postnikov towers needed to establish Theorem 1.3, we have
to work a little harder than in the case of Morava E-theory. The argument we give uses in an
essential way the vanishing lines in the E2-term of the classical Adams spectral sequence, which
are of positive slope, proving the result only in the bounded below case.

In fact, our arguments prove variants of Toda’s obstruction theory hold whenever the needed
vanishing lines are present. Notably, one also obtains an obstruction theory to realization of
bounded below BP∗BP -comodules, see Remark 8.7.

1.2. Mapping spaces and spectral sequences

While Theorem 1.1 and Theorem 1.2 allow one to prove that certain realizations exist,
one can also say something about the mapping spaces between them. To state this result, it will
be convenient for us to sketch our constructions.

As before, let C be a graded symmetric monoidal prestable ∞-category and let A be a com-
mutative shift algebra in C, which we recall means that π∗A ≃ (π0A)[τ ]. Our goal is to describe
the∞-category of periodic A-algebras, that is, those that satisfy π∗R ≃ π0R⊗π0Aπ∗A; the main
idea is to interpolate between A-algebras and π0A-algebras by using the Postnikov tower of A.

By an easy computation one sees that an A-module R is periodic if and only if π0A⊗A R is
discrete. This condition can be naturally generalized, so that we say that a commutative A≤n-
algebra Rn is a potential n-stage if π0A⊗A≤n

Rn is discrete. This leads to the Goerss-Hopkins
tower of ∞-categories

CAlg(ModperA )→ . . .→ CAlg(M1)→ CAlg(M0),

where CAlg(Mn) is the ∞-category of potential n-stages and the connecting functors are given
by extension of scalars.

It is clear from the definitions that the base of this tower is the category of discrete π0A-
algebras; moreover, the composite CAlg(ModperA ) → CAlg(M0) can be identified with taking
π0. Thus, any discrete π0A-algebra S determines a point in the base, and to realize S as the
homotopy of a periodic algebra is the same as to lift the given point to CAlg(ModperA ).
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If C has convergent Postnikov towers, the Goerss-Hopkins tower is a limit diagram; to lift the
chosen point to the top of the tower it is then enough to construct a compatible sequence of
lifts along the functors CAlg(Mn+1) → CAlg(Mn). Since the Postnikov tower of A is a tower
of square-zero extensions, one can find cohomological obstructions to the existence of such lifts
using the theory of the cotangent complex. These are exactly the obstructions appearing in the
statement of Theorem 1.1.

As an another consequence of the convergence of the Goerss-Hopkins tower, we have that if
R,S are periodic A-algebras, then map(R,S) ≃ lim

←−
map(Rn, Sn), where Rn ≃ A≤n ⊗A R and

Sn ≃ A≤n ⊗A S are the corresponding potential n-stages. Thus, we can understand map(R,S)
by first describing the spaces map(Rn, Sn), which can be done inductively.

It is not hard to see that when n = 0, map(Rn, Sn) can be identified with the set of maps
π0R → π0S of π0A-algebras, considered as a discrete space. It is then natural to ask for the
difference between the mapping spaces for n and (n−1). This is provided by the following result.

Theorem 1.4 (5.7). Let Rn, Sn be potential n-stages and let φ : Rn−1 → Sn−1 be a map between
the corresponding potential (n− 1)-stages. Then, there exists an obstruction

θφ ∈ Extn+1,n
Modπ0Rn

(C♥)
(LE∞

π0Rn/π0A
, π0Sn)

which vanishes if and only if φ lifts to a map Rn → Sn. If such a lift exists, then the homotopy
groups of the space Fφ of lifts are given by the formula

πkFφ ≃ Extn−k,n
Modπ0Rn

(C♥)
(LE∞

π0Rn/π0A
, π0Sn).

Note that for simplicity, we gave only the description of the homotopy groups of the space of
lifts, but the more precise version on Theorem 1.4 given in the main body of the text in fact
identifies Fφ with a space of paths in a certain André-Quillen cohomology space. As in the case
of Theorem 1.1, we also prove variants for Ek-algebras.

Note that if R,S are periodic A-algebras, then the expression map(R,S) ≃ lim
←−

map(Rn, Sn)
of the mapping space between them as a limit of a tower leads in a natural way to a spectral
sequence; in this context, Theorem 1.4 can be interpreted as describing the relevant E1-term.
Restricting to the case of realizations of commutative ring spectra, we recover the following
classical result of Goerss and Hopkins.

Theorem 1.5 (6.8). Let E be Morava E-theory and let φ : R → S be a homomorphism of
E-local E∞-ring spectra. Then, there is a first quadrant spectral sequence converging to

πt−s(mapCAlg(SpE)(R,S);φ),

the homotopy groups of the space of E∞-ring maps from R to S based at φ, with the E1-term

Es,t
1 = Ext2t−s,s

ModE∗R(ComodE∗E)(L
E∞

E∗R/E∗
, E∗S)

for s > 0 and E0,0
1 = mapCAlg(ComodE∗E)(E∗R,E∗S).

The spectral sequence of Theorem 1.5 is a the spectral sequence of a tower of spaces, so that
it is not necessary to start with a point φ ∈ map(R,S); rather, such a point can be constructed
inductively using the obstructions of Theorem 1.4. As before, we state the result for Morava
E-theory, but it is valid for any Adams-type homology theory after imposing restrictions that
guarantee the convergence of the associated Goerss-Hopkins tower.

1.3. Related work

It is important to stress that there is real power in the fact that Goerss-Hopkins theory yields
not only information about the existence of a realization, but gives a description of the whole
∞-category of such realizations, describing it as a limit of a tower. These towers can be used
to prove a variety of results; for example, they were used by Lurie and Hopkins to study the
Brauer groups of Morava E-theory [LH].
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To give a different example, Goerss-Hopkins towers were also used by the first author to prove
that at large primes, there is an equivalence hSpE ≃ hD(E∗E) of homotopy categories between
E-local spectra and differential E∗E-comodules [Pst18a]. The proof of that result proceeds by
comparing topological and algebraic towers and so crucially depends on the additional generality
provided in this note.

We should mention that in the original papers [GH04, GH05], Goerss and Hopkins allow one
to work with different operads on the topological and algebraic side, spelling out an explicit
compatibility condition. This allows, for example, to introduce power operations as part of the
realization data. For ease of exposition, we do not pursue this idea here.

A different approach to Goerss-Hopkins obstruction theory is present in the work of Mazel-
Gee [MG18]. Compared to ours, the approach of Mazel-Gee is closer in spirit to the original
works of Goerss and Hopkins, generalizing the theory to a setting of an arbitrary presentable
∞-category through the use of model ∞-categories.

1.4. Notation and conventions

By an∞-category we always mean a quasicategory. We freely use the theory of∞-categories
as developed by Joyal and Lurie, the standard reference is [Lur09]. All constructions should be
understood in the homotopy-invariant sense, in particular limits and colimits.

If f : c→ d is a map in a presentable ∞-category, then we say that f is an n-equivalence if it
induces an equivalence τ≤nc→ τ≤nd between n-truncations. If C is prestable, this is equivalent
to saying that f induces isomorphisms πkc→ πkd between homotopy groups for k ≤ n.

If C is a prestable ∞-category and a, b ∈ C, we write ExtsC(a, b) := π0map(a,Σsb). If A is an
abelian category and a, b ∈ A, then we also write ExtsA(a, b) := ExtsD(A)(a, b), which reduces to
the Ext-groups of A in the usual sense.

If A is an Ek-algebra object in some symmetric monoidal∞-category, where 1 ≤ k ≤ ∞, then
there is an ∞-category of Ek-A-modules ModEk

A [Lura][3.3.3]. If k = 1, this is equivalent to the
∞-category of A-bimodules, and when k = ∞, then this is the ∞-category of left A-modules.
We write

mapEk

A (M,N)

for the space of Ek-A-module maps M → N . If f : A → B is a map of Ek-algebra objects in
some symmetric monoidal ∞-category, then it induces an adjunction

f∗ : ModEk

A ⇆ ModEk

B : f∗

where f∗ is the base change functor and f∗ is the forgetful functor.

1.5. Acknowledgements

Considering the subject matter, and the fact that he supervised both of the authors, it comes
as no surprise that we are heavily indebted to Paul Goerss, whom we would like to thank for his
support and guidance.

The first author would also like to thank Kyoto University, where the interesting parts of this
note were first written down. The second author was inspired to work on this project by the
Talbot workshop on obstruction theory, and would particularly like to thank Maria Basterra
and Sarah Whitehouse, the mentors of the workshop, as well as Dominic Culver, for helpful
conversations there.

2. Periodic modules in prestable ∞-categories

In this section we review the theory of Grothendieck prestable ∞-categories, due to Lurie.
Then, we introduce the notion of a periodic module over a shift algebra, and we derive their
basic properties.
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Informally, the kind of ∞-categories we consider come equipped with a periodicity operator
τ . Then a shift algebra A is an associative algebra whose homotopy groups form a polynomial
algebra π∗A ≃ (π0A)[τ ], and an A-module M is periodic if π∗M ≃ π∗A⊗π0A π0M . In this note,
we phrase Goerss-Hopkins theory as giving obstructions to constructing a periodic algebra with
specified homotopy groups.

As explained in the introduction, the notions of a shift algebra and periodicity module are
very general, and not necessarily of interest in their own right. Rather, working at this level of
generality is useful since one can construct various “designer” prestable ∞-categories in which
periodic modules can be identified with a desired type of topological objects, see Example 2.18,
Example 2.19.

Definition 2.1. Recall that an ∞-category C is Grothendieck prestable if there exists a pre-
sentable, stable ∞-category D equipped with a t-structure (D≥0,D≤0) compatible with filtered
colimits and an equivalence C ≃ D≥0 [Lurb, C.1.4.2]. This in particular implies that C is pre-
sentable and additive.

Example 2.2. If R is a connective ring spectrum, then the ∞-category of ModR(Sp≥0) of
connective R-modules is Grothendieck prestable. In fact, this example is universal in the sense
that any other Grothendieck prestable ∞-category can be obtained by a left exact localization
of one of this form [Lurb, C.2.4.1].

Remark 2.3. If C is Grothendieck prestable, there is a canonical choice of a stable D equipped
with a t-structure such that C ≃ D≥0. Namely, one can take D to be Sp(C), the ∞-category of
spectrum objects in C [Lurb, C.1.2.10, C.3.1.5].

The∞-category Sp(C) is called the stabilization of C, and it is the universal stable, presentable
∞-category equipped with a cocontinuous functor out of C. One can show that the functor
C → Sp(C) is fully faithful and its essential image is the connective part of a canonical t-
structure compatible with filtered colimits. Thus, Grothendieck prestable ∞-categories are a
convenient way to encode a stable ∞-category together with a choice of a t-structure.

If C is Grothendieck prestable, then by C♥ we denote the heart ; that is, the subcategory of
discrete objects. One can show that the category C♥ is Grothendieck abelian [Lura, 1.3.5.23].
Note that the embedding of Remark 2.3 induces an equivalence C

♥ ≃ Sp(C)♥, where by the
latter we mean the heart of the canonical t-structure on Sp(C), justifying the terminology.

Definition 2.4. Let C be Grothendieck prestable and let X ∈ C. Then, by the homotopy groups
πiX ∈ C♥ we mean the homotopy groups of the image of X in Sp(C) with respect to its canonical
t-structure.

One can give an explicit formula for the homotopy groups. Namely, for i ≥ 0 we have
πiX ≃ (ΩiX)≤0 as objects of C♥, where by (−)≤0 we denote the 0-truncation, while the negative
homotopy groups vanish. In particular, π0X ≃ X≤0 is just the discretization of X .

Definition 2.5. We say a Grothendieck prestable ∞-category C is separated if the homotopy
groups detect equivalences; in other words, if a map X → Y is an equivalence in C if and only
if πnX → πnY is an isomorphism in C♥ for every n.

We say C is complete if the Postnikov towers in C converge, meaning that for every X ∈ C,
the natural map X → lim

←−n
X≤n is an equivalence.

Note that a complete Grothendieck prestable ∞-category is separated, but the converse is
not true.

Example 2.6. If A is a Grothendieck abelian category, then the connective derived∞-category
D(A)≥0 is separated Grothendieck prestable and we have D(A)♥≥0 ≃ A. In fact, one can show

that it is a universal such ∞-category [Lurb, C.5.4.9].
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On the other hand, the ∞-category D(A)≥0 is not necessarily complete, the counterexample
due to Neeman being the case of the category A of representations of the additive group in
positive characteristic [Nee11].

Example 2.7. Any stable, presentable ∞-category is Grothendieck prestable, but it is never
separated in the sense of Definition 2.5 unless it is zero.

Definition 2.8. A grading on a symmetric monoidal Grothendieck prestable∞-category C is a
choice of a distinguished autoequivalence which we denote by c 7→ c[1], together with a natural
equivalence c[1]⊗ d ≃ (c⊗ d)[1].

Observe that the chosen equivalences together with the symmetry imply more generally that
c[l] ⊗ d[k] ≃ (c ⊗ d)[k + l] for c, d ∈ C and k, l ∈ Z. Note that we implicitly assume that the
given symmetric monoidal structure is presentable, that is, that it commutes with colimits in
each variable. We will denote the unit of C by 1.

Remark 2.9. Since a grading on C is an auto-equivalence, it preserves the subcategory C♥ of
discrete objects, and thus makes C♥ into a graded abelian category. This grading is compatible
with the one on C, in the sense that

πiA[k] ≃ (πiA)[k].

Moreover, there are bigraded Ext groups between objects in C♥, defined by

Exts,t
C♥(A,B) = mapD(C♥)(A,Σ

sB[−t]).

Similarly, a symmetric monoidal structure on C induces one on C♥, the unique one for which
the truncation functor π0 : C→ C♥ is symmetric monoidal. In particular, the unit of C♥ is given
by π01 ≃ 1≤0.

