




 

To my family:

to my Dad and to the memory of my Mom,

to Carlie,

and to my boys, John and Anthony.



 



     

Preface
to the second edition

“For I know my transgressions,. . . ”
Psalm 51

The first edition of this book served as my introduction to the mysteries of
spectral sequences. Since writing it, I have learned a little more in trying to do
some algebraic topology using these tools. The sense that I had misrepresented
some topics, misled the reader, even written down mistaken notions, grew over
the years. When the first edition came to the end of its run, and was going out
of print, I was encouraged by some generous souls to consider a second edition
with the goal of eliminating many of the errors that had been found and bringing
it somewhat up to date.

The most conspicuous change to the first edition is the addition of new
chapters—Chapter 8bis on nontrivial fundamental groups and Chapter 10 on
the Bockstein spectral sequence. In Chapter 8bis (an address, added on after
Chapters 5 through 8, but certainly belonging in that neighborhood), I have
found a natural place to discuss the Cartan-Leray and the Lyndon-Hochschild-
Serre spectral sequences, as well as the important class of nilpotent spaces.
This chapter is an odd mixture of topics, but I believe they hang together well
and add details to earlier discussions that depended on the fundamental group.
Chapter 10 acknowledges the fundamental role that the Bockstein spectral se-
quence plays in homotopy theory, especially in the study of H-spaces. It is as
much a basic tool as the other spectral sequences of Part II.

Less conspicuously, I have changed the order of topics in Chapters 2 and
3 in order to focus better on convergence in Chapter 3, which includes an
exposition of the important paper of [Boardman99]. I have reordered the topics
in Chapter 8 to make it more parallel to Chapter 6. The proof of the existence
and structure of the Leray-Serre spectral sequence is also significantly changed.
I have followed the nice paper of [Brown, E94]. With this change, I have
added a proof of the multiplicative structure that was not in the first edition.
Chapter 9 now sports a discussion of the role of the Adams spectral sequence
in the computation of cobordism rings.

Many of the intended improvements in this edition are small details that
are mentioned in the acknowledgments. Details that are noticeable throughout
include a change in the convention for citation. (What was I thinking in the first
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edition?) In this edition the reader is invited to read the citations as an integral
part of the text. In the case of multiple papers in a given year, I have added a
prime to the year to distinguish papers. The other little global change is an end
of proof markerut (suggested by Michele Intermont).

I had once thought that writing a book would be easy and the first edition
cured me of that misconception. I have discovered that writing a second edition
isn’t easy either. I will thank others at the end of the Introduction, but I wish to
thank certain folks whose encouragement, kind words, and steadfastness made
the completion of the second edition possible. First are my teachers in the use
of spectral sequences, and in the writing of books, Jim Stasheff, Bob Bruner,
and Larry Smith. They have all given more than one could expect of a friend.
To you, I owe many thanks for so many kindnesses. In an effort to avoid a
second edition full of little errors that frustrate even the most diligent reader,
Hal Sadofsky organized an army of folks who read the penultimate version
of most chapters. This act of organization was most welcome, helpful and
generous. Though I may have added new typos in an effort to fix found errors, I
am sure that the book is much better for Hal’s efforts. At Vassar, Diane Winkler
gave some of her valuable time to help in the preparation of the bibliography
and index. Ben Lotto solved all my computer problems, and Flora Grabowska
hunted down reference material I always seemed to need yesterday. Much of
the work on this edition was done duringune anńee sabbatiquèa Strasbourg.
My thanks to Christian Kassel and Jean-Louis Loday for their hospitality during
that stay. In the department of steadfastness, many thanks go to my editor at
Cambridge University Press, Lauren Cowles, whose patience is extraordinary.
Finally, my thanks to my family—Carlie, John, and Anthony—for tolerating
my projects and for their love through what seemed like a never ending story.

John McCleary July 17, 2000
Poughkeepsie, NY



     

Introduction
“It is now abundantly clear that the spectral sequence is
one of the fundamental algebraic structures needed for
dealing with topological problems.”

W.S. Massey

Topologists are fond of their machinery. As the title of this book indicates,
my intention is to provide a user’s manual for the class of complicated algebraic
gadgets known as spectral sequences.

A ‘good’ user’s manual for any apparatus should satisfy certain expecta-
tions. It should provide the beginner with sufficient details in exposition and
examples to feel comfortable in starting to apply the new apparatus to his or
her problems. The manual should also include enough details about the inner
workings of the apparatus to allow a user to determine what is going on if it
fails while in operation. Finally, a user’s manual should include plenty of infor-
mation for the expert who is looking for new ways to use the device. In writing
this book, I have kept these goals in mind.

There are several classes of readers for whom this book is written. There
is the student of algebraic topology who is interested in learning how to apply
spectral sequences to questions in topology. This reader is expected to have seen
a basic course in topology at the level of the texts by [Massey91] and [May99]
on singular homology theory and including the definition of homotopy groups
and their basic properties. This beginner also needs an acquaintance with the
basic topics of the homological algebra of rings and modules, at the level of the
first three chapters of the book of [Weibel94].

The next class of reader is principally interested in algebra and he or she
wants an exposition of the basic notions about spectral sequences, hopefully
without too much topology as prerequisite. Part I and Chapter 12 are intended
for these readers, along with§7.1,§8bis.2, and§9.2.

Some sections of the book are intended for the experienced user and would
offer an unenlightening detour for the novice. I have marked these sections with
the symbol

®N
for ‘not for the novice.’ As with other users’ manuals, these sections will
become useful when the reader becomes familiar with spectral sequences and
has a need for particular results.
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The material in the book is organized into three parts. Part I is called
Algebra and consists of Chapters 1, 2, and 3. The intention in Part I is to
lay the algebraic foundations on which the construction and manipulation of
all subsequent examples will stand. Chapter 1 is a gentle introduction to the
manipulation of first quadrant spectral sequences; the problem of how to con-
struct a spectral sequence is set aside and some of the formal aspects of the
algebra of these objects are developed. In Chapter 2, the algebraic origins of
spectral sequences are treated in three classic cases—filtered differential graded
modules, exact couples, and double complexes—-along with examples of these
ideas in homological algebra. The subtle notion of convergence is the focus of
Chapter 3. Comparison theorems are introduced here and the underlying theory
of limits and colimits is presented.

Part II is calledTopology; it is the heart of the book and consists of Chap-
ters 4 through 10. Part II treats the four classical examples of spectral sequences
that are found in homotopy theory. The introduction to each chapter gives a
detailed summary of its contents. We describe the chapters briefly here. Chap-
ter 4 is a thumbnail sketch of the topics in basic homotopy theory that will be
encountered in the development of the classical spectral sequences. Chapters 5
and 6 treat the Leray-Serre spectral sequence, and Chapters 7 and 8 treat the
Eilenberg-Moore spectral sequence. Chapters 5 and 7, labeled as I, contain a
construction of each spectral sequence and develop their basic properties and
applications. Chapters 6 and 8, labeled as II, go into the deeper structures
of the spectral sequences and apply these structures to less elementary prob-
lems. Alternate constructions of each spectral sequence appear in Chapters 6
and 8. Chapter 8bis gives an account of the effect of a nontrivial group on
the Leray-Serre spectral sequence and the Eilenberg-Moore spectral sequence.
Important topics, including nilpotent spaces, the homology of groups, and the
Cartan-Leray and Lyndon-Hochschild-Serre spectral sequences, are developed.
Chapter 9 treats the classical Adams spectral sequence (as constructed in the
days before spectra). Chapter 10 treats the Bockstein spectral sequence, espe-
cially as a tool in the study of H-spaces. Throughout the book, I have followed
an historical development of the topics in order to maintain a sense of the moti-
vation for each development. In some of the proofs found in the book, however,
I have strayed from the original papers and found other (hopefully more direct)
proofs, especially based on the results of Part I.

Part III is calledSins of Omissionand consists of Chapters 11 and 12.
My first intention was to provide a catalogue of everyone’s favorite spectral
sequence, if it doesn’t happen to be in Chapters 4 through 9. This has become
too large an assignment as spectral sequences have become almost common-
place in many branches of mathematics. I have chosen some of the major
examples and a few exotica to demonstrate the breadth of applications of spec-
tral sequences. Chapter 11 consists of spectral sequences of use in topology.
Chapter 12 includes examples from commutative algebra, algebraic geometry,
algebraic K-theory, and analysis, even mathematical physics.
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There are exercises at the end of all of the chapters in Parts I and II. They
offer further applications, missing details, and alternate points of view. The
novice should find these exercises helpful.

The bibliography consists of papers and books cited in the text. At the end
of each bibliographic entry is a list of the pages where the paper has been cited.
The idea of a comprehensive bibliography on spectral sequences is unneces-
sary with access toMathSciNet or theZentralblatt MATH Database . These
databases allow easy searches of titles and reviews of most of the publications
written after the introduction of spectral sequences.

How to use this book

These instructions are intended for the novice who is seeking the shortest
path to some of the significant applications of spectral sequences in homotopy
theory. The following program should take the least amount of time, incur
the least amount of pain, and provide a good working knowledge of spectral
sequences.

(1) All of Chapter 1.
(2) §2.1,§2.2 (but skip the proof of Theorem 2.6),§2.3.
(3) §3.1 and§3.3.
(4) Chapter 4, as needed.
(5) §5.1 and§5.2.
(6) §6.1,§6.2, and§6.3.

From this grounding, the Bockstein (Chapter 10), the Cartan-Leray, and the
Lyndon-Hochschild-Serre spectral sequences (§8bis.2) are accessible. The
novice who is interested in the Eilenberg-Moore spectral sequence should in-
clude§2.4 with the above and then go on to Chapter 7 as desired. The novice
who is interested in the Adams spectral sequence should also read§2.4 as well
as§7.1 for the relevant homological algebra before embarking on Chapter 9.

Details and Acknowledgments

In the writing of both editions of this book, many people have offered their
time, expertise, and support to whom I acknowledge a great debt. Along with
a thanksgiving, I will say a little about the sources of each chapter.

This project began in Philadelphia, in the car with Bruce Conrad, between
Germantown and Temple University. It was going to be a handy pamphlet,
listing E2-terms and convergence results, but it has since run amok. At the
beginning, chats with Jim Stasheff, Lee Riddle, and Alan Coppola were en-
couraging. Chapter 1 is modeled on the second graduate course in algebraic
topology I took from Jim and on unpublished notes for such a course written
by David Kraines. David Lyons spotted a crucial misstatement in this chapter
in the first edition. Michele Intermont gave it a good close reading for the
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second edition. Chapter 2 is classical in outline and owes much to my read-
ing of the classics by [Cartan-Eilenberg56], [Eckmann-Hilton66], and [Mac
Lane63]. Chapter 3 is my account of the foundational paper of [Boardman99],
the 1981 version of which I count among the classics in algebraic topology.
Alan Hatcher’s close reading of the first edition version of the Zeeman com-
parison theorem resulted in some significant changes. Brooke Shipley read my
first version of the new Chapter 3 and gave many helpful remarks. Chapter 4
was a suggestion of Lee Riddle whose notes on beginning homotopy theory
were helpful.

Chapter 5 is based on the thesis of [Serre51]—it is a remarkable paper and
I have added more of it to the second edition. The paper of [Brown, E94] is the
backbone of§5.3. Special thanks to Ed Brown and Don Davis for close readings
of part of this chapter. Chapter 6 is based on further work of [Serre51, 53], the
thesis of [Borel53], the lovely paper of [Dress67], and subsequent developments.
Chapter 7 is based on the Yale thesis of [Smith, L70]. I have learned a lot from
the papers of and conversations with Larry Smith. His remarks on an early
version of Chapters 7, 8, and 8bis made a big impact on the final version of
these chapters. Jim Stasheff first taught me many of the ideas in Chapters 7 and
8, and deeply influenced their formulation. I wrote these chapters first in the
first edition and I believe they bear the stamp of Jim’s teaching.

Chapter 8bis was an idea based on a remark of Serre in a list of errata
for the first edition he kindly sent me in 1985. He suggested that the class of
nilpotent spaces should be presented in a discussion of spectral sequences. This
chapter is the result. I have learned a lot from Emmanuel Dror-Farjoun and Bill
Dwyer in the writing of this chapter. Coffee hours with Richard Goldstone have
been very helpful as well. Chapter 9 is a result of my reading of the papers
of Adams and Liulevicius and the beautiful book of [Mosher-Tangora68]. Bob
Bruner and Norihiko Minami added much to the chapter in their readings of
early versions of it. Chapter 10 is based on the papers of Bill Browder, Jim Lin,
and Richard Kane. An outline of Chapter 10 appeared as the introduction to
my paper, [McCleary87].

Many people have offered suggestions that enhanced my presentation and
my understanding; they include Claude Schochet, Bill Massey, Nathan Habeg-
ger, Dan Grayson, Bob Thomason, John Moore, Andrew Ranicki, Frank Adams,
Ian Leary, Alan Durfee, Carl-Friedrich B¨odigheimer, Johannes Huebschmann,
Lars Hasselholt, Jerry Lodder, Guido Mislin, and Jason Cantarella.

The army of readers organized by Hal Sadofsky are owed a mighty thanks
for the degree of care and commitment they gave in making the book a better
effort. They are: Zoran Petrovic (Chapter 2), Don Davis and Martin Crossley
(Chapter 4), Martin Cadek and Dan Christensen (Chapter 5), Chris French
(Chapter 6), Jim Stasheff (Chapters 7, 8, and 12), Tom Hunter and Kathryn Hess
(Chapter 8), Richard Goldstone (Chapter 8bis), Christian Nassau (Chapter 9),
Ethan Berkove and Kathryn Lesh (Chapter 10), and Frank Neumann (Chapters
11 and 12).
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My thanks to Michael Spivak for his support of the first edition and for
making the old TEX-files available for the second edition.

Finally, I wish to acknowledge the collective intellectual debt owed to
the mathematicians whose work makes up this book—in particular, to Jean
Leray (1906–1998), Henri Cartan, Jean-Louis Koszul, Jean-Pierre Serre, Ar-
mand Borel, Samuel Eilenberg (1913–1998), John Moore, and Frank Adams
(1930–1989).
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1
An Informal Introduction

“Sauterà pieds joints sur ces calculs;. . . telle est, suiv-
ant moi, la mission des g´eometres futurs;. . . ”

E. Galois

In the chapters that follow, we will consider, in detail, the algebra of spectral
sequences and furthermore, how this formalism can be applied to a topological
problem. The user, however, needs to get acquainted with the manipulation
of these gadgets without the formidable issue of their origins. This chapter is
something of a tool kit, filled with computation techniques that may be employed
by the user in the application of spectral sequences to algebraic and topological
problems. We take a loosely axiomatic stance and argue from definitions, with
most spectral sequences in mind. As in the case of long exact sequences or
homology theory, this viewpoint still makes for a substantial enterprise. The
techniques developed in this chapter, though elementary, will appear again and
again in what follows. The user, facing a computation in later chapters, will
profit by returning to this collection of tools and tricks.

1.1 “There is a spectral sequence. . . ”

Let us begin with abasic goal: We want to computeH∗ whereH∗ is a
gradedR-module or a gradedk-vector space or a gradedk-algebra or. . . .
ThisH∗ may be the homology or cohomology of some space or some other
graded algebraic invariant associated to a space or perhaps an invariant of some
algebraic object like a group, a ring or a module; in any case,H∗ is often
difficult to obtain. In order to proceed, we introduce some helpful conditions.
Suppose further thatH∗ isfiltered, that is,H∗ comes equipped with a sequence
of subobjects,

H∗ ⊃ · · · ⊃ FnH∗ ⊃ Fn+1H∗ ⊃ · · · ⊃ {0}.

For the sake of clarity, let’s assume for this chapter thatH∗ is a graded vector
space over a fieldk, unless otherwise specified and further, thatH∗ = F 0H∗,
that is, our filtration isbounded belowbyH∗ in the0th filtration. For example,
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if H∗ is any graded vector space withHn = {0} for n < 0, then there is an
obvious filtration, induced by the grading, and given byF pH∗ =

⊕
n≥pH

n.

A less trivial filtration is induced on the cohomology of a CW-complex,X, (see
§4.1 for definitions) by filtering the space itself by successive skeleta:

X ⊃ · · · ⊃ X(n) ⊃ X(n−1) ⊃ X(n−2) ⊃ · · · ⊃ X(0) ⊃ {∗},

and definingF pH∗(X) = the kernel of the mapH∗(X)→ H∗(X(p−1)), in-
duced by the(p− 1)st inclusion map.

A filtration of H∗, sayF ∗, can be collapsed into another graded vector
space called theassociated graded vector spaceand defined byEp0 (H∗) =
F pH∗/F p+1H∗. In the case of a locally finite graded vector space (that is,Hn

is finite dimensional for eachn),H∗ can be recovered up to isomorphism from
the associated graded vector space by taking direct sums, that is,

H∗ ∼=
⊕∞

p=0
Ep0 (H∗).

If H∗ is an arbitrary graded module over some ringR, however, there may be
extension problems that prevent one from reconstructingH∗ from the associated
graded module (these problems will be discussed in§3.1). As a simple example
of an associated graded vector space, consider the filtration induced by the
grading onH∗; here we haveEp0 (H∗) = Hp.

BecauseH∗ may not be easily computed, we can take as a first approxi-
mation toH∗ the associated graded vector space to some filtration ofH∗. This
is the target of a spectral sequence!We then hope thatH∗ can be reassembled
fromE∗0 (H∗). Before we give the definition, observe a simple property of the
associated graded vector space to a filtered graded vector spaceH∗: Ep0 (H∗)
is bigraded. Using the degree inH∗, we defineF pHr = F pH∗ ∩Hr and

Ep,q0 = F pHp+q/F p+1Hp+q.

The indexq is called thecomplementary degreeand the indexp thefiltration
degree. The associated graded vector spaceEp0 (H∗) can be recovered by taking
the direct sum of the spacesEp,q0 over the indexq. To recoverHr directly, as

a vector space, take the direct sum
⊕

p+q=r
Ep,q0 .

We are now in position to introduce the objects of interest.

Definition 1.1 (First Definition). A (first quadrant, cohomological)spectral
sequenceis a sequence ofdifferential bigraded vector spaces, that is, for
r = 1, 2, 3, . . . , and forp and q ≥ 0, we have a vector spaceEp,qr . Fur-
thermore, each bigraded vector space,E∗,∗r , is equipped with a linear mapping
dr : E∗,∗r −→ E∗,∗r , which is a differential,dr ◦ dr = 0, of bidegree(r, 1− r),

dr : Ep,qr −→ Ep+r,q−r+1
r .
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Finally, for all r ≥ 1, E∗,∗r+1
∼= H(E∗,∗r , dr), that is,

Ep,qr+1 = ker dr : Ep,qr → Ep+r,q−r+1
r

/
im dr : Ep−r,q+r−1

r → Ep,qr
.

We call therth stage of such an object itsEr-term (or itsEr-page) and it
may be pictured as a lattice in the first quadrant with each lattice point a vector
space and the differentials as arrows (here forr = 3).

With this definition, considerEp,qr for r > max(p, q+1); here the differen-
tials,dr, become trivial. Sinceq+1−r < 0, we haveEp+r,q−r+1

r = {0}and so
ker dr = Ep,qr . Also p − r < 0 impliesEp−r,q+r−1

r = {0} andim dr = {0}.
ThusEp,qr+1 = Ep,qr and, continuing in a similar fashion,Ep,qr+k = Ep,qr , for
k ≥ 0. We denote this common vector space byEp,q∞ . We can now complete
the preliminary definitions.

Definition 1.2. A spectral sequence{E∗,∗r , dr} of vector spaces is said to
convergeto a graded vector spaceH∗ if H∗ has a filtrationF ∗ and

Ep,q∞ ∼= F pHp+q/F p+1Hp+q = Ep,q0 (H∗).

Though the notion of convergence requires conditions on the filtration in order
to determine that the target is uniquelyH∗, this definition will serve for this
first exposure (see Chapter 3 for more sophisticated issues). It follows that our
basic goalH∗ is approximated, if we can find a spectral sequence converging
toH∗. The “generic theorem” in this enterprise takes the following form.



         

6 1. An Informal Introduction

“Theorem I.” There is a spectral sequence with

E∗,∗2
∼= “something computable”

and converging toH∗, something desirable.

The important observation to make about the statement of the theorem is thatit
gives anE2-term of the spectral sequence but says nothing about the successive
differentialsdr. ThoughE∗,∗r may be known, withoutdr or some further
structure, it may be impossible to proceed.

There is hope, however, that even without knowledge of the differentials,
we can proceed as a formal consequence of the algebraic structure of some
Er-term. (An analogous situation arises in a long exact sequence where every
third term is{0}; this implies a family of isomorphisms.) Since the differentials
in a spectral sequence may carry otherwise inaccessible geometric information,
such algebraic situations may lead to significant results. Our first example
shows this feature of the existence and form of a spectral sequence. (Compare
this example with Example 5.D.)

Example 1.A.Suppose that there is a first quadrant spectral sequence of co-
homological type with initial term(E∗,∗2 , d2), converging to the graded vector
spaceH∗, and satisfyingF p+kHp = {0} for all k > 0. ThenH0 = E0,0

2 , and
there is an exact sequence,

0→ E1,0
2 −→ H1 −→ E0,1

2

d2−→ E2,0
2 −→ E2,0

∞ → 0,

withE2,0
∞ a submodule ofH2.

Since there is a filtration onH∗ whose associated graded vector space is
given by theE∞-term of this spectral sequence, then we can relate the final
term to its target in the cases ofH0, H1, andH2. Now F 0H0 = H0 and
sinceF 1H0 = {0},E0,0

∞ = H0. No nonzero differentials can involveE0,0
2 , so

E0,0
2 = E0,0

∞ .
ForH1 andH2, the filtrations may be presented by

{0} ⊂ F 1H1 ⊂ F 0H1 = H1, {0} ⊂ F 2H2 ⊂ F 1H2 ⊂ F 0H2 = H2.

This leads to short exact sequences,

0→ E1,0
2 −→ H1 −→ E0,1

2 → 0, 0→ E2,0
∞ −→ H2.

The only differential that appears in this lowest degree corner of the spectral
sequence isd2 : E0,1

2 → E2,0
2 . This leads to the short exact sequence:

0→ E0,1
∞ −→ E0,1

2

d2−→ E2,0
2 −→ E2,0

∞ → 0.

Putting this short exact sequence together with the ones that follow from the
filtration, gives the exact sequence in the example.
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For the rest of the chapter, we will consider various algebraic situations
where the formal presentation of the data or some aspect of an extra structure
allows us to compute effectively with a spectral sequence. More general spectral
sequences (for example, not first quadrant or not restricted to vector spaces) will
be defined and considered in Chapter 2.

1.2 Lacunary phenomena

Suppose that our generic ‘Theorem I’ holds and we have a first quadrant
spectral sequence withH∗ as the target of convergence. The simplest case of
calculation occurs when a finite number of steps completes the computation.

Definition 1.3. A spectral sequence,{E∗,∗r , dr} is said tocollapse at theN th

term if dr = 0 for r ≥ N .

Of course the immediate consequence of collapse at theN th term is thatE∗,∗N
∼=

E∗,∗N+1
∼= · · · ∼= E∗,∗∞ and we have recovered the graded vector spaceH∗ up to

isomorphism.

Example 1.B.Supposen1 andn2 are natural numbers andEp,q2 = {0} for
p > n1 or q > n2. Then the spectral sequence collapses at theN th term where
N = min(n1 + 1, n2 + 2).

We can picture theE2-term in the two possible extreme cases as in the diagram:

In case 1,n1 ≤ n2 + 1 and soN = n1 + 1. For r ≥ N, dr : Ep,qr →
Ep+r,q−r+1
r and sop+ r ≥ p+N > n1 anddr = 0. In case 2,n2 + 1 < n1

andN = n2 + 2. Sinceq − r + 1 ≤ q − n2 − 1 < 0, we havedr = 0. Thus
the spectral sequence collapses atEN andE∗,∗N

∼= E∗,∗N+1
∼= · · · ∼= E∗,∗∞ .
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Example 1.C.SupposeEp,q2 = {0} wheneverp is even orq is odd. Then the
spectral sequence collapses atE2.

This example may seem artificial but it can occur when theE2-term is given by
a tensor productEp,q2 = V p ⊗k W q andV ∗ andW ∗ are graded vector spaces
overk such thatV ∗ is concentrated in odd dimensions andW ∗ is concentrated
in even dimensions.

To prove the assertion that the spectral sequence collapses, observe, for any
r ≥ 2, Ep,qr 6= {0} impliesp+ q ≡ 1 (mod 2). But dr : Ep,qr → Ep+r,q−r+1

r

changes total degree,p+q, by one;p+r+q−r+1 = p+q+1 ≡ 0 (mod 2) so
Ep+r,q−r+1
r = {0}. Thusdr = 0 for r ≥ 2 and the spectral sequence collapses

at theE2-term.
In the previous examples the placement of “holes” (trivial vector spaces)

in the spectral sequence forced a collapse. In the next example, the holes do
not defeat the differentials but restrict their possible action.

Example 1.D.SupposeEp,q2 = {0} unlessq = 0 or q = n, for somen ≥ 2.
Then there is a long exact sequence

· · · −→ Hp+n −→ Ep,n2

dn+1

−−−→ Ep+n+1,0
2 −→

Hp+n+1 −→ Ep+1,n
2

dn+1

−−−→ Ep+n+2,0
2 −→ · · · .

To concoct some instances of these conditions, letW ∗ = H∗(Sn; k) andV ∗ be
any graded vector space withEp,q2 = V p⊗kW q. In the study of the Leray-Serre
spectral sequence, this example will be significant.

Pictorially, our conditions obtain two stripes in which the nontrivial data
lie, as in the following diagram.

By the placement of trivial vector spaces in thisE2-term, the only possi-
ble nonzero differential isdn+1 : Ep,n2 → Ep+n+1,0

2 . Therefore we have
E2
∼= · · · ∼= En+1 andEn+2 = H(En+1, dn+1) ∼= E∞. Now dn+1 is the
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zero homomorphism on the bottom row and soE∗,0∞ ∼= E∗,02 / im dn+1. Since
everything aboveE∗,n2 is trivial, E∗,n∞ ∼= ker dn+1. This yields the short exact
sequence for eachp,

0 −→ Ep,n∞ −→ Ep,n2

dn+1

−−−→ Ep+n+1,0
2 −→ Ep+n+1,0

∞ −→ 0.

SinceE∗,∗∞ is nontrivial only in these stripes, the filtration onH∗ takes the form

Hp+n = F 0Hp+n = · · · = FnHp+n ⊃ Fn+1Hp+n

= Fn+2Hp+n = · · · = F p+nHp+n ⊃ {0}.

Furthermore,Ep,n∞ = Hp+n/F p+1Hp+n ∼= Hp+n/Ep+n,0∞ and so we have
the short exact sequence for eachp

0 −→ Ep+n,0∞ −→ Hp+n −→ Ep,n∞ −→ 0.

To obtain the long exact sequence of the example, we splice these short exact
sequences together as in the diagram.

B
BBC

u

Hp+n−1

u

(
(()

0

u

0 w Ep−1,n
∞

u

w Ep−1,n
2 w Ep+n,02 w5

556

Ep+n,0∞ w

u

0

0 Hp+n

u

�
���

0 w Ep,n∞

u

w Ep,n2

0

The long exact sequence given in Example 1.C is called theGysin se-
quence. The analogous assertion holds whenp andq are interchanged to give
vertical stripes (see the exercises at the end of the chapter).

1.3 Exploiting further structure

It is often the case thatH∗, the target of a spectral sequence, carries more
structure than simply that of a graded vector space. For example, whenH∗ is
the cohomology of a topological space, it is a graded algebra via the cup-product
structure (see§4.4). Furthermore, ifp is a prime number andH∗ = H∗(X;Fp),
for a spaceX, thenH∗ is a graded module over the modpSteenrod algebra (see
§4.4). In §1.1 we discussed how one might determineH∗ as a graded vector
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space through a spectral sequence. IfH∗ is a graded algebra, we can ask how
a spectral sequence might determine this structure as well. To be precise, we
first endow the spectral sequence with an algebra structure and determine what
it means for the algebra structure to converge to the algebra structure onH∗.
This will turn out to be a subtle matter, though it has rich rewards. In§1.5,
we take up the more difficult problem of reconstructingH∗ from the bigraded
algebraE∗,∗∞ .

Definition 1.4. If H∗ is a graded vector space over a fieldk, then letH∗⊗kH∗
be the graded vector space given by

(H∗ ⊗k H∗)n =
⊕

p+q=n
Hp ⊗k Hq.

H∗ is a graded algebraif there is a mapping of graded vector spaces, called
theproduct,ϕ : H∗⊗kH∗ −→ H∗, that is, a linear mappingϕ : Hp⊗kHq →
Hp+q for all p andq. The mappingϕ must satisfy the following commutative
diagram that expresses the fact that the multiplication onH∗ is associative:

H∗ ⊗H∗ ⊗H∗ w

ϕ⊗1

u

1⊗ϕ

H∗ ⊗H∗

u

ϕ

H∗ ⊗H∗ w

ϕ
H∗.

An algebra may also contain a unit element. This is expressed by a mapping
η : k → H∗ wherek is the graded algebra determined by the fieldk in de-
gree0 and by{0} in higher degrees. The mappingη must satisfy the following
commutative diagram:

k ⊗H∗ w

η⊗id

u

∼=

H∗ ⊗H∗

u

ϕ

H∗ ⊗ ku

id⊗η

u

∼=

H∗ H∗ H∗.

One can considerQ[x] as a graded vector space where the degree is given by the
degree of a polynomial. With polynomial multiplication,Q[x] enjoys a graded
algebra structure.

Definition 1.5. SupposeE∗,∗ is a bigraded vector space. LetE∗,∗ ⊗k E∗,∗ be
the bigraded vector space given by

(E∗,∗ ⊗k E∗,∗)p,q =
⊕

m+n=p
r+s=q

Em,r ⊗k En,s.
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E∗,∗ is a bigraded algebra if there is a mapping of bigraded vector spaces,
called theproduct,

ϕ : E∗,∗ ⊗k E∗,∗ −→ E∗,∗,

that is,ϕ has componentsϕ : Em,n⊗k Er,s → Em+r,n+s. We assume further
thatϕ satisfies the analogous conditions of associativity and having a unit.

As an example of a bigraded algebra, supposeA∗ andB∗ are graded algebras
with ϕ andψ their respective products. If we letEp,q = Ap ⊗k Bq, we define
an algebra structure onE∗,∗ by the composite:

Φ: Ep,q ⊗k Er,s = Ap ⊗Bq ⊗Ar ⊗Bs
1⊗T⊗1
−−−−→

Ap ⊗Ar ⊗Bq ⊗Bs
ϕ⊗ψ
−−−→ Ap+r ⊗Bq+s = Ep+r,q+s

whereT (b⊗ a) = (−1)(deg a)(deg b)a⊗ b.
The next ingredient in our definition is the differential. We give the graded

and bigraded definitions. Leta · a′ = ϕ(a, a′).

Definition 1.6. A differential graded algebra, (A∗, d), is a graded algebra
with a degree 1 linear mapping,d : A∗ → A∗, such thatd is aderivation, that
is, satisfies theLeibniz rule

d(a · a′) = d(a) · a′ + (−1)deg aa · d(a′).

A differential bigraded algebra, (E∗,∗, d), is a bigraded algebra with a total
degree one mapping

d :
⊕

p+q=n
Ep,q −→

⊕
r+s=n+1

Er,s

that satisfies the Leibniz ruled(e · e′) = d(e) · e′ + (−1)p+qe · d(e′), whene
is inEp,q ande′ is inEr,s.

A simple example of a differential bigraded algebra can be constructed from
two differential graded algebras(A∗, d) and(B∗, d′) by lettingE∗,∗ beA∗⊗B∗
and defining the differentiald⊗ onE∗,∗ by the formula

d⊗(a⊗ b) = d(a)⊗ b+ (−1)deg aa⊗ d′(b).

Notice that the differentials in a spectral sequence are all mappings of total
degree±1. We can now assemble these notions and give the expected definition.
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Definition 1.7. {E∗,∗r , dr} is a spectral sequence of algebrasif, for eachr,
(E∗,∗r , dr) is a differential bigraded algebra and furthermore, the productϕr+1

onE∗,∗r+1 is induced by the productϕr ofE∗,∗r on homology. That is, the product
onE∗,∗r+1 may be expressed as the composite

H(E∗,∗r , dr)⊗H(E∗,∗r , dr)
∼=−→ H(E∗,∗r ⊗ E∗,∗r , dr ⊗ 1± 1⊗ dr)

−−−−→
H(ϕr)

H(E∗,∗r , dr).

To complete this series of definitions, we need to make precise how a spectral
sequence can be used to recover a graded algebraH∗; to do this, we restrict
how a filtration may behave with respect to a product.

Definition 1.8. SupposeF ∗ is a filtration ofH∗, a graded algebra with product
ϕ. The filtration is said to bestablewith respect to the product if

ϕ(F rH∗ ⊗ F sH∗) ⊂ F r+sH∗.

The reader will want to check that a filtrationF ∗ onH∗ that is stable with respect
to a product onH∗ induces a bigraded algebra structure on the associated
bigraded moduleE∗,∗0 (H∗). We can now say what it means for a spectral
sequence of algebras toconverge toH∗ as a graded algebra, that is, there is
a spectral sequence{E∗,∗r , dr} of algebras and a stable filtration onH∗ with
theE∞-term of the spectral sequence isomorphicas a bigraded algebrato the
associated bigraded algebra,E∗,∗0 (H∗, F ∗). The generic theorem in this case
is given by the following statement.

“Theorem II.” There is a spectral sequence of algebras with

E∗,∗2
∼= something computable,

and converging toH∗, something desirable, as a graded algebra.

Example 1.E.SupposeE∗,∗2 is given as an algebra by

E∗,∗2
∼= Q[x, y, z]

/
(x2 = y4 = z2 = 0 ) ,

where the bidegree of each generator is given bybideg x = (7, 1), bideg y =
(3, 0) andbideg z = (0, 2). Furthermore, supposed2(x) = y3 andd3(z) = y.
In this case, the spectral sequence collapses atE4 and, thoughx andy do not
survive toE∞, the productxy does.

First observe that we only need to know the action of the differentials on
the generators of the algebra since the Leibniz rule tells us how the differentials
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z

zx zxy
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2
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2
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The E  -term3

xy

z

zxy

2
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2

2

2

xy 3xy

zy zy
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xy

2zy

3zxy
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act on decomposable elements. With the given information we can list the entire
E2-term of the spectral sequence in the diagram.

Since the differentiald2, as shown, takes basis elements to basis elements, it is
clearly an isomorphism of vector spaces when nonzero. We take the homology
to obtainE3, as in the diagram.

Finally, by the placement of trivial vector spaces,E4 = E∞, as presented in
the diagram.

Notice that the productxy has lived toE∞, even though the generators which
gave rise toxy did not. Furthermore, we can read from the spectral sequence
that the element represented byxy times the element represented byzy2 is a
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nontrivial productzxy3 in H∗. Though the example points out how a spectral
sequence simplifies in the presence of a product structure, it is particularly
simple. With regard to the problem of reconstructing the algebra structure
onH∗, the reader should contrast this example with Example 1.J in which the
E∞-term of a spectral sequence is shown to be inadequate for the determination
of the algebra structure of its target.

In the next example, we introduce the Euler characteristic a useful arith-
metic invariant of a graded vector space.

Definition 1.9. LetA∗ be alocally finite graded vector space overk, that is,
dimk A

n is finite for all n. ThePoincaré seriesfor A∗ is the formal power
series given by

P (A∗, t) =
∑∞

n=0
(dimk A

n)tn.

On the face of it, the Poincar´e series seems to carry very little information,
especially if we treatA∗ simply as a graded vector space. However, some
immediate observations can be made:

(1) A∗ is globally finite dimensional if and only ifP (A∗, t) is a polynomial.
(2) P (A∗⊗B∗, t) = P (A∗, t)×P (B∗, t) where multiplication on the right

is the Cauchy product of power series, that is,

if
∑∞

i=0
ait

i ×
∑∞

i=0
bit

i =
∑∞

j=0
cjt

j , thencj =
∑j

i=0
aibj−i.

(3) We can define anEuler characteristic forA∗ byχ(A∗) = P (A∗,−1),
when this expression makes sense. IfA∗ = H∗(M ;Q) for M , a finite-
dimensional manifold,χ(A∗) is the classical Euler-Poincar´e character-
istic,χ(M), of the manifold.

WhenA∗ is a graded algebra, aspects of the algebra structure are reflected in
the Poincar´e series. For example, considerA∗ = Q[x] wherex is of degreen.
SinceA∗ is a free commutative algebra on one generator, all of the powers ofx
persist inA∗ and generate it as a graded vector space. It is easy to see then that

P (A∗, t) =
1

1− tn = 1 + tn + t2n + t3n + · · · .

More generally, ifB∗ = Q[x1, x2, . . . , xr] with degreexi = ni, then

P (B∗, t) =
∏r

i=1

1
1− tni .

Whether the Poincar´e series turns out to be a rational function oft expresses a
measure of the complexity of the algebra structure. Some powerful numerical
invariants, derived from the Poincar´e series, have been useful in the study of
local rings (see the work of [Assmus59], [Golod62] and [Avramov94]).
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SupposeE∗,∗ is a locally finite bigraded vector space (that is,Ep,q is
finite-dimensional overk for all p andq). We can define a Poincar´e series for
E∗,∗ by

P (E∗,∗, t) =
∑∞

n=0
dimk

(⊕
p+q=n

Ep,q
)
tn.

For example, ifE∗,∗2 is the bigraded vector space in Example 1.E, then

P (E∗,∗2 , t) = (1 + t11)(1 + t4 + t8 + t12)(1 + t3).

BecauseHr ∼=
⊕

p+q=r
Ep,q0 (H∗), it is immediate that a filtered graded vector

spaceH∗ has the same Poincar´e series as its associated bigraded vector space,
that is,P (H∗, t) = P (E∗,∗0 (H∗), t).

We can compare two Poincar´e series at each degree. We say thatP (A∗, t) ≥
P (B∗, t) if the power seriesp(t) = P (A∗, t) − P (B∗, t) has all of its coeffi-
cients nonnegative. For example, whenever there is an epimorphism of locally
finite graded vector spaces,T : A∗ → B∗, thenP (A∗, t) ≥ P (B∗, t).

Example 1.F.Suppose{E∗,∗r , dr} is a spectral sequence converging toH∗ and
thatE∗,∗2 is locally finite. ThenH∗ is locally finite and

P (E∗,∗2 , t) ≥ P (E∗,∗3 , t) ≥ · · · ≥ P (E∗,∗∞ , t) = P (H∗, t).

Furthermore,P (H∗, t) = P (E∗,∗i , t) for some finitei if and only if the spectral
sequence collapses at theith term. Finally, if we letχ(E∗,∗r ) = P (E∗,∗r ,−1),
whenever these expressions are meaningful, thenχ(E∗,∗r ) = χ(H∗), for all
r ≥ 2.

For the sake of accounting, letdp,qi denote theith differential,

dp,qi : Ep,qi −→ Ep+i,q−i+1
i .

