
ON THE LICHTENBAUM-QUILLEN CONJECTURES FROM 
A STABLE HOMOTOPY-THEORETIC VIEWPOINT 

STEPHEN A. MITCHELL 

INTRODUCTION 

The original purpose of this paper was to give a leisurely exposition of 
the author's work [Mitchell 1990a, b], including the philosophy behind it 
and its connection with the Lichtenbaum-Quillen conjectures. The intended 
audience included homotopy theorists and algebraic K-theorists. However 
it soon became clear that this necessitates explaining algebraic K-theory 
to the former group and stable homotopy theory to the latter; hence the 
length of the present work. The paper in fact consists of three parts: (1) 
an exposition of the Lichtenbaum-Quillen conjectures; (2) an introduction 
to the "chromatic" view of stable homotopy theory, and related topics; and 
(3) an account of how the first two parts are related, together with an 
exposition of the author's recent work cited above. We have made an effort 
to assume as little as possible in the way of background, and wherever it 
seemed reasonable to do so, we have sketched the proofs of the main results. 

The first part (§1-7) is an introduction to the Lichtenbaum-Quillen con­
jectures on the K-theory of commutative rings and schemes, viewed from 
a homotopy-theoretic perspective. As this subject is impossibly vast, we 
have focused on the two cases that are emphasized in the original sources 
([Quillen 1974], [Lichtenbaum]): (1) algebraically closed fields, and espe­
cially (2) rings of integers in a number field. In case (1) the conjectures 
say (almost) that the algebraic K-theory with finite coefficients of an al­
gebraically closed field is independent of the particular field, and coincides 
with topological complex K-theory. This case was settled affirmatively by 
Suslin, and is discussed in detail in §4. In fact we give the complete proof 
of Suslin's theorem for C, assuming a theorem of Gillet and Thomason. In 
case (2), the conjectures as formulated by Lichtenbaum relate three very 
different invariants of a totally real number field F: (a) values of the zeta 
function (F ( 8) at odd negative integers, (b) orders of certain etale coho­
mology groups attached to the ring of integers OF and (c) orders of the 
K-groups KnOF for n = 2 or 3 mod 4. The conjecture relating (a) and 
(b) is now a theorem (Wiles]; see §6. However we will say almost nothing 
about zeta functions; our main concern is the connection between (b) and 
(c). Explicit examples can be found in §6, including a complete conjectural 
description of K.Z (assuming Vandiver's conjecture from number theory). 
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The general form of the Lichtenbaum-Quillen conjecture asserts that for 
a nice scheme there is a descent spectml sequence with E 2-term given in 
terms of etale cohomology and converging to the algebraic K-theory of X. 
This is explained in §5j without assuming any knowledge of schemes or 
etale cohomology. As usual, our treatment is oriented towards homotopy 
theoristsj we first explain, following [Carlsson] how descent for fields can be 
viewed as a case of the "homotopy fixed point problem." This is followed 
by a discussion of etale cohomology. The discussion is necessarily brief, but 
we hope it is sufficient to make the rest of the paper comprehensible. We 
then state our first version of the general Lichtenbaum-Quillen conjectures 
5.12. 

Of course any account of the Lichtenbaum-Quillen conjectures presup­
poses some familiarity with Quillen's higher K-theory, and higher K-theory 
depends on lower K-theory, whence §l. The main theme of §1 is that 
the lower K-groups-Ko, Kl, K 2-of a ring of integers OF are closely related 
to classical number-theoretic invariants: the class group, unit group and 
Brauer group. it is worth considering these in some detail, since conjec­
turally all of the K-groups of OF are built out of these basic ingredients 
(see §6). In §2 we give a rapid introduction to higher K-theory. We mention 
three equivalent constructions of the K-theory of a ring: the plus construc­
tion, group completion, and the Q-construction. If one wants to consider 
vector bundles over schemes, or more general "exact categories," the Q­
construction is essential. Furthermore, even for rings, most of Quillen's 
general theorems use the Q-construction, not the plus construction. How­
ever the plus construction provides by far the most elementary definition of 
higher K -theory, and will be emphasized here. We go on to describe some 
basic results on the higher K -groups. Some of these are used repeatedly 
and explicitly in later sections--e.g., Quillen's calculation of the K-theory 
of finite fields. Others merely lurk in the background--e.g. "devissage." 
We have included the latter to give the reader a feeling for the remarkable 
simplicity of Quillen's theory. We also sketch Borel's computation of the 
rank of KnOF . The appearance of the spaces U and U /0 in this context is 
not so surprising to a Lie theorist, but to a homotopy theorist it is rather 
provocative. These spaces will appear again in §7. We next introduce 
K-theory spectm, and discuss the extremely useful transfer map. 

In §3 we show how homotopy-theoretic methods can be used to produce 
torsion classes in K. OF: (1) by considering the natural map from the stable 
homotopy groups of spheres to K.'L. and (2) by considering the projection 
to a residue field. All the classes obtained in this way are closely related to 
the image of the classical J-homomorphism. This theme is taken up again 
in §11, 12. The presence of these classes is predicted by the Lichtenbaum­
Quillen conjecturesj in the mod-£v theory they correspond to the zero­
column of the descent spectral sequence. 
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In §7 we first discuss the etale K-theory of Dwyer and Friedlander, which 
leads to a second version of the Lichtenbaum-Quillen conjectures. It also 
leads to some beautiful, explicit conjectures on the nature of algebraic 
K-theory spectra. Then we state the remarkable theorem of Thomason, 
which asserts that the Lichtenbaum-Quillen conjectures are true for "Bott­
periodic" algebraic K-theory. This theorem plays a crucial role in later 
sections. 

Part 2 (§8-1O) is an introduction to some aspects of stable homotopy 
theory centering around MU (complex cobordism). We would like to have 
begun with the definition of a spectrum, but that wasn't practical. See 
[Adams 1974], for further background. In §8 we describe MU, the asso­
ciated p-Iocal theory BP, and the Morava K-theories. In §9 we discuss 
some of the remarkable work of Hopkins, Devinatz and J. Smith. The 
only part of this section that is actually used later is the construction of 
"vn-complexes." However the conceptual framework it provides is crucial; 
among other things, it explains and justifies the emphasis on Morava K­
theories in later sections. In §10 we introduce localization with respect to 
a homology theory, and give some important examples. 

One of the main points of Part II can be very vaguely stated as follows: 
we can associate to each p-Iocal spectrum X its chromatic tower LoX +­

L1X +- L2 X +- .... Here LoX is the rationalization of Xl and L1X is 
localization with respect to topological K-theory. For n ~ 1 the spectrum 
LnX has something to do with "nth order periodicity" in the homotopy 
groups of X. For example L1X is related to Adams or Bott periodicity. 
For n ~ 2 there is a more mysterious "higher periodicity." Now in §12 we 
will show that algebraic K-theory is completely orthogonal to this higher 
periodicity, so that K-theorists can safely ignore it. At the same time, 
however, one can't possibly appreciate the significance of §11-12 without a 
look at the broader picture. 

In Part III (§11-13) we apply the stable homotopy theory of Part II to 
the algebraic K-theory of Part 1. In §11 we reformulate the Lichtenbaum­
Quillen conjectures in terms of Bousfield localization, following [Wald­
hausen 1984J, and derive some consequences. Some of these consequences 
are now theorems, and are discussed in §12. In particular we show that 
the "higher" Morava K-theories of any algebraic K-theory spectrum van­
ish. Together with Thomason's theorem, this shows that the Lichtenbaum­
Quillen conjectures are true after "harmonic" localization. This is a consid­
erable strengthening of Thomason's theorem, and gives some insight into 
the nature of possible counterexamples to the conjectures. We conclude by 
indulging in some speculative remarks (§13). 

At this point, two apologies are in order. First, I am not an expert on 
algebraic K-theory, and the reader is given fair warning that the entire 
paper proceeds from a certain homotopy-theoretic bias. For more expert 
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surveys of various aspects of K-theory, the reader should consult [Soule 
1982] for a discussion of the zeta function aspect, [Grayson 1989] for the 
K-theory of fields, and [Thomason 1989] for Bott periodic and etale K­
theory. In fact one purpose of Part I is to provide a sort of "meta-survey," 
that will make works such as those just cited accessible to a wider audience. 
Second, inspite of our relatively narrow focus, it is impossible to cover 
everything. Among the major omissions I would like to point out the work 
of Vic Snaith, who was a pioneer in the application of homotopy-theoretic 
methods to algebraic K-theory (see e.g. [Snaith 1983, 1984]). 

Finally, a word on notation: throughout this paper, the letters f and p 
stand for fixed primes, and q is power of p. With apologies to homotopy 
theorists, we generally adopt the K-theorist's convention and let f denote 
the prime at which we are localizing, while p is reserved for the charac­
teristic of a field. The only exception is in §8-1O, where only one prime 
is needed and we use the traditional "p". In addition, f and p are always 
distinct unless stated otherwise. One reason for this is that K.lFpm is essen­
tially trivial when localized at p (§2). Another reason is that many of the 
theorems discussed here are simply false for f = p. For example, the reader 
of this paper will learn absolutely nothing about the p-Iocal K-theory of 
the p-adic integers (contrast §4). In any event, we will frequently localize 
at f without explicitly saying so. It should be clear from the context when 
this has been done. Often we will go further and complete at f, but this will 
be explicitly indicated-€.g. X' denotes the completion at f of the spectrum 
X (see §10 for the definition). Indeed the reader will also learn absolutely 
nothing about the uniquely divisible part of K-theory, which is another 
subject altogether. The notation "+" as a superscript refers to the plus 
construction; as a subscript it refers to a disjoint basepoint. If in doubt, 
consider the context. If A is an abelian group, nA = {a E A : na = O}. 

Contents 

1. Lower K-theory. Ko and K 1 • Theorems of Dirichlet and Bass-Milnor­
Serre. K2 and the Brauer group. Theorems of Tate and Mercurjev-Suslin. 
Brauer group of a ring of S-integers. 

2. Higher K-theory. The plus construction, group completion and the 
Q-construction. Devissage and reduction by resolution. Quillen's theorems 
on finite fields, localization, and finiteness for rings of integers. Borel's 
theorem on rational K-groups. The K-theory spectrum. The transfer. 

3. Torsion in the K-theory of a ring of algebraic integers. The map 
from 11": to K.'L. A theorem of Harris and Segal. K-theory with coefficients 
and the Bott elements. 

4. K-theory of algebraically closed fields and Hensel local rings. 
Theorems of Suslin, Gillet-Thomason and Gabber. 
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5. The Lichtenbaum-Quillen Conjectures. Homotopy fixed point 
sets, Galois cohomology and the descent problem for fields. The examples 
JR, IFq • Etale cohomology and the Lichtenbaum-Quillen conjectures. 

6. The conjectures for a ring of algebraic integers. Etale cohomology 
calculations. The example Z[ i]. A global conjecture for Z. Formulation in 
terms of zeta functions. 

7. Etale and Bott-periodic K-theory. The work of Dwyer and Fried­
lander, and a reformulation of the Lichtenbaum-Quillen conjectures. Ex­
plicit examples of etale K-theory spaces. Thomason's theorem. 

8. Complex cobordism, Brown-Peterson Cohomology and the 
Morava K-theories. Quillen's theorem on complex cobordism and formal 
groups. Application to BP. Basic properties of Morava K-theories. The 
Adams map of a Moore spectrum, and its generalization. 

9. The prime spectrum of the stable homotopy category. The 
nilpotence theorem of Devinatz, Hopkins and J. Smith. Morava K-theories 
as prime fields. Finite spectra with lIn -selfmaps. 

10. Bousfield localization. Localization with respect to a homology the­
ory. The example of topological K-theory. The chromatic tower; harmonic 
and dissonant spectra. 

11. Reformulation of the Lichtenbaum-Quillen conjectures, and 
some consequences. Snaith's theorem on Bott vs. Adams elements. 
K-theoretic localization and the Lichtenbaum-Quillen conjectures. Some 
stable homotopy-theoretic consequences of the conjectures. 

12. Recent results. Factorization of the unit map Q08° ---+ BGLZ+ 
through the space ImJ. Vanishing of higher Morava K-theories, and a 
proof of the harmonically localized Lichtenbaum-Quillen conjectures. Re­
marks on maps from BG, G finite, to BGLR+, and the proof of the fac­
torization theorem. 

13. Concluding remarks. 
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1. LOWER K -THEORY 

The main reference for this section is [Milnor 1971]. Let C be a cat­
egory with a notion of short exact sequences. Then we can define the 
Grothendieck group KoC as the free abelian group on the objects of C, 
modulo relations [M] = [M'] + [Mil] for every short exact sequence M' -+ 

M -+ Mil. The main examples we have in mind are C = PR, the category 
of finitely-generated projective modules over the ring R, and MR, the cat­
egory of all finitely-generated modules over R. We write KoR == KoPR 
and CoR == KoMR. 

1.1. Examples. 

(a) If R is a field, a division ring, or a principal ideal domain, then 
KoR ~ CoR ~ Z, generated by the free module of rank one. 

(b) (Serre) If R is the coordinate ring of an affine algebraic variety V, 
then PR ~ VectV, the category of algebraic vector bundles (locally 
free sheaves) on V. Hence KoR ~ Ko(VectV). 

(c) (Swan) If R is the ring of continuous functions on a compact Haus­
dorff space X, PR ~ VectX, the category of vector bundles on X. 
Hence KoR coincides with topological K-theory K(X). 

(d) The natural map KoR -+ CoR need not be an isomorphism-<:onsider, 
for example, R = Zj £2. 

Similarly if X is a scheme we can define KoX (resp. CoX) as the 
Grothendieck group of vector bundles (resp. coherent sheaves) on X. How­
ever, without further ado we will move on to our main example. 

Let R be an Dedekind domain; for example, the coordinate ring of a 
smooth affine curve, or the ring of integers in a number field. Here number 
field means a finite extension F of iQ; its ring of integers OF is the integral 
closure of Z in F. In particular R has Krull dimension 1: every nonzero 
prime is maximal. If we think of dimension as complex dimension, so that R 
has real dimension 2, the following fact has a familiar topological analogue: 

1.2. Proposition. Let R be a Dedekind domain with quotient field F, and 
let Pic R denote the group of rank one projective modules (line bundles) 
under tensor product. Then there is a short exact sequence 
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o --+ Pic R --+ KoR --+ KoF --+ 0 
j 

where j([P]) = [P] - [R]. 0 
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Any ideal of R-or more generally, any fractional ideal-is a rank one pro­
jective module. Conversely any rank one projective is isomorphic to some 
fractional ideal. Hence there is an isomorphism CIR ~ Pic R, where CIR is 
the ideal class group of fractional ideals modulo principal fractional ideals. 

1.3. Theorem. (Dirichlet) Let F be a number field. Then the ideal class 
group of OF is finite. 

1.4. Corollary. KOOF is finitely-generated. 

The most important case for us is F = Q(~l)' where £ is a prime and 
~l is a primitive £th root of unity. Then OF = Z[~l]' It is known that 
that CI(Z[~l]) is zero if and only if £ < 23. More critical for K-theory is 
the question of whether £ is regular-i.e. £tICIZ[~l]l. The first few irregular 
primes are 37, 59, 67. It is still unknown whether or not there are infinitely 
many regular primes. As we will see later, even the K-theory of Z gets 
tangled up with the K-theory of Z[~l]; hence these class groups can't be 
avoided. For more information on irregular primes, class groups, etc. see 
[Washington]. 

We next turn to the functor KIR. For any ring R, let GLR = unGLnR. 
Thus GLR consists of infinite invertible matrices A that equal the identity 
matrix I except for a finite number of entries. If A = I except for a single 
off-diagonal entry, A is called elementary. Let E(R) denote the subgroup 
generated by the elementary matrices. Then a lemma of J. H. C. Whitehead 
shows that E(R) coincides with the commutator subgroup [GLR, GLR]. 
We define KIR = GLR/ E(R) = GLR/[GLR, GLR]. Clearly KIR is a 
covariant functor of R. If R is commutative, the determinant induces a 
surjective homomorphism det : KIR --+ R*, which is an isomorphism if and 
only if S LR is generated by elementary matrices: that is, every element 
of SLR can be reduced to the identity by elementary row and column 
operations. Thus for example KIR ~ R* if R is a field (easy) or a Euclidean 
domain (harder). 

1.5. Theorem. (Bass-Milnor-Serre) Let OF be the ring of integers in a 
number field. Then K10F ~ OF' 

Now for a number field F define 
rl = number of distinct real embeddings of F 
r2 = ~ (number of distinct complex embeddings of F). 
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Note that if F is Galois over Q, then either F ~ R, rl = [F : Q] and 
r2 = 0, or FiR, rl = 0 and r2 = ~[F: Q]. 

1.6. Theorem. (Dirichlet) OF is a finitely-generated group, with rank 
rl + r2-1. 

1. 7. Corollary. K I OF is finitely-generated with rank rl + r2 - 1. 

Of course the torsion subgroup of OF is just the group of roots of unity 
in F. We remark that the proof uses the various embeddings to get an 
embeddings of rings OF '---t {Rtl X (C)r2 with discrete image. Note also 
that KIF ~ F* is certainly not finitely generated. 

Let S be a set of nonzero prime ideals in OF. If the ideals in question are 
principal we can invert their generators to obtain a localized ring S-IOF ~ 
F. In general for any nonzero prime ideal P, pn = (x) is principal for some 
n by 1.3. Hence we can form X-10F, with Specx-10F -+ SpecOF a 
bijection onto the complement of {Pl. We reserve the term ring of S­
integers for the case S finite. Note that if we invert a rational prime i E Z, 
OF[j] = S-IOF where S is the (finite) set of primes over i in OF. From 
1.6 we have at once: 

1.8. Theorem. If S is finite, (S-IOF)* is a finitely-generated group, with 
rank rl +r2 -1 + lSI. 

The last of the "lower" K-functors is Milnor's K2R. Consider the sub­
group E{R) of GLR. By definition it is generated by the matrices eij{r) = 
I +xij{r), where Xij{r) is the matrix with r as {ij)-th entry and zeros else­
where (i:f:. j), r E R. What are the relations? There are certain "obvious" 
relations that hold independently of the particular ring R: eij{r) and eki{s) 
commute if j:f:. k and i:f:. i, the commutator [eij{r),ejk{s)] equals eik{rs) 
for i :f:. k, and eij{r)eij{s) = eij{r + s). The Steinberg group StR is the free 
group on the symbols eij{r) modulo these universal relations. By construc­
tion StR maps onto E{R) and Milnor defines K2R = Ker (StR -+ E{R)). 
It turns out that K2R is a central subgroup of StR and so in particular is 
abelian. In fact K2R ~ H2{E{R)j Z), which we can take as the definition. 
For further details, see [Milnor 1971]. In any case for us K2 will always be 
given by theorems 1.9 and 1.16. 

1.9. Theorem. (Matsumoto) Let F be a field. Then K2F ~ (F*®zF*)/ I, 
where I is the subgroup generated by all a x (I - a), a E F* - {O, I}. 

1.10. Example. ({Milnor 1971) ) K2lFq = 0 for a finite field lFq • 

1.11. Theorem. (Garland) If F is a number field, K 20F is finite. In 
particular, K 20F is finitely generated. 
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1.12. Example [Milnor 1971] K2Z = '1./2. 

There is a beautiful relation between K2 of a field F and the Brauer 
group Br F. We first recall the definition of Br F. A central simple F­
algebra A is a finite-dimensional simple F-algebra with center equal to F. 
If A and B are central simple, so is A®FB. Hence the isomorphism classes 
of central simples form a commutative monoid with identity F. Now define 
an equivalence relation A '" B if A®F MrF ~ B®F MsF for some r, s-Le., 
MrA ~ MsB. Multiplication is well-defined on the set of equivalence classes 
Br F. Furthermore Br F is a group, since A ®F AOP ~ EndFA '" F. Note 
that as a set, Br F +-+ isomorphism classes of F-central division algebras 
D, since every central simple is isomorphic to some MnD. 

1.13. Examples. (a) If F is algebraically closed, Br F = 0 (obvious). 
(b) (Frobenius) Br IR ~ '1./2, generated by the quaternions lHl. 
(c) (Wedderburn) BrlFq = o. 
(d) (Class field theory) Let F be a number field. Then there is an exact 
sequence 

. h 
o - BrF~(J)vBrFv-Q/Z - 0 

where Fv ranges over all completions of F. If v is a finite prime (Le. an 
ordinary prime of OF) then the Hasse invariant h: BrFv-Q/Z. If v 

~ 

is an infinite prime (Le. a valuation arising from some real or complex 
embedding) then Br Fv = '1./2 in the real case and is zero otherwise by 
examples a, b above. Note this says in particular that every central simple 
F-algebra A becomes a matrix algebra MnFv at almost all v. If F has no 
real embeddings, then Br F is a direct sum of a countably infinite number 
of Q/Z's. 

When F contains a primitive nth root of unity en and char Ffn, there is 
the following beautiful construction of central simple F-algebras: If a, b E 
F*, let A{a, b) denote the F-algebra with generators x, y and relations xn = 
a, yn = b, yx = enxy. Then one can show A{a, b) is central simple, and 
moreover (using Matsumoto's theorem): 

1.14. Theorem. The map F* x F* - BrF given by (a, b) 1-+ A{a, b) 
factors through a homomorphism K 2F/n -n BrF. 

The map of 1.14 is called the power norm residue symbol. The following 
remarkable theorem was first proved by [Tate] for number fields and then by 
Mercurjev and Suslin in general (see [Mercurjev]). The proof of Mercurjev­
Suslin uses higher K-theory. 

1.15. Theorem. Suppose F has a primitive nth root of unity, and char 
Ffn. Then the power norm residue symbol K 2F/n -n BrF is an isomor­
phism. 
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Remark. Tate and Mercurjev-Suslin in fact prove a more general result 
without nth roots of unity: K2F/n ~ H2(GF ;J.Ln(2)). See §5 for an expla­
nation of the Galois cohomology on the right. For a summary of the proof, 
see [Grayson 1989]. 

To describe K2 for rings of S-integers we introduce the Brauer group 
of a commutative ring R. (Alternatively, the reader could take Theorem 
1.16 below as the definition.) Now central simple F-algebras are in fact 
characterized by the property that the natural map A @F AOP -+ EndFA 
is an isomorphism. Hence the notion of "central simple F-algebra" may be 
generalized to Azumaya R-algebras: that is, an R-algebra A such that (a) A 
is an R-order-i.e. finitely-generated and projective as an R-module and (b) 
A@R AOP -+ EndR A. For example, the ring MnR of (n x n)-matrices over 

~ 

R is an Azumaya R-algebra. The equivalence relation defining the Brauer 
group of a field is in fact Morita equivalence (which we won't define here; see 
e.g. [Reiner]); and in this form it carries over at once to Azumaya algebras. 
Thus we define the Brauer group Br R as the group of Morita equivalence 
classes of Azumaya R-algebras under tensor project. Now suppose R is a 
Dedekind domain with quotient field F, F a number field. Let A be an 
R-order and let A = A@R F. Then if A is R-Azumaya, one can show A is 
central simple and A is in fact a maximal R-order in A. Conversely, if A is 
a maximal R-order in A then A is an R-Azumaya algebra if and only if for 
all p E Spec R, p =f. 0, the Hasse invariant of A at p is zero. See [Reiner] 
for details; in the end one finds: 

1.16. Theorem. Let S-IOF be a ring of S-integers in a number field, 
where S is nonempty. Then there is an exact sequence 

0-+ BrS-10F -+ (EeQ/Z) Ee(Z/2r1 -+ Q/Z -+ 0. D 
pES 

1.17. Example. If rl = 0, Br OF[i] ~ EBk-1Q/Z, where k = number of 
primes over f. Similarly for example BrZ[!] = Z/2. 

Now Tate also computed K 2 (S-lOF)/n. 

