Topology Vol 22. No. 3. po. 285-208 1981 0040 0183/83 $300
Topology Vol. 22, No. 3. pp. 285-298, 1983 0040 9383/83 $3.00
n. Pres

Printed in Great Britai Pergamon

£ 00
+ A

ess Lid.

STABLE SPLITTINGS DERIVED FROM THE
STEINBERG MODULE

STEPHEN A. MiITCHELLT and STEWART B. PRIDDY

(Received 15 September 1982)

IN THIS PAPER we construct a new class of stable splittings for certain classifying spaces,
including B(Z/p)*. Our results involve symmetric products of the sphere spectrum and are
based on the fundamental Steinberg module of modular representation theory. Splitting
theorems have long played an important role in homotopy theory, see [1-4], one reason

being that an equivalence X SvXx ;enablesone to construct maps X,— X which were a priori

inaccessible. Examples include Mahowald’s maps #;[5] based on Snaith’s splittings and,
more recently, certain maps used in Kuhn’s proof of the Whitehead conjecture[6, 7). These
latter maps are based on our splitting of B(Z/2)".

Our main resuit shows that the suspension spectrum of a product of lens spaces B(Z/p)*
can be split using the Steinberg idempotent of F,[GL,(F,)]. Let Sp"(S°) denote the n-fold
symmetric product of the sphere spectrum. We recall Sp>*(S°) = K(Z) by the Dold-Thom
theorem. Let D(k) be the cofiber of the diagonal map d: Sp™ ' (§°)—Sp”(S°). Then
D(w)=K(Z/p). Let M(k)=X*D(k)/D(k — 1). In mod-p cohomology H*(M(k)) has a
basis consisting of admissible Steenrod operations of length exactly k.

THEOREM A. Stably, B(Z/p)* contains p(é’ summands each equivalent to M(k). These
summands correspond to the p‘g’ summands of the Steinberg module in F ,GL,(F,).

Here and throughout, all spaces are localized at p. Let L(k) = Z~*Sp”(S°)/Sp” " (S°).
A simple argument shows that L(k) is also a summand of B(Z/p)*;, in fact,
M(k)=Ltk)v Ltk —1).

Let [* Z/p denote the k-fold wreath product. Using the transfer t: B([* Z/p)—~B(Z/p)*
and the double coset formula we prove

THEOREM B. M (k) is a stable summand in B(j"‘ Z/p). Let O(k) be the real orthogonal

Let O (k) be the real orthogonal group. Using Becker-Gottlieb transfer for the fibration
O (k)/(Z2)*—> B(Z/2)*—BO (k) we prove

THEOREM C. M (k) is a stable summand in BO (k).

Let 7% = (S')* be the k-torus. We construct a spectrum BP(k) such that H*BP (k) has
a basis consisting of admissible Steenrod operations in the reduced powers of length
exactly k. Using a lifting of the Steinberg idempotent to GL,(Z,) we show

THeOREM D. Completed at p, BT* contains p® stable summands each equivalent to
BP(k). Further, BP(k) is a stable summand of BU (k).

This paper is organized as follows: The brief §1 contains a few remarks about the length
filtration of the Steenrod algebra. In §2 we give an account of those facts about GL,(F,)
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286 S. A. MITCHELL and S. B. PRIDDY

and the Steinberg module needed for our subsequent constructions. Sections 3 and 4 are
devoted to the construction and properties of various spectra including Thom spectra and
symmetric product spectra. The proof of Theorem A is given in §5. Section 6 contains
proofs of Theorems B and C. Finally the construction of BP(k) and the proof of Theorem
D is given in §7.

§1. PRELIMINARIES ON THE STEENROD ALGEBRA

Let A denote the Steenrod algebra, and let 4, denote the subalgebra generated by f,
P',...P” ' (Forp=2,8 =_Sq'and P'= Sq*) If I is a finite sequence (&g, 7}, €, F2, . . .),
r;20,¢=0,1, then /= goPnpapr. . if ¢, =0 for all / we write P/ for §’. As usual,
I is admissible if r,> pr,, | + ¢ for all i. By a classical theorem of Cartan and Serre, the
admissible 8 are a basis for 4. The length /(1) is defined by /(J) =n if r,= 0 for i > n and
¢, = 0 for i > n. Thus we obtain vector space filtrations on A4 defined by F, = (8:/(I) <n)
and G, = (6" I admissible, /(/) > n). Finally, we recall that 4, contains an exterior algebra
on primitive elements Q,, ..., Q,_,, where Qy = and Q, ., = [P”, Q..

PrOPOSITION 1.1. (a) F, is spanned by the admissible 8/, /(I) < n; (b) F, is a subcoalgebra
of 4; (c) F, is a left A,_, submodule of 4. Moreover F, is free over E[Q,...,(Q,_,] on
{P": I admissible, /(I) < n}; (d) G, is a left ideal. Moreover 4/G, = F, as 4,_, modules.