Let n be a fixed natural number andp + q = n. From elementary linear al-
gebra we havedimk(Ep,qi+1) = dimk(ker dp,qi )− dimk(im dp−i,q+i−1

i ). Since
ker dp,qi is a subspace ofEp,qi , we have for allp+ q = n,

dimk(Ep,qi ) ≥ dimk(ker dp,qi )

≥ dimk(ker dp,qi )− dimk(im dp−i,q+i−1
i ) = dimk(Ep,qi+1).

By local finiteness, we have, for eachn,

dimk

(⊕
p+q=n

Ep,qi

)
≥ dimk

(⊕
p+q=n

Ep,qi+1

)
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and soP (E∗,∗i , t) ≥ P (E∗,∗i+1, t).
If the spectral sequence collapses at theith term,E∗,∗i = E∗,∗i+1 = · · · =

E∗,∗∞ and soP (E∗,∗i , t) = P (E∗,∗∞ , t) = P (E∗,∗0 (H∗), t) = P (H∗, t). Sup-
poseP (E∗,∗i , t) = P (H∗, t). Our first assertion implies thatP (E∗,∗i , t) =
P (E∗,∗i+j , t) for all j ≥ 0. To establish the collapse of the spectral sequence
we can show thatdimk E

p,q
i = dimk E

p,q
i+j for all p, q and j. For all n,

dimk

(⊕
p+q=n

Ep,qi
)

= dimk

(⊕
p+q=n

Ep,qi+j
)
. SinceE∗,∗2 is locally finite,

it follows thatE∗,∗r is locally finite for allr ≥ 2 and

dimk

(⊕
p+q=n

Ep,qr

)
=
∑

p+q=n
dimk(Ep,qr ).

Thus
∑
p+q=n dimk(Ep,qi ) =

∑
p+q=n dimk(Ep,qi+j). Since dimension is al-

ways nonnegative anddimk(Ep,qi ) ≥ dimk(Ep,qi+j), the previous equation can-
not hold unlessdimk E

p,q
i = dimk E

p,q
i+j for eachp, q, p + q = n and for all

j ≥ 1.
To establish the assertion about Euler characteristics, we introduce the

partial sums for̀ > 0,

χ`(E
∗,∗
i ) =

∑`

n=0
(−1)n dimk

(⊕
p+q=n

Ep,qi

)
.

Notice thatlim`→∞ χ`(E
∗,∗
i ) = χ(E∗,∗i ). Sinceχ(E∗,∗∞ ) = χ(H∗), it suf-

fices to show thatχ(E∗,∗i ) = χ(E∗,∗i+1) for all i. Recall thatdimk E
p,q
i =

dimk(ker dp,qi ) + dimk(im dp,qi ). We compute

χ`(E
∗,∗
i ) =

∑`

n=0
(−1)n dimk

(⊕
p+q=n

Ep,qi

)
=
∑̀
n=0

∑
p+q=n

[
(−1)n dimk(ker dp,qi ) + (−1)n dimk(im dp,qi )

]
=
∑̀
n=0

[ ∑
p+q=n

(−1)n dimk(ker dp,qi ) +
∑
r+s=n

(−1)n dimk(im dr,si )
]

= dimk(ker d0,0
i ) +

∑̀
n=1

[ ∑
p+q=n

(−1)n dimk(ker dp,qi )

−
∑

r+s=n−1

(−1)n dimk(im dr,si )
]

+
∑
r+s=`

(−1)` dimk(im dr,si )

=
∑̀
n=0

(−1)n dimk

( ⊕
p+q=n

Ep,qi+1

)
+
∑
r+s=`

(−1)` dimk(im dr,si )

= χ`(E
∗,∗
i+1) +

∑
r+s=`

(−1)` dimk(im dr,si ).
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Let ` go to infinity; this incorporates the extra term into the limit and so
χ(E∗,∗i ) = χ(E∗,∗i+1).

As an application of the example, if one wants to compute the Euler char-
acteristic for a manifoldM , the job is simplified if there is a spectral sequence
converging toH∗(M ; k). TheE2-term of the spectral sequence, which may be
known, determinesχ(M), even thoughH∗(M ; k) is not known.

Another piece of structure that can help in a calculation with a spectral
sequence is the presence of an action of a graded algebraΓ∗ on the targetH∗

that can be found on the spectral sequence. The motivating examples of such
Γ∗ are

(1) the Steenrod algebra,Ap, which acts onH∗(X;Fp) and is present in
many spectral sequences (see§4.4,§6.2, and§8.3 for more details);

(2) H∗(G; k) that acts on the various equivariant topological invariants of a
spaceX on which the groupG acts (see [Greenlees88] and [Greenlees-
May95] for examples).

SupposeΓ∗ is a graded algebra overk. A graded vector spaceH∗ is a Γ∗-
module if there is a mapping of graded vector spaces

ψ : Γ∗ ⊗k H∗ −→ H∗

satisfying the usual module axioms, that is, the following diagram commutes
with m, the product onΓ∗:

Γ∗ ⊗ Γ∗ ⊗H∗ w

1⊗ψ

u

m⊗1

Γ∗ ⊗H∗

u

ψ

Γ∗ ⊗H∗ w

ψ
H∗.

As the reader might expect, we want to consider how a graded algebra,Γ∗,
might act on a bigraded vector spaceE∗,∗. In this instance, we consider only
one case of such an action that represents the interesting case in later chapters;
more general definitions are possible.

Definition 1.10.LetE∗,∗ be a bigraded vector space andΓ∗ a graded algebra
over a fieldk. We say thatΓ∗ acts(vertically)onE∗,∗ if, for eachn ≥ 0,En,∗

is aΓ∗-module; that is, there is a module structureψn : Γ∗ ⊗k En,∗ → En,∗.

The term “vertically” is appropriate since, componentwise,Γ∗ acts on elements
by moving them “up,”ψn : Γs ⊗k En,t → En,s+t. SupposeH∗ is a filtered
graded vector space and aΓ∗-module such thatΓ∗ ⊗ F pH∗ → F pH∗, that is,
theΓ∗-action isfiltration-preserving . If we descend to the associated bigraded
vector space,E∗,∗0 (H∗), thenΓ∗ acts vertically onE∗,∗0 (H∗).
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For a graded algebraΓ∗ to act on a spectral sequence, {E∗,∗r , dr}, we
require that

(1) Γ∗ acts onE∗,∗r for eachr,
(2) the differentialsdr areΓ∗-linear and
(3) theΓ∗-action onE∗,∗r+1 is induced through homology from the action of

Γ∗ onE∗,∗r .

SupposeH∗ is a Γ∗-module. In applications, we want to determineH∗ as
a Γ∗-module, that is, to computeH∗ along with itsΓ∗-action. We say that
a spectral sequenceconverges toH∗ as aΓ∗-module if we have a spectral
sequence, converging toH∗, on whichΓ∗ acts and the filtration onH∗ induces
a Γ∗-action on the associated bigraded spaceE∗,∗0 (H∗) that is isomorphic to
theΓ∗-action on theE∞-term of the spectral sequence. The generic setting for
such applications is the following statement.

“Theorem III.” There is a spectral sequence on whichΓ∗ acts, with

E∗,∗2
∼= something computable with a known Γ∗-action,

and converging toH∗, something desirable, as aΓ∗-module.

In the next example we present a situation, albeit artificial, where theΓ∗-
action plays an important role. In the natural examples, arguments similar to
the one presented here can be employed with remarkable success (for example,
the paper of [Serre53,§5]).

Example 1.G.SupposeΓ∗ = Q[a, b] withdeg a = 2 anddeg b = 5. Suppose we
have a spectral sequence withE∗,∗2 a Γ∗-module. SupposeE∗,∗2 hasΓ∗-module
generators{x, y, z, w} with bideg x = (8, 4), bideg y = (6, 0), bideg z =
(0, 4) andbidegw = (10, 1) andΓ∗ acts freely on this basis, except thatbx = 0.
Under these conditions the spectral sequence collapses at theE2-term.

First observe that, since the differentials,dr, commute with theΓ∗-action, it
suffices to show thatdr = 0 on the basis elements for allr. The generatorz
survives toE∞ since it has total degree 4 and in total degree 5,E∗,∗2 is trivial—
any differential originating onz lands in total degree 5 and so is zero. This
implies thaty also survives toE∞ as noΓ∗-multiple of z hits y andy cannot
bound any other element. Notice thata2y could hitw by d4. However,d4

commutes withΓ∗ and sod4(a2y) = a2d4(y) = 0. Thusw survives since it
cannot be hit by anyΓ∗-multiple ofx or y. The elementx, however, could be
mapped toaw by d2. Sincebx = 0, we can compute

0 = d2(bx) = bd2(x) = baw 6= 0.
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Thusd2(x) = aw leads to a contradiction and sod2(x) = 0. For dimensional
reasons,dr(x) = 0 for r > 2 and sox survives toE∞. The spectral sequence
collapses at theE2-term.

1.4 Working backwards

In this section we assume the following “theorem.”

“Theorem IV.” There is a spectral sequence of algebras with

E∗,∗2
∼= V ∗ ⊗k W ∗, as bigraded algebras,

whereV ∗ andW ∗ are graded algebras, and converging toH∗ as a graded
algebra.

If H∗ is an algebraic invariant of a topological space, we can think ofV ∗

andW ∗ as similar invariants. (To rush ahead to Chapter 5 a moment,H∗ may
beH∗(E; k), V ∗ = H∗(B; k) andW ∗ = H∗(F ; k) whereF ↪→ E → B is
a fibration.) Suppose thatH∗ is known as well asV ∗ orW ∗. Does a spectral
sequence have enough structure as an algebraic object to allow us to obtainW ∗

whenV ∗ is known or vice versa? That is, can we work backward from the
answer and part of the data to the rest of the data?

Before presenting some examples of this situation, we introduce an alge-
braic condition on our graded algebras that is characteristic of topological in-
variants.
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Definition 1.11.A graded algebraH∗ is said to begraded commutative(also
skew-commutative) if, for x ∈ Hp andy ∈ Hq, x · y = (−1)pqy · x.

Over the field of rational numbers,freegraded commutative algebras come in
two varieties. Supposex2n is the generator ofA∗ with x2n of degree2n. Since
powers ofx2n are all in even dimensions, they commute with each other and
soA∗ ∼= Q[x2n], that is, the polynomial algebra on one generator of dimension
2n. SupposeB∗ has one generator of odd degree,y2n+1, of degree2n + 1.
Since

y2n+1 · y2n+1 = (−1)(2n+1)(2n+1)y2n+1 · y2n+1,

we deduce that(y2n+1)2 = 0 and so any higher power ofy2n+1 is zero. We
denoteB∗ by Λ(y2n+1), theexterior algebra on one generator of dimension
2n + 1. (The Λ suggests the wedge product of differential 1-forms.) Any
free graded commutative algebra overQ can be written as a tensor product
of polynomial algebras and exterior algebras on the generators of appropriate
dimensions.

Example 1.H.Suppose “Theorem IV” holds andH∗ ∼= Q (that is,H∗ is the
graded algebra withH0 ∼= Q andHi = {0} for i ≥ 1). If V ∗ ∼= Q[x2n], then
W ∗ ∼= Λ(y2n+1). If V ∗ ∼= Λ(x2n+1), thenW ∗ ∼= Q[y2n].

This example is a simple case of a theorem of [Borel53] that we discuss in
detail in later chapters. In particular, the reader can compare this example with
Theorem 3.27 and Theorem 6.22.

Recall that the differentialdi, applied to an element written asw ⊗ z,
satisfies the Leibniz rule

di(w ⊗ z) = di(w)⊗ z + (−1)degww ⊗ di(z).
Furthermore, the differential restricted toV ∗ ∼= E∗,02 is null and restricted to
W ∗ ∼= E0,∗

2 it must have its image inV ∗ ⊗W ∗. If di(1⊗ u) =
∑
j vj ⊗ wj ,

then

di(1⊗ uk) = k

(∑
j
vj ⊗ (wjuk−1)

)
.
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In the first case,V ∗ = Q[x2n] and we can display theE2-term in the spectral
sequence converging toH∗ = k as on the opposite page. Sincex2n does not
survive toE∞, there must be ay2n−1 in W ∗ so that

d2n(1⊗ y2n−1) = x2n ⊗ 1.

Now, with y2n−1 in W ∗, we have generated new elements inE∗,∗2 , namely
(x2n)m ⊗ y2n−1. By the derivation property of differentials,

d2n−1((x2n)m ⊗ y2n−1)
= d2n−1((x2n)m)⊗ y2n−1 + (x2n)m ⊗ d2n−1(y2n−1)
= md2n−1(x2n)(x2n)m−1 ⊗ y2n−1 + (x2n)m+1 ⊗ 1
= (x2n)m+1 ⊗ 1.

Thus we get the pattern of differentials in the picture. IfW ∗ contains any other
elements, they would give rise to classes that would persist toE∞ and contribute
toH∗. ThusW ∗ ∼= Λ(y2n−1).

To treat the other case, consider the following diagram.

As in the previous example, the equations

d2n(1⊗ y2n) = x2n+1 ⊗ 1
d2n

(
1⊗ ( 1

m )(y2n)m
)

= x2n+1 ⊗ (y2n)m−1
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give the desired isomorphisms to obtainH∗ ∼= Q. Notice that the characteristic
of the field plays a role here; inQ there exist the denominators that allowd2n to
be one-one and onto. For fields of nonzero characteristic or for an arbitrary ring,
this simple procedure can lead to elements that would persist toE∞ unlessW ∗

is different. For such cases,W ∗ would have the structure of a divided power
algebra (see the exercises for the definition and discussion).

Example 1.I.Suppose “Theorem IV” andH∗ ∼= Q. If V ∗ ∼= Q[x2]/(x2)3,
thenW ∗ ∼= Λ(y1)⊗Q[z4].

We argue by filling in the diagram. The pattern will be apparent. If we
write V ∗ along thep-axis, then it is clear that we requireΛ(y1) in W ∗ with
d2(y1) = x2. It follows thatd2(x2⊗y1) = (x2)2, leaving(x2)2⊗y1 in need of
a bounding element. Since(x2)2⊗y1 has total degree 5, we wantz4 of degree 4
inW ∗, withd4(z4) = (x2)2⊗y1. Nowy1⊗z4 boundsx2⊗z4 andx2⊗(y1⊗z4)
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takes care of(x2)2⊗z4. Furtherd4(( 1
2 )(z4)2) = (x2)2⊗(y1⊗z4); this pattern

continues to give the correctE∞-term.
Arguments of this sort were introduced by [Borel53]. [Zeeman57] proved

a very general result along these lines which is discussed in Chapter 3 (Theo-
rem 3.26).

Working backward from a known answer can lead to invariants of interest.
For example, in a paper on scissors congruence [Dupont82] has set up a certain
spectral sequence, converging to the trivial vector space, with a known nonzero
E1-term. The differentials can be interpreted as important geometric invariants
that generalize the classical Dehn invariant.

1.5 Interpreting the answer

After computing an entire spectral sequence to obtainE∗,∗∞ , we are finally
in position to reconstructH∗. As already noted,H∗ is determined as a graded
vector space. Suppose thatE∗,∗∞ is the associated bigraded algebra to some
stable filtration of a graded algebraH∗. The problem is to determine the algebra
structure onH∗ fromE∗,∗∞ . In Example 1.J, we show that this may be impossible
without further information. That’s the bad news. In Example 1.K there is some
good news; in some reasonable cases,E∗,∗∞ can completely determineH∗ as an
algebra.

If k is a field and{x, y, . . . } a set, then we denote the vector space overk
with basis{x, y, . . . } by k{x, y, . . . }.

Example 1.J,in which we present two graded algebras,H∗1 andH∗2 , withH∗1
not isomorphic toH∗2 , together with stable filtrations,F ∗1 andF ∗2 , such that
E∗,∗0 (H∗1 ) ∼= E∗,∗0 (H∗2 ) as bigraded algebras.

LetH∗1 = Q{x, y, z}/{all products= 0} , wheredeg x = 7, deg y = 8
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anddeg z = 15. We filterH∗1 by

H∗1 = F 1
1 = F 2

1 ⊃ Q{y, z} = F 4
1 ⊃ Q{z} = F 6

1 = F 7
1 ⊃ {0},

to obtain an associated graded spaceE∗,∗0 (H∗1 ), as pictured on the left in the
diagram, with all products zero: Now let

H∗2 = Q{u, v, w}
/
u2 = v2 = w2 = 0

uv = w
uw = vw = 0

wheredeg u = 7, deg v = 8 anddegw = 15. FilterH∗2 by

H∗2 = F 1
2 = F 2

2 ⊃ Q{v, w} = F 4
2 ⊃ Q{w} = F 6

2 = F 7
2 ⊃ {0}.

Notice thatu, v are inF 2
2 andu ·v = w is inF 4

2 . Since this is the only nontrivial
product, the filtration is stable. Taking the quotients for this filtration, we get
the associated bigraded algebra,E∗,∗0 (H∗2 ).

Sincebideg u = (2, 5) and bideg v = (4, 4), the bidegree ofu · v is
(6, 9) and sou · v = 0 in E∗,∗0 (H∗2 ). Since all products are zero,E∗,∗0 (H∗1 ) is
isomorphic toE∗,∗0 (H∗2 ) as bigraded algebras.

It is clear from this example that theE∞-term may not be enough to
reconstructH∗ as an algebra. Some extra information may come from an
earlier term in the spectral sequence (as in Example 1.E) or from the geometric
or algebraic situation from which the spectral sequence arose (for example,
when Massey products are involved; see§8.2).

In the topological applications,H∗ is generally a graded commutative
algebra. Therefore we introduce the analogous condition for a bigraded algebra.
We say thatE∗,∗ is graded-commutative if, wheneverx is in Ep,q andy in
Er,s thenx · y = (−1)(r+s)(p+q)y · x. To motivate this condition, consider
the functor,total : BigradedAlg → GradedAlg, from the category of
bigraded algebras with morphisms of bidegree (0,0) to the category of graded
algebras with morphisms of degree 0, given by

(totalE∗,∗)n =
⊕

p+q=n
Ep,q

and called thetotal complex. Since the multiplication onE∗,∗ gives a map
fromEp,r⊗Eq,s toEp+q,r+s, if we treatx andy as lying in the total complex,
the condition of graded commutativity ofE∗,∗ is that of graded commutativity
for total(E∗,∗). Observe thattotalE∗,∗0 (H∗) ∼= H∗ as graded vector spaces
whenH∗ is filtered.
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Example 1.K.If there is a spectral sequence converging toH∗ as an algebra
and theE∞-term is a free, graded-commutative, bigraded algebra, thenH∗ is
a free, graded commutative algebra isomorphic tototalE∗,∗∞ .

Suppose thatE∗,∗∞ is a graded-commutative algebra on generatorsx1, . . . , xr
where the bidegree ofxi is (pi, qi). Let A∗ be the free graded commutative
algebra on generatorsy1, . . . , yr wheredeg yi = pi + qi. Since we have free
graded commutative algebras,A∗ ∼= total(E∗,∗∞ ). We filterA∗ by giving each
element inA∗ a weight and then use the weights to induce the filtration. Assign
to each generator,yi, the weight,pi, and to each monomial,w =

∏r
i=1(yi)si ,

the weight,
∑r
i=1 sipi. If a homogeneous element inA∗ is a sum of monomials,

its weight is the minimum weight of the monomials in the sum. FilterA∗ by
defining

F̄ pA∗ = {w ∈ A∗ | weight(w) ≥ p}.

This is a decreasing stable filtration ofA∗ and the associated bigraded algebra,
Ē∗,∗0 (A∗, F̄ ), is free on generatorsy1, y2, . . . , yr of bidegree(pi, qi), that is,
Ē∗,∗0 (A∗, F̄ ) ∼= E∗,∗∞ .

We prove thatA∗ is isomorphic toH∗ as an algebra. Notice that there is
an obvious mapping ofA∗ toH∗ sinceA∗ is free. Next we show thatA∗ and
H∗ have isomorphic filtrations via a double induction: oni, the algebra degree,
andi− k, the filtration degree. To begin,H0 ∼= E0,0

∞ ∼= Ē0,0
0 (A∗) ∼= A0.

SupposeAj ∼= Hj for 0 ≤ j < i and consider the filtration ofHi

Hi ⊇ F 1Hi ⊇ F 2Hi ⊇ · · · ⊇ F iHi ⊇ {0}.

SinceEi,0∞ = F iHi, Ēi,00 (A∗) = F̄ iAi, andEi,0∞ ∼= Ēi,00 , we getF iHi ∼=
F̄ iAi. SupposeF i−kHi ∼= F̄ i−kAi for 0 ≤ k < j. From the definition
of E∞ we get two short exact sequences with isomorphisms by the inductive
hypotheses:

0 w F i−j+1Hi
w

u

∼=

F i−jHi
w

u

Ei−j,j∞ w

u

∼=

0

0 w F̄ i−j+1Ai w F̄ i−jAi w Ēi−j,j∞ w 0

By the Five-lemma (see [Cartan-Eilenberg56, p. 5]), we get the missing iso-
morphism, that is,F i−jHi ∼= F̄ i−jAi. By induction, we can letj = i and
obtain thatHi = F 0Hi ∼= F̄ 0Ai = Ai. ThusH∗ ∼= A∗ and furthermore,
F jH∗ ∼= F̄ jA∗ for all j. Since both filtrations are stable, no product inH∗

can vanish unless it does so inA∗. SinceA∗ is free graded commutative and
isomorphic tototal(E∗,∗∞ ), so isH∗.
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This chapter has introduced the reader to some of the formal features
of computations with spectral sequences. Chapter 2 focuses on the general
algebraic foundations that give rise to spectral sequences and (finally) some
classical examples that arise in purely algebraic settings. Chapter 3 contains a
discussion of the manner in which a spectral sequence can or cannot determine
its target uniquely. If this chapter provides a guide to the operation of a spectral
sequence, then Chapter 2 goes deeper to give the blueprints for building one,
and Chapter 3 tells one how to distinguish two of them.

Exercises

1.1. Prove theFive-lemma: Consider the commutative diagram of modules over a
commutative ring with unit,R,

A1 w

u

α1

A2 w

u

α2

A3 w

u

α3

A4 w

u

α4

A5

u

α5

B1 w B2 w B3 w B4 w B5

with rows exact. Ifα1, α2, α4, andα5 are all isomorphisms, thenα3 is an isomor-
phism. Ifα1 is an epimorphism andα2 andα4 are monomorphisms, thenα3 is a
monomorphism. Ifα5 is a monomorphism andα2 andα4 are epimorphisms, then
α3 is an epimorphism.

1.2. Prove that a short exact sequence of differential graded modules with differen-
tials of degree+1,

0→ (K∗, ∂K)→ (M∗, ∂M )→ (Q∗, ∂)→ 0

gives rise to a long exact sequence of homology modules:

→ Hn(K∗, ∂K)→ Hn(M∗, ∂M )→ Hn(Q∗, ∂)→ Hn+1(K∗, ∂K)→

1.3. Suppose{E∗,∗r , dr} is a first quadrant spectral sequence, of cohomological
type, converging toH∗. Suppose further thatEp,q2 = {0} unlessp = 0 or p = n
for somen ≥ 2. Derive theWang sequence:

· · · −→ Hk −→ E0,k
2

dn−→En,k−n+1
2 −→ Hk+1 −→ E0,k+1

2 −→ · · · .

1.4. Show that any free graded commutative, locally finite, algebra overQ is iso-
morphic to a tensor product of polynomial algebras and exterior algebras.

1.5. Suppose thatF ∗ is a stable filtration bounded below on a graded algebraH∗.
Show that the associated graded moduleE∗,∗0 (H∗, F ∗) is a bigraded algebra.
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1.6. Suppose{E∗,∗r , dr} is a first quadrant spectral sequence, of cohomological type
overZ, associated to an bounded filtration, and converging toH∗. If theE2-term
is given by

Ep,q2 =
{
Z/2Z, if (p, q) = (0, 0), (0, 4), (2, 3), (3, 2) or (6, 0),
{0}, elsewhere,

then determine all possible candidates forH∗.

1.7. Suppose(A, d) is a differential graded vector space overk, a field. LetB∗ be
the graded vector space,Bn = im(d : An−1 → An). Show that

P (H(A∗, d), t) = P (A∗, t)− (1 + t)P (B∗, t).

1.8. Suppose we are working overZ and the “Theorem IV” of§1.4 holds. Suppose,
as in Example 1.H, thatEr converges to a trivialE∞-term (that is,H∗ ∼= Q) and
V ∗ = Λ(x2n+1). Show thatW ∗ is isomorphic toΓ(y2n), that is, thedivided
power algebra on one generator of dimension2n, defined as havingZ-module
generatorsγi(y), for i = 0, 1, 2, . . . and

(1) γ0(y) = 1, γ1(y) = y, anddeg γk(y) = 2nk,
(2) γk(y)γh(y) = (k, h)γk+h(y) where(k, h) is the binomial coefficient

given by(k + h)!/k!h! .

The differentials in the spectral sequence are defined by

d(γk(y)) = (d(y))⊗ γk−1(y).



         

2
What is a spectral sequence?

“A spectral sequence is an algebraic object, like an exact
sequence, but more complicated.”

J. F. Adams

In Chapter 1 we restricted our examples of spectral sequences to the first
quadrant and to bigraded vector spaces over a field in order to focus on the
computational features of these objects. In this chapter we treat some deeper
structural features including the settings in which spectral sequences arise. In
order to establish a foundation of sufficient breadth, we remove the restrictions
of Chapter 1 and consider(Z × Z)-bigraded modules overR, a commutative
ring with unity. It is possible to treat spectral sequences in the more general
setting of abelian categories (the reader is referred to the thorough treatments
in [Eilenberg-Moore62], [Eckmann-Hilton66], [Lubkin80], and [Weibel96]).
The approach here supports most of the topological applications we want to
consider.

In this chapter we present two examples that arise in purely algebraic
contexts—the spectral sequence of a double complex and the K¨unneth spectral
sequence that generalizes the ordinary K¨unneth Theorem (Theorem 2.12). For
completeness we have included a discussion of basic homological algebra. This
provides a foundation for the generalizations that appear in later chapters.

2.1 Definitions and basic properties

We begin by generalizing ourFirst Definition and identifying the basic
components of a spectral sequence.

Definition 2.1. A differential bigraded module over a ringR, is a collection
of R-modules,{Ep,q}, wherep andq are integers, together with anR-linear
mapping,d : E∗,∗ → E∗,∗, thedifferential , of bidegree(s, 1−s) or (−s, s−1),
for some integers, and satisfyingd ◦ d = 0.

The customary picture of a bigraded module is given on the next page and
may be displayed by imagining theR-moduleEp,q sitting at the integral lattice
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point(p, q) in the Cartesian plane. The differential in this diagram has bidegree
(3,−2).

With the differential, we can take thehomologyof a differential bigraded
module:

Hp,q(E∗,∗, d) = ker d : Ep,q → Ep+s,q−s+1
/

im d : Ep−s,q+s−1 → Ep,q.

Combining these notions we can give the definition.

Definition 2.2. A spectral sequenceis a collection of differential bigraded
R-modules{E∗,∗r , dr}, wherer = 1, 2, . . . ; the differentials are either all of
bidegree(−r, r − 1) (for a spectral sequenceof homological type) or all of
bidegree(r, 1− r) (for a spectral sequenceof cohomological type) and for all
p, q, r, Ep,qr+1 is isomorphic toHp,q(E∗,∗r , dr).

It is worth repeating the caveat about differentials mentioned in Chapter 1:
knowledge ofE∗,∗r anddr determinesE∗,∗r+1 but notdr+1. If we think of a spec-
tral sequence as a black box with input a differential bigraded module, usually
E∗,∗1 , then with each turn of the handle, the machine computes a successive
homology according to a sequence of differentials. If some differential is un-
known, then some other (any other!) principle is needed to proceed. From
Chapter 1, the reader is acquainted with several algebraic tricks that allow fur-
ther calculation. In the nontrivial cases, it is often a deep geometric idea that is
caught up in the knowledge of a differential.

Although we have our spectral sequence indexed byr = 1, 2, . . . , it is
clear that the indexing can begin at any integer and most often the sequence
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begins atr = 2, whereE∗,∗2 is something familiar. In contrast with the first
quadrant restriction of Chapter 1, the target of a general spectral sequence is
less obvious to define. To identify this target, we present a spectral sequence
as a tower of submodules of a given module. From this tower, it is clear where
the algebraic information is converging and, as we saw already in Chapter 1, it
may be possible to associate that information with some desired answer.

Let us begin withE∗,∗2 . For the sake of clarity we suppress the bigrad-
ing (though the reader should keep track for a while to understand better the
bidegrees of the differentials). Denote

Z2 = ker d2 and B2 = im d2.

The condition,d2 ◦ d2 = 0, impliesB2 ⊂ Z2 ⊂ E2 and, by definition,
E3
∼= Z2/B2. Write Z̄3 for ker d3 : E3 → E3. SinceZ̄3 is a submodule of

E3, it can be written asZ3/B2 whereZ3 is a submodule ofZ2. Similarly
B̄3 = im d3 is isomorphic toB3/B2 and so

E4
∼= Z̄3/B̄3

∼= (Z3/B2)/(B3/B2) ∼= Z3/B3.

These data can be presented as a tower of inclusions:B2 ⊂ B3 ⊂ Z3 ⊂ Z2 ⊂
E2. Iterating this process, we present the spectral sequence as an infinite tower
of submodules ofE2:

B2 ⊂ B3 ⊂ · · · ⊂ Bn ⊂ · · · · · · ⊂ Zn ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ E2

with the property thatEn+1
∼= Zn/Bn and the differential,dn+1, can be

taken as a mappingZn/Bn → Zn/Bn, which has kernelZn+1/Bn and image
Bn+1/Bn. The short exact sequence induced bydn+1,

0 −→ Zn+1/Bn −→ Zn/Bn
dn+1

−−−→ Bn+1/Bn −→ 0,

gives rise to isomorphismsZn/Zn+1
∼= Bn+1/Bn for alln. Conversely, a tower

of submodules ofE2, together with such a set of isomorphisms, determines a
spectral sequence.

We say that an element inE2 that lies inZr survives to therth stage, having
been in the kernel of the previousr−2 differentials. The submoduleBr ofE2 is
the set of elements that areboundaries by therth stage. The bigraded module
E∗,∗r is called theEr-term of the spectral sequence (or sometimes theEr-page).
Let Z∞ =

⋂
n Zn be the submodule ofE2 of elements thatsurvive forever,

that is, elements that are cycles at every stage. The submoduleB∞ =
⋃
nBn

consists of those elements thateventually bound. From the tower of inclusions
it is clear thatB∞ ⊂ Z∞ and the fruit of our efforts appears:E∞ = Z∞/B∞ is
the bigraded module that remains after the computation of the infinite sequence
of successive homologies. Anticipating the notion of convergence, it is the
E∞-term of a spectral sequence that is the general goal of a computation.
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Under the best possible conditions, the computation ends at some finite
stage; recall that a spectral sequencecollapses at theN th term if the differen-
tialsdr = 0 for r ≥ N . From the short exact sequence,

0 −→ Zr/Br−1 −→ Zr−1/Br−1

dr−→ Br/Br−1 −→ 0,

the conditiondr = 0 forcesZr = Zr−1 andBr = Br−1. The tower of
submodules becomes

B2 ⊂ B3 ⊂ · · · ⊂ BN−1

= BN = · · · = B∞ ⊂ Z∞ = · · · = ZN

= ZN−1 ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ E2

and soE∞ = EN . The reader should try his or her hand at generating some
examples of collapse analogous to those in§1.2.

2.2 How does a spectral sequence arise?

Now that we can describe a spectral sequence, how do we build one? In
this section we present two general settings in which spectral sequences arise
naturally: when one has a filtered differential module and when one has an
exact couple. These approaches lay out the blueprints followed in the rest of
the book.

Filtered differential modules

Definition 2.3. A filtration F ∗ on anR-moduleA is a family of submodules
{F pA} for p in Z so that

· · · ⊂ F p+1A ⊂ F pA ⊂ F p−1A ⊂ · · · ⊂ A (decreasing filtration)

or · · · ⊂ F p−1A ⊂ F pA ⊂ F p+1A ⊂ · · · ⊂ A (increasing filtration).

An example of a filteredZ-module is given by the integers,Z, together with the
decreasing filtration

F pZ =
{
Z, if p ≤ 0,

2pZ, if p > 0.

· · · ⊂ 16Z ⊂ 8Z ⊂ 4Z ⊂ 2Z ⊂ Z ⊂ Z ⊂ · · · ⊂ Z.
We can collapse a filtered module to itsassociated graded module, E∗0 (A)
given by

Ep0 (A) =
{
F pA/F p+1A, whenF is decreasing,

F pA/F p−1A, whenF is increasing.

In the example above,Ep0 (Z) = {0} if p < 0 andEp0 (Z) ∼= Z/2Z if p ≥ 0.
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The 2-adic integers,̂Z2 = lim
←s

Z/2sZ has a decreasing filtration given by

F pẐ2 = ker(Ẑ2 → Z/2pZ)

for p > 0 andF pẐ2 = Ẑ2 for p ≤ 0. The projectionsφp : Ẑ2 → Z/2pZ give
rise to short exact sequences

0→ Ẑ2

×2p

−−→ Ẑ2

φp
−→ Z/2pZ→ 0

and so we obtain the same associated graded module,Ep0 (Ẑ2) = {0} if p < 0

andEp0 (Ẑ2) ∼= 2pẐ2/2p+1
Ẑ2
∼= Z/2Z if p ≥ 0.

Reconstruction of a filtered module from an associated graded module may
be difficult. In Chapter 1, in the case of field coefficients and a first quadrant
spectral sequence, dimension arguments allow the recovery of an isomorphic
vector space from the associated graded one. For an arbitrary commutative ring
R, however, extension problems may arise: SupposeA is a filteredR-module
and the (decreasing) filtration is bounded above and below, that is,F kA = {0}
if k > n. Further suppose thatF kA = A for k < 0; we present the filtration

{0} ⊂ FnA ⊂ Fn−1A ⊂ · · · ⊂ F 1A ⊂ F 0A ⊂ F−1A = A.

The associated graded moduleE∗0 (A) is nontrivial only in degrees−1 ≤ k ≤ n,
and we obtain the series of short exact sequences

0 w FnA w
= En0 (A) w 0

0 w FnA w Fn−1A w En−1
0 (A) w 0

...
...

...

0 w F kA w F k−1A w Ek−1
0 (A) w 0

...
...

...

0 w F 1A w F 0A w E0
0(A) w 0

0 w F 0A w A w E−1
0 (A) w 0.

If one knows that the filtration satisfies such boundedness conditions, then
En0 (A) determinesFnA. However,Fn−1A is only determined up to choice
of extension ofFnA byEn−1

0 (A). Working downward, eachF k−1A is deter-
mined by a choice of extension byF kA byEk−1

0 (A) down toA itself, which
is known only up to a series of choices. In general, we are left with some
ambiguity aboutA unless some further structure guides our choices.

If H∗ is a gradedR-module andH∗ is filtered, then we can examine the
filtration on each degree by lettingF pHn = F pH∗ ∩Hn. Thus the associated
graded module is bigraded when we define

Ep,q0 (H∗, F ) =


F pHp+q/

F p+1Hp+q , if F ∗ is decreasing,

F pHp+q/
F p−1Hp+q , if F ∗ is increasing.
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We next combine the associated graded module with the definition of a spectral
sequence.

Definition 2.4. A spectral sequence{E∗,∗r , dr} is said toconvergeto H∗, a
gradedR-module, if there is a filtrationF onH∗ such that

Ep,q∞ ∼= Ep,q0 (H∗, F ),

whereE∗,∗∞ is the limit term of the spectral sequence.

Determination of a graded moduleH∗ is generally the goal of a compu-
tation. If there is a spectral sequence converging toH∗ and if it converges
uniquely toH∗ and if all of the extension problems can be settled, thenH∗ is
determined (a lot ofifs).

With the fundamental definitions in place, we begin to describe a general
setting in which spectral sequences arise.

Definition 2.5. AnR-module is afiltered differential graded module if

(1) A is a direct sum of submodules,A =
∞⊕
n=0

An.

(2) There is anR-linear mapping,d : A→ A, of degree1 (d : An → An+1)
or degree−1 (d : An → An−1) satisfyingd ◦ d = 0.

(3) A has a filtrationF and the differentiald respects the filtration, that is,
d : F pA→ F pA.

Since the differential respects the filtration,H(A, d) = ker d/ im d inherits
a filtration

F pH(A, d) = image
(
H(F pA, d)

H(inclusion)
−−−−−−−−→ H(A, d)

)
.

It’s time for the main theorem. For convenience, suppose thatA is a filtered
differential graded module with differential of degree +1 and a descending
filtration. (This is often the case in cohomological examples. The case of a
spectral sequence of homological type is treated in the exercises.)

Theorem 2.6.Each filtered differential graded module(A, d, F ∗) determines a
spectral sequence,{E∗,∗r , dr}, r = 1, 2, . . . with dr of bidegree(r, 1− r) and

Ep,q1
∼= Hp+q(F pA/F p+1A).

Suppose further that the filtration isbounded, that is, for each dimensionn,
there are valuess = s(n) andt = t(n), so that

{0} ⊂ F sAn ⊂ F s−1An ⊂ · · · ⊂ F t+1An ⊂ F tAn = An,
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then the spectral sequence converges toH(A, d), that is,

Ep,q∞ ∼= F pHp+q(A, d)/
F p+1Hp+q(A, d).

Before giving a proof of the theorem, let’s anticipate how it might be
applied. Information aboutH(A, d) is most readily obtained fromA, but this
module may be inaccessible, for example, whenA = C∗(X;R), the singular
cochains on a spaceX with coefficients in a commutative ringR. If A can
be filtered and some term of the associated spectral sequence identified as
something calculable, then we can obtainH(A, d) up to computation of the
successive homologies and reconstruction from the associated graded module.

Theorem 2.6 first appeared in the work of [Koszul47] and [Cartan48]
who had extracted the algebraic essence underlying the work of [Leray46] on
sheaves, homogeneous spaces, and fibre spaces.

A word of warning: Though the guts of our black box are laid bare, such close
examination may reveal details too fine to be enlightening. Thus we place the
proof of the theorem in a separate section and recommend skipping it to the
novice (®N , not for the novice) and to the weak of interest. The novice reader
can take Theorem 2.6 on faith on the first reading of the book. Occasional
reference may be made in later sections to details contained in the proof but the
reader can easily identify the necessary details at that time.

After the proof of Theorem 2.6 we consider another setting in which spec-
tral sequences arise—exact couples. Relations between these constructions are
also determined.

The proof of Theorem 2.6®N
In what follows, keep the decreasing filtration in mind:

· · · ⊂ F pAp+q ⊂ F p−1Ap+q ⊂ F p−2Ap+q ⊂ · · · ,

as well as the fact that the differential is stable, that is,d(F pAp+q) ⊂ F pAp+q+1.
Consider the following definitions:

Zp,qr = elements inF pAp+q that have boundaries inF p+rAp+q+1

=F pAp+q ∩ d−1(F p+rAp+q+1)
Bp,qr = elements inF pAp+q that form the image ofd from F p−rAp+q−1

=F pAp+q ∩ d(F p−rAp+q−1)
Zp,q∞ = ker d ∩ F pAp+q

Bp,q∞ = im d ∩ F pAp+q.