1.18. Theorem. Assume ~lv E F. Then there is a split exact sequence 

Looking ahead a bit, Tate's proof shows that i is in fact multiplication 
by the "Bott class" KO(S-lOF; z/eV ) -+ K 2 (S-lOF, z/eV ) (§3). The map 
j arises from S-IOF <......t F and the power norm residue symbol as in 1.14. 
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1.19. Example. Let R = Z[et, iJ, where £ is an odd regular prime. Then 
(K2R)/£ = 0: For £ is totally ramified in the extension lQ(et)/IQ, and so 
k = 1 in Example (b). In fact by a theorem of Iwasawa, the class group of 
Z[etv] has no i-torsion if and only if £ is regular (v arbitrary). Hence if £ is 
odd regular, (K2Z[etv, 1])/£ = 0 for all v. 

As we have presented things so far, the functors Ko, Kl, K2 may seem 
rather unrelated. In fact: 

1.20. Theorem. Let F be a number field, S ~ Spec OF - {o}. Then 
there is an exact sequence 

E9 K20 F/P ---+ K20 F ---+ K 2S-10 F ---+ E9 K 10 F/P ---+ K 10 F ---+ 

PES PES 

K 1S-10 F ---+ E9 KOOF/P ---+ KOOF ---+ KOS-10F ---+ O. 0 
PES 

Note the special cases: (1) S = Spec OF - {O}, S-10F = F, and (2) 
S-10F = OF[iJ, so S = set of primes over £. The usefulness of the 
sequence is convincingly demonstrated by Bass-Milnor-Serre; their theorem 
is proved by showing the map K2F ---+ (fJPEsK10F/P is onto. Naturally 
one would like to extend the sequence further to the left; this in itself should 
be sufficient motivation for the higher K-theory of the next section. 

2. HIGHER K-THEORY 

In the early 1970's Quillen proposed several equivalent definitions of the 
higher K -groups of a ring, scheme, or even category with exact sequences. 
His definition proved spectacularly successful and has been used ever since. 
We begin by briefly discussing three of these equivalent approaches: the 
plus construction, group completion, and the Q-construction. The first 
point to note is that in every case the groups K*R are by definition the 
homotopy groups of a space. The second point to note is that the space 
in question is an infinite loop space, so the groups K*R are in fact the 
homotopy groups of a spectrum. 

Let X be a space and suppose 7r1X has perfect commutator subgroup. 
Then there is a space X+ (the plus construction) and a map f : X ---+ X+ 
such that (1) the induced map on 7r1 is precisely abelianization and (2) 
f* is an isomorphism on homology with arbitrary coefficients (including 
local coefficients, but in the cases of interest X+ will always be an H­
space so we need only consider H*( ; Z)). The remarkable fact about this 
contruction is that it is easy: one simply attaches 2-cells to kill [7r1X,7r1X] 
and then 3-cells to eliminate the unwanted homology created in the first 
step; as a pleasant surprise the process then stops. For a self-contained 
account see [Adams 1978]. Now take X = BGLR. Then 7r1X = GLR with 
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commutator subgroup E(R). Since E(R) is known to be perfect, BGLR+ 
is defined and Quillen defines KiR = 7riBGLR+ for i > O. Note this 
agrees with the classical definition for i = 1. For i = 2 it is an exercise 
to show 7r2BGLR+ = H2(E(R); Z) = K2R. The second approach-group 
completion-is closely related and includes Ko in a natural way. Let M = 
lln>o BGLnR. The natural maps GLmR x GLnR --+ GLm+nR give M the 
structure of a strictly associative and homotopy commutative topological 
monoid. Any topological monoid M has a classifying space BM and a 

canonical inclusion M ~ OBM; if M is either connected or a group i is a 
homotopy equivalence but in general need not be. However under general 
hypotheses-e.g. if 7roM is central in H.M-the map i is a group completion: 
i : H.M --+ H.OBM is precisely the localization formed by inverting a set 
of generators of 7roM. For example, let M = lln BGLnR as above. Then 
7roM has a single generator and the localization formed by inverting it is just 
the direct limit I~H.BGLnR = H.BGLR. It follows easily that OoBM = 
BGLR+. To get KoR into the act we take M = llpB AutP, where P 
ranges over isomorphism classes in PRo Then the group completion OBM 
is BGLR+ x KoR, and we can define KnR = 7rnOBM for all n ~ o. For 
further details, see [Adams 1978]. 

The third and most general construction of higher K-theory is the Q­
construction [Quillen 1973a]. Let C be an exact category-that is, an addi­
tive category with exact sequences, satisfying a reasonable list of axioms. 
Quillen constructs out of C a new category QC, which has the same ob­
jects but in which a morphism A --+ B is essentially an isomorphism of A 
onto a sub quotient of B. Thus extensions are destroyed , just as they are 
in KoC. Any category £ has a classifying space B£, and Quillen defines 
KiC = 7ri+1BQC. In particular we can take C = PR. In this case Quillen 
(see [Grayson 1976]) showed OBQPR ~ BGLR+ x KoR; hence the motto 
"Q = +". However we can also take C to be MR, or vector bundles on a 
scheme, etc., so the construction is very general. The key technical result 
that makes the theory work is "Quillen's Theorem B", which allows one 
to identify, under favorable circumstances, the fibre of a map B£ --+ B£' 
induced by a functor £ --+ £'. Using this result, a remarkable number of 
classical results on Ko carry over to higher K-theory-as results about the 
homotopy type of BQC. We mention two of these to indicate the general 
idea: 

(1) Devissage. Suppose, to be concrete, that C = MA where A is a finite­
dimensional algebra over a field. Then every X E MA has a finite filtration 
with simple quotients, unique up to order, and hence KoMA == GoA is free 
abelian on the simple modules. A better way to say this is as follows: let 
SMA denote the full subcategory of completely reducible modules. Then 
SMA c MA induces an isomorphism on Ko, and furthermore SMA is 
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Morita equivalent to IIv MDv , where V ranges over the simple modules 
and Dv = EndAV. This generalizes to higher K-theory in the best way 
imaginable: there are natural equivalences 

BQMA ~ BQSMA ~ IIvBQMDv. 

A similar result holds for any exact category satisfying a suitable Jordan­
Holder theorem. 

(2) Reduction by resolution. Let R be a ring. As noted in §1, the 
natural map KoK -t GoR need not be an isomorphism. Suppose however 
that R is Noetherian and regUlar in the sense that every finitely-generated 
R-module M has a projective resolution of finite length: 

o -t Pn -t Pn - 1 -t ... -t P1 -t Po -t M -t 0 

Here we can assume the Pi'S are also finitely-generated. For example, if R 
is a Dedekind domain we can take n = 1. Then we can map GoR ~ KoR 
by [M] 1--+ ~(-l)i[Pi]' One can show this map is well-defined, and then 
it is obvious that KoR -t GoR with inverse cpo As the reader will have 

~ 

already guessed, the generalization to higher K-theory is that for R regular 
BQPR -t BQ MR is a homotopy equivalence. Again Quillen proves a 
much more general result, valid for suitable exact categories C with a full 
subcategory C' such that every object in C has a finite-length resolution by 
objects of C'. For example, one obtains that K.X ~ G.X if X is a smooth 
variety or regular scheme. 

For the purposes of this paper, the most important of Quillen's theorems 
on higher K-theory are probably the following three: 

2.1. Theorem. (Quillen 1972J Let lFq be a finite field with q = pm 
elements. Then K2nlFq = 0 ifn > 0, and K 2n- 1lFq ~ Zj(qn - 1). In fact 
BG LlFt is homotopy equivalent to F'¢q, the fibre of '¢q - 1 : BU -t BU. 

One of the most convincing properties of K.R, extending 1.20: 

2.2. Theorem. (Quillen 1973aJ Let F be a number field, S ~ Spec OF -
{o}. Then there is an exact sequence 

... -t EB Kn(OFjP) -t KnOF -t KnS-10F -t EB Kn-10FjP -t ... 

PES PES 

(More generally, OF could be replaced by any Dedekind domain, or a 
smooth projective curve). 

Generalizing Dirichlet's theorems, we have: 
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2.3. Theorem. [Quillen 1973bJ Let F be a number field. Then KnOp is 
finitely-generated for all n. 

Observe that, except for KolFq ~ Z, the groups KnIFq are all torsion 
groups and furthermore have order prime to the characteristic p. In par­
ticular BG LIFt is trivial when localized at p. Hence if we are working at 
a fixed prime f, K*IFq is interesting only when char IFq = p =I- f. Note also 
the effect of this phenomenon on the localization sequence 

1 ... ---- EB Kn(Op/P) ---- KnOp ---- KnOP[i 1 ---- ... 
'P over l 

After localizing at f, we get isomorphisms KnOp ~ KnOp[il for n 2: 2, 
and an exact sequence 

Thus if Pi,'" , Pk are the primes over f, the rank of Kl increases by k; 
while ClOp[ij = ClOp/(Pb'" ,Pk). For example, the only difference 
between K*Z and K*Z[il at f is that K1Z[il = K1Z EB Z. 

We comment on the proofs of these theorems, beginning with 2.1. The 
first step is to produce a map () : BGLIFt ---- BU. Fix an embedding 

iF; ~ C*, and let p : G ---- G LnIF q be a representation of a finite group 
cp 

G. The eigenvalues of each p(g) are now complex numbers and can be 
summed to produce a complex-valued class function X on G: the Brauer 
character. Brauer showed that X is a virtual character, and hence we obtain 
a homomorphism RFqG ---- RcG of representation rings-the Brauer lifting. 
Hence p determines a map BG ---- BU. Taking G = GLnIFq and p the 
identity, we get maps BGLnIFq ---- BU which assemble into a single map 
BGLIFq ---- BU. By a universal property of the plus construction, this 
determines a map () : BGLIFt ---- BU. This is Quillen's Brauer lifting; 
it depends on the choice of embedding cp, but any cp will do. Now the 
Adams operations 'lj;k are defined on class functions f by ('lj;k . f) (g) = 
f(gk), and the map RcG ____ K O BG commutes with 'lj;k operations. If X 
is the Brauer character of a representation over IFq then clearly 'lj;qx = 

X. It follows that () lifts to a map BGLIFt!.... F'lj;q (we continue t~ ignore 

various technical problems, such as limits). One then shows that ()* is an 
isomorphism on mod f and rational homology: The rational homology is 
trivial. Now suppose f =I- p. H*(F'lj;q; Z/f) is easily computed from the 
Eilenberg-Moore spectral sequence. The crux of the matter is of course 
to compute H*(BGLnIFq; Z/f), at least for n = 00. The key point is 
that H* ( , Z/ i) is detected by maximal i-tori, and these are all conjugate. 
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One can then show 8. is an isomorphism, by explicit computation. Finally, 
suppose f = p. Obviously ii.(F1jJq,Z/p) = 0 since the p-Iocal homotopy 
vanishes. That ii.(BGLJFq,Z/p) = 0 is a somewhat surprising fact, since 
this is certainly false for BGLnJFq, n < 00. Here is a heuristic argument: 
think of elements 0 E H·(BGLJFq,Z/p) as stable characteristic classes for 
representations over JFq • Suppose we knew all such 0 were additive on short 
exact sequences-i.e., whenever V' --+ V --+ V" is a short exact sequence of 
JFqG-modules, O(V) = O(V') + O(V"). Then if G is a p-group, O(V) = 0 
for all 0, V, since all the composition factors of V are trivial. But then the 
same is true for all G, since restriction to a p-Sylow subgroup is injective 
on H·( ,Zip). Taking G = GLnJFq completes the proof. The additivity 
on short exact sequences is true in a much more general setting-see e.g. 
[Quillen 1976a]. It is also enlightening to see why the mod p homology of 
the Q-construction of JF q is zero-see [Mitchell 1989]. 

Theorem 2.2 is a special case of a much more general result on local­
ization of abelian categories. In particular the general result applies only 
to MR, not to PR-note the latter is not abelian; for instance, it doesn't 
have cokernels. However if R is regular we can appeal to "reduction by 
resolution". In any case the main point is that the sequence is the exact 
homotopy sequence of a fibration: Suppose for instance R is Noetherian 
and S c R is a central subset. Then, using "Theorem B", the fibre of 
BQMR --+ BQM(S-l R) is identified as BQMS - tor R, where M S - tor R 
is the full subcategory of MR consisting of the S-torsion modules. In the 
situation of 2.2, taking S finite for simplicity, it follows by "devissage" that 
BQMs - tor R ~ ITpEsBQM(R/p). Hence the exact sequence. To further 
illustrate the fantastic generality of the theorem, let X be an algebraic 
variety, Z a closed subvariety. Then a similar analysis of the category of 
coherent sheaves on X leads to an exact sequence 

Here G-theory can be replaced by K-theory if X and Z are smooth, using 
"reduction by resolution" . 

Finally, consider 2.3. From the point of view of the plus construction, 
clearly the following would suffice to prove KnR finitely generated: 

(i) KoR is finitely generated 
(ii) H.(BGLnR; 'I.) has finite type 

(iii) (Stability) H.(BGLnR, 'I.) --+ H.(BGLn+1R, 'I.) 

is an isomorphism in a range of dimensions that tends to 00 as n --+ 00. 

In particular Hk(BGLnR; 'I.) --+ Hk(BGLR; 'I.) is an isomorphism in some 
"stable range", n» k. 

For R = OF, (i) is Dirichlet's theorem; (ii) was first proved by [Raghu­
nathan] and later in a much stronger form by [Borel-Serre]. Homological 
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stability for R a Dedekind domain was proved by [Charney 1980J. However 
Quillen's original proof of 2.3 was based on the Q-construction. Essentially, 
Quillen proved stability for a natural rank filtration on the Q-construction, 
and showed that the homology of the filtration quotients is the homology 
of G Ln OF with coefficients in the "Steinberg representation". Since the 
latter has finite type by Borel-Serre, the theorem follows. A variant of this 
proof is given in [Mitchell 1989J. Actually Quillen's proof applies equally 
well to S-lOF if S finite. Alternatively, note that Theorem 2.1, 2.2 and 
2.3 together show K*S-lOF has finite type if S finite. 

Theorem 2.3 raises the obvious question: what is the rank? 

2.4. Theorem. [Borel} Let n > 1. Then 

(n=1 mod 4) 

(n=3 mod 4) 

(n even). 

o 

2.5. Remark. Recall from §1 that K10F has rank rl + r2 - 1. Hence the 
rank is not quite periodic. Note however that for n > 0 rank KnZ[lJ has 
period 4 and rank KnZ[~l' lJ has period 2. 

The proof of 2.4 is provocative. Since BG LOt is an H -space the ratio­
nal Hurewicz map is an isomorphism onto the homology primitives. Hence 
it is sufficient to compute the rational cohomology. As spaces, BG LOt ~ 
BSLOt xBGL10F, so it will be enough to compute H*{BSLOF, Q). Con­
sider first the case OF = Z. Let X = SLnR./SO{n), and let r = SLnZ. 
Then X is contractible and r acts on X with compact and hence finite 
isotropy groups. Let r' c r be a torsion-free normal subgroup of finite 
index, with quotient G. For exantple if m > 2 the subgroup of matrices 
congruent to the identity mod m is torsion-free; this is an exercise, orig­
inally due to Minkowski. Then r' acts freely on X so X /r' = Br'. Let 
0* X denote the complex of differential forms on X. Then H*{Br', R.) = 
H«O*X)r') and H*{Br,R.) = (H*{Br',R.»G, so H*{Br,R.) = 
H«S1* X)r). Now comes the hard part of the proof: the inclusion 
{O* X)SLnR C (O* xl is a cohomology isomorphism in a range of dimen­
sions that tends to 00 with n. Assuming this, we have only to compute 
H«O* X)SLnR). By a classical theorem, this is the relative Lie algebra co­
homology H Lie (slnR.,so{n». Since Lie algebra cohomology obviously com­
mutes with extension of scalars from R. to C, and su{ n) ®R C = slnR. ®R C, 
this in turn is the sante as H Lie (su{n),so{n». From the sante classical 
theorem this is H*{SU{n)/SO{n);R.). We conclude that H*{BSLZ,Q) ~ 
H*{SU/SO,Q) ~ Q(Xl,X5, ... }, where IXkl = 4k + 1. The general case 
follows the sante pattern. First we need to embed S Ln OF as a discrete 



ON THE LICHTENBAUM-QUILLEN CONJECTURES 179 

subgroup of a semisimple real Lie group. Each real embedding of F deter­
mines a group monomorphism SLnOF - SLnlR; similarly each complex 
embedding yields SLnOF - SLnC. As in the proof of Dirichlet's theo­
rem 1.6, if we take one complex embedding from each conjugate pair we 
get a monomorphism SLnOF - (II~lSLnlR) x II?SLnC with discrete im­
age. The space X is replaced by Xp x X;2 where Xl = SLnlR/SO(n) , 
X 2 = SLnC/SU(n). A similar argument then leads to the conclusion that 
H·(BSLOF,Q) ~ H·((SU/sot1 x (Sut2;Q), whence the theorem. Here 
the SU factors arise from the isomorphisms 

(S[nC ®R C,su(n) ®R C) ~ (slnC Ea slnC, a(slnC)) ~ 
((su(n) Easu(n)) ®R C,a(su(n)) ®R C) 

and the obvious identification (SU(n) x SU(n))/ a(SU(n)) = SU(n). 
The space BGLR+ x KoR is a loop space, and hence an H-space, by 

"Q=+". 
In fact much more is true, which brings us to one of the main themes of 

this paper. 

2.6. Theorem. BG LR+ x KoR is an infinite loop space, and so defines a 
spectrum K R. 0 

More generally we get a spectrum K X for X a scheme or even an exact 
category; thus for example there is a spectrum GR with 7r.GR = G.R. 
Furthermore an exact functor C - C' between exact categories induces 
a map of spectra KC - KC'. The infinite loop space structure comes 
from the general machinery of [May 1974) or [Segal 1974), although there 
are also approaches more specific to K-theory, such as [Wagoner 1972). A 
theorem of [May-Thomason) shows that the infinite loop space structure, 
and hence the spectrum K X, is unique. All of which raises the question: 
What manner of spectrum is it? Since the spectrum is produced from a 
black box this question isn't so easy to answer. However we at least have: 

2.7. The spectrum KX is connective. 

2.8. [May 1980] If X is a commutative ring or scheme, K X is 
a commutative associative ring spectrum. The ring multiplication 
arises from tensor product of projective modules or vector bundles. Simi­
larly, virtually any natural multiplication on Ko leads to a corresponding 
structure on the spectrum level. For example, if R is commutative GoR is a 
KoR-module, and GR is a KR-module spectrum. Or if A is a possibly non­
commutative R-algebra, KoA is a KoR-module and KA is a KR-module 
spectrum. In fact if X is an arbitrary ring or scheme KX is a KZ-module 
spectrum. 
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Theorems 2.1 and 2.2 have spectrum level analogues: Let J(q) denote 
the fibre of 1jJq -1: KU -+ KU (here, as usual, we have localized at f). Let 
j(q) denote the connective cover of J(q)-i.e. the fibre of 1jJq -1 : bu -+ ~2bu. 

2.9. Theorem. (see [May 1977J) The f-adic completion of the Brauer lift 

is an infinite loop map and so determines a map of spectra KlF' q !!: buA
• 

Moreover (F factors through an equivalence KlF'q ~ j(qt. D 

Remark. A quick proof of 2.9 can be given using Suslin's theorem 4.7h and 
Bousfield's theorem 10.8). 

Remark. If R is a topological ring the hom-sets in PR are topological 
spaces and we obtain a topological exact category PR toP. Applying the 
machinery above, we obtain a spectrum K R top and a natural map K R -+ 

K R top, which is a map of ring spectra if R is commutative. For example, by 
[May 1977]-see p.214-KIR top ~ bo, the connective real K-theory spectrum. 
Similarly KC top ~ bu. It follows e.g. that there is a natural map of ring 
spectra K'l/., -+ bo; this will be used frequently below. 

2.10. Theorem. Let F, S be as in 2.2. Then there is a fibre sequence of 
spectra 

V K(OFlp) -+ KOF -+ KS-1oF. 
pES 

D 

Similarly, all of the equivalences and fibrations of [Quillen 1973a] are valid 
on the spectrum level, because the maps involved always arise from exact 
functors between exact categories. We conclude this section with another 
very important example of such functors: the transfer. Suppose <p : R -+ S 
is a ring homomorphism which is finite in the sense that S is a finitely­
generated left R-module. Then we obtain a functor <p* : MS -+ MR 
which is obviously exact and hence a map of spectra GS -+ GR. If R is 
a regular Noetherian ring this yields a map t", : KS -+ KR, called the 
transfer. The induced map on homotopy is usually written <p*. 

2.11. Example. R is a Dedekind domain and <p is reduction modulo a 
maximal ideal P. One can easily check that the first map in the sequence 
2.2 is the wedge of the transfers K RIP -+ K R. 

2.12. Example. <p: F -+ E is a finite field extension of degree d. One 
can show that not: BGLE+ -+ BGLF+ is induced by the evident maps 

BGLnE -+ BGLdnF. It is also clear that the composite KF':£"KE~KF 
is induced by the functor P F -+ P F : V ~ E ® F V, which is isomorphic 
to the functor V ~ EB~=l V. Thus t<p = d as maps of spectra; in particular 
(t<p)* is multiplication by d : K*F -+ K*F. Now suppose ElF is Galois 
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with group G. Clearly cpt corresponds to the functor PE -+ PE : V f---+ 

(E ®F E) ®F V. A fundamental theorem of Galois theory says that the 
map E ®F E -+ ITgEGE given by a ® b f---+ ITa(gb) is an isomorphism of 
F-algebras. It follows that cpt = E g as maps of spectra. If lfd and we 

gEG 
localize at l, by combining the above remarks we see that (i) ~ . t is a 
retraction with right inverse cp, and hence KF is a wedge summand of KE, 
and (ii) the wedge summand in question is the "fixed point" spectrum of G, 
by which we simply mean the mapping telescope of the idempotent ~ E g. 
In particular K.F = (K.E)G. gEG 

2.13. Example. cp: R -+ S is a finite extension of Dedekind domains, of 
degree d. As in the previous example, tcp is multiplication by [8] E KoR. If 
Sis R-free, we get multiplication by d as before. If the extension is Galois 
and unramified we again have cpt = E g. For example, take R = Z[i], 

gEG 
S = Z[~l' i]. Then after localization at l, KR is a wedge summand of KS 
and (K.R) = (K.R)G-exactly as in 2.12. 