Example 2.10. Any symmetric monoidal Grothendieck prestable ∞-category can be trivially
graded by making the chosen autoequivalence the identity.

Example 2.11. If A is the abelian category of graded modules over a graded ring, then D(A)≥0

is canonically a graded symmetric monoidal, separated Grothendieck prestable ∞-category.
Here, the symmetric monoidal structure is induced from the tensor product, and the grading is
induced by the internal shift of modules.

Example 2.12. The∞-category Syn of hypercomplete, connective synthetic spectra, as defined
in [Pst18b], is a graded symmetric monoidal, separated Grothendieck prestable ∞-category. As
explained in the introduction, this∞-category is the context for the Goerss-Hopkins obstruction
theory to realizing an algebra in comodules as homology of a ring spectrum. This ∞-category
will be discussed in more detail in section 6.

We will now describe a theory of shift algebras and periodic modules over them. Throughout
the rest of the section, we assume that C is a fixed graded symmetric monoidal, separated
Grothendieck prestable ∞-category.

Definition 2.13. A shift algebra A is an associative algebra A ∈ Alg(C) equipped with a map
τ : ΣA[−1] → A of right A-modules which induces an isomorphism π∗A ≃ π0A[τ ], where the
latter is the graded algebra in C♥ given by (π0A[τ ])k ≃ (π0A)[−k].

Our notion of a shift algebra is rather weak, as we only require that the homotopy groups of
A resemble a polynomial algebra over π0A. Note that A itself need not be a π0A-algebra.

Example 2.14. In the ∞-category Syn of synthetic spectra of Example 2.12, the monoidal
unit 1 is given by the synthetic analogue νS0

E of the E-local sphere, and is in fact a shift algebra
[Pst18b, 4.61, 4.21]. This is an example of a shift algebra which is commutative.
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Example 2.15. If k ∈ CAlg(C♥) is a discrete commutative algebra, then there is a unique up
to equivalence shift k-algebra A with π0A ≃ k. To see that one exists, notice that Fk(Σk[−1]),
the free associative k-algebra on Σk[−1], is a shift k-algebra.

To see that this is the only one, assume that A is any other shift k-algebra with π0A ≃ k.
Then, the k-linear composite Σk[−1]→ ΣA[−1] → A induces a map Fk(Σk[−1])→ A which is
necessarily an equivalence, as we see by inspecting the homotopy groups.

If M is a left A-module, then we have a morphism τ⊗AM : ΣM [−1]→M , which by abuse of
notation we will also denote by τ . Note that this is in general only a morphism of the underlying
objects, but not necessarily of A-modules, unless A is commutative.

We will now introduce a notion of a periodic module over a shift algebra. Roughly, a periodic
A-module is one on which τ acts as close to an equivalence as possible.

Proposition 2.16. Let A be a shift algebra, and let M be a left A-module. Then the following
conditions are equivalent:

(1) π∗M ≃ π∗A⊗π0A π0M .
(2) π0A⊗A M is a discrete object of C.
(3) τ : ΣM [−1]→M is a 1-connective cover.

Proof. By looking at the homotopy groups, we see that τ induces a cofibre sequence

ΣA[−1]→ A→ π0A

of right A-modules. By tensoring it with M we obtain a cofibre sequence

(2.1) ΣM [−1]→M → π0A⊗A M

which immediately implies that (2) and (3) are equivalent.
If (2) and (3) are satisfied, then the long exact sequence of homotopy groups of (2.1) gives

π0M ≃ π0A⊗A M,

πkM ≃ τπk−1M [−1] = π1A⊗ πk−1M for k > 0.

This gives (1). Conversely, if (1) is satisfied, then πkM ≃ τkπ0M [−k], which immediately implies
(3). �

Definition 2.17. We say that a left A-module M ∈ ModA(C) is periodic if it satisfies the
equivalent conditions of Proposition 2.16. We denote the full subcategory of ModA(C) spanned
by the periodic modules by ModperA (C).

For specific choices of C, ModperA (C) can be often identified with various ∞-categories of
interest. Let us give a couple of examples.

Example 2.18. If C is the ∞-category of synthetic spectra considered in Example 2.14, the
∞-category Mod

1

(Syn) of periodic modules can be shown to be equivalent to the ∞-category
SpE of E-local spectra [Pst18b, 4.36, 5.6].

Example 2.19. In their paper [LH], Hopkins and Lurie introduce a graded symmetric monoidal,
separated Grothendieck prestable ∞-category SynE of synthetic E-modules, where E is the
Morava E-theory ring spectrum. They show that the monoidal unit is a shift algebra, and that
periodic objects can be identified with the ∞-category of K(n)-local E-modules in spectra.

Example 2.20. If R is a discrete commutative ring, then there is a unique shift algebra A in
D(R)≥0 with π0A ≃ R, see Example 2.15. The ∞-category of periodic A-modules can be
identified with what is known in algebra as the periodic derived ∞-category of R.
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One can notice that in all of our examples, the ∞-category ModperA (C) of periodic A-modules
is a stable ∞-category. This is not an accident: under very minor assumptions, one can show
that a periodic A-module uniquely encodes a τ -local one; that is, an A-module M such that
τ : ΣM [−1]→M is an equivalence. One sees easily that no non-zero module in C could satisfy
this condition, so that to make sense of this we need to allow more general modules in Sp(C).

For simplicity, we will assume that A is an E2-algebra, so that the tensor product endows the
∞-category of A-modules with a monoidal structure and thus τ : ΣM [−1] → M is canonically
a map of A-modules for any M ∈ ModA(C). One can almost certainly get away with weaker
assumptions: see for example the treatment by Lurie of localizations of modules over ring spectra
[Lura, 7.2.4.17].

Definition 2.21. Let A be a shift E2-algebra. We say an A-module M ∈ ModA(Sp(C)) is
τ-local if τ : ΣM [−1] → M is an equivalence. We denote the ∞-category of τ -local A-modules

by Modτ
−1

A (Sp(C)).

The inclusion Modτ
−1

A (Sp(C)) →֒ ModA(Sp(C)) is easily seen to have a left adjoint Lτ given
by the explicit formula

LτM := lim
−→

M → Σ−1M [1]→ Σ−2M [2]→ . . ..

Thus, Modτ
−1

A (Sp(C)) is a localization of ModA(Sp(C)). This localization is smashing, since
τ -local modules are clearly closed under colimits, and compatible with the monoidal structure,
since the tensor product M ⊗A N is τ -local if one of M , N is.

Proposition 2.22. The connective cover functor (−)≥0 and the localization Lτ restrict to in-

verse equivalences ModperA (C) ≃Modτ
−1

A (Sp(C)) between the ∞-categories of periodic A-modules
in C and τ-local A-modules in Sp(C).

Proof. If M is periodic, then the map τ : M → Σ−1M [1] is a 0-connective cover. Since the
t-structure on Sp(C) is compatible with filtered colimits, we deduce that the same is true for the
inclusion M → LM ≃ lim

−→
Σ−kM [k] and so the canonical map M → (LM)≥0 is an equivalence.

We deduce that it is enough to show that the functor (−)≥0 : Modτ
−1

A (Sp(C))→ModA(C) is
conservative. This is clear, since a map M → N is an equivalence if and only if π∗M → π∗N
is an isomorphism. Since the latter are modules over (π0A)[τ

±1] when M,N are τ -local, this
happens if and only if π0M → π0N is an isomorphism, proving the claim. �

Corollary 2.23. Let A be a shift E2-algebra. Then, the ∞-category ModperA (C) of periodic
A-modules is stable.

Proof. This is immediate from Proposition 2.22, since the ∞-category Modτ
−1

A (Sp(C)) is
clearly stable, in fact a thick subcategory of ModA(Sp(C)). �

3. Modules over truncations

In this section, we discuss the relations between the ∞-categories of modules over Postnikov
truncations of an associative algebra A. We make no claim to originality, as we closely follow the
account of Hopkins and Lurie [LH, 7.3], filling in the details and making sure that the arguments
work in the generality in which we need them.

Throughout the section, we fix a symmetric monoidal, separated Grothendieck prestable ∞-
category C and we let A ∈ Alg(C) be an associative algebra. To fix ideas, by a module we will
mean a left module in C, and we use the shorthand notation ModA := ModA(C).

Since truncations are lax symmetric monoidal when considered as endofunctors of C, we can
associate to A a tower of associative algebras

(3.1) A→ . . .→ A≤n → . . .→ A≤1 → A≤0.



ABSTRACT GOERSS-HOPKINS THEORY 10

given by the Postnikov truncations. This is in fact necessarily a tower of square-zero extensions
[Lura, 7.4.1.28], a fact which will become important later. This tower of algebras induces a tower
of Grothendieck prestable ∞-categories

(3.2) ModA → . . .→ModA≤n
→ . . .→ModA≤1

→ModA≤0
,

where the indicated functors are given by base change along the maps in (3.1).
In general, we would like to use the tower (3.2) to inductively describe ModA. To make this

work, one has to understand three things, namely

(1) the ∞-category ModA≤0
,

(2) the difference between ModA≤n
and ModA≤n−1

, and
(3) the relation between ModA and lim

←−
ModA≤n

.

In this section, we will give answers to (2) and (3) in the generality of an arbitrary associative
algebra A, and an answer to (1) that applies to the kind of shift algebras we have in mind. We
will proceed in an order reverse to the one given above.

We start with the relation between ModA and ModA≤n
, which, assuming that the ambient

Grothendieck prestable ∞-category C is complete, is as one would expect.

Lemma 3.1. The restriction of scalars functor ModA≤k
→ModA induces an equivalence between

the ∞-categories of k-truncated objects. In other words, any k-truncated A-module is uniquely
an A≤k-module.

Proof. Since the truncation endofunctor (−)≤k : C→ C is lax symmetric monoidal, it induces a
functor (−)≤k : ModA →ModA≤k

. This functor is readily verified to be inverse to the restriction
of scalars when restricted to the subcategories of k-truncated objects. �

Proposition 3.2. Assume that C is complete; in other words, that Postnikov towers in C

converge. Then, the extension of scalars functors ModA → ModA≤k
induce an equivalence

ModA ≃ lim
←−

ModA≤n
.

Proof. Notice that since C is complete, the same is true for the ∞-category ModB of modules
over any associative algebra B ∈ Alg(C), so that in any such case we have an equivalence
ModB ≃ lim

←−
τ≤kModB, where by τ≤kModB we denote the subcategory of k-truncated objects.

Using the above statement for B = A≤n we see that we only need to prove that

ModA ≃ lim
←−n

ModA≤n
≃ lim
←−n

lim
←−k

τ≤kModA≤n
≃ lim
←−k

lim
←−n

τ≤kModA≤n
,

where we’ve used that limits can always be commuted with other limits. By Lemma 3.1, the
maps τ≤kModA → τ≤kModA≤n

are equivalences for n ≥ k, thus lim
←−n

τ≤kModA≤n
≃ τ≤kModA

for any k. We deduce that the needed statement is equivalent to ModA ≃ lim
←−k

τ≤kModA which

is clear from completeness of ModA. �

We will now describe the relation between ModA≤n
and ModA≤n−1

, which can be derived
as a formal consequence of the fact that the Postnikov tower of A is a tower of square-zero
extensions of a particular form. Our account follows Hopkins and Lurie very closely, especially
their introduction of what we call the Θ-functor.

Lemma 3.3. Let f : A → B be a map of algebras which is a 0-equivalence, meaning that f
induces an isomorphism π0A

∼
→ π0B. Then, the extension of scalars functor f∗ : ModA →ModB

is conservative; that is, it reflects equivalences.

Proof. Since both ∞-categories in question are prestable, a map M → N is an equivalence in
either one if and only if the cofibre vanishes. Since extension of scalars is cocontinuous, it is
enough to show that if M ∈ ModA and B ⊗A M = 0, then M = 0. Because we assume C to
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be separated, it is enough to show that M is n-connected for all n ≥ 0, which we will prove by
induction.

To cover the base case, notice that because the map A → B is a 0-equivalence, the same
must be true for M → B ⊗A M , since the relative tensor product can be computed using the
bar construction and 0-equivalences are closed under colimits. It follows that M is 0-connected,
since B ⊗A M vanishes by assumption.

Now let n > 0 and assume that we know that any A-module M such that B ⊗A M = 0 is
(n−1)-connected. Suppose that M is such an A-module. Since M is 0-connected, by prestability
we can write M = ΣN for some other A-module N . We have

Σ(B ⊗A N) ≃ B ⊗A (ΣN) ≃ B ⊗A M = 0

and by prestability we deduce that B ⊗A N = 0. By the inductive hypothesis, we deduce that
N is (n− 1)-connected and thus M is n-connected, which ends the argument. �

Corollary 3.4. For any algebra A and 0 ≤ l ≤ k ≤ ∞, the extension of scalars functor
A≤l ⊗A≤k

− : ModA≤k
→ModA≤l

is conservative.

Proof. This is immediate from Lemma 3.3. �

Recall that the Postnikov tower of A is a tower of square-zero extensions of associative algebras
[Lura, 7.4.1.28]. Define Fn ∈ModA≤n

by the fibre sequences

Fn → A≤n → A≤n−1,

so that the homotopy of Fn is necessarily concentrated in degree n. By [Lura, 7.4.1.26], there is
a pullback square in Alg(C) of the form:

A≤n A≤n−1

A≤n−1 A≤n−1 ⊕ ΣFn.

(♠)d

d0

Here, A≤n−1 ⊕ ΣFn is a trivial square-zero extension, and d0 is the trivial section, while the
map d : A≤n−1 → A≤n−1 ⊕ ΣFn is some other map of algebras, which depends on the actual
square-zero extension A≤n → A≤n−1. We now show that this diagram also induces a pullback
square of module ∞-categories.