The decreasing filtration and the stability of the differential give us the desired
tower of submodules,

Bp,q0 ⊂ Bp,q1 ⊂ · · · ⊂ Bp,q∞ ⊂ Zp,q∞ ⊂ · · · ⊂ Zp,q1 ⊂ Zp,q0
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as well asd(Zp−r,q+r−1
r ) = d(F p−rAp+q−1 ∩ d−1(F pAp+q))

= F pAp+q ∩ d(F p−rAp+q−1)
= Bp,qr .

The assumption that the filtration is bounded implies, forr > s(p+ q+ 1)− p
andr ≥ p − t(p + q − 1), thatZp,qr = Zp,q∞ andBp,qr = Bp,q∞ . This insures
convergence.

Define, for all0 ≤ r ≤ ∞, Ep,qr = Zp,qr /(Zp+1,q−1
r−1 + Bp,qr−1) and define

ηp,qr : Zp,qr → Ep,qr to be the canonical projection withker ηp,qr = (Zp+1,q−1
r−1 +

Bp,qr−1). Observe thatd(Zp,qr ) = Bp+r,q−r+1
r ⊂ Zp+r,q−r+1

r and

d(Zp+1,q−1
r−1 +Bp,qr−1) = d(Zp+1,q−1

r−1 ) + d(Bp,qr−1)

⊂ Bp+r,q−r+1
r−1 + 0

⊂ Zp+r+1,q−r
r−1 +Bp+r,q−r+1

r−1 .

Thus the differential, as a mappingd : Zp,qr → Zp+r,q−r+1
r , induces a homo-

morphism,dr, so that the following diagram commutes.

Zp,qr w
d

u
η

Zp+r,q−r+1
r

u
η

Ep,qr w
dr

Ep+r,q−r+1
r

Sinced ◦ d = 0, dr ◦ dr = 0.
To complete the proof we must establish the following:

I. H∗(E∗,∗r , dr) ∼= E∗,∗r+1,
II. Ep,q1

∼= Hp+q(F pA/F p+1A),
III. Ep,q∞ ∼= F pHp+q(A, d)/F p+1Hp+q(A, d).

Toward I, consider the diagram

Zp+1,q−1
r +Bp,qr w

⊂
Zp,qr+1 w

⊂

u
η|

Zp,qr w
d

u
ηp,qr

Zp+r,q−r+1
r

u
ηp+r,q−r+1
r

ker dr w

u

Ep,qr w
dr

Ep+r,q−r+1
r

Hp,q(E∗,∗r , dr)

u

0

First observe thatηp,qr (Zp,qr+1) = ker dr. Considerη−1(ker dr). Sincedr ◦ η =
η ◦d, dr(ηz) = 0 if and only ifdz is inZp+r+1,q−r

r−1 +Bp+r,q−r+1
r−1 and, by the
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definitions ofZ∗,∗∗ andB∗,∗∗ , this is so if and only ifz is inZp,qr+1 + Zp+1,q−1
r−1 .

Thusη−1(ker dr) = Zp,qr+1 +Zp+1,q−1
r−1 and soker dr = η(Zp,qr+1 +Zp+1,q−1

r−1 ) =
η(Zp,qr+1), sinceZp+1,q−1

r−1 ⊂ ker ηp,qr .
Secondly observe thatZp+1,q−1

r +Bp,qr = Zp,qr−1∩ ((ηp,qr )−1(im dr)). We
know thatim dr = ηp,qr (d(Zp−r,q+r−1

r )) = ηp,qr (Bp,qr ) and so

(ηp,qr )−1(im dr) = Bp,qr + ker ηp,qr
= Bp,qr +Bp,qr−1 + Zp+1,q−1

r−1

= Bp,qr + Zp+1,q−1
r−1 .

SinceZp+1,q−1
r−1 ∩ Zp,qr+1 = F p+1Ap+q ∩ d−1(F p+rAp+q+1) ∩ F pAp+q ∩

d−1(F p+r+1Ap+q+1) andF p+1Ap+q ⊂ F pAp+q, as well asF p+r+1Ap+q ⊂
F p+rAp+q, we haveZp+1,q−1

r−1 ∩Zp,qr+1 = F p+1Ap+q∩d−1(F p+r+1Ap+q+1) =
Zp+1,q−1
r . With the previous calculation we obtain

Zp+1,q−1
r−1 ∩ (ηp,qr )−1(im dr) = Zp+1,q−1

r +Bp,qr .

Finally, letγ : Zp,qr+1 → Hp,q(E∗,∗r , dr) be the composite mapping ofηp,qr
with the canonical projectionker dr → Hp,q(E∗,∗r , dr). The kernel ofγ is given
by Zp,qr+1 ∩ (ηp,qr )−1(im dr) = Zp+1,q−1

r + Bp,qr . Sinceγ is an epimorphism,
we have the isomorphism

Hp,q(E∗,∗r , dr) ∼= Zp,qr+1
/

(Zp+1,q−1
r +Bp,qr ) = Ep,qr+1.

Thusγ induces the isomorphism making our tower a spectral sequence.
Toward II, observeEp,q0 = Zp,q0 /(Zp+1,q−1

−1 +Bp,q−1 ) where we define

Zp+1,q−1
−1 = F p+1Ap+q and Bp,q−1 = d(F p+1Ap+q−1).

Sinced respects the filtration

Ep,q0 = F pAp+q ∩ d−1(F pAp+q+1)/
F p+1Ap+q + d(F p+1Ap+q−1)

= F pAp+q/F p+1Ap+q.

The differentiald0 : Ep,q0 → Ep,q+1
0 is induced by the differentiald : F pAp+q →

F pAp+q+1 and so we haveEp,q1
∼= Hp+q(F pA/F p+1A).

For III, let ηp,q∞ : Zp,q∞ → Ep,q∞ andπ : ker d→ H(A, d) denote the canon-
ical projections:

F pHp+q(A, d) = Hp+q(im(F pA→ A), d) = π(F pAp+q∩ker d) = π(Zp,q∞ ).
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Sinceπ(ker ηp,q∞ ) = π(Zp+1,q−1
∞ +Bp,q∞ ) = F p+1Hp+q(A, d), we have thatπ

induces a mappingd∞ : Ep,q∞ → F pHp+q(A, d)/F p+1Hp+q(A, d). Observe
further that

ker d∞ = ηp,q∞ (π−1(F p+1Hp+q(A, d)) ∩ Zp,q∞ )
= ηp,q∞ (Zp+1,q−1

∞ ∩ d(A) ∩ Zp,q∞ )
⊂ ηp,q∞ (Zp+1,q−1

∞ +Bp,q∞ ) = {0}.

Thusd∞ is an isomorphism. The boundedness of the filtration on(A, d) implies
that the induced filtration onH(A, d) is bounded and so a finite sequence of
extension problems go fromE∗,∗∞ toH(A, d). ut

In §3.1 the relation between a spectral sequence associated to a filtered
differential graded module and the homology of that differential module is
developed further. The role of assumptions like boundedness of the filtration in
determiningH(A, d) uniquely is explored. Weaker conditions that guarantee
convergence and uniqueness of the target are also discussed.

Exact couples

It can be the case that our objects of study are not explicitly filtered or
do not come from a filtered differential object. In this section we present
another general algebraic setting, exact couples, in which spectral sequences
arise. The ease of definition of the spectral sequence and its applicability make
this approach very attractive. Unlike the case of a filtered differential graded
module, however, the target of the spectral sequence coming from an exact
couple may be difficult to identify. Some results toward solving that problem
are developed in Chapter 3. We also show how an exact couple results from a
filtered differential graded module whose spectral sequence is the same as the
one in Theorem 2.6. The idea of the exact couple was introduced by [Massey50].

LetD andE denoteR-modules (which are bigraded in the relevant cases)
and leti : D → D, j : D → E andk : E → D be module homomorphisms.
We present these data as in the diagram:

D w
i D




�
j

E

N
N

NNQ

k

and callC = {D,E, i, j, k} an exact coupleif this diagram is exact at each
group, that is,im i = ker j, im j = ker k andim k = ker i.

An important example of an exact couple comes from the long exact se-
quence in homology and a short exact sequence of coefficients. Let

0 −→ Z
×p
−−→ Z −→ Z/pZ −→ 0
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be the short exact sequence associated to the ‘timesp’ map. Suppose(C∗, d) is
a differential graded abelian group that is free in each degree. When we tensor
C∗ with the coefficients, the ‘timesp’ map results in the short exact sequence

0 −→ C∗
×p
−−→ C∗ −→ C∗ ⊗ Z/pZ −→ 0

and, on application of homology, an exact couple

H(C∗) w
H( ×p)

H(C∗)
A
A
AD

H(C∗ ⊗ Z/pZ)

h
h
hk

The spectral sequence associated to this exact couple is known as theBockstein
spectral sequence, the topic of Chapter 10.

An immediate consequence of the exactness of a couple is thatE becomes
a differentialR-module withd : E → E given byd = j ◦ k. To see this, we
compute:d ◦ d = (j ◦ k) ◦ (j ◦ k) = j ◦ (k ◦ j) ◦ k = 0. The fundamental
operation on exact couples is the formation of thederived couple: Let

E′ = H(E, d) = ker d/ im d = ker(j◦k)/ im(j◦k), D′ = i(D) = ker j.

Also define

i′ = i|iD : D′ → D′ and j′ : D′ → E′ by j′(i(x)) = j(x) + dE ∈ E′

wherex ∈ D. Thatj′ is well-defined can be seen as follows: Ifi(x) = i(x′),
thenx − x′ is in ker i = im k and there is ay ∈ E with k(y) = x − x′.
Thus (j ◦ k)(y) = d(y) = j(x) − j(x′) and j(x) = j(x′) + d(y), that is,
j(x) + dE = j(x′) + dE as cosets inE′. Finally, define

k′ : E′ → D′ by k′(e+ dE) = k(e).

If e + dE = e′ + dE, thene′ = e + d(x) for somex ∈ E andk(e′) =
k(e) + k(d(x)) = k(e) + (k ◦ j ◦ k)(x) = k(e); thusk′ is well-defined. Also,
sinced(e) = 0, we have thatk(e) is in ker j = im i = D′.

We call C′ = {D′, E′, i′, j′, k′} the derived coupleof C. We prove the
fundamental result.

Proposition 2.7.C′ = {D′, E′, i′, j′, k′}, the derived couple, is an exact couple.

Proof: We first consider exactness at the leftD′:

ker i′ = im i ∩ ker i = ker j ∩ im k

= k(k−1(ker j)) = k(ker d) = k′(ker d/ im d)
= im k′.
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Notice thatD′ = iD = D/ ker i. From this we can write

ker j′ = j−1(im d)/ker i = j−1(j(im k))/ker i
= (im k + ker j)/ker i = (ker i+ ker j)/ker i
= i(ker j) = i(im i) = im i′.

Finally considerker k′ = ker k/ im d = im j/ im d = jD/ im d = im j′ since
j ◦ i = 0. ut

We can iterate this process to obtain thenth derived coupleof C,

C(n) = {D(n), E(n), i(n), j(n), k(n)} = (C(n−1))′.

The connection with spectral sequences can be guessed by now sinceE(n+1) =
H(E(n), d(n)). To solidify this connection we introduce a bigrading.

Theorem 2.8. SupposeD∗,∗ = {Dp,q} andE∗,∗ = {Ep,q} are bigraded
modules overR equipped with homomorphismsi of bidegree(−1, 1), j of
bidegree(0, 0) andk of bidegree(1, 0).

D∗,∗ w
i D∗,∗




�
j

E∗,∗

N
N

NNQ

k

These data determine a spectral sequence{Er, dr} for r = 1, 2, . . . , of
cohomological type, withEr = (E∗,∗)(r−1), the(r − 1)-st derived module of
E∗,∗ anddr = j(r) ◦ k(r).

Proof: It suffices to check that the differentials,dr, have the correct bidegree,
(r, 1− r). LetE1 = E∗,∗, d1 = j ◦ k and sod1 has bidegree(1, 0) + (0, 0) =
(1, 0). Now assumej(r−1) andk(r−1) have bidegrees(r− 2, 2− r) and(1, 0),
respectively. Sincej(r)(i(r−1)(x)) = j(r−1)(x) + d(r−1)E(r−1), the image in
(Ep,q)(r) must come fromi(r−1)(Dp−r+2,q+r−2)(r−1) = (Dp−r+1,q+r−1)(r)

or j(r) has bidegree(r− 1, 1− r). Sincek(r)(e+ d(r−1)E(r−1)) = k(r−1)(e)
andk(r−1) has bidegree(1, 0), so doesk(r). Combining this with the inductive
hypothesis gives us thatd(r) has bidegree(r, 1− r) as required. ut

A bigraded exact couple may be displayed as in the following diagram:
Here the path made up of one vertical segment and two horizontal segments is
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exact.

u
i

u
i

w
k Dp+2,q−1

w
j

u
i

Ep+2,q−1
w

k Dp+3,q−1
w

j

u
i

w
k Dp+1,q

w
j

u
i

Ep+1,q
w

k Dp+2,q
w

j

u
i

w
k Dp,q+1

w
j

u
i

Ep,q+1
w

k Dp+1,q+1
w

j

u
i

Another useful presentation of exact couples is theunrolled exact couple
(or unraveledexact couple; see the paper of [Boardman99]) where we suppress
one of the bidegrees in the diagram:

w
i Dp+1,∗

w
i Dp,∗

w
i

'
'
'*

j

Dp−1,∗
w

i

'
'
'*

j

Ep,∗

h
h
hk

k

Ep−1,∗

h
h
hk

k

To an exact couple we associate a tower of submodules ofE and anE∞-term as
we would do for any spectral sequence. There is an intrinsic expression (related
only to the couple) for these objects that is useful when studying convergence.
(See Chapter 3.) We use the notation of an unrolled exact couple.

Proposition 2.9.LetZp,∗r = k−1(im ir−1 : Dp+r,∗ −→ Dp+1,∗) andBp,∗r =
j(ker ir−1 : Dp,∗ −→ Dp−r+1,∗) designate submodules ofEp,∗. Then these
submodules determine the spectral sequence associated to the exact couple:

Ep,∗r = (Ep,∗)(r−1) ∼= Zp,∗r /Bp,∗r .

Furthermore,Ep,∗∞ ∼=
⋂
r Z

p,∗
r /

⋃
r B

p,∗
r
∼=⋂

r

k−1(im ir−1 : Dp+r,∗ → Dp+1,∗)
/⋃

r

j(ker ir−1 : Dp,∗ → Dp−r+1,∗) .

Proof: For r = 2, E∗,∗2 = (E∗,∗)′ = ker d/ im d = ker(j ◦ k)/ im(j ◦ k).
Now im(j ◦ k) = j(im k) = j(ker i). Also ker(j ◦ k) = k−1(ker j) =
k−1(im i). So

Ep,∗2 = k−1(im i : Dp+2,∗ → Dp+1,∗)
/
j(ker i : Dp,∗ → Dp−1,∗).
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By induction, sincei(r), j(r), andk(r) are induced byi, j, andk with the
appropriate images inD(r) = im ir−1, we obtain theEr-term as described. It
is clear thatZp,∗r ⊂ Zp,∗r−1 andBp,∗r ⊂ Bp,∗r+1 where the inclusions follow by
composition with another factor of the mappingi. We leave it to the reader to
check that the differential

dr : Zr−1/Br−1 → Br/Br−1 ⊂ Zr−1/Br−1

is induced on our representation byj ◦ k with the proper kernel. This describes
the tower of submodules. The description of theE∞-term of the associated
spectral sequence follows immediately. ut

Proposition 2.9 implies the inclusionj(Dp,∗) ⊂ Zp,∗r for all r. This
follows becausek ◦ j(Dp,∗) = {0} and soj(Dp,∗) ⊂ ker k ⊂ Zp,∗r . Thus
elements inEp,∗r that come from the image ofj are permanent cycles in the
spectral sequence.

Another expression for theEr-terms of the spectral sequence associated
to an exact couple is given in the following corollary (first given by [Eckmann-
Hilton66]).

Corollary 2.10.For r ≥ 1, there is an exact sequence:

0 −→ Dp,∗/
(ker ir(Dp,∗ → Dp−r,∗) + iDp+1,∗)

̄
−→ Ep,∗r+1

k̄
−→ im ir(Dp+r+1,∗ → Dp+1,∗) ∩ ker i(Dp+1,∗ → Dp,∗) −→ 0.

Proof: By Proposition 2.9 we get the following diagram with rows and
columns exact:

j(ker ir : Dp,∗ → Dp−r,∗)

u

k−1(im ir : Dp+r+1,∗ → Dp+1,∗) w
k

u

im ir ∩ im k w 0

Ep,∗r+1

u

��
��

��
��

���

k̄

0

Let k̄ : Ep,∗r+1 → im ir ∩ im k be induced by lifting an element and applying
k. Sincek ◦ j = 0, this mapping is well-defined and sinceim ir ∩ im k =
im ir ∩ ker i, we have the right half of the short exact sequence.
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To construct the homomorphism̄we begin with the short exact sequences

0 w iDp+1,∗ + ker ir w

u
j

Dp,∗
w

u
j

Dp,∗/
(iDp+1,∗ + ker ir) w

u
̂

0

0 w j(ker ir) w im j w im j
/
j(ker ir) w 0.

The mappinĝ is an epimorphism by the Five-lemma. Alsoim j = ker k =
k−1(0), so we have the homomorphism

̄ : Dp,∗/
(iDp+1,∗ + ker ir) −→ k−1(0)/

j(ker ir).

Consider the following diagram with̄k and both rows exact:

0 w k−1(0) w

u

k−1(im ir) w
k

u

im ir ∩ im k w 0

0 w k
−1(0)/

j(ker ir) w k
−1(im ir)/

j(ker ir) w
k̄ im ir ∩ im k w 0.

SinceEp,∗r+1 = k−1(im ir)/
j(ker ir), it suffices to show that̄ is an isomor-

phism. We have that̄ is an epimorphism already so we show that it is a
monomorphism. Let[a], [b] be in Dp,∗/

(iDp+1,∗ + ker ir). If ̄[a] = ̄[b],
then̄[a− b] = 0 and soj(a− b) lies in j(ker ir). Therefore, eithera− b is in
ker ir or a− b is in ker j = im i. We conclude thata− b is in im i+ ker ir and
so[a] = [b]. ut

The equivalence of the two approaches

A filtered differential gradedR-module(A, d, F ) leads to another example
of an exact couple. For each filtration degreep, there is a short exact sequence
of graded modules

0 −→ F p+1A −→ F pA −→ F pA/F p+1A −→ 0.

The fact that the differential respects the filtration gives us a short exact sequence
of differential graded modules. When we apply the homology functor, we
obtain, for eachp, the long exact sequence

· · ·Hp+q(F p+1A)
i
−→ Hp+q(F pA)

j
−→ Hp+q(F pA/F p+1A)

k
−→ Hp+q+1(F p+1A)

i
−→ Hp+q+1(F pA)

j
−→ · · ·
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wherek is the connecting homomorphism. Define the bigraded modulesEp,q =
Hp+q(F pA/F p+1A) andDp,q = Hp+q(F pA). This gives an exact couple
from the long exact sequences:

Dp+1,q−1
w

i Dp,q

h
h
h
hhk

jDp+1,q

Ep,q
N

N
N

N
N
N
NNQ

k

The bigradings agree with Theorem 2.8 to yield a spectral sequence. Further-
more, theE1-terms of this spectral sequence and the one in Theorem 2.6 are
the same.

Proposition 2.11. For a filtered differential gradedR-module(A, d, F ), the
spectral sequence associated to the (decreasing) filtration and the spectral se-
quence associated to the exact couple are the same.

Proof: It suffices to show that, in the spectral sequence for the exact couple,
theEr-term, as a subquotient ofF pA/F p+1A, coincides with the subquotient
given in the proof of Theorem 2.6. That is, in the notation of the proof of
Theorem 2.6,

Ep,qr = Zp,qr
/
Zp+1,q−1
r−1 +Bp,qr−1

.

Supposez is inHp+q(F pA/F p+1A) = Ep,q1 . Thenz can be represented
by [x + F p+1A] with x in F pA andd(x) in F p+1A. The boundary homo-
morphismk in the long exact sequence that is part of the exact couple can be
described explicitly by

k([x+ F p+1A]) = [d(x)] in Hp+q+1(F p+1A).

Thus[x+ F p+1A] is in k−1(im ir−1) if and only if [d(x)] is in im ir−1 if and
only if d(x) is in F p+rAp+q+1. Sincex is already inF pAp+q, thenx lies
in F pAp+q ∩ d−1(F p+rAp+q+1) = Zp,qr . Adding the indeterminacy, in the
appropriate bigrading, we now have

k−1(im ir−1) = Zp,qr /F p+1Ap+q.

Considerker ir−1 ⊂ Hp+q(F pA). A class[u] is in ker ir−1 if and only if
u is inF pAp+q andu is a boundary inF p−r+1Ap+q. Thenu lies inF pAp+q ∩
d(F p−r+1Ap+q−1) = Bp,qr . Sincej assigns to a class inHp+q(F pA) its
relative class moduloF p+1A, we deduce that

j(ker ir−1) = Bp,qr−1/F
p+1Ap+q.
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By definitionZp+1,q−1
r−1 ⊂ F p+1Ap+q and so we have

Ep,qr = k−1(im ir−1)
/
j(ker ir−1)

= Zp,qr /F p+1Ap+q
/
Bp,qr /F p+1Ap+q

= Zp,qr /F p+1Ap+q
/

(Bp,qr−1 + Zp+1,q−1
r−1 )/F p+1Ap+q

∼= Zp,qr
/

(Zp+1,q−1
r−1 +Bp,qr−1) . ut

We next discuss the effect of extra structure on a filtered differential mod-
ule.

2.3 Spectral sequences of algebras

Let (A, dA) and(B, dB) be differential graded modules overR. Recall
the definition of thetensor product of differential graded modulesoverR;
(A⊗R B, d⊗) is given by

(A⊗R B)n =
⊕

p+q=n
Ap ⊗R Bq

with d⊗(a⊗b) = dA(a)⊗b+(−1)deg aa⊗dB(b). Furthermore, adifferential
graded algebraoverR is a differential graded module,(A, d) together with a
morphism of differential graded modules,

ψ : (A⊗R A, d⊗) −→ (A, d)

for which the usual diagrams commute (expressing associativity and, if it exists,
the property of a unit inA0).

We next define thetensor product of differential bigraded modulesover
R. Given(E∗,∗, dE) and(Ē∗,∗, dĒ) let

(E ⊗R Ē)p,q =
⊕
r+t=p
s+u=q

Er,s ⊗R Ēt,u

with d⊗(e⊗ ē) = dE(e)⊗ ē+(−1)r+se⊗dĒ(ē) whene ∈ Er,s andē ∈ Ēt,u.
Also we define adifferential bigraded algebra overR to be a differential
bigraded module(E∗,∗, d) together with a morphism of such,ψ : (E⊗E)∗,∗ →
E∗,∗ for which the usual diagrams commute.

Finally, we could try to define a “tensor product of spectral sequences”
by forming the tensor product of differential bigraded modules at each term in
the sequences. However, the defining isomorphism,H(E∗,∗r ⊗R Ē∗,∗r , d⊗) ∼=
E∗,∗r+1 ⊗R Ē∗,∗r+1 may be too much to ask for; the K¨unneth theorem makes the
difficulty precise. (The relevant definitions in this theorem are found in later
sections of this chapter.) A proof of Theorem 2.12 may be found in [Weibel,
§3.6].
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Theorem 2.12 (the K¨unneth theorem).If (A, dA) and(B, dB) are differential
graded modules overR and, for eachn, Zn(A) = ker dA : An → An+1 and
Bn(A) = im dA : An−1 → An are flatR-modules, then there is a short exact
sequence

0→
⊕

r+s=n
Hr(A)⊗R Hs(B)

p
−→ Hn(A⊗R B)

−→
⊕

r+s=n−1
TorR1 (Hr(A), Hs(B))→ 0,

where the homomorphismp is given byp([u]⊗ [v]) = [u⊗ v]. In the case that
Zn(A) andHn(A) are projectiveR-modules for alln, then the homomorphism
p is an isomorphism.

The theorem indicates howH(Er ⊗ Er, dr) need not giveEr+1 ⊗ Er+1

except in special cases; for example, whenR is a field. Since the notion
of products on a spectral sequence remains desirable, we provide a workable
definition as follows:

Definition 2.13.Aspectral sequence of algebrasoverR is a spectral sequence,
{E∗,∗r , dr} together with algebra structuresψr : Er ⊗R Er → Er for eachr,
such thatψr+1 can be written as the composite

ψr+1 : Er+1 ⊗R Er+1

∼=−→ H(Er)⊗R H(Er)
−→
p
H(Er ⊗ Er) −−−−→

H(ψr)
H(Er) −→∼= Er+1,

where the homomorphismp is given byp([u]⊗ [v]) = [u⊗ v].

The first spectral sequences of [Leray46], [Koszul47], and [Cartan48] were
spectral sequences of algebras—in fact, the termspectral ringwas used until
1950 whenspectral sequencewas coined by [Serre50] to describe the more
general case (see [McCleary99]).

Recall “Theorem II” of Chapter 1: A spectral sequence of algebrascon-
verges to H a graded algebraas an algebrawhen the algebra structure on
E∗,∗∞ is isomorphic to the induced algebra structure on the associated bigraded
algebraE∗,∗0 (H,F ).

Theorem 2.14.Suppose(A, d, F ) is a filtered differential graded algebra with
productψ : A⊗R A→ A. Suppose that the product satisfies the condition for
all p, q,

ψ(F pA⊗R F qA) ⊂ F p+qA.
Then the spectral sequence associated to(A, d, F ) is spectral sequence of
algebras. If the filtration onA is bounded, then the spectral sequence converges
toH(A, d) as an algebra.
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Proof: Let x ∈ Ep,qr andy ∈ Es,tr . We representx andy by classes

a ∈ Zp,qr = F pAp+q ∩ d−1(F p+rAp+q+1) and

b ∈ Zs,tr = F sAs+t ∩ d−1(F s+rAs+t+1)

so thatx = a + Bp,qr andy = b + Bs,tr . By the properties of the product and
the filtration,a · b ∈ F p+sAp+q+s+t and

d(a · b) = (da) · b+ (−1)p+qa · (db) ∈ F p+s+rAp+q+s+t+1.

It follows thata ·b ∈ F p+sAp+s+q+t∩d−1(F p+s+rAp+s+q+t+1) = Zp+s,q+tr

and soa · b represents a class inEp+s,q+tr . Varying a andb by elements in
B∗,∗r changes neither the filtration degree nor the destination of the product on
application of the differential. Hence the productψ induces a productψr on
E∗,∗r making it a bigraded algebra.

To prove thatψr+1 is related toψr, as the conditions for a spectral sequence
of algebras require, it suffices to show thatdr is a derivation, that is,dr(x ·y) =
(drx) · y + (−1)p+qx · (dry). However, this follows from the Leibniz rule for
(A, d, ψ).

Finally, by Theorem 2.6, we know that a bounded filtration implies the
convergence of the spectral sequence toH(A, d), that is,

Ep,q∞ ∼= F pHp+q(A, d)/F p+1Hp+q(A, d)

= im(Hp+q(F pA)→ Hp+q(A))/im(Hp+q(F p+1A)→ Hp+q(A)).

If we choose chain level representatives for products inH(A, d), then the prop-
erty ψ(F pA ⊗R F qA) ⊂ F p+qA controls the products in the associated bi-
graded algebraE∗,∗0 (H(A, d), F ). The isomorphism ofE∗,∗∞ with the filtration
subquotients follows from the definition of the spectral sequence and is an
isomorphism of bigraded algebras. ut

Product structures cannot be underestimated in their power to simplify.
This theorem is a major tool in computations throughout the rest of the book.

2.4 Algebraic applications

In the previous section we defined the differentiald⊗ on the tensor product
of two differential graded modules,(A, dA) ⊗R (B, dB) = (A ⊗R B, d⊗).
Under simplifying assumptions the K¨unneth theorem allows us to determine
H(A ⊗R B, d⊗) in terms ofH(A, dA) andH(B, dB). The goal of the next
two sections is a generalization of the K¨unneth theorem.

We first introduce double complexes (due to [Cartan48]) and devise two
spectral sequences to calculate the homology of the total complex associated to
a double complex. By taking(A⊗RB, d⊗) as an example of a double complex,
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these spectral sequences are used to computeH(A ⊗R B, d⊗). In the second
section we obtain the appropriate generalization of the K¨unneth theorem as a
spectral sequence.

We remark that double complexes offer an example of the filtered dif-
ferential graded module construction of a spectral sequence. Many spectral
sequences are derived from double complexes. We also remark that the re-
lationship between the short exact sequence of the K¨unneth theorem and the
spectral sequence of its generalization is a paradigmatic example.

Double complexes

A double complex, {M∗,∗, d′, d′′}, is a bigraded module overR, M∗,∗,
with twoR-linear mapsd′ : M∗,∗ →M∗,∗ andd′′ : M∗,∗ →M∗,∗ of bidegree
(1, 0), d′ : Mn,m → Mn+1,m and bidegree(0, 1), d′′ : Mn,m → Mn,m+1,
which satisfyd′ ◦ d′ = 0, d′′ ◦ d′′ = 0 andd′ ◦ d′′ + d′′ ◦ d′ = 0.

w Mn,m+1

u

w Mn+1,m+1

u

w

w Mn,m

u

d′′

w
d′ Mn+1,m

u

w
u u

We associate to each double complex itstotal complex, total(M), which
is the differential graded module overR defined by

total(M)n =
⊕

p+q=n
Mp,q

with total differential d = d′+d′′. The relations demanded ofd′ andd′′ imply
thatd ◦ d = 0.

An example of a double complex is given by two differential graded mod-
ules: If we letKm,n = Am ⊗R Bn, d′ = dA ⊗ 1 andd′′ = (−1)m1 ⊗ dB ,
then we have a double complex such that(total(K), d) = (A⊗R B, d⊗).

How do we computeH(total(M), d)? We construct two spectral se-
quences that exploit the fact that one can take the homology ofM∗,∗ in two
directions. LetH I

∗,∗(M) = H(M∗,∗, d′), that is,

H I
n,m(M) = ker d′ : Mn,m →Mn+1,m

/
im d′ : Mn−1,m →Mn,m.

Similarly, letH II
∗,∗(M) = H(M∗,∗, d′′). The conditiond′ ◦ d′′ + d′′ ◦ d′ = 0

implies thatH I
∗,∗(M) andH II

∗,∗(M) are each differential bigraded modules
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t tt+1 t+1

FI
p

FII
p

48 2. What is a spectral sequence?

with differentialsd′′ andd′ induced byd′′ andd′, respectively. To be more
precise, ifx andx+ d′b represent[x] inH I

n,m(M), thend′′x andd′′x+ d′′d′b
are in the kernel ofd′ sinced′d′′x = −d′′d′x = 0 and they differ by elements
in the image ofd′. Sinced′ ◦d′ = 0 = d′′ ◦d′′, the induced morphisms,d′′ and
d′, are differentials. LetH I

∗,∗HII(M) = H(H II
∗,∗(M), d′) andH II

∗,∗HI(M) =
H(H I

∗,∗(M), d′′).

Theorem 2.15.Given a double complex{M∗,∗, d′, d′′} there are two spectral
sequences,{IE∗,∗r , Idr} and{IIE∗,∗r , IIdr} with

IE
∗,∗
2
∼= H I

∗,∗HII(M) and IIE
∗,∗
2
∼= H II

∗,∗HI(M).

If Mp,q = {0} whenp < 0 or q < 0, then both spectral sequences converge to
H∗(total(M), d).

Proof: We give a proof in the case of{IE∗,∗r , Idr}; the other case follows by
symmetry. The tool of choice is Theorem 2.6. Consider the following filtrations
of (total(M), d), as in the picture:

F pI (total(M))t =
⊕

r≥p
Mr,t−r and F pII(total(M))t =

⊕
r≥p

M t−r,r.

We callF ∗I the column-wise filtrationandF ∗II the row-wise filtration. Both
are decreasing filtrations andd, the total differential, respects each filtration.
BecauseMp,q = {0} whenp < 0 or q < 0, this filtration is bounded and, by
Theorem 2.6, we obtain two spectral sequences converging toH(total(M), d).
In the case ofFI we have

IE
p,q
1 = Hp+q

(
F pI total(M)

/
F p+1
I total(M), d

)
.

It suffices to identify theE2-term as described.
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First, we claim thatIE
p,q
1
∼= H II

p,q(M). Since the differential is given by
d = d′ + d′′ andd′(F pI total(M)) ⊂ F p+1

I total(M), we get that(
F pI total(M)

/
F p+1
I total(M)

)p+q
∼= Mp,q

with the induced differentiald′′. ThusIE
p,q
1 = H II

p,q(M), as described.
Following Proposition 2.11, consider the diagram (where we writeF p for

F pI total(M)):

· · · w
i Hp+q(F p+1) w

i Hp+q(F p) w
i

u

j· · ·Hp+q+1(F p+2) w
i Hp+q+1(F p+1) w

i

�
���

j

Hp+q+1(F p+1/F p+2) Hp+q(F p/F p+1)

[
[̂

k

H II
p+1,q(M) H II

p,q(M)u
d1

A class inHp+q(F p/F p+1) can be written as[x+F p+1], wherex is inF p and
dx is inF p+1 or it can be written as a class,[z], inH II

p,q(M), z inMp,q. Nowk
sends[x+F p+1] to [dx] inHp+q+1(F p+1). Takingz as the representative, this
determines[d′z] which is inHp+q+1(F p+1) sinced′′z = 0. The morphismj
assigns a class inHp+q+1(F p+1) to its representative modF p+2. Thus we
can considerd′z as an element ofMp+1,q. This givesd1 = j ◦ k as the
induced mapping ofd′ on H II

p,q(M) and sod1 = d′. Therefore, we have
IE

p,q
2 = H I

p,qHII(M).
To get the second spectral sequence fromF ∗II total(M) reindex the double

complex as its transpose:tMp,q = Mq,p, td′ = d′′ andtd′′ = d′. Then we
havetotal(tM) = total(M) andF ∗II total(M) = F ∗I total(tM). The same
proof goes over to obtain the result. ut

The condition thatMp,q = {0} for p < 0 or q < 0 guarantees that the
associated spectral sequence is in the first quadrant. In this case, the spectral
sequence converges toH(total(M∗,∗), d). Convergence of the general case of
a Z × Z-graded double complex is susceptible to analysis using the tools of
Chapter 3 (see Chapter 7 for an example where this is important).

The Künneth Spectral Sequence®N
In this section, we extend the K¨unneth theorem (Theorem 2.12) as an ap-

plication of the spectral sequence associated to a double complex. We introduce
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the elementary parts of differential homological algebra here, not only for the
sake of completeness, but also in anticipation of the generalizations that lie at the
heart of Chapters 7, 8, and 9. The novice will find this material a distracting de-
tour from the fastest route to the use of spectral sequences. On a second reading,
especially with the Eilenberg-Moore spectral sequence as goal, the reader can
find here motivation for the subsequent generalization of homological algebra.

Recall the familiar result that any abelian group,G, is the homomorphic
image of a free abelian group. More descriptively, there is a short exact sequence
of abelian groups:

0→ F1 → F0 → G→ 0

with F0 andF1 free. The basis forF0 maps onto a set of generators forG
and the generators forF1 give a record of the relations amid the products of
generators ofG.

If we wish to pass to different coefficients, we can tensor the short exact
sequence with another abelian groupA. Is it a simple matter to determineG⊗A
from these data? SinceF0 ⊗ A andF1 ⊗ A are easily described, the question
reduces to asking if exactness is preserved after tensoring with the groupA.
The answer depends on the groupsG andA and is given in terms of the functor
TorZ1 ; there is an exact sequence

0→ TorZ1 (G,A)→ F1 ⊗A→ F0 ⊗A→ G⊗A→ 0.

TorZ1 (G,A) can be defined in terms of elements inG andA or simply as the
kernel of the induced mappingF1 ⊗A→ F0 ⊗A ([Mac Lane63, p. 150]).

If given a differential graded module,(K∗, d), taken as a differential
abelian group, then this analysis is sufficient for determining howH(K∗ ⊗G)
andH(K∗) ⊗ G compare; this is theUniversal Coefficient theorem([Mac
Lane63, p. 171] and§12.1) that applies, for example, when we are studying
singular cohomology with coefficients in a group as an abelian group.

Theorem 2.16.If (K∗, d) is a differential graded abelian group with no elements
of finite order andG is an abelian group, then, for eachn, there is a short exact
sequence

0→Hn(K∗, d)⊗G
p
−→Hn(K∗ ⊗G, d⊗ 1)→TorZ1 (Hn−1(K∗, d), G)→ 0

which is split. The homomorphismp is given by[u]⊗ g 7→ [u⊗ g].

For coefficients of a more complicated nature, we need a generalization of
these results to modules.

Let 0→M1 →M0 → N → 0 be a short exact sequence of modules over
a ringR (here taken asright R-modules). What is the effect of tensoring this
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exact sequence with anotherR-moduleL (here taken as aleftR-module)? The
answer to this question comes in the form of a long exact sequence:

· · · → TorRn (M1, L)→ TorRn (M0, L)→ TorRn (N,L)

→ TorRn−1(M1, L) · · · → TorR1 (N,L)→M1 ⊗R L
→M0 ⊗R L→ N ⊗R L→ 0.

To calculate the modulesTorRn (N,L) for anyR-modulesN andL, we gener-
alize the short exact sequence of “generators and relators” for abelian groups.
The key property of free abelian groups is the fact that they factor through
epimorphisms, that is, ifG is the image of a groupA andρ : F → G is any
homomorphism, thenρ can be extended throughA and there is a group homo-
morphismρ̄ : F → A so thatϕ ◦ ρ̄ = ρ as in the diagram:

F

u
ρ

i
i
iik

ρ̄

A w
ϕ

G w 0
An R-module,P , that has the analogous property is calledprojective, that is,
if ϕ : M → N is an epimorphism of modules overR andρ : P → N is any
R-linear homomorphism, thenρ can be extended throughM , ρ̄ : P → M , so
thatϕ ◦ ρ̄ = ρ.

P

u
ρ

i
i
iik

ρ̄

M w
ϕ

N w 0
It is a standard result that a module is projective if and only if it is a direct
summand of a free module ([Rotman79]). Results that are obtained using free
modules can be improved sometimes using (often) smaller, more structured
projective modules.

The analogue of the short exact sequence for an abelian group is the notion
of aprojective resolution. This is a long exact sequence,

· · ·
d
−→ P2

d
−→ P1

d
−→ P0

ε
−→M → 0

with eachPi a projectiveR-module. Since each free module is projective and
free resolutions can be constructed, there is no question of the existence of
projective resolutions. Furthermore, any two of them can be compared using
the defining property for projectives:

w P2 w
dP

u
f2

P1 w
dP

u
f1

P0 w
ε

u
f0

M w 0

w Q2 w
dQ

Q1 w
dQ

Q0 w
ε′

M w 0.
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For example,f2 exists and makes the square commute becauseP2 is projective
and fits into the diagram:

P2

u
f1◦dP

555555557

f2

Q2 w
dQ

ker(dQ : Q1 → Q0) w 0

By analogy with the definitionTorZ1 (G,A) = ker(F1 ⊗ A → F0 ⊗ A), we
define

TorRn (M,N) = Hn(P∗ ⊗N, dP ⊗ 1).