Proof: (a) follows from the Adem relations, and (b) is obvious. The first part of (c)
also follows from the Adem relations, using induction on n. For the second part, note that
the E[Q,, . - ., @,_ ] submodule of F, generated by {P” I admissible, /(I) < n} is indeed
free as claimed; this follows from Milnor{8], Theorem 4(a). Hence this module has

n—1 n .
Poincaré series IT (1 + (% ~Y)/II(1 — '~V which is precisely the Poincaré series of F,
0 1

(by (a)). Finally, (d) also follows from the Adem relations; alternatively, it is a consequence
of (3.5) below.

§2. GL,F, AND THE STEINBERG MODULE
Let V" be a vector space over the finite field F,, g = p’, with basis y;, ..., y,. Then GL,F,

is the automorphism group of V”, acting on the right. GL,F, has order ¢@ fI (g'—1), and
contains the following distinguished subgroups: =

X, = symmetric group (permutation matrices).

D, = diagonal matrices.

B, = Borel subgroup = upper triangular matrices.

U, = unipotent subgroup = upper triangular matrices with all diagonal entries equal to 1.
(Note U, is a p-Sylow subgroup.)

In addition we will need to consider

A, = top row subgroup = {g€B,: y,g =y, Vi>1}.
T, = cyclic subgroup of X, of order n generated by (1,2, ..., n).

Throughout this paper, we regard V* as the subspace (y,_,1s...,V.p of V" this
convention determines inclusions GL,F, < GL,F,, etc. Note that many of our subgroups fit
together as semi-direct products, e.g. £, X D,, D, x U, = B,, and the “‘maximal parabolic
subgroup” GL, | X A4,.

We digress briefly to review some general facts from representation theory (see [9]). All
modules are understood to be right modules. Let R be any finite-dimensional algebra over
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a field K. Then there is a unique set of indecomposable two-sided ideals B, .. ., B,, called
blocks, such that R = T1B; (as algebras). Each B, corresponds to a central idempotent f; such
that B, = Rf, = f;R;; the f; are orthogonal and Xf; = 1. A nonzero right R-module M is said
to belong to the block B, (alternatively, B, “contains M”) if Mf,=0 Vj#i If M is
indecomposable, then obviously M belongs to a unique block. Now if R is semisimple, then
each block is a matrix algebra. More generally, suppose R is a ““‘quasi-Frobenius” algebra,
i.e. every projective over R is injective. (For example, group algebras are quasi-Frobenius).
Then:

PROPOSITION 2.1. If R is quasi-Frobenius, a block B of R is a matrix algebra if and only
if B contains a projective irreducible module.

Proof. First recall (see [9], p. 378) that two indecomposables U, V are linked if there is
a finite sequence U = U,, U,, ..., U, = V of indecomposables such that U; and U, , have a
common irreducible constituent (i.e. composition factor) for each i. (Curtis and Reiner use
only “principal” indecomposables, but this makes no difference.) This defines an equiv-
alence relation on the set of indecomposable modules. Moreover it is true (over any
finite-dimensional algebra) that U and V are linked if and only if they belong to the same
block ([9], Theorem 55.2).

Now suppose B contains a projective irreducible N. Since N is also injective, it is a direct
summand of any module in which it occurs as a composition factor. Hence the linking class
of N consists solely of N itself. But this means every B-module is a direct sum of copies of
N, and the classical Artin-Wedderburn theory then implies B is a matrix algebra over some
K-central division algebra.

The converse is a standard fact. _

Now take R = F[GL,F ]. If H is a subgroup of GL,F,, we let H= Z h(Gf H £ X)) and
H=1Y e(h)h (if H< X)), here e: T,—{ + 1} is the usual map. hed

heH

Definition 2.2. The Steinberg idempotent e, is defined by e, = B,L,/[GL,: U,]; the corre-
sponding module St = ¢,R is called the Steinberg module.

THEOREM 2.3. (Steinberg[10)), (a) e, is idempotent; (b) St is projective and absolutely
irreducible; (c) as a U,-module, St is the regular representation. In particular dim St = q©@ with
basis {e,u: ueU,}.

Remark 2.4. By Proposition 2.1, the block By, containing St is a matrix algebra over F,
of degree ¢*. <

Remark. Steinberg originally defined St as a certain composition factor of the per-
mutation representation obtained from the action of GL, on the flag complex F(¥™). Later,
Solomon and Tits showed that F(V”) has the homotopy type of a wedge of
g®(n — 2)-spheres, and that St is the representation of GL, on the cohomology group
N"=2(V"). Yet another description of St is given in (5.12) below.

Now suppose K € H € GL,, H £ £,,and let H = U h,K (left coset decomposition). Then

clearly H = (£h)K. If K is normal in H, then also (Zh)K = K(Zh,). Similar remarks apply
if H<Z,. For example, B,=A4,B,_,=8B,_,4, £,=%,_\T,, B,=D,U,=0U,D,, and
A%, =%, A, The following inductive formula is then immediate:

PROPOSITION 2.5. ¢, =¢,_,A,T./(q" — 1).