Proposition 3.5. The commutative square of module ∞-categories and extension of scalars
functors

ModA≤n
ModA≤n−1

ModA≤n−1
ModA≤n−1⊕ΣFn

d∗

d∗0

induced by the diagram (♠) is a pullback square of ∞-categories. That is, there is a canonical
equivalence between ModA≤n

and the ∞-category of triples (M,N,α), where M,N ∈ModA≤n−1

and α : d∗0X ≃ d∗Y .

Proof. This appears in the work of Hopkins and Lurie as [LH, 7.3.6], but for convenience of the
reader we recall the argument. There is an adjunction

F : ModA≤n
⇆ ModA≤n−1

×ModA≤n−1
⊕ΣFn

ModA≤n−1
: G,

where F is induced by base change around the diagram (♠), and its right adjoint G is given
informally by the formula

(M,N,α) 7→M ×d∗
0
M N.
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We would like to show that F and G are inverse equivalences. We first show that the unit of
the adjunction is an equivalence; that is, for any M ∈ModA≤n

, the square

M //

��

A≤n−1 ⊗A≤n
M

��

A≤n−1 ⊗A≤n
M // (A≤n−1 ⊕ ΣFn)⊗A≤n

M

is a pullback square. In fact, (♠) is easily seen to be a pushout square of A≤n-bimodules, so it
is taken to a pushout square by tensoring with M . But C is prestable, so ModA≤n is prestable,
which implies that this square is also a pullback.

It is now enough to prove that G is conservative. By a direct calculation, G preserves cofibres
and thus by prestability it is enough to check that if (M,N,α) is a triple such that M ×d∗

0
M N

vanishes, then M = 0 and N = 0.
Observe that since both d, d0 are sections of the projection A≤n−1⊕ΣFn → A≤n−1, which is

an n-equivalence, the maps M → d∗0M and N → d∗N ≃ d∗0M are also n-equivalences. It follows
that the projections π0M ×π0d∗

0
M π0N → π0M and π0M ×π0d∗

0
M π0N → π0N are isomorphisms.

Since π0(M×d∗
0
MN)→ π0M×π0d∗

0
M π0N is a surjection by the long exact sequence of homotopy

and the source vanishes by assumption, we deduce that π0M = 0 and π0N = 0.
We conclude that if M ×d∗

0
M N vanishes, then M,N are 0-connected. Arguing inductively as

in the proof of Lemma 3.3, we deduce that they are n-connected for all n ≥ 0, and so vanish.
This ends the argument. �

Observe that Proposition 3.5 gives a description of modules over A≤n in terms of modules
over A≤n−1, which was our goal. Our next step is to show that this description can be further
simplified.

Definition 3.6. We define the functor Θ : ModA≤n−1
→ModA≤n−1

by ΘM = d∗d
∗
0M .

Notice that the underlying object of C of the A≤n−1-module ΘM can be described by the
simple formula

(A≤n−1 ⊕ ΣFn)⊗A≤n−1
M ≃M ⊕ (A≤0 ⊗A≤n−1

M)[−n].

However, the above direct sum acquires an exotic A≤n−1-module structure given by restricting
scalars along the possibly non-zero derivation d.

The unit of the adjunction p∗ ⊣ p∗ induced by the projection p : A≤n−1 ⊕ ΣFn → A≤n−1

induces a map

d∗d
∗
0M → d∗p∗p

∗d∗0M ≃M ,

where in the last equivalence we have used that both d and d0 are sections of p. Thus, we obtain
a natural transformation π : ΘM →M of endofunctors of ModA≤n−1

.

Definition 3.7. We define the∞-categoryΘ-SectA≤n−1
to be the∞-category of triples (M, s, h),

where M ∈ModA≤n−1
, s : M → ΘM , and h is a homotopy from π ◦ s to idM .

Intuitively, Θ-SectA≤n−1
is the ∞-category of A≤n−1-modules M equipped with a section s

of π : ΘM → M . However, it is important to remember that in the ∞-categorical setting, the
homotopy realizing π ◦ s ≃ idM is a necessary part of the data.

Note that the above definition given in terms of tuples is somewhat informal, because it
only describes the objects rather than all of the ∞-categorical structure. For a more detailed
description, see Remark 3.10.

Theorem 3.8. There is an equivalence of ∞-categories

ModA≤n
≃ Θ-SectA≤n−1

.
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Moreover, under this equivalence, the extension of scalars ModA≤n
→ModA≤n−1

corresponds to
the forgetful functor Θ-SectA≤n−1

→ A≤n−1 sending (M, s, h) to M .

Proof. By Proposition 3.5, we can identify ModA≤n
with the ∞-category of triples (M,N,α),

where M,N ∈ModA≤n−1
and α : d∗N → d∗0M is an equivalence. By adjunction, α corresponds

to a map α′ : N → ΘM of A≤n−1-modules.
We claim that α is an equivalence if and only if the composite π ◦α′ : N → ΘM →M is. To

see this, notice that under the identification p∗d∗N ≃ N and p∗d∗0M ≃M coming from the fact
that both d, d0 are both sections of the projection p : A≤n−1 ⊕ ΣFn → A≤n−1, the composite
π ◦ α′ can be identified with p∗α : p∗d∗M → p∗d∗0N . Then, the claim follows immediately from
the fact that p∗ is conservative, which is Lemma 3.3. It follows that ModA≤n

can be described

as the ∞-category Mod
(M,N,α′)
A≤n−1

of triples (M,N,α′) with α′ : N → ΘM having the property

that π ◦ α′ is an equivalence.
Consider the ∞-category of quintuples (M,N,α′, β, h), where M,N,α′ are as above, β is a

morphism β : M → N of A≤n−1-modules and t is a homotopy witnessing π ◦ α′ ◦ β ≃ idX . It

is not hard to see that the forgetful functor Mod
(M,N,α′,β,h)
A≤n−1

→ Mod
(M,N,α′)
A≤n−1

is fibred in spaces,

that is, it is a Cartesian fibration all of whose fibres are ∞-groupoids. We claim that all of the
fibres are contractible, so that this functor is an equivalence. Indeed, the fibre over any object
(M,N,α′) in the target is equivalent to the space of pairs

(β : M → N, h : π ◦ α′ ◦ β ≃ idM ),

which is precisely the homotopy fibre of the composition map

(π ◦ α′)∗ : ModA≤n−1
(M,N)→ModA≤n−1

(M,M)

over the identity. Since π ◦ α′ is an equivalence, this space is contractible. We deduce that the
forgetful functor is an equivalence of ∞-categories, as promised.

Consider the functor F : Mod
(M,N,α′,β,h)
A≤n−1

→ Θ-SectA≤n−1
given by the formula

F (M,N,α′, β, h) = (M,α′ ◦ β, h).

Similarly to the case above, one can show that the functor F is fibred in spaces. Moreover,
the fibre over any object (M, s, h) of the target can be identified with the space of objects N
equipped with an equivalence β : M ≃ N , which is again contractible. We deduce that F is also
an equivalence, proving the theorem. �

Remark 3.9. If A is commutative, the functor Θ : ModA≤n−1
→ ModA≤n−1

is lax symmet-
ric monoidal, being a composite of two lax symmetric monoidal functors, and the ∞-category
Θ-SectA≤n−1

of Definition 3.7 carries a canonical symmetric monoidal structure. Under these
conditions, the equivalence of Theorem 3.8 can be promoted to an equivalence of symmetric
monoidal ∞-categories.

Remark 3.10. Let us give the promised formal definition of the ∞-category Θ-SectA≤n−1
of

sections, whose objects are triples (M, s, h), where M ∈ModA≤n−1
, s : M → ΘM is a morphism

and h : π ◦s ≃ idM is a homotopy. This construction of such∞-categories is standard; the other
∞-categories of “tuples” appearing in the proof of Theorem 3.8 are defined in the same way.

First, we define the ∞-category of tuples (M, s) through the pullback diagram

Mod
(M,s)
A≤n−1

Fun(∂∆1,ModA≤n−1
)

ModA≤n−1
Fun(∆1,ModA≤n−1

)
(id,Θ)

,
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of simplicial sets, where the right vertical map is induced by the inclusion ∂∆1 →֒ ∆1. To

see that this is the ∞-category we’re after, observe that the 0-simplices of Mod
(M,s)
A≤n−1

are given

precisely by the needed tuples.
Together, the upper horizontal arrow in the diagram above, the natural transformation π and

the identity determine a functor Mod
(M,s)
A≤n−1

→ Fun(∂∆2,ModA≤n−1
) defined by

M

ΘM

M M

s π

id
.

We then define the ∞-category Θ-SectA≤n−1
≃Mod

(M,s,h)
A≤n−1

of triples through the pullback

Θ-SectA≤n−1
Fun(∆2,ModA≤n−1

)

Mod
(M,s)
A≤n−1

Fun(∂∆2,ModA≤n−1
)

(id,Θ)
.

Again, one can verify that the 0-simplices of Θ-SectA≤n−1
are given by the needed triples.

Note that the way we constructed the relevant ∞-categories, both of the forgetful functors

Mod
(M,s,h)
A≤n−1

→ Mod
(M,s)
A≤n−1

and Mod
(M,s)
A≤n−1

→ ModA≤n−1
are inner fibrations, since the inclusions

∂∆1 →֒ ∆1 and ∂∆2 →֒ ∆2 are cofibrations in the Joyal model structure. Thus, the coCartesian
fibrations appearing in the proof of Theorem 3.8 are in fact left fibrations in the sense of Lurie.

Lastly, we give a description of the ∞-category of modules over the 0-truncation of A. Here,
we assume that A is a shift algebra in the sense of Definition 2.13 and that it admits “enough”
periodic modules; this covers the cases we will need.

Theorem 3.11. Suppose that A is a shift algebra in C such that ModA is generated under
colimits by periodic modules. Then, the inclusion Mod♥A≤0

→֒ModA≤0
extends to an equivalence

D(Mod♥A≤0
)≥0 ≃ModA≤0

between the connective derived ∞-category and modules over the 0-truncation. Moreover, we
have Mod♥A≤0

≃Modπ0A(C
♥).

Proof. Since C is Grothendieck prestable, so is ModA≤0
and thus by [Lurb, C.5.4.11] it is enough

to show that ModA≤0
is separated and 0-complicial, that is, is generated under colimits by

discrete objects. That it is separated immediately follows from the fact that the ambient ∞-
category C itself is assumed to be separated. Moreover, since ModA is assumed to be generated
under colimits by periodic modules M , the ∞-category ModA≤0

is generated under colimits by
modules of the form A≤0 ⊗A M with M periodic, which are all discrete by definition.

The equivalence Mod♥A≤0
→Modπ0A(C

♥) is induced by the functor π0. �

4. Linear obstruction theory

In this section we introduce the notion of a potential n-stage for a periodic module and we
develop the basic, linear variant of Goerss-Hopkins obstruction theory.

Let us fix a graded symmetric monoidal, separated Grothendieck prestable ∞-category C

and a shift algebra A ∈ Alg(C) in the sense of Definition 2.13. Recall that an A-module M
is said to be periodic if π∗M ≃ π∗A ⊗π0A π0M ; we will assume that ModA is generated under
colimits by periodic modules. We will typically abbreviate the category of discrete π0A-modules,
Modπ0A(C

♥), by Modπ0A.



ABSTRACT GOERSS-HOPKINS THEORY 15

The linear Goerss-Hopkins theory yields obstructions to constructing a periodic A-module M
with prescribed π0M as a π0A-module, with obstructions lying in Ext-groups between discrete
π0A-modules. Intuitively, the latter arise as a consequence of Theorem 3.11, which states that
the category of modules in C over the 0-truncation A≤0 is equivalent to the derived category of
discrete π0A-modules, so that the mapping spaces therein compute Ext-groups.

Recall that by Proposition 2.16 an A-module M is periodic if and only if π0A ⊗A M is
discrete. This condition readily generalizes to modules over truncations of A, giving rise to the
notion of a potential n-stage. The following definition is classical, going back to the work of
Blanc, Dwyer and Goerss on moduli of Π-algebras [BDG04], [Pst17].

Definition 4.1. We say an A≤n-module M is a potential n-stage for a periodic A-module if
A≤0 ⊗A≤n

M is discrete. We denote the ∞-category of potential n-stages byMn.

Notice that the above definition works for 0 ≤ n ≤ ∞, where by abuse of notation we
write A≤∞ := A, so that a potential ∞-stage is the same as a periodic A-module and we have
M∞ ≃ ModperA (C). On another extreme, a potential 0-stage is the same as a discrete module
over A≤0, so that M0 ≃ Modπ0A(C

♥). This suggests the correct intuition that potential stages
for 0 < n <∞ interpolate between periodic A-modules and discrete π0A-modules.

Remark 4.2. All objects ofMn are n-truncated, see Lemma 4.5 below, so that the∞-category
Mn of potential n-stages is an (n+ 1)-category.

Remark 4.3. Since M0 is Grothendieck abelian, being equivalent to the category of modules
in the Grothendieck abelian category C♥, it is tempting to guess that Mn for n > 0 is a
Grothendieck abelian (n + 1)-category in the sense of [Lurb, C.5.4.1]. This is not the case, as
the ∞-categoriesMn for 0 < n < ∞ are usually not presentable, in fact need not admit finite
limits.

Clearly, potential n-stages are taken to potential m-stages by the extension of scalars functor
along A≤n → A≤m for m ≤ n, so that there is an induced tower of ∞-categories

M∞ → . . .→Mn →Mn−1 → . . .→M0.

In practice,M∞ can usually be identified with an∞-category of geometric objects one wants
to classify, M0 with the category of some algebraic objects, and the arrowM∞ →M0 with a
functor associated to some algebraic invariant. The moduli Mn for 0 < n <∞ stratify the loss
of information present when we pass from a geometric object to an invariant of algebraic type.