2.14. Example. Suppose B l , B2 are commutative finite A-algebras, A 
commutative and all three are regular Noetherian. Then inspection of the 
various functors shows there is a commutative diagram of spectra 

KA I KBl 

1 r 
where the vertical maps are transfers. Those familiar with the "pullback" 
property of the transfer in stable homotopy theory should note this is quite 
analogous, since Spec (Bl ®AB2 ) is the pullback in the category of schemes. 

2.15. Example. Suppose cp : E -+ F is a purely inseparable field extension 
of degree pd. As an amusing exercise the reader can show directly from 2.14 
and devissage that not only tcp, but also cpt, is multiplication by pd (or see 
[Quillen 1973a]). In fact we will never consider such extensions in this paper, 
but it's nice to know we don't need to: for it follows from the exercise that 
any purely inseparable extension E -+ F induces an equivalence KE -+ KF 
after localization at l, l ¥:- p. 

3. TORSION IN THE K -THEORY OF A RING OF ALGEBRAIC INTEGERS 

Throughout this section, F is a number field with ring of integers OF. 
By Quillen's theorem 2.3 K.OF has finite type, and Borel 2.4 computed 
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the ranks. In this section we take some first steps toward computing the 
torsion subgroups, or at least exhibiting some systematic families of torsion 
classes. We also take the opportunity to introduce K -theory with finite 
coefficients, and the Bott element. There are two obvious places to look for 
torsion classes: (1) consider the projection to a residue field OF - OF/P, 
Does this map detect torsion classes? (2) consider the unit map So..!. KOF. 
For n > 0, 7rn So is a torsion group. What is the image of i? 

Consider first the unit map i. We may as well take OF = Z. As an 
element of 7roKZ = KoZ, i corresponds to the free module of rank one. Ap-
plying nco we get a map QSO n"::i BGLZ+ x Z, or ngoi : QoSo _ BGLZ+. 
Now by the Barratt-Priddy-Quillen theorem [Priddy], QoSO = BEt" or 
equivalently QSo = nB(lln>o BEn). In fact the infinite loop space QSo 
can be obtained by applying-the May/Segal machinery to the category of 
finite sets, and the map i is induced by the obvious functor (finite sets) -
free Z-modules. Hence the slogan "stable homotopy groups of spheres = 
K-theory of the category of finite sets." In any case we have the natural 
question of describing the map i. : 7rnSo - KnZ. Obviously 7rOSo ~ KoZ. 
We have 7ri SO ~ Z/2, generated by the Hopf map .", and one can show in 
a number of ways (cf. below) that i • ." i= O. Since i is a ring map it follows 
that i • .,,2 i= O. Thus i. is an isomorphism for n :::; 2. For n = 3 we have 
7r3S0 ~ Z/24, and it was shown early on by Quillen that i. is injective for 
n = 3 (see below). However after a period of some confusion, judging by 
the literature, [Lee-Szczarba] showed K3Z ~ Z/48, so i. is not onto. And 
Mahowald (see [Browder]) observed that the map Z/2 ~ 7r6S0 - K6Z is 
zero. Thus i. is not injective either, which is certainly a great relief to 
K-theorists. The complete answer is now known, and can be described 
as follows: Let (1m J)(l) denote the i-component of the image of the J­
homorphism 7r.O _ 7r. So. 

3.1. Theorem. 

(a) [Quillen 1976b} (1m J)(l) injects into KnZ if i is odd or n = 3, 7 
mod 8, and onto a direct summand if i is odd or n = 7 mod 8. 

(b) [Quillen 1976b} The Adams elements j.tSk+1, j.tSk+2 of order 2 generate 
direct summands Z/2 in KSk+iZ, KSk+2Z, 

(c) [Lee-Szczarba} K3Z ~ Z/48 and [Browder} the Z/16 occurs as a 
direct summand in KSk+3Z for all k. Hence (1m J)(2) is not a direct 
summand in KSk+3Z. 

(d) {Waldhausen 1982} lfn = 0 or 1 mod 8; i. : ImJ ~ Z/2 - KnZ is 
zero. 
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3.2. Corollary (of (a) and (b». K 4n_ 1 Z contains a cyclic subgroup of 
order dn = denominator of 11:, where Bn is the nth Bernoulli number (see 
(Milnor-Stasheff, Appendix BJ). This subgroup is a direct summand if n is 
even. 

The author has recently shown that i. factors through 1m J (provided 
ImJ is interpreted as including the Adams JL-family) [Mitchell 1990al. 
Hence Theorem 3.1 gives a complete description of the map i •. This will 
be discussed further in §1O. 

Some remarks on the proof of 3.1: (a) Consider the Chern character 
as a map ch: BO - IIn>lK(4n, IQ), and let F denote the fibre. The 
natural map QoSo - BO lifts uniquely to F. Since 1l'4n _l F ~ IQ/Z, we 
get homomorphisms ll'ln-l -IQ/Z which in fact correspond to Adams' e­
invariant eR. On the other hand the natural map BGLZ+ - BO also lifts 
to F: for it is enough to lift BGLZ - BO, and the real Pontrjagin classes 
of a fiat bundle vanish since they can be defined in terms of the curvature. 
Thus we have a commutative diagram 

----
_---------------~Fl 

QoSO -----t BGLZ+ -----t BO 

Since eR detects the image of J in dimensions n = 3 mod 4, this yields 
the injectivity in (a). Now fix an odd prime i and choose p as in 3.3a 
below. Then the unit map SO - KFp induces homomorphisms ll'~n+1 -

Z/(pn-l)cl) that can be identified with the i-part of the complex e-invariant 
(of course this is zero unless i-I divides n). Since the unit map factors 
through the reduction map KZ - KZ/p, this yields the splitting for i odd. 
If i = 2 we can take p = 3. Again, the maps ll'~n-l - Z/(3n - 1)(2) can be 
identified with the 2-primary complex e-invariant ec. However if n is even 
ec = keR, where k = 1 if n = 0 mod 4 and k = 2 otherwise. Hence, we 
only obtain the splitting when n = 0 mod 4. Note also that for i odd, the 
Chern character argument can be replaced by the reduction argument just 
given. 

(b) The Lee-Szczarba theorem involves a delicate analysis of the cohomol­
ogy of the Q-construction for Z in low degrees. We remark that in fact the 
extra factor of two arises for the "usual reason"; see §7. The propagation 
of K3Z into higher degrees is an instance of Bott periodicity; see §7. 

(c) The JL-family was once described by Frank Adams as a family that 
"homotopy theorists know and love, but need not concern anyone else." 
Quillen's theorem shows that Adams' assertion was too modest. The proof 
is easy: the JL-family is a periodic family of elements JLSk+1, JLSk+2 of order 
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two in 7rSk+1l7rSk+2' and is detected by the bo-Hurewicz map SO ~ boo Since 
i factors through KZ, the theorem follows. 

(d) Waldhausen's proof involves his "algebraic K-theory of spaces." It 
would be nice to have a more elementary argument. 

Remark. Given a general OF, one can consider the composite SO -+ KZ -+ 

KOF • For example, if F has a real embedding then (obviously) the JL-family 
produces direct summands Z/2 in K*OF. 

Next we consider the residue field projections. Fix a prime i and define 
w(F) = [F(~i): FJ, a(F) = maximal a such that F(~i) contains ~ia. IfIFq 
is a finite field of characteristic not i, define w(IFq) and a(IFq) the same way. 
If P is a nonzero prime of OF, with char (OF/P) =1= i, call P retmctible if 
w(F) = W(OF/P) and a(F) = a(OF/P). If i = 2 we assume in addition 
that a ~ 2 - i.e. REF. 

3.3. Remarks. (a) Take F = IQ, i odd. Then w(lQ) = i - 1, a(lQ) = 1. 
A prime p E Z is retractible precisely when p has order i - 1 in z/r 
and i2f(pi-1 - 1) - in other words, p generates (Z/i2)*, or equivalently p 
generates Z;. There are infinitely many such p, by Dirichlet's theorem on 
arithmetic progressions. The corresponding spectra KIF p are all i-adically 
equivalent to the connective "Image of J" spectrum j-in fact we can even 
take this as the definition of j. 

(b) Take F = 1Q(~i)' i odd. Then w(F) = 1 = a(F). There are various 
kinds of retractible primes. Fix a rational prime p =1= i and a prime P in 
Z[~illying over p. At one extreme, we could take p to be "completely split"; 
i.e. p splits into i-I distinct primes in Z[~il. This is true precisely when 
p = 1 mod i, and then Z[~tl/P = IFp. Such a P will be retractible precisely 
when p =1= 1 mod i 2 - in other words, p topologically generates the kernel 
of Z; -+ (Z/i)*. At the opposite extreme, we could take p to be "inert" 
- i.e. p remains prime in Z[~iJ, so P = pZ[~il. Then Z[~il/P = IFq, where 
q = pi-I. In this case P will be retractible precisely when p is as in (a). 

(c) The Cebotarev density theorem, which is a generalization of Dirichlet's 
theorem on arithmetic progressions, guarantees the existence of infinitely 
many retractible primes. The existence of infinitely many such P is useful 
since for any ring of S-integers S-IOF, we can then find primes which are 
simultaneously retractible for OF and S-IOF. 

(d) Observe that the i-primary part of K*IFq is uniquely determined by the 
numbers w(IFq) and a(IFq). In fact one can show that the i-adic homotopy 
type of the spectrum KIF q is uniquely determined by w(IF q), a(IF q). 

3.4. Theorem. [Harris-Segal] Fix i, and iE i = 2 assume REF. Let 
P be a retractible prime oEOF. Then after localization at i, the reduction 
map BGLOt -+ BGL(OF/P)+ is a homotopy retraction. 
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3.S. Corollary. If i is odd, the space 1m J is a retract of KZ. 

3.6. Remarks. (a) conjecturally this is true as spectra; see §11. 

(b) A different proof of 3.4 was given in [Browder]. See also [Cohen­
Peterson]. 

(c) The assumption yCI E F when i = 2 can be weakened slightly [Harris­
Segal]. The essential point is that the Galois groups G(F(6n)/F) should 
be cyclic, as opposed to Z/2x (cyclic). Harris and Segal also get some 
weaker conclusions in the general case. However there is no odd prime p 
such that the reduction map 1 : BG LZ+ -+ BG LlFt is a retraction at 2: 
for if 1(2) is a retraction, the Lee-Szczarba theorem would imply 1* is an 
isomorphism on 71"3 ~ Z/16. Let"., denote the nonzero element of K1Z. 
Since 1* is a ring homomorphism and ".,3 -=I- 0, we conclude 1*(".,3) -=I- O. 
This is a contradiction since K2lFp = O. Note also that the natural map 
BGLZ+ -+ J2 can't be a retraction, by Waldhausen's theorem 3.1d. 
(d) The factors obtained for different choices of P are essentially identi­
cal. This is because the equivalences of Remark 3.3d lead to commutative 
diagrams (at least on the space level) 

(e) It seems very likely that the converse of 3.4 is also true. 

(f) As a corollary we obtain systematic families of cyclic summands in 
K*OF - for example, 3.2. For another example, take OF = Z[eel, i odd. Let 
s denote a number prime to i. We see that K2s(n-1Z[eel contains a cyclic 
summand of order £1t+ 1. In general we obtain summands in K 2swln -1 OF 
of order i n+a , where w = w(F),a = a(F). 

Here is a quick sketch of the proof of 3.4: Let G be a finite i-group, 
R = OF and lFq = R/P. One can easily show that P is retractible if and 
only if for every finite i-group G, every representation of Gover IF q lifts to 
an R-free representation over R. Taking G to be an i-Sylow subgroup of 
GLnlFq, this means in particular we have a lift 

BG~BGLlFt 

Since BGLR+ is an infinite loop space, and we have localized at i, a stan­
dard transfer argument shows we can replace G in * by GLnlFq, and then 
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by GLFq by a standard limit argument. Thus we have 

By a universal property of the plus construction, f factors through BG LFt ' 
yielding the desired section. This is essentially the argument of Harris­
Segal, although their proof is more elementary in that it avoids explicitly 
using the infinite loop space structure on BGLR+. 

Browder's approach to 3.4 involves K-theory with coefficients, which 
we now describe. For any spectrum E we define 'Ir.(Ej Z/n) = 'Ir.E 1\ 
MZ/n. We are mainly interested in the case n = til. The cofibre sequence 

t" SO _ SO _ MZ/ til leads to short exact sequences 

(3.7) 0 - 'lrkE/t" - 'lrk(EjZ/t") -t" 'Irk-IE - O. 

In particular we define K.(Xj Z/t") = 'Ir.(Xj Z/t"), and this fits into an 
exact sequence as above. The spectrum MZ/ til is a ring spectrum unless 
til = 2. It is associative and commutative unless til = 3, 4, or 8. We will 
generally ignore these exceptions for low til. Setting these aside, whenever E 
is a commutative associative ring spectrum the same is true of E 1\ MZ/ til , 
and hence 'Ir.(EjZ/t") is a commutative ring. We also remark that the 
above short exact sequence splits unless til = 2. The trouble is that MZ/2 
has exponent 4 instead of 2. This exception, as well as the fact that MZ/2 
is not a ring spectrum, can be blamed on the generator T/ of 'lrI SO = Z/2. 

K-theory with coefficients Z/t" is often better behaved than the integral 
version. For example, take t odd and consider KFq. Since K.Fq is all in odd 
dimensions (except for * = 0), the ring structure is trivial. On the other 
hand K.(Fqj Z/t") ~ Z/t"[(3, 8(3]/(8(3)2. Here 18(31 = 1(31-1 and 1(31 is read 
off from 2. I-for example if t"lq- 1 then 1(31 = 2. In particular K.(Fq, Z/t") is 
periodic, with the period increasing with v. For example, suppose KFp ~ j 
as in 3.3a. Then the period is 2(t - 1) for v = 1 and 2(t - 1)t"-1 in 
general, a phenomenon which is quite familiar to both homotopy theorists 
and number theorists. 

In fact one can produce elements (3 of infinite height in K.(RjZ/t") 
quite generally, provided til =F 2, as follows: suppose first that R con­
tains an t"-th root of unity ej in fact, we may as well take R = Z[el"j. 
Then et" is an element of t" K 1 R and therefore lifts to an element (3 in 
K2 (Rj Z/t"). (This can be done canonicallyj in fact one should construct 
(3 in 'Ir~(BZ/t+jZ/t")). One can easily check that (3 maps to a generator 
of 'lr2(bujZ/t"). Hence (3 has infinite height and is called a Bott element. 
In general it is enough to consider the case R = Z. When v = 1 we 
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use Z[~tl and the transfer to produce f31 E K2l-2(ZjZ/i). By consider­
ing powers of f31 and a Bockstein spectral sequence, we easily obtain Bott 
elements f311 E K 2(l-1)lV-l (Zj Z/ i"). These can be pushed into the K­
theory of any ring or scheme. Modulo nilpotent elements, f311 is essentially 
independent of the choices made. See the discussion in [Dwyer-Friedlander­
Snaith-Thomasonl for further details. 

4. K-THEORY OF ALGEBRAICALLY CLOSED FIELDS AND 

HENSEL LOCAL RINGS 

Up to this point, the only fields whose K-theory we can compute are the 
algebraic extensions of finite fields. What about algebraically closed fields? 
Quillen and Lichtenbaum conjectured early on that if IF is algebraically 
closed and char F #- i, K./i" F should be the same as ordinary topolog­
ical K-theory ([Quillen 1974], [Lichtenbaum]). About ten years later, the 
conjectures were proved by Suslin in two spectacular papers ([Suslin 19831 
and [Suslin 1984]). The first paper proves: 

4.1. Theorem. Let i : FeE be an extension of algebraically closed 
fields. Then i. : K.(Fj Z/n) --+ K.(E; Z/n) is an isomorphism for all n. 

Hence it is enough to compute K.(F,Z/n) for one algebraically closed F 
of each characteristic. In particular, by Quillen's work this settles the case 
char F = p. It remains to compute K.(F, Z/n) for some F of characteristic 
zero. In the second paper Suslin shows: 

4.2. Theorem. The natural map K.(C, 'L/n) --+ K.top (C, Z/n) is an 
isomorphism for all n. 

Thus in terms of spectra we have: 

4.3. Theorem. Let F be any algebraically closed field, i a prime #- char 
F. Then KF' ~ bu'. 

Remarks. 

(a) Instead of completing at a fixed prime i, we could of course use 
profinite completion away from char IF. 

(b) Suslin in fact proves a stronger result: if char F = 0 then modulo 
uniquely divisible groups KnF ~ Q/Z if n is odd and KnF = 0 if n 
even, n > 0; with a similar result for char F = p. We also have: 

4.4. Theorem. (Suslin) For any prime l, the natural map K~' --+ bo' is 
an equivalence. 

The above remarks apply to 4.4 as well. 
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The proofs of 4.1 and 4.2 are beautiful and ingenious ("diabolically 
clever", in the phrase of one highly placed source). An excellent outline 
of the proof of 4.1 can be found in [Grayson 1989], so we will give only a 
very brief sketch. 

Consider the extension FeE in 4.1. E is the direct limit of its finitely 
generated F-subalgebras. It follows at once from the Nullstellensatz that 
i* is injective on any functor whatsoever that commutes with direct limits. 
In particular this is true for K-theory, with or without coefficients. For 
the surjectivity, let AcE be a finitely-generated F-subalgebra. Fix a 
homomorphism f : A -+ F. If (if)* = j* on K*( ,Zln), we are done. 
Both if and j extend to homomorphisms A ®F E -+ E, so it would be 
enough to show that any two such homomorphisms agree on K*( ,Zln). 
In other words, translating this into algebraic geometry, we have reduced 
to the following Rigidity Theorem: 

4.5. Theorem. Let p, q be points on a connected algebraic variety X 
over an algebraically closed field E. Let ip, iq denote the inclusions. Then 
i; = i~ : K*(X,Zln) -+ K*(E,Zln). 

The theorem is easily seen to be false without finite coefficients: consider, 
for example, K 1 and the variety C - {O}. The proof first reduces to the case 
of a smooth projective curve X, and then uses a brilliant argument based 
on the divisibility of the Picard group. As noted in [Grayson 1989], the 
entire argument can be done axiomatically: all one needs is a contravariant 
functor schemes -+ abelian torsion groups that commutes appropriately 
with limits, has a suitable transfer, and satisfies a homotopy axiom. 

Before discussing Theorem 4.2 we must digress to consider Hensel local 
rings, which will appear several times in later sections. Let A be a local 
ring with maximal ideal m and residue field k. Then A is Hensel if Hensel's 
lemma holds for the projection A -+ k. A is a strict Hensel local ring (or 
"strictly local ring") if in addition k is separably closed. 

Examples 

(a) Any complete local ring is Hensel 
(b) Let W(iFp ) denote the Witt ring ofiFp-Le., the completion of the ring 

of integers in the maximal unramified extension of Qp. Then W(lFp ) 

is strict Hensel. 
(c) The ring of germs of continuous C-valued functions at a point p 

of a topological space is strict Hensel. More generally C could be 
replaced by a suitable topological field-cf. [Suslin 1984]. 

A less elementary but more enlightening definition of Hensel rings will 
be given in §5. If A is any local ring one can define its Henselization 
Ah and strict Henselization Ash. For example, if A is contained in its 
m-adic completion A, then A h is roughly the smallest Hensel local ring 
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in A containing A. If A = Zp, Ash = W (IF p). Henselization A.L A h is 

characterized by the property: if A ~ B is a map of A to a Hensel local 
ring B, with g-l(mB) = mA, there is a unique <p : Ah -+ B such that 
<p-lmB = mAh and <pI = g. 

4.6. Theorem ([Gillet-Thomason], (Gabber». Let F be a field and x 
a smooth rational point of a variety over F. Let 0; denote the Henselization 
of the local ring at x. Then if t # char F, the natural map K. (0;, zit) -+ 

K.(F, Zit) is an isomorphism. D 

The proof involves a generalization of Suslin's rigidity theorem, and can 
also be axiomatized [Grayson 1989]. According to Gabber the analogue of 
4.6 for arbitrary Hensel local rings is valid. However we will need only the 
following, which will be proved below: 

4.7. Theorem [Suslin 1984]. Let A be a Hensel local ring which is either 
(a) an algebra over a field F or (b) a complete discrete valuation ring with 
residue field F. Then if t # char F, K.(A, Zit) -+ K.(F, Zit). D 

9!! 

In fact Suslin proves case (b) for more general valuation rings. 
To apply these theorems we need the following extremely useful theorem 

of [Charney 1982] and [Suslin 1984]: Let I be a 2-sided ideal in a ring R, 
and let GLn(R, I) c GLnR denote the normal "congruence subgroup" of 
matrices equal to the identity mod I-Le., Ker (GLnR -+ GLn(RII). 

4.8. Theorem. 1ft is a unit in RII, the conjugation action ofGLR on 
H.(GL(R, I)j Zit) is trivial. 

4.9. Corollary. Let GL(RII) denote the image of GLR -+ GL(RII). 
Then 

(a) The local coefficient system in mod t homology of the fibration 

BGL(R, I) ~ BGLR ~ BG L(RI I) is trivial. 
(b) 7r. is an isomorphism on H. ( , zit) if and only if 

H.(BGL(R,I), zit) = o. 
(c) Let F denote the homotopy fibre of BGLR+ -+ BGL(RII)+. Then 

the natural map BGL(R, I) -+ F is a mod t homology isomorphism. 

4.10. Corollary. Let A be Hensel as in 4.7, with maximal ideal m, 
k = Aim. 1ft # char k, H.(BGL(A,m)jZlt) = o. 

Remarks. 

(a) If R is local with maximal ideal I in 4.9, GL(RII) = GL(RII). 
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(b) In general the plus construction does not "commute with fibrations"; 
and in any case BGL(R, J) need not have perfect commutator sub­
group so this wouldn't even make sense in 4.9c. However 4.9c does 
show that F is i-adically the group completion of Un BGLn(R, J). 

This completes our digression on Hensel local rings. We are in fact going 
to give essentially complete proofs of 4.2 and 4.7, assuming 4.6. However 
the beautiful proof of 4.2 has a very quick intuitive explanation, and we 
will give this first. 

Let G be a Lie group with finitely many components, and let G6 denote 
G with the discrete topology. Clearly 4.2 holds if and only if BGLC6 -+ 

BGLC top is an isomorphism on H*( ; Zli). This raises an obvious ques­
tion: 

4.11. Isomorphism Conjecture (Milnor, Friedlander) BG6 ~ BG top 

is an isomorphism on mod i homology for all i. 

By [Milnor 1983] CP* is surjective. Let F ~ BG6 be the homotopy fibre 
of cpo If G is connected, so the local coefficient system is trivial, it follows 
that Cp* is an isomorphism {:::=} ii*F = 0 {:::=} i* : ii*F -+ ii*BG6 is the 
zero map. Thus Suslin's theorem would follow from this last assertion for 
G = GL(n, C). This is still unknown, but it's enough to prove the stable 
analogue: 

4.12. Lemma. Let Fn be the homotopy fibre of BGLnC6 -+ BGLnC toP. 

Then the composite map j : Fn -+ BGLnC6 -+ BGLC6 is zero on H* 
( ; Zli). 