TOP Vol. 22. No. 3. E
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Our last proposition will be needed in Section 6. Let e, = £, B, /[GL: U,].

PROPOSITION 2.6. (a) e, is a primitive idempotent belonging to the Steinberg block Bs,.
For any M belonging to Bg,, Me, = M ?; (b) for any GL,-module W, there are vector space

isomorphisms We,,-:-’» We, and We;,-i We, given by B,, £, (respectively).

Proof. Since e, is the conjugate of ¢, in the Hopf algebra F,[GL,], e, is a primitive
idempotent. Now by Theorem 2.3, St% is equal to StB, = {e,B) and has dimension one.
Thus e is the identity onSt?. In particular Ste, # 0, so e, belongs to By,. This also shows
Me, = M5 for M belonging to By, since such an M is just a direct sum of copies of St (by
Remark 2.4). (b) is obvious.

§3. B(Z/py’ AND ASSOCIATED SPECTRA
Let L**! denote the lens manifold S***'/(Z/p). We identify BZ/p with L* = lim L**!

and B(Z/p)" with i BZ/p. The canonical complex line bundle A over BZ/p is S* x 2,,Cs
1

where Z/p acts on C via the standard inclusion Z/p = S'. Let P, = H*B(Z/p)". Then, at odd
primes, P, = E[x]® Z/p[y], where y =¢,;(A) and fx = y. From the Kiinneth theorem we
then have

P, =E[x,....x]®Z/ply, ...,V 3.1

Forp =2, P,=2Z/2[x,,..., x,). However, in order to avoid separating cases, we will
make use of the following device: Let y, = x/?, and replace P, by the quotients of the filtration

0—»P2>P,—P /P20

where P,? denotes the subring of squares. Then (3.1) becomes valid for all primes. In
particular (3.1) describes P, as a module over the Steenrod algebra.

Now GL,= GL,Z/p acts on (Z/p)" and hence on the homotopy type B(Z/p)" (on the left).
The resulting right action on P, is then the obvious one implied by (3.1) (with our usual
proviso for p = 2). As explained in {11, §1], for each idempotent e€Z/p[GL,] we obtain a
stable summand X of B(Z/p)" with cohomology P,e. We will use the notation e - B(Z/p)" for
X. For example, let d,=D,/(p — 1), where D, is the diagonal subgroup and D, = ) g.

gDy
Then d, is idempotent and we have the following well known fact:

PROPOSITION 3.2. The map B(Z/p)"—B(X,)" induced by the inclusion (Z/p)" < (Z,)

restricts to an equivalence d,- B(Z/p )"-iB(Z‘.,,)".

The transfer provides an explicit inverse. Note that
H*B(E,)' = P>=Elxy/ ™% ..., xy/ 1QZply/ ", ... »/ 7]

3.3 Thom spectra

We will need to consider various Thom spectra, and quotients of Thom spectra, over
these classifying spaces. The following notation is very convenient: For any finite group G
and representation 8 of G, we use the same letter 6 to denote the corresponding vector bundle
over BG. In fact in place of , we could take any element of the compiex representation ring
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R:(G). For example, if « is the reduced regular representation of (Z/p)” (i.e. the regular
representation minus a trivial one-dimensional representation), then (B(Z/p)")* is the Thom
spectrum of the sum of all the nontrivial line bundles over B(Z/p)". When n =1 and 4:
Z/p—S' is the standard representation mentioned above, we write L3, for (BZ/p)* (keZ)
and L ,, for L$/S*. When : Z,—»U(p — 1) is the reduced standard representation; we
write P for (BZ,)* (¢ =2(p — 1)) and P§,,,,_, for P{/S*. (Note that P has cells only
in dimensions congruent to 0 or —1mod g =2{p — 1). Note also that for p =2, this
definition of P,* agrees with the usual one based on the canonical real line bundie.) In this
notation, we have B(Z/p), = ALy, B(Z,), = A"P,)*, elc.

The cohomology of these spectra is very easy to describe. Let S, denote the localization
of P, obtained by inverting all nonzero linear formsin y,, . . ., y, (i.e. all elements of V" — 0).
By a theorem of Wilkerson[12], S, has a unique 4 -module structure extending that of P,.
Then the cohomology of virtually every spectrum considered in this paper can be regarded
in a natural way as an A-submodule of S,. For example, if e R{(Z/p)") then 6 has an
“Thom class’ e(8)eS,, and H*(B(Z/p)")®is the (free) P,-submodule of S, generated by e(8).
(Note this is also an 4-submodule). We list here a few explicit descriptions that we will need;
further examples are left to the reader.

Examples 3.4

(@) H*L%; (e = 0or 1)is the P,-submodule of S, generated by y* (or xp*, y**ife = 1).

