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Abstract. If n >~ 2 the Morava K-theory K(n), of an algebraic K-theory spectrum KX vanishes for any 
ring or scheme X. This is proved using the v n-complexes of Hopkins and Smith, together with the 
following theorem, The natural map f :  QoS~ + factors through the space Im J. In particular 
f , :  n~,~K,Z annihilates Coker J. These results are closely related to the Lichtenbaum-Quillen 
conjectures. 
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0. Introduction 

The K-groups of  a ring R are the homotopy groups of the space B G L R  + x Ko R, 

where B G L R  + is Quillen's plus construction. The machinery of May [18] or Segal 
[30] shows that B G L R  + • KoR is an infinite loop space, and so defines a spectrum 
KR. Similarly, any scheme X determines a spectrum KX whose homotopy groups are 
the K-groups of the category of locally free sheaves on X, by definition. There are 
also spectra GR (resp. GX)  obtained from the category of all finitely generated 
R-modules (resp. coherent sheaves). Algebraic K-theory thus enters the realm of 
stable homotopy theory. Over the last few years, there has been dramatic progress 
toward understanding stable homotopy theory from a global, or qualitative, point 
of view, due to Mike Hopkins, Ethan Devinatz and Jeff Smith [7, 13, 14]. It is natural 
to ask what implications these developments have for algebraic K-theory. For  
example, in [14] (see [13]) it is shown that the 'prime fields' of  the stable homotopy 
category are precisely the Morava K-theories K(n), for the various primes p; here 
m o d p  homology must be included as K ( ~ ) .  We recall here that K(0) is rational 
homology and K(1) is a summand of mod p complex K-theory. The 'higher' Morava 
K-theories (2 ~< n < ~ )  are somewhat more mysterious, although well understood 
algebraically. In any case, the work of Hopkins et al. increases the significance of 
the natural question: What happens when higher Morava K- theory meets higher 
algebraic K-theory? Answer: Nothing, the two theories are orthogonal. 

T H E O R E M  A. For all primes p and all n >1 2, K ( n ) , K Z  = O. 
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COROLLARY.  Let E be any module spectrum over K77. For example E = KR (R 

any ring), E = K X  (X  any scheme), or E = GX. Then for  all p and all n >1 2, 

K ( n ) , E  = O. 

Here we recall that the K-theory spectrum of  a commutative ring R is a 
commutative ring spectrum, and if X is a scheme over spec R then K X  is a module 
spectrum over KR [18, 19, 38]. The corollary then follows for trivial reasons. By 
definition, there is a map K T / A E ~ E  such that the composite 
S O A E i ̂  1 KZ A E ~ E, where i is the unit map of  the ring spectrum KZ, is the 
identity. In particular, E is a retract of  KZ A E, so if X A K Z  ~--* for some 
spectrum X, X A KZ A E = * and, hence, X A E ~ *. 

Theorem A is proved by showing the 'vn-periodic homotopy'  of  K Z  is zero, 
n ~> 2. This in turn is deduced from a theorem on the space level. Let Jp denote the 
'Image of  J '  space at the prime p (see Section 2 for the precise definition). 
Let Q S ~  f~=S n. There is a natural map r : Q S ~  x 77. We also have 

f :  Q S ~  BG~77 + x 77, obtained by applying the functor f~oo: (spect ra)~( inf in i te  
0 i loop spaces) to the unit map S ~ K77. 

T H E O R E M  B. After localization at p, there is a homotopy commutative diagram 

QS ~ ~ BGL21+ x 77 

]pX?_ 

COROLLARY.  There is a commutative diagram 

= f,  
~ ,  ----, K , Z  

r*l S 
~,(Jp x 77) 

Here re, (gp x 77) is precisely Im or, the image of  the classical J-homomorphism, if 
p is odd. I f  p = 2, re, Jp consists of  Im J together with the p-family constructed by 
Adams. The #-classes are elements of  order two in rC~k+ 1, rC~k+e, which must be 
regarded as honorary members of Im J. Combining the corollary with earlier 
results, the map f ,  is completely determined. Quillen [25] showed that the restric- 
tion o f f , "  rc,~ ~K~77 to Im J is split injective at odd primes or if n = 7 mod 8 and 
injective if n = 3 rood 8. He also showed that the #-family injects onto a direct 
summand and conjectured that f ,  is zero on the remaining Im J elements in degrees 
n = 0, 1 mod 8. This conjecture was proved by Waldhausen [36]. The only remain- 
ing question is whether f ,  is split injective on the 2-component 77/8 of  Im J when 
n = 3 m o d 8 .  But Lee and Szczarba [17] showed K377---7//48, and Browder [5] 
showed that the Z/16 propagates as a direct summand in Ksk+37/ for all k. In 
particular, f ,  does not split at 2 when n = 3 mod 8, but embeds Im J in a cyclic 
summand of  order 16. 
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Theorems A and B are closely related to one formulation of the Lichtenbaum- 
Quillen conjectures. Let M --- M Z / p  n denote a mod pn Moore spectrum. A remark- 
able theorem of Thomason [34] shows that for suitable schemes X, the localized 
mod p" K-groups [3- l x , K X  A M admit a descent spectral sequence, thereby estab- 
lishing the Lichtenbaum-Quillen conjectures for these localized groups. Here 
[3 e rc ,KX A M is the 'Bott element'. However, Thomason and also Waldhausen 
[37] observed that the mapping telescope [3-~KX A M can be identified with 
L~(KX A M)  - the Bousfield localization of KX ^ M with respect to ordinary 
complex K-theory. (This observation depends on work of Snaith, Miller, Bousfield, 
and others; it would require too lengthy a digression to explain the dependence 
here.) This allows one to reformulate the Lichtenbaum-Quillen conjectures as [37]: 

CONJECTURE C. The natural map j : K X  A M ---r L~ (KX A M )  induces an isomor- 

phism on 7"g n for n sufficiently large. 

Here we have suppressed the hypotheses on X needed for Thomason's theorem. 
There are also specific conjectures about just how large 'sufficiently large' is, but we 
will ignore this point as well. We view the conjecture as asserting that algebraic 
K-theory spectra should be 'local', in some weak sense, with respect to topological 
complex K-theory. For example, it follows easily from the work of QuiUen [23] and 
Suslin [32, 33] that the conjecture holds for X = Spec K, where K is a field which is 
either finite or separably closed. Now let F denote the fibre ofj .  The conjecture then 
asserts that rc,F is bounded above. But any torsion spectrum F bounded above is 
'dissonant' in the sense of Ravenel [26]; that is, K ( n ) , F = O  for all n < oo. It 
follows [see Section 3] from this that K ( n ) , K X = O  for all n >/2. Conversely, it 
follows from Theorem A that F is dissonant, but not that F is bounded above. 
Indeed, Theorem A involves no assumptions at all on X or R, or special consider- 
ations when p = 2, (compare [34]), so it is clearly a much cruder statement than 
Conjecture C. However, it does imply that the Lichtenbaum-Quillen conjectures 
hold for the 'harmonic' localization of KX (see Section 3). One can also show that 
Conjecture C for Spec 2~ implies Theorem B, provided that the 'sufficiently large' n 
can be taken sufficiently small. 