Consider the fibre F of a general cp as above. It is intuitively plausible, 
and shown precisely by Suslin, that F is the realization of the "infinitesmal 
bar complex" BGe , which we will vaguely imagine as the sub complex of 
the usual bar complex {GP} consisting of p-tuples (g1. ... ,gp) with the gi 
"arbitrarily close" to the identity. We now come to the crux of the proof: 
At level p the map j is in effect the germ at 1 of a map jP : G.v,:. C ~ G LPC; 
namely, the inclusion. The set of all such continuous map germs is precisely 
GLP(On~~nt), where o:.~nt is the ring of germs at 1 of continuous C-valued 
functions on G.v,:.c. The fact that jP(I) = 1 says precisely that when 
we regard jP E GL(o:.~nt), it in fact lies in the congruence subgroup 
G L( 0 nc;;nt , m). But 0 n~~nt is a Hensel local ring. Hence by Corollary 4.10, 
there is no obstruction to inductively constructing a chain nullhomotopy 
of j! 

A rigorous version of this argument will be given shortly. For the moment 
we just note the precise definition of BGe : Fix c > 0 and let NGe denote 
the sub-simplicial set of the bar complex NG consisting of (g1. ... ,gp): 
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Ue n gl Ue n g1g2Ue n ... n (gl ... gp)Ue =I 0, where Ue is a disc of radius e 
(in some invariant metric) at 1. Then BGe is the realization INGel. Suslin 
shows that for all sufficiently small e, BGe ~ F. 

The rigorous proof of theorem 4.2, as well as 4.7, depends on Suslin's 
idea of a "universal nullhomotopy". One convenient way to describe this 
construction is as follows: Let f. : X. -+ Y. be a map between simplicial 
objects in a category e with null object. The sets Wp,q = Homc(Xp, Yq) 
form a cosimplicial simplicial pointed set and in particular we get a suitably 
augmented double complex Z/ i· Wp,q. Let {}H, {}v denote the horizontal and 
vertical boundary maps in Z/ l . Wp,q. Then one might define a universal 
nullhomotopy of f as a sequence of elements sp E Z/lWp,p+1 such that 
{}v sp + (}H Sp-l = fp. We have the trivial consequence: 

4.13. Proposition. Let A be an object ofe, f# the induced map ofsim­
plicial sets Homc(A, X.) -+ Homc(A, Y.). Then a universal nu1lhomotopy 
of f induces a nu1lhomotopy of the chain map Z/lf#. 

Equally trivial is: 

4.14. Proposition. Suppose the columns ofZ/lWp,q are acyclic. Then f 
has a universal nu1lhomotopy. 

The applications of the universal homotopy require a little bit of scheme­
theoretic language. The reader who is unfamiliar with schemes need only 
accept the following: If A is a commutative ring, the corresponding affine 
scheme is Spec A, the set of prime ideals of A. This set is equipped with 
sufficient additional structure to make the contravariant correspondence 
A ~ Spec A an equivalence of categories (opposite of commutative rings) 
~ (affine schemes). Thus if F is a field an affine scheme over Spec F is the 
same thing as an F-algebra. We let SGLnF denote the scheme over Spec F 
corresponding to the usual F-algebra AGLnF = F[aij, det-1(aij)]. Then if 
R is an F-algebra, and eF is the category of affine schemes over Spec F, it 
is immediate that GLnR = HomcF (Spec R, SGLnF). Now let efi denote 
the category of pointed affine schemes over Spec F-i.e., the opposite of 
the category of augmented F -algebras. Here "augmented" means equipped 
with an F -algebra homomorphism to some extension field E of F. For 
example, we regard AGLnF as augmented by evaluation at the identity 
and similarly for AG~F, where G~F = GLnF x ... x GLnF (p times). 
Let R -=. E be an augmented F -algebra, so m == Ker e is a prime ideal. Then 
HomcF (Spec R, SGLnF) is just the congruence subgroup GLn(R,m). As 

o 
a mild abuse of notation we will allow the case n = 00, and define 

HomCF(SpecR,SGLF) = lim HomcF(SpecR,SGLnF), etc. 
0_0 

n 
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Proof of 4.7a. Take C = C[. We have simplicial objects SGL!F and 
SGL· F (bar construction) with a natural map 9 : SGL!F -+ SGL· F. 
Let O~,p be the Henselization of the local ring at 1 of Gv:.F, and let 
Xp = Spec O~,p. Then by naturality of Henselization the Xp assemble 
into a simplicial object in ct, and there is a map h : X. -+ SGL!F. 
Take Y = SGL· F and f = gh. The columns of Wp,q are just the bar 
constructions for GL(O~,p, m) and so are Zll-acyclic by 4.10. Hence f 
has a universal nullhomotopy s. Applying Hom CF ( Spec R, -) we get a 

o 
chain nullhomotopy f #. But the universal property of Henselization shows 
HomcF(SpecR,X.) -+ HomcF(SpecR,SGL!F), so g# also has a nullho-

o ~ 0 

motopy. In otherwords, GLn(R, m) -+ GL(R, m) is zero on H*( ,Zll) for 
all n, and the theorem follows. 0 

Proof of 4.2. We keep the notation of the preceeding proof, with F = C 
(or R.!), except that Xp = SpecOn~~nt, the ring of germs at the identity 
of continuous functions on Gv:.C. Theorem 4.7a applied to o:.~nt leads 
to a universal nullhomotopy s for f, as before. Each sp is a finite linear 
combination of map germs Gv:.C -+ G~+lC, m »0. If we fix P » 0, 
the sp for p ~ P are all defined on some F!, c fixed. In other words, 
through dimension P we have a universal nullhomotopy for the map of 
simplicial spaces F! -+ GL·C. Applying 4.13 with A = point we get a 
chain nullhomotopy up to dimension P for the underlying map of simplicial 
sets. Since P was arbitrary, this completes the proof. 0 

Before sketching the proof of 4.7b, we first note that the theorem itself 
can be viewed as very much analogous to 4.2: Wagoner defined topologi­
cal K-theory for complete discrete valuation rings and showed K/oP A £::! 

lim Ki(Almn), at least when the residue field F = AIm is finite (see [Wag-.... 
n 

oner 1976]). On the other hand if l"l- char F each projection Almn -+ 

Almn- 1 is an isomorphism on mod l K-theory-in fact GLs(Almn) ~ 
GLs(Almn- 1 ) is an isomorphism on H*( ,Zll) for all s. (To see this, 
note Ker 7r is the additive group of s x s matrices over F, and hence is an 
F-vector space). Hence in 4.7b one can think of K*A -+ K*F as a map 
from algebraic to "topological" K-theory, as in 4.2. 

Proof sketch of 4. 7b. Let H* = H*( ; Zll). We need to show that the 
natural map BG LA ~ BG LF is an isomorphism on H*. Here we will show 
only that 7r* is injective; the proof of surjectivity is in a similar spirit (see 
also the remark below). Let E denote the quotient field of A. Then GLnA is 
an open subgroup of the topological group G LnE, and in fact the subgroups 
GLnA ::) GLn(A, m) ::) GLn(A, m 2 ) ••• form a neighborhood base at the 
identity. Thus the GL!(A, m b ), b large, will play the role of the F'::,E' € 
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small, in 4.2. As before we obtain a universal nullhomotopy in a range 
for the map of simplicial spaces GL~(A, m b) - GLe E, b sufficiently large. 
However by taking b even larger, we can assume the nullhomotopy actually 
maps into GLe A, or even into a given GLe(A, ma). This leads easily to: 

4.15. Fix k, n and a. Then for some s ~ n and some b ~ a, H.GLn(A, m b ) -

H.GLs(A, ma) is zero through dimension k. Here s depends on k and n 
but not on a or b. 

Now let (H.GLnA)j,a denote the jth Hochshild-Serre filtration associ­
ated to the extension 

A short but delicate induction on j, using all of 4.15, yields: 

4.16. Fix k, n, and j < k. Then for some a ~ 0, (HkGLnA)j,a - HkGLA 
is zero. 

Note that the case j = 0 of 4.16 is contained in 4.15. On the other hand, 

taking j = k - 1 we see that the kernel of the natural map HkGLnA ~ 
HkGLn(A/ma) stabilizes to zero. But A and A/ma are local rings, and lo­
cal rings satisfy homological stability [Wagoner 1976b). Hence in the stable 
range Ker8 is actually zero. It follows that HkGLA - HkGL(A/ma) is 
injective, and since H.GL(A/ma) ~ H.GL(A/m) the proof is complete. 

Remark. Let G be a finite group of order prime to char F. Then by lifting 
idempotents in the group ring FG, one can show that every representation 
of Gover F lifts to a representation over A. Now suppose F is a subfield 
of iFp • Then GLnF is a direct limit of finite groups Ga. Letting G above 
range over the i-Sylow subgroups of the Ga , we obtain an elementary proof 
that the maps H.GLnA - H.GLnF are surjective, n ~ 00. 

Remark. Suslin also deduces the following from 4.7b: Suppose F is alge­
braically closed of characteristic p, W(F) is the ring of Witt vectors over 
F, and E is the quotient field of W(F). Then if E denotes the algebraic 
closure, there is a canonical isomorphism K.(F,Z/l) ~ K.(E,Z/i). (Here 
i =j:. p as usual). Combining this with Quillen's calculation of K.iFp , we 
obtain K.(Qp,Z/l) and hence K.(C,Z/l) by 4.1, independently of 4.2. 
Conversely if we start from 4.2, we get a new proof of Quillen's theorem on 
K.iFp (at least mod i). 

5. THE LICHTENBAUM-QUILLEN CONJECTURES 

We now know the mod i K-theory of any separably closed field F, char 
F =j:. i. Given an arbitrary field F, we might hope to somehow recover 
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K*(F,Z/iV) from K*(F;Z/iV) where F is the separable closure. Now if 
E / F is any Galois extension, BG LF+ is exactly the fixed point set of 
G = G(E/F) : BGLF+ = (BGLE+)G. Assume for a while what G is 
finite. A very naive hope would be that K/i~F = (K/i~E)G. This is 
indeed true in the very special case when G is has order prime to i; see 
2.12. But in general it is clearly false; e.g. for F = JR, E = Co A more 
reasonable but still optimistic hope would be that there is a descent spectral 
sequence: 

E~,q = HP(GL(E/F);K/i~E) ==> K/i~_pF. 
Here the indexing is such that the differentials dr have bidegree (r, r - 1). 
We will use this indexing throughout, but the reader is certainly free to 
re-index it however he or she prefers. A spectral sequence of this type 
does in fact arise, whenever a group G acts on a space X, as follows: filter 
EG by skeleta and apply the equivariant mapping space functor FG ( -, X). 
We obtain a tower of fibrations and hence, applying homotopy, a spectral 
sequence. The E2-term is easily identified as HP(G; 7rqX), and under fa­
vorable circumstances, the spectral sequence converges to 7r * (FG (EG, X)). 
Hence the question of whether X admits a "descent" spectral sequence 
converging to the homotopy of the fixed point set X G is transformed into 
the question of whether the natural map from X G to the "homotopy fixed 
point set" XhG = FG(EG, X) is an equivalence (at least i-adically). This 
question has played a central role in homotopy theory over the last decade; 
for a discussion including K-theory, see [Carlsson 1987]. 

Example. F = JR. In view of Suslin's theorems 4.3 and 4.4, i-adic descent 
for JR is equivalent to descent for ordinary topological K-theory BO. But 
in fact the results of [Atiyah 1966] imply that BO satisfies descent glob­
ally. Since this often cited implication is not particularly obvious, we sketch 
the argument. Let Z/2 act on BU by complex conjugation. Then the re­
sult to be shown is that the natural map f : BO = BUz/2 -t BUhZ/2 = 
FZ/2(Soo, BU) is a weak equivalence. The key results from Atiyah's paper 
are the following: Let X be a compact space with involution a and let 
KR(X) denote the Grothendieck group of "vector bundles with conjuga­
tion" over X; that is, complex vector bundles with a conjugate linear in­
volution covering a. Then KR(X) is the same as unbased Z/2-equivariant 
homotopy classes of maps to BU: KR(X) = [X, BU]Z/2. Now suppose the 
involution on X is trivial and let Sk have the antipodal involution. Then 
Corollary 3.8 of [Atiyah 1966] yields an exact sequence (for k 2: 2) 
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where j is induced by BO ---+ BUhz/2 ---+ FZ/2(Sk, BU). Now take X = sn. 
Then j is an isomorphism for infinitely many values of k. It is then ob­
vious that the inverse system 7rnFZ/2(Sk, BU) is Mittag-Leffler and that 
7rnBO ---+ 7rnBUhZ/2 ---+ lim 7rnFZ/2(Sk, BU), as desired. As an amusing ex-

~ ~ +-

ercise, the reader can show that the descent spectral sequence collapses at 
E4 (a fact I first learned from Bill Dwyer). This also provides an exam­
ple of the "fringe effect" that arises in the spectral sequence of a tower of 
fibrations: there are copies of Z and Z/2 along the line p = q that are 
not eliminated by differentials and yet cannot represent anything in 7r*BO. 
However this problem disappears, and the exercise is much easier, if one re­
places BO, BU by KO, KU (equivalently, just formally invert the generator 
of 7rsBO). 

Return now to the extension FIF and write GF for G(FIF). Usually 
G F is not finite, but it is always profinite. In that case the E2-term of the 
conjectural spectral sequence should be interpreted as Galois cohomology, 
which we digress to explain. Let G = limGa be a profinite group. If Mis 

+-

a trivial G-module we define the continuous cohomology H~ont (G, M) as 
lim H* (G a, M). If M is nontrivial but at least is discrete in the sense that 
-+ 
a 

M = UaMua , where Ua is the kernel of the projection G ---+ Ga, we define 
H*cont (G, M) = lim H* (G a; M U a). To see how the limit works the reader 

-+ 
a 

should inspect the main example: G = G F, M = F*. In this case we write 
H*Gal (or later HZt ) in place of H~ont. Of course HO = M G , as usual. The 
basic results we need can be found in [Serre 1964]: 

5.1. Theorem. (Hilbert's Theorem 90) Let ElF be any Galois extension. 
Then H 1Gai (G(EI F); E*) = O. 

2 -* 5.2. Theorem. H Gal (G F ; F ) ~ Br F. 

If char Ftn there is a short exact Kummer sequence of G F-modules 

where ILn(1) is the group of nth roots of unity with its natural GF-action. 
From the resulting long exact cohomology sequence we obtain: 

5.3. Theorem. (a) H 1Gai (GF ; ILn(I)) ~ F* In. 

(b) H 2Gai (GF , ILn(1)) ~ nBr F. 

Let ILn(i) = ®iILn (I), with the diagonal GF-action. Note that if ~n E F, 
ILn(1) is the trivial module ~ Zln, and hence the same is true for ILn(i). 
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This fact will be used repeatedly in the sequel. In general J.Ln (i) can also 
be identified with the group J.Ln, but with the "Tate twisted" GF-action 
given by 0'. a = O'i(a) (0' E GF,a E J.Ln). With either interpretation it is 
clear that if n = i'" with i odd, for example, J.Lt" (i) is the trivial module if 
i is divisible by (i - 1 )i",-1. More generally J.Lt" (i) ~ J.Lt" (i + (i - 1 )i",-1 ). 
Hence the cohomology groups H*Gal (G F; J.Lt" (i)) are periodic in i, with 
period (i- 1)i",-1. 

Let cd tG denote the maximal value of n such that there is a discrete 
i-torsion module M with H~ont (G, M) i= O. For example, if G = Z, the 
profinite completion of Z, cdtG = 1 for alli (exercise). 

5.4. Theorem. Let F be a number field and suppose either i is odd or 
A E F. Then cdtGF = 2. 

Remark. 5.4 is clearly false if i = 2 and F = 10: for the existence 
of complex conjugation shows Z/2 is a retract of GQ, and of course 
cd 2Z/2 = 00. 

Thus one can ask for a descent spectral sequence with E~,q = H PGai 
(GF; K/i~F). Again, a spectral sequence of this type does arise from the 

homotopy fixed point set (BGLY)hGF. Here one needs to interpret X hG 
for a profinite G = limGQ in a suitable way. The precise definition is a bit 

+-

technical and we will not give it here, although see §7. The reader should 
interpret the notation X hG, G profinite, as standing for a suitable "pro" 
version of the homotopy fixed point set. The main point to keep in mind is 
that the definition is cooked up precisely so that the E2-term of the descent 
spectral sequence involves continuous cohomology. 

Let's imagine for a moment we had the i-primary descent spectral se­
quence for F a number field. What would it look like? Recall that by 
Suslin's theorem K / i~ F = Z/ i'" [.8]. Then it is obvious from the definition of 
/3 that K/i2i(F) = J.Lt,,(i) as GF-module. Hence we would have E~,q = 0 if 
q is odd and E~,q = H PGai (G F; J.Lt" (i)) if q = 2i. The checkerboard pattern 
forces all even dr's to be zero. Now suppose i is odd or A E F, so that 5.4 
applies. Then since d2 = 0 the spectral sequence collapses! Now suppose 
further, for convenience, that et" E F. Then J.Lt" (1) has trivial G F-action 
and hence the same is true for J.Lt,,(i). Hence the E2-term is completely and 
explicitly computed by 5.1 and 5.2. Let's see what this would imply for 
K/i~ F. In degree zero (p = q) we expect to find K/ioF = Z/i'" and in­
deed this shows up as E~'o, while E~,1 is automatically zero. Unfortunately 
Ei,2 = t"Br F, which is nonzero - indeed infinite. Hence there is no descent 
for Ko. Undeterred by this cruel twist of fate, we consider K 1 • We would 
have only E~,2 = H1(GF;Z/i"'(1)) = F*/i'" = Kl/i"'F. Hence descent 
holds for K 1. Now consider K2. We have E~,2 = (K2/i'" F)GF ~ Z/i'" , 
generated by /3, and E~,3 = O. Finally, Ei,4 = H2Gal (GF; J.Lt,,(2)) = t"Br F 
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(since {tv E F). Hence Tate's theorem 1.15 can be interpreted as verify­
ing descent for K 2. This gives some hope that descent holds in positive 
dimensions. 

5.5. Example. F is a finite field IFq • In this case the Brauer group is zero, 
so there is no obvious obstruction to descent. In fact, Quillen's work on 
K.lFq can be interpreted as verifying descent, as follows: As usual we fix a 
prime i i= p, and suppose we have computed K.(iFqiZjill) ~ Zjill [.B], either 

by Quillen or by Suslin's work (see the remark in §4). Let X = BGLF!;. 
Then BGLlFt is the fixed point set XZ of the Z-action obtained from the 
Frobenius (1 : X -+ X. The homotopy fixed point set XhZ is easily identified 
with the homotopy pullback E in the diagram 

X ( )IXXX 1, (1 

This in turn is equivalent to the fibre of (1 - 1 : X -+ X, since X is an 
H-space. Since (1 corresponds to 1jJq under the equivalence X' ~ BU', 
we see that (XhZr ~ (F1jJqr, and hence by Quillen (BGLlFtr ~ (XhZr. 
The desired descent spectral sequence is then obtained from XhZ. Here 
the reader may object that the Galois group GFq is Z, not Z, and that 
we have completely ignored the profinite topology on Z. But the inclusion 
Z -+ Z induces an isomorphism on H* ( i M) for any discrete torsion t. 
module M, and hence XhZ -+ XhZ is an equivalence after i-adic completion. 
The details of this example provide a highly recommended exercise. Note 
E~,q = 0 for p > 1, the spectral sequence collapses with no extensions, and 
E2 is easily computed. 

Remark. [Carlsson 1987] proves a sort of descent for finite Galois groups 
but with BGL replaced by BGLn , n finite. Unfortunately, the argument 
fails for n = 00. 

We turn now to the general descent question for a scheme X. The reader 
who is unfamiliar with schemes should systematically translate "scheme" as 
either "algebraic variety" or "commutative ring", bearing in mind that the 
correspondence between affine schemes and commutative rings is just like 
the correspondence between affine varieties over k and k-algebras, and so in 
particular is contravariant. In order to remain flexible and to avoid tedious 
technicalities, we will assume X is "sufficiently nice", without specifying 
what that means. Various hypotheses on X will be discussed as they arise. 
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However "sufficiently nice" should always be taken to include smooth va­
rieties over an algebraically closed or finite field of characteristic not equal 
to i, and number fields and their rings of S-integers. 

The first thing we need to discuss is etale cohomology. This certainly 
isn't the place to attempt an introduction to the subject - see [Milne], and 
[Deligne]j topologists will want to consult Sullivan's marvelous "Intuitive 
discussion of the etale homotopy type", which appears in Chapter 5 of 
[Sullivan]. However, for the benefit of the reader who may know even less 
about etale cohomology than the author, we will include some brief remarks. 

Consider the scheme X with its usual Zariski topology. For example when 
X = Spec R, R a Dedekind domain, the proper closed subsets are just the 
finite sets of nonzero prime ideals. A presheaf on X is just a contravariant 
functor from the category of open sets and inclusions to abelian groups. 
Presheafs can be sheafified, there are enough injectives, and sheaf cohomol­
ogy is defined in terms of right derived functors of the global sections func­
tor. This sort of ordinary sheaf cohomology will be written H*Zar (X, :F), 
for a given sheaf:F. Etale cohomology H;t (X, -) is defined in roughly the 
same way, except that the category of open inclusions U C X is replaced 
by the category of etale covers U' - U, U open in X. The technical defi­
nition of etale is "flat and unramified". Geometrically one should picture 
a smooth unramified coveringj algebraically, a finite extension of Dedekind 
domains which is unramified in the sense of number theory. A crucial new 
feature of the etale setting is that there are nontrivial automorphisms of the 
objects U' - U-Le. maps U' - U' covering the projection. For example, 
suppose X = SpecF, F a field. As a space X consists of a single point, 
so Zariski sheaves aren't very interesting. On the other hand a connected 
etale cover of X is the same thing as a finite separable extension E of Fj 
thus Spec E - Spec F is an etale open, and if E is Galois its automor­
phism group is just G(EjF). Hence an etale sheaf:F on SpecF would in 
particular assign to each finite Galois extension E some G(EjF)-module, 
in a compatible way. From this one can construct a discrete G F-module 
M;, and it is an exercise to show ([Milne], p. 53): 

5.6. Theorem. The category of etale sheaves on Spec F is equivalent 
to the category of discrete G p-modules, and Hk, ( Spec Fj:F) = H*Gal 
(GFjM;). 

At the opposite extreme, we have ([Milne], p.117, see also [Sullivan], 
loco cit.): 

5.7. Theorem. Let X be a smooth complex algebraic variety. Then 
H;t (X,Zjn) ~ H*(X,Zjn). 

Here Zjn is regarded as the constant etale sheaf on the left, and on 
the right we have ordinary singular homology. Thus etale cohomology with 
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finite coefficients can be viewed, as a first approximation, as a concatenation 
of Galois cohomology and singular cohomology. In the sequel we will refer 
somewhat vaguely to the "etale site" or "etale topology". Roughly this 
just means X together with the etale covers of its open subsets - again, 
see [Milne] for a precise definition. Similarly the "Zariski site" refers to X 
together with its Zariski open subsets. Sometimes we write X et or X Zar 

to indicate which site is being considered. 
The main examples of etale sheaves that we need are the following: Let 

Gm denote the functor assigning to any scheme U the group f(U, Ou)* of 
invertible regular functions on U. If U = Spec R, this is just R*. Then 
Gm defines a sheaf on both the Zariski and etale sites of any scheme X. 
If X = Spec F, F a field, the corresponding discrete G F-module as in 5.6 
is just F*. Using a "change of site" spectral sequence one shows ([Milne], 
p.124): 

5.S. Theorem. ("Hilbert's Theorem 90"). HIt (X; Gm ) = H 1Zar (X, Gm ). 