Remark 4.4. If C is complete, then the natural maps M∞ → Mn induce an equivalence
M∞ ≃ lim

←−
Mn. To see this, notice that by Proposition 3.2 we have ModA ≃ lim

←−
ModA≤n

,
and one sees immediately that this equivalence restricts to the one we need.

We will now use the relation between the∞-categories of modules over the truncations of the
unit we derived in the previous section to develop an obstruction theory to extending a potential
(n− 1)-stage to a potential n-stage.

Lemma 4.5. Let M ∈ ModA≤n
and n < ∞. Then, M is a potential n-stage if and only if

π∗M ≃ π∗A≤n ⊗π0A π0M .

Proof. This proof is analogous to the one given in Proposition 2.16. In more detail, we have
a cofibre sequence

Σnπ0A[−n]→ A≤n → A≤n−1

of right A≤n-modules, in which the first map is induced from τn : ΣnA[−n] → A by applying
n-truncation. Tensoring this with M gives a cofibre sequence

Σn(π0A⊗A≤n
M)[−n]→M → A≤n−1 ⊗A≤n

M.
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Assume that M is a potential n-stage, and assume for induction that the statement has been
proved for k < n, the case of n = 0 being trivial. Then in particular, we have

π∗(A≤n−1 ⊗A≤n
M) ≃ π∗A≤n−1 ⊗π0A π0M.

This is concentrated in homotopy degrees 0 through n − 1, and likewise, using discreteness of
π0A⊗A≤n

M ,
π∗Σ

n(π0A⊗A≤n
M)[−n] = π0M [−n],

concentrated in homotopy degree n. This implies the needed statement about homotopy groups.
Conversely, the statement about homotopy groups implies that the fibre of

M → A≤n−1 ⊗A≤n
M

is concentrated in homotopy degree n, which means that π0A⊗A≤n
M is discrete. �

Remark 4.6. It follows from Lemma 4.5 that our definition of a potential n-stage is equivalent
to the classical one, as appearing in the work of Goerss and Hopkins [GH05, 3.3.1]. Note that
there is no distinction between A≤n and A-modules in the present case, since by the above any
potential n-stage is n-truncated and it follows by Lemma 3.1 that its A≤n-module structure is
uniquely determined by the underlying A-module.

Recall from Theorem 3.8 that we can identify ModA≤n
with the ∞-category Θ-SectA≤n−1

of triples (M, s, h), where M ∈ModA≤n−1
and s : M → ΘM and h is a distinguished homotopy

idM ≃ π ◦ s witnessing that s is a section of the natural projection π : ΘM →M .
Here, the source ΘM , as defined in Definition 3.6, is given as an object of C by

ΘM ≃M ⊕ (Σn+1A≤0[−n]⊗A≤n−1
M),

but it comes with a possibly exotic A≤n−1-module structure induced by restricting scalars along
a possibly non-trivial derivation d : A≤n−1 → A≤n−1 ⊕ Σn+1A≤0[−n].

We start by making a simple observation about the natural transformation π from Θ to
identity introduced in the discussion following Definition 3.6.

Proposition 4.7. Let M ∈ModA≤n−1
. Then, π : ΘM →M is an n-equivalence.

Proof. Recall that the map π is induced by the unit of the adjunction induced by the projection

p : (A≤n−1 ⊕ Σn+1A≤0[−n])→ A≤n−1.

Then, it follows that π is an n-equivalence since p is, and n-equivalences are preserved by the
relative tensor product because it can be computed using the bar construction. �

Corollary 4.8. Let M ∈ Mn−1 be a potential (n− 1)-stage. Then the cofibre of π : ΘM →M
is equivalent to Σn+2π0M [−n].

Proof. We’ve seen that as an object of C, ΘM ≃ M ⊕ Σn+1(A≤0 ⊗A≤n−1
M), and since M is

assumed to be a potential (n − 1)-stage, the latter summand is a suspension of a discrete one.
Since the map ΘM → M is an n-equivalence by Proposition 4.7, the cofibre must be of the
form given above. �

Theorem 4.9. Let M ∈ Mn−1 be a potential (n − 1)-stage. Then, there exists an obstruction

oM ∈ Extn+2,n
π0A

(π0M,π0M) which vanishes if and only if M can be lifted to a potential n-stage,

that is, if there exists M ′ ∈Mn with M ≃ A≤n−1 ⊗A≤n
M ′.

Proof. By Theorem 3.8, M extends to a potential n-stage if and only if there exists a section
of ΘM →M . Then, by Corollary 4.8, there is a cofibre sequence

ΘM →M → Σn+2π0M [−n]

and the first map admits a section if and only if the second is zero. Thus, the obstruction to the
existence of a section lies in
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mapA≤n−1
(M,Σn+2π0M [−n]) ≃ mapπ0A(π0A⊗A≤n−1

M,Σn+2π0M [−n]),

where we have used that the target is canonically a π0A-module, because it is a suspension of a
discrete object.

Since M is a potential (n − 1)-stage, we have an equivalence π0A ⊗A≤n−1
M ≃ π0M and so

we can further rewrite the above mapping space as

mapπ0A(π0M,Σn+2π0M [−n]).

Through the equivalence ModA≤0
(C) ≃ D(Modπ0A(C

♥))≥0 of Theorem 3.11, this can be iden-
tified with the Ext-group as in the statement of the theorem. �

Corollary 4.10. Suppose that C is complete. Then, for any M ∈Modπ0A there exists a sequence

of inductively defined obstructions in Extn+2,n
π0A

(M,M), where n ≥ 1, which vanish if and only if
there exists a periodic A-module P with π0P ≃M as a π0A-module.

Proof. Since C is complete, we have M∞ ≃ lim
←−
Mn by Remark 4.4. It then follows that the

∞-category of periodic A-modules satisfying the above condition can be identified with

M∞ ×M0
{M} ≃ lim

←−
Mn ×M0

×{M}.

It follows that to a construct a point P in this space it is enough to give a compatible sequence
Mn ≃Mn such that M0 ≃M . The statement is then immediate from Theorem 4.9. �

Remark 4.11. One has to be careful, as the obstruction oM ∈ Extn+2,n
π0A

(π0M,π0M) of Theo-

rem 4.9 associated to a potential (n− 1)-stage M ∈Mn−1 is not canonical.
To see this, notice that the obstruction depends on the choice of an equivalence between

the cofibre of ΘM → M and Σn+2π0M [−n], so that the obstruction is only well-defined up to
the action of the automorphism group AutModπ0A

(π0M). Note that, in particular, whether the
obstruction vanishes does not depend on that choice.

Now that we’ve given an obstruction to lifting a potential (n−1)-stage to a potential n-stage,
we will also relate the mapping spaces between the two.

Proposition 4.12. Let M,N ∈ Mn be potential n-stages and let uM := A≤n−1 ⊗A≤n
M and

uN := A≤n−1 ⊗A≤n
N denote their images in Mn−1. Then, there’s a fibre sequence

mapMn
(M,N)→ mapMn−1

(uM, uN)→ mapD(Modπ0A
(C♥))(π0M,Σn+1π0N [−n]),

where on the right we have the mapping space in the derived category.

Proof. By Remark 4.6, the middle and left mapping spaces can be computed in A-modules.
Moreover, Lemma 4.5 implies that the maps M → uM and N → uN exhibit their targets as
the (n− 1)-truncation of the source, so that we can replace uM, uN by M≤n−1, N≤n−1.

By adjunction, we have mapA(M,N≤n−1) ≃ mapA(M≤n−1, N≤n−1), and the left arrow in the
statement can be identified with the morphism mapA(M,N) → mapA(M,N≤n−1) induced by
the truncation N → N≤n−1. It follows that there’s a fibre sequence

mapA(M,N)→ mapA(M,N≤n−1)→ mapA(M,ΣF ),

where F is the fibre of N → N≤n−1. To prove the statement, it is thus enough to identify the
right mapping space with the one computed in the derived ∞-category.

Again, by Lemma 4.5 we see that F ≃ Σnπ0N [−n], which is a suspension of a discrete
object and so canonically a π0A-module. We deduce that there’s an equivalence

mapA(M,ΣF ) ≃ mapπ0A(π0A⊗A≤n
M,Σn+1π0N [−n]) ≃ mapπ0A(π0M,Σn+1π0N [−n])

where the first equivalence is an application of adjunction, and in the second one we use that M
is a potential n-stage. Then, one sees that under the equivalence of Theorem 3.11 the above
mapping space corresponds to the one in the statement of the proposition. �
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Corollary 4.13. Suppose that C is complete. Let M , N be periodic A-modules. Then there is
a spectral sequence

Es,t
1 = Ext2s−t,s

π0A
(π0M,π0N), t ≥ s ≥ 0,

converging conditionally to π∗mapA(M,N).

Proof. Let

mapss := mapA≤s
(M ⊗A A≤s, N ⊗A A≤s).

By the previous proposition, the fiber of mapss → mapss−1 is

Fs ≃ mapD(π0A)(π0M,Σsπ0N [−s]).

Since these are mapping spaces in the derived category of an abelian category, they are all
topological abelian groups abelian groups, and in particular all pointed by the zero map. The
Bousfield-Kan spectral sequence for the homotopy groups of a tower [BK72] then takes the form

Es,t
1 = πt−sFs = Ext2s−t,s

π0A
(π0M,π0N), t ≥ s ≥ 0.

Since C is complete,

mapA(M,N) = lim
s

mapss,

so the spectral sequence converges conditionally to π∗mapA(M,N). �

Remark 4.14. For conditional convergence, see [Boa99] or [BK72, IX.5.4]. The spectral se-
quence converges completely to π∗mapA(M,N) if the derived limit

lim 1(· · · ⊆ Er+2,r+2+i
r ⊆ Er+1,r+1+i

r )

vanishes for each fixed r and i. This condition holds in a wide variety of cases, for example, if
each Es,t

r is finitely generated for some fixed r.

Remark 4.15. Our two results about the functor Mn → Mn−1, namely the obstructions to
lifting of Theorem 4.9 and the relation between the mapping spaces of Proposition 4.12, are
combined in the work of Goerss and Hopkins into a single theorem by constructing a pullback
square involving the ∞-groupoids of potential n-stages and certain spaces of algebraic nature
[GH05, 3.3.5]. We decided to separate these two results for clarity of exposition.

5. Goerss-Hopkins obstruction theory

In this section we give a multiplicative extension of the linear theory developed in the previous
one, constructing obstructions to realizing an algebra in Modπ0A(C

♥) by a periodic Ek-algebra in
ModA. The obstructions will lie in suitable André-Quillen cohomology groups of π0A-algebras.

Again, we assume that C is a graded symmetric monoidal, separated Grothendieck prestable
∞-category. We fix a commutative shift algebra A ∈ CAlg(C) such that ModA is generated
under colimits by periodic modules.

Our arguments will follow rather closely the linear version established before, with the im-
portant difference that the arguments involving the prestability of the ∞-categories of modules
will need to be replaced by the deformation theory of algebras.

Definition 5.1. A potential n-stage for an Ek-algebra is an Ek-algebra R in ModA≤n
whose

underlying A≤n-module is a potential n-stage. We denote the ∞-category of potential n-stages
for an Ek-algebra by Alg

Ek
(Mn).

Being more verbose, one could say that R is a potential n-stage to realizing the π0A-algebra
π0R as homotopy of a periodic Ek-algebra, but we will refrain from doing so. Note that the
notation Alg

Ek
(Mn) is slightly abusive, since the ∞-category Mn of potential n-stages is not

symmetric monoidal: by Alg
Ek
(Mn), we really mean Alg

Ek
(ModA≤n

)×ModA≤n
Mn.
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Going back to Definition 4.1, we see that a potential n-stage R for an Ek-algebra is an
object R ∈ Alg

Ek
(ModA≤n

) such that π0A⊗A≤n
R is discrete. In this case π0A⊗A≤n

R ≃ π0R

is an algebra in Modπ0A(C
♥), commutative if k ≥ 2.

Remark 5.2. If C is complete, so that M∞ ≃ lim
←−
Mn by Remark 4.4, then we also have

Alg
Ek
(M∞) ≃ Alg

Ek
(Mn) by the same argument.

Recall that by Theorem 3.8, there’s an equivalence between ModA≤n
and the ∞-category

Θ-SectAn−1
of objects M ∈ ModA≤n−1

equipped with a section s : M → ΘM .of the natural
projection π : ΘM →M .

The above equivalence can be promoted to a symmetric monoidal one, see Remark 3.9,
and so extends to an equivalence between Ek-algebras in ModA≤n

and Ek-algebras in ModA≤n−1

equipped with a section which is also a map of Ek-algebras. Thus, we can determine which
potential (n−1)-stages for Ek-algebras lift to potential n-stages by giving sufficient and necessary
conditions for such a section to exist.

Lemma 5.3. Let R be a potential (n− 1)-stage for an Ek-algebra. Then, the map π : ΘR→ R
is a square-zero extension of the Ek-A≤n−1-algebra R by the R-Ek-module Σn+1π0R[−n].

Proof. It is clear that π is an Ek-A≤n−1-algebra map, and it follows from Corollary 4.8 that
its fibre is Σn+1π0R[−n]. As this fibre has homotopy concentrated in a single positive degree, π
is a square-zero extension, by [Lura, 7.4.1.26]. �

The Ek-A≤n−1-algebra R has a cotangent complex L
Ek

R/A≤n−1

, see [Lura, 7.3, 7.4], which has

the property that there exists a natural equivalence of ∞-groupoids
{

Square-zero extensions of Ek-A≤n−1-algebras

R̃→ R by the R-module M

}
≃ mapEk

R (LEk

R/A≤n−1

,ΣM),

where the mapping space on the right is computed in Ek-R-modules. In particular, an extension

R̃ → R is split, that is, admits a section, if and only if the classifying map from the cotangent
complex to the suspension of the fibre is null.