(b) H*(B(Z/p)")~*is the P,-submodule of S, generated by /,~!, where [, = TII aisthe
Euler class of a. . achm-0

() H*A"P*, is the H*B(Z,) -submodule of §, generated by X,Y,', where
X,=x...x,and Y, =y, ...y,

We emphasize that in all of these examples the 4-module structure follows from the
Cartan formula together with the action of 4 on the “Thom class” in the lowest dimension.
This in turn is determined by the standard formulas, Piy* = (})y**%®-Y Bx =y where
dim x =1, dim y = 2 and % is allowed to be negative. In fact, we make no essential use of
Wilkerson’s result, since all of our 4 -modules will actually be submodules of the 4-module
of example (b).

Of particular importance for us is the 4-submodule M, of H*A"P%, generated by
XY, .

PROPOSITION 3.5. M, =X "4/G,. Moreover M,N P, has basis {6'(X,Y,~"): I admissible,
II)=n}.

Proof. Define a filtration w on H*A"P%®, as follows: given an n-tuple (a,,...,a,),
a,>—1.let zew(a,...,a,) iff

() z=x ... x5/ ..y ee{0,1}, i=—1and (f,,....[)<(a,...,a,) in the
lexicographical order (starting at the left), or

(2) z is a linear combination of monomials, each of which is in @(ay,...,a,).

Then w(a,,...,q,)cw(ai,...,a;) if (a,...,a)<(ai,...,a;).

Now for I=(€,r,€,"...,6_1, 1) define Y/ =pr . y*k  where
ki=r(p—D+e¢_and X, =x1"%9 . xl7¢,_,.

LemMa 3.6. If I is admissible and I(I) < n, 0'(X,Y,”") = + X,’Y,! modulo terms of lower
filtration (X"Y'ew(k,, ..., k,)).

Proof of Lemma. For n = 1, the lemma is clear; suppose inductively it is true forn — 1.
By the Cartan formula 6/(X,Y, ) =Z+ 6 (x;y,7Y),...,0"(xp,” ") where the sum is
taken over all sequences Ji,...,J, with £J,=1 Those terms with J, = (¢, r;) can be
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grouped as 6% (x,y, """ (X,_,Y,') where I'=(¢,, 7y ....€6,_,1,). By induction the
sum of these terms equals +X’_, ¥/ | mod elements of lower filtration. It remains to
consider terms with /(J;) > 1. For such admissible J,, 87(x,y,7') =0 for dimensional
reasons. For such inadmissible J, write J, = (¢g, 1, ..., €,_ |, r7). The Adem relations show
that the only admissible summand of length 1 in 67 is ¢fP" where ceZ/p, ¢ = 1 if Ze| = 1,
e=0if Z¢; =0mod 2 and r = Zr](note that ¢ =0 if Z¢; > 1). If Z¢; =0 then

c=<(r;+ ~~+r;)(p—1)—1><(r3+---+r;,)(p——1)—1>m<r;(p—1)—1>

14 s
r r: oy

and ¢ #0 implies r; <(r{,,+- - +r)p —1). Hence Tri<p" 'r.<p" 'r,<r and so
87 (x,3,"Y) ... 0% (xy,”") has filtration less than that of X'Y’ The case of Ze; =1 is
similar. This completes the proof of the lemma.

From the lemma it is immediate that the set {6/(X,Y,™"), 7 admissible and /(1) < n}
is independent. Moreover it is easy to see that /() = n iff 0/(X, Y, ")eP,. It then follows
for dimensional reasons that the ideal G, annihilates X,Y,~".

3.7 Transfer

We conclude this section with a discussion of the various transfer maps that we will
need. Suppose X is a CW-complex, # is an n-dimensional complex vector bundle over X
and ¢ is a stable complex vector bundle over X (i.e. a map to BU). Then the inclusion
of ¢ in the Whitney sum n @ ¢ induces a map of Thom spectra X¢— X"®¢; this is the
transfer associated to n, £. (A quite general discussion of transfer maps can be found in
[13]. We leave it to the reader to discover in what sense the construction described here
is a special case of that of [13].) The following is well known:

ProposITION 3.8. The following diagram commutes

H*Xi,__l_‘___H*Xv®t
gT Ue(n) T;
H*X «——— H*X

where Ue(n) denotes cup product with the mod p Euler class e(n) and the vertical maps are
Thom isomorphisms.

Remark 3.9. The proposition is in fact true for any cohomology theory E such that »
and ¢ are E-oriented.

Example 3.10. There is a transfer (B(Z/p)")~* 5 B(Z/p)".. The map t*: P,—P,-[,"'is
the obvious one, by (3.8).

Example 3.11. (BZ/p)~*>(BZ/p)~*= L*,. Again the map t*: P, -y ~'—»P, -y ¢~ Vis
the obvious one.

Composing with the quotient map L*,—L%*, in example (3.11), we obtain a map
(BZ/p)~*—L=>,. Maps of this type will also be referred to as “‘transfers”.

Note that GL,Z/p acts on (B(Z/p))~% and that # (of 3.3) restricted to Z/p is a. The
final result of this section is straightforward; its proof will be left to the reader.