Note that when X = SpecF, Hkzar(X,F) = 0 (trivially) for k > 0 and 
any sheaf F. Hence we indeed recover the classical Hilbert's theorem 90 
as a special case. Recall also that in general H 1Zar (X, Gm ) = PicX, the 
group of line bundles on X. Generalizing 5.2, we have: 

5.9. Theorem. Let R be a commutative ring. Then Hit (Spec R, Gm ) ~ 
BrR. 

For a discussion of Brauer groups of schemes, see [Milne], Ch.IV. Now 
let J.tn(l) denote the etale sheaf assigning to each etale open U the group of 
nth roots of unity in f(U, cpu)*. One would like to have an exact Kummer 
sequence 

0-+ J.tn(1) -+ Gm ~Gm -+ 0 

as we did for fields. The only possible problem is with surjectivity of the 
nth power map. Consider for example the case n = f, X = Spec OF. If 
a E OJ;. and the extension ring S = OF[Tl/(Ti - a) is etale over OF, then 
"a has an fth root locally in the etale topology", which is exactly what 
we need. Unfortunately this is never the case since S is ramified over f. 
However it is ramified only over f, so if we replace OF by OFm (cutting 
out the primes over f) the problem disappears. This is the main reason for 
insisting on inverting f in the sequel. In general, write i E X as shorthand 
for "the residue field characteristics of X are all prime to f'. Then (see 
[Milne], p. 66): 

5.10. Theorem. If i E X the Kummer sequence 
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is exact on the etale site. In particular this is true for X = Spec OF [l]. 

As in the case of Galois cohomology we can define /1-t,,(i) = ®i/1-t,,(l). If, 
for example, X = Spec R and et" E R, then /1-t" (i) is isomorphic to the 
constant sheaf Zjf.v. A similar remark applies to the general case. 

We conclude our discussion of etale cohomology with some miscellaneous 
remarks that may be helpful to the reader. 

5.11. Remark. In §4 we said that a local ring A is Hensel if it satisfies 
Hensel's lemma. An equivalent definition (cf. [Milne], §4) is that A has 
no nontrivial finite etale extensions with trivial residue field extension. A 
is strict Hensel if it has no nontrivial etale extensions whatsoever. Here 
"trivial etale extension" means a product An. In fact if A is Hensel with 
residue field k, the map Spec k -+ Spec A is in a suitable sense an "etale 
homotopy equivalence". We also note that the strict Henselization A sh can 
be viewed as the direct limit of all connected finite etale extensions of A, 
with a similar definition of Ah. This means that the strict Hensel local rings 
are precisely the local rings for the etale topology. In a bit more detail, note 
that a ''point'' in the etale world is a scheme of the form Spec F, F separably 
closed. Thus a point x of a scheme X is Spec of a separably· closed field 
F containing the residue field k(x), together with the induced map x":"'X. 
An etale neighbourhood of x is an etale open U -+ X with a factorization 
of to through U. Hence the stalk Fx of an etale presheaf is lim.1'(U), where 

-+ 

U runs over all such neighborhoods of x. In particular the stalk of the 
structure sheaf is the strict Henselization 0 xsh of the (ordinary) local ring 
at x. This also means that the GabberjGillet-ThomasonjSuslin theorems 
(§4) can be rephrased as follows: Let JCjf.~ denote the sheafification of the 
etale presheaf U 1--+ K.(U;Zjf.V). Then JCjf.~ is isomorphic to Zjf.V(i) if 
q = 2i and is zero for q odd. This should be kept in mind while pondering 
5.12 below. 

We are now ready to state our first version of the Lichtenbaum-Quillen 
conjectures. Here "sufficiently nice" should be taken to include at least the 
following: (a) lEX. (b) X is regular (c) cdtX < 00. 

5.12. Lichtenbaum-Quillen Conjectures: First Version (LQCI). If 
X is a sufficiently nice scheme, then there is a descent spectral sequence 
with 

E~,q = Hft (X, /1-t" (i)) (q = 2i) 

= 0 (qodd) 

converging to Kq_pjf.v X if q - p is sufficiently large. Here q - p 2:: 1 should 
suffice for X = Spec OF [l]. 
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Remarks. 

(a) As we have seen, even for X = SpecF there is no such spectral 
sequence converging precisely to K. I fV X. As another example take 
X to be a smooth projective variety over C. In that case the descent 
spectral sequence would surely have to be the Atiyah-Hirzebruch 
spectral sequence for ordinary topological K-theory mod fV. Hence 
if it converged on the nose the topological and algebraic K -theory 
of X would be equal. But this is well-known to be false even for 
Ko: there are topological vector bundles with no algebraic structure, 
and nonisomorphic algebraic vector bundles which are isomorphic 
topologically. 

(b) The conjecture as stated is very awkward. What one wants of course 
is an auxiliary space or spectrum EX that does have descent, with 

a map K X .L EX. Then LQC can be rephrased as "/. is an iso­
morphism on 7rn ( jZlfV) for n > N". In other words, EX would 
be analogous to the homotopy fixed point set discussed earlier. This 
will be the subject of §7. There are conjectures concerning N-see 
[Quillen 19741 and [Thomason 19861. 

(c) Again the checkerboard pattern would force all even dr's to be zero. 
Hence the spectral sequence would collapse if E~,q = 0 for p odd 
- e.g. X is a flag variety over an algebraically closed field - or if 
cdtX :5 2. 

(d) The assumption cdtX < 00 ensures that for p» 0, E~,q = 0 for all 
q, so we have finite convergence. Unfortunately this excludes many 
interesting X when f = 2 - e.g. Spec Q or Spec Z. However the 
reformulation of LQCI in terms of etale K-theory (§7) will cover 
these cases as well. 

6. THE CONJECTURES FOR A RING OF ALGEBRAIC INTEGERS 

Throughout this section, R = OF[i]' where OF is the ring of integers 
in a number field F. Our goal is to give some explicit examples of the 
Lichtenbaum-Quillen conjectures for R. The first problem is of course to 
compute the relevant etale cohomology groups. Combining the Kummer 
sequence 5.10, Hilbert's theorem 90 in the form 5.8, and the Brauer group 
theorem 5.9, we have: 

6.1. Theorem. There are natural short exact sequences 

o ~ R· If V ~ HldSpecR,ZlfV(l)) ~tvCfR ~ 0, 

o ~ (CfR)lfV ~ Hit (SpecR,ZlfV(l)) ~tvBrR ~ o. 

Alternatively (see [Milne]) one can obtain 6.1 from the Leray spectral 
sequence of the map Spec F ~ Spec R. This method also computes the 
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higher cohomology groups H;t ( ,Zj£II(I)). However, if Zj£II(I) is re­
placed by Zj£II(i), the computation becomes difficult; compare 6.20 below. 
Hence, we will be content with the following: 

6.2. Theorem. Suppose el" E R, and that either £ is odd or v ~ 2. Then 
H;t (SpecR, Zj£II(i)) is zero for k > 2, and is given by 6.1 for k = 1,2. 

6.3. Remarks. 

(a) Recall that if el" E R, Zj£II(i) ~ Zj£1I for all i. 
(b) Let E denote the maximal extension of F which is unramified away 

from £. Then one can show that for any F, 

H;t (SpecR, Zj£II(i)) ~ H*Gal (GE / F ; Zj£II(i)) 

for all v, i. 
(c) Let £ = 2. As noted in §5, the field F can have infinite coho­

mological dimension at 2. The same is true for R. For example, 
H;t (SpecZ[n Zj2) ~ Zj2[x, eJ/(xe, e2), where x, e E Hl-compare 
§7. 

Suppose now that we are in the situation of 6.2, and that the Lichten­
baum-Quillen conjectures hold for R. Then the descent spectral sequence 
collapses. Furthermore the E2-term is periodic, in positive dimension with 
period 2. This periodicity would appear in K*(R,Zj£lI) as "Bott period­
icity". That is, let f3 E K2(R;Zj£V) denote the Bott class (§3). Then the 
conjectural computation of K*(R,Zj£lI) is most conveniently expressed as 
follows: 

6.4. Theorem. Suppose el" E R, and either £ is odd or v ~ 2. Assume 
LQCI 5.12 holds for R. Then there are split short exact sequences 

0- R*j£1I - Kl(R,Zj£lI) -l,,(C£R) - 0, 

0- (f3) EB CRRj£1I - K2(R, Zj£lI) -l"BrR - O. 

Furthermore, as Zj £11 [f3l-module 

6.5. Remarks. 

(a) From the short exact sequences we see that the Bass-Milnor-Serre 
theorem 1.5 and Tate's theorem 1.18 can be viewed as verifying 
descent for Kl and K2, respectively. 
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(b) Recall (§1) that R· jl!' ~ (Zjl!')r2+1 and i"BrR ~ (Zjiv)k-l, where 
k is the number of primes over i. Hence 6.4 gives, conjecturally, a 
completely explicit computation modulo determination of the class 
group. 

(c) Comparing 6.4 and Borel's theorem 2.4, it is natural to ask whether 
the Borel classes can be constructed i-adically in such a way that 
they reduce mod i V to the ZjiVLB]-module generated by the units. 
This was shown by [SouIe 1980]. A beautiful homotopy-theoretic re­
formulation of Soule's construction, due to [Bokstedt-Hsiang-Madsen], 
allows one to realize these classes by actual maps (ECP+" r --+ 

(BGLR+r· 
(d) Note that when II = 1, the last part of 6.4 says that K. (R; Zji) is 

actually a free module over ZjiLB]. In general the only relations are 
those arising from the orders of the cyclic summands of CiRjiv. 

6.6. Example. Suppose i is odd and R = Z[ei" , l]. Then i" Br R = 0 
1.19 and hence K.(R, ZjiV) is determined, conjecturally, by the class group 
and the unIt group. Now suppose further that i is regular; i.e, ifICiZ[ee]l. 
Then the class group terms in 6.1 and 6.4 also vanish (see 1.19). Thus 
Spec R has mod i etale cohomological dimension one, and K. (R; Zj iV) 
is, conjecturally, just the free ZjiVLB]-module generated by 1 E KoR and 
the units! This suggests a conjecture on the nature of the spectrum K R, 
which will be considered in §7. 

Now suppose R = Z[l], i odd. By Example 2.13, we have K.(R; ZjiV) = 
(K.(S;ZjiV)G, where G = GQ(El)/Q and S = Z[ei, l]. Hence, taking II = 1, 
a conjectural calculation of K.(R,Zji) can be obtained from 6.6-provided 
we can determine the action of G on K.(S,Zji). Recall that G is cyclic of 
order i-I. In particular every representation of Gover Zji is completely 
reducible. Let A denote the natural representation of G on the i-th roots 
of unity J1.i ~ S·. Then the irreducible representations of Gover Zj i are 
precisely AO, A, ... ,Ai - 2 • Note that G has a unique element c of order 
two, namely, complex conjugation. Call a representation of G even if c 
acts trivially and odd if c acts as multiplication by (-1). For example A k 

is even if k is even and odd otherwise. Now by definition the submodule 
((3) E K 2(S,Zji) is isomorphic to A. Thus 13k is fixed by G if and only 
if k = 0 mod i-I. In particular K.(R,Zji) is a module over Zji[(3i-l]. 
What about the units? The torsion subgroup J1.e is a copy of A. On the 
other hand inspection of the proof of Dirichlet's theorem 1.6 easily yields 
the general result: 

6.7. Theorem. Let F be a finite Galois extension of Q with group G. 
Then (O}®zlR) is isomorphic to the reduced regular representation ofG ifF 
is real, and is isomorphic to the reduced form of the induced representation 
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JRG ®RZ/2 JR if F is imaginary. Here Z/2 ~ G is generated by complex 
conjugation. 

Here the reduced form of a permutation representation V is the kernel of 
the natural map V - JR. Thus if l is a rational prime which is either inert 
or totally ramified in the extension F/Q, we can replace OF by OF[ij and 
eliminate the word "reduced" from 6.7. If lflGI and Z/l is a splitting field 
for G, we can replace OF ®z JR by (OF / torsion) ®z Z/ l in this discussion. 
Thus, returning to our situation: 

6.S. Corollary. Let M = Z[~i' l)* / torsion. Then M/lM is isomorphic 
as a G-module to >.0 EB >.2 EB ... EB >.i-3. In particular M/lM is even. 

It is convenient to rewrite the above decomposition as >.0 EB >.-2 EB ... EB 
>.-(i-3). Now observe that if Xk E M/lM generates the eigenspace >.-2k, 
Yk = (32kxk is fixed by G. Thus each Yk, 0 ::;; k ::;; (l- 3)/2, generates a 
free Z/l[(3i-l)-submodule of K*(S,Z/l). Note dimYk = 1 mod. Hence if l 
is regular, our discussion so far can be summarized as follows: 

6.9. Theorem. Suppose l is an odd regular prime and LQCI 5.12 holds 
for Z[ij. Then K*(Z[l], Z/l) is a free Z/l[(3i-l)-module of rank (l + 3)/2. 
The generators are the elements Yk E K 2k-l described above, the identity 
in Ko, and (3i-2[~i) E K 2i- 3. 

6.10. Remark. The last two summands in 6.9 correspond to K*(Fp , Z/l) , 
where p is a retractible prime as in §3. Thus if F is the fibre of the reduction 
map KZ[l) - KFp , we have conjecturally that 7rn (F; Z/l) is Z/l if n = 1 
mod 4 and zero otherwise. In fact, since F has finite type, it follows from 
Borel's theorem 2.4 that modulo torsion prime to l, 7rn F is Z if n = 1 mod 
4 and zero otherwise, assuming LQCI. As in Example 6.6, this suggests a 
conjecture about F and KZ[ij, that will be considered in §7. 

Now suppose that l is an irregular prime. Let A denote the i-primary 
part of the class group of Z[~i)' Then A splits into eigenspaces for the 
G-action. A ~ Ao EB ... EB Ai-2. Here Ai/lis a direct sum of copies of>. -i. 
(N.B. Our Ai is the Ai - l - i of [Washington)). Note that Ao = 0 since Z[ij 
has trivial class group. It is also known, for example, that Ai - 2 = 0 and 
Ai = 0 for i ::;; 5 [Washington, p.102). That Al = 0 is already reflected in 
K-theory, since K 2(Z; Z/l) = 0 for l odd and (3 : Ko(S; Z/l) - K 2(S; Z/l) 
is injective. In general, each Ai determines a free Z/l[(3l-l)-module in 
K*(Z[l); Z/l), generated by (3i . (Ai/i). In order to be more specific, we 
will assume a famous conjecture from number theory ([Washington], p. 
159). 

6.11. Vandiver's Conjecture. Ak = 0 for k even. In other words, the 
natural representation of G = GQ(el)/Q on (Cl(Z(~i)))/l is odd. 
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The conjecture is usually stated in the form ifh+(Q(el)), where h+ de­
notes the order of the class group of the maximal real subfield. But the 
i-part of h+ is just IAz/21, where Z/2 acts via complex conjugation, so 
this is equivalent to 6.11. Vandiver's conjecture is known to be true for 
all i < 125, 000, but according to the number theorists this is no reason 
to believe it. It has the following consequence (see [Washington], Theorem 
10.9). 

6.12. Theorem. If Vandiver's conjecture holds for i, then Ai is cyclic for 
all i. 

Assuming this, we arrive at the following conjectural calculation of 
K.(Z[iJ,Z/i): 

6.13. Theorem. Let i be odd. Assume Vandiver's conjecture for i and 
LQCI 5.12 for Z[n Then K.(Z[iJ,Z/i) is a free Z/i[,Bl-l]-module on r 
generators, where (i + 3)/2 :::; r :::; i. The Erst (i + 3)/2 generators are 
as in 6.9. Let Ai, . .. ,Ai", (0 :::; m :::; (;3, ik odd) denote the nontrivial 
eigenspaces of A, and let Xik generate Aik / i. Then the remaining generators 
are the elements ,Bik X ik , 1 :::; k :::; m. 0 

6.14. Remark. In fact very few of the Ai are nontrivial, at least for i :::; 4001; 
see [Washington] p. 350-51 and Remark 6.16 below. 

We next give a conjectural global calculation of K.Z. This calculation 
depends on §7 below for the 2-primary information. Let ~ = Cn/dn in 
lowest terms, where Bn is the nth Bernoulli number (in the notation of 
[Milnor-Stasheff, Appendix BJ, so that all Bn are nonzero). 

6.15. Theorem. Assume the Lichtenbaum-Quillen conjectures in the 
form LQCI and for i = 2 in the form LQCII 7.3. Assume also Vandiver's 
conjecture 6.11. Then for n ~ 2, KnZ is given by: 

n mod 8 KnZ 

0 0 
1 Z EEl Z/2 
2 Z/Ck EEl Z/2 (n = 4k - 2) 
3 Z/8dk (n = 4k -1) 
4 0 
5 Z 
6 Z/Ck (n = 4k - 2) 
7 Z/4dk (n = 4k - 1) 
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6.16. Remark. With our notation, the theorems of Herbrand and Ribet 
([WashingtonJ, p.102) can be combined to read: If 1 :::; k :::; (i - 1)/2, 
A2k- 1 =/; 0 if and only if i divides the numerator of Bk/k. In the fan­
tasy world of Theorem 6.15, we can append the condition "if and only 
if i divides IK4k-2ZI". In fact the implication A2k- 1 =/; 0 ===} i divides 
IK4k- 2ZI is a theorem of [Soule 1979Jj see also 7.5 below. Note that the 
order in which irregular primes appear in 6.15 is the order in which they 
appear as divisors of the Bk/k. For example, the first nontrivial numera­
tor is Cf) = 691, which is a prime. Hence 691 appears in K 22 Z by SouIe's 
theoremj indeed conjecturally K 22Z = Z/691. (According to the tables 
in [Washington], K.(Z, Z/691) would have exactly one more generator, as 
Z/691[,8690J-module, in dimension 398). On the other hand the smallest ir­
regular prime, 37, first appears as a divisor of C16, and so should not appear 
in KnZ until n = 62. 

We conclude with a brief discussion of the original zeta-function conjec­
tures of [LichtenbaumJ. The zeta function of a number field F is defined 
by (F(S) = ElIA/II-s, where the sum is over all proper nonzero ideals of 
OF. Note this is the classical Riemann zeta function when F = Q. The 
zeta function extends to a function analytic on the whole plane, except for 
a simple pole at S = 1. When F is totally real, it is known to take nonzero 
rational values on the odd negative integers. 

6.17. Conjecture [LichtenbaumJ Suppose F is totally real. Then up to 
powers of 2, (F(1 - 2n) = IK4n-20FI/IK4n-lOFI. 

Note the righthand side makes sense since both groups are finite by 
Quillen's theorem 2.3 and Borel's theorem 2.4. Note also this agrees with 
6.15 when F = Q. Now Lichtenbaum also conjectured a relation between 
values of zeta functions and etale cohomology. Define H!t (-j Zt(i)) = 
I~H!t(-jZ/iV(i))-and beware the misleading notationj the inverse limit 

v 

must be taken on the outside as shown. Most of the results and conjec-
tures of this paper can be formulated i-adically in this way, rather than 
working modulo iV. In particular this is true of Conjecture 5.12. Now sup­
pose i is odd, and let X = Spec OF [1 J. It turns out that because of the 
way the inverse limit works, H2t (X,Zt(n)) = 0 for all n > 0 (the groups 
H2t (X, Z/iV(n)) in effect are shifted to Hit (X, Zt(n)). Hence 5.12 predicts, 
at i, that K4n- 10 F ~ Hit (X,Zt(2n)) and K4n- 20 F ~ Hit (X,Zt(2n)). 
The resulting refomulation of 6.17 is now a theorem: 

6.18. Theorem. [WilesJ Suppose i is odd and F is totally real. Then 

1 1 
(F(1 - 2n) = IHit (SpecOF[iJj Zl(2n)I/IHit (Spec OF[i Jj Zt(2n)) 

up to an i-adic unit. 
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Of course if follows that 6.17 would be an immediate corollary of 5.12. 

7. ETALE AND BOTT-PERIODIC K-THEORY 

We first discuss the etale K-theory of [Dwyer-Friedlander 1985]. This 
theory was inspired by the work of [Soule 1979]. The authors define, for 
any connected scheme X over SpecZ[iJ, an l-adic etale K-theory spec­
trum Kat X (which they denote kat X, but we will omit the "A"). Define 
K~t X = 7r nKet X. It has the following basic properties: 

7.1. Suppose cdtX < 00. Then there is a strongly convergent spectral 
sequence 

(differentials as in §5, q - p :::: 0). 

7.2. There is a good map KX ~Ket X. 

Here "good" implies naturality and that 'P is a map of ring spectra, 
at least when X = SpecR, R a Noetherian Z[i]-algebra; see [Dwyer­
Friedlander 1975], Proposition 4.4. It also justifies a reformulation of the 
Lichtenbaum-Quillen conjectures: 

7.3. Conjecture (LQCII). If X is a sufficiently nice scheme, the map 
'P : KX -+ K et X induces an isomorphism Kn(X;Z/lV) -+ K~t (X;Z/lV) 
for all n ~ O. Here n :::: 1 should suffice for X = Spec OF [i]. 

Remarks. 

(a) Here "sufficiently nice" has the same vague meaning as in §5, except 
that we do not assume cdtX < 00. We wish to include examples 
like X = SpecZ[~] with l = 2, where 7.3 is a viable conjecture even 
though cdtX = 00 (see below). 

(b) Note that if'P is an isomorphism on 7rn ( ;Z/l) for n:::: N, 'P is an 
isomorphism on 7r n ( ; Z / lV) for n :::: N and all v. 

Let E(X) = nO' Kat X: the etale K-theory space. If X = SpecR we also 
write E(R) in place of E(X). The precise definition of Kat X or E(X) 
is complicated and technical, as the reader can discover by inspecting the 
references cited. However one can give a quick intuitive description of E(X) 
as follows (needless to say, none of this should be taken literally): One 
can associate to X its etale homotopy type xet. This is really an inverse 
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system of homotopy types. For example, when X = Spec F, F a field, xet 
is essentially the inverse system {BG(L/F)}, where L ranges over all finite 
Galois extensions of F. However we will simplify matters by speaking of 
X et as though it was an honest homotopy type. As another example, take 
X to be a smooth variety over C. Then X et is essentially the profinite 
completion of the ordinary homotopy type of X (compare 5.7). One can 
think of E(X) as the space of sections of a certain bundle over X et with 
fibre BU· (/\ = i-adic completion). For example when X is a smooth variety 
over C, the bundle in question is the trivial bundle, and E(X) is just the 
function space F(X, BU·). Hence the etale K-groups 7rnE(X) are just the 
ordinary (i-adic) topological K-groups, and the spectral sequence 7.1 is a 
truncated form of the Atiyah-Hirzebruch spectral sequence. If X = SpecF, 
let GF denote the Galois group G(F/F), where F is the separable closure. 
The action of GF on the i-power roots of unity yields a homomorphism 
G F -+ Zi, and since the latter group acts on BU· via "pk operations we 
obtain an actionofGF on BU·. The bundle defining E(F) is EGFxGFBU· 
(we continue to ignore the profinite topology on GF). Now in general the 
space of sections of a bundle of the form EG x G X -+ BG is precisely the 
homotopy fixed point set XhG. Here we could even use Suslin's theorem to 
replace BU· by (BGLYr. This shows that the map BGLF+ -+ E(F) is 
exactly the map (BGLy)GF -+ (BGLy)hGF discussed in §5. 