Theorem 5.4 (Goerss-Hopkins, obstructions to lifting objects). Let R be a potential (n − 1)-
stage for an Ek-algebra. Then, there exists an obstruction in the André-Quillen cohomology
group

Extn+2,n(LEk

π0R
, π0R)

which vanishes if and only if R can be lifted to a potential n-stage, where the Ext-group is
computed in the∞-category of Ek-modules over π0R in the derived ∞-category D(Modπ0A(C

♥)).

Proof. By the equivalence of Theorem 3.8, we know R can be lifted to a potential n-stage if
and only if π : ΘR → R admits a section. By Lemma 5.3, π is a square-zero extension of
A≤n−1-algebras and so is classified by an element of

π0mapEk

R (LEk

R/A≤n−1

,Σn+2π0R[−n])

which vanishes if and only if there exists a section.
Notice that the target of this mapping space is a suspension of a discrete object and so is

canonically a π0A-module. Thus, we have

π0mapEk

R (LEk

R/A≤n−1

,Σn+2π0R[−n]) ∼= π0mapEk

π0R
(π0A⊗A≤n−1

L
Ek

R/A≤n−1

,Σn+2π0R[−n]),

where we have used that R is a potential (n−1)-stage so that π0A⊗A≤n−1
R ≃ π0R, and further

π0mapEk

π0R
(π0A⊗A≤n−1

L
Ek

R/A≤n−1

,Σn+2π0R[−n]) ≃ mapEk

π0R
(LEk

π0R/π0A
,Σn+2π0R[−n])
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by the base change formula for the cotangent complex of [Lura, 7.3.3.7]. Finally, the path
components of the above mapping space correspond to the Ext-group given in the statement of
the theorem under the equivalence D(Modπ0A(C

♥)) ≃Modπ0A(C) of Theorem 3.11. �

Corollary 5.5. Suppose that C is complete and let S be a π0A-algebra in C♥, commutative if
k ≥ 2. Then, there exists a sequence of inductively defined obstructions in Extn+2,n(LEk

S , S),
where n ≥ 1 and the extensions are computed in Ek-π0R-modules in D(Modπ0A(C

♥)), which
vanish if and only if there exists a periodic Ek-A-algebra R such that π0R ≃ S as π0A-algebras.

Proof. As in the linear case covered in Corollary 4.10, this is immediate from Theorem 5.4

and Alg
Ek
(M∞) ×Alg

Ek
(M0) {S} ≃ lim

←−
Alg

Ek
(Mn) ×Alg

Ek
(M0) {S}, which is a consequence of

Remark 5.2. �

Remark 5.6. In the particular case of the commutative operad, an E∞-π0R-module is the same
as a left π0R-module, so that the obstructions of Theorem 5.4 live in Ext-groups computed
in the ∞-category of left R-modules in D(Modπ0A(C

♥)). Under very weak technical conditions,
the latter admits a much easier description.

That is, suppose that either π0R is flat over π0A or that ModA(C) is generated by periodic
A-modules M such that π0M is flat over π0A. In either case, it follows that

π0R ⊗M ≃ (π0R⊗π0A π0A)⊗M ≃ π0R⊗π0A M

is discrete, so that the ∞-category Modπ0R(C) is generated by discrete objects. Then, the same
argument as in the proof of Theorem 3.11 shows that Modπ0R(C) ≃ D(Modπ0R(C

♥))≥0.
Using the aforementioned theorem, one rewrites

Modπ0R(D(Modπ0A(C
♥))) ≃Modπ0R(Modπ0A(C)) ≃Modπ0R(C),

which combined with the equivalence of the previous paragraph shows that the obstructions of
Theorem 5.4 can be in fact computed in D(Modπ0R(C

♥)), the derived ∞-category of discrete
π0R-modules.

Proposition 5.7 (Goerss-Hopkins, obstruction to lifting maps). Let R,S be potential n-stages
for an Ek-algebra and φ : uR → uS be a map of corresponding potential (n − 1)-stages. Then,
there’s an equivalence

Fφ ≃ P0,φ′mapEk

π0R
(LEk

π0R/π0A
,Σn+1π0S[−n]),

between the fibre over φ of mapAlg
Ek

(Mn)(R,S) → mapAlg
Ek

(Mn−1)(uR, uS) and the space of

paths between 0 and a certain morphism φ′ : LEk

π0R/π0A
→ Σn+1π0S[−n].

Proof. By Remark 4.6, the mapping spaces in Alg
Ek
(Mn) and Alg

Ek
(Mn−1) can be computed

in Ek-A-algebras. Then, Lemma 4.5 implies that the natural maps R → uR and S → uS
identify their targets with Postnikov truncation of the former, so that we can replace uR, uS by
R≤n−1 and S≤n−1. Thus, the fibre we’re trying to describe can be identified with the fibre of
mapAlg

Ek
(ModA)(R,S)→ mapAlg

Ek
(ModA)(R,S≤n−1).

Again, by [Lura, 7.4.1.26] S is a square-zero extension of S≤n−1 by Σnπ0S[−n]. Then, by
[Lura, 7.4.1.8] the relevant fibre can be described as the space of paths

P0,φ̃mapEk

R (LEk

R/A≤n
,Σn+1S≤0[−n]),

where φ̃ is the element classifying the square-zero extension S ×S≤n−1
R→ R.

Observe that the target of the above mapping space is canonically a π0A-module, so that
using the base change formula for the cotangent complex and π0A×A≤n

R ≃ π0R we can rewrite

this mapping space as mapEk

π0R
(LEk

π0R/π0A
,Σn+1π0S[−n]), which ends the argument. �
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The statement of Proposition 5.7, involving the path space of a mapping space, can be
perhaps a little mysterious at first sight. However, it immediately yields obstructions to lifting
maps as well as control over the space of possible lifts, see Remark 5.8 and Remark 5.9 below.

Remark 5.8. Notice that Proposition 5.7 implies that if R,S are potential n-stages for Ek-
algebras and φ : uR → uS is a map of the corresponding potential (n − 1)-stages, then φ lifts

to a map R → S if and only if the corresponding element φ′ : LEk

π0R/π0A
→ Σn+1π0S[−n] is

nullhomotopic. Thus, the homotopy class of the latter determines an obstruction to lifting φ.

Remark 5.9. In the case φ : R′ → S′ does lift to a map R→ S, Proposition 5.7 implies that
the fibre Fφ of mapAlg

Ek
(Mn)(R,S)→ mapAlg

Ek
(Mn−1)(uR, uS) can be described as

Fφ ≃ Ω(mapEk

π0R
(LEk

π0R/π0A
,Σn+1π0S[−n])).

By prestability, this is equivalent to

mapEk

π0R
(LEk

π0R/π0A
,Σnπ0S[−n]).

Remark 5.10. By applying Remark 5.8 to the case of uR = uS and φ = id, we obtain an
obstruction to the uniqueness of a lift of a potential (n − 1)-stage for an Ek-algebra, comple-
menting the obstruction to existence of Theorem 5.4. To see this, notice that the functors
Alg

Ek
(Mn) → Alg

Ek
(Mn−1) are conservative by the virtue of Lemma 3.3 and so any lift of

the identity is necessarily an equivalence.

Corollary 5.11 (Mapping space spectral sequence). Let C be complete and suppose that φ :
R → S is a morphism of periodic Ek-A-algebras in C. Then there is a first quadrant spectral
sequence with

E0,0
1 = mapAlgπ0A

(π0R, π0S)

and

Es,t
1 = Ext2s−t,s

ModEk
(π0R)(L

Ek

π0R/π0A
, π0S), t ≥ s > 0,

where π0S is given the π0R-module structure induced by φ, and converging conditionally to

πt−s(mapAlg
Ek

(ModA(C))(R,S), φ),

the homotopy groups of the space of Ek-algebra maps from R to S, based at φ.

Proof. Compare the linear analogue, Corollary 4.13. Again, this is a case of the Bousfield-Kan
spectral sequence [BK72], applied to the tower

mapss := mapAlg
Ek

(Ms)(R≤s, S≤s),

where each mapss is pointed by the image of φ. By completeness of C, the limit of the tower is

mapAlg
Ek

(C)(R,S).

Then the Bousfield-Kan spectral sequence converges conditionally to the homotopy groups of
this space (see Remark 4.14).

The E1 term of the spectral sequence is

Es,t
1 = πt−sfib(mapss → mapss−1), t ≥ s > 0.

By Remark 5.9, we have, for s > 0,

Es,t
1
∼= πt−smapEk

π0R
(LEk

π0R/π0A
,Σsπ0S[−s])

∼= π0mapEk

π0R
(LEk

π0R/π0A
,Σ2s−tπ0S[−s])

∼= Ext2s−t,s
ModEk

(π0R)(L
Ek

π0R/π0A
, π0S).
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Notice that these spectral sequence terms, which are a priori homotopy sets (when t − s = 0)
or groups (when t− s = 1), are in fact always abelian groups. Finally, when s = 0, we have

E0,t
1 = πtmaps0 = πtmapAlg

π0A
(π0R, π0S).

Here, π0R and π0S are discrete algebras over π0A in C♥, commutative if k ≥ 2. In particular,
the space of algebra maps is discrete, so the only nonzero term on the s = 0 line of the spectral
sequence is the pointed set

E0,0
1 = mapAlgπ0A

(π0R, π0S).

�

6. Moduli of ring spectra

In this section we adapt the abstract Goerss-Hopkins theory developed in the previous sections
to the particular problem of existence of commutative ring spectra with prescribed homology by
specializing to the Grothendieck prestable ∞-category of synthetic spectra.

One way of stating the problem is as follows: given an E∞-ring spectrum E and a commutative
algebra A in E∗E-comodules, what is the moduli space of realizations of A by an E∞-ring
spectrum – that is, the space of E∞-ring for which there exists an isomorphism

E∗R ∼= A

of E∗E-comodule algebras? In particular, one might want to prove that this space is nonempty,
meaning that there exists a realization, or contractible, meaning that there exists an essentially
unique realization.

Any obstruction theory of this kind suffers from some natural limitations. Since all of the
starting data is in terms of E-homology, one will be unable to distinguish a realization of A from
its E-localization. Even in the best case, then, one will only be able to compute the space of
E-local realizations.

Additionally, this approach is only reasonable if we put additional conditions on E which
make the categories of E∗E-comodules and the E-based synthetic spectra well-behaved. One of
these conditions is the classical Adams condition, to be reviewed momentarily. To check that a
realization is actually produced if all obstructions vanish, we require an additional completeness
condition, filling a long-unnoticed gap in the literature.

Definition 6.1. An Adams-type homology theory is a homotopy commutative ring spectrum E
that is a filtered colimit E ≃ lim

−→
Eα of finite spectra Eα such that

(1) E∗Eα is a finitely generated, projective E∗-module and
(2) the Künneth map E∗Eα → HomE∗

(E∗Eα, E∗) is an isomorphism.

Originally, this technical condition arose in Adams’ blue book [Ada95] to prove the universal
coefficient theorem and set up the Adams spectral sequence based on E. It implies that there
is a good algebraic theory of E-homology: for example, (E∗, E∗E) is a flat Hopf algebroid, and
the E-homology E∗X of a spectrum X is an E∗E-comodule.

Example 6.2. Examples of Adams-type theories include the sphere spectrum, Eilenberg-MacLane
spectra based on fields, the cobordism spectra MU and MO, the K-theory spectra K and KO,
and any Landweber exact homology theory.

In the previous sections, we fixed a graded symmetric monoidal, separated Grothendieck
prestable ∞-category C and a shift algebra A ∈ CAlg(C), and we developed an obstruction
theory to existence of periodic A-algebras R with prescribed π0R as a π0A-algebra. To apply
these methods to the realization problem for commutative ring spectra, we need to find C and a
shift algebra A that satisfy the following conditions:
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(♦1) there’s a symmetric monoidal equivalence ModperA (C) ≃ SpE between the ∞-category of
periodic A-modules in C and the ∞-category of E-local spectra,

(♦2) there’s a symmetric monoidal equivalence Modπ0A(C
♥) ≃ ComodE∗E between the abelian

category of π0A-modules in C♥ and the abelian category of E∗E-comodules,
(♦3) the ∞-category ModA is generated under colimits by periodic modules and
(♦4) the prestable ∞-category C is complete, that is, Postnikov towers in C converge.

Here, (♦1) is needed to identify the realizations we produce with commutative ring spectra;
(♦2) is used to identify the input to the obstruction theory with André-Quillen cohomology of
comodule algebras; while (♦3) and (♦4) are technical assumptions needed to make sure that,
respectively, the obstructions can be computed in the derived category and that if they all vanish
then the needed realization exists.

We claim that the ∞-category Syn of hypercomplete, connective synthetic spectra based
on E introduced in [Pst18b] and mentioned before in Example 2.14, satisfies the properties
(♦1)− (♦3), the shift algebra in this case being given by the monoidal unit.

Note that in this note we will only be considering connective, hypercomplete synthetic spectra
based on E in the sense of [Pst18b], and we will simply call them synthetic spectra, dropping the
two adjectives. As above, we will denote their ∞-category by Syn, with understanding that the
Adams-type homology theory is fixed.

Intuitively, Syn is an ∞-category of “resolutions of spectra” and plays the role of the “derived
∞-category of spectra” (with respect to the E-homology functor). Because of our axiomatic
approach, the precise details of the construction of Syn are not needed, but for the convenience
of the reader we briefly recall them here.

One says that a finite spectrum P is E∗-projective if E∗P is projective as an E∗-module. We

endow the ∞-category SpfpE of finite, E∗-projective spectra with a Grothendieck topology where
covering families consist of single maps which induce a surjection on E-homology.