The proof of Theorem B can be briefly explained as follows, taking p odd for 
simplicity. We have Q o S ~  + (Barratt-Priddy-QuiUen) and Jp =BGLFq + 
(Quillen), where q is a prime which generates (~_/p2),. Thus, all three spaces in the 
diagram are defined in terms of classifying spaces of groups. In Section 1 we prove, 
in effect, an algebraic analogue of Theorem B. If  G is a p-group, there is a 
commutative diagram 

AG ' R~zG 

l /  
RFqG 

where AG is the Burnside ring and the solid arrows are the natural maps to the 
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representation rings. Actually in Section 1 we replace _R%G by RQG and RxG by 
R~tl/p1G. But with our hypotheses on p and q, the decomposition map R~G ~ RFqG 
is an isomorphism, and RzG ~ Rzr~/pjG is an isomorphism by a standard localiza- 
tion argument, since G is a p-group. So the effect is the same. In Section 2 we use 
some by now rather standard homotopy theoretic methods to reduce Theorem B to 
the algebraic analogue. 

In Section 3 we prove Theorem A. The key ingredients are Theorem B, and the 
existence of v,-self-maps of  finite spectra [ 12]. For  the convenience of  the reader, in 
Section 4 we provide short proofs of  two standard theorems on QS ~ and Im J 
which are needed for Theorem B. 

1. Permutation Representations of Finite p-Groups 

Throughout  this section G is a finite p-group, R = Z[ l/p], and Fn = Q[~p,], where 
~pn = e 2~ri/pn. Our main goal is to prove Theorem 1.12 on permutation representa- 
tions of  G over R. We begin by reviewing the representation theory of  G over Q, 
following Roquette [29]. 

The p-group G has normal rank one if  every normal Abelian subgroup is cyclic. 
The classification of  such groups is a rather lengthy but elementary exercise, or can 
be extracted from [9]; for the convenience of  the reader we provide a short proof  
of  Theorem 1.1 below in Section 5. 

(1.1) THEOREM.  I f  G has normal rank one, then either G is cyclic, or else p = 2 
and G is dihedral, semi-dihedral or quaternionic. [] 

Now let V be a simple QG-module, D = EndQc V. Regard V as a Q G -  D 
bimodule. V is primitive if there is no nontrivial splitting V = 1:1 O ) " "  @ Vk as 
D-modules such that G permutes the V e. We will call V strictly primitive if there is 

no such splitting as Q-modules. 

(1.2) THEOREM.  (a) G admits a faithful primitive representation over Q i f  and only 
i f  G has normal rank one. 

(b) G admits a faithful strictly primitive representation over Q if  and only i f  
G = ~/p. 

We sketch the proof, since we will need some of  the details. If  V is a primitive 
QG-module any normal Abelian subgroup, A must act isotypically on V. I f  V is 
faithful, this forces A cyclic. Conversely, suppose G has normal rank one. Then, 
using Theorem 1.1, one can easily check that G has a unique faithful irreducible 
representation over Q, and that V is primitive. V can be described explicitly in the 
various cases as follows: 

(1.3) G = Zip n. Then V = Fn, with G acting via any monomorphism G ~ F * .  
Clearly D = Fn. 

(1.4) G = Dn or Sn, where O n (resp.  a n )  is the dihedral (resp. semi-dihedral) 
group of  order 2 n + 1, n i> 3. Then Gal(Fn/Q) has three elements a of  order 
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2. The roots of  unity together with a generate a subgroup G = Z/2" >~ Z/2 
of  Aut~ V(V = F,), isomorphic to D,,  S~ or M,  depending on the choice of 

a. When G = D,  or S,,  V is primitive, with D = Fn ~. 
(1.5) G = Q=, where Qn is the generalized quaternion group of order 2 n+l. Let 

H-- - • .{1 ,  i,j, k} denote the quaternions. Let H, denote the subdivision 
algebra over Q given by Fn" 10Fn "j. Then H* contains Q, as the 
subgroup generated by ~n and j, and V = H,.  Clearly D = H,. 

Part (b) was observed by Tornehave in [35]. A proof  can be sketched as follows: 
By part (a)~ we can assume G has normal rank one. Then inspection of  the faithful 
irreducible V described above shows that it is induced from a proper subgroup 

unless G = Zip. [] 

Now recall that over C, any representation of G is induced from a one-dimen- 
sional representation. This generalizes to Q in two distinct ways: 

(1.6) THEOR EM.  Let V be a simple QG-module. Then 
(a) V = QG |  W, where (i) W is the faithful irreducible representation of a 

group K of normal rank one, pulled back along some surjeetive homomorphism H ~ K, 
and (ii) EndQ~ V = EndQK W 

(b) V = QG | W', where W' is the faithful irreducible representation of Z/p, 
pulled back along some surjeetive homomorphism H" ~ Y_/p. 

Remark. All of our modules are left modules except when stated otherwise. But 
of course the obvious analogue of  (1.6) for right modules holds as well. 

The proof  of  (a) is a simple induction on the order of G, see [29]. Note condition 
(ii) shows QG is quasisplit for p odd; i.e. the division rings EndQ~ V are all fields - 
in fact equal to F= for some n. When p = 2 we conclude that E n d ~  V is either 
F, ,  F~ as in (1.4), or H,.  Part (b) follows from (a) and Theorem 1.2b; cf. [35]. 

We next turn to the representation theory over R. For  each simple QG-module 
V, fix once and for all an isomorphism V ~ Q ~)Q/_/W as in (1.6a). Thus, W is the 
faithful irreducible representation of  a group K of normal rank one, regarded as an 
H-module via a fixed surjective homomorphism H ~ K. We can and do assume that 

W is the underlying Q-vector space of  a field F,  or division algebra H, as in 
(1.3)-(1.5). Thus, in all cases W is in fact a division algebra. Furthermore if 

Dv = End~GV, then either W = Dv or W is a field extension of  Dv, and the 
isomorphism is as QG - Dv bimodules. In each V we choose a (full) RG-lattice of 
the following type: first, choose a maximal R-order A in W (for background on 
maximal orders, see [28]). When W = F is a field, there is no choice; A = (gr[1/p], 

where (~F is the ring of  integers. If  W =  H, we take A =  (Qrn[t~(~Fn[t .j. Then 
F v = RG 0)Rn A is the desired lattice. Now let Ov be a maximal order in Dr. Thus, 
(-9 v = A  except in case (1.4), when (_9 v = A  ". Then corresponding to the Ar t in -  
Wedderburn decomposition QG ~ I-IM, iD i we have 

(1.7) THEOREM.  RG ~ HM, i(gi. 
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Proof. Note each Ai is a free right (9;-module. This is trivial except when (9i = A7 
as in (1.4). Then At is a projective module of  rank two over (9;. But one easily 
checks Ae is generated by 1 and Ce- as (9i-module, and hence is free. We conclude: 

(1.8) LEMMA. F~ is a free right (9;-module. 