Now suppose X = SpecR, where R = OF[l]. Let L(F) denote the 
maximal algebraic extension of F which is unramified away from i, and 
let r F = G(L(F)/ F). Note that L(F) contains F(~loo). Then r F is the 
fundamental group of (SpecR)et, and E(R) is the space of sections of a 
flat BU·-bundle over (Spec R)et arising from a homomorphism r F -+ Zi 
as above. Recall, however, that HZt (SpecR, Z/iV(i)) = H*Gal (rF, Z/iV(i)) 
6.3b. From this it is more or less clear that E(R) is just the homotopy fixed­
point set (BU·)hrF. 

Having subjected the reader to an assortment of lies and half-truths, we 
now state two honest theorems from [Dwyer-Friedlander 1985]. 

7.4. Theorem. Let X be a connected scheme over SpecZ[~l'" n with 
cdlX < 00. If i = 2, assume v ~ 2. Then for i ~ 0, multiplication by the 
Bott class f3v is an isomorphism Ktt (X, Z/i)V -;: Kft2(X, Z/iV). 

For example, X could be SpecOF[l], where i is odd and ~l" E F. The 
Bott class f3v comes form K 2(X,Z/iV) via the map 'P of 7.2. Theorem 
7.4 follows easily from the spectral sequence 7.1 and the corresponding 
periodicity in etale cohomology. 

7.5. Theorem. Let F be a number field. Suppose either i is odd or v ~ 2 
and A E F. Let 'P* : Ki(OF[l]jZ/iV) -+ Ktt(OF[l]jZ/iV) denote the 
map induced by 7.2. Then 
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(a) c.p. is an isomorphism for i = 1,2. 
(b) c.p. is surjective for i ~ 1. 
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Part (a) is a reformulation of descent for Kl (Bass-Milnor-Serre) and K2 
(Tate). IT ell' E F, part (b) is then immediate from 7.4, and in fact one 
obtains a naturally split surjection. IT i is odd and 1/ = lone can then use 
an obvious transfer argument. The complete proof is more difficult, and 
makes use of a "secondary transfer." We remark that when i = 0, c.p. is 
injective, but is surjective only when lBrOF[i] = O. 

In another beautiful paper [Dwyer-Friedlander 1986], the authors explic­
itly identify the space E(R), and even the etale K-theory spectrum, in many 
cases of interest. The idea is quite simple. Think of E(R) as the space of 
sections of a bundle BUA -+ D -+ (SpecR)et, as above. When R = OF[i], 
complete determination of the homotopy type (Spec R)et is too difficult, 
since no one even knows how to explicitly describe the fundamental group 
rF. However the etale cohomology is very well understood (§6). The idea 

is then to produce a known space Y and a map Y L( Spec R)et inducing 
an isomorphism on H*( ,Z/iV(i)). IT D' is the pullback of D along I, 
and E' is its space of sections, the induced map E(R) -+ E' will be an i­
adic equivalence. For example, let JK(Z) denote the homotopy pullback of 
the diagram . .. 

BO 

1 
Here p = 3 if i = 2 and p generates (Z/ (2 )* if i is odd; (J is the Brauer lift. 
IT i is odd, JK(Z) ~ BGL'Ft x UfO. 

7.6. Theorem. [Dwyer-Friedlander 1986, 1991] Suppose i is a regular 
prime. Then E(Z[i]) ~ JK(Zr. 

In this example the space Y is IRpoo V SI. A quick explanation can be 
given as follows, thinking of E(~[i]) as (BUA)hrQ as above. Note that 
IRpoo V 8 1 is the classifying space of the free product Z * Z/2. In spite 
of the complicated nature of r Q, for regular i there is a homomorphism 
Z * Z/2 -+ rQ inducing an isomorphism on i-torsion cohomology. To define 

1/ 
'fI, let K denote the maximal abelian i-extension of Q(el) which is unram-
ified away from i, and note Q(eloo) ~ K. One can show that there is an 
element T E G(K/Q) such that T and complex conjugation c topologically 
generate G(K/Q), and such that (taking i odd for simplicity) T projects 
to a topological generator of Z; under the natural map. Note K ~ LQ and 
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choose any T E rQ projecting to T. The elements T, c define.,.,. The choices 
are such that (BUA)hZ/2 = BOA and (BUA)hZ = (BGLlFtr (compare §5), 
and since function spaces convert wedge sums to homotopy pullbacks we 
have (BUA)h(Z.Z/2) = JK(Zr. Since.,., is a cohomology isomorphism, the 
induced map (BUA)hrQ -t (BUA)h(Z.Z/2) is an equivalence. 

7.7. Remarks. 

(a) The notation JK(Z) is due to [Bokstedtl, who earlier constructed a 
map h : BGLZ[~l+ -t JK(Z) when £ = 2, and proved the striking 
theorem: Oh is a homotopy retraction. See below for a discussion of 
the map. 

(b) Note 7.6 is consistent with 6.9. In particular when £ = 2, 7.6-0r 
Bokstedt's work cited above-"explains", from a homotopy-theoretic 
viewpoint, the "extra" factor of 2 in K3Z ~ Z/48. "Extra" factors 
of two commonly arise in topological K-theory, merely bacause the 
natural maps BO -t BU and BU -t BO induce isomorphisms half 
the time and multiplication by 2 the rest of the time in degrees 
== 0 mod 4. That is exactly what happens here. JK(Z) (for £ = 

2) is the fibre of the composite BO -t BU1/J~l BU, and hence 
1l'8k+3JK(Z) ~ Z/16. 

(c) 7.6 holds for the associated spectra as well. Thus if we define jk(Z) 
by the homotopy fibre square 

jk(Z) J bo 

1 1 
KlFp J bu 

so that Ogojk(Z) = JK(Z), we have Ket Zar ~ jk(Zr for £ regular. 
Note that for £ odd, jk(Z) ~ KlFp V Ebo, and for all£, jk(Z) is the 
fibre of 1jJP - 1 : bo -t E2bu. 

7.S. Corollary. There is a map KZ[lr ~ jk(Zr, such that for £ regular 
the Lichtenbaum-Quillen conjecture for Z[ II holds if and only if h is an 
equivalence. 

7.9. Remark. Maps from KZm to jk(Zr can be constructed without using 
etale K-theory, as follows: choose an embedding i : Zp <.....+ C. This yields a 
commutative diagram of rings 

Z[~l J IR 

( j 
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and hence a strictly commutative diagram of spectra 

KZ[~] I bo 

1 1 
KZp I bu 

By Suslin's theorem 4.7b, KZ~ is canonically equivalent to KlF~. This 
yields a map KZ[lr --+ jk{Zt. However the map depends on the choice 
of embedding i. When i = 2 the choice is not important, but for i odd it 
is essential to choose i carefully to get an interesting map-in particular, to 
get 7.8 (Dwyer-Friedlander). We should also remark that the construction 
above doesn't really avoid the etale theory; the latter is merely hidden in 
Suslin's theorem. Bokstedt's original construction also depended on etale 
homotopy theory. 

Let us now contemplate Conjecture 7.3 (LQCII) in the light of Theo­
rem 7.4. In that situation, LQCII is evidently equivalent to the assertion 
that K.{X; Z/iV) has Bott periodicity as in 7.4-at least in sufficiently high 
degrees. This suggests studying the localized theory defined by formally 
inverting the Bott element. Now recall from §3 that for any X, with or 
without roots of unity, we can define Bott elements /3v E K.{X,Z/iV ) 

(if i = 2, v ~ 2). Choose such a /3 and form the mapping telescope 
/3-1 KX 1\ MZ/iv. This spectrum is independent of the choice of /3. Its ho­
motopy groups are precisely /3-1 K.{X, Z/iV). In particular it is, of course, 
non-connective. The following remarkable theorem plays a crucial role in 
later sections. 

7.10. Theorem. [Thomason 1985] Let X be a nice scheme. If i = 2, 
assume v'-I EX. Then the Lichtenbaum-Quillen conjectures hold for 
/3-1 K X 1\ MZ/ iV. That is, there is a descent spectral sequence as in 7.1, 
converging to /3-1 K.{X, Z/iV). 

For the precise list of hypotheses summarized by the work "nice" in 
7.10, see Theorem 4.1, p.516 of [Thomason 1985]. In particular X should 
be Noetherian, regular, and of finite Krull dimension, and as usual 1 E 
X. There are further technical hypotheses, but these are satisfied by any 
scheme the reader is likely to think of. The only serious restriction is the 
usual one: v'-I E X when i = 2. This is annoying since for i = 2 it 
eliminates Z[~], Q, totally real number fields, etc. One hopes that this 
assumption will some day be removed. 

7.11. Remarks. 

(a) In view of 7.4, 7.10 can be neatly summarized by the assertion that 
/3-1 KX 1\ MZ/iv --+ /3-1 Kat X 1\ MZ/iV is an equivalence. 
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(b) Note that in 7.10 the spectral sequence occupies an entire half-plane. 
(c) Localizations of the sort considered in 7.1G-Le., formed by inverting 

an element in a ring spectrum-were studied extensively in [Snaith 
1983], and applied to algebraic K-theory. For example, Snaith showed 
that if {3 E 7r2CP-t' is a generator, {3-1CP-t' ~ KU, and used 
this to deduce a similar result for BGL1R+, where R is a suitable 
strict Hensel ring. For an application pre-dating 7.10, see [Dwyer­
Friedlander-Snaith-Thomason]. The equivalence {3-1CP-t' ~ KU 
also illustrates the fact that such localizations usually drastically 
alter the homotopy type of the given ring spectrum (for another 
example, see §8.8). 

The proof of 7.10 is, unfortunately, rather difficult to summarize. The 
first step is to reduce descent for a scheme to descent for all of its local rings. 
Then one shows that descent for a local ring follows from descent for its 
residue field. These two steps are carried out in a very general setting, and 
do not require inverting the Bott element. Inversion of {3 is necessary only 
at the final step: descent for fields. The argument uses, among other things, 
the Kummer isomorphism 5.3a and a homotopy-theoretic realization of a 
spectral sequence of Tate (see [Serre]). The reader should consult Thoma­
son's survey article [Thomason 1989] for further enlightenment; the truly 
daring can also attempt the one hundred and sixteen pages of [Thomason 
1985]. 

We are going to show (§11), that inverting the Bott element amounts to 
forming the "Bousfield localization with respect to complex K-theory," de­
noted LKUKX. This reformulation is extremely convenient. It eliminates 
the choice of {3, the integer v and even, if desired, the prime £ from the 
definitions; these can be replaced by a global integral funtor LKU defined 
on all spectra. More importantly, it brings algebraic K-theory squarely into 
contact with state-of-the-art stable homotopy theory. This is the subject 
of the next four sections. 

8. COMPLEX COBORDISM, BROWN-PETERSON COHOMOLOGY AND 

THE MORAVA K-THEORIES 

In this section we give a brief survey of some relevent aspects of stable 
homotopy theory. For further details and references we suggest [Ravenel 
1986], especially Chapter 4 and Appendix 2. 

Our story begins with complex cobordism. The complex cobordism ring 
MU. is the ring of cobordism classes of weakly complex manifolds-that is, 
smooth manifolds with a complex structure on the stable normal bundle. 
Let MU(k) denote the Thom space of the universal bundle over BU(k). 
Then the fundamental work of Thom shows that MUn ~ 7rn+2kMU(k), 
k »0. In other words, if MU is the spectrum whose 2k-th space is MU(k), 
MUn ~ 7rnMU. The spectrum MU is a commutative associative ring 
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spectrum and so defines a multiplicative generalized cohomology theory. 
This theory has a geometric interpretation, and has applications to the 
topology of complex manifolds. However it can also be viewed purely as a 
cohomology theory, to be used as a tool for attacking homotopy-theoretic 
problems. In this respect complex cobordism turns out to be an extremely 
powerful theory. It has an amazingly rich and deep structure, and has 
played a central role in stable homotopy theory over the last twenty years. 
The first problem is of course to compute the coefficient ring. 

8.1. Theorem. (Milnor) 7r*MU ~ Z[Xl, X2, •• • ], where IXil = 2i. 

Remark. The generators Xi can in fact be taken to be complex projective 
varieties. However there is no good canonical choice of the Xi'S, which 
makes calculations cumbersome. 

Over the next few years there were a number of applications of MU* to 
homotopy-theoretic problems. Then the subject was revolutionized by the 
work of Quillen on complex cobordism and formal group laws. The mere 
fact that formal groups arise is not deep or surprising, as we now explain. 
Let E be a commutative ring spectrum. A complex orientation on E is a 
class zE E E2Cpoo such that zE restricts to the identity element of E2 8 2 • 

For example ordinary cohomology HZ, complex K-theory KU, and MU 
all have natural complex orientations. Complex-oriented theories behave in 
many respects like ordinary cohomology. For example, E*CP+, ~ E*[[zEII, 
there are Chern classes c~ satisfying the usual axioms, Thom isomorphisms 
for complex vector bundles, etc. The big difference comes when we ask for 
a formula for the first Chern class of a tensor product of line bundles. In 
ordinary cohomology we of course have CI (AI ® A2) = CI (AI) + CI (A2). For 
a general E we have cf(AI ® A2) = F(cf(Ad,cf(A2))' where F(x,y) is a 
formal power series in E*[[x, y]] = E*(CpOO x CPOO). Since tensor product 
of line bundles is associative, commutative and has the trivial bundle as 
identity, F(x, y) is a (commutative, one-dimensional) formal group law. 

Now it is trivial to show that there is a universal formal group law. That 
is, there is a commutative ring L-the Lazard ring and a formal group law 
FL over L with the following universal property: 

8.2. Given any formal group F over a commutative ring R, there is a unique 
ring homomorphism L~R such that 'P*(FL ) = F. 

The ring L can be given a natural grading. But what sort of ring is it? 

8.3. Theorem. (Lazard) L ~ Z[Yl, Y2, .. . ], where IYil = 2i. 

Now MU also has a universal property: 
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8.4. Theorem. Let E be a complex oriented ring spectrum, with ori­
entation class zE. Then there is a unique map of ring spectra MU -+ E 
carrying zMU to zE. 

Comparing 8.1, 8.2, 8.3, and 8.4, it requires only a leap of faith to believe 
the amazing: 

8.5. Theorem. (Quillen) Let cp : L -+ '1r*MU denote the unique ring 
homomorphism induced by FMU. Then cp is an isomorphism. 

Theorem 8.5 and its consequences have dominated the subject ever since. 
The main point is that the highly developed theory of formal groups can 
now be systematically applied. We next explain how it applies to Brown­
Peterson cohomology and Morava K-theories. 

First, an analogy: Thom's computation of the unoriented cobordism ring 
'1r*MO includes as a key step the computation of H*(MO, Z/2) as a module 
over the mod 2 Steenrod algebra. He showed it is a free module, which im­
plies that the spectrum MO is a wedge of Eilenberg-Maclane spectra HZ/2. 
From our present point of view this is something of a disappointment: it 
shows that the cohomology theory M 0 contains the same information as 
mod 2 cohomology, but in a grossly redundant form. Now fix an arbitrary 
prime p and let A denote the mod p Steenrod algebra. Let /3 E A l denote 
the Bockstein. Then H*(MU; Zip) is a free module over A/A/3A. This 
suggests that after localizing at p, MU might split as a wedge of copies of 
a ring spectrum X with H*(X,Z/p) = A/A/3A. It isn't at all obvious that 
such a spectrum even exists, but nevertheless X, now known as BP, was 
constructed by Brown and Peterson. The homotopy of BP is a polynomial 
algebra Z(p) [VI, V2, . •• j, where IVil = 2(pi -1). Thus BP is much "smaller" 
then MU, and yet carries the same p-primary information, and so should be 
a more efficient theory. And in contrast to the unoriented case cited above, 
BP is nothing like ordinary cohomology; it is a new and extraordinarily 
powerful theory. 

Now although BP has a smaller coefficient ring than MU, the description 
of '1r*BP given above still suffers from the lack of a canonical choice of 
the generators Vi - indeed the Brown-Peterson construction itself was non­
canonical. A beautiful, canonical construction of BP is obtained from the 
theory of formal groups as follows: Let R be a torsion-free ring. Any formal 
group F over R is isomorphic over R®Q to the additive group Ga(x,y) = 
x+y. The isomorphism is denoted logp; it is a power series with coefficients 
in R ® Q. Then F is p-typical for a prime p if logp(x) = Ei>O mixP;. 

This notion can be extended to arbitrary R, and by a theorem of Cartier 
every formal group over R is canonically isomorphic to a p-typical formal 
group. Combining this theorem with Quillen's theorem leads to a canonical 
idempotent map of ring spectra MU(p) ~ MU(p), and hence to a splitting 
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MU(p) = eMU(p) V (I - e)MU(p). The spectrum eMU(p) is BP. In fact 
this is an independent construction of B P that is now usually taken as the 
definition. Thus we have a canonical map of ring spectra MU(p) ~ BP, 
and 7r.BP is the p-typical Lazard ring Z(p)[VbV2' ... ]. Here the Vi'S are 
the Araki generators, namely, the coefficients of the formal sum expansion 
[P]F{X) = 2::>0 vnxpn , where F is the universal p-typical formal group and 
Vo = p. This canonical choice of the generators Vn leads to good, explicit 
formulae that have had many applications in stable homotopy theory; see 
[Ravenel 1986]. 

Suppose now R is a ring of characteristic p. Then any formal group law 
has [P]F{X) = anxpn + higher terms for some n, 1 :::; n :::; 00 (n = 00 is 
the case [P]F{X) = 0). The integer n is obviously an isomorphism invariant 
and is called the height of F: htF = n. For example, the additive law has 
infinite height and the multiplicative law x + y + xy has height one. If R 
is a separably closed field of characteristic p, a theorem of Lazard states 
that the height actually classifies formal groups over R up to isomorphism. 
In any case one can ask whether there are complex-oriented cohomology 
theories that realize various "height n Lazard rings." For example, the 
ring IFp[vn , v;;-l] is obviously universal for formal groups F with [P]F{X) = 
axpn , where a is a unit. This ring can indeed be realized: for each fixed 
prime p and each n, 1 :::; n < 00, there is a ring spectrum K{n), the 
nth Morava K-theory, with 7r.K{n) = IFp[vn,v;;-l]. Furthermore there is a 
map of ring spectra BP ~ K(n) inducing the obvious map on homotopy. 
K(n) is a commutative ring spectrum except when p = 2. However the 
noncommutativity when p = 2 rarely causes any significant problems, and 
will generally be ignored in the sequel. We define K(O) = HQ (rational 
cohomology) and K(oo) = HZ/p. The K(n) have a number of pleasant 
properties: 

8.6. Theorem. Fix p. Then for all n, 0 :::; n :::; 00: 

(a) 7r.K(n) is a graded field - i.e. every nonzero homogeneous element 
is invertible, and every graded module is free. 

(b) If X is any spectrum, K(n) !\ X is a wedge of suspensions of K(n). 
(c) K(n). satisfies the Kiinneth theorem: 

K(n).X 0K(n). K(n).Y ~ K(n).(X !\ Y) 

(d) Ifm =I- n, K(m)!\ K(n) is contractible. 

Here (b) and (c) follow easily from (a). Part (d) follows from the easy 
fact that for n < m, Vn is in the kernel of the K(m)-Hurewicz map 7r.BP ~ 
K(m).BP. 
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The construction of K(n) uses the Baas-Sullivan method of manifolds 
with singularities. The idea is that one can modify complex cobordism 
by allowing specified manifolds with cone-like singularities. If we allow 
the cone on M, obviously M is as dead as a doornail in the modified 
cobordism ring (if it is a ring-but we are ignoring such technicalities). In 
this way, we can kill off arbitrary generators of 7r*MU. In particular we 
can kill off everything (including p) except Vn , yielding a connective ring 
spectrum k(n) with 7r*k(n) = lFp[vn ]. Multiplication by Vn yields a map 

S2(pn-l) /\ k(n) 1. k(n). The mapping telescope of f (Le., the direct limit 

of k(n) 1. k(n) 1. k(n) 1. ... ) is K(n). 

8.7. Remarks. 

(a) The generator Vn in K(n)* can be thought of as the Fermat hyper­
surface of degree p in CPpn • This fact is primarily useful for creating 
the illusion that one is doing geometry. 

(b) By a theorem of Adams, p-Iocal complex K-theory splits as a wedge 
of (p - 1) copies of a spectrum E(l) with 7r*E(l) = Z(p) [Vl], where 
IV11 = 2(p - 1). K(l) is just the mod p reduction of E(l), and so in 
particular is a wedge summand of mod p complex K-theory. We also 
remark that Adams' proof involved p-typifying the formal group law 
x + y + f3xy of KU, and apparently was the inspiration for Quillen's 
construction of B P. 

(c) Although it is irrelevant for the purposes of this paper, it would be 
criminal not to mention the beautiful insight of Morava's that has 
made his K-theories so powerful: Briefly, the ring E* E of cohomol­
ogy operations of a complex-oriented theory E tends to be related to 
the automorphism group r of the associated formal group law FE. 
(This is even true for E = HZlp, where E* E is the Steenrod algebra 
and FE is the additive law; see e.g. [Ravenel 1986], p.378.) When 
E = K (n) and we extend scalars to IF pn, the group r is essentially the 
p-adic Lie group of units in the maximal order of the division algebra 
over Qp with Hasse invariant lin. Hence the group cohomology of r 
is related to suitable Ext groups of K(n)* K(n), which in term feed 
into the chromatic spectral sequence [Miller-Ravenel-Wilson], which 
converges to the E 2-term of the Adams-Novikov spectral sequence 
for the stable homotopy groups of spheres. For more details of this 
remarkable story, again see [Ravenel 1986]. 