Definition 6.3. The∞-category Syn of synthetic spectra is the∞-category of spherical (product-

preserving), hypercomplete sheaves of spaces on SpfpE .

The ∞-category of synthetic spectra enjoys the following properties:

• as a left exact localization of the ∞-category of spherical presheaves at homotopy iso-
morphisms [Pst18b, 2.5], Syn is separated Grothendieck prestable [Lurb, C.3.2.1],
• it has a natural grading induced by the suspension functor on finite E∗-projective spectra;

that is, where X [1](P ) := X(Σ−1P ),
• it is symmetric monoidal with the tensor product induced by the smash product of finite
E∗-projective spectra, with monoidal unit 1 given by 1(P ) := map(P, S0

E),
• the map τ : Σ1[−1]→ 1 given on sections by the morphism Σmap(ΣP, S0

E)→ map(P, S0
E)

adjoint to the equivalence map(ΣP, S0
E) ≃ Ωmap(P, S0

E) makes 1 into a shift algebra
[Pst18b, 4.61, 4.21].

Thus, as a graded symmetric monoidal, separated Grothendieck prestable∞-category equipped
with a choice of a shift algebra, Syn is an appropriate context for Goerss-Hopkins theory. We
will now verify that it also satisfies (♦1)− (♦4), so that the resulting theory can be applied to
the problem of realizing comodule algebras as homology of commutative ring spectra.

Proposition 6.4. Suppose that E is an Adams-type homology theory. Then the pair (Syn,1)
satisfies the properties (♦1), (♦2) and (♦3) listed above.

Proof. The property (♦1), namely the equivalence Modper
1

(Syn) ≃ SpE, is [Pst18b, 4.36, 5.6].
The property (♦2), that is, Modπ01

(Syn♥) ≃ ComodE∗E , is [Pst18b, 4.16]. Lastly, (♦3) follows
from the fact that Syn is generated under colimits by the synthetic analogues of E-localizations
of finite projective spectra [Pst18b, 4.14, 5.6], which are periodic by [Pst18b, 4.61]. �
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Remark 6.5. The Grothendieck prestable ∞-category Syn is separated, but not necessarily
complete, so it may not satisfy (♦4). We will later show, however, that it is complete in what is
perhaps the most important case, namely that of Morava E-theory, see Theorem 7.4.

In the cases where the completeness of Syn is not clear, it might be still possible to prove
the convergence of the Goerss-Hopkins tower by hand for certain classes of comodules, yielding
an effective obstruction theory. An example here is given by H := HFp, the mod p Eilenberg-
MacLane spectrum; in Theorem 8.5 we show that the convergence holds for all H∗H-comodules
which are bounded below.

We will now show how the properties guaranteed by Proposition 6.4 together with the
results of previous sections imply an obstruction theory to realizing an algebra in comodules
as a homology of a commutative ring spectrum. This is fairly straightforward considering the
above discussion, but we make it explicit as a guide to a reader who is perhaps only interested
in the realization problem for commutative ring spectra.

Let E be an Adams-type homology theory such that the ∞-category Syn is complete, so
that (♦4) holds, for example, E can be Morava E-theory, see Theorem 7.4. Internally to the
∞-category Syn, one constructs a tower of ∞-categories of moduli of potential n-stages for an
E∞-algebra

Alg
E∞

(M∞)→ . . .→ Alg
E∞

(M1)→ Alg
E∞

(M0)

as defined in Definition 5.1. In more detail, Alg
E∞

(Mn) is the ∞-category of commutative
1≤n-algebras R in synthetic spectra such that 1≤0⊗1≤n

R is discrete and the connecting functors
are given by extension of scalars. By Remark 5.2, we have Alg

E∞
(M∞) ≃ lim

←−
Alg

E∞
(Mn).

Then, by the properties (♦1) and (♦2) we have equivalences Alg
E∞

(SpE) ≃ Alg
E∞

(M∞) and
Alg

E∞
(M0) ≃ Alg

E∞
(ComodE∗E), so that the top and the bottom of this tower can be identified,

respectively, with the ∞-category of E-local E∞-ring spectra, and the category of commutative
E∗E-comodule algebras. By [Pst18b, 4.22], the functor Alg

E∞
(M∞) → Alg

E∞
(M0) can be

identified with the functor sending an E-local commutative ring spectrum R to its homology
algebra E∗R. In other words, the above tower can be considered as a kind of a stratification of
the homology functor.

Now suppose that A is a commutative algebra in E∗E-comodules, so that it determines an
object A in Alg

E∞
(M0) ≃ Alg

E∞
(ComodE∗E). By the above discussion, the ∞-category of

realizations of A as the E-homology of an E∞-ring spectrum can be identified with the fibre

Alg
E∞

(M∞)×Alg
E∞

(M0) {A} ≃ lim
←−

Alg
E∞

(Mn)×Alg
E∞

(M0) {A}.

The above equivalence shows that to construct a realization of A it is enough to construct a
sequence Rn ∈ Alg

E∞
(Mn) of potential n-stages such that R0 ≃ A and which is compatible in

the sense that 1≤n−1⊗1≤n
Rn ≃ Rn−1. The results of the previous section give us an obstruction

theory to inductively constructing such a sequence, proving the following.

Theorem 6.6 (Goerss-Hopkins, [GH05, 3.3.5,3.3.7]). Let A be a commutative algebra in E∗E-
comodules. Then, there exists an inductively defined sequence of obstructions valued in André-
Quillen cohomology groups

Extn+2,n
ModA(ComodE∗E)(L

E∞

A/E∗
, A), where n ≥ 1,

which vanish if and only there exists a realization of A, that is, an E∞-ring spectrum R such
that E∗R ≃ A as comodule algebras.

Proof. Keeping in mind the above discussion, this is just a restatement of Corollary 5.5 where
k = ∞ and the ambient ∞-category C is the ∞-category Syn of synthetic spectra. Note that
since we’re in the E∞-case, the Ext-groups are computed in the derived category as above by
Remark 5.6. �

Similarly to the obstructions to existence, we also have obstructions to lifting morphisms.
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Theorem 6.7 (Goerss-Hopkins, [GH05, 3.3.5]). Let A,B be commutative algebras in comod-
ules and Rn, Sn ∈ Alg

E∞
(Mn) be potential n-stages for realizations of, respectively, A and B.

Suppose that φ : Rn−1 → Sn−1 is a morphism of the corresponding potential (n− 1)-stages.

Then, there exists an obstruction in Extn+1,n
ModA(ComodE∗E)(L

E∞

A/E∗
, B) which vanishes if and only

if φ can be lifted to a morphism Rn → Sn. Moreover, if such a lift exists, then we have a fibre
sequence

mapD(ModA(ComodE∗E))(L
E∞

A/E∗
,ΣnB[−n])→ map(Rn, Sn)→ map(Rn−1, Sn−1)

involving, respectively, the André-Quillen cohomology space and the mapping spaces between
potential n- and (n− 1)-stages for an E∞-algebra.

Proof. Similarly to Theorem 6.6, this is an appropriate restatement of Proposition 5.7, or
more precisely its form given by Remark 5.8 and Remark 5.9. �

Corollary 6.8 ([GH04, 4.3]). Let φ : R → S be a morphism of E-local E∞-ring spectra. Then
there is a first quadrant spectral sequence with

E0,0
1 = mapCAlg(ComodE∗E)(E∗R,E∗S)

and
Es,t

1 = Ext2s−t,s
ModE∗R(ComodE∗E)(L

E∞

E∗R/E∗
, E∗S), t ≥ s > 0,

where E∗S is given an E∗R-module structure via φ, and converging conditionally to

πt−s(map
E∞

(R,S), φ),

the homotopy groups of the space of E∞-maps from R to S, based at φ.

Proof. This is an immediate application of Corollary 5.11 to the present case. �

Remark 6.9. This spectral sequence of Corollary 6.8 agrees with that of Goerss and Hopkins
only after suitable reindexing: our Es,t

1 is isomorphic to their E2s−t,s
2 . We believe that the two

spectral sequences are related by the Deligne’s décalage construction of [L+15, Proposition 6.3].
The discrepancy comes from the different methods of construction. The Goerss-Hopkins

mapping space spectral sequence is constructed without using the decomposition of the moduli
space into moduli of potential n-stages [GH04]. Instead, Goerss and Hopkins resolve R and S
by suitably free algebras, producing a cosimplicial object totalizing to the mapping space. The
E1 page of their spectral sequence depends on this choice of resolution, but the E2 page is a
homotopy invariant of the ring spectrum.

Our mapping space is the Bousfield-Kan spectral sequence for the tower of mapping spaces
of potential n-stages; since the notion of potential n-stage is homotopy-invariant, the resulting
spectral sequence is well-defined at the E1 page.

Remark 6.10. We did not use it, but the ∞-category Syn of synthetic spectra is in fact
equivalent to the underlying∞-category of the semi-model category used by Goerss and Hopkins,
and using this fact one can translate between our account and the one given in [GH04], [GH05].
We give a short sketch of this equivalence.

It is a folklore result, which unfortunately doesn’t seem to be written down, that the under-
lying ∞-category of the Bousfield model structure with respect to a set of compact generators
is equivalent to the ∞-category of spherical presheaves on those generators. In the case of the
particular Bousfield model structure appearing in the work of Goerss and Hopkins, for a maximal
choice of generators, this translates into an equivalence between this underlying∞-category and

the ∞-category PΣ(Sp
fp
E ) of spherical presheaves on finite projective spectra.

Since the semi-model structure that Goerss and Hopkins work with is defined as a Bousfield

localization, it follows that its underlying∞-category is equivalent to a localization of PΣ(Sp
fp
E );

by definition, to the localization along E∗-quasi-isomorphisms. This localization is precisely the
∞-category Syn, see [Pst18b, 5.4].
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Remark 6.11. Note that to obtain our obstruction theory we needed to make an additional
assumption on top of E being Adams, namely that the ∞-category Syn of synthetic spectra
based on E is complete, in other words, that Postnikov towers converge. This assumption does
not appear in the original references [GH04], [GH05], but we believe this is in fact a mistake.

The assumption of convergence of Postnikov towers, which we denoted above as (♦4), is only
needed to obtain the identification Alg

E∞
(M∞) ≃ lim

←−
Alg

E∞
(Mn). Thus, without it, we can

still construct the tower of potential n-stages with all the required properties, but we can’t
deduce that a compatible tower of potential n-stages is necessarily induced by a realization in
E-local ring spectra.

The proof of the corresponding fact in [GH04], [GH05] is a reference to [DK84, 4.6], a the-
orem which in modern language can be interpreted as an explicit point-set proof of the fact
that Postnikov towers converge in the ∞-category of spaces. This, however, does not seem to
immediately apply to the semi-model category that Goerss and Hopkins are working with.

The relevant semi-model category is a Bousfield localization of a model structure on the
category of simplicial spectra due to Bousfield, and hence the Postnikov towers can be computed
in the latter model structure [GH05, 2.5.6]. There, we have an explicit model for the n-th
Postnikov stage given by attaching cells, see [GH04, 3.11], and using this model one sees that
attaching an n-cells does not change the lower homotopy groups. Using this, one can show that
Postnikov stages do converge in the Bousfield model category.

This does not, however, imply a corresponding statement in the localized semi-model category.
To see this, note that to obtain a homotopy invariant statement about mapping spaces in this
category, we need to perform a fibrant-cofibrant replacement with respect to the localized model
structure, and the relevant homotopy groups are not invariant under this replacement, only
homology is. Thus, as we attach cells in the semi-model category and follow it by the fibrant-
cofibrant replacement, it is possible that the lower homotopy groups change as well, and so
Postnikov convergence is not obvious. This, we believe, is the root of the mistake.

Note that perhaps the most spectacular application of Goerss-Hopkins obstruction theory
is the functorial E∞-ring structure on Morava E-theory, and this application is in fact not
threatened by this error, as we show below in Theorem 7.4 that Postnikov towers in synthetic
spectra based on Morava E-theory do converge.

7. Morava E-theory

This section is devoted to the classical Goerss-Hopkins obstruction theory in the particular
case of Morava E-theory. We first show that the ∞-category of synthetic spectra based on
Morava E-theory is complete, a technical assumption needed for the obstruction theory to work.
Then, we review the calculation of the relevant obstruction groups which implies that Morava
E-theory carries a canonical structure of an E∞-ring spectrum.

Let k be a perfect field of positive characteristic and let Γ a formal group law over k of finite
height n. By results of Lubin and Tate, there exists a universal deformation of Γ, defined over
the ring W (k)[[u1, . . . , un−1]] of power series in the Witt vectors over k [LT66].

The Morava E-theory or Lubin-Tate theory associated to the pair (k,Γ) is the 2-periodic
Landweber exact multiplicative homology theory with E(k,Γ)∗ ≃ W (k)[[u1, . . . , un−1]][u

+−1]
whose corresponding formal group law is the universal deformation of Γ [Rez98].

The homology theory E(k,Γ) depends on the height n and characteristic p, but dependance
on the pair (k,Γ) is relatively mild. More precisely, by classical results of Hovey and Strickland,
E(k,Γ) is Bousfield equivalent to the Johnson-Wilson theory E(n), and similarly, the category
of E(k,Γ)∗E(k,Γ)-comodules is equivalent to the category of E(n)∗E(n)-comodules [HS03]. For
this reason, we will omit (k,Γ) from the notation when convenient, writing only E.

We will first show that the ∞-category Syn of synthetic spectra based on E is complete, that
is, that the Postnikov towers converge. This fact is related to another extraordinary property of
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Morava E-theory, namely that any E-local spectrum is E-nilpotent, so that the E-based Adams
spectral sequence always converges [HS99, 5.3]. Our proof is similar, utilizing the existence of
the Hopkins-Ravenel finite spectrum.