It follows that there is a commutative diagram 
c~ 

~I~G ~ I ' I M n i D  i 

'T 
RG ~ IIMni(g; 

# 

where i and j are inclusions; ~ is an isomorphism, and/~ is injective. But RG is a 
maximal R-order in QG, since 1/IG I ~ R, and hence ~(RG) is a maximal R-order in 
HMn,D~ Since HMn~(ge is also a (maximal) R-order, /~ must be an isomor- 
phism. [] 

There are several Grothendieck groups associated to RG: GoRG, GRRG, KoRG, 
and G'oRG. These are defined using finitely generated R-modules which are in the 
first three cases respectively, arbitrary, R-free, and RG-projective. G'oRG is the 
'Green ring' defined using R-free RG-modules but only the RG-split exact se- 
quences. The relevant group for us is GRRG. However, it is worth noting that since 
G is a p-group and R is a principal ideal domain with p -  ~ ~ R, all four groups are 
isomorphic. We define the class group CIRG as the kernel of GRRG ~ GoQG. 

(1.9) COROLLARY.  There is a split exact sequence 

0 ~ G~ Cl((9;) ~ Gff(RG) ~ Go(QG) ~ 0 

where Cl(gi is the class group of  (9i. 
Proof. Since GR(RG) ~- �9 GoMni(9;, etc., we reduce to showing 

0 --* Cl(gi ~ GoMnt(gi --~ GoMniDi ~ 0 

is split exact. But this follows from Morita equivalence and the exact sequence 

0 ~ CI(9 i ~ GROg --~ GoD; -~ O. [] 

(1.10) Remarks. (a) The groups Cl(ge are finite Abel;an. In particular GoRG is 
finitely generated. Cl(9~ can be nonzero and in fact can have nontrivial p-compo- 
nent-for example, when G = Z/p, p an irregular prime. 

(b) It will be convenient to display the Morita equivalence used in (1.8) in an 
explicit form, without using the matrix algebra decomposition. Let V~ . . . . .  V~ be 
a complete set of  simple right QG-modules. Write each V~ in the form 
W~ | QG, as in (1.6)a, let F~ = A~ |  RG, and so on. Thus, if F ' =  Oi F~ and 
(9 = �9 (9;, F'  is an ( 9 -  RG bimodule, and M ~ F'  | M defines a Morita 
equivalence ~ o ' R G -  mod--* ( 9 -  mod. In particular, ~p induces the isomorphism 

Gff(RC) ~ e r e  
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Let AG denote the Burnside ring of G. There are natural ring homomorphisms 
AG ~ GoRG and AG ~ GoQG defined by sending a G-set S to the corresponding 

t/ 

permutation representation of G. As noted in [35], Theorem 1.6 (b) yields immedi- 
ately the theorem of  Segal: 

(1.11) THEOREM.  I f  G is a p-group, 7" AG ~GoQG is surjective. [] 

The main result of  this section is the following theorem. 

(1.12) THEOREM.  The kernel of  q : A G  ~G~(RG)  coincides with the kernel of 
y : AG ~ G0(QG). 

(1.13) LEMMA. Let M be a permutation module over RG. Then for all i, F~ | M 
is a free (g i-module. 

Proof. Let F~ =Ae @RKRG as in Remark 1.10b. It suffices to take M of the 
form RG @nz.iR. Then F~ @no M = A i  @RK(RG @m~R) as (9i-modules. Since 
RG @RI~ R is a permutation module over RK, it splits as a direct sum of  modules 
of  the form RK@RLR,  L ~_K. Hence, we are reduced to showing 
A; @nK(RK @nL R ) =  Ai @R/~R is (9i-free. But this is precisely the module of  
invariants A~, which is a direct summand of A; as we have inverted p. If  
(9;=A~,A~ =(9; or zero as (9~-module. The remaining case is when 
p = 2, A; = (gF,[ l/p] and (9~ = A7 for some n and suitable a of order 2 in Gal(F, /Q).  
Here L is acting via some homomorphism q~ to H = D, or S, in C >~ Gal(F, /Q),  
where C is the group of 2"th roots of unity. If go(L)n C ~ {1}, clearly A~ = 0. 
Otherwise go(L) = 7//2, generated by some x = Cka. But obviously A7 as (gg-module 
depends only on the conjugacy class of  x in H, so we can assume x = a or H = D, 
and k = 1. I f  x = a, A~: = (9;. If  H = D n and k = 1, one easily checks that (gx is the 
free (9;-module generated by 1 + r 

Proof of Theorem 1.11. For  each i, the exact sequence 

0 -+ Cl(9 i ~ G ff (9 i ~ G o D  i _~ 7 / - + 0  

has a canonical splitting, defined by sending the free D~-module of  rank one to the 
free (g/-module of  rank one. Thus if we let S ~ G0n(9 denote the subgroup generated 
by the free (9;-modules, ~ : G~(9 ~GoD maps S isomorphically onto GoD. Now 
consider the commutative diagram 

go 

Go RG - - ,  G (9 

l l 
GoQG ---* GoD 

go" 

where go and go' are induced by Morita equivalences as in Remark 1.9b. It is enough 
to show that if M is a permutation module over RG, then go[M] ~ S. But this is 
immediate from the lemma. [] 

In fact we will need a completed version of (1.12). The rings AG, G(RG, etc., all 
come equipped with augmentations e into 2~. We can then form the I-adic 
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completion, where ! = Ker  s. In the case of  AG, G a p-group,  it is known that the  
I-adic completion is just A G ^ =  Y_OI^p,  where ^ p  denotes p-adic completion. 
However, this is probably false for G~RG, so we adopt  the p-adic version as a 
definition. Let B be any commutat ive ring with augmentation s : B ~ 7/, I = Ker  s. 
Thus B = I @  7/ as groups (canonically) and we define B ^ = I^p  E)7/. Clearly B ^ 
is functorial for ring homomorphisms preserving the augmentation. I f  a : B ~ C is 

such a homomorphism we let ~ ^ : B ^ ~ C ^ be the induced homomorphism.  