Brown-Peterson cohomology and the Morava K-theories have been used 
to detect periodic families of elements in the stable homotopy groups of 
spheres. We conclude this section by explaining roughly how this works. 
In particular we discuss the Adams map, which plays a crucial role in later 
sections. 
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Adams showed there is a map EdMZ/p4MZ/p inducing an isomor­
phism on K{l)., where d = 2p - 2 for p odd and d = 8 for p = 2. In fact 
the induced map on BP.MZ/p = BP./p is multiplication by VI (p odd) 
or vt(p = 2). Note A is necessarily nonnilpotent. When p is odd, A can 
be defined as follows: let al be a fixed generator of 7r2p_38° ~ Zip, and 
let r : MZ/p -+ 8 1 denote the pinch map to the top cell. Then there is a 
unique Adams element A E 7r2p_2MZ/P such that rA = Eal. Now since p 
is odd, MZ/p is a commutative ring spectrum, associative if p > 3. (This 
is a trivial exercise. The fact that MZ/3 is nonassociative is much more 
subtle, but rarely causes any significant problems in our context.) We then 
define A = multiplication by A. Note that by definition, the composite 

is al. More generally, the composite 

8 k (2p-2) <---+ 8k (2p-2) 1\ MZ/p~ MZ/p~ 8 1 

is ak, a generator of the elements of order p in the image of J. Furthermore, 
the localized groups A- l 7r.MZ/p (= A-I7r.MZ/p for p odd) have been 
explicitly computed by Mahowald (p = 2) and H. Miller (p odd). For 
example, when p is odd we have 

8.8. Theorem. (Miller) A-I7r.MZ/p ~ lFp[A,A-l](8A). 

One can hope to generalize the preceeding constructions as follows. Sup­
pose there is a finite spectrum V{n) with BP. V{n) = BP./{vo, ... , Vn -l). 
Such a spectrum would in particular have the properties (i) K{n). V{n) = 0 
for m < n, and (ii) K{n). V{n) =f o. Suppose further that V{n) admits a 
selfmap (analogous to the Adams map) f : EdV{n) -+ V{n) inducing mul­
tiplication by Vn on BP. and hence inducing an isomorphism on K{n) •. 
Note every iterate of f is essential. One could then construct "vn-periodic" 
families in 7r.8° by using the composites 

where the first and last maps are inclusion of the bottom cell and pinch to 
the top cell, respectively. Of course there is no guarantee that the compos­
ite is essential, but the chromatic spectral sequence machinery mentioned in 
Remark 8.7c is designed precisely for this kind of detection problem. Thus 
one may hope to sort the stable homotopy groups into such vn-periodic fam­
ilies, with the image of J corresponding to n = 1. One could even hope to 
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generalize the Mahowald-Miller theorems by calculating !-11r* V(n). Un­
fortunately, V (n) does not exist in general. For example if n = 1 and p is 
odd, we can take V(1) = cofibre of the Adams map, but there is no V(1) 
for p = 2. If V(1) has a self-map! as above, we can of course take V(2) = 
cofibre of !, and so on, but the problem is a very difficult one. At present 
the evidence for small n suggests that for each n, V ( n) exists provided p is 
sufficiently large. However one could ask instead for a finite spectrum with 
the weaker properties (i) and (ii) above, and require only that the selfmap 
! induce an isomorphism on K(n)*. This will be considered in the next 
section. 

9. THE PRIME SPECTRUM OF THE STABLE HOMOTOPY CATEGORY 

This section is for the most part just a summary of portions of Mike 
Hopkins' beautiful paper "Global methods in homotopy theory" [Hopkins]. 
The reader should certainly consult the original source as well, and should 
blame only the present author for any misleading assertions in what follows. 

9.1. Theorem. [Devinatz-Hopkins-J. Smith] Let E be an arbitrary ring 
spectrum, not necessarily associative or commutative. 1£ 0: E 1r*E and 
MU*o: = 0, 0: is nilpotent. 

9.2. Corollary. (Ravenel's Nilpotence Conjecture). Let X be a finite 
spectrum, ! : Ed X -+ X a self-map. 1£ MU*! = 0, ! is nilpotent-i.e. some 
iterate of ! is nullhomotopic. 

The corollary follows by applying 9.1 to the ring spectrum X ADX, where 
X is the Spanier-Whitehead dual of X. If we work with p-Iocal spectra, 
MU can be replaced by BP in 9.1 and 9.2. There is also the following 
variant of 9.1: 

9.3. Theorem. [Hopkins-J. Smith] Let E be a p-local ring spectrum. 1£ 
0: E 1r*E and K(n)*o: = 0 for all n, 0 ~ n ~ 00, 0: is nilpotent. 

One of the most remarkable consequences of the nilpotence theorem is 
the complete determination of the "prime ideal spectrum" of the stable 
homotopy category. What is a prime in the stable homotopy category? 
A quick, if rather crude, explanation is to note that the prime ideals of a 
commutative ring R are in bijective correspondence with the "prime fields" 
over R - that is, the residue fields kp of R. For example if R = Z we 
mean prime fields in the usual sense: Zip or Q. Note that a commutative 
il-algebra A is a field if and only if for every abelian group M, A ®z M is 
a direct sum (possibly empty) of copies of A. Such a field is a prime field 
if and only if it is indecomposable as an abelian group. Hence: 
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9.4. Definition. (Hopkins) Let E be a ring spectrum. E is a field if 
for every spectrum X, E 1\ X is a wedge (possibly empty) of copies of 
suspensions of E. A field E is a prime field if E is indecomposable as a 
spectrum - i.e. E ~ Y V Z implies Y or Z trivial. 

Note. E is not assumed associative or commutative in 9.4. However we 
will see shortly that the prime fields are always associative, and always 
commutative if p is odd. 

Examples. 

(a) K(n) is a prime field, 0 ::; n ::; 00. (By 8.6b, one only has to check 
that K(n) is indecomposable.) Note also that 8.6d is what one would 
expect for prime fields. 

(b) KU 1\ MZ/p is a field, which is not prime if p is odd. 

9.5. Theorem. (Hopkins-J. Smith) Let E be a prime field. Then E ~ 
K(n) for some n, 0 ::; n ::; 00. 

The idea is that E 1\ K(n) is nontrivial for some n by 9.3, since the 
identity in 7roE is nonnilpotent. Hence E 1\ K (n) is simultaneously a wedge 
of copies of E and a wedge of copies of K(n), which at least makes 9.5 
plausible. 

Thus if we write S for the stable homotopy category, we are at least 
morally justified in writing SpecS for the set {(p, n): p an ordinary prime, 
o ::; n ::; oo} modulo the identifications (p,O) rv (q,O) for all p, q. Here the 
"integer" n, 1 ::; n ::; 00, ultimately corresponds to the height invariant of 
formal group laws in characteristic p (§8). Writing Sp for the p-local stable 
homotopy category, we may similarly write SpecSp = {n : 0 ::; n ::; oo}. 
However, this approach is not entirely convincing; for example, it doesn't 
reveal the Zariski topology. Recall the following characterization of the 
closed sets in Spec A, A a commutative ring. If M is an A-module, the 
support of M is the set Supp M = {p E Spec A : M(p) =I O}. If M is finitely 
generated this is the same as {p E Spec A : M ®A kp =I O}. The closed sets 
are precisely the sets of the form Supp M, M finitely-generated. The 
analogous definition in our setting is now obvious: if X is a finite spectrum 
(p-local, as usual), we let Supp X = {n: K(n) I\X ~ *,0::; n::; oo}, 
declare closed the subsets of {O, 1, ... ,oo} of the form Supp X, and take 
the topology this generates on Spec S. 

9.6. Theorem. If X is a finite spectrum, K(n)*X =I 0 for some n < 00. 

Furthermore, if K(n)*X =I 0 then K(m)*X =I 0 for all m > n. 
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Remark. It follows trivially from the Atiyah-Hirzebruch spectral sequence 
that K(n).X =1= 0 for all sufficiently large n. The second assertion of 9.6. 
is more difficult, see [Ravenel 1984], Theorem 2.11. 

Thus the nonempty closed sets all have the form [n,oo] for some n. How­
ever this still leaves the question: which intervals [n,oo] actually occur? Let 
us say that a finite spectrum X has type n if K(n).X =1= 0 and K(m).X = 0 
for m < n. For example, So, MZ/p, and the cofibre of the Adams map 
have type 0, 1,2, respectively. The question is whether such complexes exist 
in general. The hypothetical spectra V (n) discussed in §8 would have type 
n, but do not exist, in general. 

9.7. Theorem. [Mitchell 1985] Let p be any prime. Then for all n, 
o ~ n < 00, there exists a finite spectrum Xn of type n. 

The construction of Xn can be briefly described as follows, taking p odd. 
Embed (Z/p)n in the unitary group U(pn) via the regular representation. 
This extends to an embedding of the affine group GLnF'px(Z/p)n and hence 
GLnF'p acts on the homogeneous space Yn = U(pn)/(Z/p)n. Hence the 
group ring Z(p)GLnF'p acts on the p-localized suspension spectrum of Yn, 
and idempotents in this group ring can be used to split Yn into various 
wedge summands. A twisted form of the famous Steinberg idempotent 
yields a wedge summand X n- 1 • 

This completes our description of the prime spectrum of the stable ho­
motopy category: it can be visualized as an infinite "comb", with teeth cor­
responding to the ordinary primes and linked by the zero ideal. Each tooth 
supports an infinite sequence of primes (p, n) with "residue field" K(n). 
Lurking beyond the end of each tooth is a "prime at infinity", HZ/p. The 
closed subsets of a tooth are the intervals [n,oo]. 

Remark. The preceeding discussion is not meant to be in historical order. 
In particular, it was only after the fact that the author was informed, by 
Jack Morava via Haynes Miller, that he had proved "Euclid's theorem for 
stable homotopy" . 

9.8. Remark. Another construction of spectra of type n was discovered by 
Jeff Smith. The construction is similar in spirit to 9.7, but involves repre­
sentations of the symmetric groups rather than the general linear groups. 
Smith's construction has the advantage that it can be easily modified to 
produce complexes that admit a "vn-map"j see below. 

9.9. Remark. There is an even more elegant classification of "primes" in 
terms of categories of finite spectra that are "closed under cofibrations and 
retracts" j see [Hopkins]. 
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Let X be a finite spectrum. A Vn-map (n 2': 1) is a map I : ~d X --+ X 
such that K(n)*1 is an isomorphism and K(m)*1 is nilpotent for m =I- n. 
It is clear that some iterate Ik is zero on K(m)* for all m =I- n, and we may 
assume vn-maps already have this form. 

9.10. Theorem. [Hopkins-J. Smith], [Hopkins]. Let X be a finite spec­
trum of type n. Then X admits a Vn -map I. Furthermore (a) Ik is central 
in [X, X]* for some k and (b) any two such maps are isogenous: if I, 9 are 
Vn-maps of X, Ii = gi for some i,j. 

9.11. Remark. Let R be a finite ring spectrum of type n. A vn-element 
° E 7r*R is a class such that K(n)*o is a unit and K(m)*o is nilpotent 
for m =I- n. These exist for all n: just choose (X, f) as in 9.10, take 
R = X /\ DX, and use the isomorphism 7r*X /\ DX ~ [X,X]*. 

9.12. Remark. The proof of 9.10 relies heavily on the nilpotence theorem. 
However the first step is to construct just one example (X, f) for each n. 
This depends on Smith's construction but not on the nilpotence theorem. 

We will call a pair (X, f) as in 9.10 a vn-complex. We may then define Vn -

periodic homotopy with coefficients in X as 1-1 [X, E]*. This is independent 
of the choice of I by 9. lOb. We conclude by recording some trivial properties 
of this construction that will be used frequently in §11, 12: 

9.13. Proposition. 

(a) If (X,f) is a vn-complex, so is (DX,Df), and 1-1 [X,E]. = (1/\ 
Df)-l 7r*(E /\ DX). 

(b) Suppose 1-1 [X, E]. = 0 forsomevn-complex (X, f). Then K(n)*E = 
O. 

(c) If E is bounded above-i.e. 3N such that 7rnE = 0 for n 2': N-then 
1-1 [X, E]. = O. 

Here (b) follows from (a) and the Kiinneth theorem, while (c) is a triv­
iality valid for any connective spectrum X with selfmap I : ~d X --+ X, 
d> O. 

10. BOUSFIELD LOCALIZATION 

Much of the material in this section is taken from [Ravenel 1984]. In 
the stable world, localization in the classical sense is easy. For example, 
let S = {P1.P2,"'} be a set of primes. For any abelian group A, S-l A 
. th d' t l' 't f th A Pl A P1P2 AP1P2P3 A If X . IS e 1rec 1m1 0 e sequence --+ --+ --+ --+ .•.• IS a 
spectrum, 8-1 X can be defined in exactly the same way. It is immediate 
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that 1I".(S-lX) = S-11l".X. In particular we can define the rationalization 
XQ and the localization X(p) , which we've been using throughout this paper, 
in this way. The spectrum X(p) retains exactly the information about X 
which is visible to p-Iocal homotopy. Now let E be another spectrum. The 
Bousfield localization of X with respect to E, denoted LEX, is a spectrum 
that retains exactly the information about X which is visible to E. More 
precisely, call a spectrum WE-acyclic if E. W = o. Then a spectrum X is 
said to be E-local if [w, X] = 0 for every E-acyclic W, and we have: 

10.1. Theorem. [Bousfield 1979] Let E and X be arbitrary spectra. Then 

there exists a spectrum LEX and a map X ..4 LEX, natural in X, such that 

(a) j is an isomorphism on E •. 
(b) LEX is E-local. 

10.2. Remark. LE is an idempotent functor on the stable homotopy cate­
gory, and annihilates E-acyclic spectra. The existence of such a localization 
functor was considered earlier by Adamsj see [Adams 1974]. Unfortunately, 
Adams' approach runs into set-theoretic difficulties. Bousfield's approach 
runs into the same difficulties, but these are overcome by a series of ingenius 
arguments. 

10.3. Examples. 

(a) Take E = S(p) or SQ(= HQ). Then LEX is X(p) or XQ, respectively. 
(b) E = MZ/p. Then LEX is X·, the p-completion of X. In fact for 

us, this is the definition of X·. An alternative definition is X· = 
holim X 1\ MZ/pn. It is an easy exercise to show this X satisfies 

+-

1O.2a, b. It also follows that if X has finitely-generated homotopy 
groups, 1I".X -+ 11" .X· is just p-completion. X· can also be described 
as the "function spectrum" F(MZ/poo, EX). Here MZ/poo is the 
cofibre of SO -+ sg (as usual, So means Srp»). This leads to a 
functorial short exact sequence 0 -+ Ext (Z/poo,1I"nX) -+ 1I"nX·-+ 
Hom(Z/poo,1I"n_1X) -+ 0 for all X. Note this means that Q/Z's 
in 1I"nX disappear from 1I"nX· but show up as copies of the p-adic 
integers in 1I"n+1X·. This happens frequently in algebraic K-theoryj 
cf. remark (b) following 4.3. Finally, note the MZ/p-acyclic spectra 
are precisely the spectra with uniquely p-divisible homotopy groups. 

Bousfield showed that if E is connective, LEX is essentially an ordinary 
arithmetic localization or completion functor as in the preceeding examples. 
When E is nonconnective, however, fascinating new phenomena arise. For 
example, consider E = KU: K-theoretic localization. A great deal is now 
known about this casej the following results are the most important for us: 
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10.4. Theorem. [Bousfield 1979] LKUMZjp = A-I MZjp. 

Here A is the Adams map (§8). For a description of LKUSo, see [Ravenel 
1984]. 

10.5. Theorem. [Ravenel 1984] For any spectrum X, LKUX = X 1\ 

LKUSo. Hence LKU (X /\ MZjp) = X /\ (A-I MZjp). 

10.6. Remark. Spectra E and F are Bousfield equivalent if for all spectra 
X, E /\ X ~ * {:=::::} F /\ X ~ *. Clearly, E and F are Bousfield equivalent 
if and only if the localization functors LE and LF coincide. For example, 
it is easy to show KU is Bousfield equivalent to K(O) V K(I). 

10.7. Remark. For any spectrum E, LEIIMZ/pX = (LEXr. For example, 
(LKUXr = LK(I)X, Since our applications to algebraic K-theory almost 
invariably involve completion, we will usually work with LK(I)X rather 
than LKU X. 

10.8. Theorem. [Bousfield 1987] There is a functor T: (spaces) --+ (spec­
tra) such that L K(l) = To 0 00 • 

10.9. Remark. The significance of this result is that it reduces spectrum 
level questions about K(I)-local spectra to space level questions. For ex­
ample, suppose X, Y K(I)-local and f, 9 : X --+ Y. Then if 0 00 f and 
0 00 9 are homotopic maps of spaces, f and 9 are homotopic maps of spec­
tra. We also note, for future reference, that 10.8 can often be applied to 
a spectrum which is only a connective cover of its K(I)-localization. For 
example, in the application just cited the assumption "X, Y K(I)-local" 
can be replaced "X --+ LK(I)X is a (-I)-connected cover, and similarly for 
Y" , or even by a slightly weaker assumption. 

Remark. Theorem 10.8 holds for all LK(n), 0 < n < 00 [Kuhn]. 
Bousfield's theorem provides a systematic way of analyzing the stable 

homotopy category "locally". The most natural thing to do is of course to 
localize at the "primes." That is, we should consider LK(n) or in view of 
9.6 we might consider Ln == LE(n), where E(n) = K(O)V K(I) V ... V K(n). 
The functors Ln assemble into the chromatic or harmonic tower: 
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Recall here that LoX = XQ and LIX = LKUX, The fibre FnX of LnX is 
"monochromatic": K(m).FnX = 0 for m '" nand K(n).FnX = K(n).X. 
In picturesque terms, one may say that the harmonic tower attempts to 
resolve the homotopy-type of X into various "wavelengths"; the nth-stage 
corresponds in some sense to the vn-periodic homotopy discussed in §8, 
9. How much information is lost? Let E(oo) = VO<n<oo K(n) and let 
LooX = LE(oo)X, Call X harmonic if X is E(oo)-local and dissonant if 
X is E (00 )-acyclic. Thus X is dissonant if and only if its harmonic tower 
is trivial: LnX '" * for all n, and hence X is completely invisible to the 
chromatic theory. At the opposite extreme, it is still unknown whether 
or not the natural map f : X -> holim LnX is an equivalence when X 

n . 

is harmonic. Certainly holim LnX is harmonic; the problem is to show 
n 

f. is an isomorphism on K(n). for all n < 00. This is true for X finite 
(Hopkins-Ravenel). 

10.10. Examples of harmonic spectra 

(a) [Ravenel 1984] BP is harmonic. Any finite spectrum is harmonic. 
Any connective spectrum X with H. (X, Z) torsion-free and of finite 
type over Z(p) is harmonic. More generally any connective spectrum 
of finite type with homdimBP. (BP.X) < 00 is harmonic. 

(b) [Hopkins-Ravenel] Any suspension spectrum is harmonic. 
(c) any E(n)-local spectrum-e.g., a KU-Iocal spectrum-is automatically 

harmonic. 

10.11. Examples of dissonant spectra 

(a) [Ravenel 1984] any spectrum X such that 7r.X is torsion and bound­
ed above is dissonant. This is true for X = HZlp by 8.6d. Hence it 
is true for finite p-torsion Postnikov towers, and the claim follows by 
a limit argument. Note also that if 0 < n < 00, K(n).X = 0 for any 
spectrum X which is bounded above, and hence K(n). is invariant 
under passage to connective covers (0 < n < 00). 

(b) (Hopkins) Here is an example very different from (a). Let X 2 denote 
the cofibre of a VI -selfmap of the Moore spectrum. By 9.lD, X 2 has 
a v2-selfmap h. Let X3 denote the cofibre. Continuing in this 
way, we obtain a sequence of finite spectra X 2 ~ X3 ~ X 4 ••• with 
K(m).Xn = 0 for m < n. Then X = limXn is a dissonant spectrum, 

--+ 

and is nontrivial since H.(X; Zip) '" o. 
As these examples indicate, the class of harmonic spectra is very broad 

and includes many familiar spectra. The class of dissonant spectra seems 
to be somewhat more restricted. We conclude with one more example that 
is helpful for understanding §11, 12. 



ON THE LICHTENBAUM-QUILLEN CONJECTURES 225 

10.12. Example. Consider the natural map bu ---+ KU. Any ring spec­
trum is local with respect to itself [Ravenel 1984]. Hence KU = L 1KU 
and KU is harmonic by 1O.lOd. However bu is certainly not harmonic. For 
if it was, it would follow from 1O.l1a that bu' ---+ KU' is an equivalence, 
which is absurd. (If a spectrum is both harmonic and bounded above, 
it must be a wedge of rational Eilenberg-Maclane spectra). Instead, bu 
is "semi-harmonic": any map from a sufficiently highly-connected E(oo)­
acyclic spectrum W into bu is trivial ((-3)-connected will do in this case). 

11. REFORMULATION OF THE LICHTENBAUM-QUILLEN CONJECTURES, 

AND SOME CONSEQUENCES 

In this section we explain an observation of [Waldhausen 1984] that al­
lows one to reformulate the Lichtenbaum-Quillen conjectures in terms of 
Bousfield localization. We then explore some of the consequences of this 
conjecture for algebraic K-theory spectra. We continue to assume all spec­
tra are localized at a fixed prime i. 

Let l be an odd prime and let /3 E K2(Z[~£]; Zll) denote the Bott class. 
Recall that /3£-1 is an element of K 2l- 2(Z; Zll), also referred to as a "Bott 
class". We also have an "Adams class" A E K2l-2(Z; Zll), obtained by 
smashing the unit map SO ---+ KZ with MZll and pushing forward the 
Adams class A E 7r2l_2MZll (§8). 

11.1. Theorem. [Snaith 1984] /3£-1 = eA, where e E Zil is nonzero 
(lodd). 

Proof sketch. The element /3 arises from a map of ring spectra 
~oo BZll+ ---+ KZ[~£]. This map fits into a commutative diagram 

J 

~oo BZll+ -----=:J_
o 

-t) KZ[~£] 

t- E1 71 
SO ---;-----+) KZ 

where i is the unit map, t is the classical transfer, e is the augmentation 
and 7 is the K-theory transfer (§2). The theorem follows easily by applying 
7r. ( , Zll) to the diagram. The diagram itself is not hard to establish; see 
[Snaith 1984] or the slight reworking of Snaith's proof in [Mitchell 1990b]. 
o 

11.2. Remark. The relation /3£-1 = eA does not hold in 7r.BZl+ 1\ MZll. 
One has only that /3£ = c/3A. 
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11.3. Remark. The case f. = 2 has been worked out by Zaldivar (unpub­
lished). 

It follows that Bott-periodic K-theory, f3- 1K.{ ,ZIP'), is the same 
as Adams-periodic K-theory A-I K.{ ; Z/f.V). In view of Theorem 10.4, 
Thomason's theorem can then be restated in terms of the functor L1: Bous­
field localization with respect to ordinary complex K-theory. 

11.4. Theorem. Let X be a nice scheme. If f. = 2 assume A E X. 
Then LQCI holds for L 1KX: there is a descent spectral sequences as in 
5.12, converging to 7rn {L1KX 1\ MZ/f.V) for n» O. 

Hence, following [Waldhausen 1984] we may reformulate the Lichtenbaum­
Quillen conjectures as follows: 

11.5. Conjecture. (LQCIII) If X is a nice scheme, the map KX ---+ 

L 1KX is an isomorphism on trn for n» O. (n 2': 1 if X = Spec OF)' 

11.6. Remark. Recall that K X is a connective spectrum. On the other 
hand a KU-Iocal spectrum can't be connective unless it is a wedge of ra­
tional Eilenberg-Maclane spectra; this follows from 10.4. Hence we must 
at least take n 2': 0 in 11.5. In general, however, n 2': 0 is not enough, as 
explained in §5. 

11.7. Remark. Note we have not assumed A E X when f. = 2 in 11.5. 
Thomason's theorem requires this assumption at present, but one hopes it 
could be eliminated. 