PROPOSITION 3.12. The induced map of Thom spectra ¢: (BZ/p)~*—~(BZ) f=P=,
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restricts to an equivalence d, - (BZ/p)™*= P% . Moreover there is a commutative diagram

¢
(BZjp)~*5 P2,

t] vl
chl ""PT]
! vl

where 1 is the transfer and the unlabelled maps are the obvious ones. Moreover  and i are

o

stable retractions; in particular P% | is a summand of L= .
Of course i/ is just the retraction of (3.2).

§4. SYMMETRIC PRODUCT SPECTRA
If X is a space and H is a subgroup of X.,, Sp#X is the orbit space X"/H. If H =X, we
write Sp” in place of Sp¥. If X ={X, ¢} is a spectrum with structure maps
& S'AX,—>X,,,, then Sp”X is the spectrum {Sp¥X,, Sp™(e)ofi}, where f:
S' A SpHX,—SpH(S' A X, ) isdefined by fi(t A (x,...X,)=({ A X, ...t AX,). Thus Sp¥
becomes a functor on the stable category; for further details the reader may consult [14].

The natural inclusions Sp"X < Sp"*'X allow us to define Sp*X =lim Sp"X for a
spectrum X. By the Dold~-Thom theorem, Sp*S°® = KZ; in particular H*Sp=~S°= A/Ap.

THEOREM 4.1. (Nakaoka[15]). The inclusions Sp"S°—Sp*S°® are surjective on co-
homology. Moreover H*Sp”S® has basis {6": I admissible, I(I) < n, 0'¢ AB}.

4.2 The spectrum D(n)

If MZ/p is the modp Moore spectrum, then Sp*MZ/p = KZ[p. In view of
Theorem (4.1) it is natural to ask whether the finite symmetric products Sp”"M Z/p realize
the Cartan-Serre filtration G, on A = H*KZ/p. The answer is no; it can easily be seen from
Remark (4.5) that the filtration provided by the Sp”’M Z/p is slightly different. Instead we
use the following construction: On the space level there are obvious p-fold diagonal maps

d
Sp”~'S*—Sp”' Sk these induce maps of spectra Sp”'~'S°—Sp?”"S°. Let D(n) denote the

cofibre of d. Now clearly d* is zero on H°Sp”"S®; hence by (4.1) d* is zero on all of H*. In
other words, the cofibration Sp”'S°—D(n)—ZSp” 'S° has a short exact cohomology
sequence. Letting u,e H°D(n) denote a generator, the following proposition is now evident:

PROPOSITION 4.3. There are commutative diagrams

Dn = 1)AD(m)
in—l\ /ln
KzZjp

such that i¥ is surjective with kernel G, for all n. In particular, H*D(n) has basis {8'(w,): 1
admissible. I(I) < n}.

Frequently, the generator u, will be omitted from the notation. Note that
H*D(1)= H*LP*, as A-modules. In fact:

PROPOSITION 4.4 ZP*, = D(1).
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i
Proof. Note that it is enough to exhibit a map L *,— D (1) which is nonzero on H°, since

we can then use the following composite g:
i t !
LP%Z ,—ZIB(Z/p)~*-ZL% -»D().

Here i is the inclusion of ZP~, as a stable summand, as in (3.12) and ¢ is the transfer. The
induced map g: ZP*,=XP= /S~*'-D(1) is then clearly an equivalence.

Now let — 4, denote the complement in C"*! of the canonical complex line bundle 4, over
L**! Thus — 4, has total space {({x],v): (x,v) =0} where xeS¥*!, [ ] denotes equiv-
alence class in L**!, and (, ) is the usual Hermitian inner product on C"*'. Now if L, is the
complex line spanned by x, and |v| < 1, then L, + v intersects S in a circle of radius
(1 = [v]). Hence we may define a map £, from the unit disc bundle D( — 4,) to Sp?S¥*!
by fxLo)=G/A—=pPx+v, JA=|oPax+v,..., J(1—|pP)a*"'x +v, where
a = exp (2ni/p). (In fact f, is well defined as a map into the cyclic product SpZ?S¥+!).
Moreover, if S(— 4,) is the unit sphere bundle, we have a commutative diagram of
cofibrations:

S( —- An)—PSZ'H'l

L
D(- 15 sprso+
! !

(L2n+l)—,l,,i Sp’S2"+l/d(SZ"+l).

. f
The maps £, fit together to yield a map of spectra Z(BZ/p) “=XL*,-M(1). To show f*

is an isomorphism on HY, it is enough to show (f,), is an isomorphism on H,, ;. Consider
the restriction of f, to the zero section L¥*': f([x]) = (x, ax,...,a? 'x). There is a
commutative diagram

SZn+liSppSzn+l

™ s

L2n+1

where F is the composite

S2n+li(SZn+l)p fxax-xa-l (Sz"“)/’—»Sp”SZ"“,

Now m, is multiplication by p on H,,, ,(*; Z). Since a*: S *! —»S**! has degree one, Fy is
also multiplication by p. Hence (ﬁ,)* is an isomorphism on H,,,,, and the proposition
follows.