The existence of maps between resolutions can be used to prove thatTorRn (M,N)
does not depend on which projective resolution we use. In fact, we can use dou-
ble complexes to prove a little more.

Proposition 2.17.LetM be a right module andN a left module overR and

· · · → P2

dP−−→P1

dP−−→P0

ε
−→M → 0,

· · · → Q2−−→
dQ

Q1−−→
dQ

Q0−→
ε′
N → 0

be projective resolutions ofM andN , respectively. Then

TorRn (M,N) ∼= Hn(P∗ ⊗N, dP ⊗ 1)
∼= Hn(M ⊗Q∗, 1⊗ dQ)
∼= Hn(total(P∗ ⊗Q∗), D)

whereD = dP ⊗ 1 + (−1)i1⊗ dQ onPi ⊗Qj .

Proof: Let Ki,j = Pi ⊗ Qj , d′ = dP ⊗ 1 andd′′ = (−1)i1 ⊗ dQ. Then
{K∗,∗, d′, d′′} is a double complex with differentials of bidegrees(−1, 0) and
(0,−1), respectively. If we filtertotal(K∗,∗) by

F Ip (totalK)t =
⊕

r≤p
Kr,t−r, F IIp (totalK)t =

⊕
r≤p

Kt−r,r,

we get increasing filtrations andD respects those filtrations. Using the dual
versions of Theorems 2.6 and 2.15 we get two spectral sequences converging
toH(totalK,D).

In the first spectral sequence,IE2
∗,∗ ∼= HI

∗,∗H
II(K). SincePi andQj are

projective, by the K¨unneth theorem and the exactness of the resolutionQ∗ −→
ε′N → 0, we have

HII(K) = H(K∗,∗, d′′) = H(P∗ ⊗Q∗,±1⊗ dQ)
= P∗ ⊗H(Q∗, dQ) = P∗ ⊗N.
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BecauseQ∗ → N → 0 is a projective resolution,HII is concentrated in the
strip of bidegrees(n, 0) for n ≥ 0, the horizontal bottom row. Therefore
HI
∗,∗H

II(K) is simplyH(P∗ ⊗ N, dP ⊗ 1) or TorR∗ (M,N) and the spectral
sequence collapses. Since it lies entirely in one strip, there cannot be extension
problems, soH∗(totalK,D) is justTorR∗ (M,N).

From the spectral sequence associated to the second filtration we get

H(M ⊗Q∗, 1⊗ dQ) ∼= H(totalK,D) ∼= TorR∗ (M,N). ut

In the classical sense (`a la Hilbert)TorR∗ (M,N) presents a sequence of
essential invariants of the modulesM andN that measure

(1) the deviation fromM being projective (ifM is projective, then0 ←
M

=
←− M ← 0 ← 0 · · · is a projective resolution ofM and so

TorRi (M,N) = {0} for i > 0 and anyN );
(2) the failure of the exactness of the functor−⊗R N .

This prompts the identification of the class offlat modules: A moduleN is flat
if the functor− ⊗R N preserves exact sequences. It follows that ifN is flat,
TorRi (M,N) = {0} for i > 0 and any moduleM .

We take the generalization one step further—from the category of modules
overR to the categoryDGModR of differential graded modules overR and
degree 0 module homomorphisms that commute with the differentials. Recall
that an object inDGModR is a gradedR-module,C∗, together with a degree 1
R-linear homomorphism for allk ≥ 0,dC : Ck → Ck+1, such thatdC◦dC = 0.
(Dually, we can have taken differentials of degree−1. In keeping with a
preference for cohomology, degree +1 differentials are appropriate.)

A differential graded module(L∗, dL) is said to beflat if − ⊗R L∗, the
functor that tensors a differential graded module withL∗ overR, preserves
exactness. A differential graded module(K∗, dK) is projective if, whenever
we have the diagram of differential graded modules,

K∗

u
ρ

i
i
iik

ρ̄

M∗ w
ϕ

N∗ w 0,

ρ̄ always exists inDGModR with ρ = ϕ ◦ ρ̄. To measure the deviation from
exactness and from being projective, we construct a differential graded version
of Tor for DGModR.

If we proceed dimensionwise by viewing(K∗, dK) and(L∗, dL) as the
direct sum of their homogeneous parts, we can piece togetherTorRn (K∗, L∗)
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from the ungraded version ofTor. Consider the double complex, for eachn,

Mp,q
n = TorRn (Kp, Lq)

d′ : TorRn (Kp, Lq)→ TorRn (Kp+1, Lq)

d′′ : TorRn (Kp, Lq)→ TorRn (Kp, Lq+1),

where the differentials are induced by the differentials,dK anddL, and the
functoriality ofTorRn in each variable. Define

TorRn (K∗, L∗) = total(M∗,∗n ).

For eachn, this is a differential graded module.
In order to generalize constructions such as the long exact sequence that

results fromTor applied to a short exact sequence to the categoryDGModR,
we adopt the following grading convention:

Tor−nR (K∗, L∗) = TorRn (K∗, L∗).

Hence the differentials in the long exact sequence increase homological degree.
With this convention, we write aprojective resolution of a differential graded
module(K∗, dK) as a long exact sequence of negatively graded differential
modules

· · · → P−2
d
−→ P−1

d
−→ P 0

ε
−→ K → 0.

A dimensionwise induction shows that such resolutions exist. We can display
such a resolution as a double complex:

w P−2,2
w

u

P−1,2
w

u

P 0,2
w

u

K2
w

u

0

w P−2,1
w

u

P−1,1
w

u

P 0,1
w

u

K1
w

u

0

w P−2,0
w

u

P−1,0
w

u

P 0,0
w

u

K0
w

u

0

(If one is working in the dual category of differential graded modules with
differentials of degree−1, the convention is to retain lower indices forTorRn
and the resulting projective resolutions give first quadrant double complexes.)

In these constructions, the differential is merely carried along as extra data.
In order to involve this extra piece of structure more thoroughly, we identify
a more restrictive type of projective resolution. We considerH(K∗, dK) as a
differential graded module by giving it the zero differential.



         

2.4. Algebraic applications 55

Definition 2.18. A proper projective resolution is an exact sequence in the
categoryDGModR: · · · → P−2 → P−1 → P 0 → K → 0 where, for eachn,
the following are projective resolutions:

P1. · · · → P−2,n → P−1,n → P 0,n → Kn → 0,
P2. · · · → Zn(P−2) → Zn(P−1) → Zn(P 0) → Zn(K) → 0 (where

Zn(M) = ker dM : Mn →Mn+1),
P3. · · · → Hn(P−2)→ Hn(P−1)→ Hn(P 0)→ Hn(K)→ 0.

Lemma 2.19.Every differential graded module,(K∗, dK), has a proper pro-
jective resolution.

Proof: First notice that P1 comes for free from the definition of a projective
resolution inDGModR. For eachn, let Bn(K) = im dK : Kn−1 → Kn.
We have short exact sequences0 → Bn(K) → Zn(K) → Hn(K) → 0 and

0 → Zn(K) → Kn → Bn+1(K) → 0. Let PB∗,n
ε′

−→ Bn(K) → 0 and

PH∗,n
ε′′

−→ Hn(K) → 0 be projective resolutions ofBn(K) andHn(K),
respectively, and letPZk,n = PBk,n ⊕ PHk,n. Clearly,PZ∗,∗ is projective.
This gives us short exact sequences, for allk and for alln, given by inclusion
and projection,

0→ PBk,n → PZk,n → PHk,n → 0.

We next construct mapsδkZ : PZk,n → PZk+1,n by induction to obtain a
projective resolution ofZn(K). At the 0-level we have the diagram:

0

u

0

u

0

u

0 w ker ε′ w

u

ker ε w

u

ker ε′′ w

u

0

0 w PB0,n
w

u
ε′

PZ0,n
w

u
ε

PH0,n
w

u
ε′′

0

0 w Bn(K) w

u

Zn(K) w

u

Hn(K) w

u

0

0 0 0

To fill in the homomorphismε : PZ0,n → Zn(K), we can map thePB0,n

factor ofPZ0,n by ε′ and the inclusion ofBn(K) in Zn(K). ThePH0,n

factor is projective and, sinceε′′ is an epimorphism, we have a mapping of
this factor toZn(K). The sum of these two mappings isε, which makes the
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bottom two squares commute. Two applications of the Five-lemma imply that
the entire diagram is commutative and every row and every column exact.

The inductive step is exactly the same as applied to the diagram:

0 w PBk,n w

u
dk−1
B

PZk,n w

u

PHk,n
w

u
dk−1
H

0

0 w ker dk−1
B w

u

ker δk−1
Z w

u

ker dk−1
H w

u

0

0 0 0

We now have a short exact sequence of projective resolutions

0→ PB∗,n → PZ∗,n → PH∗,n → 0.

Using the same argument this time withPZ∗,n → Zn(K)→ 0 andPB∗,n+1 →
Bn+1(K) → 0 we obtain a projective resolution ofKn, P ∗,n → Kn → 0,
that fits into a short exact sequence

0→ PZ∗,n → P ∗,n → PB∗,n+1 → 0.

Knitting the exact sequences together, we get the internal differentiald : P ∗,n →
P ∗,n+1 given by the compositiond : P ∗,n → PB∗,n+1 → PZ∗,n+1 →
P ∗,n+1. Since the right two maps are inclusions,ker d = PZ∗,n and, since
P ∗,n−1 → PB∗,n is onto,im d = PB∗,n. ThusHn(P ∗,∗, d) = PH∗,n and
P ∗,∗ → K∗ → 0 is a proper projective resolution. ut

We now tackle the problem of computingH(K ⊗R L, d⊗). The Künneth
theorem requires thatZ(K) andB(K) be flat. We can generalize a bit fur-
ther and remove part of the flatness assumption. Because we have taken our
differentials to be of degree+1, this leads to a second quadrant spectral se-
quence. The case for the dual category with differentials of degree−1 leads to
a first quadrant spectral sequence; the arguments are exactly the same for the
construction of both spectral sequences, and we give the less standard one.

Theorem 2.20 (the K¨unneth spectral sequence).Let (K∗, dK) and (L∗, dL)
be differential graded modules overR with K flat. Then there is a spectral
sequence withEp,q2 =

⊕
s+t=q TorpR(Hs(K∗), Ht(L∗)). If K∗ andL∗ have

differentials of degree+1, this is a second quadrant spectral sequence, and if
K∗ andL∗ have differentials of degree−1, a first quadrant spectral sequence.
WhenE∗,∗r converges, it does so toH(K∗ ⊗R L∗, d⊗) in each case.
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Proof: A proper projective resolution ofL may be presented in the diagram:

w P−2,2
w

u

P−1,2
w

u

P 0,2
w

u

L2
w

u

0

w P−2,1
w

u

P−1,1
w

u

P 0,1
w

u

L1
w

u

0

w P−2,0
w

dP

u

d−2

P−1,0
w

dP

u

d−1

P 0,0
w

ε

u

d0

L0

u

dL

w 0

Consider the double complexMp,q =
⊕

s+t=qK
s ⊗R P p,t with differen-

tials d′ : Mp,q → Mp+1,q, given byd′ =
∑

(−1)q1⊗ dP , andd′′ : Mp,q →
Mp,q+1, given byd′′ =

∑
dK ⊗ 1 +

∑
(−1)s1⊗ dp on the summandKs ⊗R

P p,t. Herep is nonpositive and gives the homological degree whileq is nonneg-
ative and denotes a dimension. We proceed as in the case of a double complex.

In the second filtration,F pII total(M) =
⊕

s≥pM
r,s and soF qII/F

q+1
II is

theqth row with differential
∑

(−1)q1⊗ dP . Thus

IIE
p,q
1 = H

(⊕
s+t=q

Ks ⊗ P p,t,
∑

(−1)q1⊗ dP
)
.

If we fix s andt and letp vary, then we have the projective resolution ofLt

tensored withKs and so the homology isTor∗R(Ks, Lt). Thus

IIE
p,q
1 =

⊕
s+t=q

TorpR(Ks, Lt).

ButK∗ is flat and soTorpR(Ks, Lt) = {0} for p 6= 0 andIIE
∗,∗
1 degenerates

to the columnIIE
0,q
1 =

⊕
s+t=qK

s ⊗R Lt = total(K∗ ⊗R L∗)q and so

IIE
0,q
2 = Hq(K∗ ⊗R L∗). Furthermore, since ourE2-term is only a column,

the spectral sequence collapses atE2 = E∞. This establishes that the target
module isH(K∗ ⊗R L∗, d⊗).

Next consider the first filtration,F pI total(M)=
⊕

r≥pM
r,s. For this,

IE
p,∗
1 = H(F pI /F

p+1
I ) = H(pth column, d′′).

The pth column ofM∗,∗, however, isK∗ ⊗R P p,∗ as the tensor product of
two differential graded modules. ThusIE

p,∗
1 = H(K∗ ⊗R P p,∗, d′′). By

the Künneth theorem and becauseP ∗,∗ −→ K∗ → 0 is a proper projective
resolution,P p,∗, Z(P p,∗) andH(P p,∗) are all projective, we have

IE
p,∗
1 = H(K∗ ⊗R P p,∗) ∼= H(K∗)⊗R H(P p.∗).
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Continuing, we haveIE
p,∗
2 = H(H(K∗)⊗R H(P p,∗), d′). Since

· · · → H(P p)→ · · · → H(P−1)→ H(P 0)→ H(L∗)→ 0

is a projective resolution ofH(L∗), (H(K∗)⊗R H(P ∗), d′) is the differential
graded module from which we computeTor∗R(H(K∗), H(L∗)). Thus

IE
p,q
2 =

⊕
s+t=q

TorpR(Hs(K∗), Ht(L∗))

and we have the spectral sequence as described in the theorem.
WhenK∗ andL∗ have differentials of degree−1, the double complex

M∗,∗ lies in the first quadrant and the collapse ofIIE
∗,∗
r toH(K∗ ⊗R L∗) and

the convergence ofIE∗,∗r imply that IE∗,∗r converges toH(K∗ ⊗R L∗) as in
Theorem 2.6. WhenK andL have differentials of degree+1, the convergence
is a more delicate matter; in particular, our constructions do not give bounded
filtrations automatically. Conditions may be found in Chapter 3 that guarantee
that the spectral sequence converges toH(K∗ ⊗R L∗). The reader should
examine the filtrations carefully in the proof of the theorem to understand the
possible difficulties in a second quadrant spectral sequence. ut

Exercises

2.1. Suppose(A∗, d, F ) is a differential graded module with differential of degree
−1 and anincreasingfiltration that respects the differential. Deduce the analogue of
Theorem 2.1. In particular, show that this gives a spectral sequence of homological
type.

2.2. Another manner in which a spectral sequence may arise is that of aCartan-
Eilenberg systemthat consists of a moduleH(p, q) for each pair of integers,
−∞ ≤ p ≤ q ≤ ∞ along with

(1) homomorphismsη : H(p′, q′)→ H(p, q) wheneverp ≤ p′, q ≤ q′;
(2) for −∞ ≤ p ≤ q ≤ r ≤ ∞, we have a connecting homomorphism

δ : H(p, q)→ H(q, r);
(3) H(p, q)→ H(p, q) is the identity;
(4) if p ≤ p′ ≤ p′′ andq ≤ q′ ≤ q′′, then the following diagram commutes:

H(p′′, q′′) wA
A
AC

H(p, q)

H(p′, q′)
[
[
[[]

(5) if p ≤ p′, q ≤ q′ andr ≤ r′, then the following diagram commutes:

H(p′, q′) w

u

H(q′, r′)

u

H(p, q) w H(q, r)
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(6) for −∞ ≤ p ≤ q ≤ r ≤ ∞, the following sequence is exact:

· · · −→ H(q, r) −→ H(p, r) −→ H(p, q)
δ
−→H(q, r) −→ · · ·

(7) H(−∞, q) is the direct limit of the system

H(q, q) −→ H(q − 1, q) −→ H(q − 2, q) −→ · · · .

With this definition we get a spectral sequence by letting

Zpr = im
(
H(p, p+ r)→ H(p, p+ 1)

)
Bpr = im

(
H(p− r + 1, p)→ H(p, p+ 1)

)
Epr = Zpr /B

p
r .

Show that this is a spectral sequence and, if it converges, it does so toH(−∞,∞).
A filtered differential graded module,(A, d, F ), gives rise to a Cartan-Eilenberg
system given byH(p, q) = H(F pA/F qA).

2.3. Suppose{H(p, q),−∞ ≤ p ≤ q ≤ ∞} is a Cartan-Eilenberg system and
for all n, q, r ≥ 0 we have bilinear mappings

ϕr : H(n, n+ r)⊗H(q, q + r) −→ H(n+ q, n+ q + r).

Suppose the following hold:

(1) if n ≥ n′, q ≥ q′, n+ r ≥ n′+ r′ andq+ r ≥ q′+ r′, then the following
diagram commutes

H(n, n+ r)⊗H(q, q + r) w
ϕr

u

H(n+ q, n+ q + r)

u

H(n′, n′ + r′)⊗H(q′, q′ + r′) wϕr′
H(n′ + q′, n′ + q′ + r′).

(2) For alln, q ≥ 0, r ≥ 1,

δ(ϕr(a⊗ b)) = ϕ1(ηa⊗ δb) + (−1)deg a(δa⊗ ηb),

whereη andδ are the appropriate maps in the Cartan-Eilenberg system.

Show that these data give rise to a spectral sequence of algebras.

2.4. Suppose that{D,E, i, j, k} is an exact couple of bigraded modules where
bideg i = (1,−1), bideg j = (0, 0) andbideg k = (−1, 0). State and prove the
analogue of Theorem 2.8 for such an exact couple leading to a spectral sequence of
homological type.
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2.5. Suppose that the conditions for Theorem 2.6 hold and we define

Z̄pr = im
(
H(F pA/F p+rA)→ H(F pA/F p+1A)

)
B̄pr = im

(
H(F p−r+1A/F pA)→ H(F pA/F p+1A)

)
Ēpr = Zpr /B

p
r .

Show that this determines a spectral sequence converging toH(A, d). (Hint: Look
at the proof of Proposition 2.9.)

2.6. Suppose we are given a tower of submodules

B2 ⊂ B3 ⊂ · · · ⊂ ZN ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ E2

along with isomorphismsZp+1/Zp ∼= Bp/Bp+1, show that these data determine
a spectral sequence whose tower of submodules is the one given. What kind of
collapse results can you prove from this representation of a spectral sequence if
you add the detail of keeping track of bidegrees? In the case of an exact couple,
we definedZpr = k−1(im ir−1 : Dp+r → Dp+1) andBpr = j(ker ir−1 : Dp →
Dp−r+1). Show thatZpr ⊂ Zpr−1 andBpr ⊂ Bpr+1 and that the differential
dr : Zr−1/Br−1 → Br/Br−1 ⊂ Zr−1/Br−1 is induced byj ◦ k and has the
appropriate kernel.

2.7.®N Determine conditions on an exact couple that guarantee that the associated
spectral sequence is a spectral sequence of algebras. (Hint: Use a Cartan-Eilenberg
system or consult the paper of[Massey54]if you get stuck).

2.8. Prove the Universal Coefficient theorem: Suppose thatA is an abelian group
and(C∗, ∂) is a complex of free abelian groups with differential∂ of degree−1.
Then for eachn > 0 there is a short exact sequence with

0→ Hn(C∗, ∂)⊗A −→ Hn(C∗ ⊗A, ∂ ⊗ 1) −→ Tor(Hn−1(C∗, ∂), A)→ 0.

HereTor(G,A) is the kernel of the homomorphism1⊗ δ : G⊗RA → G⊗ FA
where0→ RA

δ
−→ FA → A→ 0 is a short exact sequence withFA andRA free

abelian groups.

2.9. Prove the homological analogue of Theorem 2.15 holds for a double complex of
the form{M∗,∗, d′, d′′ } with d′ of bidegree(−1, 0) andd′′ of bidegree(0,−1),
satisfyingd′ ◦ d′ = d′′ ◦ d′′ = d′ ◦ d′′ + d′′ ◦ d′ = 0.

2.10. If p andq are relatively prime, show thatZ/pZ is a projectiveZ/pqZ-module.

2.11. Show that the definition ofTor∗R(K,L) for K andL in DGModR does not
depend on the choice of resolutions.

2.12. Consider the category of differential graded modules over a ringR with
differentials of degree−1 and morphisms of degree 0. Develop the notions of
projective and flat modules, projective resolutions, and proper projective resolutions
for this category. Prove that there is a K¨unneth spectral sequence for this category.

2.13. Deduce the K¨unneth theorem from the K¨unneth spectral sequence.



         

3
Convergence of spectral sequences

“The machinery of spectral sequences, stemming from
the algebraic work of Lyndon and Koszul, seemed com-
plicated and obscure to many topologists. Nevertheless,
it was successful. . . ”

G. W. Whitehead

In Chapter 2, we find recipes for the construction of spectral sequences. To
develop these ideas further we need to clarify the relationship between a spectral
sequence and its target; this is the goal of Chapter 3. To achieve this goal, it is
necessary to introduce more refined ideas of convergence. These ideas require
a discussion of limits and colimits of modules and the definition of a morphism
between spectral sequences with which one can express the relevant theorems of
comparison. In the case of a filtered differential graded module, conditions on
the filtration guarantee that the associated spectral sequence converges uniquely
to its target. The case of an exact couple is more subtle and we develop it after
a discussion of some associated limits.

We express convergence results as comparison theorems that answer the
questions: If two spectral sequences are isomorphic via a morphism of spectral
sequences, then how do the targets of the spectral sequences compare? Need
they be isomorphic? We end the chapter with some constructions and Zeeman’s
comparison theorem that reveals how special circumstances lead to powerful
conclusions.

3.1 On convergence

Theorem 2.6 tells us that a filtered differential graded module,(A, d, F ),
determines a spectral sequence and, if the filtration is bounded, then the spectral
sequencedeterminesH(A, d) (up to extension problems). We want to remove
the restrictive hypothesis of a bounded filtration and still retain convergence to
auniquelydetermined target.

We begin with the case of a filtered differential module over a ringR. Let
(A, d, F ) denote a decreasing stable filtration on(A, d),

· · · ⊂ F p+1A ⊂ F pA ⊂ F p−1A ⊂ · · · ⊂ A.
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Notice that our first hurdle in understandingH(A, d) is the fact that an inclusion
F sA ⊂ F tA need not induce an inclusion in homology,H(⊂) : H(F sA)
−→ H(F tA). We have defined (suppressing one of the bidegrees)

Zpr = F pA ∩ d−1(F p+rA) and Bpr = F pA ∩ d(F p−rA)

to get the tower of submodules

Bp0 ⊂ Bp1 ⊂ · · · ⊂ Bpr ⊂ · · · ⊂ Zpr ⊂ · · · ⊂ Zp1 ⊂ Zp0 .

TheE∞-term of the associated spectral sequence is given by this tower as

Ep∞ =
⋂
r Z

p
r

/⋃
r B

p
r
.

For an arbitrary filtered differential module, we ask,how does thisE∞-term
relate to the desired target,H(A, d)? Does it relate to some other filtered
gradedR-module as well?

To obtain the induced filtration onH(A, d) in Theorem 2.6, we defined
Zp∞ = F pA ∩ ker d andBp∞ = F pA ∩ im d and showed that, for a bounded
filtration,

Zp∞/B
p
∞ ∼= F pH(A, d)/F p+1H(A, d).

Observe, however, that these modulesZp∞ andBp∞ neednot come from the
tower. We extend the tower to include them:

Bp0 ⊂ Bp1 ⊂ · · · ⊂
⋃

r
Bpr ⊂ Bp∞ ⊂ Zp∞ ⊂

⋂
r
Zpr ⊂ · · · ⊂ Zp1 ⊂ Zp0 .

The equality,Bp∞ =
⋃
r B

p
r orF pA ∩ im d =

⋃
r(F

pA ∩ d(F p−rA)) can fail
if
⋃
s F

sA 6= A, for example, when there is anx in A −
⋃
s F

sA with d(x)
in someF pA. To avoid this pathology, we can require that the filtration be
exhaustive, that is,A =

⋃
s F

sA. In practice, this condition is satisfied by the
reasonable examples.

Next we consider the submodule of infinite cycles.

Definition 3.1. A filtration F of a differential graded module,(A, d), is said
to beweakly convergentif, for all p, Zp∞ =

⋂
r Z

p
r , that is, ifF pA ∩ ker d =⋂

r(F
pA ∩ d−1(F p+rA)).

Some simple conditions on the filtration imply that it is weakly convergent; for
example, 1) the filtration isbounded above, that is, for eachn, there is a value
s(n) with F s(n)A = {0} or, more generally, 2)

⋂
p F

pA = {0}. The proof of
Theorem 2.6 needs only slight modifications to prove the following result.
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Theorem 3.2.Let (A, d, F ) be a filtered differential graded module such that
the filtration is exhaustive and weakly convergent. Then the associated spectral
sequence withEp,q1

∼= Hp+q(F pA/F p+1A) converges toH(A, d), that is,

Ep,q∞ ∼= F pHp+q(A, d)/F p+1Hp+q(A, d).

The definition of weak convergence seems dependent on explicit knowledge of
(A, d, F ). It would be helpful to have some equivalent formulations of weak
convergence in terms of cruder invariants such as the homology of subquotients
of A or the homology of stages in the filtration.

Proposition 3.3.The following conditions are equivalent on a filtrationF of a
differential graded module,(A, d):

(1) F is weakly convergent.

(2)
⋂

r≥1
im(H(F pA/F p+rA)→ H(F p+1A)) = {0}.

(3) For all p, the mappings induced by the filtration,Rp+1 → Rp, are
monomorphisms, whereRp =

⋂
r im(H(F p+rA)→ H(F pA)).

Proof ([Cartan-Eilenberg56]): Consider the commutative diagram ofR-
modules where the bottom row is exact atB:

D4
4
446
l

u
k

A

h
h
h
hj

w
f

B wg C

Sinceim k/ im f ∼= im k/ ker g and im k/ ker g ∼= im(g ◦ k), g induces an
isomorphism:im k/ im f ∼= im l.

From a filtered differential module we obtain such a diagram

H(F pA/F p+rA)A
A
AAC

u
H(F pA)

h
h
h
hj

w H(F pA/F p+1A) w H(F p+1A)

induced by the long exact sequences that arise when homology is applied to
the short exact sequences0 → F p+1A → F pA → F pA/F p+1A → 0
and 0 → F p+rA → F pA → F pA/F p+rA → 0 and to the inclusion
F p+rA ⊂ F p+1A. To show that (1) is equivalent to (2), we begin with
the observation thatim{H(F pA/F p+rA) → H(F p+1A)} is isomorphic to
the quotient ofim{H(F pA/F p+rA)→ H(F pA/F p+1A)} by the subgroup
im{H(F pA)→ H(F pA/F p+1A)}, which follows from the exactness of the
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bottom row. The cycles inF pA/F p+rA are represented by those elements of
F pA with boundary inF p+rA. It follows thatZpr = F pA ∩ d−1(F p+rA) is
isomorphic to the module of cycles inF pA/F p+rA and similarly,Zp∞ is the
module of cycles inF pA. From the canonical projections we obtain the compos-
itesZpr −→ H(F pA/F p+rA) −→ H(F pA/F p+1A) andZp∞ −→ H(F pA)
whose kernels are expressible as modules of lower filtration and lower degree
in the tower. If (2) fails, we can identify some nonzero element in⋂

r≥1
im(H(F pA/F p+rA)→ H(F p+1A))

and in turn some representative of it lies in
⋂
r Z

p
r but not inZp∞ and (1) fails. If

(1) fails, then an element in
⋂
r Z

p
r not inZp∞ gives a class inH(F pA/F p+1A)

not in the image ofH(F pA) and so (2) fails.
To establish the equivalence of (2) and (3) consider the commutative dia-

gram induced by the filtration:

H(F pA/F p+rA)A
A
AAC

w H(F p+rA) w

u

H(F pA)

H(F p+1A)
h
h
h
hj

If x ∈ Rp+1 =
⋂
r im(H(F p+rA) → H(F p+1A)) then, by the exactness of

the top row of the diagram,x ∈ ker(Rp+1 → Rp) if and only if x is in the
intersection of the modulesim{H(F pA/F p+rA) → H(F p+1A)} for all r.
Therefore, for allp,⋂

r≥1
im{H(F pA/F p+rA)→ H(F p+1A)} = ker(Rp+1 → Rp).

and (2) is equivalent to (3). ut
A weakly convergent filtration guarantees that the spectral sequence from a

filtered differential graded module,(A, d, F ), converges toH(A, d), in the sense
that theE∞-term is related directly to a filtration ofH(A, d). How do we know
that the spectral sequence converges toH(A, d) and not to something else, say
H(B, d)? To illustrate, letK be a free gradedR-module and(A, d, F ) a filtered
differential graded module. Consider(A⊕K, d⊕ 0, F ′) with the filtrationF ′

given byF ′p(A⊕K) = F pA⊕K. It is easily seen (check the associated tower
of submodules) that the spectral sequence arising from(A, d, F ) is the same
as the spectral sequence coming from(A ⊕K, d ⊕ 0, F ′). Furthermore, ifF
is weakly convergent, so isF ′. Thus the same spectral sequence converges to
bothH(A, d) andH(A, d)⊕K.

A condition on a filtration that prevents this trivial but malevolent example
is to require that the filtration beHausdorff, that is, it is weakly convergent and⋂

p
F pH(A, d) = {0}.
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The terminology is meant to recall the function space situation where conver-
gence of a sequence need not determine the limit. The Hausdorff condition will
be developed in the later sections.

Morphisms of spectral sequences

Given two spectral sequences,{(E∗,∗r , dr)} and{(Ē∗,∗r , d̄r)}, we define
a morphism of spectral sequencesto be a sequence of homomorphisms of
bigraded modules,fr : (E∗,∗r , dr) −→ (Ē∗,∗r , d̄r), for all r, of bidegree(0, 0),
such thatfr commutes with the differentials, that is,fr ◦dr = d̄r ◦fr, and each
fr+1 is induced byfr on homology, that is,fr+1 is the composite

fr+1 : E∗,∗r+1
∼= H(E∗,∗r , dr)

H(fr)
−−−−→ H(Ē∗,∗r , d̄r) ∼= Ē∗,∗r+1.

The class of spectral sequences, with morphisms so defined, constitutes a cate-
gory,SpecSeq. It is useful at times to consider certain constructions as functors
from a topological or algebraic category toSpecSeq.

Suppose we have a morphism,{fr} : {(Er, dr)} → {(Ēr, d̄r)}, of spec-
tral sequences. Recall that each spectral sequence may be presented as a tower
of submodules of itsE2-term. By restrictingf2 : E2 → Ē2, we get the diagram:

B2

u

⊂ B3

u

⊂ · · · ⊂
⋂

r
Br

u

⊂
⋂

r
Zr

u

⊂ · · · ⊂ Z3

u

⊂ Z2

u

⊂ E2

u
f2

B̄2 ⊂ B̄3 ⊂ · · · ⊂
⋂

r
B̄r ⊂

⋂
r
Z̄r ⊂ · · · ⊂ Z̄3 ⊂ Z̄2 ⊂ Ē2.

The conditionfr ◦ dr = d̄r ◦ fr allows us to identifyfr+1 with the mapping
induced byf2:

fr+1 : Er+1
∼= Zr/Br −→ Z̄r/B̄r ∼= Ēr+1.

Furthermore, such a morphism induces a mappingf∞ : E∞ → Ē∞.
The second condition, thatfr+1 is induced byfr on homology, can be

expressed in the diagram

0 w br w

u
fr

cr w

u
fr

Er+1 w

u
fr+1

0

0 w b̄r w c̄r w Ēr+1 w 0

wherecr = ker dr : Er → Er andbr = im dr. With these observations and
the Five-lemma it is easy to prove the following result (exercise).
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Theorem 3.4.If {fr} : {(E∗,∗r , dr)} → {(Ē∗,∗r , d̄r)} is a morphism of spectral
sequences and, for somen, fn : En → Ēn is an isomorphism of bigraded
modules, then for allr, n ≤ r ≤ ∞, fr : Er → Ēr is an isomorphism.

Thus an isomorphism at some stage of the spectral sequences gives an isomor-
phism ofE∞-terms.

Morphisms of spectral sequences arise in the case of filtered differen-
tial graded modules when there is a mappingφ : (A, d, F ) → (Ā, d̄, F̄ ) with
φ : A → Ā a morphism of graded modules, such thatφ ◦ d = d̄ ◦ φ, andφ
respects the filtration, that is,φ(F pA) ⊂ F̄ pĀ. Such a mapping is amorphism
of filtered differential graded modulesand this notion leads to an appropriate
category. It is immediate thatφ induces a homomorphism of the associated tow-
ers of submodules and so a morphism of spectral sequences. Since the spectral
sequences are taken to be approximations toH(A, d) andH(Ā, d̄), it is natural
to try to compare these modules through the associated spectral sequences as
in the following result of [Moore53].

Theorem 3.5.A morphism of filtered differential graded modules

φ : (A, d, F )→ (Ā, d̄, F̄ ),

determines a morphism of the associated spectral sequences. If, for somen,
φn : En → Ēn is an isomorphism of bigraded modules, thenφr : Er → Ēr is
an isomorphism for allr, n ≤ r ≤ ∞. If the filtrations are bounded, thenφ
induces an isomorphismH(φ) : H(A, d)→ H(Ā, d̄).

Proof: It suffices, by Theorem 3.4, to prove the last part of the theorem. Since
the filtration is bounded, there are functionss = s(n) andt = t(n) so that we
can write

{0} = F sHn ⊂ F s−1Hn ⊂ · · · ⊂ F t+1Hn ⊂ F tHn = Hn,

whereHn denotesHn(A, d) andEp,q∞ ∼= F pHp+q/F p+1Hp+q. Similar data
hold forHn(Ā, d̄) which we denote as̄Hn. Sinceφ∞ is an isomorphism, by
the boundedness of the filtration, we have, for the sames = s(n), F s−1Hn =
F s−1Hn/F sHn ∼= Es−1,n−s+1

∞ ∼= Ēs−1,n−s+1
∞ ∼= F̄ s−1H̄n. We can now

apply induction downward toHn andH̄n: Consider the commutative diagram
with rows exact

0 w F pHn
w

u
H(φ)

F p−1Hn
w

u
H(φ)

Ep−1,n−p+1
∞ w

u
φ∞

0

0 w F̄ pH̄n
w F̄ p−1H̄n

w Ēp−1,n−p+1
∞ w 0.
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We apply induction oni in the expressionp = s − 1 − i and so we assume
thatH(φ) induces an isomorphismF pHn ∼= F̄ pH̄n. Sinceφ∞ is an isomor-
phism, by the Five-lemma,H(φ) : F p−1Hn → F̄ p−1H̄n is an isomorphism.
Thus, we arrive atHn = F tHn ∼= F̄ tH̄n = H̄n. (Compare this proof with
Example 1.K.) ut

3.2 Limits and colimits

In Theorem 3.5, we relied on the boundedness of the filtration to extract
the comparison of the homology modules. In order to treat more general cases,
we seek less restrictive conditions on the filtration. We first introduce some
important constructions.

Definition 3.6. Given a sequence of morphisms in a categoryC,

· · · −→ Ds+1
gs+1

−−−→ Ds
gs−→ Ds−1 −→ · · ·

anlimit (or inverse limit) of this sequence is an object inC,D∞ = lim
←s
{Ds, gs},

together with morphismshs : D∞ → Ds such thatgs ◦ hs = hs−1 for all s,
and, for any objectE in C, together with morphismsjs : E → Ds such that
gs ◦ js = js−1, there is a unique morphismk : E → D∞ so that, for alls,
js = hs ◦ k. Dually, a colimit (or direct limit) of the sequence is an object
in C, D−∞ = lim

→s
{Ds, gs}, together with morphismsps : Ds → D−∞ such

that ps−1 ◦ gs = ps for all s, and, for any objectE′ in C, together with mor-
phismsqs : Ds → E′ such thatqs−1 ◦ gs = qs, there is a unique morphism
k′ : D−∞ → E′ so that, for alls, qs = k′ ◦ ps.

Defined by a universal property, limits and colimits are unique up to iso-
morphism. When the sequence{Ds, gs} consists of subobjects and inclusions,
we havelim

←s
{Ds, gs} =

⋂
s
Ds and lim

→s
{Ds, gs} =

⋃
s
Ds. Thus limits and

colimits generalize intersections and unions.
We call a category(sequentially) completeif any sequence of morphisms

has a limit and(sequentially) cocompleteif any sequence of morphisms has a
colimit. In particular, the category of graded modules over a ringR is seen to
be complete and cocomplete by letting

lim
←s
{Ds, gs} =

{
(. . . , xs, xs−1, . . . ) ∈

∏
s

Ds

∣∣∣∣ for all s, gs(xs) = xs−1

}

with hs : lim
←s
{Ds, gs} → Ds thesth projection. The colimit is defined by

lim
→s
{Ds, gs} =

⋃
sD

s/
∼
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wherex ∈ Ds is related toy ∈ Dt if there are integersn andm with

gs−n+1◦gs−n+2◦· · ·◦gs(x) = gt−m+1◦gt−m+2◦· · ·◦gt(y) ∈ Ds−n = Dt−m.

The morphismsps : Ds → D−∞ are given by taking the inclusion into the
union followed by the quotient.

Given two sequences of morphisms inC, say{Ds, gs} and{D̄s, ḡs}, then
a morphism of sequences in Cis a sequence of morphisms inC, fs : Ds →
D̄s, for all s, satisfyingfs−1 ◦ gs = ḡs ◦ fs. WhenC has notions of kernel
and cokernel, then we can talk about a short exact sequence of sequences of
morphisms inC. Among the important properties of limits is their behavior
when applied to an exact sequence of sequences of morphisms. We restrict our
attention to limits and colimits in the category ofR-modules.

Lemma 3.7.Suppose0 → {Ks, ks} → {Ds, gs} → {Qs, qs} → 0 is a short
exact sequence of sequences ofR-modules and module homomorphisms. Then
on application of the colimit we obtain a short exact sequence ofR-modules,

0→ lim
→s
{Ks, ks} → lim

→s
{Ds, gs} → lim

→s
{Qs, qs} → 0.

Furthermore, on application of the limit we obtain a short exact sequence,

0→ lim
←s
{Ks, ks} → lim

←s
{Ds, gs} → lim

←s
{Qs, qs}.

Proof: We leave the proof of the exactness for the colimit to the reader. It is
a simple exercise in definitions.

[Eilenberg-Moore62] compute the limit using the homomorphism

Φ:
∏

s
Ds →

∏
s
Ds determined bypn ◦ Φ = pn − gn+1 ◦ pn+1 for all n.