Lemma 7.1. Let E be Morava E-theory and suppose that M be a dualizable E∗E-comodule
such that Exts,tE∗E

(M,E∗) = 0 for s > n2 + n. Then, Exts,tE∗E
(M,N) = 0 for s > n2 + n and all

comodules N .

Proof. Let us say that a comodule N is good if it satisfies the condition given above, by assump-
tion we know that the shifts of E∗ are good. Similarly, the long exact sequence of Ext-groups
implies that if 0 → N → N ′ → N ′′ → 0 is short exact and N is good, then N ′ is good if and
only if N ′′ is. We deduce that any comodule that admits a Landweber filtration in the sense of
[HS03] is good and, hence, that all finitely generated comodules are.

Since E is Adams, any E∗E-comodule is a filtered colimit of finitely generated ones. Because
M is dualizable, Exts,t(M,N) can be computed using the cobar complex and so commutes with
filtered colimits in N . Thus, we deduce that all comodules are good, which is what we wanted
to show. �

Lemma 7.2. Let E be an Adams-type homology theory and C be a collection of finite projective

spectra such that for any P ∈ SpfpE there exists an S ∈ C and an E∗-surjection S → P . Then, the
synthetic analogues νSE of E-localizations of S ∈ C generate the ∞-category Syn of synthetic
spectra based on E under colimits.

Proof. By construction, Syn is generated under colimits by the synthetic analogues νPE of
E-localizations of finite projective spectra, where we’re implictly using that νPE is the hyper-
completion of the non-hypercomplete synthetic spectrum νP [Pst18b, 5.6]. Thus, it is enough
to write down any such νPE as a colimit of νSE as above.

Now, by assumption for any finite projective P we can find an E∗-surjection S → P where
S ∈ C. Proceeding inductively using [Pst18b, A.22] we can extend this map to a hypercover;

that is, a semisimplicial augmented object U : ∆op
s,+ → SpfpE in finite projective spectra such that

all of the maps Un →Mn(U) are E∗-surjective. Moreover, by our assumption we can guarantee
that Un ∈ C for n ≥ 0.

By [Pst18b, A.23], in the hypercomplete setting the Yoneda embedding takes hypercovers to
colimit diagrams. We deduce that lim

−→
ν(Un)E ≃ νPE , which is what we wanted to show. �

Lemma 7.3. Let E be Morava E-theory. Then, for any finite projective spectrum P there exists
a surjection S → P from a finite projective S such that Exts,tE∗E

(E∗S,N) for s > n2 + n and all
comodules N .

Proof. We first claim such a spectrum exists when P is the sphere S0. Recall that Hopkins and
Ravenel construct a finite spectrum T with torsion-free homology such that ExtsE∗E(E∗, E∗T )

vanishes for s > n2 + n [Rav16, 8.3]. Note that torsion-freeness implies that E∗T is dualizable,
since E∗T ≃ E∗ ⊗MU∗

MU∗T and MU∗T is known to be free, so that T is finite projective.
Taking the Spanier-Whitehead dual S := F (T, S0) we see that S is a finite projective spectrum

such that Exts,tE∗E
(E∗S,E∗) = 0 for s > n2 + n and so Exts,tE∗E

(E∗S,N) = 0 for s > n2 + n and
all N by Lemma 7.1. Taking suspensions, we can guarantee that the top cell in a minimal cell
structure on S is in degree zero. Then, the projection S → S0 onto the top cell is the needed
E∗-surjection onto S0.

Now suppose that P is an arbitrary finite projective. Then, notice that if S → S0 is the
E∗-surjection constructed above, then S ∧ P → P is also E∗-surjective. Moreover, we have

Exts,tE∗E
(E∗(S ∧ P ), N) ≃ Exts,tE∗E

(E∗S ⊗E∗
E∗P,N) ≃ Exts,tE∗E

(E∗S,HomE∗
(E∗P,E∗)⊗E∗

N),

so that S ∧ P also has the required property, ending the argument. �



ABSTRACT GOERSS-HOPKINS THEORY 28

Theorem 7.4. Let E be the Morava theory at a fixed prime and height. Then, the Grothendieck
prestable ∞-category Syn of hypercomplete, connective synthetic spectra based on E is complete.

Proof. It is enough to show that for any X ∈ Syn and any m ≥ 0, the projection lim
←−

X≤i → X≤k

is an m-equivalence for all k large enough [Lur09, 5.5.6.27]. To do this, it is enough to verify
that for all k large enough, the collection of Y such that

map(Y, lim
←−

X≤i)→ map(Y,X≤k)

is an (m+ 1)-equivalence generates Syn under colimits.
We claim that when k > m+n2+n, that collection of Y satisfying the above condition contains

the synthetic analogues νPE of E-local finite projectives such that Exts,tE∗E
(E∗P,N) = 0 for all

s > n2 +n and all comodules N . Since the latter generate Syn under colimits by a combination
of Lemma 7.3 and Lemma 7.2, this will finish the argument.

Let X [i] denote the fibre of X≤i → X≤i−1, this is a suspension of a discrete synthetic spectrum
and so is canonically a 1≤0-module. It follows that we have equivalences

mapSyn(νPE , X [i]) ≃ mapMod
1≤0

(Syn)(1≤0 ⊗ νPE , X [i]) ≃ mapD(ComodE∗E)(E∗P,Σ
iπiX),

where the second one follows from Mod
1≤0

(Syn) ≃ D(ComodE∗E)≤0, which we have shown in
Proposition 6.4.

Since πjmapD(ComodE∗E)(E∗P,Σ
iπiX) ≃ Exti−j

E∗E
(E∗P, πiX) and we assume that this vanishes

when i− j > n2 + n, we see that this space grows highly connected as i goes to infinity. Thus,
we deduce that the homotopy groups πjmapSyn(νPE , X≤i) stabilize for i > n2 + n+ j, and an
application of the Milnor exact sequence then yields the needed result. �

Remark 7.5. The same argument as the one used in the proof of Theorem 7.4 would show
that the derived category D(A) of a Grothendieck abelian category A generated under colimits
by objects of fixed finite homological dimension (intuitively, A is “virtually of finite homological
dimension”) is left complete. This statement appears to be foklore [DG13, 1.2.10].

For the convenience of the reader, we will now recall the proof of the celebrated Goerss-
Hopkins-Miller theorem, which states that Morava E-theory admits a unique E∞-ring structure.
This requires us to show that the obstruction groups appearing in the statement of Theorem

6.6 vanish, which is a non-trivial result in its own right.
We start with a short technical lemma about the cotangent complex, which will help us reduce

the relevant André-Quillen cohomology groups to a simpler form.

Lemma 7.6 (General base-change for the cotangent complex). Let f : C → D be a symmetric
monoidal, cocontinuous functor between presentably symmetric monoidal stable ∞-categories.
Then, for any A ∈ Alg

E∞
(C) we have L

E∞

f(A) ≃ f∗(L
E∞

A ), where f∗ : ModA → Modf(A) is the

induced functor between module ∞-categories.

Proof. Since f is a cocontinuous functor between presentable, stable∞-categories, it has a right
adjoint g : D→ C which for formal reasons has a structure of a lax symmetric monoidal functor.
It follows that both functors take algebras to algebras and one can verify that this induces
another adjunction f ⊣ g : Alg

E∞
(C) ⇆ Alg

E∞
(D) which we denote with the same letters.

If A ∈ Alg
E∞

(C), then the induced functor f : Alg
E∞

(C)/A → Alg
E∞

(D)/f(A) is also co-
continuous, since colimits in overcategories are computed objectwise. It follows that we have a
commutative diagram
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Alg
E∞

(C)/A Sp(Alg
Ek
(C)/A)

Alg
E∞

(D)/f(A) Sp(Alg
E∞

(D)/f(A))

Σ∞
+

Σ∞
+

of presentable ∞-categories and left adjoints induced by stabilization. By [Lura, 7.3.4.13], the
right vertical arrow can be identified with f∗ : ModA → Modf(A). The statement is then

immediate from the fact that LE∞

A := Σ∞
+ A, and likewise for f(A), by definition of the cotangent

complex [Lura, 7.3.2.14]. �

To state the theorem, we must introduce the profinite group Aut(k,Γ). An element of
Aut(k,Γ) is a commutative square

Γ

��

φ
// Γ

��

Spec k
i∗

// Spec k

where i is an automorphism of k, φ is a formal group isomorphism, and both vertical maps are
the natural structure map of Γ.

Theorem 7.7 (Goerss-Hopkins-Miller). Let E = E(k,Γ) be the Morava E-theory spectrum
associated to a perfect field k of characteristic p and a formal group Γ of finite height, and let
ME∞

(E) denote the ∞-groupoid whose objects are E∞-ring spectra whose underlying homotopy
associative ring spectrum is equivalent to E and whose morphisms are E∞-ring maps.

Then, there’s an equivalence ME∞
(E) ≃ BAut(k,Γ); in other words, there’s a unique E∞-

ring spectrum equivalent to E and its automorphism group is Aut(k,Γ).

Proof. We claim that a homotopy associative ring spectrum A is equivalent to E if and only if
E∗A ≃ E∗E as comodule algebras, so that we have an equivalence

ME∞
(E) ≃ AlgE∗E

E∞
(SpE),

where the former is as in the statement and the latter is the ∞-groupoid of realizations of E∗E
in E-local E∞-ring spectra. Clearly, the latter implies to former, so let us instead assume that
we have E∗E ≃ E∗A as comodule algebras. This implies that E∗A is flat over E∗, so that the
E2-page of the universal coefficient spectral sequence

Exts,tE∗
(E∗A,E∗)⇒ [A,E]t−s

vanishes for s > 0 by [Rez98, 15.6], forcing the spectral sequence to collapse. We deduce that
the chosen isomorphism in HomE∗E(E∗A,E∗E) ≃ HomE∗

(E∗A,E∗) descends to an equivalence
A ≃ E. Since the chosen isomorphism E∗A ≃ E∗E was an isomorphism of algebras, A ≃ E is
an equivalence of homotopy associative rings, which is what we wanted to show.

We now consider the problem of realizing the E∗E-comodule algebra E∗E as the homology
of an E-local E∞-ring spectrum. As E satisfies the Adams condition and Syn is complete, we
can study this problem using the obstruction theory of Theorem 6.6 and Theorem 6.7.

The obstructions to existence and uniqueness live in groups of the form

Exts,t
ModE∗E(D(ComodE∗E))(L

ComodE∗E

E∗E/E∗
, E∗E),

where we dropped E∞ from the notation for the cotangent complex in favor of emphasizing that
it is internal to the category of comodules. We claim that all of these obstruction groups vanish;
our first step is to reduce this calculation to one internal to the world of E∗-modules.
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The forgetful functor U : ComodE∗E → Mod♥E∗
from comodules into discrete E∗-modules

admits a right adjoint given by the cofree comodule construction M 7→ E∗E ⊗E∗ M . One sees
that if M is an E∗E-module, then E∗E⊗E∗

M is a module over E∗E in comodules, inducing an

adjunction E ⊣ E∗E⊗∗ (−) : ModE∗E(ComodE∗E) ⇆ Mod♥E∗E
between categories of modules. It

is easy to see that both adjoints are exact, using flatness of E∗E over E∗, so that this adjunction
passes to one between derived ∞-categories.

Using the derived adjunction, we see that

Exts,∗
ModE∗E(D(ComodE∗E))(L

ComodE∗E

E∗E/E∗
, E∗E) ≃ Exts,∗

ModE∗E
(U∗(L

ComodE∗E

E∗E/E∗
), E∗)

and further by the base change formula of Lemma 7.6 that

Exts,∗
ModE∗E

(U∗(L
ComodE∗E

E∗E/E∗
), E∗) ≃ Exts,∗

ModE∗E
(L

Mod♥
E∗

E∗E/E∗
, E∗),

where we’ve used that the forgetful functor is cocontinuous and symmetric monoidal.

Having reduced to the case of modules, let us write L
E∞

E∗E/E∗
:= L

Mod♥
E∗

E∗E/E∗
; that is, the cotan-

gent complex is now implicitly taken in E∗-modules. The ring E∗ is complete with respect to a
maximal ideal m and filtering E∗ by powers of m gives a spectral sequence

Ep,q
2 = Extp,∗E∗

(LE∞

E∗E/E∗
,mq/mq+1)⇒ Extp+q,∗

E∗
(LE∞

E∗E/E∗
, E∗).

The E2 page of this spectral sequence is equivalent to

Extp,∗E∗/m
(LE∞

E∗E/E∗
⊗L

E∗
E∗/m,mq/mq+1),

and so it suffices to prove the vanishing of

L
E∞

E∗E/E∗
⊗L

E∗
E∗/m.

Since E∗E is flat over E∗, this is equivalent to

L
E∞

(E∗E/m)/(E∗/m) ≃ E∗ ⊗E0
L
E∞

(E0E/m)/(E0/m).

By construction of Morava E-theory, we have E0/m = k, a perfect field of characteristic p,
and it is well-known that

E0E/m ∼= mapscts(Aut(k,Γ), k),

where the latter is the ring of continuous maps from the profinite group Aut(k,Γ) to the discrete
field k, see [Str00]. In particular, E0E/m is perfect, which implies that the E∞ cotangent complex

L
E∞

(E0E/m)/(E0/m) vanishes [Lur18, Lemma 5.2.8].