Remark 4.5. By a theorem of Kan and Whitehead ([16}, see also [14]) the functors Sp*
preserve cofibrations in the category of spectra. An equivalent statement is that the natural
map Sp”S° A X —Sp"X is an equivalence. Now if H is a wreath product K | L, it is easy to
see that Sp#X =~ Sp*(Sp*X) (on the space level, this is actually a homeomorphism).
Combining these remarks, we see that if H, = |"Z,, then Sp”-S° = A"Sp’S°.
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If D’(n) is the cofibre of the diagonal Sp*»-1S"—Sp"-S°, as in the definition (4.2) of
D(n). there is an analogous equivalence D’(n) = A"D’(1) = A"X P~ | (by 4.4). Although we
make no essential use of these facts, they are very helpful for understanding symmetric
product spectra.

§5. PROUF OF THEOREM A
Let M(n)=XZ"D(n)/D(n — 1)). It follows from Proposition 4.3 that H*(M(n) has
basis {0": I admissible, /(/) =n}.
Theorem A is a consequence of the following:

THEOREM 5.1. There is a map g: (B(Z/p)"- M (n) such that on modp cohomology, g*
is an isomorphism onto [H*B(Z/p)'e,.

For it follows that g restricts to an equivalence e, B(Z/p)":M(n).

Since the Steinberg block By, is a matrix algebra of degree p® over F,, the corresponding
central idempotent decomposes into the sum of p® primitive orthogonal idempotents one
of which is e. The corresponding summands of B(Z/p)" are equivalent [11, 1.6]. Thus
Theorem A follows from Theorem 5.1.

In fact the map is a very natural one, as we proceed to explain (see [11]). There are maps
(of spaces) Sp'S™ A Sp'S"—-Sp’S™*" defined by (X, x;...x) A (¥ y2...y) -
(xy Ayiox; A ry...x, A x). These yield a map of spectra Sp'S°® A Sp’S°— Sp?S° and by
iteration a map p,. A"Sp’S°—Sp”S°. As noted in [11], by factoring out the appropriate
subspectra we obtain a commutative diagram

A"SprS° 5 sprse
Lo, (5.2)
A"SprS°— SprS°

where Sp”'S" = Spr"S°/Sp”~'S".
From the definition of M(n), it is clear on inspection that (5.2) yields a further
commutative diagram

A'D(1)5D(n)
I (5:3)
AEM(1)SZ M @)

Remark 5.4. In view of the Dold-Thom theorem, the maps u,, 4 can be viewed as
filtrations of the ring spectrum multiplication on KZ, KZ/p. For another interpretation, see
Remark (5.7) below.

Finally. from the results of §3 we obtain our main commutative diagram

ARy mn
AN'L* —>A'P* ——=Z ~"D(n)
l ! ! (5.5)
An i
NL;—>AN'P; - M(n).

Here we recall that

ALy =B(ZipY.. P2, =Z-'D(1). AP =B(E,). and P§=M(l).
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Let f = u(A™), g = A(A"); we will show that g is the required map of Theorem 5.1. Let
R,=H*A"'L*,<S,, P,= H*A"Lf < R,, and M, = A-submodule of R, generated by the
bottom class X, Y, '

LEMMA 5.6. (a) f* is an isomorphism H*X~"D(n)—M, (b) g* is an isomorphism
H*M{n)-MNP,.

Proof. Since f*(u,) = X,Y,”!, (a) is immediate from (3.5) and (4.3). Moreover we have
seen in (3.5) that M, N P, is precisely (8/(X, Y, "): Tadmissible and /() = n ). (b) then follows
from (a), using (5.5).

Remark 5.7. Since our proof of (5.6) relies on Nakaoka’s calculation of H*Sp”"S®, in a
sense it puts the cart before the horse. In fact one can show directly that y,: A"Sp?S%— Sp”"S°
is injective in cohomology, and indeed this is essentially equivalent to a key step in
Nakaoka’s original proof: As remarked in Section 4,
A"Sp?S° = SpP(Sp(. .. Sp*S?)...) = Sp”S°, where H = ["X,. Moreover, it is easy to see
that the resulting map Sp”S°—">Sp"" S9 corresponding to y, is the obvious ‘“‘projection”
associated to the inclusion H < Z,.. Now algebraically one can define a transfer ¢*:
H*Sp"S°— H*Sp”"S° enjoying the usual properties, e.g. t*n* = multiplication by the index
[Zn: H). But [Z,n: H]is prime to p, which shows u§ is injective.

Lemma (5.6) reduces Theorem (5.1) to the following purely algebraic result:

THEOREM 5.8. Re, = M,.

For then Pe,= P,NR.e,= P,N M, = Img* by 5.6b. (As usual, we are regarding R, as
embedded in S,). The proof of Theorem (5.8) is based on the following curious lemma,
which relates the action of the Steenrod algebra on R, to the action of GL,F,.