(1.14) T H E O R E M .  The kernel of  ~ ^ " AG ^ ~ GRRG ^ coincides with the kernel o f  

7 ^ :AG ^ --+GoQG ^ . 
Proof  From (1.9), (1.11) and (1.12) we see that the commutative diagram 

GoR RG /7 

\ 
GoQG 

is abstractly isomorphic to a diagram of  Abelian groups of  the form 

A O B  

A @ A "  
\ 

A 

in which each map is the obvious projection. [] 

Remark. A remarkable theorem of  Tornehave [35] identifies the kernel of  7 

explicitly in terms of  virtual G-sets induced f rom three specified types of  small 
subgroups of  G, e.g., subgroups Zip x 7//p. This leads to another proof  of  (1.12): 

it is enough to check the three cases explicitly. 
We conclude this section with a well-known fact that will be needed in Section 

4. Let q be a prime, q r p. 

(1.15) T H E O R E M .  The natural homomorphism 0 : AG ~ Go ~:q G is surjective for all 

p-groups G i f  and only i f  p is odd and q generates the group of  units o f  Zip a. 

Of course there are infinitely many such q, by Dirichlet's theorem. 

Proof  Suppose p is odd and q generates (7//p2).. Since 0 commutes with 
induction, by a simple induction argument as in [29] we reduce to the case 
where G has a faithful strictly primitive representation over ~:q. In particular, G 
has normal  rank one and, hence, is cyclic since p odd; say G = 7//pk. With 
our hypotheses on G the simple 0:qG-modules have dimensions 1, 
( p -  1) . . . . .  p k - l ( p _  1), and only the simple of  highest dimension is faithful. 
But one easily checks that this module is an induced module - i.e., not strictly 
primitive - unless k = 1. So we reduce to the case G = 7//p where the conclusion 
is obvious. 



THE MORAVA K-THEORY OF ALGEBRAIC K-THEORY SPECTRA 615 

Conversely, suppose 0 is surjective for all p-groups G, p odd. Taking G = Y_/p and 
counting ranks we see that ~'q 7//p has one nontrivial simple module, which forces 
q a ~ 1 mod p for a < p - 1. Now take G = Z/p2. Then ~qG has a unique faithful 
simple module, of dimension p(p - 1), which forces pZXqp- 1 _ 1 (otherwise we get 
one of  dimension p - 1), and hence q generates (Z/p2) *. I f p  = 2, one easily checks 
that 0 is not onto for Z/4 if q = 1 mod 4, and is not onto for 7//8 when q = 3 mod 4. 

[] 

2. On the Unit Map QoS~ 
We begin by reviewing some basic facts about the plus construction and group 
completion. For  further details see [1] and the references cited there. The following 
context will suffice for our purposes: We are given a sequence of  groups 
{1 } = Go, GI . . . .  with injective homomorphisms Gm x Gn-, Gm + n that are strictly 
associative with G O as strict identity and commutative up to conjugation. The space 
MG =]ABGn then becomes a strictly associative and homotopy commutative 
monoid. The group completion of  MG is by definition f2B(MG), where B(MG) is 

i 
the classifying space. There is a canonical map MG ~f~B(MG), whose effect on 
homology is to localize H ,  MG by inverting the element x ~ noMG ~HoMG 
corresponding to BG~. Furthermore, if Go~ = lim Gn, where the direct limit is taken 
over the inclusions G, = G, x {1} ~_ G, • G1--',G,,+I, then i induces a map 
B G ~ f ~ o B ( M G  ) which is an isomorphism on homology. I f  Go~ has perfect 
commutator  subgroup, it follows that j factors through a homotopy equivalence 
BG + ~ f~oB(MG), where BG + is Quillen's plus construction. Finally, suppose the 
sequence Gn is also equipped with suitable homomorphisms Zn S am ~ Gn,, : that is, 
the category with objects the nonnegative integers and morphisms n ~ n given by G, 
is a permutative category. Then the machinery of  May or Segal shows f~(B(MG)) 
is in fact an infinite loop space, and so defines a spectrum G. It is worth 
emphasizing that this spectrum is always connective. For  an overview and refer- 
ences the reader should consult [1], and [8]. 

We have the following basic examples: (1) G, = E, .  Then fIBMG = QS ~ by the 
Barra t t -Pr iddy-Qui l len  theorem. The spectrum is S ~ (2) G, = GL, R, R a ring. 
The associated spectrum will be denoted KFR; its homotopy groups are the 
algebraic K-groups of  the category of  finitely generated free R-modules. It differs 
from KR only in ~z 0. (3) G, = NO, H: 3. Here NO, q:3 is the subgroup of  GL, F 3 
consisting of matrices A which are orthogonal (AAZ~=I) and such that 
det A = N(A), where N(A) is the spinor norm. The associated spectrum, localized at 
2, is the connective J spectrum for p = 2  (see [8]). (4) G, = U(n). Then 
f~BM(G) = BU x 7/and the spectrum is connective complex K-theory (May [20]). 
If  we instead take Gn = GLn C, with the classical topology, the result is the same up 
to homotopy equivalence. 

I f  X is a space then the set of  based homotopy classes [X+, M(G)] is an Abelian 
monoid, and we have a transformation IX+, M(G)] ~ [ X + ,  f2BM(G)] which is 
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natural in X and G. Since [X+, f~BM(G)] is an Abelian group, ~0 factors through the 
group completion (in the usual algebraic sense) [X+, M(G)]' of [X+, M(G)]. 
Consider the case X = BH, H a finite group. Let Rep(H, Gn) denote conjugacy 
classes of homomorphisms H ~ G n .  Then there is a natural map 
Rep(H, G,) ~ [BH+, BG,], which is in fact bijective if G, is discrete. Furthermore, 
Rep(H, G . )  = I f  Rep(H, Gn) is itself an Abelian monoid with a natural map to 
[BH+, M(G)]. We thus obtain a homomorphism Rep(H, G . ) '  ~ G~ ), natural 
in H and G. 

EXAMPLES. (1) Gn=Y.n. Then A H ~ I r ~  is the usual map from the 
Burnside ring to stable cohomotopy. 

(2) Gn =GLnR,  R=Y_[1/p]. Then Rep(H,G+) '  is precisely the Green ring 
G6(RH) mentioned in Section 1. As noted there, G'oRH _~ G ~ R H  when H is a 
p-group, so we get a homomorphism G g R H  ~ KR~ (In fact this homomor- 
phism can be defined for any finite H and commutative R, by appealing to a 
theorem of Quillen - see e.g. [12].) 

Remark. In all the examples we consider the permutative categories are bipermu- 
tative, the spectra are ring spectra, and the homomorphisms just defined are ring 
homomorphisms; cf. [20]. 