This implies that the obstruction groups of Theorem 6.6, which are the André-Quillen
cohomology groups

Extt+2,t
ModE∗E(D(ComodE∗E))(L

ComodE∗E

E∗E/E∗
, E∗E),

vanish, so that a realization of E∗E exists. Moreover, the obstructions to lifting morphisms
of Theorem 6.7 also vanish and the functors Alg

E∞
(ME∗E

t+1 ) → Alg
E∞

(ME∗E
t ) between the

∞-categories of potential t-stages for E∗E are equivalences. Passing to the limit, we deduce that
the same is true for the functor

AlgE∗E
E∞

(SpE)→ BAutCAlg(ComodE∗E)(E∗E)

between realizations of E∗E in E-local aspectra and the category of comodule algebras isomor-
phic to E∗E. The latter is well-known to be equivalent to BAut(k,Γ), see [Rez98, §17], ending
the argument. �

Remark 7.8. Using arguments analogous to the ones appearing in the proof of Theorem 7.7,
one can show more generally that if E(k1,Γ1) and E(k2,Γ2) are two Morava E-theory spectra
with their unique E∞-ring structures, then

mapAlg
E∞

(Sp)(E(k1,Γ1), E(k2,Γ2)) ≃ mapFGL((k1,Γ1), (k2,Γ2)),
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where the latter is the set of homomorphisms in the category of rings equipped with a choice of
a formal group law. In particular, the space of E∞-maps is component-wise contractible.

Remark 7.9. Lurie has recently given a very different proof of the existence of an E∞-algebra
structure on E(k,Γ), by realizing it as a solution to a moduli problem in spectral algebraic
geometry [Lur18]. In fact, Lurie’s construction is much more general and produces commutative
ring spectra associated to deformation problems for a wide class of rings and p-divisible groups.

Remark 7.10. One can imagine a different obstruction-theoretic proof of the uniqueness of
the E∞-ring structure on E(k,Γ) by using André-Quillen cohomology of algebras with power
operations, analogous to the one using θ-algebras in [GH05].

The relevant power operations on the E(k,Γ)-homology of an E∞-algebra are given by the
Rezk monad T [Rez09]; as the free T-algebra on one generator is a polynomial algebra [Str98], the
T-algebra cotangent complex agrees with the ordinary commutative algebra cotangent complex,
which vanishes by formal étaleness. An odd feature of this argument is that one needs to assume
that an E∞-ring structure on E(k,Γ) exists to produce the obstruction theory in the first place.

8. Toda obstruction theory

Let H be the Eilenberg-MacLane spectrum HFp at a fixed prime and A the associated Steen-
rod algebra. In [Tod71], Toda gave an obstruction theory for realizing a bounded below module
over the Steenrod algebra as the cohomology of a spectrum.

Theorem 8.1 (Toda’s obstruction theory, [BE16, 3.2]). Let M be a bounded below A-module.
Then, there exists a sequence of inductively defined obstructions

θn ∈ Extn+2,n
A (M,M), where n ≥ 1

which vanish if and only if there exists a spectrum X such that M ≃ H∗X as A-modules.

In this section, we will prove a homological variant of Toda’s theorem as a consequence of
the Goerss-Hopkins obstruction theory developed in this note. In fact, our approach yields a
slight strengthening of Toda’s result, as it produces not just obstructions to realizations but an
inductive decomposition of the moduli space of realizations. It is also a particularly interesting
strength test for our theory, for the following reason.

In the case of Morava E-theory, considered in Theorem 7.4, the Goerss-Hopkins tower

(8.1) M∞ → · · · →M1 →M0

converges globally, meaning that the moduli space M∞ of potential ∞-stages for all E-local
spectra is the limit of the moduli stagesMn of potential n-stages. As we saw, this convergence
is a consequence of the completeness of the∞-category of synthetic spectra based on E; in turn,
this follows from an algebraic fact, namely the existence of a horizontal vanishing line in the
E2-page of the E-based Adams spectral sequence for the Hopkins-Ravenel finite spectrum.

If E is replaced with a general Adams-type homology theory, in general none of the above
needs to be true. However, in solving a given realization problem, one cares less about the
Goerss-Hopkins tower in its entirety than about its relativization

(8.2) MM
∞ → · · · →M

M
1 →M

M
0 = {M},

where M is some fixed E∗E-comodule and

MM
n =Mn ×M0

{M}

is the moduli of potential n-stages for a realization of M . The theorem we will actually prove,
which by Corollary 4.10 will have a homological variant of Theorem 8.1 as an immediate
consequence, says that the tower (8.2) converges whenever M is a comodule that is bounded
below.
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Again, the argument relies on the existence of vanishing lines on the E2-page of the Adams
spectral sequence. In the case of Morava E-theory, these vanishing lines were horizontal, as in
Lemma 7.3. In the case of ordinary mod p homology, the vanishing lines are of slope 1

q where

q = 2p− 2, and are due to Adams.
Note that we work with the Eilenberg-MacLane spectrum for definiteness, but the same

arguments would establish convergence of the Goerss-Hopkins tower whenever the Adams E2-
term has vanishing lines of positive slope. Most notably, the convergence also holds in the
bounded below case for BP , see Remark 8.7. In fact, the argument in the latter case is easier,
since the Adams-Novikov E2-term has a vanishing line already in the case of the sphere.

If M is a finite H∗H-comodule, then it is the Fp-linear dual of a module over the Steenrod
algebra. The latter contains the Bockstein element β ∈ A1 with the property that β2 = 0, which
subsequently acts on M . We will say that a finite H∗H-comodule M is freely acted on by the
Bockstein if it free as a module over the exterior algebra Fp[β]/β

2.

Theorem 8.2 (Adams vanishing). Let M be a finite comodule freely acted on by the Bockstein

and let N be bounded from below. Then, Exts,tH∗H
(M,N) has a vanishing line of slope 1

q .

More precisely, we have Exts,tH∗H
(M,N) = 0 for s > 1

q (t− s) + k, where k = b(N)− t(M)− 3

with b(N) being the degree of the bottom class in N and t(M) the degree of the top class in M .

Proof. Since Exts,t(M,−) commutes with filtered colimits, because it can be computed by the
cobar complex, without loss of generality we can assume that N is finite, too. Observe that by
linear duality we have an isomorphism

Exts,tH∗H
(M,N) ≃ Exts,tH∗H

(Fp,M
∨ ⊗N),

where M∨⊗N is an H∗H-comodule which is freely acted on by the Bockstein and is concentrated
in degrees d satisfying d ≥ b(N)− t(M).

Thus, by setting O = (M∨ ⊗N)[t(M)− b(N)] we see that to prove the needed statement it

is enough to know that Exts,tH∗H
(Fp, O) vanishes for s > 1

q (t − s) − 3 if O is a finite comodule

freely acted on by the Bockstein and concentrated in non-negative degrees, which is classical,
see [Rav86, 3.4.5]. �

As usual when working with synthetic spectra, statements about comodules alone are not
enough, as we also need some control over finite spectra and their homology.

Lemma 8.3. For every finite p-complete spectrum P , there exists a finite p-complete spectrum
Q together with an H∗-surjection Q→ P such that H∗Q is freely acted on by the Bockstein.

Proof. Take Q := P ∧ (Σ−1S0/p), with the map Q→ P induced by the projection Σ−1S0/p→
S0. �

Lemma 8.4. Let P be a finite p-complete spectrum such that H∗P is freely acted on by the
Bockstein and let k ∈ Z. Then, there exists a finite p-complete spectrum Q such that H∗Q is
freely acted on by the Bockstein and concentrated in degrees d ≤ k + 1, together with a map
Q→ P such that H∗Q→ H∗P is an isomorphism in degrees d ≤ k.

Proof. To fix notation, let M →֒ H∗P be the smallest Fp-linear subspace freely acted on by
the Bockstein which contains all elements of degree d ≤ k. Observe that since Fp[β]/β

2 is
concentrated in only two degrees, M has no elements in degrees above k + 1.

Since P is p-complete, it admits a cell structure where the cells are in one-to-one correspon-
dence with a chosen basis of H∗P over Fp. Let us choose a cell structure which corresponds to
a basis in which Mk+1 ⊆ Hk+1P is spanned by a subset of the basis elements of the latter.

Then, we observe that M can be realized as homology of a subcomplex of P , namely of the
k-skeleton together with those (k + 1)-cells which correspond to basis elements of M . This
subcomplex is the sought after finite spectrum Q. �
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The following is the main result of this section.

Theorem 8.5. Let M be a H∗H-comodule bounded from below. Then, the Goerss-Hopkins tower
for realizations of M converges; that is, the diagram

(8.3) MM
∞ → . . .→MM

1 →M
M
0 ,

where MM
n :=Mn ×MM

0

{M}, is a limit diagram of ∞-categories.

Proof. Recall from [Lur09, 5.5.6.23] that a Postnikov pretower is a diagram

. . .→ Xn → . . .→ X1 → X0

such that each map Xm → Xn, for m ≥ n, induces an equivalence (Xm)≤n ≃ Xn. Then the
limit of the tower (8.3) can be identified with the ∞-category of Postnikov pretowers (Xn) in
Syn, such that each Xn is a potential n-stage for an H-local spectrum realizing M .

To prove the statement, it is enough to show that any such pretower can be extended to a
Postnikov tower X → . . . → X1 → X0, which means that X → Xm induces an equivalence
X≤m ≃ Xm for each m. Given such an extension, we necessarily have X ∈ MM

∞ by Remark

4.4. If such an X exists, then because Syn is separated, X ≃ lim
←−

Xn. Thus, all we have to verify
is that the limit of the pretower has the needed property.

Let us fix a Postnikov pretower (Xn) as above. We claim that if P is a finite p-complete
spectrum such that H∗P is freely acted on by the Bockstein, then the tower

. . .→ [ΣkνP,X1]→ [ΣkνP,X0],

of homotopy classes of maps in Syn stabilizes; in other words, there exists an integer N such
that [ΣkνP,Xn] ≃ [ΣkνP,XN ] for n ≥ N , which implies that [ΣkνP,X ] ≃ [ΣkνP,Xn] for
X := lim

←−
Xn. Moreover, we claim that the bound N depends only on k and t(H∗P ), the degree

of the top class in the homology of P .
Arguing as in the proof of Theorem 7.4, let X[n] denote the fibre of Xn → Xn−1, observe

that we have an equivalence X[n] ≃ ΣnM [−n]. Since the latter is canonically a 1≤0-module,
being a suspension of a discrete synthetic spectrum, we have isomorphisms

πjmap(νP,X[n]) ≃ Extn,n−j(H∗P,M).

By Adams vanishing, which we stated as Theorem 8.2, for any fixed j this vanishes for large
values of n, with the precise vanishing range only depending on the degree t(B) of the bottom
class of M , which is fixed, and t(H∗P ), as promised. Then, the long exact sequence of homotopy
implies the needed stabilization.

Let Hα be a filtered diagram of finite p-complete spectra such that lim
−→

Hα ≃ H in the H-local

category, this can be obtained by p-completing the skeletal filtration of H . By [Pst18b, 4.17],
any such an filtered diagram yields an explicit formula

(πkX)l ≃ lim
−→

[Σkν(ΣlDHα), X ],

where by the subscript l we mean the subgroup of degree l elements in the H∗H-comodule πkX ,
and D refers to the H-local Spanier-Whitehead dual. Here, as elsewhere in the paper, by π∗

we denote the homotopy groups in the sense of prestable ∞-categories, which are referred to in
[Pst18b] as the t-structure homotopy groups.

Filtering H by skeleta as in the proof of Lemma 8.4, we may assume that each of H∗Hα is
concentrated in non-negative degrees and freely acted on by the Bockstein. If that is the case,
then the top class of H∗(Σ

lDHα) is in degree l. It then follows from the explicit bound we gave
on the stabilization of homotopy classes of maps that once we fix k and l, then there exists an
N such that

[Σkν(ΣlDHα), X ] ≃ [Σkν(ΣlDHα), Xn]
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for n ≥ N and all α. Passing to the filtered colimit in α, and using the explicit formula above,
this yields (πkX)l ≃ (πkXn)l for all large enough n.

Now, let m ≥ 0, to show that X≤m ≃ Xm we have to check that πkX ≃ πkXm for k ≤ m.
Since isomorphism of comodules are degreewise, it is enough to verify that (πkX)l ≃ (πkXm)l
for all l. By what we proved above, one can choose an n ≥ m such that (πkX)l → (πkXn)l is an
isomorphism. Since the same is true for (πkXn)l → (πkXm)l, the composite must hold for the
composite, which is exactly what we wanted to show. This ends the argument. �

Corollary 8.6. Let H = HFp be the Eilenberg-MacLane spectrum and let M be a H∗H-comodule
which is bounded below. Then, there exists a sequence of inductively defined obstructions

θn ∈ Extn+2,n
ComodH∗H

(M,M), where n ≥ 1

which vanish if and only if there exists a spectrum X such that H∗X ≃M as comodules.

Proof. Taking into account Theorem 8.5, this follows immediately from Corollary 4.10. �

Remark 8.7. The analogue of Theorem 8.5 also holds for the Brown-Peterson spectrum;
that is, the Goerss-Hopkins tower converges for any bounded below BP∗BP -comodule M . It
follows that the analogue of Corollary 8.6 is true as well; that is, there are obstructions in
Extn+2,n

BP∗BP (M,M) to realizing M as a BP -homology of a spectrum.
To see this, notice that the key argument in the proof of Theorem 8.5 is that the Eilenberg-

MacLane spectrum can be written as a filtered colimit H ≃ Hα of finite spectra with the property
that for any fixed j

Extn,n−j
H∗H

(H∗(DHα),M)

vanishes for large n. Moreover, the bound on vanishing depends only on the bounded below
comodule M , in fact on the degree of its bottom class, but not on α.

In the case of BP , one can use the skeletal filtration, since the skeleta of BP are all finite
projective with no cells in negative degrees. To prove the needed vanishing one argues as in the
proof of Theorem 8.2, reducing to the case of showing that Exts,tBP∗BP (BP∗, O) has a vanishing
line of fixed positive slope for any finitely generated BP∗BP -comodule O, with the intercept of
that line depending only on the degree of the bottom class of O.

It is classical that such a line of slope 1 exists when O = BP∗, see [Rav86][5.1.23], and the
general case follows by induction on the Landweber filtration of O [HS03].
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