Conjecture 11.5 has some interesting stable homotopy-theoretic corollar­
ies. In order to clearly separate fact from fantasy, we will label these as 
"consequences" to indicate that we have assumed 11.5. However we will 
see in §12 that a few of these consequences are now theorems. 

11.S. Consequence. Let i : SO ---+ KZ and i' : SO ---+ j denote the unit 
maps. Then there is a unique factorization r.p: 

j 

Furthermore, r.p is a map of ring spectra. 
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Proof. The fibre of i' is KU -acyclic and connective, so the existence and 
uniqueness of rp follows at once from 11.5. Now consider the diagram 

j 1\ j rp 1\ rp I KZ 1\ KZ 

1 1 
Clearly it commutes after precomposition with i' 1\ i' : SO 1\ SO -t j 1\ j. 
But the fibre of i' 1\ i' is again KU -acyclic and connective, so the diagram 
commutes by 11.5 and rp is a map of ring spectra. 

Since any algebraic K-theory spectrum is a module spectrum over KZ, 
we conclude: 

11.9. Consequence. Let X be an arbitrary ring or scheme. Then K X is 
a module spectrum over j. 

11.10. Consequence. Let X be an arbitrary ring or scheme. Then the 
higher Morava K-theories of KX vanish: K(n)*KX = 0, n ;::: 2. In fact, 
the higher vn-periodic homotopy groups vanish: if Y is any finite spectrum 
of type n (§9), n;::: 2, with vn-selfmap f, f- 1 [y, KX]* = o. 

Proof. The second statement trivially implies the first. Since f- 1 [Y,j] = 0 
for Y as in 11.10, it follows from 11.9 that f- 1 [Y,KX] = o. Alternatively 
both statements can be deduced directly from 11.5. 0 

There are a number of further consequences along these lines. We con­
clude with two more examples: 

11.11. Consequence. Let P E Spec OF be a retractible prime (§3). 
Then KOF--+ K(OF/pr is a retraction and hence K(OF/pr is a wedge 
summand of KO];. 

Proof. This is true on the space level (Le. after applying nOO ) by the Harris­
Segal theorem 3.4. Assuming 11.5, we can apply Bousfield's theorem (10.8 
and Remark 10.9) to deduce that it is true on the spectrum level. 0 

11.12. Consequence. Let A be a finite abelian group. Then for n ;::: 2, 
[K(A, n), BGLOt] = O. 0 

This follows from the fact that K(l)*K(A, n) = 0, n ;::: 2. Of course 
11.12 is false for n = 1-consider a retractible prime. However if we consider 
infinite loop maps, 11.12 holds for n ;::: 1 by 1O.11a. The case n = 1 will be 
discussed further in §12. 
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12. SOME RECENT RESULTS 

We have seen (§11) that if the Lichtenbaum-Quillen conjectures are true, 

the unit map SO ~ K7l, factors through j, the "image of J" spectrum. The 
author has recently shown that the zero-th space analogue of this assertion 
holds: 

12.1. Theorem. 
diagram 

[Mitchell 1990a] There is a homotopy commutative 

QoSo nO"i) BGL7l,+ 

nO"i'l / 

ImJ 

12.2. Remark. If our fixed prime l is odd, we can take 1m J = BGLFt, 
where p generates 7l,; as usual. When l = 2, we can take 1m J = BNOFj 
(see [Fiedorowicz-Priddy]). Here NOn F3 is the subgroup of the orthogonal 
group OnF 3 consisting of matrices A such that det A = spinor norm A, as 
every school child knows. We remind the reader that at 2, 7r. 1m J consists 
of the classical "Image of J" and the Adams J.l-family. Note also that 1m J 
cannot be replaced with BGLFj in 12.1, as this would contradict 3.1b. 

Write "coker J" for the kernel of the map (nO" i'). : 7r! - 7r. 1m J. 

12.3. Corollary. i. : 7r! - K.7l, annihilates coker J. 

Combined with Theorem 3.1, this completely determines the map i •. 
The proof of 12.1 will be discussed later. First we show how to deduce a 

version of "Consequence 11.10." 

12.4. Theorem. [Mitchell 1990a]. Let X be an arbitrary ring or scheme. 
Then for n 2: 2, K(n).KX = O. 

The proof proceeds as follows: since K X is a module spectrum over K7l" 
we reduce at once to the case K X = K7l,. Fix n 2: 2. It is sufficient to 
show that there is a finite spectrum X of type n such that 1-1 [X,K7l,]., 
the vn-periodic homotopy of K7l, with coefficients in X, vanishes (see §9). 
If we take X to be a ring spectrum as in Remark 9.11, it is in fact sufficient 
to show that the unit map SO _ K7l, induces the zero map on 1-1 [X, -] •. 
Now it is easy to see that the functor 1-1 [X, -]. is defined on spaces as well 
as on spectra, and that for any spectrum E, 1-1 [X, E] = 1- 1 [X, noo E]. 
Since the spectrum j is the connective cover of its KU -localization Ld = J, 
we have 1-1 [X, 1m Jj = 0 and the theorem follows from 12.1. 
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Remarks. 

(I) It is not hard to show that for all primes and all n, K{n) .. of the 
space BGLZ+ is nonzero-indeed, infinite dimensional over K{n) ... 
In general the relationship between the value of a homology theory 
on a spectrum and on the associated infinite loop space is quite 
complicated. The Hopkins-Smith complexes therefore playa crucial 
role, allowing one to replace homology by homotopy. 

(2) The proof shows that the higher vn-periodic homotopy vanishes, at 
least for some choice of the spectrum K X. At one time it was 
thought that this was equivalent to the vanishing of the correspond­
ing Morava K-theories. However Ravenel has recently announced a 
counterexample to his ''telescope conjecture." This means that the 
vanishing of vn-periodic homotopy is in fact a stronger condition 
than 12.4. 

12.5. Corollary. For all n ~ 1, L1KX ~ LnKX ~ LooKX. 

Proof. For any spectrum E, LnE is harmonic and K{n) .. L1E = 0 for n ~ 2. 
Hence the natural maps LooKX -+ LnKX -+ L1KX are isomorphisms on 
K{n) .. for all n < 00, and the result follows. 0 

12.6. Corollary. Let X be a nice scheme, and if l = 2 assume A EX. 
Then the Lichtenbaum-Quillen conjectures hold for the harmonic local­
ization LooKX: there is a descent spectral sequence 5.12 converging to 
'Trq_p{LooKX; Z/lV), q - p» o. 

Proof. This is immediate from 12.5 and Thomason's theorem 7.10. (If the 
assumption for l = 2 could be eliminated from Thomason's theorem, it 
could be eliminated here too.) 

Remark. This does not reduce the Lichtenbaum-Quillen conjectures to 
showing that KX is harmonic. On the contrary, 12.5 shows that KX 
is definitely not harmonic: any connective harmonic spectrum satisfying 
12.5 is a wedge of rational Eilenberg-Maclane spectra; compare example 
10.12. 

The significance of 12.6 is best appreciated by considering the fibre F 
of the map KX -+ LIKX. Note that F is a torsion spectrum. Clearly 
LQCIII 11.5 is equivalent to the assertion that F is bounded above. This 
would imply that F is dissonant (§9). Since K{n) .. F is automatically zero 
for n = 0,1, and K{n) .. L1KX is zero for n ~ 2, Theorem 12.4 says precisely 
that F is dissonant. However this does not, alas, imply conversely that F 
is bounded above. For example, all the results (but not the conjectures!) of 
this paper are consistent with the possibility that a spectrum of the form 
V 'En HZ/lis a retract of F. Still, Theorem 12.4 places severe restrictions 
on the nature of F. Further interpretation of this theorem will be left 
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to the reader. True believers will interpret it as strong evidence for the 
Lichtenbaum-Quillen conjectures; heretics may view it as suggesting the 
presence of Eilenberg-Maclane spectra in the fibre P; wild-eyed fanatics 
may even entertain the possibility that the exotic spectra of Example 1O.l1b 
have a role to play in algebraic K-theory. 

Combining the results above with the theorem of Dwyer and Friedlander 
7.6 allows one to explicitly identify the completed harmonic localization 
L:;J<R == (LooKR)' for certain R. For example: 

12.7. Theorem. [Mitchell 1990b] Let f be an odd regular prime. Then 

As an amusing corollary we have that for any harmonic spectrum E, 
E'(KZ[jD ~ E'(J V EKO). In particular we could take E = BP. How­
ever we should point out, lest any of our younger readers be misled into 
fantasies involving the Adams-Novikov spectral sequence, that the BP­
cohomology of a spectrum does not determine its BP-homology. For ex­
ample, Bp· HZ/f == 0 (since BP is harmonic and HZ/f is dissonant), but 
BP.HZ/f = Z/f[tb t2, .. . ]. 

Before discussing the proof of 12.1 we digress to consider a general ques­
tion concerning the algebraic K -theory of classifying spaces of finite groups. 
To motivate the question, we recall the classical theorem of Atiyah: 

12.8. Theorem. [Atiyah 1961] Let G be a finite group. Then there is a 

natural ring isomorphism (ReG) A ~ KUO (BG +) 
9!! 

Here (ReG)' is the completion of the complex representation ring at 
the augmentation ideal I. Recall the definition of 0: a representation of 
dimension n determines a conjugacy class of homomorphisms G -+ U(n) 
and hence a homotopy class of maps BG -+ BU(n). This leads easily to 

a ring homomorphism ReG ~[BG+, BU x Z] = KUo BG+, which factors 
through the I -adic completion for general reasons. 

We wish to consider an analogous construction with topological K-theory 
KU replaced by algebraic K-theory KA, A a commutative ring. The rep­
resentation ring RAG is the Grothendieck group of finitely-generated A­
projective AG-modules. A representation of rank n determines a conju­
gacy class of homomorphisms G -+ AutA P and hence a homotopy class 
of maps BG -+ B Aut P. Again, this leads to a ring homomorphism 

RAG~[BG+,BGLA+ x KoA] = KAoBG+. However in this setting the 
construction of 0 is not so easy; the problem is that short exact sequences 
of A-projective AG-modules need not split. Nevertheless the map 0 exists 
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by a theorem of Quillen (see [Hiller]). We also note that if the order of Gis 
a unit in A, as it will be in our applications, the construction of () is an easy 
exercise (use the group completion method, §2). Again, () factors through 
the I-adic completion, for the same general reasons. Here I is the kernel of 
the natural map RAG - KoA. Thus we have: 

12.9. Problem. Study the map ()A: (RAGt _ KAoBG+. 

For example, when A is a finite field, ()A is an isomorphism by a theorem 
of [Rector]. In general, this is too much to expect, even for rings of S­
integers. However one can formulate various conjectures. Here we will 
confine ourselves to a special case: 

12.10. Conjecture. Suppose G is a finite i-group and A = Z[H Then 
the map ()A of 12.9 is an isomorphism. 

An etale K-theory argument, due to Bill Dwyer, shows ()A is split injective. 
The same argument shows that 12.10 follows from the Lichtenbaum-Quillen 
conjectures. Combining all this with 12.6, we conclude that 12.10 holds 
after harmonic localization, at least if i is odd. 

What is the representation ring in 12.1O? In general, if A is a Dedekind 
domain, define the class group Ci(AG) to be the kernel of the natural map 
RAG~RFG, where F is the quotient field. 

12.11. Theorem. (cf. [Curtis-Reiner]) 

(a) The map <p is surjective. 
(b) If A = S-lOF, CiA is finite. 

Here it is important to note that even when G is a finite i-group and 
A = Z[iJ, the group CiA can have nontrivial i-torsion. In order to give the 
reader a better feeling for these groups, we mention the following result, in 
which we take i odd for simplicity: 

12.12. Theorem. Let G be a finite i-group, i odd, and let VI, ... , Vm de­
note the simple QG-modules. Let Di = En<iQa Vi denote the corresponding 
division algebras. Then 

(a) Each Di is in fact a cyclotomic field Q(elk) for some k (depending 
on i). 

(b) The group ring Z[~]G is isomorphic to II~l Mn;Oi, where ni = 
dimD; Vi and Oi is the ring of integers in D i • 

m 

(c) Ci(Z[~]G) ~ €a CiOi . 
i=l 
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Note (c) follows from (b) and Morita equivalence. A discussion of the 
proof can be found in [Mitchell 1990a]. 

12.13. Remark. By a theorem of Iwasawa, the i-component of Ci(Z[elk]) 
is trivial if and only if the i-component of Ci[Z[el]) is trivial. Hence, by 
12.12c, the i-component of Ci(Zlt]G) is trivial if and only if i is regular. 

We conclude our digression by recalling another analog of Atiyah's the­
orem 12.8: the Segal conjecture. Instead of considering representations 
of G we consider finite G-sets. Let AG denote the Burnside ring-that is, 
the "Grothendieck group" of finite G-sets, with addition and multiplica­
tion given by disjoint union and cartesian product, respectively. A G-set S 
of cardinality n determines a conjugacy class of homomorphisms G -t En 
and hence a homotopy class of maps BG -t BEn. As before, this leads to 

a ring homomorphism AG ~ [BG +, BE~ x Z] (compare the discussion of 
group completion in §2). By the Barratt-Priddy-Quillen theorem [Priddy]' 
BE~ x Z = QSo. Hence the target of'IjJ is actually the stable cohomotopy 
ring 7r~ (BG +). Again the map 'IjJ factors through completion at the augmen­
tation ideal I, and the Segal conjecture asserts that 'IV: (AGt -t 7r~(BG+) 
is an isomorphism. This conjecture is now a theorem, due to [Carlsson 
1984]. 

We now turn to the proof of 12.1. Thus we need to study the diagram 
(localized at i) 

(12.14) 

Here f and r are induced by inclusion of En in GLn , and correspond to 
nOOi and nOOi' via the Barratt-Priddy-Quillen theorem and Remark 12.2, 
respectively. We will use the following device, which is well-known to those 
who know it well: 

12.15. Lemma. Let Gn denote the i-Sylow subgroup oEEn. Let Y be any 
infinite loop space. Then a map h from BE~ to Y is uniquely determined 

by the composites BGn -t BEn -t BE~ ~ Y. A similar result holds with 
BE~ replaced by BGLFt (q prime to i). 

Think of Gn as an arbitrary i-group G, with BGn -t BEn induced by 
some G-set. The lemma allows one to translate algebraic results about 
Burnside rings and representation rings into results about maps of spaces. 
For example, consider the following algebraic fact: 
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12.16. Theorem. [Segal 1972] Let G be a finite i-group. Then the natural 
map AG -+ ilQG is surjective. 

12.17a. Corollary. If i is odd and p generates ('1./i2) * , the natural map 
AG -+ RFp G is surjective. 

The point of 12.17a is that for such i, p, the rational and mod p repre­
sentation rings of G coincide. The case i = 2 is more complicated, as usual, 
and hence from now on we will assume, for simplicity, that i is odd. Then 
12.17a and a trick with inverse limits yields: 

12.17h. Theorem. (May-Tornehave; see [May 1977]) If i is odd and p 
generates ('1./i2)*, the map r: BEt, -+ BGLFt is a homotopy retraction. 
Thus 1m J is a retract of QoSo. 

Remark. If i = 2 the first statement is false for all p, but 1m J is still a 
retract of QoSo (May-Tornehave, loc.cit.). 

Now consider the diagram 12.14. As a first step one can prove the alge­
braic analogue: 

12.18. Theorem. Let i, p be as in 12.17, G a finite i-group. Then there 
is a factorization g' in the diagram 

(i) 

In fact for any prime i there is an factorization 

( ii) 

ilQG 

Here diagram (i) follows from (ii) since RFp G = RQG. Note (ii) says 
precisely that if a virtual G-set is zero as a virtual permutation module 
over Q, it must already be zero as a virtual permutation module over '1.[1]' 
If the map Rz[ t J G ~ ilQG is an isomorphism, this is trivially true. But we 

have seen that Ker r.p == Cl('1.[l]G) can be nonzero, even after localization 
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at i. Hence one must show that the image of f' does not intersect the class 
group. This is done using an explicit construction of integral lattices in the 
simple IQG-modules; the construction is based on the fact that the simple 
modules are all induced modules of a very special kind. 

The proof of 12.1 now proceeds as follows. First one observes that there 
the analogous diagram with BGLZ+ replaced by BU does exist: 

BEt, )BU 

rl 
/" 

/ 

(12.19) / 
/h 

, / 

BGLl; 

Hence h is in fact the Brauer lift (§2). (Alternatively one can cite a theorem 
of Snaith which asserts that r· is an isomorphism on K-theory). Next, note 
that 12.17 implies that 9 is unique if it exists: let s be a right inverse of 
r; we must take 9 = fs and show f = fsr. Using the principle of 12.15 
we reduce to showing that if G is a finite i-group and a : G -+ En a 
homomorphism, fa = fsra, where a is the induced map BG -+ BEt,. 
Ignore the completions and think of a and sra as elements of the Burnside 
ring AG, and think of fa and fsra as elements of .Rz[lP, By 12.19 a and 
sra become equal in ReG. Hence they are equal in IlQG, since IlQG -+ 

ReG is injective. By 12.18{ii) they are equal in .Rz[lP-i.e. fa = fsra, 
and the proof is complete. 

Theorem 12.1 admits a natural generalization. 

12.20. Theorem. [Dwyer-Friedlander-Mitchell] Let F be a number field, 
J.L the group oU-power roots of unity in F. Let lq = OFjP be a retractible 
residue field of OF (§3). Then there is a factorization g: 

BGLlt 

Remarks. 

(a) As with 12.1, one can show (with more difficulty in this case) that the 
Lichtenbaum-Quillen conjectures imply the spectrum-level version of 
12.20. 

(b) In particular, the natural map 7r! (B J.L+) -+ K. OF factors through 
K.lq • 

(c) QoBJ.L is equivalent to B{Eoo J J.L)+ U = wreath product). The 
proof is then very similar to that of 12.1, with AG replaced by the 
"two-sided" Burnside ring A(G,J.L) of J.L-free {G x J.L)-sets. 
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13. CONCLUDING REMARKS 

The results of §12 have one very striking feature, which the reader has 
probably noticed: the proofs use very little in the way of explicit informa.­
tion about the space BGLZ+ or the spectrum KZ. Indeed this feature 
was essential, since very little is known. Clearly some deeper analysis will 
be required to work back from §12 to the Lichtenbaum-Quillen conjecture 
itself. Somehow, one has to come to grips with the actual construction of 
the K -theory spaces. There is only one immediately apparent way to get a 
concrete hold on BGLR+: via the cohomology of GLR. Virtually all of the 
explicit calculations (there aren't many) of higher K-theory to date ulti­
mately involve computing or at least analyzing H*GLR-Quillen's work on 
finite fields, Borel's rational computations, the Lee-Szczarba computation 
of K3Z, and Suslin's theorems on C and IR are the prime examples. 

From this point of view, then, the main problem in our setting is to 
compute the cohomology of GLnOF with Zii coefficients. Two remarks 
should be made at once. The first is that the case n = 00, which is the case 
we really need, is probably easier. For example, [Quillen 1971] shows that 
the map H*(GLOF; Zli) -+ H*(GLnOF; Zli) need not be onto. Coun­
terexamples arise whenever the class group of OF has torsion prime to 
i-e.g., Z[e23]' (Recall that there is nevertheless a "stable range;" see the 
proof of theorem 2.3). There are also counterexamples for OF = Z. And 
even the rational cohomology is still unknown for n < 00. The second 
remark is that it is once again advisable to invert i in the ring OF. For 
example, Quillen (loc.cit.) showed that the Krull dimension of H*r, ran 
S-arithmetic group, is the rank of a maximal elementary abelian i-subgroup 
(i-torus for short), and that the minimal primes of H*r correspond to con­
jugacy classes of maximal i-tori. As Quillen notes, it is much easier to 
analyze i-tori in GLnOF[lj than in GLnOF. A more dramatic illustration 
of the same principle arises from a conjecture of Dwyer and Friedlander. 
Here we will state only a special case: 

13.1. Conjecture. H*(GLnZ[!],Z/2) is detected on the diagonal matri­
ces, in the stable range. 

This is actually equivalent to LQCII 7.3 for KZ[!]. Note that nothing 
like 13.1 can be true for GLnZ itself: for if so it would follow that the 
natural map BGLZ -+ BO is an isomorphism on mod 2 cohomology! Note 
that the diagonal subgroup of GLnZ[!] is (Z/2)n xzn. 

When studying the cohomology of GLnOF[l], it is natural to start by 
eliminating the "easy" part coming from the cohomology of a residue field. 
Thus let P denote a retractible prime of OF[lj as in §3. We also in­
clude the case OF = '1., i = 2, P = (3), even though there are no 
retractible primes for Zm. Let r n = r n,'P denote the congruence sub­
group of GLnOF[lj consisting of matrices which are congruent to the 
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identity mod P. One can show that r n is i-torsion-free and has finite 
mod i cohomological dimension. Furthermore, one can deduce the fol­
lowing from the Charney-Suslin theorem 4.9c: Let F denote the fibre 
of the reduction map BGLOF[~]+ -+ BGLOF/P+. Then the natural 
map Br 00 -+ F is an isomorphism on H* ( , Z/ i). Hence we will re­
fer to F as the "congruence fibre." By the Harris-Segal theorem 3.4, 
H*(GLOF[~]) ~ H*(GLOF/P) ® H* F. (This is true even in the case 
of Z[~]; see [Arlettaz]). Thus, for example, LQCII for Z[iJ, i regular, is 
equivalent to the following: 

13.2. Conjecture. (compare 7.6) Let OF = Z and suppose i is regu­
lar. Let rn denote a congruence subgroup of GLnZ[~] as above. Then 
H*Broo ~ H*U/O. (Note: H*U/O ~ Z/i(Xl,X5,X9,oo.) if i is odd; 
H*U /0 ~ Z/i(Wl' W2, W3,"') if i = 2). 

This approach also leads to an interesting reformulation of Conjecture 
12.10. 

13.3. Conjecture. Let G be a finite i-group and let F denote the congru­
ence fibre for Z[~]. Then [BG+, F] is isomorphic to the i-torsion subgroup 
of the class group of Z[ijG. In particular [BG+, F] = 0 if i is regular. 

Note that in the regular case this conjecture follows at once from con­
jecture 7.3 in the form 7.8. In general Dwyer's argument (see 12.10) shows 
that (Ci(Z[~]G))(l) injects into [BG+, F]. In particular the latter group 
is nonzero whenever i is irregular. This is interesting since F is the group 
completion of IJ Br n, and there are no nontrivial homomorphisms G -+ r n' 

It also follows, using work of Lannes, that H* Br must contain elements 
of infinite height when i is irregular-this should be contrasted with 13.2. 
However in some sense this phenomenon is already "explained" by [Quillen 
1971], which detects "exotic" infinite height classes in H*GLn(Z[~l'~]) aris­
ing from "exotic" maximal i-tori: i.e., i-tori arising from a splitting of 
(Z[~l' ~])n into nontrivial rank one projective modules. It would be inter­
esting to make this explanation more explicit. 

We conclude with a very speculative remark. We believe that a proof of 
13.3 for elementary abelian i-groups would lead to a proof of the Lichtenbaum­
Quillen conjecture for Z[~]. Furthermore the proof of 13.3 should not 
require an explicit cohomology calculation; a qualitative analysis should 
suffice. For example, if i is regular, it is enough to show that H* F is nil. 
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