To prove Theorem B we need two theorems about the 'Image of J '  spaces. We 
define Jp in the following way: if p is odd, choose another prime q such that q 
generates the group of units of (y_/p2). Then Jp is the localization at p of BGL~ -+ . 
We define J2 to be the localization at 2 of BNO ~:f, where NO ~:3 is the group 
defined above. By Quillen's technique of Brauer lifting, Jp is known to be equivalent 
to the localized fibre of ~ / q  - -  1 : BU ~ BU (p odd) or ~b 3 - 1 : BO ~ B Spin (p = 2); 
see [23], [8]. Although this description would usually be the definition, and 
ultimately is of course essential to our program, we make no use of it in the present 
section. The following theorem and corollary is due in various guises to Sullivan 
and Tornehave [20]. For the convenience of the reader, we give a short proof for 
p odd in Section 4. 

(2.1) THEOREM. Let p, q be distinct primes. Then 

(a) The natural map BE + r + BGL ~q is a homotopy retraction at p i f  and only i f  
p is odd and q generates (7//p2) *. 

BEoo ~ BNO F~- is a homotopy retraction at 2. (b) The natural map § r 

(2.2) COROLLARY. BE + ~ Jp x F at p, where F is the fibre of  r. 

We now come to the main result of this section. It is equivalent to Theorem B, 
by the preceding discussion. 
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(2.3) T H E O R E M .  There is a map g : Jp - -*BGLZ + such that the diagram 

f 
B E  + ~ B G L Z  + 

# 

is homotopy commutative.  

Proof. We first note that such a factorization exists with B G L Z  + replaced by 
BU. That  is, let m:  B G L Z  + - * B G L C  t~ ~ - B U  denote the natural map. Then 

(2.4) LEMMA.  There is a map O" Jp --* B U  such that the diagram 

my 
BE+ ----* B U  

# 

is homotopy commutative.  

In fact 0 is unique and is given by the usual Brauer lift - see (4.3). Furthermore,  
by a theorem of Snaith [31] r* is, in fact, an isomorphism on K-theory. For  yet 

another proof  of  (2.4), one can use the fact that the unit map S ~  of  the 

connective j -spectrum is an isomorphism on K-theory and, hence, the diagram (2.4) 
exists on the spectrum level. However, all we need is the lemma as stated. 

Since r is a retraction up to homotopy,  there is a map  s : J p  ~ B N  + such that 

rs ~ 1. let e = sr. Then e 2 ~ e and clearly g exists if and only i f f  = f e ;  i.e., g = f s .  

To show that f = f e ,  we consider the following composite 

B i Bj k f + 
BGn ~ BEn ~ BZo~ ~ B E  + - -~  B G L Z  . 

Here k is the canonical map, j is the inclusion Z n c Z~  and i is the inclusion of  a 

p-Sylow subgroup Gn of Z n. Let h = k �9 Bj  �9 Bi.  Think o f f - f e  as an element of  

K Z ~  Then it is enough to show h * ( f - f e )  = 0, because: (i) k is a homology 
isomorphism, and hence a stable equivalence; (ii) K Z * ( B Z ~ ) - ,  ~ m  K Z + B Z n  is an 
isomorphism, and (iii) Bi is a stable retraction. Here (ii) follows from the Milnor 
sequence, provided lim ~ K Z * B Z ~  = O. But this is true for any cohomology theory, 
since B E  n_ 1 is stably a direct summand of BZ n, by a theorem of  Kahn  and Priddy 
[15]. (Alternatively, one can use a standard argument based on the fact that BZ ,  is 
a direct limit of  finite torsion complexes and K Z  has finite type; see 4.2.) Assertion 
(iii) follows from a standard transfer argument, since we have localized at p. To 

@ show h ( f - f e )  = 0 we will think of ~ = ~l - e) o h as an element of  ~~ and 
think of  f as a natural transformation ~~176 I t  is then sufficient to prove: 

(2.5) LEMMA.  Le t  G be a f ini te  p-group,  f l e  ~~ BG + . Then f , ( ( 1  - e)fl) = 0. 

Now Lemma 2.4 implies (mf ) , ( (1  - e ) ~ )  = 0. Lemma (2.5) then follows from 

(2.6) LEMMA.  Let  G be a f ini te  p-group,  ~ e ~ ~  I f  m , f , ~  = 0, then f , ~  = O. 
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By a theorem of Quillen [24], there is a fibre sequence 

BGL~:~ x Z ~BGL71  + ~ B F L Z  

Actually Quillen constructs a fibration which is a delooping of  (1.7); the connection 
between the two is provided by his 'Q = + '  theorem [10]. But Quillen also showed 
in [23] that B G L P  is acyclic and hence contractible at p. Hence B G L Z  + is a 
principal covering of  BGLZ[ 1/p] +, with group Z, and since G is a finite p-group we 
may therefore replace 7/ by R = 7/[1/p] in the proof  of  Lemma 1.6. Consider the 
commutative diagram 

AG , G~(RG) > Go(CG ) 

1 1 1 
~OBG, ---+ KRO(BG + ) ---+ K~ + 

f .  m .  

where the unlabelled maps were defined at the beginning of  this section. The groups 
in the top row are all augmented rings of the form B & Z and, hence, we can define 
the (essentially p-adic) completion B ^ as in Section 1. Now for any spectrum E of  
finite type, E*BG is a p-complete Abelian group. Hence, we obtain a commutative 
diagram 

d e 

AG ^ ~ G R R G "  ~ GoCG ^ 

al cl 
x~~ ~ KR~ ~ K~ 

f ,  m ,  

Furthermore c is an isomorphism by a theorem of  Atiyah [3], and a is an 
isomorphism by the affirmed Segal conjecture (Carlsson [6], Adams-Mi l l e r -  
Gunnawardena [2]). Hence, we may regard a as an element of  the completed 
Burnside ring, and ed(~) = 0. It remains to show d(~) = 0. Now e factors through 
the natural map G0(QG) ^ L~ GoCG ^. Since i : GoQG ~ GoCG is an injective homo- 
morphism of  finitely generated free Abelian groups, i ^ is also injective. By Theorem 
1.13, we conclude d(~) = 0. This proves Lemma 2.6, and completes the proof  of  the 
theorem. [] 

Remark. The use of  the Segal conjecture could probably be avoided, since it is 
0 not necessary in the proof  to consider an arbitrary ~ e lrsBG+, the relevant 

actually has a very special form. 

3. Vanishing of v.-Periodic Homotopy Groups of Algebraic 
K-Theory Spectra 

In this section we prove Theorem A. For  a general discussion of  the philosophy 
lurking behind this section, the reader should consult [13] and [27], as well as 
Ravenel's seminal paper [26]. We recall from [ 13] that a finite p-torsion spectrum 
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X has type n if K ( i ) , X  = 0 for i < n and K ( n ) , X  ~ O, where K(n) is the nth Morava 
K-theory. A self-map f :  X -~ X is a vn -map if f ,  is an isomorphism on K( i ) ,  for 
i = n and nilpotent for i ~ n. 