By constructionlim
←s
{Ds, gs} = ker Φ. If we view Φ:

∏
s
Ds →

∏
s
Ds as a

chain complex, concentrated in degrees 0 and 1, then the exactness of the given
sequence leads to the exactness of the short sequence of chain complexes

0 w

∏
s
Ks w

u
Φ

∏
s
Ds ww

u
Φ

∏
s
Qs ww

u
Φ

0

0 w

∏
s
Ks w

∏
s
Ds w

∏
s
Qs w 0

and passing to homology, we get the short exact sequence associated to the
limit. ut
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The failure of the exactness of the limit is measured by continuing the
exact sequence associated to the homology of chain complexes further. The
first derived functor of the limit was introduced by [Milnor62] and is defined
by

lim
←s

1Ds = cokernel ofΦ.

This leads to the exact sequence

0→ lim
←s
{Ks, ks} → lim

←s
{Ds, gs} → lim

←s
{Qs, qs}

δ
−→ lim
←s

1{Ks, ks} → lim
←s

1{Ds, gs} → lim
←s

1{Qs, qs} → 0.

Given a fixedR-moduleA we can form the sequence of homomorphisms
all of which are the identityiA onA. This is a constant sequence and it satisfies
lim
←s
{A, iA} = A = lim

→s
{A, iA} and lim

←s
1{A, iA} = {0}. More generally, a

sequence of homomorphisms that is eventually all isomorphisms has limit the
eventual abstractR-module. If a sequence consists entirely of epimorphisms,
then the limit maps onto eachDs,∗ and the first derived functor vanishes. This
has the amusing consequence that a sequence of epimorphisms with vanishing
limit must be the sequence of trivial modules.

Given the filtered graded module,(H(A, d), F ), we obtain a sequence of
graded modules together with the canonical homomorphisms

H(A)
h
h
h
hk u

4
4
4
46

w H(A)/F p+1H(A) w H(A)/F pH(A) w H(A)/F p−1H(A) w

which induces a homomorphismu : H(A)→ lim
←p

H(A)/F pH(A), unique up
to isomorphism.

Definition 3.8. A filtration on a differential graded module(A, d) is said
to be strongly convergent ([Cartan-Eilenberg56]) or complete ([Eilenberg-
Moore62]) if it is weakly convergent and the induced mappingu : H(A) →
lim
←p

H(A)/F pH(A) is an isomorphism.

Theorem 3.9. Supposeφ : (A, d, F ) → (Ā, d̄, F̄ ), is a morphism of filtered
differential graded modules so that for somen, φn : E∗,∗n → Ē∗,∗n is an iso-
morphism. If the filtrations are exhaustive and weakly convergent, thenφ
induces an isomorphism of associated bigraded modulesE∗,∗0 (H(A, d), F ) ∼=
E∗,∗0 (H(Ā, d̄), F̄ ). If the filtrations are also complete, thenφ induces an iso-
morphism on homology,H(φ) : H(A, d)−→∼= H(Ā, d̄).
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Proof: By weak convergence, we know thatE∗,∗0 (H(A, d), F ) ∼= E∗,∗∞ and
E∗,∗0 (H(Ā, d̄), F̄ ) ∼= Ē∗,∗∞ . Sinceφ induces an isomorphism of theE∞-terms
of the spectral sequences, the associated bigraded modules for(H(A, d), F )
and(H(Ā, d̄), F̄ ) are isomorphic.

We constructH(φ) with the E∞-terms of the spectral sequences and
the assumption of strong convergence. First we show that the isomorphism
φ∞ : E∗,∗∞ → Ē∗,∗∞ , induces for allp and allr ≥ 0,

F p−rH(A)/F pH(A)
∼=−−→
φ∞

F̄ p−rH(Ā)/F̄ pH(Ā).

This follows by induction onr. Since

F p−1H(A)/F pH(A) ∼= Ep−1,∗
∞

∼=−−→
φ∞

Ēp−1,∗
∞ ∼= F̄ p−1H(Ā)/F̄ pH(Ā)

the case ofr = 1 is established. To complete the induction, apply the Five-
lemma to the mappings between short exact sequences of the type

0 −→ F p−r+1H(A)/F pH(A) −→
F p−rH(A)/F pH(A) −→ Ep−r+1,∗

∞ −→ 0

where the first isomorphism is given by induction and the last by the isomor-
phismEp−r+1,∗

∞ → Ēp−r+1,∗
∞ . SinceF andF̄ are decreasing and exhaustive,

φ∞ induces an isomorphism, for allp,⋃
r
F p−rH(A)/F pH(A) = H(A)/F pH(A)

∼=−→H(Ā)/F̄ pH(Ā) =
⋃

r
F̄ p−rH(Ā)/F̄ pH(Ā).

We can now pass this isomorphism to the limit to get the commutative diagram

H(A, d)

u

H(φ)

w
u lim

←p
H(A)/F pH(A)

u
∼=

H(Ā, d̄) w
ū

lim
←p

H(Ā)/F̄ pH(Ā)

and by completeness,H(φ) is also an isomorphism. ut
This comparison theorem identifies the condition on a filtration of a dif-

ferential graded module so that the associated spectral sequence determines the
target moduleH(A, d) (uniquely up to extensions). It also offers the motivating
example for strong convergence of more general spectral sequences. The key
property that makes strong convergence work for a filtered differential module
is an inverse limit condition. We next consider more general situations.
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Completion

The property of strong convergence is determined by comparison: If we
know that a spectral sequence converges to a filteredR-module,(M,F ), then
Es∞ ∼= F sM/F s+1M . GivenE0(M,F ), when can we reconstructM? A
filteredR-module(M,F ) may be endowed with a topology: Take as basic
open sets the collection of cosets of the submodulesF sM . A filtered module
(M,F ) is complete(in the topological sense) if any Cauchy sequence in the
topological spaceM converges, that is, if a sequence of elements{xn} satisfies
the condition, for alls, there is an integerN(s) such thatxn − xm ∈ F sM for
anyn,m ≥ N(s), then there is an elementy ∈M such that, for alls, there is
an integerQ(s) such thaty − xn ∈ F sM for anyn ≥ Q(s). We now prove
the following properties relating the underlying algebra to this topology.

Lemma 3.10.A filtered module(M,F ) is Hausdorff in the the topology induced
by the filtration if and only if

⋂
s F

sM = {0}. The module is complete in this
topology if and only if the mappingM → lim

←s
M/F sM is an epimorphism. It

follows that a filtered module(M,F ) is Hausdorff iflim
←s

F sM = {0}, and is

complete iflim
←s

1F sM = {0}. Dually, a filtration is exhaustive if and only if

lim
→s

M/F sM = {0}.

Proof: We leave the properties ofM as a topological space to the reader.
For the algebraic equivalents, consider the short exact sequence of sequences
of modules whereqs : M/F sM → M/F s−1M is given bym + F sM 7→
m+ F s−1M :

0→ {F sM,⊂} −→ {M, idM} −→ {M/F sM, qs} → 0.

When we apply the direct limit functor, then, by exactness, the filtration is
exhaustive,lim

→s
F sM =

⋃
s F

sM = M , if and only if lim
→s

M/F sM = {0}.
When we apply the limit functor, we obtain the short exact sequence:

0→ lim
←s

F sM −→M −→ lim
←s

M/F sM −→ lim
←s

1F sM → 0.

Since the morphisms in the sequence of filtration submodules are all inclu-
sions, the Hausdorff property is equivalent to the vanishing of first limit. With
lim
←s

F sM = {0}, vanishing of the first derived limit of the sequence{F sM}
is equivalent to completeness. ut

Strong convergence of the spectral sequence associated to a filtered dif-
ferential module(A, d, F ) is a feature of the completeness of the filtration of
H(A, d). As in analysis, the failure of completeness is overcome by completing.
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Definition 3.11. To a moduleM with a decreasing filtrationF we associate
thecompletionofM with respect toF given by

M̂ = lim
←s

M/F sM.

The completion is equipped with a mappingc : M → M̂ induced by the quo-
tientsM →M/F sM and called thecompletion homomorphism. The filtra-
tion F onM induces a filtrationF̂ onM̂ given byF̂ sM̂ = lim

←t
F sM/F tM .

Proposition 3.12. The completion of a filtered module(M,F ) satisfies the
following properties:

(1) (M̂, F̂ ) is complete and Hausdorff.
(2) For all t ≥ s, F̂ sM̂/F̂ tM̂ ∼= F sM/F tM .
(3) F̂ is exhaustive if and only ifF is exhaustive.

Proof: Consider the short exact sequence

0→ F sM/F tM →M/F tM →M/F sM → 0.

Varyingtwe get a short exact sequence of sequences of homomorphisms. Apply
the inverse limit functor to get

0→ F̂ sM̂ → M̂ →M/F sM → lim
←t

1F sM/F tM → lim
←t

1M/F tM → 0.

SinceF is a decreasing filtration, the morphismsF sM/F tM →F sM/F t−1M
are all epimorphisms and solim

←t
1F sM/F tM = {0}. Thus the exact sequence

reduces to

(3.13) 0→ F̂ sM̂ → M̂ →M/F sM → 0.

Next consider the limit overs:

0→ lim
←s

F̂ sM̂ → M̂ → lim
←s

M/F sM → lim
←s

1F̂ sM̂ → 0.

Sincelim
←s

M/F sM = M̂ , the morphism in the middle is an isomorphism and

so the modules on the ends vanish. It follows from Lemma 3.10 that(M̂, F̂ ) is
Hausdorff and complete.

Notice that the short exact sequence (3.13) implies thatM/F sM ∼=
M̂/F̂ sM̂ and so, by the Five-lemma and the diagram,

0 w F sM/F tM w

u

M/F tM w

u

M/F sM w

u

0

0 w F̂ sM̂/F̂ tM̂ w M̂/F̂ tM̂ w M̂/F̂ sM̂ w 0,
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we getF̂
sM̂/F̂ tM̂

∼= F sM/F tM . Furthermore, if we apply the direct limit
functor to (3.13) we get

0→
⋃

s
F̂ sM̂ → M̂ → lim

→s
M/F sM → 0.

By Lemma 3.10,(M̂, F̂ ) is exhaustive if and only iflim
→s

M/F sM = {0} if and

only if (M,F ) is exhaustive. ut
The dilemma that convergence of a spectral sequence presents is clarified

by the completion. If we have only an isomorphismEs,∗∞ ∼= Es,∗0 (M,F ), is
this enough to captureM up to extensions? The answer is NO in general, but
it is the completion that emerges as the real target:

Proposition 3.14.Letφ : (M,F )→ (N,F) be a morphism of filtered modules.
If the filtrationsF andF are exhaustive, then the following statements are
equivalent.

(1) φ̂ : (M̂, F̂ ) → (N̂ , F̂) is an isomorphism of filtered modules, that is,
φ̂| : F̂ sM̂ → F̂sN̂ is an isomorphism for alls.

(2) E0(φ) : E0(M,F )→ E0(N,F) is an isomorphism.

Proof: If φ̂ induces an isomorphism of filtered modules, then it induces the
isomorphism of associated graded modulesE0(φ) : E0(M,F ) ∼= E0(M̂, F̂ )
E0(φ̂)
−−−→ E0(N̂ , F̂) ∼= E0(N,F).

SupposeE0(φ) is an isomorphism. This implies that, for alls, φ induces
an isomorphism

Es0(φ) : F sM/F s+1M
∼=−→ FsN/Fs+1N.

By induction and the Five-lemma it follows thatφ induces an isomorphism

F sM/F s+nM
∼=−→ FsN/Fs+nN for all n ≥ 0. Taking inverse limits overn

gives us that̂φ induces isomorphisms, for alls,

F̂ sM̂ = lim
←n

F sM/F s+nM
∼=−→
φ

lim
←n
FsN/Fs+nN = F̂sN̂ .

Finally, φ̂ induces an isomorphism of direct limits,

M̂ = lim
→s

F̂ sM̂
∼=−→̂
φ

lim
→s
FsN̂ = N̂ . ut
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Corollary 3.15. Suppose{fr} : {E∗,∗r , dr} → {Ē∗,∗r , d̄r} is a morphism of
spectral sequences and for somen, fn : En → Ēn is an isomorphism. Suppose
Er converges to(M,F ) and Ēr converges to(N,F). Thenf∞ induces an
isomorphism of filtered modules,f : (M̂, F̂ )→ (N̂ , F̂).

Corollary 3.15 generalizes the successful comparison theorems (Theo-
rems 3.5 and 3.9) for filtered differential modules. In these cases the target
modules were already complete and so isomorphic to their completions.

We next turn to exact couples. A morphism between spectral sequence
can arise via amorphism of exact couples,

{ψ1, ψ2} : {D,E, i, j, k} → {D̄, Ē, ı̄, ̄, k̄}

by which we mean a pair of homomorphismsψ1 : D → D̄ andψ2 : E → Ē
compatible with the homomorphisms in the couple, that is,ı̄ ◦ ψ1 = ψ1 ◦ i,
̄ ◦ ψ1 = ψ2 ◦ j, and k̄ ◦ ψ2 = ψ1 ◦ k. Under these conditions,ψ1 andψ2

induce a morphism of the derived couples and hence a morphism of spectral
sequences. In the topological applications morphisms of exact couples can arise
from functorial constructions.

We saw in Chapter 2 (for example, Corollary 2.10), that the target of the
spectral sequence associated to an exact couple can be more difficult to describe
than the analogous problem for filtered differential graded modules. To an exact
couple we associate two limit modules:

D∞,∗ = lim
←s
{Ds,∗, i} andD−∞,∗ = lim

→s
{Ds,∗, i}.

Each module has a decreasing filtration given by

FsD∞,∗ = ker(D∞,∗
hs−→ Ds,∗) andF sD−∞,∗ = im(Ds,∗ ps−→ D−∞,∗).

In fact, these filtrations have very nice properties.

Proposition 3.16.For an exact couple, the filtrationF on the colimitD−∞,∗

is exhaustive. The filtrationF on the limitD∞,∗ is Hausdorff and complete.

Proof: Recall that the colimit is a quotient of the union of theDs,∗ and so
any element inD−∞,∗ comes from someDs,∗ before the quotient and thus lies
in someF sD−∞,∗. It follows that the filtration is exhaustive.

To prove that the filtrationF onD∞,∗ is Hausdorff, suppose that

(. . . , xs, xs−1, . . . ) ∈
⋂

s
FsD∞,∗.

Sincehs : D∞,∗ → Ds,∗ is given by projection, to be in the kernel ofhs one
hasxs = 0. Thus if an element of the limit is in all of the filtration submodules,
then it must be the zero element and the filtration is Hausdorff.
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To prove completeness we consider the isomorphism

D∞,∗/FsD∞,∗ ∼= im(D∞,∗ → Ds,∗).

Applying the limit functor giveslim
←s

D∞,∗/FsD∞,∗ ∼= lim
←s

im(D∞,∗ → Ds,∗).
By the universal property of the inverse limit, the limit on the right can be iden-
tified withD∞,∗ and so the filtration is complete. ut

We generalize Proposition 3.3 on convergence for filtered differential mod-
ules to exact couples.

Lemma 3.17.LetRp =
⋂

r
im(ir : Dp+r,∗ → Dp,∗). Then there is a short

exact sequence for eachs:

0→ F sD−∞,∗/F s+1D−∞,∗ −→ Es,∗∞ −→ Rs+1
i
−→ Rs.

Proof ([Boardman99]): We apply Proposition 2.9 to rename the modules in
the sequence. We begin withker k ⊂ Es,∗. Since

Zs,∗∞ =
⋂

r
Zs,∗r =

⋂
r
k−1(im ir−1 : Ds+r,∗ → Ds+1,∗)

Bs,∗∞ =
⋃

r
Bs,∗r =

⋃
r
j(ker ir−1 : Ds,∗ → Ds−r+1,∗)

we see thatBs,∗∞ ⊂ ker k ⊂ Zs,∗∞ . Consider the short exact sequence

0→ ker k/Bs,∗∞ −→
Zs,∗∞ /Bs,∗∞

−→ Zs,∗∞ /ker k → 0.

Notice thatZs,∗∞ = k−1Rs+1 by the definition ofRs+1. Thenk induces a
mappingk̄ : Zs,∗∞ /Bs,∗∞ → Rs+1 by k̄(a + Bs,∗∞ ) = k(a). The image of̄k is
given byRs+1 ∩ im k = Rs+1 ∩ ker i and so the sequence

Zs,∗∞ /Bs,∗∞
k̄
−→ Rs+1

i
−→ Rs

is exact atRs+1. Furthermore,̄k may be taken as defined onZs,∗∞ and so has
kernel given byker k. Thus the mapping toRs+1 coincides with the mapping
in the short exact sequence forBs,∗∞ ⊂ ker k ⊂ Zs,∗∞ .

We next rewriteBs,∗∞ in terms of the colimitD−∞,∗ to show⋃
r
(ker ir−1 : Ds,∗ → Ds−r+1,∗) = ker(ps : Ds,∗ → D−∞,∗).

The union of kernels certainly lies in the kernel ofps. If ps(a) = 0, then
in(a) = 0 ∈ Ds+n,∗ for somen by the definition of the equivalence relation
that determines the colimit. This impliesa ∈ ker in and we get equality. It
follows thatBs,∗∞ = j(ker ps).
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Using the homomorphismj we obtain an isomorphism

Ds,∗
/(ker j + ker ps)

∼=−→ j(Ds,∗)/j(ker ps) = ker k/Bs,∗∞ .

Using the homomorphismps : Ds,∗ → D−∞,∗ we get a short exact sequence

0→ p−1
s (F s+1D−∞,∗)→ Ds,∗ ps−→ F sD−∞,∗/F s+1D−∞,∗ → 0.

However,p−1
s (F s+1D−∞,∗) = p−1

s (ps+1(Ds+1,∗)) = ker ps+im i = ker ps+
ker j. It follows thatF s/F s+1 is isomorphic toDs,∗/(ker j + ker ps) and so
to ker j/Bs,∗∞ and the lemma is proved. ut

It follows from the lemma that the modulesRs tell us if we can identifyE∞
in terms of the filtered module given by the colimit. Generalizing Proposition 3.3
we see that the spectral sequence associated to an exact couple converges to the
colimit D−∞,∗ whenever the morphismsi : Rs+1 → Rs are monomorphisms
for all s.

Conditionally convergent spectral sequences®N
[Boardman99] introduced a class of spectral sequences together with an

invariant that aids in recognizing strong convergenceintrinsically.

Definition 3.18. The spectral sequence associated to an exact couple{Ds,∗,
Es,∗, i, j, k} is said to beconditionally convergenttoD−∞,∗ = lim

→s
{Ds,∗, i}

if
D∞,∗ = lim

←s
{Ds,∗, i} = {0} and lim

←s
1{Ds,∗, i} = {0}.

We associate to the tower of submodules· · · ⊂ Zs,∗r ⊂ Zs,∗r−1 ⊂ · · · the first
derived module of the limit of this sequence of inclusions denoted by

REs,∗∞ = lim
←s

1Zs,∗r .

The notation hides a nice property oflim1: If (M,F ) is a filtered module
with N a submodule that satisfiesN ⊂ F sM for all s, then

lim
←s

(
F sM/N

)
∼=
(

lim
←s

F sM
)
/N and lim

←s
1F sM ∼= lim

←s
1
(
F sM/N

)
.

This follows from the short exact sequences0→ N → F sM → F sM/N →
0. SinceBs,∗∞ ⊂ Zs,∗r for all r, andlim

←r
Zs,∗r = Zs,∗∞ , we can writeREs,∗∞ =

lim
←r

1 Zs,∗r /Bs,∗∞
. The strength of these notions is born out by the following

result. For the motivating topological application of this result see the discussion
of [Adams74, Theorem 8.2].
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Theorem 3.19. Suppose{Ds,∗, Es,∗, i, j, k} is an exact couple satisfying
Es,∗ = {0} for all s < 0. Suppose further that the associated spectral se-
quence converges conditionally toD−∞,∗. Then the spectral sequence con-
verges strongly toD−∞,∗ if and only ifREs,∗∞ = {0} for all s.

Proof: We add a little more detail to the objects involved. Let

ImrDs,∗ = im ir : Ds+r,∗ → Ds,∗.

These submodules are organized in two directions:Imr+1Ds,∗ ⊂ ImrDs,∗

for all r, and, fixingr, the homomorphismsi mapImrDs,∗ to ImrDs−1,∗. In
fact, i(ImrDs,∗) = Imr+1Ds−1,∗. This leads to two limits

lim
←r
{ImrDs,∗,⊂} and lim

←s
{ImrDs,∗, i}.

Lemma 3.20.For all r ands we havelim
←r

ImrDs,∗ =
⋂

r
ImrDs,∗ = Rs,

lim
←s
{ImrDs,∗, i} = lim

←s
{Ds,∗, i}, and lim

←s
1{ImrDs,∗, i} = lim

←s
1{Ds,∗, i}.

Proof: The first assertion follows from the sequence of inclusions and the
definition ofRs. For the second assertion we work by induction. Forr = 1 we
have the short exact sequence

0→ Im1Ds,∗ → Ds,∗ → Ds,∗
/Im1Ds,∗ → 0.

These fit together into a short exact sequence of sequences where the homo-
morphism between the last modules are all the zero homomorphism. Since
lim
←s
{Ms, 0} = {0} = lim

←s
1{Ms, 0} for any sequence of zero homomorphisms,

the exact sequence relatinglim
←s

andlim
←s

1 shows that the limit and first derived

limit of {Ds,∗, i} and{Im1Ds,∗, i} are isomorphic. SinceIm1(ImrDs,∗, i) =
Imr+1Ds,∗, we prove the second assertion by induction. ut

Next we consider the sequence· · ·
i
−→ Rs+1

i
−→ Rs

i
−→ · · ·. The inverse

limit may be written

lim
←s
{Rs, i} = lim

←s

(
lim
←r
{ImrDs,∗,⊂}, i

)
.

(It wouldbe nice to simply commute the indices, but. . . ) We prove directly
thatlim

←s
{Rs, i} = lim

←s
{Ds,∗, i} = D∞,∗.

Consider the projectionshs : D∞,∗ → Ds,∗. Notice that the image lies
in Rs: An element ofD∞,∗ may be written as(. . . , xs+1, xs, xs−1, . . . ) with
xs = i(xs+1) = i2(xs+2) = · · · . Thusxs ∈ ImrDs,∗ for all r. This
fact induces a mappingD∞,∗ → lim

←s
{Rs, i}. Furthermore, the inclusions
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Rs ⊂ Ds,∗ give a mapping of sequences and hence a homomorphismlim
←s

Rs →
lim
←s

Ds,∗. By the universal property of limits we factor the identityD∞,∗ →
lim
←s

Rs → D∞,∗ and so the mappinglim
←s

Rs → D∞,∗ is onto. Checking at

the level of elements, we see that it is also one-one having been induced by
inclusions. Thuslim

←s
Rs = lim

←s
Ds,∗.

From the definition ofImrDs,∗, we have thatZs,∗r = k−1 Imr−1Ds+1,∗

and there is a short exact sequence:

0→ Zs,∗r /ker k → Imr−1Ds+1,∗ i
−→ ImrDs,∗ → 0.

If we apply the functorlim
←r

, we get the exact sequence

0→ Zs,∗∞ /ker k → Rs+1
i
−→ Rs

δ
−→ REs,∗∞ → lim

←r
1 Imr−1Ds+1,∗ i

−→ lim
←r

1 ImrDs,∗ → 0.

We splice in the short exact sequence from Lemma 3.17 to get

0→ F sD−∞,∗/F s+1D−∞,∗ → Es,∗∞ → Rs+1
i
−→ Rs

δ
−→ REs,∗∞ → lim

←r
1 Imr−1Ds+1,∗ i

−→ lim
←r

1 ImrDs,∗ → 0.

SupposeREs,∗∞ = {0} for alls: From the exact sequence we find thati : Rs+1 →
Rs is an epimorphism for alls. By the definition of conditional conver-
gence{0} = D∞,∗ = lim

←s
Rs and so we conclude thatRs = {0} for all s.

ThusF
sD−∞,∗/F s+1D−∞,∗

∼= Es,∗∞ and the spectral sequence converges to
(D−∞,∗, F ).

We next show that a right-half-plane spectral sequence withREs,∗∞ = {0}
for all s and conditionally convergent toD−∞,∗ is, in fact, strongly convergent,
that is, (D−∞,∗, F ) is complete and Hausdorff. This is equivalent, in the
language of limits, tolim

←s
F sD−∞,∗ = {0} = lim

←s
1F sD−∞,∗.

A right-half-plane spectral sequence is given by the conditionDs,∗ =
D0,∗ for all s < 0, which implies thatD−∞,∗ = D0,∗ andF sD−∞,∗ =
im is : Ds,∗ → D0,∗ = ImsD0,∗. It follows that

lim
←s

F sD−∞,∗ = lim
←s

ImsD0,∗ = R0 = {0}.

Therefore we have the Hausdorff condition.
To study the derived limit consider the short exact sequence of sequences

of homomorphisms:

0 w ker ir w

u
i

Ds+r,∗
w

ir

u
i

ImrDs,∗
w

u
⊂

0

0 w ker ir−1
w Ds+r−1,∗

w
ir Imr−1Ds,∗

w 0
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This leads to the exact sequence

0→ lim
←r
{ker ir, i} → lim

←r
{Ds+r,∗, i} → lim

←r
{ImrDs,∗,⊂}

δ
−→ lim
←r

1{ker ir, i} → lim
←r

1{Ds+r,∗, i} → lim
←r

1{ImrDs,∗,⊂} → 0.

Conditional convergence implieslim
←r

1{Ds+r,∗, i} = {0} and so the exact se-

quence forceslim
←r

1 ImrDs,∗ = {0}. In particular,lim
←r

1 ImrD0,∗ = {0} and

completeness follows. ut
[Boardman99] discusses more general situations and applications. The

insight of conditional convergence is that the invariantRE∗,∗∞ may vanish for
reasons easily at hand; for example, when all of the modulesE∗,∗2 are finitely
generated, or there are only finitely many nonzero differentials at any given
(s, t). Thus the raw dataE∗,∗2 can hold the key toRE∗,∗∞ = {0}, an intrinsic
condition with global consequences. Conditional convergence is a global con-
dition that depends on the behavior of certain limits, and hence may be satisfied
by virtue of certain structural features of the construction of a spectral sequence.

The Mittag-Leffler condition®N
Other global properties of the modules in an exact couple determine the

behavior of limits and hence convergence of the associated spectral sequence.
For example, ifR = Z and, for everys,Ds,∗ is a finite abelian group, then the
groups

ImrDs,∗ = im(ir : Ds+r,∗ → Ds,∗)

must become constant forr large enough. It follows thatlim
←r

1{ImrDs,∗,⊂} =

{0} because the sequence of inclusions stabilizes to equalities. Furthermore,
sinceZs,∗r = k−1(Imr−1Ds+1,∗), we get a constant sequence after some finite
indexr,Zs,∗r = Zs,∗r+1 = Zs,∗r+2 = · · · and it follows thatREs,∗∞ = lim

←r
1Zs,∗r =

{0}. Putting these data into the exact sequence of the proof of Theorem 3.19,
we get a short exact sequence

0→ F sD−∞,∗/F s+1D−∞,∗ → Es,∗∞ → Rs+1
i
−→ Rs → 0.

(Recall thatRs = lim
←r

ImrDs =
⋂
s

ImrDs.)

A generalization of these phenomena forR-modules is implied by the
following condition (introduced by [Dieudonn´e-Grothendieck61]).

Definition 3.21. A sequence of homomorphisms· · ·
i
−→Ds+1,∗ i

−→Ds,∗ i
−→

Ds−1,∗ i
−→ · · · satisfies theMittag-Leffler condition if, for everys, there

is an integerγ(s) such that, whenevert ≥ γ(s), we have

im(Ds+t,∗ → Ds,∗) = im(Ds+γ(s),∗ → Ds,∗).
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We can define the Mittag-Leffler condition more generally and allowγ(s) to
depend on the codegree as well, that is, for every(s, t) there is an integerγ(s, t)
such that, whenevern ≥ γ(s, t), we have

im(Ds+n,t → Ds,t) = im(Ds+γ(s,t),t → Ds,t).

For ease of discussion we suppress the codegree.
The same argument for the case of finite abelian groups proves the follow-

ing result.

Proposition 3.22.Given an exact couple{Ds,∗, Es,∗, i, j, k}, if the sequence of

morphisms· · ·
i
−→ Ds+1,∗ i

−→ Ds,∗ i
−→ Ds−1,∗ i

−→ · · · associated to the exact
couple satisfies the Mittag-Leffler condition, then there is an exact sequence

0→ F sD−∞,∗/F s+1D−∞,∗ → Es,∗∞ → Rs+1
i
−→ Rs → 0.

Corollary 3.23. The Mittag-Leffler condition for a sequence· · ·
i
−→ Ds,∗ i

−→
Ds−1,∗ i

−→ · · · implieslim
←s

1Ds,∗ = {0}.

Proof: Following [Boardman99] we introduce the bigradedR-module

Is,t =
{

im(Dt,∗ → Ds,∗) = Imt−sDs, for t > s,

Ds, for t ≤ s.

Whenevers ≥ u andt ≥ v, there is a homomorphismIs,t → Iu,v determined
by the commutative square

Dt,∗
w

it−s

u
it−u

Ds,∗

u
is−v

Du,∗
w

iu−v
Dv,∗.

Fixing t, we get a sequence of homomorphisms:

· · ·Dt+n,∗ i
−→ Dt+n−1,∗ i

−→ · · ·
i
−→ Dt,∗ −→ It−1,t −→ It−2,t −→ · · · .

It follows that lim
←s

Is,t = lim
←s

Ds,∗ andlim
←s

1Is,t = lim
←s

1Ds,∗. To compute the

inverse limit and derived functor we consider the exact sequence:

(3.24) 0→ lim
←s

Is,t →
∏

s
Is,t

Φ
−→
∏

s
Is,t → lim

←s
1Is,t → 0.
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Since the first term in this exact sequence is independent oft, it follows that
lim
←t

1 lim
←s

Is,t = {0}. We now apply two facts ([Eilenberg-Moore62]) left to

the reader to prove:

(1) lim
←t

∏
s
Is,t =

∏
s

lim
←t

Is,t andlim
←t

1
∏

s
Is,t =

∏
s

lim
←t

1Is,t.

(2) If 0 → {As} → {Bs} → {Cs} → {Ds} → 0 is an exact sequence of
sequences of morphisms withlim

←s
1As = {0}, then there is an exact sequence

0→ lim
←s

As → lim
←s

Bs → lim
←s

Cs → lim
←s

Ds

→ lim
←s

1Bs → lim
←s

1Cs → lim
←s

1Ds → 0.

Apply the functorlim
←t

to the four-term exact sequence (3.24) and we get an

exact sequence from facts (1) and (2),

0→ lim
←s

Ds →
∏

s
lim
←t

Is,t →
∏

s
lim
←t

Is,t → lim
←s

1Ds

→
∏

s
lim
←t

1Is,t →
∏

s
lim
←t

1Is,t → 0.

Fixing s, the Mittag-Leffler condition gives the sequence of morphisms,

· · ·
=
−→ Imγ(s)+nDs,∗ =

−→ Imγ(s)+n−1Ds,∗ =
−→ · · ·

=
−→ Imγ(s)Ds,∗ −→ · · · −→ ImrDs,∗ −→ · · ·

from which we concludelim
←t

Is,t = Imγ(s)Ds,∗ = Rs andlim
←t

1Is,t = {0}.
This gives the exact sequence

0→ lim
←s

Ds,∗ →
∏

s
Rs

Φ
−→
∏

s
Rs → lim

←s
1Ds → 0.

SinceRs+1
i
−→ Rs is an epimorphism for alls, coker Φ = {0} and so

lim
←s

1Ds,∗ = {0}. ut

Corollary 3.25.Suppose{Ds,∗, Es,∗, i, j, k} is an exact couple such that the se-

quence of morphisms· · · → Ds,∗ i
−→ Ds+1,∗ i

−→ · · · satisfies the Mittag-Leffler
condition, then the topology induced by the filtration onlim

→s
Ds,∗ = D−∞,∗ is

complete.

Proof: The filtration onD−∞,∗ is given byF sD−∞,∗ = im(Ds,∗ ps−→D−∞,∗).
This leads to the short exact sequence0 → ker ps → Ds,∗ → im ps → 0.
Applying the inverse limit functor gives the exact sequence that ends with
lim
←s

1Ds,∗ → lim
←s

1 im ps → 0 and, sincelim
←s

1Ds,∗ = {0}, we have that

lim
←s

1 im ps = lim
←s

1F sD−∞,∗ = {0} and so the filtration is complete. ut
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Corollary 3.25 tells us that the only thing standing in our way from identify-
ing the target of strong convergence of a spectral sequence in the presence of the
Mittag-Leffler condition islim

←s
F sD−∞,∗, that is, whether or not the filtration

on the direct limit of{Ds,∗, i} is Hausdorff. Like the point-set interpretation
of the Hausdorff condition, it determines if the spectral sequence converges to
a uniqueR-module or not. Notice thatlim

←s
F sD−∞,∗ is also the kernel of the

completion homomorphism whenlim
←s

1F sD−∞,∗ vanishes.

Recent studies of the convergence of spectral sequences have concen-
trated on the spectral sequence associated to a tower of fibrations introduced
by [Bousfield-Kan72]. The associated towers of groups fit into the theory of
pro-groups and pro-morphisms that emerged from the study of ´etale homotopy
theory ([Artin-Mazur69], [Quillen69’]). The basic reference for this theory as
applied to homotopy theory is the book of [Bousfield-Kan72]. General conver-
gence results for the homology spectral sequence associated to such towers are
due to [Dwyer75’], [Bousfield87] and to [Shipley96].

3.3 Zeeman’s comparison theorem

The next theorem shows how limited information can be turned into global
information about a spectral sequence. Though the hypotheses seem specific
in their algebraic formulation, the geometric interpretation of these results in
Chapter 5 carries great generality. This theorem has become a standard tool in
the application of spectral sequences.

Theorem 3.26 (Zeeman’s comparison theorem).Suppose{E∗,∗r , dr} and
{Ē∗,∗r , d̄r} are first quadrant spectral sequences of cohomological type (that
is, dr and d̄r of bidegree(r, 1 − r)). Suppose{fr} is a morphism of spectral
sequences and the following diagram commutes with rows exact:

0 w Ep,02 ⊗ E0,q
2 w

u
f2⊗f2

Ep,q2 w

u
f2

TorR1 (Ep+1,0
2 , E0,q

2 ) w

u
Tor(f2,f2)

0

0 w Ēp,02 ⊗ Ē0,q
2 w Ēp,q2 w TorR1 (Ēp+1,0

2 , Ē0,q
2 ) w 0

Then any two of the following conditions imply the third:

I. f2 : Ep,02 → Ēp,02 is an isomorphism for allp.
II. f2 : E0,q

2 → Ē0,q
2 is an isomorphism for allq.

III. f∞ : Ep,q∞ → Ēp,q∞ is an isomorphism for allp, q.

Proof: ThatI andII imply III follows from the functoriality ofTorR1 from
which it follows thatTor(f1, f2) is an isomorphism and so, by the Five-Lemma,
f2 : Ep,q2 → Ēp,q2 is an isomorphism for allp,q. Then apply Theorem 3.4.



        

3.3. Zeeman’s comparison theorem 83

We establish thatI andIII imply II by sneaking up onII by induction.
Let IIk designate the statement:

IIk. f2 : E0,q
2 → Ē0,q

2 is an isomorphism when0 ≤ q ≤ k.

SinceE0,0
2 = E0,0

∞ , III establishesII0; we assumeI, III and IIk. We first
prove some facts.

Fact 1. fr : Ep,qr → Ēp,qr is an epimorphism whenq ≤ k and an isomorphism
whenq ≤ k − r + 2.

Observe that Fact 1 holds whenr = 2 by the Five-lemma,I andIIk. Suppose
it is true forr = m. Consider the following diagram with the rows exact:

0 w (ker dm)p,q w

u
f̃m

Ep,qm w
dm

u
fm

Ep+m,q−m+1
m

u
fm

0 w (ker d̄m)p,q w Ēp,qm w
d̄m Ēp+m,q−m+1

m

If q ≤ k, thenq −m + 1 ≤ k −m + 1 < k −m + 2 and so the rightmost
morphismfm is an isomorphism. Ifq ≤ k, then the precedingfm is an
epimorphism. Sincefm commutes withdm andd̄m, it induces a homomorphism
f̃m : ker dm → ker d̄m.

Let ū ∈ (ker d̄m)p,q. This goes by inclusion tōu ∈ Ēp,qm . Sincefm is onto,
there is an elementu ∈ Ep,qm with fm(u) = ū. Sincefm is an isomorphism on
the right, we have

dm(u) = f−1
m ◦ d̄m ◦ fm(u) = f−1

m ◦ d̄m(ū) = 0,

sou is in ker dm andf̃m(u) = ū. Thusf̃m is onto. Ifq ≤ k−m+2, then both
morphismsfm are isomorphisms. Ifu, v ∈ (ker dm)p,q satisfyf̃m(u−v) = 0,
thenfm(u− v) = 0 and sou = v in Ep,qm . Since(ker dm)p,q injects intoEp,qm ,
u = v in (ker dm)p,q and sof̃m is an isomorphism.

Consider the dual diagram:

Ep−m,q+m−1
m w

dm

u
fm

Ep,qm w
Q

u
fm

Ep,qm /im dm w

u
f̂m

0

Ēp−m,q+m−1
m w

d̄m Ēp,qm w
Q̄

Ēp,qm /im d̄m w 0.

Once again, sincefm commutes with the differentials, the homomorphism
f̂m : Ep,qm / im dm → Ēp,qm / im d̄m is induced byfm.
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Let Ū ∈ Ēp,qm / im d̄m. Then there is an element̄U ′ with Q(Ū ′) = Ū
and Ū ′ ∈ Ēp,qm . Whenq ≤ k, there is an elementU ′ with fm(U ′) = Ū ′,
sincefm is an epimorphism. LetU = Q(U ′). Then f̂m(U) = Ū and we
see thatf̂m is onto. Supposeq ≤ k − m + 1. Thenq + m − 1 ≤ k and
the leftmostfm is an epimorphism, the nextfm an isomorphism. SupposeU ,
V ∈ Ep,qm / im dm satisfyf̂m(U − V ) = 0. SupposeU = Q(U ′), V = Q(V ′).
Then, Q̄ ◦ fm(U ′ − V ′) = f̂m(U − V ) = 0 and so there is an element
W̄ ∈ Ēp−m,q+m−1

m with d̄m(W̄ ) = fm(U ′ − V ′). SinceW̄ = fm(W ) for
someW ∈ Ep−m,q+m−1

m , we havedm(W ) = U ′ − V ′ and

U − V = Q(U ′ − V ′) = Q ◦ dm(W ) = 0.

Thusf̂m is an isomorphism.
Next consider the diagram

0 w (im dm)p,q w

u
fm|

Ep,qm w

u
fm

Ep,qm /im dm w

u
f̂m

0

0 w (im d̄m)p,q w Ēp,qm w Ēp,qm /im d̄m w 0.
Whenq ≤ k, fm is an epimorphism, and we can concludefm| is an epimor-
phism. Whenq ≤ k −m + 1, bothfm andf̂m are isomorphisms and so the
argument forf̃m works to show thatfm| is an isomorphism.

Finally, let us consider the diagram:

0 w (im dm)p,q w

u
fm|

(ker dm)p,q w

u
f̃m

Ep,qm+1 w

u
fm+1

0

0 w (im d̄m)p,q w (ker d̄m)p,q w Ēp,qm+1 w 0.