LEMMA 5.9. Let J = (oo - - - s Ju—1)sJ = Zji, J; =0 or 1, and let I be any multiindex of length
<n—1. Then

(xlyl_lQJPI(Xn—lYn_—ll))en =(_ l)’.Q'II:)I("Yn),n—1)'

Proof of Theorem 5.8. Taking @Q“P' =1 in the lemma we have (X, Y, Ve, = X,Y, !, so
M,< R, Toshow R,e, = M, we use induction on n. For n = 1 this is clear (see 3.4). Now
suppose we have shown R,_,e,_, = M,_,. From (2.5) we have ¢, = —¢,_,4,T, and hence

Rnen = (Rl ® Rn—len—])ZnTn = (Rl ®Mn—1)infn = (Rl ®Mn—l)en'

Let R| = H*P>, = H*Z'D(1)) (see Prop. 4.3, Ex. 3.4 (iii)). Since A, contains the
diagonal matrices F* x I,_, we have (R,® M,_,)e,=(R{® M, _,)e,. Further for any
A-module N, R;®N is generated by x,y,"'®N. Hence it is enough to show
(" '®M,_ e, = M,. But this is immediate from the lemma together with (1.1(c)).
Recall V" is the vector space (y,....,y,). To prove the lemma we will need:

ProposiTION 5.10. Let a,, = Y, a*. Then if k =ip” with 0<i<p"—p"~!, a, ,=0.

aeyn

Proof. It is enough to prove the case r =0. Clearly «,, is a GL, invariant. But by a
classical theorem of Dickson[l7], the smallest nonzero dimension in which such an
invariant occurs is 2(p" — p"~!) for p odd and 2"~! for p = 2.

Proof of Lemma 5.9. Fix p>2 For n=1 the lemma merely states that
(xy; " De, = x,y, 7 ; this is clear since e, = d;. From now on we assume n > 1. We consider
first the case Q7=1. Suppose inductively we have shown the special case
(X, Y, 'De._,=X,_ Y, !\. Let n; ¥">F, denote the coordinate projections. Then
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x0T PUX, Y e, = — x T PUX,_, Y )A,T, (by (2.5) and inductive hypothesis)
= - Xn}'l N lPl( Yn_Jl)/?nTn

-X,Y > afaa Pyt i pT)

i=1ae¥n—0

-X, Y a 'Y n@P' BT Y
i=1

aeln -0

=—X" 2 a_lPl(aY"-l).

aeln—(

n—1
Now AP'=36;@8; with [(8), /(6))<n—1. Hence P{a¥,™)=' a™6,(¥,™) for

certain 6, independent of a, with 6, = P’. We then have

n-1
—-X, Y a 'Pay,Y=-X, ¥ a 'Y a”0(¥,"")
k=0

aeV" -0 a0

n—1
-—X,,P’Y,,"( Z a")—X,, Z 6,.Y, " (o k1)
k=1

aebn -0

= P/(X,Y,~"). (Using 5.10).
For the general case consider the equation

(xlyl_le(Xn—lYn_-ll))A-nTn= ie(XnYn—l)9 OEA (511)

Then it is enough to show that if (5.11) holds for 6, then it holds for Q.8 if0<i<n -2
(but with opposite sign). Since @; is primitive, by applying Q, to both sides of 5.11 we are
reduced to showing (Qxv, " DN0(X,_, Y ! WA, T,=0. But in fact

(Qx» ™ NO(X,_ 1 Yn_—ll))/‘Tn =’ (X, _, Yn_—ll))/;n = (an.p’—l Uy pi— DX, _, Y, )
=0.

By (5.10). This completes the proof if p > 2. The proof for p = 2 is similar but easier if
we use the elements Sg’. Then

xl_lSqI(Xn_—]l)en = xl_lSql(Xn_—ll)A—nTn = Z Z 7‘[i(a)a_lsql(xl te x’:i”1 e xn)

i=]ageWn—-0

= Y a 'Sq¢'laX;")=Sq'(x,™"

aeWn—0

where W” is the vector space {x, ..., x,). This finishes the proof of the lemma, and the
proof of -Theorem 5.8.

Remark 5.12. Lemma (5.9) shows (X,Y, ') is fixed by e, (over any finite field F,). It
follows that the Steinberg module can be described as the GL,F, submodule of
Elx...... J®Zip(y. .. .. v,) generated by X,Y, .

Remark 5.13. Theorem 5.8 determines the multiplicity of the Steinberg module in
Elx,.. .. J®Z ply..... va). Let f(s.r)=Za;s't’ where g, is the multiplicity of St in
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Elx,....X],-i®Z/py - ...y, Then using (5.8) we obtain

[T (1 +s:7-2)
[, )= 17" (st 4 2,
(1—- tZ(P‘—I))
=1

1

Remark 5.14. Since B(X,)" = d,- B(Z/pY', and d, commutes with U, and £,, e, restricts
naturally to a self-map of B(X,)". Hence M(n) is a stable summand of B(Z,)".
Let L(n) =X "Sp”(S°). We conclude this section by proving

PROPOSITION 5.15. M(n)=L(n) v L(n — 1).