(3.1) THEOREM [21]. Finite spectra o f  type n exist for  all primes p and n >~ O. 

(3.2) THEOREM [13, 14]. Every finite spectrum X o f  type n admits a vn-map f .  

Furthermore, for  some k > O f  k is central in {X, X}.  I f  g is another such map, then 

f i = gj for  some i, j .  

Remark. Another construction of finite spectra of type n was given by Jeff Smith 
(still unpublished, unfortunately). Smith's construction is more flexible than that of 
the author [21], and yields spectra with better cohomological properties. Hopkins 
and Smith [13] use an Adams spectral sequence argument to construct v,-self maps 
on the Smith complexes. An ingenious argument applying Ravenel's nilpotence 
conjecture (as proved in [7]) then yields (3.2); see [13]. We note, however, that all 
we will need is the existence of a spectrum of type n with a self-map inducing an 
isomorphism on K(n) , .  In particular, we make no use of the nilpotence theorem 
itself. 

Let X be a finite spectrum with v,-map f To save space we will simply refer to 
the pair ( X , f )  as a v,-complex. Given a spectrum E, the v,-periodic homotopy of 
E with coefficients in X is defined to be f-1IX, E]. Here [X, E] is regarded as a fight 
[X,X]-module and f - I [ X , E ]  is the direct limit of the sequence of left [E, E]- 
modules 

f* 
[x, E] ~ [x, El --~ [x, E] ~ . . .  

Of course by (3.2) we can even assume fcent ra l  in [X, X], so that f - l [X ,  E] is also 
an [X, X]-module. Note f - l [X ,  E] is independent of f by (3.2), although it may well 
depend on X. 

Remark. For any finite spectrum X, and arbitrary spectrum Y, [X, Y ] , -  
~ ,  Y ^ DX, natural in X and Y. Here D X  is the Spanier-Whitehead dual of X. 
Explicitly, the naturality in Y means that for any map g:  Y ~ Z there is a 
commutative diagram 

g *  

[x, r ] ,  , [x, z ] .  

(g ̂  1), 
It ,  Y A D X  ~ zc,Z A D X  

The naturality in X implies in Particular that if f : X ~ X  is a self-map 
f*  : IX, Y], -~ [X, Y], corresponds to ( 1 ^ D r ) ,  : ~r, Y ^ D X  ~ zr, Y ^ DX. Hence, 
there is a natural isomorphism f - l [X ,  Y] ~ (1 ^ D f ) - l T r , E  ^ DX. 

(3.3) PROPOSITION. Suppose f - l [ X ,  E] = 0  for  some v,-complex ( X , f ) .  Then 
K ( n ) , E  = O. 

1 A D f  1 ^ D f  

Proof. The mapping telescope T of E ^ D X  --~ E ^ D X  --~ �9 �9 �9 is contractible 
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by assumption, so certainly K(n) ,T=O.  But (DX, Df)  is also a v,-complex, and 
K(n),(E ^ DX) ~-K(n),E | K(n),DX. Hence, (1 A D f ) ,  is an isomorphism 
on K(n), (E ^ DX), forcing K(n), E = O. [] 

Remark. The converse of  (3.3) is Ravenel's 'Telescope Conjecture', which is the 
only major conjecture from [26] which is still unsolved. If  true, it would imply that 
the condition f - l [X,  E] = 0 depends on p and n, and not on f or X. 

(3.4) PROPOSITION. Let E be a spectrum whose homotopy is bounded above, and 
let (X , f )  be a v,-complex, 1 <.n < oo. Then K(n) ,E = 0 = f - l [ X ,  E]. 

Proof. Obviously f - l [ X ,  E] = 0, since any map of  a highly connected spectrum 
into E is null by obstruction theory. Hence, K(n) ,E = 0 by (3.3); this also follows 
easily from the fact that K(n), of  any Eilenberg-Maclane spectrum is zero (n ~> 1) 
([26], 4.7 and 4.8). [] 

(3.5) COROLLARY.  Let E be any spectrum, E[k] its (k - 1)-connected cover for 
k e Z. Then the canonical map E[k] ~ E  is an isomorphism on K(n), and on 
f - l [X ,  --], 1 ~< n < oo. [] 

Let R be a finite associative ring spectrum of type n. An element g e 7r, R is a 
vn-element if  its Hurewicz image K(i) ,g e K( i ) ,R  is a unit for i = n and nilpotent 
otherwise. As in Theorem 3.2, replacing g by some gk if necessary we can assume 

is central, K(i) ,g = 0 for i # n, and g is essentially unique (see [13]). Clearly right 

(or left) multiplication r~ by g makes (R, r ,)  a v,-complex: explicitly, r~ is the 
composite 

m 

R ~ R A S  ~ RAR-----*R 
I R A ~  

where m is the multiplication. 

(3.6) PROPOSITION. For all p, n there exists a finite associative ring spectrum R 
and a v,-element ~ e ~ ,  R. 

Proof. Let (X , f )  be a v,-complex. Then X A DX is a finite associative ring 
spectrum of  type n. If  ~ corresponds to f under the canonical isomorphism 
IX, X],  ~ It, X A DX, then ~ is a v~-element. [] 

Next, observe that for any finite spectrum X with self map f : X ' X ~  
X(r >>. 1),f-~[X, Y],  makes perfectly good sense for a space Y: if Y is a spectrum, 
we regard f - l [ X ,  Y],  as periodically graded, with period r. But XkX~ E ~ X  ' for 
some k ~> 0, where X'  is a finite complex, and f is defined as a map of  spaces 
Z r x ' ~  X'. Hence, when Y is a space we can set 

g 

f - a [ x ,  Y]j = lim ([~JX', Y] -----+ [~r+Jx', Y] ~ [z2r+Jx', Y] ---~'..). 
Zig Zr + jg 

It is easy to check that this definition is independent of  the choice of  k, X', and g. 
Hence, we can define the Vn-periodic homotopy of  a space Y with coefficients in a 
finite spectrum X of  type n, denoted f - I [ X ,  Y],  as before. Now consider the adjoint 
functors Z ~176 : spaces ~ spectra and f ~  : spectra ~ spaces. Thus if Y is a space and E 
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is a spectrum we have a bijection [E~Y, E] = [Y, fP~ natural in Y and E. From 
the naturality we clearly have: 

(3.7) PROPOSITION. Let ( X , f )  be a vn-complex. Then for any spectrum E there is 
an isomorphism f - l [ X ,  E ] ,  ~ f - l [ X ,  ~ E ] ,  natural in E. [] 

Theorem A follows at once from Theorem B and: 

0 i (3.8) THEOREM.  Let E be any ring spectrum, with unit map S -~E. Suppose 
f ~  i : QoS~ ~ ~ E faetors through Jp. Then, for all n >1 2, there exists a v,-complex 
(X, f )  with f -  1[X, E] ,  = O. Hence, K(n) ,  E = 0 for all n >>. 2. 