If q ≤ k, thenf̃m is an epimorphism and hence so isfm+1. If q ≤ k −m+ 1
thenfm| andf̃m are both isomorphisms and so then isfm+1. Sincek−m+1 =
k − (m+ 1) + 2, we have established Fact 1.

Fact 2. Whenr is large enough,E0,k+1
r+1 = E0,k+1

∞ and sof0,k+1
r+1 = f0,k+1

∞ is
an isomorphism.

This follows because we have a first quadrant spectral sequence. From Fact 2 we
argue thatf0,k+1

r is an isomorphism and, descending tor = 2, establishIIk+1.
By its placement in the first quadrant,E0,k+1

r+1 = (ker dr)0,k+1. Consider the
diagram:

0 w (ker dr)0,k+1
w

u
f̃r

E0,k+1
r w

dr

u
fr

Er,k−r+2
r w

Q

u
fr

Er,k−r+2
r / im dr

u
f̂r

w 0

0 w (ker d̄r)0,k+1
w Ē0,k+1
r w

d̄r
Ēr,k−r+2
r w

Q̄
Ēr,k−r+2
r / im d̄r w 0.
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We havef̃r = f0,k+1
r+1 = f0,k+1

∞ , an isomorphism. By Fact 1,̂fr is an isomor-
phism and so is the rightmostfr.

If ū ∈ Ē0,k+1
r , then ū = fr(u) = f̃r(u) whendr(ū) = 0. Suppose

dr(ū) = v̄ ∈ Ēr,k−r+2
r , v̄ 6= 0. Thenv̄ = fr(v) sincefr is an isomorphism.

But Q(v) = f̂−1
r ◦ Q̄(v̄) = 0 and sov = dr(u) for someu ∈ E0,k+1

r . Thus
fr : E0,k+1

r → Ē0,k+1
r is onto.

Whenu, v ∈ E0,k+1
r satisfyfr(u− v) = 0, then

dr(u− v) = f−1
r ◦ d̄r ◦ fr(u− v) = 0

sou− v ∈ (ker dr)0,k+1. Nowfr(u− v) = f̃r(u− v) = 0 impliesu = v and
sofr : E0,k+1

r → Ē0,k+1
r is an isomorphism andIIk+1 holds.

The proof thatII andIII imply I is similar. ut
We next give an application of Zeeman’s theorem that generalizes the

examples in§1.4. We remark once again, though the next theorem seems to be
a quite specialized piece of algebra, the applications of it are spectacular.

LetR = k, a field, and suppose that the following hypotheses hold:

Hypotheses.

(1) {E∗,∗r , dr} is a first quadrant spectral sequence of algebras withE∗,∗2
∼=

V ∗ ⊗k W ∗, that is,V ∗ ∼= E∗,02 andW ∗ ∼= E0,∗
2 , both as algebras.

(2) E∞ is the bigradedk-vector spacek, that is,E0,0
∞ ∼= k andEp,q∞ = {0}

for (p, q) 6= (0, 0).
(3) W ∗ = Λ(x1, x2, . . . , xm), an exterior algebra on generatorsx1, x2,

. . . , xm where eachxi is homogeneous of odd degree2ri − 1.
(4) For eachi, dj(xi) = 0 for 2 ≤ j < 2ri andd2ri(xi) 6= 0. (Anticipating

terminology, we say thatxi is transgressive; see§6.1.)
(5) chark 6= 2 (a technical detail regarding exterior algebras).

Theorem 3.27 ([Borel53]). Under the hypotheses (1)–(5),V ∗ is isomorphic to
k[y1, y2, . . . , ym] whereyi = d2ri(xi).

Proof ([Zeeman58]): Since we are working over a field, we have a definition
of tensor products of spectral sequences. It is easy to establish the following:

a) if E andĒ haveE∞-terms isomorphic tok, so doesE ⊗ Ē;
b) if E∗,∗ ∼= V ∗⊗W ∗ andĒ∗,∗ ∼= V̄ ∗⊗ W̄ ∗ then(E⊗ Ē)∗,∗ ∼= (V ⊗ V̄ ∗)⊗

(W ⊗ W̄ ∗):
c) an associative product forE induces a morphism of spectral sequences, for

eachn, E ⊗ E ⊗ · · · ⊗E︸ ︷︷ ︸
n copies

→ E.



us

vs +1

⊗ us ⊗ us
2

2

vs +1 vs +1

vs +1
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Let s be an odd integer. We introduceE(s), the elementary spectral
sequenceoverk of degrees, given byE(s)2 = Λ(us)⊗k[vs+1] with deg us =
s, deg vs+1 = s+ 1, dj = 0 for j 6= s+ 1, andds+1(us) = vs+1. Because the
action of the differentialds+1 is determined by the Leibniz rule,E(s)∞ ∼= k,
with the pattern ofds+1 given in the diagram.

By hypothesis 4 we can construct a unique mapping, for eachi, 1 ≤ i ≤ m,
fi : E(2ri−1)2 → E2, which extends to a morphism of spectral sequences, by
fi(u2ri−1) = xi andfi(y2ri) = d2ri(xi). SinceE∗,∗2

∼= V ∗⊗kW ∗, everything
else aboutxi is determined byd2ri(xi) 6= 0. Collecting these morphisms for
i = 1, 2, . . . ,m, we obtain the composite

F : E(2r1 − 1)⊗ E(2r2 − 1)⊗ · · · ⊗E(2rm − 1)
f1⊗f2⊗···⊗fm−−−−−−−−−→

E ⊗ E ⊗ · · · ⊗E
multiplication
−−−−−−−−→ E,

a morphism of spectral sequences. By definition

E(2r1−1)⊗· · ·⊗E(2rm−1) ∼= Λ(u2r1−1, . . . , u2rm−1)⊗k[v2r1 , . . . , v2rm ]

andF , at theE2-term, mapsΛ(u2r1−1, . . . , u2rm−1) isomorphically toW ∗ =
Λ(x1, . . . , xm); thus we conclude that the tensor product of elementary spectral
sequences satisfies partI of Theorem 3.26. Furthermore, since each spectral
sequence hasE∞-term, k, F induces an isomorphism of theE∞-terms and
part III of Zeeman’s comparison theorem is satisfied. Thus,F induces an
isomorphismk[v2r1 , . . . , v2rm ] ∼= V ∗ and the theorem is proved. ut

For a discussion of the case of chark = 2 see the paper of [Zeeman58].
The technique in this proof of comparing an algebraically constructed spectral
sequence with an already existing one is standard and has wide applications.
Important applications of Theorem 3.27 appear in the work of [Borel53] on the
cohomology of Lie groups and their classifying spaces (see Chapters 5 and 6).
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Exercises

3.1. Suppose(A,F ) is a filtered module overR so thatF is bounded and each
Ep0 (A,F ) in the associated graded module is projective overR. Show thatA is
determined, up to isomorphism, by these conditions.

3.2. Show that a morphism of filtered differential graded modules leads to a mor-
phism of the associated spectral sequences. Show that a morphism of exact couples
determines a morphism of the associated spectral sequences.

3.3. Suppose(M,F ) is a filtered module overR. TopologizeM by taking all cosets
of all submodulesF pM as basic open sets. Show that the filtration is Hausdorff
if and only ifM is Hausdorff in this topology. Show that the filtration is strongly
convergent if and only if every Cauchy sequence inM with this topology converges
in M . This completes the proof of Lemma 3.10.

3.4. Suppose that{E∗,∗r , dr} is a first-quadrant spectral sequence, beginning with
theE1-page. Suppose further that the differential graded module,(total(E∗,∗1 ), d1)
is filtered andd1 respects this filtration. Show that there is a spectral sequence,
derived from the filtration oftotal(E∗,∗1 ), converging toE∗,∗2 of the original spectral
sequence. Show further that this new spectral sequence inherits a third grading from
the bigrading ofE∗,∗1 . This spectral sequence is sometimes called thealgebraic
May spectral sequence([May64]).

3.5. Prove Theorems 3.2 and 3.4.

3.6. Suppose{E∗,∗r , dr} is a first quadrant spectral sequence over a field,k, andEr
converges to(H∗, F ). LetV be any graded vector space overk and filterH∗⊕V
by F̂ p(H∗ ⊕ V ) = F pH∗ ⊕ V . Show thatEr converges to(H∗ ⊕ V, F̂ ).
Suppose(H∗, F ) is such thatF is strongly convergent. Show that(H∗ ⊕ V, F̂ )
is not strongly convergent. This shows that strongly convergent implies convergent
but not vice versa.

3.7. Show that the definition of the inverse limit and direct limit for sequences of
modules over a ringR satisfy the defining universal properties. Show that the direct
limit functor is exact (Lemma 3.7). Finally, show that a sequence of epimorphisms
of R-modules with vanishing inverse limit is a sequence of trivial modules.

3.8. Let f andg be morphisms of filtered differential graded modules,

f, g : (A, d, F ) −→ (Ā, d̄, F̄ )

and supposef is chain homotopic tog via s : A → Ā of degree−1, that is,
ds+ sd = f − g. We say thats is ahomotopy of order k if s(F pA) ⊂ F̄ p−kĀ.
Prove that, if a chain homotopy of orderk exists betweenf andg, then forr > k,
the induced maps on the spectral sequences satisfyfr = gr andf∞ = g∞.
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3.9. A Rees system([Eckmann-Hilton66]) or spectral datum([Eilenberg-Moore])
is a diagram of modules over a ringR

D
[
[
[[̂

β

w
i D

[
[

[[̂ j

'
'
'')

β

F E
[

[
[[̂ k̄

'
'

''*

k

F
[

[
[[̂

γ

D̄

u

α

'
'

''*

γ

w
ı̄

D̄

u

α

'
'

''*

̄

in which{D,E, i, j, k}and{D̄, E, ı̄, ̄, k̄}are exact couples, all triangles commute
and the sequence

D̄
α
−→ D

β
−→ F

γ
−→ D̄

α
−→

is exact. Show that the derived couples of a Rees system give another Rees system in
whichF remains the same. Show that if two exact couples are part of a Rees system,
then their associated spectral sequences are identical. The motivating example is
given by(A, d, F ), a filtered differential graded module: Derive the Rees system:

H(F p+1A)
'

''*

w H(F pA)
'

''*

h
hhj

H(A) H(F pA/F p+1A)
N
NNQ

[
[̂

H(A)
N
NNQ

H(A/F p+1A)

u


�

w H(A/F pA)

u


�

3.10. Suppose(M,F ) is a filtered module withN a submodule that satisfiesN ⊂
F sM for all s. Show that

lim
←s

(
F sM/N

)
∼=
(

lim
←s

F sM
)
/N and lim

←s
1F sM ∼= lim

←s
1
(
F sM/N

)
3.11. Prove the assertions (1) and (2) of[Eilenberg-Moore62] used in the proof of
Corollary 3.23.

3.12. Prove the assertions a), b), and c) about tensor products of spectral sequences
made in the proof of Theorem 3.27.

3.13. Let {M∗,∗, d′, d′′} denote a double complex where there is no restriction on
the bidegrees. Apply the notions of convergence of Chapter 3 to find conditions
under which the associated (planar) spectral sequence converges (weakly, strongly,
conditionally) toH(total(M∗,∗, D).
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4
Topological Background

“Of course, one has to face the question, what is the good
category of spaces in which to do homotopy theory?”

J. F. Adams

The classification of topological spaces up to homotopy equivalence is the
central problem of algebraic topology. The method of attack on this problem
is the application of various functors from the category of topological spaces
(or a suitable subcategory) to certain algebraic categories. These functors do
not distinguish between homotopy equivalent spaces, and the algebraic data
they provide may be enough to distinguish nonequivalent spaces. In order to
make the problem of classification more reasonable, it is necessary to identify
a tractable category of spaces. A candidate for such a category should be large
enough to contain all ‘important’ spaces (such as finite-dimensional manifolds)
as well as contain the results of various constructions applied to these spaces
(for example, it should be closed under suspension, loops, etc.). Furthermore,
the classical homotopy functors, singular homology and cohomology and the
homotopy groups, should be effective in distinguishing spaces in this category.

In this chapter, we present two categories of spaces that satisfy the desider-
ata of homotopy theory. In§4.1, CW-complexes are defined. The homotopy
groups of CW-complexes are effective enough for a classification scheme, and
the combinatorial structure allows the computation of their singular homology
groups. In§4.2, the equivalent category of simplicial sets and mappings is
presented. This category features a more rigid combinatorial structure in which
the classical homotopy invariants can be defined and studied. Furthermore, the
general notion of a simplicial object over an arbitrary category leads to many
useful constructions in homotopy theory. Both a CW-complex and a simpli-
cial set give rise to filtered spaces and so the algebraic technology developed
in Chapters 1, 2, and 3 may be applied to the computation of the homotopy
invariants of such spaces.

Another way in which the homotopy invariants of a space may be restricted
enough to allow computation (or at least the construction of a spectral sequence)
is to place the space in a system of spaces and maps with good exactness proper-
ties with respect to homotopy functors. Exactness properties can be translated
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into the problems of extension and lifting. Mappings with good extension prop-
erties are called cofibrations and they lead to sequences of mappings that give
exact sequences when the functor[−, Z], homotopy classes of maps to some
spaceZ, is applied.

The dual notion of good lifting properties is enjoyed by fibrations (§4.3).
Exact sequences result when the functor[Z,−] is applied to a fibration and, in
particular, ifZ = Sn, these exact sequences consist of homotopy groups. By
introducing a space ‘dual’ to ann-cell (with which one builds a CW-complex),
one can construct a tower of fibrations that approximates a space one homotopy
group at a time. The cell decomposition of a space (reflected in its homology
groups) and its Postnikov tower (which carries the homotopy groups) are sources
of homotopy invariants and so figure in the constructions found later in the book.

We finish this chapter (§4.4) with a discussion of some of the further struc-
ture that is available on singular homology and cohomology. With coefficients
in a field, the dual of the cup product structure for cohomology is a coalge-
bra structure in homology. In the presence of a multiplication on a space (an
H-space structure) such a coalgebra structure arises on cohomology and is in-
tertwined with the cup product structure. For an H-space of finite type, the
homology and cohomology are dual Hopf algebras, and the structure theory of
Hopf algebras may be applied. The algebraic aspects of Hopf algebras play an
important role in later chapters.

The cohomology of a space with modp coefficients enjoys another sig-
nificant piece of structure;H∗(X;Fp) is an algebra over the modp Steenrod
algebra,Ap, of stable cohomology operations. The applications of this structure
have led to some of the deepest results in homotopy theory. We record some of
the basic properties of the Steenrod algebra in§4.4.

This chapter plays two roles in our exposition. First, it supports the con-
structions found in later chapters and so affords the reader a ready reference for
topological facts that would take the reader too far afield to develop in the places
where they are needed. Secondly, it provides the novice a thumbnail sketch of
some of the fundamental constructions in homotopy theory. In both of these
capacities, it is distracting to overburden the reader with details. Therefore, we
omit most proofs and give copious references for the reader who needs details.
The reader who is acquainted with these standard notions should skip to the
next chapter and refer back when necessary.

4.1 CW-complexes

Let’s begin by building a topological space. For building blocks, we take
then-cell, en = {~x ∈ Rn | ‖~x‖ ≤ 1}. Note that the boundary of then-cell,
∂en, is the(n− 1)-sphere,Sn−1. We proceed a dimension at a time.

In dimension0, letX(0) be a finite set of0-cells (points). We next take
a collection of mappingsf1j : S0 = ∂e1 → X(0), j = 1, . . . , m, called

the attaching maps, and form the adjunction spaces,X(0)
1 = X(0) ∪f11 e

1,
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X
(0)
2 = X

(0)
1 ∪f12 e

1, and so on toX(1) = X
(0)
m−1 ∪f1m e1. Recall that a

mappingg : Sn → Y gives rise to the spaceY ∪g en+1 determined by the
quotient space

Y
⊔
en+1

/
{x ∼ g(x) for x ∈ Sn = ∂en+1},

where
⊔

denotes the disjoint union.
In dimensionn, assumeX(n−1) has been built and take a collection of

mappings,fnj : Sn−1 = ∂en → X(n−1), for j = 1, . . . , r. Form the adjunc-

tion spaces,X(n−1)
1 = X(n−1) ∪fn1 e

n, X(n−1)
2 = X

(n−1)
1 ∪fn2 e

n, and so

on, up toX(n) = X
(n−1)
r−1 ∪fnr en. If we continue to add higher dimensional

cells, the spaceX that results in the direct limit (union) of this process is called
a cell-complex. This notion was introduced by [Whitehead, JHC49] as a nat-
ural generalization of polyhedra. Spaces that can be built in this fashion are
characterized by the following point-set description:

Definition 4.1. A CW-complex is a topological spaceX, together with acell
decomposition{enα | α ∈ A}, so that, for eachn andα, enα ⊂ X, and

(1) X is the disjoint union of the collection{int enα}. (Hereint denotes the
interior of the cell andint e0 = e0.)

(2) enα is closed inX.

(3) LetX(n) =
⋃

α∈A,m≤n
emα ; the spaceX(n) is called then-skeleton

of X. The successive skeleta filterX; that is, there is a sequence of
subspaces,X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) ⊂ · · ·X.

(4) For eachα ∈ A, there is a mapping,fα : (en, Sn−1) → (enα, ∂e
n
α),

such thatfα| : int en → int enα is a homeomorphism;fα is called the
characteristic mapping for then-cell, enα.

(5) cls(enα) is contained in finitely many cells (we sayX is closure finite).
(6) K ⊂ X is closed inX if and only if, for allα,K ∩ cls(enα) is closed in

int(enα). This is called theweak topologyon the cell complexX.

The cell-complexes built by adding cells a dimension at a time are CW-
complexes. Most familiar spaces in homotopy theory are CW-complexes. For
example,Sn can be given the structure of a CW-complex in at least two ways;
Sn = e0 ∪c en, wherec : Sn−1 → e0 is the constant map, and

Sn = (e0 ∪ e0) ∪i1 (e1 ∪ e1) ∪i2 · · · ∪in (en ∪ en),

whereij : Sj−1 ↪→ Sj is the equator and the twoj-cells are the upper and lower
hemispheres. These decompositions appear in later constructions.

If X is a CW-complex, thedimensionof X, is defined

dimX = sup{n : enα is in the decomposition ofX};
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thusdimX ≤ ∞. We speak of afinite CW-complex, which is built from
finitely many cells, of acountable CW-complex, using countably many cells,
and of alocally finite CW-complex, which is built of finitely many cells in
each dimension.

If X andY are two CW-complexes, then a mappingf : X → Y iscellular
if f(X(n)) ⊂ Y (n) for all n. We denote byCW, the category of CW-complexes
with cellular maps. A first step in establishing this class of spaces as a convenient
category for homotopy theory is to show that most of the relevant constructions
are functors from this category to itself. We begin by identifying subobjects. A
subspaceA of a CW-complexX is asubcomplexif A is a CW-complex made
up of a subset of cells ofX. A CW-complexX with a subcomplexA form a
CW-pair (X,A). By taking the cells inX − A together with an appropriate
0-cell for A, one can show that the quotient,X/A, is a CW-complex for a
CW-pair (X,A) and furthermore, thatX → X/A, the canonical projection,
is cellular (see the book of [Fritsch-Piccinini90, pp. 62-63]). An example
of a CW-complex built via quotients isreal projective n-space, RPn that
is obtained fromSn by identifying antipodal cells in the decompositionSn =
(e0∪e0)∪i1 (e1∪e1)∪i2 · · ·∪in (en∪en); thusRPn = e0∪q1 e1∪q2 · · ·∪qn en.

For two CW-complexes,X andY , there is an evident cell-decomposition
for X × Y and, if the topology is correct, we have a CW-complex. This
works for countable CW-complexes or when one factor is locally finite. A
counterexample, due to [Dowker52], shows that it does not work in general:
LetX denote the wedge of uncountably many copies of the unit interval with
basepoint 0 and formX ×X.

From the product and quotient constructions we can form theconeon a CW-
complex,CX = X × I/X × {0}, and thesuspension, ΣX = CX/X × {1}.
Both constructions give CW-complexes.

For a given cell-decomposition of a CW-complex, it is evident that many
continuous functions to and from the complex may not be cellular. As in the
classical case of polyhedra, cellular maps are sufficient, up to homotopy.

Theorem 4.2 (the cellular approximation theorem).LetX andY be CW-
complexes andf : X → Y a continuous function. Then there is a cellular map
g : X → Y with f homotopic tog.

A thorough proof of this theorem for the more general case of mappings
of pairs can be found in the book of [Fritsch-Piccinini90,§2.4]. We introduce
one more level of generality into the discussion and consider the collection of
spaces of the homotopy type of a CW-complex. LetW denote the category
of such spaces with continuous functions as morphisms. [Milnor59] studied
the operation of forming function spaces out of spaces inW.

Theorem 4.3. SupposeX is a space of the homotopy type of a (countable)
CW-complex andx0 ∈ X. SupposeK is a compact metric space. Then the
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space
map(K,X) = {f : K → X | f is continuous},

endowed with the compact-open topology, is of the homotopy type of a (count-
able) CW-complex. Ifk0 ∈ K, thenmap((K, k0), (X,x0)), the subspace of
pointed maps, is of the homotopy type of a (countable) CW-complex.

An immediate corollary of the theorem is that, ifX is inW, then

ΩX = {λ : [0, 1]→ X | λ is continuous andλ(0) = x0 = λ(1)},

thespace of based loops onX, is also inW. Restricting toW0, the category
of spaces of the homotopy type of acountableCW-complex with continuous
functions, we see thatW0 is closed under products, subobjects, quotients, sus-
pension and loops. [Milnor63] proved that every separable manifold is an object
inW0 by a Morse theory argument.

Having introduced the categoryW of spaces of the homotopy type of a
CW-complex, we now turn to the homotopy-theoretic properties of these spaces.

Theorem 4.4.SupposeX is a space andf, g : Sn−1 → X are two continuous
mappings. Iff is homotopic tog, thenX ∪f en is homotopy-equivalent to
X ∪g en.

Proof: SupposeH : Sn−1 × I → X is a homotopy fromf to g. Define a
mappingk : X ∪g en → X ∪f en as follows:

k(x) = x for x ∈ X,

k(t~u) =
{

2t~u for 0 ≤ t ≤ 1/2, ~u ∈ Sn−1,

H(~u, 2t− 1) for 1/2 ≤ t ≤ 1, ~u ∈ Sn−1.

Reversing the homotopy, one can construct the inverse tok and sok is a homo-
topy equivalence. ut

This theorem points out the role of the combinatorial structure of a CW-
complex in the homotopy classification problem. In the construction of a fi-
nite CW-complex, then-skeleton,X(n), is built from the(n − 1)-skeleton
by a series of adjunctions. Suppose we haveX(n−1) and the choice of map-
pings,fn1, fn2, . . . , fnr : Sn−1 → X(n−1). The classes[fn1], . . . , [fnr] ∈
πn−1(X(n−1)) determineX(n) up to homotopy. It follows that the computa-
tion of πn−1(X(n−1)), a skeleton at a time, is sufficient to solve the homotopy
classification problem forW0. The difficulty of this computation is a recurring
theme in later chapters.

The next theorem, proved by [Whitehead, JHC49], shows how effective
the homotopy groups of a space are in distinguishing the space from others.
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Theorem 4.5 (the Whitehead theorem).Supposef : X → Y is a mapping of
path-connected spaces of the homotopy type of locally finite CW-complexes. If
πi(f) : πi(X) → πi(Y ) is an isomorphism of graded groups fori < n and
an epimorphism fori = n, thenHi(f) : Hi(X) → Hi(Y ) is an isomorphism
for i < n and an epimorphism fori = n. If π∗(f) is an isomorphism of
graded groups for alli, thenf is a homotopy equivalence. IfX andY are
simply-connected andHi(f) : Hi(X) → Hi(Y ) is an isomorphism fori < n
and an epimorphism fori = n, then the same holds forπi(f). If X andY are
simply-connected andH∗(f) is an isomorphism of graded abelian groups, then
f is a homotopy equivalence.

For arbitrary spaces, such a statement is false. For example, compare a
spaceX with its plus constructionX+ with respect to a perfect normal subgroup
N / π1(X,x0). The associated mappingX → X+ induces an isomorphism
of homology groups, butπ1(X+, x0) ∼= π1(X,x0)/N . (See chapter 2 of the
book by [Srinivas96] for the relevant definitions and properties.) We note,
furthermore, that it does not follow from an abstract isomorphism of graded
groups,π∗(X) ∼= π∗(Y ) or H∗(X) ∼= H∗(Y ) thatX andY are homotopy
equivalent. WhenX and Y are CW-complexes, the isomorphism must be
induced by a continuous mapping. The machinery of obstruction theory may
be employed to build continuous functions from algebraic data when possible.
There is a thorough discussion of obstruction theory in the books of [Baues77]
and [Whitehead, GW78].

In the next section we continue the study of the homotopy theory of CW-
complexes in the more general setting of the homotopy properties of cofibra-
tions.

Cofibrations

In constructions leading to spectral sequences, the exactness of certain
functors implies relations between the invariants that are expressed in the spec-
tral sequence. For homotopy theory, it is the exactness properties of the functors
[−, Z] and [Z,−] that play the principal role. CW-complexes enjoy some of
the most useful exactness properties by virtue of their construction.

We begin by identifying a topological property that leads to exactness.

Definition 4.6. SupposeX is a topological space andA is a subspace. Then
the inclusion mappingi : A → X is said to have thehomotopy extension
property (HEP)with respect to a spaceY , if, for every mappingf : X → Y
and homotopyG : A× I → Y such thatG(a, 0) = f(a) for all a ∈ A, there is
a homotopyF : X × I → Y such thatF (x, 0) = f(x) andF (a, t) = G(a, t)
for x ∈ X, a ∈ A, t ∈ I. The inclusioni : A → X is called acofibration if i
has theHEPwith respect to any space.
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Two examples of cofibrations are important. The first is given by themap-
ping cylinder of an arbitrary function. Letf : X → Y be a given continuous
mapping and define

If = Y
⊔
X × I

/
f(x) ∼ (x, 0),

the quotient of the disjoint union ofY andX × I by the relation ‘(x, 0) to be
identified withf(x).’ The inclusioni : X ↪→ If , i(x) = (x, 1) is a cofibration
(exercise). By construction, notice thatY , as a subset ofIf , is a deformation
retract. In fact, the compositeX ↪→ If → Y is simply a factorization off .
Thus every mapping can be factored into a composite of a cofibration followed
by a homotopy equivalence.

The second example is themapping coneof a continuous functionf : X →
Y . Define

Mf = Y
⊔
CX

/
f(x) ∼ (x, 1).

By taking the quotient ofIf by the subspaceX, we also obtainMf = If/X.
In this case, the inclusionY ↪→ Mf is a cofibration (exercise). Recall that

CSn−1 ∼= en. If X is a CW-complex, then the adjunction spaces,X
(n−1)
i =

X
(n−1)
i−1 ∪fi en = Mfi , can be written as mapping cones. Thus, the inclusions of

subcomplexesX(n) ↪→ X andX(n) ↪→ X(n+k) are examples of cofibrations.

Theorem 4.7.Consider the sequence of mappings of pointed spaces(X,x0)
f
−→

(Y, y0)
i
−→ (Mf , y0). For any spaceZ, the sequence[X,Z]

f∗

←− [Y, Z]
i∗

←−
[Mf , Z] is an exact sequence of pointed sets.

Proof: First observe thatf∗ ◦ i∗ = (i ◦ f)∗ carries a homotopy class of a
mapping to the constant class sincei ◦ f is the compositeX → If → If/X.
Thusim i∗ ⊂ (f∗)−1{[c]}wherec denotes the constant map. Supposef∗[g] =
[c], theng ◦ f ' c, and so it can be extended overCX. Put this extension
together withY to get a mappingg′ : Y ∪f CX → Z with i∗([g′]) = [g]. ut

Suppose we extend this sequence further by iterating the construction:

X
f
−→ Y

i
−→ Y ∪f CX

j
−→ (Y ∪f CX) ∪i CY.

By identifying the cone onY with the copy ofY in Mf , we have, up to
homotopy, identifiedY to a point. Making this line of argument precise, we
find that(Y ∪f CX) ∪i CY ' ΣX. Continuing in this manner, we derive the
Barratt-Puppe sequence([Barratt55], [Puppe58])

X
f
−→ Y

i
−→Mf

j
−→ ΣX

Σf
−−→ ΣY

Σi
−→MΣf

Σj
−→ Σ2X

Σ2f
−−→ Σ2Y −→ · · · .

As a consequence of this sequence and Theorem 4.7, we have proved the ex-
actness result:
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Theorem 4.8.Given a mappingf : (X,x0)→ (Y, y0) and a spaceZ, there is
a long exact sequence of pointed sets

[X,Z]
f∗

←− [Y, Z]
i∗

←− [Mf , Z]
j∗

←− [ΣX,Z]
Σf∗

←−− [ΣY, Z]←− · · · .

Some further structure can be identified on this exact sequence of pointed
sets. LetSX denote thereduced suspensionof (X,x0); that is,

SX = ΣX/{x0} × I = X × I
/
X × {0} ∪X × {1} ∪ x0 × I.

It follows that SX ' ΣX. A pointed mapping ofSX to Z then takes the
form f(x, t) ∈ Z and so, by fixingx and varyingt, we get a loop inZ
based atf(x0, t) = z0. This determines a mapping[(SX, ∗), (Z, z0)] →
[(X,x0), (ΩZ, cx0)], which is a bijection. Categorically speaking, the reduced
suspensionS and based loopsΩ are adjoint functors on the category of spaces
and homotopy classes of mappings.

Let us considerΩZ more carefully. The multiplication of paths, given by

(λ ∗ µ)(t) =
{
λ(2t), 0 ≤ t ≤ 1/2
µ(2t− 1), 1/2 ≤ t ≤ 1

for λ, µ ∈ ΩZ, determines a multiplication onΩZ,

m : ΩZ × ΩZ −→ ΩZ.

This multiplication, in turn, induces a multiplication on[X,ΩZ],

m∗ : [X,ΩZ]× [X,ΩZ] −→ [X,ΩZ].

The multiplicationm, on the space level, enjoys associativity, an identity, and
inverses up to homotopy and so these properties carry over tom∗. The next
result is classical.

Proposition 4.9.With the multiplication induced by multiplication of loops, the
set[X,ΩZ] is a group. Furthermore,[X,Ω2Z] is an abelian group.

A corollary of this proposition is that the long exact sequence of Theorem
4.8 is a long exact sequence of abelian groups after a certain point. To show
this, it suffices to observe that the isomorphism,[SX,Z] ∼= [X,ΩZ], commutes
with the mappings in the sequence and that the induced mappings of pointed
sets are in fact homomorphisms of groups (exercise).

Before leaving our discussion of these constructions, we record an im-
portant result about the suspension functor to be proved in later chapters.
Given spacesX andY , there is a mapping,E : [X,Y ] → [SX, SY ], given
byE([f ]) = [Sf ] ([Freudenthal37]).
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Theorem 4.10 (the Freudenthal suspension theorem).If Y isn-connected for
n ≥ 2 andX is a CW-complex withdimX = q, then

E : [X,Y ] −→ [SX, SY ]

is an isomorphism whenq ≤ 2n and an epimorphism whenq = 2n+ 1.

We present a proof of Theorem 4.10 in Chapter 6 (Theorem 6.12). If we
restrict our attention to finite CW-complexes,X, then for dimension reasons
the sequence of mappings,[X,Y ] −→

E
[SX, SY ] −→

E
[S2X,S2Y ] −→

E
· · · ,

becomes stable after finitely many iterations. We denote this abelian group by
{X,Y }0, the set ofstable mappingsfromX toY . Taking this notion one step
further we introduce the graded abelian group of mappings,{X,Y }∗, given by

{X,Y }i = lim
→E

[Si+nX,SnY ].

These groups enjoy more structure than the unstable sets[X,Y ] and so may be
studied as a first approximation to the unstable case. In particular, ifX = S0 =
Y , then{S0, S0}∗ = πS∗ , thestable homotopy groups of spheres, which is
the subject of Chapter 9.

Cellular homology

We next take up the problem of computing the homology of CW-complexes.
The combinatorial structure given by a cell decomposition simplifies the com-
putation. This simplification should convince the reader that the categoryW of
spaces of the homotopy type of a CW-complex and cellular maps is an accept-
able place in which to do homotopy theory.

SupposeX is a CW-complex. We introduce a chain complex associated
toX as follows: Let

Celln(X) = Hn(X(n), X(n−1))

and define∂cell : Celln(X)→ Celln−1(X) by taking the homomorphisms from
the long exact sequences for the pairs(X(n), X(n−1)) and(X(n−1), X(n−2)),
spliced together as in the diagram

Celln(X)

u

∂cell

Hn(X(n), X(n−1))N
N
NP∂

Hn−1(X(n−1))
4
447
i

Celln−1(X) Hn−1(X(n−1), X(n−2))
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Since∂◦i = 0 in the sequenceHn−1(X(n−1))
i
−→ Hn−1(X(n−1), X(n−2))

∂
−→

Hn−2(X(n−2)), it follows that∂cell◦∂cell = (i◦∂)◦(i◦∂) = i◦(∂◦i)◦∂ = 0.
We call(Cell∗(X), ∂cell) thecellular chain complexonX.

Because a spaceX may have many cellular decompositions, it is not
immediate thatH(Cell∗(X), ∂cell) is a homotopy invariant of the spaceX.
Furthermore, becauseCelln(X) is a relative homology group, it is not clear
what combinatorial data are carried by the complex. We address these questions
by determining more of the structure of this complex.

Lemma 4.11.Celln(X) = the free abelian group generated by then-cells of
the cell decomposition ofX.

Proof: Write X(n) = X(n−1) ∪F (
⊔
α e

n
α) = A ∪ B whereF denotes the

attaching maps taken together,A is the image of the open sets,(1/2)enα = {~x ∈
en such that‖~x‖ < 1/2}andB isX(n)−{image of the centers of eachn-cell}.
By the excision axiom for singular homology, we have

Celln(X) = Hn(X(n), X(n−1)) ∼= Hn(A,A ∩B)
∼=
⊕

α
Hn(enα, S

n−1
α ) ∼=

⊕
α
Zenα. ut

Write ∂cell :
⊕

α
Zenα →

⊕
β
Zen−1

β for the differential on the cellular

chain complex. In this guise,∂cell is determined by its value on each basis cell
and we can write

∂cell(enα) =
∑

β
[enα, e

n−1
β ]en−1

β .

The integer[enα, e
n−1
β ] is called theincidence numberof enα anden−1

β . For
CW-complexes that have enough cells to fit together simply, these incidence
numbers have a geometric interpretation. For a proof of the following result,
we refer the reader to IX.§7 of the book by [Massey91].

Proposition 4.12.SupposeX is a regular CW-complex, that is, the charac-
teristic mappings{fα : (en, Sn−1) → (enα, ∂e

n
α)} satisfy the condition that,

for all α, fα : en → cls(enα) is a homeomorphism. Suppose further that the

mappingsfα determine the isomorphismsCelln(X) ∼=
⊕

α
Zenα. Then

[enα, e
n−1
β ] =

{
0, if en−1

β 6⊂ cls(enα),

±1, if en−1
β ⊂ cls(enα).

The isomorphisms determined by thefα provide an orientation to each cell.
We illustrate this proposition by computingH(Cell∗(S2), ∂cell) whenS2 has
the regular cell decompositionS2 = (e0∪e0)∪i1 (e1∪e1)∪i2 (e2∪e2). Denote
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each cell with a+ or− to determine upper or lower hemisphere, respectively.
We find

∂cell(e1
+) = e0

+ − e0
−, ∂cell(e1

−) = e0
− − e0

+

∂cell(e2
+) = e1

+ − e1
−, ∂cell(e2

−) = e1
− − e1

+.

It follows thatH2(Cell∗(S2), ∂cell) ∼= Z, generated by the classe2
+ + e2

−;
H1
∼= {0} andH0

∼= Z, generated bye0
+ + e0

−. Computations like this
example can be done for such spaces asRP (n), CP (n) and the lens spaces
(see exercises), where the geometric construction provides the cell structure and
the incidence numbers.

It remains to show that cellular homology is a homotopy invariant of the
CW-complex.

Theorem 4.13.For X, a CW-complex, its integral singular homologyH∗(X)
is isomorphic toH(Cell∗(X), ∂cell).

Proof: Consider the bigraded exact couple arising from the long exact se-
quences for the collection of pairs(X(p), X(p−1)) with Dp,q = Hp+q(X(p)),
Ep,q = Hp+q(X(p), X(p−1)) and structure maps given by

Hp+q(X(p−1)) w
i Hp+q(X(p))

u
j

Hp+q(X(p), X(p−1)) w
∂ Hp+q−1(X(p−1)).

By the proof of Lemma 4.11, it follows that, ifq 6= 0, E1
p,q = {0} and

d1 : E1
p,0 → E1

p−1,0 is given by∂cell : Cellp(X)→ Cellp−1(X). Therefore,

E2
∗,0 = E∞∗,0 = H(Cell∗(X), ∂cell).

It suffices to show thatE2
∗,0 ∼= H∗(X). This follows from a diagram chase

based on the following

Fact. For r ≥ 1,Hp+r(X(p)) = {0} andHp(X(p+r)) ∼= Hp(X).

To prove the first half of the fact, we proceed by induction onp. The case
p = 0 certainly holds. Consider the exact sequence for the pair(X9p), X(p−1)):

{0} = Hp+r+1(X(p), X(p−1))→ Hp+r(X(p−1))→
Hp+r(X(p))→ Hp+r(X(p), X(p−1)) = {0}.
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By induction, Hp+r(X(p−1)) = {0} when r ≥ 1 and so, by exactness,
Hp+r(X(p)) = {0}.

To prove the second half of the fact, we reindex the same sequence:

{0} = Hp+1(X(p+r+1), X(p+r))→ Hp(X(p+r))→
Hp(X(p+r+1))→ Hp(X(p+r+1), X(p+r)) = {0}.

This implies thatHp(X(p+r)) is isomorphic toHp(X(p+r+1)) for r ≥ 1, and
the isomorphism is induced by the inclusion. Thus we have the sequence of
isomorphisms

Hp(X(p+1))→ Hp(X(p+2))→ · · · → Hp(X(p+r))→ · · · .

induced by the inclusions of each skeleton in the next. Anyp-chain inX, by
the assumption thatX is closure finite, must lie in some finite skeleton. Thus
the direct limit of these isomorphisms isHp(X).