Proof. By definition, there is a cofibration L(n)—M(n)—L(n — 1), with the resulting
cohomology sequence short exact (§4). Hence it will be enough to produce a map #:
M (n)— L(n) such that A* is an isomorphism onto (8" ¢,_, = 0). Let H be the composite

ATPPSATPY? i'LS—p""'SO, where f, is as in (5.2) (recall ZP* = Sp”S?). By Theorem (5.1)

and Remark 5.14, M (n) is a stable summand of A"ZP{ . From diagram (5.2), it is clear
that a map h with the desired property is obtained by restricting H to M(n).

§6. SPLITTING B([*Z/{p) AND BO(n)

Regarding Z . as the permutation group of the set ", one obtains an embedding of the
affine group Aff(F,) = GL,F, X F,"in Z,.. In particular this defines an inclusion j: "> X .. (as
the group of translations) with Weyl group Wy A (F ;") = GL,. Now the wreath product embeds
{"Z|p = %, as a p-Sylow subgroup and factors j

[Fﬂni)zp"
j,\ U
j"‘Z/p.

Thisembedding can be chosen so that Aﬁ",,ﬂj"”Z/p =U,x F,",and Wz, (F,") = U,. Similarly,
§"E, = Z.and Af,N["E, = B, X F,"; then Wy (F,") = B,. Letting 1: B {"Z/p—B(Z[p)" de-
note the transfer associated to j* we then have the following easy consequence of the double
coset formula (see [11], Proposition 1.4).

LEMMA 6.1.j'*t* = U,.

Proof of Theorem B. From the lemma and (2.6(b)), we see that £’ restricts to an equiv-

alence e, - B(Z/p )"ie,, - B(Z/pY'. Hence Theorem B follows from Theorem A.

Remark. Since e, and e, commute with d,, it follows that the summand M (n) of B {* Z/p
actually is a summand of B " Z,.
Proof of Theorem C. The inclusion of (Z/2)" in 0(n) as the diagonal matrices yields a map

B(Z/2)”—i>BO(n) with fibre the flag manifold 0(n)/(Z/2)". Let t: BO(n)— B(Z/2)" be the associ-

ated Becker-Gottlieb transfer.

LemMMa 6.2, i*t* = £ [18].
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As in the proof of Theorem B, it follows that ¢ restricts to an equivalence
e,  B(Z2)'>e) - B(Z/2)". Hence Theorem C follows from Theorem A.

§7. SPLITTING BT*" AND BU(n)

In this section all spectra are completed at p. We begin by observing that GL,(Z,) acts on
T"=B(Z,)', BT", and hence diagonally on T A BT", =(T" x BT"),. In mod-p co-
homology

H*(T" x BT"), = E[x;,...,x]®Z/py,- ..,V

wherex,=1® ... ®x® ...® leH'T"and y, = ¢,(n;) where n; T"—> S is the i-th projection
map. This notation is chosen to agree with that of (3.1) since H*(T" x BT"), ~ H¥(BZ/p)".
as GL,(F,) modules. Here GL,(Z,) acts via mod p reduction GL(Z,)—»GL,(F,).

Since mod p reduction is surjective, we can choose é,€ Z,[GL,(Z,)] which projects to the
Steinberg idempotent e,e F,[GL,(F,)); hence é, defines a map

¢, (T" + BT"), »(T" x BT"),

which induces action by e, on H*(T" x BT"), . As explained in §3, é, splits (T x BT"),;
however, we wish to split BT at least up to suspension. Hence we define

il 2, Al
&:S" A BT", —— T". A BT", —— T" A BT", — S" A BT",

where i and p are inclusion and projection on the top cell. We shall see that &, is an idempotent
in cohomology and hence splits S” A BT",.

Definition. BP(n) = "¢ (S" A BT".).

Proof of Theorem D. First we show that BP(n) has the correct cohomology. We proceed
to consider some complex analogues of our previous constructions. Let n be the canonical line
bundle over BS' and write CP$;, k € Z for the Thom spectrum (BS')*". Then A"CP, = BT",
and we let P,= H*(T" A BT™),, S, = P,[l,”'] where [, is the product of all non-zero linear
formsiny,, y;, ..., .. Let R,= H¥(T". A A"CP*,) c S,and let M be the P = 4 /(f) module
generatedby X, Y, 'where X, =x,...x,, Y,=y,...y,. Then M, = Z(P/PNG,)asin Prop.
3.5. Further, R,e, = M, as in Theorem 5.8. Thus P,e, = P, R,e, = P,N M, which has the
required basis Z"{ P/(X,Y,~"): I admissible, /(/) = n} as in Prop. 3.5.

Itis now clear that €, is an idempotent in cohomology since X, represents the top cellin S”.

To see that BT™ contains p@ copies of BP(n) we note that lifting orthogonal idempotents
of FIGL(F)] to ZJGL,(Z,)] results in self maps of (T" A BT"), which give orthogonal
idempotents in cohomology.

The proof that BU (n) splits is analogous to that of BO(n), Theorem C (6.1). One uses the
fibration U(n)/T"— BT"— BU(n) and Becker—Gottlieb transfer.
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