(3.9) LEMMA. For any vn-complex ( X , f )  with n >>. 2, f - l [ X ,  Jp],  = 0. 
Proof. Fix ( X , f )  and call a spectrum or space F(X,f)-acyclic i f f - a [ x ,  F ] ,  = 0. 

The periodic K-theory spectrum KU is obviously ( X , f )  acyclic; indeed [X, KU] is 
already zero since X is KU-acyclic and KU, being a ring spectrum, is local with 
respect to itself ([26], 1.17). Hence, the fibre F of  ~ / q  - -  1 - KU ~ KU is (x,f)-acycl ic  
and, hence, by (3.7) so is ~ F = F ~ I  q, where F ~  q is the fibre of~b q -  I:BU--*BU. 
(Here q is a prime different from p.) By Quillen's theorem [23] F~k q ~-BGLI :+ . I f p  
is odd then Jp = BGLU:q + for suitable q, and the lemma is proved. Now suppose 
p = 2. Since KU and KO are Bousfield equivalent, K O , X  = 0 and, hence, 
[X, KO] -- 0 as before. Let bo (resp. b Spin) denote the ( - 1)-connected (resp. 3- 
connected) cover of KO. Then bo and b Spin are (X,f)-acyclic by (3.5). Hence, so 
is the fibre F of  ~b 3 - 1 : bo ~ b  Spin. But D.o~ is J2 (see [8]); hence J2 is also 
[X, f]-acyclic.  [] 

Proof of  Theorem 3.8. Let ( X , f )  be any vn-complex, n >12. By the lemma, 
( f l ~ i ) ,  is zero on f - l [ X ,  - ] .  Hence, (fP~i) ,  is zero on f - l [ X ,  - ]  and, hence, by 
(3.7) i ,  is zero on f - l [ X , - ] .  By our earlier remarks there is a commutative 
diagram 

i .  

[x, s ~ ,---~ IX, E l ,  

~,DX---- ,  ~ , E  A DX 
h. 

where h : D X  --* E A D X  is the Hurewicz map for E-homology. Reversing the roles 
of I" and DX, we conclude that for any v,-complex ( X , f ) , f - l h , : f - l r % X ~  
(1 A f ) - l g , E  A A" is zero. In other words, for each f l e  ~ , X  there is a k such that 
(1 A f ) k o  h(fl) = 0. Now take i ' =  R to be a ring spectrum as in (3.6), with f =  r~ 
for some v,-element e e g ,  R. Then E A R is itself a ring spectrum, and h is a map 
of  ring spectra. Furthermore, for any c~ e g , R ,  (1 A r~) , :  rc ,E A R- - * ~ ,E  A R 
coincides with right multiplication by h(e). Hence, for each fl in ~ , R ,  there is a k 
such that h(fl)h(e)k = 0. In particular, h(1)h(e)k = 0 for some k. But h(1) = 1, so for 
all 7 e r~,E A R we have 7h(e) k = 7 " (1 �9 h(e) k) = 0. This completes the proof. [] 

(3.10) COROLLARY.  I f  E is a module spectrum over KZ, and F is the fibre of  
j : E ~ L 1 E, F is dissonant. 
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Proof. L I E  is Bousfield localization with respect to E(1), the Adams summand of  
p-local complex K-theory. E(1) is Bousfield equivalent to K ( 0 ) v K ( 1 ) ,  so by 
definition j is an isomorphism on K(0) and K(1). Moreover, K(n) ,L~E = 0 for any 
E, n/> 2. This is immediate from (3.3), or one can show directly that it is true for 
S O and then use the fact that L~E = E ^ L~S ~ [26]. [] 

Remarks. (1) it also follows that the chromatic tower of  E ([26]) collapses to 
LIE; that is, L , E ~ L ~ E  is an equivalence for n > 1. However, this is still not 
sufficient for conjecture C of  the introduction. 

(2) Note that if conjecture C holds for a given E - i.e. j : E  ^ MZ/p'n--* 
L~(E ^ M Z / p  '~) induces an isomorphism on rck for k >> 0 - then K ( n ) , E  = 0 for 
n t> 2. For  the fibre F of  j is then a bounded above torsion spectrum and so is 
dissonant. As in (3.10), it follows that K(n ) , (E  ^ MY_/p") = 0 for n ~> 2and,  hence, 
K(n) ,  E = 0 for n/> 2. 

(3) I f  E is any spectrum with K(n) ,  E = 0 for n ~> 2, then its K-theory localization 
L1E coincides with its harmonic localization L~ E. Here L~ is Bousfield localization 
with respect to 11o ~ ,  < ~K(n). Taking E = KX,: where X is a scheme satisfying the 
hypotheses of Thomason's  theorem [34], it follows that the Lichtenbaum-Quil len 
conjectures hold for the p-completion of L~ KX. We plan to discuss the implica- 

tions of  this fact in a future paper. 
(4) In a very interesting paper [16], N. Kuhn has shown that the K(n)-localiza- 

tion functor factors through f2 ~ (generalizing an earlier result of  Bousfield for 
n = 1). This provides an alternative approach to Theorem 3.8. 

4. On B ~  + -~  B G L  I =+ 

The purpose of  this section is to provide short proofs of Theorems (4.1) and (4.3) 
below, which were crucial ingredients in Theorem B. No particular claim to 
originality is made; the point is to save the reader the trouble of having to extract 
these arguments from the literature. The method used in Theorem (4.1) appears, for 
example, in [11]. The first theorem is due in various guises to Sullivan and 
Tornehave. Fix primes p, q, p ~ q. 

B Z ~  ~ is a (4.1) THEOR EM.  After localization at p, the natural map + BGL~ :+ 
homotopy retraction i f  and only i f  p is odd and q generates (Z/p2) *. 

There is a standard argument for getting around not only 'lim 1 problems' but 
also 'lim ~ problems' in this context. It seems worthwhile to state one version of  the 
argument explicitly. 