With this fact, we have collapsed the exact couple into a series of short
exact sequences. Splicing these exact sequences together, we get the diagram:

Hp+1(X(p+1), X(p))'
'
')d
1

u
∂

0

u
0 w Hp(X(p)) w

j

u
i

Hp(X(p), X(p−1)) w
∂

'
'
')d
1

Hp−1(X(p−1))

u
j

Hp(X)

u

Hp−1(X(p−1), X(p−2))

u
∂

0 Hp−1(X(p−2))

Define the homomorphismρ : (ker d1 ⊂ Hp(X(p), X(p−1))) → Hp(X) by
observing thatker d1 = ker ∂ = im j ∼= Hp(X(p)) andρ(u) = i(v) if j(v) =
u. Sincei is onto, so isρ and so it is sufficient to prove thatker ρ = im d1. But,
by the diagram,ker ρ ∼= ker i = im ∂ ∼= j(im ∂) = im d1. It follows that

E2
p,0 = ker d1/ im d1 ∼= ker d1/ ker ρ ∼= Hp(X)

and soH(Cell∗(X), ∂cell) ∼= H∗(X). ut
For more details on CW-complexes and their properties, we refer the

reader to the books of [Massey91], [Lundell-Weingram69], [Steenrod-Cooke-
Finney67], [Fritsch-Piccinini90] and [May99].
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4.2 Simplicial sets

The decomposition of a CW-complex into cells allows us to compute the
homology of such a space more easily. Homotopy groups, however, remain
difficult to compute. In this section we introduce simplicial sets and their relation
to topological spaces. The combinatorial structure available in a simplicial set
leads to another definition of homotopy groups (due to [Kan58]). Though the
problem of effective computation is not solved by simplicial sets, this different
view of a space (as a simplicial set) leads to new constructions.

Simplicial sets are the direct generalization of the structure of a triangulated
polyhedron and so have their origins in the work of Euler and the inception of
topology. A polyhedron may be described completely by giving its set of
vertices and then the collections of vertices determined by the faces in each
dimension. The description of a polyhedron doesn’t suffer if we simply forget
that we are talking about faces.

Definition 4.14. A simplicial set, K•, is a sequence of sets,Kn, for n = 0, 1,
2, . . . together with functions

di : Kn −→ Kn−1, i = 0, 1, . . . , n,
sj : Kn −→ Kn+1, j = 0, 1, . . . , n,

thefaceanddegeneracymaps, respectively, which satisfy thesimplicial iden-
tities

di ◦ dj = dj−1 ◦ di, for i < j,

di ◦ sj =


sj−1 ◦ di, for i < j,

identity, for i = j, j + 1,
sj ◦ di−1, for i > j + 1,

si ◦ sj = sj+1 ◦ si, for i ≤ j.

The schema of ordering of vertices that describe a polyhedron immedi-
ately give the data for a simplicial set; a typicaln-simplex can be written
〈v0, v1, . . . , vn〉 with v0 ≤ v1 ≤ · · · ≤ vn. The face maps are given by

di〈v0, . . . , vn〉 = 〈v0, . . . , v̂i, . . . , vn〉,

where we omit theith vertex, and the degeneracy maps are given by

sj〈v0, . . . , vn〉 = 〈v0, . . . , vj , vj , . . . , vn〉,

where thejth vertex is repeated. With this description, the face maps are dual
to the inclusion of theith face into a standard simplex and the degeneracy maps
dual to the collapse of the standard simplex onto itsjth face.
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The canonical simplicial set is given by the opposite category of the small
category,O, with objects,[n] = { 0, 1, . . . , n } and morphisms,[n] → [m],
that are order-preserving. Let∆ = Oop; thendi : [n] → [n− 1] is the map
dual to the map{ 0, 1, . . . , n − 1 } → { 0, 1, . . . , n } that skipsi in the range
andsj : [n]→ [n+ 1] is dual to the map that repeatsj. The simplicial identities
follow directly. The category∆ allows a different description of simplicial sets
and a generalization to other categories.

Definition 4.15. A simplicial object in a categoryC is a covariant functor,
K : ∆→ C. A morphism of simplicial objects in C is a natural transforma-
tion, f : K → L. Let SimpC denote the functor category,C∆, of simplicial
objects inC.

We writeKn = K([n]) anddi = K(di), sj = K(sj) to describe the
simplicial object as a sequence of objects and morphisms inC, and a morphism
in SimpCcan be described as a sequence of maps,fn : Kn → Ln, that commute
with the face and degeneracy maps.

Let Ens denote the category of sets andFA : Ens → Ab, the functor
from sets to abelian groups that assigns to each set the free abelian group
generated by the set. This can be extended one dimension at a time to a functor,
FA : SimpEns→ SimpAb. We define thehomology groupsof a simplicial
setK• usingFA: For eachn, let

Cn(K•) = FA(Kn) and ∂ =
∑n

i=0
(−1)iFA(di).

The simplicial identities imply that∂ ◦ ∂ = 0 and so we defineH∗(K•) =
H(C∗(K•), ∂).

Before we introduce a notion of homotopy for the categorySimpEns, we
connect some of these ideas to the category of topological spaces. The classical
construction, motivated by the structure of polyhedra, is thesingular complex
of a spaceX, (introduced by [Lefschetz33] and developed by [Eilenberg44])

Singn(X) = {f : ∆n → X | f continuous},

where∆n is the standardn-simplex,

∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0, for all i, and
∑

xi = 1}.

We denote theinclusion of the ith face by εi : ∆n−1 ↪→ ∆n, defined by
εi(x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi, . . . , xn−1). The face maps for the
singular complex are given by precomposition with these inclusions, that is,
di : Singn(X) → Singn−1(X) is defineddi(f) = f ◦ εi. We denote the
collapse of a simplex onto itsjth face by ηj : ∆n+1 → ∆n, defined by
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ηj(x0, . . . , xn+1) = (x0, . . . , xj−1, xj + xj+1, xj+2, . . . , xn+1). The de-
generacy maps forSing•(X) are given by precomposition with the collapse
maps,sj(f) = f ◦ ηj .

The singular complex determines a functorSing• : Top → SimpEns,
whereSing•(g) on a continuous mappingg in Top is given by composition.

The singular homology of a spaceX is defined as a composite of functors

Top
Sing
−−→SimpEns

FA
−−→SimpAb −→ DGAb

H
−→GAb

whereDGAb denotes the category of differential graded abelian groups and
GAb the category of graded abelian groups. We note that it is possible to
normalize the chain complexC∗(X) by setting the subgroup generated by de-
generate simplices (those in the image of the functionssi) to zero. This does
not change the homology (Normalization Theorem in [May67]) while focus-
ing attention on the nondegenerate chains. We will use this fact in simplicial
arguments.

If given an arbitrary simplicial set, what distinguishes it as being in the
image of the functorSing•? The condition that must be satisfied was identified
by [Kan58] and this condition plays the key role in defining homotopy groups
for simplicial sets.

Definition 4.16.A simplicial setK• is said to satisfy theextension condition,
if, for every collection,x0, x1, . . . , xi−1, xi+1, . . . , xn+1, inKn, such that

dk(xl) = dl−1(xk) for k < l, k 6= i 6= l,

there existsx in Kn+1 with dj(x) = xj for j 6= i. If K• satisfies the extension
condition, it is called aKan complex.

Examples of Kan complexes are polyhedra, where the ordering of the ver-
tices is used to establish the extension property, andSing•(X), for a topological
spaceX, where the retraction of ann-simplex onto all but one of its faces can
be used to construct the desired simplex in the extension condition.

In the categorySimpEns, there is a unit interval given by∆[1]• that may
be described as a polyhedron with

∆[1]n = {〈v0, . . . , vn〉 | vi = 0 or 1 andv0 ≤ v1 ≤ · · · ≤ vn}.

More generally,∆[m]• hasn-simplices〈v0, v1, . . . , vn〉with vi ∈ {0, . . . ,m}
andv0 ≤ v1 ≤ · · · ≤ vn. We define then-skeletonof a simplicial setK• to
be the sub-simplicial set that contains all nondegenerate (6= sj(x)) simplices
of degree≤ n. Observe that∆[1]• is isomorphic to the 1-skeleton of∆ which
is the category∆ = Oop treated as a simplicial set, that is, as the inclusion
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functor∆ ⊂ Ens. An element of a simplicial setK• that lies in then-skeleton
can be equivalently described by a simplicial mapping∆[n]• → K•.

Given two simplicial setsK• andL• theirCartesian productK•×L• is
the simplicial set

(K• × L•)n = Kn × Ln, di = di × di andsj = sj × sj .

Definition 4.17. If f, g : K• → L• are simplicial maps, thenf is homotopic
to g if there is a simplicial map,F : K• ×∆[1]• → L•, with

F (x, 〈0, 0, . . . , 0〉) = f(x) and F (x, 〈1, 1, . . . , 1〉) = g(x)

for all x in K•. If f is homotopic tog, we writef ' g.

The homotopy relation on simplicial mapsK• → L• need not be well-be-
haved; however, we have the following result.

Lemma 4.18. The relation' on the set of simplicial maps fromK• to L•,
SimpEns(K•, L•), is an equivalence relation wheneverL• is a Kan complex.

The extension condition is there to overcome a difficulty in establishing
the transitivity of'. We refer the reader to the book of [May67] for a proof of
the lemma.

We next define the homotopy groups of a Kan complex. LetK• be a Kan
complex andx0 ∈ K0, a choice of basepoint. Propagatex0 to eachKp by
choosing as distinguished element

s0 ◦ s0 ◦ · · · ◦ s0︸ ︷︷ ︸
p times

(x0) ∈ Kp.

Then-sphereSnmay be modeled as the quotient simplicial set∆[n]/∆[n](n−1),
that is,∆[n]• modulo its(n− 1)-skeleton. The set of mappings of pairs,

SimpEns((∆[n]•,∆[n](n−1)), (K•, x0)),

is defined by requiring a simplicial map to take elements in(∆[n](n−1))p to
s0 ◦ · · · ◦ s0(x0) in Kp. The relation' is an equivalence relation on this set
whenK• is a Kan complex and so we define

πn(K•, x0) = SimpEns((∆[n]•,∆[n](n−1)), (K•, x0))
/
'

=: [(∆[n]•,∆[n](n−1)), (K•, x0)].

To determine further structure on this set, we give an intrinsic definition
of πn(K•, x0). Supposex andy are inKn. We writex ∼ y if, for all i,
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di(x) = di(y), and, for somek, 0 ≤ k ≤ n, there is aw in Kn+1 such that
dk(w) = x, dk+1(w) = y anddisk(x) = di(w) = disk(y) for k 6= i 6= k + 1.
The simplicial identities imply that∼ is an equivalence relation. If we let
K̃n = {z ∈ Kn | di(z) = s0 ◦ · · · ◦ s0(x0), for all i}, then we can form
K̃n/∼ , the set of equivalence classes ofK̃n under∼ . Since anyn-simplex,
z ∈ K̃n, is representable as a mapping(∆[n]•,∆[n](n−1)) → (K•, x0), we
find thatπn(K•, x0) = K̃n/∼ .

In this formulation, there is a binary operation,+, onπn(K•, x0), given
as follows: Fora, b in K̃n, letw ∈ Kn+1 be such thatd0(w) = b, d2(w) = a
anddi(w) = s0 ◦ s0 ◦ · · · ◦ s0(x0) for i ≥ 3. Such a classw exists by the
extension condition. Define[a] + [b] = [d1(w)]. For a proof of the following
proposition, see the book of [May67, p. 12].

Proposition 4.19.With + defined as above,πn(K•, x0) is a group forn ≥ 1
and an abelian group, whenn ≥ 2.

There are now two ways to associate homotopy groups to a topological
space; we have the classical definitionπn(X,x0) = [(Sn, ∗), (X,x0)] and we
haveπn(Sing•(X), x0) = [(∆[n]•,∆[n](n−1)), (Sing•(X), x0))]. If the extra
structure of simplicial sets is going to be an effective tool to study homotopy
theory, these groups ought to be related if not isomorphic. The relation between
these groups is provided by a construction introduced by [Milnor57].

Definition 4.20.LetK• be a simplicial set and define thegeometric realization
ofK• to be

RK• =
⊔
n≥0

∆n ×Kn

/
≈ ,

the quotient space of the disjoint union of pairs,(~v, x), for x ∈ Kn,~v ∈ ∆n, by
the relation(εi(~v), x) ≈ (~v, di(x)), and(ηj(~v), x) ≈ (~v, sj(x)). RK• has the
quotient topology. This construction provides a functorR : SimpEns−→ Top.

By buildingRK• one dimension at a time we see thatRK• is a CW-com-
plex. Like CW-complexes, when forming products, one must be careful. For
two simplicial sets,K• andL•,R(K•×L•) is homeomorphic toRK•×RL•
if K• andL• are both countable or if one of the spaces,RK• orRL•, is locally
finite, that is, every point is in the interior of a finite subcomplex. In particular,
R∆[1] is homeomorphic toI = [0, 1] and so is locally finite. It follows that
a simplicial homotopyF : K• × ∆[1]• → L• gives a topological homotopy
RF : RK• × I → RL•. Furthermore,R induces a mapping[K•, L•] →
[RK•, RL•], for L• a Kan complex. In the opposite direction, a topological
homotopy,G : X × I → Y , gives a simplicial homotopy as the composite

Sing•(X)×∆[1]• → Sing•(X)× Sing•(I)→
Sing•(X × I) −−−−−→

Sing•(G)
Sing•(Y ).
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Thus, application of the singular complex functor,Sing•, induces a mapping
[X,Y ]→ [Sing•(X),Sing•(Y )].

The relation between the functorsSing• andR is described in the following
theorem of [Kan58’].

Theorem 4.21.Sing• andR are adjoint functors, that is, there is a natural
bijection of sets

SimpEns(K•,Sing•(X))←→ Top(RK•, X);

moreover, this bijection preserves homotopy.

Proof: If f : K• → Sing•(X) is a simplicial mapping, then defineΨ(f) in
Top(RK•, X) by Ψ(f)(~v, x) = f(x)(~v). If g : RK• → X is a continuous
mapping, letΦ(g) : K• → Sing•(X) be the mapping,Φ(g)(x)(~v) = g(~v, x).
Clearly,Ψ ◦ Φ = id andΦ ◦Ψ = id, giving the one-one correspondence.

That these mappings preserve homotopies follows from an argument sim-
ilar to the discussion before the theorem. ut

An immediate consequence of this theorem is that our definitions for the
homotopy groups of a spaceX coincide; πn(X,x0) ∼= πn(Sing•(X), x0).
Another consequence is the classical theorem of [Hurewicz35/36].

Theorem 4.22 (the Hurewicz theorem).If K• is a Kan complex, then there is
a homomorphism, form ≥ 1,

hm : πm(K•) −→ Hm(K•).

If K• is (n− 1)-connected forn ≥ 2, thenhn is an isomorphism.

Sketch of proof: Consider the mappingK• → FA(K•), taking each
generator inK• to itself in the free abelian group on those generators. This
is a simplicial mapping and furthermore, the group property ofFA(K•) al-
lows one to show thatFA(K•) is a Kan complex. Thus we get a map-
ping π∗(K•) → π∗(FA(K•)). We follow an argument of [Moore56] that
π∗(FA(K•)) ∼= H∗(K•) by using the commutative multiplication and the in-
trinsic definition ofπ∗.

The second half of the theorem follows by replacingK• with a simplicial
set having one simplex in each dimensioni, i < n, and which is homotopy-
equivalent toK•. For such a simplicial set, the result follows directly from the
definitions.

The classical Hurewicz theorem follows by takingK• = Sing•(X) forX
a topological space. ut

We close this section by observing how faithfully the homotopy theory of
simplicial sets represents the homotopy theory of spaces of the homotopy type
of a CW-complex. As in the case of CW-complexes, an approximation theorem
is needed for mappings.
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Theorem 4.23 (the simplicial approximation theorem).Given a continuous
function, f : RK• → RL•, whereK• is a simplicial set andL• is a Kan
complex, there is a simplicial mappingg : K• → L• withRg ' f .

Corollary 4.24. The functorsR and Sing• establish an equivalence between
the homotopy category of Kan complexes and the homotopy category of spaces
of the homotopy type of a CW-complexes. In particular,R induces a one-one
correspondence,[K•, L•]SimpEns

∼= [RK,RL]Top forK• a simplicial set and
L• a Kan complex.Sing• induces a one-one correspondence,[X,Y ]Top

∼=
[Sing•(X),Sing•(Y )]SimpEns for X of the homotopy type of a CW-complex
andY a topological space.

These results establish the equivalence of homotopy theory in the category
SimpEnswith homotopy theory inW the category of spaces of the homotopy
type of a CW-complex. We exploit this fact in later sections when a simplicial
construction may be done more transparently than a topological one. For proofs
of these results and the deeper developments of the ideas of [Kan58], we refer
the reader to the book-length treatments of [May67], [Quillen67], [Andr´e67],
[Lamotke68], [Curtis71], [Bousfield-Kan72], and [Goerss-Jardine99].

4.3 Fibrations

The construction of a CW-complex involves many natural and desirable
features. The building blocks are simple, the operation of adjunction has nice
exactness properties, and the homology of the resulting space is calculable from
these geometric data. To understand further the importance of the homotopy
groups of a space, we give another way to construct topological spaces that
enjoys these exactness properties with respect to the homotopy groups functor.
We first consider the dual of the homotopy extension property. This property is
dual in the sense that it implies exactness on the application of[Z,−]. :

Definition 4.25. A mapping,p : E → B, has thehomotopy lifting property
(HLP), with respect to a spaceY if, given a homotopyG : Y × I → B and
a mappingg : Y × {0} → E such thatp ◦ g(y, 0) = G(y, 0), then there is a
homotopyG̃ : Y × I → E such thatG̃(y, 0) = g(y, 0) andp ◦ G̃ = G.

Y × {0} w
g

u

E

u

p

Y × I w
G

\
\
\
\\]

G̃

B

A mapping with theHLP with respect to all spaces is called aHurewicz fi-
bration . A mapping with theHLP with respect to alln-cells is called aSerre
fibration . By afibration we mean a Hurewicz fibration.
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The property of being a Serre fibration is strictly weaker than that of being
a Hurewicz fibration ([Brown, R66]). The properties of CW-complexes can be
used to show that a Serre fibration has the HLP for all finite CW-complexes.

If p : E → B is a fibration, then we refer to the spaceB as thebase space
andE as thetotal spaceof the fibration. Ifb is a point inB, then we refer to
Fb = p−1(b) as thefibre of p overb. ThoughFb may vary for different choices
of b, the homotopy lifting property restricts the homotopy type ofFb.

Proposition 4.26. Supposep : E → B is a fibration and thatB is path-
connected. Then, forb0, b1 ∈ B, Fb0 is homotopy-equivalent toFb1 .

Proof: We prove a bit more here that can be applied later. Given a fibration,
let WB denote thefree path space, map([0, 1], B) = {λ : [0, 1] → B |
λ is continuous}, endowed with the compact-open topology. The evaluation
mappingev0 : WB → B, given byev0(λ) = λ(0), is continuous. Let

Up = {(λ, e) ∈WB × E | λ(0) = p(e)}

denote the pullback ofp : E → B overev0:

Up w
pr2

u
pr1

E

u

p

WB wev0
B.

The homotopyH : Up× I → B given byH((λ, e), t) = λ(t) poses the homo-
topy lifting problem:

Up w
pr2

u
(−,0)

E

u

p

Up × I
i
i
i
ij

H̃

w
H

B.

When p : E → B is a fibration, we get a solutioñH : Up × I → E. Let
Λ: Up → WE denote theadjoint of H̃ given byΛ(λ, e)(t) = H̃((λ, e), t).
This mapping satisfies the properties

p ◦ Λ(λ, e) = λ, and Λ(λ, e)(0) = e.

Λ is called alifting function for p. Lifting functions were introduced by
[Hurewicz55] and developed by [Fadell-Hurewicz58] and [Brown, E59]. The
universal properties of pullbacks lead to an equivalence between the HLP for
a given fibration and the existence of a lifting function satisfyingΛ(cp(e), e) =
ce wherece is the constant path ate and Λ(α ∗ β, e) = Λ(β,Λ(α, e)(1))
([Fadell60]).
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Supposeα : I → B is a path withα(0) = b0 andα(1) = b1. Consider
the composite

Φα : Fb0 −→ Up
Λ
−→WE

ev1−−→ E,

where the first mapping isx 7→ (α, x). Sincep ◦ Λ(α, x) = α, Λ(α, x)(1) ∈
Fb1 . Thus the compositex 7→ Λ(α, x)(1) determines a continuous mapping
Fb0 → Fb1 . The adjoint of the compositeFb0 → WE gives a homotopy
h : Fb0 × I → E between the inclusion ofFb0 andΦα : Fb0 → Fb1 ↪→ E.
Reverse the path to obtain the homotopy inverse of the mapping. ut

With Proposition 4.26, we can speak ofthefibre of a fibration over a path-
connected base space as a representative of the homotopy type of any fibre.

The lifting function provides some further structure. Letb ∈ B and let
ΩB = Ω(B, b) denote the loops inB based atb and letF = Fb. Then
ΩB×F ⊂ Up and the mappingµ = ev1 ◦Λ: ΩB×F → E takes its image inF .
This determines an actionµ = ev1 ◦Λ: ΩB×F → F . Letα−1(t) = α(1− t).

Proposition 4.27.To the actionµ = ev1 ◦Λ: ΩB×F → F and a loopα ∈ ΩB
associate the mappinghα = µ(α−1,−) : F → F . Then

(1) If α ' β, thenhα ' hβ .
(2) If α is homotopic to a constant map, thenhα ' idF .
(3) If α∗β denotes the loop multiplication ofα andβ, thenhα∗β ' hα◦hβ .

Proof: (1) SupposeK : I × I → B is a homotopy withK(s, 0) = α−1(s),
K(s, 1) = β−1(s), andK(0, t) = b = K(1, t). The adjoint ofK, K̂ : I →
WB lands inΩB. Thus(x, t) 7→ µ(K̂(t), x) is a homotopyF × I → F
betweenhα andhβ .
(2) First notice that ifc = a constant map, thenΛ(c, x)(1) = x since the lifting
problem is solved by constant maps. Now apply (1).
(3) Since(α∗β)−1 = β−1∗α−1, the definitions give thatΛ((α∗β)−1, x)(1) =
Λ(α−1,Λ(β−1, x)(1))(1). Thushα∗β ' hα ◦ hβ . ut
Corollary 4.28. LetG denote an abelian group. Ifp : E → B is a fibration,
b ∈ B, a path-connected space, then there is an action of the fundamental
groupπ1(B, b) onH∗(F ;G) and onH∗(F ;G) induced by[α] 7→ hα∗ andh∗α,
respectively.

Lifting functions and their associated fundamental group action will be
developed in later chapters.
Examples: (a) LetX be a path-connected space andx0 a basepoint inX.
Define thespace of based pathsin X as the subspace ofmap([0, 1], X)

PX = {λ : [0, 1]→ X | λ is continuous andλ(0) = x0}.
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The evaluation mappingp : PX → X, given byp(λ) = λ(1), is continuous.
We show this mapping is a fibration by giving an explicit lifting of a given
homotopy: Supposeg : Y → PX andG : Y × I → X are mappings with
G(y, 0) = p(g(y)), then defineG̃ : Y × I → PX by

G̃(y, t)(s) =
{
g(y)(s(t+ 1)), for 0 ≤ s ≤ 1/(t+ 1),
G(y, s(t+ 1)− 1), for 1/(t+ 1) ≤ s ≤ 1.

This establishes the HLP forp. The fibre overx0 is the set of mappings,
λ : [0, 1]→ X with λ(0) = x0 = λ(1), that is, the space of based loopsΩX.

(b) For a pair of spaces,B andF , the projection mapping,p : B × F →
B, is called thetrivial fibration with baseB and fibreF . A morphism
of fibrations is a pair of mappings(f̃ , f) : (E′, B′) → (E,B) such that the
following diagram commutes:

E′ w
f̃

u
p′

E

u
p

B′ w
f

B

with p andp′ fibrations. By restrictingp : E → B to the subspacep−1(A) for
A ⊂ B we get a morphism of fibrations

p−1(A) w
⊂

u
p

E

u

p

A w⊂ B

A fibration is calledlocally trivial if there is a covering ofB by open sets
{Vα}α∈J and a set of homeomorphisms{ϕα : Vα×F → p−1(Vα) }α∈J , each
of which induces a morphism of fibrations

Vα × F w
ϕα

u
pr1

p−1(Vα) w
⊂

u
p

E

u

p

Vα Vα w
⊂

B.

It is a slight extension of the proof of Proposition 4.26 to show that a fibration
with base space a CW-complex is locally trivial up to homotopy. The main piece
of the argument is a theorem of [Feldbau39] that a fibration over a contractible
base is trivial. We can then cover the base space by the interiors ofn-cells
which are contractible.
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(c) An example of a locally trivial fibration is constructed from a manifold,M ,
and its tangent bundle,p : TM → M . The atlas of coordinate charts provides
the covering by subspaces, each of which has the trivial fibration over it with
fibre Rm wherem = dimM . In this case, the fibration enjoys a great deal
more structure than described here. For some of this further structure, see§6.2.

(d) From the definition of a covering space,f : E → X, the covering map is a
fibration. The definition of a fibration can be thought of as a generalization of
the lifting properties of a covering map. For a history of the notion of fibration
see the article of [Zisman99].

(e) LetG be a Lie group andH a closed subgroup ofG. By taking small open
sets inG and using the group multiplication, one can show that the canonical
projection,G→ G/H, onto the coset space, is a fibration with fibreH. See the
classic book of [Steenrod51] for details of a proof. These fibrations are studied
in Chapters 5, 7 and 8.

(f) Consider the classical division algebras over the real numbers:R, the reals;
C, the complexes;H, the quaternions; andO, the Cayley numbers. If we denote
any of these algebras byA andd = dimR A, then we define theprojective line
overA, AP (1), to be the set of lines through the origin inA × A. There is a
mappingS2d−1 −→ AP (1), given by sending a unit vector inA × A to the
line it spans. Note thatAP (1) is the one-point compactification ofA and so is
homeomorphic toSd. These mappings are called theHopf fibrations and are
denoted byı : S1 → S1, η : S3 → S2, ν : S7 → S4, andσ : S15 → S8. Their
fibres areS0, S1, S3 andS7, respectively. Properties of the Hopf fibrations are
considered in Chapters 5 and 9.

(g) SupposeA ↪→ X → Y is a cofibration sequence andZ is a connected
finite CW-complex. Thenmap(X,Z) → map(A,Z) is a fibration with fibre
map(Y, Z). To prove this we check the homotopy lifting property. LetW
denote a space. Suppose we have a commutative diagram as on the left:

W × {0} w
f

u

map(X,Z)

u

map(⊂,Z)

X 4
446
[
[
[
[
[
[
[[]

f̂

AA
AAC

(−,0)

h
hhj⊂

X × I w
K̂ map(W,Z)

W × I w
H

map(A,Z) A× I
h
hhj





�

Ĥ

Using adjoints we can rewrite the lifting problem as a homotopy extension
problem as in the diagram on the right. Here the maps are given byf̂ : x 7→
(w 7→ f(w)(x)) and Ĥ : (a, t) 7→ (w 7→ H(w, t)(a)). SinceA ↪→ X is
a cofibration,K̂ exists extendinĝf andĤ. Let H̃ : W × I → map(X,Z)
denote the adjoint of̂K. ThenH̃ solves the lifting problem for the data(f,H).

Given the cofibration sequenceA ↪→ X → Y , we may takeY to be
X/A. Fixing g : A → Z, the subset of mappingŝg : X → Z that ex-
tend g is given by extendingg away fromA, and meetingg at A. This
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describes a map inmap(X/A,Z) and determines the fibre of the fibration
map(⊂, Z) : map(X,Z)→ map(A,Z).

When a pointed space(X,x0) satisfies the condition that the inclusion
{x0} ↪→ X is a cofibration, we say thatX is cofibrant. It follows that the
evaluation mapping

evx0 : map(X,Z) −→ Z, f 7→ f(x0)

is a fibration. For example, the evaluation of free paths at anyt ∈ [0, 1] gives a
fibrationevt : WX → X.

In order to construct further examples of fibrations, we record some el-
ementary constructions that can be applied to fibrations. The composition of
two fibrations is a fibration (exercise). For(X,x0) of the homotopy type of a
countable CW-complex andp : E → B a fibration,

p ◦ − : map((X,x0), (E, e0))→ map((X,x0), (B, p(e0)))

is a fibration.
Supposep : E → B is a fibration andf : X → B a continuous mapping.

We can form thepullback of p overf by lettingEf denote the set{(x, e) ∈
X × E such thatf(x) = p(e)}. The projection mappings onEf give the
diagram

Ef

u
pf

w E

u

p

X w
f

B.

The universal property of a pullback has as input data mappingsu : Z → X
and v : Z → E such thatf ◦ u = p ◦ v and associates to them a unique
mappingw : Z → Ef with all triangles and squares in the following diagram
commutative:

Z[
[
[
[
[
[
[
[
[
[
[[]

v

h
h
h
h
h
h
hhj

u

�������w

Ef w

u
pf

E

u

p

X w
f

B.

The homotopy lifting property follows from the universal property of pullbacks
and the fact thatp is a fibration. The fibre ofpf : Ef → X is the same space as
the fibre ofp.

We can use the pullback operation further to show that any mapping can be
factored as a composite of a homotopy equivalence and a fibration (compare this
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with the dual situation for cofibrations). The evaluation mappingev0 : WY →
Y is a fibration with fibreΩY . If we are given a mappingf : X → Y , then
form the pullback diagram

Uf w
pr1

u
pr2

WY

u

ev0

X w
f

Y.

We show that the mappingπ = ev1 ◦ pr1 : Uf → Y is a fibration, thatUf ' X
and finally, that the homotopy equivalenceX ' Uf followed by π is the
mappingf . Consider the mappingξ : X → Uf given byξ(x) = (cf(x), x),
wherecf(x) denotes the constant path atf(x) ∈ Y . The compositepr2 ◦ ξ
is the identity onX. Let H : Uf × I → Uf denote the homotopy given
by H((λ, x), s) = ((t 7→ λ(st)), x). At s = 0 we haveH((λ, x), 0) =
(cλ(0), x) = (cf(x), x) = ξ(x) and ats = 1 we have the identity mapping on
Uf . ThusUf ' X. Furthermore, the compositeπ ◦ ξ equalsf . It remains to
show thatπ is a fibration.

LetZ be a space together with the lifting problem

Z w
g

u
(−,0)

Uf

u
π

Z × I w
G

i
i
i
ij

G̃

Y

Following [Whitehead, GW78], we introduce the mappingḠ:

Ḡ : Z × (∂I × I ∪ I × {0}) −→ Y

Ḡ(z, s, t) =


f((pr2 ◦ g)(z)) = (pr1 ◦ g)(z)(0) s = 0,

G(z, t) s = 1,

(pr1 ◦ g)(z)(s) t = 0.

Since(∂I × I ∪ I × {0}) ⊂ I × I is a cofibration (exercise), we can extend
Ḡ to a mapping onI × I. The adjoint of the extension̄G : Z × I × I → Y
with respect to the middle factor is a mappinĝG : Z × I → WY , given by
Ĝ(z, t) = (s 7→ Ḡ(z, s, t)). The homotopy that solves the lifting problem is
given byG̃(z, t) = ((s 7→ Ĝ(z, s, t)), pr2 ◦ g(z)), and soπ is a fibration.

Thusf can be factored as a composite of a homotopy equivalence and a
fibration

X w
ξ

'4
4
4
46f

Uf

u
(λ,x)7→λ(1)

Y.
We next consider the exactness properties of fibrations.
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Theorem 4.29.LetE
p
−→ B be a fibration andb0 a basepoint inB. If Z is a

space, then forF = p−1(b0)

[Z,F ]
i∗−→ [Z,E]

p∗−→ [Z,B]

is an exact sequence of pointed sets. The same conclusion holds ifp is a Serre
fibration andZ has the homotopy type of a finite CW-complex.

Proof: Supposeg : Z → E is a mapping withp ◦ g ' cb0 . SupposeG : Z ×
I → B is a homotopy ofp ◦ g to the constant mapping. Then we have the
diagram

Z × {0} w
g

u
inc

E

u

p

Z × I w
G

[
[
[
[[]

G̃

B.

By the homotopy lifting property, the homotopỹG exists. Letf = G̃
∣∣
Z×{1}.

SinceG is a homotopy to the constant map,f determines a mapping into
F = p−1(b0). Furthermore,̃G is a homotopy fromf : Z → F ↪→ E to g and
so[g] is in the image ofi∗. ut

We can extend a fibration to a sequence of fibrations that is dual to the
Barratt-Puppe sequence. The key to the construction is the fact that the space
PX of based paths is contractible. We proceed as follows: Form the pullback
of the path-loop fibration overB with respect to the fibrationp : E → B:

ΩB

u

ΩB

u
F 'Ep

u
pr1

w PB

u
E wp B.

BecausePB is contractible,Ep has the homotopy type ofF , the fibre ofp.
This gives us a fibration up to homotopyΩB ↪→ F → E. By definition,
Ep = {(λ, e, ) | λ : (I, 0) → (B, b0), λ(1) = p(e)}. The mapping ofΩB to
Ep is given byω 7→ (ω, e0) wheree0 is some choice of basepoint forE in
the fibre overb0. If c = cb0 is the constant loop atb0 ∈ B, then the mapping
F → Ep given byx 7→ (c, x) induces the homotopy equivalence. (Use the
lifting function to construct the inverse.)
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By a similar argument, we can analyze the pullback of the path-loop fibra-
tion overE with respect to the mappingpr2 : Ep → E:

ΩE

u

ΩE

u
ΩB 'E′

u
pr1

w PE

u
F 'Ep wpr1

E.

HereE′ = {(η, λ, e) | η : (I, 0) → (E, e0), λ : (I, 0) → (B, b0), η(1) =
e, λ(1) = p(e)}. The spaceE′ is homotopy equivalent toΩB by the mapping
(η, λ, e) 7→ λ ∗ (p ◦ η), where∗ is loop multiplication. The mapping of
ΩE to E′ is given byω̃ 7→ (ω̃, c, e0) and continuing through toΩB we get
ω̃ 7→ c ∗ (p ◦ ω̃) ' p ◦ ω̃. Thus the fibration up to homotopyΩE → ΩB → F
hasΩp as the ‘inclusion’ of the fibreΩE in ΩB.

We iterate this procedure.

Theorem 4.30.Given a fibrationp : E → B withB path-connected and fibre
F , there is a sequence of fibrations up to homotopy

· · · −→ ΩnF −−→
Ωni

ΩnE −−→
Ωnp

ΩnB −→ Ωn−1F −→ · · ·
−→ ΩB −→ F

i
−→ E

p
−→ B.

Corollary 4.31. For a Serre fibration,F ↪→ E → B with B path-connected,
there is a long exact sequence,

· · · −→ πn(F ) −→
i∗

πn(E) −→
p∗

πn(B) −→ πn−1(F ) −→ · · ·

−→ π1(B) −→ π0(F )
i∗−→ π0(E)

p∗−→ π0(B).

Proof: Apply [S0,−] to the sequence in Theorem 4.30. Then Theorem 4.29
and the isomorphism,[X,ΩY ] ∼= [SX, Y ], imply the result. ut

Some immediate consequences of this corollary are well-known: IfX̃ is
the universal covering space of a spaceX with discrete fundamental group,
thenπn(X̃) is isomorphic toπn(X) for n ≥ 2. This corollary also implies that
πn(X) is isomorphic toπn−1(ΩX) sincePX is contractible.

The long exact sequence of Corollary 4.31 shows how a fibration is a
sort of exact sequence inTop, up to homotopy. In order to turn more algebra
into homotopy theory, we use spaces whose homotopy groups are algebraically
determined. These spaces and some resulting constructions are considered in
the next section.
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Eilenberg-Mac Lane spaces and Postnikov towers

The homotopy lifting property is dual to the homotopy extension property
and developing the consequences of HLP leads to a sequence of fibrations that
is dual to the Barratt-Puppe sequence of cofibrations. To extend this duality
further, we recast one of the principal features of CW-complexes, namely, they
are spaces that are built by successive cofibrations. The duality discussed in
this chapter was recognized first by [Eckmann-Hilton58].

SupposeX is a CW-complex with a fixed cell-decomposition. The se-
quence of skeleta,X(0) ⊂ X(1) ⊂ · · · ⊂ X(n) ⊂ · · · ⊂ X, has the following
key properties:

(1) X(i) ⊂ X(j) is a cofibration, fori ≤ j.
(2) By the proof of Theorem 4.13,

H∗(X(n)) ∼=
{
H∗(X), if ∗ < n,

{0}, if ∗ > n.

(3) For a regular CW-complex, the quotientX(n)/X(n−1) has the homotopy
type of a bouquet ofn-spheres,

∨
α S

n
α. Furthermore, this sequence of

quotients determinesH∗(X) by the cellular chain complex given by the
cell decomposition.

We can summarize these observations in the diagram of cofibrations and
quotients:

X(0)
w

⊂
X(1)

u

w
⊂ · · · w

⊂
X(n−1)

w
⊂

X(n)

u

w
⊂ · · · w

⊂
X

∨
α1∈I1

S1
α1

∨
αn∈In

Snαn

In this section, we develop a decomposition of a spaceX using fibrations, a dual
of the cellular presentation. This new decomposition is based on the homotopy
groups of a space rather than the homology.

We begin by dualizing the building blocks in a cell decomposition. The
spheres that appear as quotients in the sequence of inclusions of skeleta are
distinguished by homology as spaces with one nontrivial reduced homology
group in the dimension determined by the sphere. A suitable analogue for
homotopy is a space whose homotopy groups are concentrated in one dimension.

Definition 4.32.SupposeG is an abelian group andn ≥ 0 orG is a group and
n = 0 or 1. If X is a space such that

πj(X) =
{
G, if j = n,

{0}, if j 6= n,

thenX is called anEilenberg-Mac Lane spaceof type(G,n).
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Theorem 4.33.(1) If G is an abelian group andn ≥ 0 or G is a group and
n = 0 or 1, then there exists an Eilenberg-Mac Lane space of type(G,n).
(2) If two spaces are Eilenberg-Mac Lane spaces of type(G,n), then they have
the same homotopy type. For any such spaceX, we writeX ' K(G,n).
(3) If ϕ : G → H is a homomorphism of groups, then there is a continuous
mappingf : K(G,n)→ K(H,n) with πn(f) = ϕ.

Sketch of proof: For simplicity, letn ≥ 0 andG be an abelian group.
(The general case is similar.) ResolveG by free abelian groups in the short
exact sequence

0 −→ R −→ F −→ G −→ 0.

If F has a basis{aj}j∈J andR a basis{bk}k∈K , then these two groups and the
homomorphism,R → F , can be realized by a mappingf :

∨
k∈K S

n −→∨
j∈J S

n. Let Yn be the mapping cone off . By the Hurewicz theorem,
πn(Yn) ∼= G. Proceed next by induction to attach cells in each dimension,
Yn+1 = Yn ∪ en+2

α1
∪ · · · ∪ en+2

αk
, Yn+2 = Yn+1 ∪ en+3

β1
∪ · · · ∪ en+3

βl
, and so

forth, that kill the homotopy group in that dimension less one. The resulting
complex,Y∞ satisfiesπn(Y∞) = G andπj(Y∞) = {0} for j 6= n. Thus
Y∞ ' K(G,n).