(4.2) LEMMA. Let X be a CW-complex, X1 c X2 c )(3" �9 �9 a filtration by subcom- 

plexes o f  finite type with UXi = X. Suppose H k X  n is finite for all k, n. Then 

(a) I f  Y is any loop space o f  finite type, [X, Y] ~ lim~ Y] is an isomorphism. 
(b) I f  Z is another loop space of  finite type, and g: Y- -*Z  a map, then a map 

f :  X --* Z lifts to Y i f  and only if f ix .  lifts for all n. [] 
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Proof of  Theorem 4.1. Since BE + and BGLF + are infinite loop spaces, and 
BGL ~2q ~ BGL g:q+ is a stable equivalence, it is sufficient to produce a lifting 

8y~+ / / 1  
BGL ~-q > BGL IF+ 

By Lemma 4.2, it is enough to produce such a lifting on each BGL, ~2q separately. 
Let G be a p-Sylow subgroup of  GL, ~q. Since BGL, ~q is a stable retract of BG (at 
p), it is enough to lift the composite ~:BG--* BGL n ~2q ~ BGLUZq+. But we may 
regard e as an element of Go(~ZqG) (cf. Section 2). If  p is odd and q generates 
(~_/p2),, 0 : AG --*Go~:qG is onto by Theorem (1.15). Hence, if 0(fl) = e, fl defines an 
element of [BG, BZ~ + ] which is the desired lift (here e, fl lie in the augmentation 
ideals). 

For  the converse, suppose first p odd. Then n2,_1BGLg:q + = 7//(q n -  1), but 
rC2n_lBZ + is zero for n < p -  1 and is Zip for n = p -  1. The converse follows 
easily from this. If p = 2, then 1~sBGLYq+I>~2 but ~sBE + = 0 ,  preventing the 
existence of a retraction. [] 

Let 0 : Jp ~ BU denote the Brauer lift of  Quillen [23]. When p = 2, this means the 
~ B U .  composite BNO g:f ~ BGL IF+ o 

(4.3) THEOREM.  The following diagram is commutative: 

my 
BE + ' BU 

f O 

Proof. As in the proof  of (4.2), we reduce to checking that Or = m f  when 
restricted to BG, G a p-Sylow subgroup of Zn. On BE, ,  Or corresponds to the 
virtual character 2 defined as follows: Let Z' be the character of the standard 
representation i,. Each g e E,  can be written uniquely in the form g = hlh2, where 
hi has order qk and h2 has order prime to q. Then )~(g)= •'(h2). In particular, 
Z = g' on any subgroup of order prime to q, and the theorem follows. [] 

5. Appendix: Finite p-Groups of Normal Rank 1 

In this section we give a quick proof  of Theorem 1.1. We first consider non-Abelian 
extensions of the form 

(5.1) C,- - ,C- - ,  ~_/p. 

where C, is a cyclic group of  order pn, n >~ 2. Let x (resp. y) denote a fixed 
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generator of  Cn (resp. Z/p), and let tr denote the automorphism of  Cn induced by 
conjugation by y. There are the following obvious examples: 

(i) Mn(p), the split extension with a(x) = x a +P"-~ (n ~> 3 i f p  = 2), 
(ii) D,,  the dihedral group with p = 2 and a(x) = x - 1  (n t> 2), 

(iii) Sn, the semi-dihedral group with p = 2 and a(x) = x -  ~ + 2n -- I ( n  ~ 3) ,  

(iv) On, the quaternion group with p = 2 and a(x) = x-~ (n >~ 2). 

Here examples Dn and Sn are split but Q,, is not. 

(5.2) LEMMA. Let G be a non-Abelian p-group with a cyclic subgroup of order p" 
and index p. Then G is isomorphic to exactly one of the groups M,(p), Dn, Sn, or Qn. 

Proof. A subgroup of index p is necessarily normal and, hence, G has the form 
(5.1). The classification of  split extensions is trivial and is left to the reader, as is the 
proof  that the listed groups are nonisomorphic. The key point is to show that if the 
extension does not split, then p = 2, tr(x) = x -  ~ and G --- Qn. Let 37 ~ G denote a 
fixed lift of  y. The extension split if and only if a lift can be chosen with order p - 

i.e. the equation (a37) p = 1 has a solution with a ~ Cn. But (a37) p = N(a)fi p, where N 
is the norm homomorphism C, ~ C ,  given by N(a)= aa(a) . . ,  trP-l(a). Since 
N(C,) ~ Z ( G ) n C ,  = Z ( G )  and 37P is evidently central, we conclude that the 
extension will split provided N" C, ~ Z(G) is onto. If  p is odd, we can assume 
a(x) = x  I+p"-1 and, hence, Z(G)=C~_1 c C,. Then N ( x ) = x  p and, hence, N is 
onto as desired. Now let p = 2 .  I f  a ( x ) = x l + 2 " - l ,  then Z(G)=Cn_~ and 
N(x)=x2+2n 1, SO N is onto. I f  [7(x)-~-x -l+2n-l, then Z ( G ) = G ,  and 
N(x) 2. --1 = X , SO N is onto. However, if a(x) = x-~  then N is trivial. In this case 
Z(G) = C1. Since 37 2 is central, if the extension is nonsplit we must have 372 = x2, -  ~. 
But then the standard presentation of  Qn leads to a surjective homomorphism 
Qn ~ G, which is necessarily an isomorphism. 

The proof  of  the next lemma is left to the reader. Note the dihedral group of  
order eight must be excluded in (a). 

(5.3) LEMMA. (a) The groups Dn(n >~ 3), S~ and Qn have normal rank one. (b) The 
elements of order p in M~(p) form a subgroup isomorphic to 7//p • 7//p. Hence, 
M,(p) does not have normal rank one, and cannot even be a normal subgroup of a 
group of normal rank one. 

Proof of Theorem 1.1. Let G have normal rank one, and let A be a maximal 
normal Abelian subgroup. Then A "~ Cn for some n, with generator x. If  A = G we 
are done, so assume A ~ G. Then there exists a normal subgroup H in G, with 
A c H and [H : A] = p. By the maximality of  A, H is non-Abelian and in particular 
n ~> 2. I f p  is odd, H "~ Mn(p) by (5.2), which is a contradiction by (5.3b). Hence 
G is cyclic i f p  odd. I f p  = 2, it again follows from (5.2) and 5.3b that H -~ D,,  Sn, 
or Qn, and it remains to show H = G. Suppose H # G. Then there is a normal 
subgroup H '  in G, with H ~ H" and [ H " H ]  = 2; thus H'/A is either Z/4 or 
7//2 • 7//2. Let a ~ Aut A be induced by a generator of  H/A. If  H'/A is Z/4 then a 
is divisible by 2 in AutA,  This forces n ~>3 and t r (x)=x 1+2"-1. But then 
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H - Mn(2), contradicting (5.3b). Now suppose H' /A  ~- 7//2 x 7//2. Note that H '  
has exactly three subgroups H" of index 2 containing A (one of which is H) and 
these are permuted by the conjugation action of G. If the natural homomorphism 
~p:H' /A ~ Aut A is injective, clearly the three subgroups are nonisomorphic and 
hence normal in G. Moreover, one of them is isomorphic to Mn(2), contradicting 
5.3b. If ~p is not injective, then exactly one of the subgroups H" is Abelian, and 
hence also normal, contradicting the maximality of A. Hence, H = G and the proof 
is complete. [] 
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