To realize a mapping,ϕ : G→ H, build the mapping of resolutions

0 w R

u
η

w F

u
ϕ̃

w G

u
ϕ

w 0

0 w R′ w F ′ w H w 0.
The mappings̃ϕandη can be realized as mappings of bouquets of spheres and so
induce a mapping in the construction above. In particular, the identity mapping,
G → G, can be realized for two different complexes that are candidates for
K(G,n) by mapping appropriate resolutions. By the Whitehead theorem, these
two complexes are homotopy-equivalent. ut

Some examples of Eilenberg-Mac Lane spaces may be given from the
theory of covering spaces. First, we have the fibrationZ ↪→ R → S1, the
universal covering space of the circle. By the long exact sequence of homotopy
groups for this fibration and the contractibility ofR, S1 ' K(Z, 1).

ForG = Z/2Z, there is the covering space for eachn, given byZ/2Z ↪→
Sn → RP (n). These fibrations fit together in the system:

Z/2Z

u

Z/2Z

u

· · · Z/2Z

u
S2

u

w
⊂

S3

u

w
⊂ · · · w

⊂
Sn

u

w
⊂

RP (2) w
⊂

RP (3) w
⊂ · · · w

⊂
RP (n) w

⊂
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The direct limit is a fibration,Z/2Z ↪→ S∞ → RP (∞) with S∞ weakly
contractible (that is,πi(S∞) = {0} for all i). The long exact sequence of ho-
motopy groups determines the homotopy groups ofRP (∞) and soRP (∞) '
K(Z/2Z, 1).

For the complex projective spaces, we have a similar system of fibrations
with fibreS1; S1 ↪→ S2n+1 → CP (n). The direct limit is a fibration

S1 ↪→ S∞ −→ CP (∞)

and, sinceS1 ' K(Z, 1), the long exact sequence of homotopy groups implies
thatCP (∞) ' K(Z, 2).

Finally, if given aK(G,n), the path-loop fibration

ΩK(G,n) ↪→ PK(G,n) −→ K(G,n)

implies thatΩK(G,n) ' K(G,n − 1). We remark that the sequence of
spaces,K(G, 0), K(G, 1), . . . , K(G,n), . . . comprise anOmega-spectrum
called theEilenberg-Mac Lane spectrum for G. Spectra and generalized
homology and cohomology theories are not developed in this book (see, for
example, the recent book by [Kochman96]). It is useful to recall the following
classical result. The proof of this theorem may be given by an obstruction
theory argument ([Eilenberg47]).

Theorem 4.34.LetGbe an abelian group. Then there is a natural isomorphism,
for eachn and each CW-complexY ,Hn(Y ;G) ∼= [Y,K(G,n)].

This equivalence led to the definition of the generalized cohomology theories
and plays a crucial role in many arguments in homotopy theory.

With the Eilenberg-Mac Lane spaces for building blocks, we next intro-
duce thePostnikov systemof a spaceX ([Postnikov51]), which provides a
decomposition ofX that is dual to the cellular decomposition.

Theorem 4.35.To a simply-connected spaceX, there is a sequence of spaces,
{PnX for n = 0, 1, . . . } and sequences of mappings,

{ pi : PiX → Pi−1X | i = 1, 2, . . . },
{ fj : X → PjX | j = 0, 1, . . . }
{ km : Pm−1X → K(πm(X),m+ 1) | m = 1, 2, . . . }

such that the following hold:

(1) each mapping,pi, is a fibration with fibreK(πi(X), i), pulled back over
Pi−1X from the path-loop fibration with respect to the mappingki:

PiX

u
pi

w PK(πi(X), i+ 1)

u
Pi−1X w

ki
K(πi(X), i+ 1).
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(2) For each space,PjX,

πm(PjX) ∼=
{
πm(X), for m ≤ j,
{0}, for m > j,

and the mappingfj : X → PjX induces the isomorphismfj∗ : πm(X)
→ πm(PjX) for m ≤ j.

(3) For all j, fj = pj+1 ◦ fj+1.

Such a system of spaces and maps is called a Postnikov system forX, and the
data contained in the system determineX up to homotopy.

u
P2X w

k3

u
p2

K(π3(X), 4)

X
N
N
NNPf2

w
f1

�
�
���f0

P1X w
k2

u
p1

K(π2(X), 3)

P0X w
k1 K(π1(X), 2).

In the case thatX is not simply-connected, the tower of fibrations{PjX, pj}
may be constructed with the fibre ofpj given byK(πj(X), j). However, the
existence of the family of mappings{km}, calledk-invariants of X, make
each of the fibrationspj a principal fibration. This would force the fundamental
groupπ1(X) to act trivially on the higher homotopy groups ofX, which is not
true in general (see Chapter 8bis for more details).

Sketch of proof: Here is an instance where working simplicially allows us
to make a very straightforward definition that would be cumbersome to make
with spaces. ReplaceX with a Kan complexL•. Consider the following
equivalence relation, defined for eachn: Two q-simplices inL•, u and v,
satisfyu ∼n v if each face ofu of dimension≤ n agrees with each face ofv
of dimension≤ n. Equivalently, ifχu : ∆[q]• → L• andχv : ∆[q]• → L• are
the characteristic mappings foru andv, thenχu andχv agree on then-skeleton
∆[q](n)

• of ∆[q]•. Let (L•)n = L•/ ∼n.
It follows from the definitions in simplicial theory that each(L•)n is a Kan

complex, thatπi(L•) = πi((L•)n), for i ≤ n andπi((L•)n) = {0} for i > n,
that(L•)n → (L•)n−1 is a simplicial fibration with fibre aK(πn(L•), n) (see
the article of [Curtis71] for details).

To complete the proof for spaces, letL• = Sing•(X) and then apply the
realization functor to the subsequent construction. ut
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The Postnikov system of a space and its generalization for mappings
([Moore58]) are powerful tools in the study of homotopy theory. Some of
the computational potential is explored at the beginning of Chapter 6, and in
Chapter 8bis; analogous constructions are considered in Chapter 9.

4.4 Hopf algebras and the Steenrod algebra

We close our consideration of topological preliminaries with a discussion
of some of the properties of the singular homology and cohomology functors.
The algebraic structures that we consider arise naturally from the functoriality of
homology and cohomology and from a choice of basepoint. They have become
basic structures in the study of algebraic topology and appear in many guises
in the remainder of the book.

Fundamental to all subsequent structure is the following equivalence.

Theorem 4.36 (the Eilenberg-Zilber theorem).For any pair of locally finite
spaces,X andY , and any fieldk, there are natural isomorphisms

AW: H∗(X × Y ; k)←→ H∗(X; k)⊗H∗(Y ; k) : EZ,

AW: H∗(X × Y ; k)←→ H∗(X; k)⊗H∗(Y ; k) : EZ .

Furthermore, these equivalences are induced by chain equivalences on the
singular chain and cochain complexes, respectively.

Sketch of proof: For complete details, the reader can consult the classic
text of [Mac Lane63, Chapter VIII,§8]. We record the chain maps for later use:

AW: C∗(X × Y ; k) −→ C∗(X; k)⊗ C∗(Y ; k)

is known as theAlexander-Whitney map and it can be described simplicially
by

AW(a× b) =
∑n

i=0

−−→
dn−ia⊗

←−
di b,

the mapping that sends the product of simplices to the lastn − i faces ofa

(
−−→
dn−ia) tensor the firsti faces ofb (

←−
di b). We record that on chainsAW is not a

mapping of differential graded coalgebras since it is not cocommutative.
The inverse mapping (up to chain equivalence) is theEilenberg-Zilber

map
EZ: Cp(X; k)⊗ Cq(Y ; k) −→ Cp+q(X × Y ; k)

described by

EZ(a⊗ b) =
∑

(p,q)−shufflesσ

(−1)ε(σ)(sσ(1) · · · sσ(p)a× sσ(p+1) · · · sσ(p+q)b),
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where the sum is taken over all(p, q)-shuffles. A permutation ofp+ q letters
is a(p, q)-shuffle if

σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).

The mappingssj are given by the degeneracy mappings for the underlying
simplices and the sign is defined in various ways (see§7.2 for one of them). We
note that the Eilenberg-Zilber map on cochains is an algebra mapping. (These
ideas come up algebraically in Chapter 7.) ut

Suppose(X,x0) is a pointed space. ThenX is immediately equipped
with three continuous mappings:∆: X → X × X, thediagonal mapping,
∆(x) = (x, x); thebasepoint map, x0 : ∗ → X, x0(∗) = x0, where∗ is the
one-point space andx0 is both the basepoint and the mapping identifying it;
finally, there is the unique mapping,X → ∗, of X onto the terminal object in
Top. We applyH∗( ; k) to each of these mappings and obtain homomorphisms

∆ = AW◦∆∗ : H∗(X; k)→ H∗(X; k)⊗H∗(X; k),
η = (x0)∗ : k −→ H∗(X; k), and ε : H∗(X; k) −→ k.

We refer to∆ as thecomultiplication onH∗(X; k), η as aunit onH∗(X; k)
andε as theaugmentationof H∗(X; k). We abstract the algebraic structures
that result from these choices (following [Milnor-Moore65]).

Definition 4.37. LetH∗ denote a graded vector space over a fieldk. We say
thatH∗ has acomultiplication if there is a mapping∆: H∗ → H∗ ⊗H∗.

(1) ∆ is coassociativeif the following diagram commutes

H∗ w
∆

u
∆

H∗ ⊗H∗

u
∆⊗1

H∗ ⊗H∗ w
1⊗∆

H∗ ⊗H∗ ⊗H∗.

(2) ∆ has acounit if there is anaugmentationofH∗, ε : H∗ → k and the
following diagram commutes

H∗

u
∆

N
N
N
N
NQ

∼=

�
�
�
���
∼=

k ⊗H∗ H∗ ⊗H∗u
ε⊗1

w
1⊗ε H∗ ⊗ k.
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The triple(H∗,∆, ε), satisfying(1) and(2), is called acoalgebraoverk.

(3) A homomorphism,η : k → H∗ is a unit for the coalgebraH∗ if the
compositeε ◦ η : k → k is the identity mapping onk. (A unit may also
be called asupplementationofH∗.)

(4) A coalgebra is said to becocommutativeif the following diagram com-
mutes,

H∗
h

h
h
hk

∆

4
4
4
46

∆

H∗ ⊗H∗ w
T

H∗ ⊗H∗

whereT (a⊗ b) = (−1)(deg a)(deg b)b⊗ a.

Proposition 4.38.For a locally finite spaceX the singular homology ofX with
coefficients in a fieldk is a cocommutative coalgebra overk. For a choice of
basepoint,H∗(X; k) also has a unit.

Some familiar algebraic objects enjoy the structure of a coalgebra. For
example, letΛ(x) denote the exterior algebra on a generatorx with dimx odd.
EquipΛ(x) with the comultiplication determined by∆(x) = 1⊗x+x⊗1. This
is the unique coalgebra structure onΛ(x) up to multiplication by scalars. On
k[x], the polynomial algebra onx of even dimension, there is a comultiplication
given by∆(x) = 1⊗ x+ x⊗ 1 and

∆(xn) = 1⊗ xn +
(
n

1

)
x⊗ xn−1 + · · ·+

(
n

k

)
xk ⊗ xn−k + · · ·+ xn ⊗ 1.

These examples of coalgebras are realized byH∗(S2n+1; k) andH∗(CP (∞); k).
An important subspace of a coalgebra is the subspace ofprimitives ,

Prim(H∗) = {x ∈ H∗ | ∆(x) = 1⊗ x+ x⊗ 1}.

The importance of the space of primitives becomes apparent when the coalgebra
structure is combined with an algebra structure (as in a Hopf algebra). For our
examples,Prim(Λ(x)) = k{x} andPrim(k[x]) = k{x, xp, xp2

, . . . }, where
p = char k, andkS denotes the vector space with basis the setS.

If we apply cohomology with coefficients in a field to the diagonal, base-
point and terminal mappings, the Eilenberg-Zilber theorem gives amultiplica-
tion, thecup product on cohomology,

^ : H∗(X; k)⊗H∗(X; k) −→ H∗(X; k),
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an augmentation, ε : H∗(X; k) → k and aunit , η : k → H∗(X; k). As
defined in Chapter 1, agraded algebraoverk is the appropriate abstraction of
these notions. By applying the vector space dual to the definition of coalgebra,
we can define an algebra as a triple,(H∗, ϕ, η), with ϕ, a multiplication that is
associative and has a unit,η. Furthermore, the dual of Proposition 4.38 holds,
namely,H∗(X; k) is a graded commutative algebra overk and, for a choice of
basepoint,H∗(X; k) has an augmentation. The dual notion to the subspace of
primitives of a coalgebra is thespace of indecomposablesof an algebraH∗:
Let I(H∗) = ker ε, then define

Q(H∗) = I(H∗)
/
ϕ
(
I(H∗)⊗ I(H∗)

)
.

For the examples ofΛ(x) andk[x], considered as algebras,Q(Λ(x)) ∼= k{x}
andQ(k[x]) ∼= k{x}.

We record some consequences of duality.

Theorem 4.39.LetH∗ denote a coalgebra overk with augmentationε and unit
η. SupposeH∗ is of finite type, that is,dimkHn is finite for alln, then

(1) (Hdual
∗ ,∆dual, εdual) is an algebra overk.

(2) If ∆ is cocommutative,∆dual is commutative.
(3) ηdual is an augmentation ofHdual

∗ .

Next we consider spaces with some further structure. Suppose thatX
is anH-space, that is, there is a continuous mapping,m : X × X → X, a
multiplication and furthermore, for a choice of basepoint,e ∈ X, the mappings
ml(x) = m(x, e) andmr(x) = m(e, x) are homotopic to the identity onX.
Examples of H-spaces abound: If(G,µ, e) is a topological group, then it is an H-
space. The loop multiplication∗onΩ(X,x0) with basepointcx0 givesΩ(X,x0)
the structure of an H-space. Finally, notice that the group multiplication on an
abeliangroupG is a group homomorphism and so induces a mapping, for each
n,K(G,n)×K(G,n)→ K(G,n); this can be seen to be an H-space structure.

The homology of an H-space with field coefficients is endowed with a mul-
tiplication,m∗ : H∗(X; k) ⊗ H∗(X; k) → H∗(X; k), called thePontryagin
product. Dually, the cohomology algebra obtains a comultiplication,m∗. The
properties that result are abstractly given in the following definition.

Definition 4.40. Let H denote a graded vector space of finite type over a
field k, equipped with a multiplicationϕ : H ⊗ H → H, a comultiplication,
∆: H → H ⊗H, a unit,η : k → H, and an augmentation,ε : H → k. Then
H is aHopf algebra overk if

(1) (H,ϕ, η) is an algebra overk with augmentationε.
(2) (H,∆, ε) is a coalgebra overk with unitη.
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(3) The following diagram commutes

H ⊗H w
ϕ

u
∆⊗∆

H w
∆ H ⊗H

H ⊗H ⊗H ⊗H w
1⊗T⊗1

H ⊗H ⊗H ⊗H.

u

ϕ⊗ϕ

That is,∆ is a morphism of algebras or, equivalently,ϕ is a morphism
of coalgebras.

We have assumed in the definition of algebra and coalgebra the conditions of
associativity and coassociativity. Without these conditions(H,φ,∆, η) is a
bialgebra, a structure at the heart of the study of quantum groups ([Shnider-
Sternberg93]).

Theorem 4.41.If X is a locally finite H-space, thenH∗(X; k) is a commutative
Hopf algebra overk andH∗(X; k) is a cocommutative Hopf algebra overk.
Furthermore, the Hopf algebrasH∗(X; k) andH∗(X; k) are dual to each
other.

The dual of a Hopf algebra of finite type is also a Hopf algebra. The
structure of Hopf algebras, as developed in the study of Lie groups and H-
spaces, is well-known in the useful cases (see Theorems 6.37 and Theorem 10.1
for examples).

We next present some further structure on singular cohomology—the
Steenrod operations. Taken together these operations have the structure of
a Hopf algebra over the field ofp elementsFp known as the Steenrod algebra.

When distinguishing two spaces by their cohomology with field coeffi-
cients, the first piece of structure available is that of a graded vector space.
When two spaces have isomorphic graded vector spaces for their cohomol-
ogy (for example,CP (2) andS2 ∨ S4), then the cup product structure on the
cohomology may distinguish the spaces by finding different graded algebras.
However, this too may fail to distinguish the spaces (for example,ΣCP (2) and
S3 ∨ S5) and so further structure is desirable.

Definition 4.42. A cohomology operationof type(G,n,G′,m) is a natural
transformation,θ : Hn( ;G) → Hm( ;G′). That is, for all spaces,X andY ,
and mappingsf : X → Y , there are functionsθX , θY , such that the following
diagram commutes

Hn(X;G) w
θX Hm(X;G′)

Hn(Y ;G)

u

f∗

w
θY

Hm(Y ;G′).

u

f∗
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Over a field,k, the cup product onH∗(X; k) allows us to define a squaring
mapθ(u) = u ^ u. This operationθ is of type(k, n, k, 2n), for eachn.

Consider the short exact sequence of rings

0 −→ Z/pZ
×p
−−→ Z/p2

Z −→ Z/pZ −→ 0.

If we tensorC∗(X), the integral cochains, with this sequence of coefficients,
we get a long exact sequence on homology

· · · → Hn(X;Z/p2
Z)→ Hn(X;Z/pZ)

β
−→ Hn+1(X;Z/pZ)→ · · · .

For eachn ≥ 1, there is a connecting homomorphism, natural inX, that
determines a sequence of operations,β, of type(Z/pZ, n,Z/pZ, n+1). These
operations are called theBockstein homomorphisms(see Chapter 10).

More generally, one can use Theorem 4.34 to produce cohomology oper-
ations. Letθ be any class in[K(G,n),K(G′,m)] andu, a class inHn(X;G).
Thenu = [f ] for f : X → K(G,n) and so composition withθ determines a
class in[X,K(G′,m)] = Hm(X;G′) which is denoted byθ(u). By the same
kind of obstruction theory argument that proves Theorem 4.34, one can prove
the following characterization of operations.

Theorem 4.43.Let Oper(G,n,G′,m) denote the set of all cohomology oper-
ations of type(G,n,G′,m). Then there is a one-one correspondence between
Oper(G,n,G′,m) and[K(G,n),K(G′,m)].

Since[K(G,n),K(G′,m)] ∼= Hm(K(G,n);G′), it becomes necessary
to compute the cohomology of Eilenberg-Mac Lane spaces in order to determine
cohomology operations. This problem is taken up in Chapter 6. In Chapter 9,
there is a detailed discussion of the application of these operations in homotopy
calculations.

The collection of all cohomology operations, for a given fieldk, is some-
times a large, unmanageable set and so it is unsuitable for straightforward
application. We reduce our attention to a more manageable set by considering
sequences of operations that are independent of dimension and related by the
suspension isomorphism.

Definition 4.44. Let { θn ∈ Oper(k, n, k, n + i) } denote a sequence of co-
homology operations fori fixed. Then{θn} determines astable cohomology
operation of degreei if the following diagram commutes

H̃n(X; k) w
E

u
θn

H̃n+1(SX; k)

u
θn+1

H̃n+i(X; k) w
E

H̃n+i+1(SX; k)
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whereE : H̃m(X; k)→ H̃m+1(SX; k) is thesuspension isomorphism,

E : H̃m(X; k) ∼= [X,K(k,m)] ∼= [X,ΩK(k,m+ 1)] ∼= [SX,K(k,m+ 1)].

An example of such an operation is the Bockstein homomorphism: We
can write the suspension isomorphism explicitly as the mapping determined by
the diagram

H̃m(X; k) w
E

u
δ ∼=

H̃m+1(SX; k)

H̃m+1(C+X,X; k) H̃m+1(SX,C−X; k)u excision
∼=

u

∼=

whereSX = C+X ∪ C−X, the union of two cones. The Bockstein homo-
morphism commutes with the mappings of pairs and so with the suspension
isomorphism.

[Steenrod47] introduced a family of stable cohomology operations over
F2. With composition as product, these operations form an algebra, denoted
A2 and called themod 2 Steenrod algebra. The analogous operations were
constructed by [Steenrod52] overFp, for odd primes,p, to form themod p
Steenrod algebra, Ap. In the early 1950’s, [Cartan50], and [Adem52] estab-
lished the structure of these algebras and then [Serre53] and [Cartan54] showed
that Steenrod’s constructions gave all possible stable cohomology operations
over the prime characteristic fields.

Steenrod’s constructions take place at the level of cochains and involve
certain equivariant acyclic complexes and the cohomology of groups. We re-
fer the reader to the readable accounts of [Steenrod-Epstein62] and [Mosher-
Tangora68] for this construction. Alternative constructions of the Steenrod
algebra may be found in the papers of [May70] and [Karoubi95]. The structure
and action of the Steenrod algebra is described in the following theorem, which
is stated twice—for the prime2 and for the odd primes.

Theorem 4.45 (mod 2). The mod 2 Steenrod algebra,A2, is generated by
operations

Sqi : H∗( ;F2) −→ H∗+i( ;F2),

for i ≥ 0, satisfying

(1) Sq0 = the identity homomorphism.
(2) If x ∈ Hn(X;F2), then Sqnx = x2.
(3) If x ∈ Hn(X;F2) andi > n, then Sqix = 0.
(4) For all x, y ∈ H∗(X;F2),

Sqk(x ^ y) =
∑k

i=0
Sqix ^ Sqk−iy, theCartan formula .
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(5) Sq1 is the Bockstein homomorphism associated to the short exact se-
quence of coefficients,

0 −→ Z/2Z
×2
−−→ Z/4Z −→ Z/2Z −→ 0.

(6) The following relations hold among the generators: if0 < a < 2b

SqaSqb =
∑[a/2]

j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj .

These relations are called theAdem relations.

Theorem 4.45 (forp an odd prime). The modp Steenrod algebra,Ap, is
generated by operationsP i : H∗( ;Fp) → H∗+2i(p−1)( ;Fp), for i ≥ 0,
along with the Bockstein homomorphism,β : H∗( ;Fp) → H∗+1( ;Fp),
associated with the short exact sequence of coefficients,

0 −→ Z/pZ
×p
−−→ Z/p2

Z −→ Z/pZ −→ 0.

These operations satisfy the following

(1) P 0 = the identity homomorphism.
(2) If x ∈ H2n(X;Fp), thenPnx = xp.
(3) If x ∈ Hn(X;Fp) andk > 2n, thenP kx = 0.
(4) For all x, y ∈ H∗(X;Fp), theCartan formula holds

P k(x ^ y) =
∑k

j=0
P jx ^ P k−jy.

Also,β is a derivation,

β(x ^ y) = βx ^ y + (−1)dim xx ^ βy.

(5) The following relations hold among the generators:

P aP b =
∑[a/p]

j=0

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j

and ifa ≤ pb, then

P aβP b =
∑[a/p]

j=0
(−1)a+j

(
(p− 1)(b− j)

a− pj

)
βP a+b−jP j

+
∑[(a−1)/p]

j=0
(−1)a+j−1

(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−jβP j .

These relations are called theAdem relations.
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In these theorems, all binomial coefficients are taken modulo the prime and
[ ] denotes the greatest integer function. An elegant and useful reformulation
of the Adem relations has been given by [Bullett-MacDonald82].

We can use the mod 2 Steenrod operations to distinguishΣCP (2) and
S3 ∨ S5. The difference is detected bySq2(H3(ΣCP (2);F2) 6= {0} =
Sq2(H3(S3 ∨ S5;F2). The applications of these operations pervade algebraic
topology. For further examples we refer the reader to Chapters 6, 8, 9, and the
classic book by [Steenrod-Epstein62].

We close this section by recording some useful facts about the Steenrod
algebra that will be applied in later chapters.

Fact 1: The vector space of indecomposables ofA2, is given by

Q(A2) = F2{Sq1,Sq2, . . . ,Sq2
i

, . . . }.

Forp, an odd prime,

Q(Ap) = Fp{β, P 1, P p, . . . , P p
k

, . . . }.

The space of indecomposables of an algebra generates it by taking the span
of all products of indecomposables.Fact 1 follows from the Adem relations.
To determine a vector space basis for each Steenrod algebra, we push further
with the Adem relations.

Theorem 4.46 (mod 2). Let I = (i1, i2, . . . , ir) be a sequence of nonnegative
integers. We say thatI is admissibleif is−1 ≥ 2is for r ≥ s > 1. Associate
to I the product of generators SqI = Sqi1Sqi2 · · ·Sqir . We say that SqI ∈ A2

is admissible if the sequenceI is admissible. The admissible products form a
vector space basis forA2.

Theorem 4.46 (forp an odd prime). Let J be a sequence of nonnegative
integers,(ε0, s1, ε1, . . . , sk, εk), whereεi = 0 or 1 for all i. We say thatJ is
admissible if si ≥ psi+1 + εi for k > i ≥ 1. Associate toJ the product of
generators ofP J = βε0P s1βε1 · · ·P skβεk We say thatP J ∈ Ap is admissible
if the sequenceJ is admissible. The admissible products form a vector space
basis forAp.

Fact 2: Let ∆: Ap → Ap ⊗ Ap be the comultiplication that extends the

Cartan formulas: forp = 2, ∆(Sqk) =
∑k

i=0
Sqi ⊗ Sqk−i, and forp odd,

∆(β) = 1⊗ β + β ⊗ 1, and∆(P k) =
∑k

j=0
P j ⊗ P k−j .

ThenAp is a cocommutative Hopf algebra overFp for any prime,p.
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This fact was first observed by [Milnor58]. It follows thatH∗(X;Fp) is a
module over the Hopf algebraAp for any spaceX. Furthermore, the dual of
Ap,Adual

p , is a commutative Hopf algebra overFp. From the structure theorems
for Hopf algebras proved by [Borel53] and [Milnor-Moore65] and the known
action ofAp on certain test spaces, [Milnor58] computed the structure ofAdual

p :

Theorem 4.47 (mod 2). As an algebra,Adual
2 is isomorphic to the polynomial

algebra
F2[ξ1, ξ2, ξ3, . . . ]

wheredeg ξi = 2i − 1. As a coalgebra, the comultiplication onAdual
2 is

determined by∆(ξk) =
∑k

i=0
ξ2i

k−i ⊗ ξi.

Theorem 4.47 (forp an odd prime).As an algebra,Adual
p is isomorphic to the

tensor product of an exterior and a polynomial algebra,

Λ(τ0, τ1, . . . )⊗ Fp[ξ1, ξ2, . . . ],

wheredeg τi = 2pi − 1 anddeg ξj = 2(pj − 1). As a coalgebra, the comulti-
plication onAdual

p is given by

∆(ξk) =
∑k

i=0
ξp
i

k−i ⊗ ξi, ∆(τk) = τk ⊗ 1 +
∑k

i=0
ξp
i

k−i ⊗ τi .

The implications of these structure theorems become apparent in Chapter 9
where they figure prominently in the calculations associated with the Adams
spectral sequence.

Exercises

4.1. Suppose thatf : X → Y is a continuous function. Show that the inclusion
i : X → If , the mapping cylinder, is a cofibration. Show thatY is a deformation
retraction ofIf .

4.2. Show that the composition of cofibrations is a cofibration. Show that the
composition of fibrations is a fibration.

4.3. Suppose thatf : (X,x0)→ (Y, y0) is a map of pointed spaces. Show that the
iterated mapping cone sequence

X
f
−→ Y

i
−→Mf = Y ∪f CX

j
−→ (Y ∪f CX) ∪i CY

gives a space(Y ∪f CX) ∪i CY homotopy equivalent toΣX.
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4.4. Let SX denote the reduced suspension onX. Show that for(X,x0) and
(Y, y0) pointed countable CW-complexes there is a isomorphism of groups

[(SX, sx0), (Y, y0)] ∼= [(X,x0),Ω(Y, y0)].

Show further that for a mapping of pointed spacesf : (X,x0) → (Y, y0), the
mappings induced by the iterated mapping cone sequence give an exact sequence
of groups:

[ΣX,Z]
Σf∗

←−− [ΣY, Z]
Σi∗

←−− [ΣMf , Z]
Σj∗

←−− [Σ2X,Z]←− · · · .

4.5. Prove that the suspension mappingE : [SkX,SkY ] → [Sk+1X,Sk+1Y ] is
a homomorphism fork ≥ 1.

4.6. Extend the discussion of cellular homology to include coefficients in an abelian
groupG. ComputeH∗(RP (n)) andH∗(RP (n);F2) from an appropriate cell
decomposition. What decomposition would be appropriate to computeH∗(CP (n))
cellularly? LetZ/mZ act on the circle as roots of unity (a generator ofZ/mZ
corresponds to a primitivemth root of unity inS1). SinceS1 acts onS2n−1, the
unit vectors inCn, this gives an action ofZ/mZ onS2n−1. LetL2n−1(m) denote
the orbit space of this action; this is an example of alens space([Whitehead,
GW78, p. 91]). Compute the cellular homology ofL2n−1(m).

4.7. Determine explicitly the lifting function for the path-loop fibration over a space
X. This leads to an action ofΩX on itself. Determine that action explicitly.

4.8. If p : E → B is a fibration and(X,x0) ∈ W , then show that precomposition
with p gives a fibration:

p ◦ − : map((X,x0), (E, e0))→ map((X,x0), (B, p(e0)).

4.9. Show that(∂I × I ∪ I × {0}) ⊂ I × I is a cofibration.

4.10. Suppose thatA is a connected Hopf algebra over a fieldk, that is,A =
k ⊕ I(A), whereI(A) consists of elements in positive degrees. Show that the
space of primitives is the kernel of the reduced comultiplication

∆̄ : I(A) ⊂ A
∆
−→ A⊗A→ I(A)⊗ I(A)

where we can takeI(A) isomorphic to the cokernel of the unitη : k → A. Show
that there is a natural homomorphismPrim(A)→ Q(A).

4.11. A sequence0 → K → H → Q → 0 of Hopf algebras is a short exact
sequence ifK is a sub-Hopf algebra ofH and I(K) · H = H · I(K), that
is, K is a normal sub-Hopf algebra, andQ ∼= k ⊗K H ∼= H/I(K) · H as
gradedk-vector spaces. Show that the functor that associates to a Hopf algebra
its subspace of primitives is left exact, that is, a short exact sequence of Hopf
algebras,0 → K → H → Q → 0 gives a short exact sequence of vector spaces
0→ Prim(K)→ Prim(H)→ Prim(Q).



       

5
The Leray-Serre Spectral Sequence I

“ . . . the notion of a fibre space hides subordinate struc-
tures, now revealed only in part by the array of differen-
tials of the associated spectral sequence.”

S. Mac Lane

After 1930, new invariants of a topological spaceX were introduced: the
higher homotopy groupsπ∗(X) by [Hurewicz35/36] and [̌Cech32], and the
cohomology ring by [Alexander35], [Kolmogoroff36], and [Whitney38]. The
various homology theories (simplicial, de Rham,Čech, singular, etc.) were
clarified through the axiomatization of [Eilenberg-Steenrod45].

Computations of these invariants proceeded slowly, especially for spaces
of importance, such as manifolds, Lie groups, and their associated homoge-
neous spaces. The inclusion of a closed connected subgroupH of a compact
Lie groupG leads to a fibration (indeed, a fibre bundle)H ↪→ G → G/H.
Considerable effort was directed at discovering the relations between the com-
binatorial invariants ofH,G, andG/H. [Hurewicz35/36] already appreciated
the relations among the new homotopy groups for(H,G,G/H). Although he
did not have the language of long exact sequences, he had shown what was
equivalent to the exactness of the sequence of groups

· · · → πn(H)→ πn(G)→ πn(G/H)→ πn−1(H)→ · · ·

and he gave the isomorphismπj(S3) ∼= πj(S2) for j > 2 as an example.
Other geometric problems, like the existence of nonzero vector fields on

manifolds, led to topological structures with properties analogous to the fibre
bundle(H,G,G/H). [Whitney35] introduced sphere bundles in this context
and developed his theory of characteristic classes toward the classification of
sphere bundles. Throughout the 30’s and 40’s a search for the most general and
useful definition of a fibre space occupied many topologists (a history of this
search has been written by [Zisman99]). The most influential efforts (recounted
in the problem list of [Massey55]) were due to [Hurewicz-Steenrod41] who
introduced slicing functions on metric spaces, to [Ehresmann-Feldbau41] who
sought to generalize to topology the geometric notion of connection in a fibre
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bundle with smooth structural group (see [Steenrod52]), and to [Eckmann42]
who focused on the homogeneous space case and its homotopy lifting properties.

During the Second World War, [Hopf41] introduced H-spaces as a gener-
alization of Lie groups. He also showed that the cohomology of an H-space
enjoyed the additional structure of a Hopf algebra. [Samelson41] developed
Hopf’s ideas further and introduced the notion of a closed subgroupH of a
compact Lie groupG being totally nonhomologous to zero in order to show
that under these circumstancesH∗(H;Q) ⊗ H∗(G/H;Q) is isomorphic to
H∗(G;Q). [Hopf42] also studied the class of spaces dubbedasphericalby
[Hurewicz35/36] for whichπj(X) = {0} for j > 1. Hurewicz had shown that
the homology groups ofX were determined by the fundamental group. Hopf
went much further when he gave an explicit formula in terms of the fundamental
group, for any spaceY , for H2(Y )/h(π2(Y )), whereh denotes the Hurewicz
map. When specialized to an aspherical spaceX, this gives the second ho-
mology of the groupπ1(X). This result launched the theory of the homology
of groups (see Chapter 8bis). The notion of Eilenberg-Mac Lane spaces grew
out of the generalization of Hopf’s work to higher homotopy groups and higher
orders of connectivity ([Eilenberg-Mac Lane45]).

[Leray46] solved the problem of relating the cohomology rings of spaces
(F,E, π,B) making up a fibre space. He gave the first explicit example of a
spectral sequence in the cadre of sheaves and a general cohomology theory that
he had formulated while a prisoner-of-war (see [Leray45]). Leray’s cohomol-
ogy ring (based on hiscouvertures) specializes to de Rham cohomology, toČech
cohomology, to Alexander-Spanier cohomology, and to singular cohomology
with the appropriate choice of complexes (see [Borel51, 98] and [Houzel90]).
Refinements of Leray’s algebraic apparatus were due to [Koszul47] and [Car-
tan48]. Their work adapted well to the study of homogeneous spaces. For
the computations of homotopy groups, however, a tool like Leray’s spectral se-
quence was needed for singular homology for which theorems like the Hurewicz
theorem and the Whitehead theorem reveal a close computational relation.

Such a spectral sequence for singular homology appeared in a series of
Comptes Rendusnotes by [Serre50]. Complete details appeared in his classic
thesis ([Serre51]) that introduced the very general notion of a (Serre) fibration
making many computational examples possible and even computable. A short
time later, [Borel53] published his Paris thesis in which the computational power
of spectral sequences was used to extend the known results on the homotopy
theory of Lie groups and homogeneous spaces much further, especially in the
case of coefficients in a finite field. (For more details on the history of spectral
sequences see [McCleary99].)

The main theorems of [Serre51] and of this chapter are the following:

Theorem 5.1 (the homology Leray-Serre spectral sequence).Let G be an

abelian group. SupposeF ↪→ E
π
−→B is a fibration, whereB is path-connected,
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andF connected. Then there is a first quadrant spectral sequence,{Er∗,∗, dr},
converging toH∗(E;G), with

E2
p,q
∼= Hp(B;Hq(F ;G)),

the homology of the spaceB with local coefficients in the homology of the
fibre ofπ. Furthermore, this spectral sequence is natural with respect to fibre-
preserving maps of fibrations.

Theorem 5.2 (the cohomology Leray-Serre spectral sequence).Let R be a

commutative ring with unit. SupposeF ↪→ E
π
−→B is a fibration, whereB is

path-connected andF is connected. Then there is a first quadrant spectral
sequence of algebras,{E∗,∗r , dr}, converging toH∗(E;R) as an algebra, with

Ep,q2
∼= Hp(B;Hq(F ;R)),

the cohomology of the spaceB with local coefficients in the cohomology of the
fibre ofπ. This spectral sequence is natural with respect to fibre-preserving
maps of fibrations. Furthermore, the cup product^ on cohomology with local
coefficients and the product·2 onE∗,∗2 are related byu ·2 v = (−1)p

′qu ^ v

whenu ∈ Ep,q2 andv ∈ Ep
′,q′

2 .

TheE2-terms of these spectral sequences are expressed in terms of local
coefficient systems which are induced by the fibration over the spaceB. Such
systems of coefficients arise naturally in the study of obstruction theory and in
the study of sheaves. [Steenrod44] has given the definitive treatment on which
we base much of our discussion.

In this chapter we derive the homology version of the spectral sequence
(Theorem 5.1). It is possible to extend the statement of the main theorems
to the case of fibrations of pairs and we will sometimes use the more general
statement. The reader is invited to derive the relative cases in the exercises.
In order to go quickly to the applications, we postpone the details of the proof
to appendices (§5.3). In§5.1, the motivating ideas for the construction of the
spectral sequence are given and theE1-term and the differentiald1 are identified.
We also describe the cohomology version of the spectral sequence and record
its relevant multiplicative structure.

In §5.2, with machine in hand, we turn to applications. The algebraic
examples from Chapter 1 can be applied to yield significant topological results.
The classical theorems of Leray and Hirsch and of Borel and Serre are derived
in short order with these tools. After such immediate applications, we turn to
less general results and compute the cohomology of various Lie groups and
homogeneous spaces. We also explore some of the implications in homotopy
theory of computations for the based loop space made possible by the spectral
sequence. Perhaps the most spectacular results are the generalization of a
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theorem of Marston Morse on the existence of infinitely many distinct geodesics
joining two points in a Riemannian manifold and the proof thatπi(S2n−1) is
finite for i > 2n − 1. For the most part, the fibrations considered will have
simple systems of local coefficients (that is, one can take them to be constant)
and so experience with local coefficient systems is unnecessary (see Chapter
8bis for more subtle results).

In §5.3 the reader can find the details of a proof of the homology version of
the Leray-Serre spectral sequence and the proof of the multiplicative properties
of the cohomology spectral sequence. This requires developing the notion of
homology and cohomology with coefficients in a bundle of abelian groups and
then identifyingH(E1, d1) in terms of these notions. The exposition in§5.3
and its subsections owes much to the paper of [Brown, E94]. In the rest of the
chapter, we have followed [Serre51] and [Borel53].

On first reading, the novice is encouraged to skip§5.3 and go on to further
applications of the spectral sequence in Chapter 6. However,§5.1 may disguise
the fact that it is the topological structure of a fibration that allows us to identify
theE2-term of the spectral sequence as something familiar. The appendices
show that nontrivial results are needed in order to support the powerful machine
we exercise in the applications.

5.1 Construction of the spectral sequence

We begin with a fibration:F ↪→ E
π
−→ B. Recall that a fibration enjoys the

homotopy lifting property (§4.3), that is, ifK is a space and we have a mapping
g : K → E and a homotopyH : K × I → B so thatπ ◦ g(x) = H(x, 0), then
the mappingH can be lifted to a homotopỹH : K×I → E, so thatπ◦H̃ = H.

K w
g

z

u

(−,0)

E

u

π

K × I
i
i
iijH̃

w
H

B

We takeB to be in a “convenient category” of topological spaces, that is,B
has the homotopy-type of a CW-complex. We replaceB with an equivalent
CW-complex in what follows. A CW-complex is equipped with a filtration by
skeleta. We lift the filtration ofB to a filtration onE by lettingJs = π−1(B(s)),
the subspace ofE that lies over thes-skeleton ofB:

E

u

⊃ · · · ⊃ Js

u

⊃ Js−1

u

⊃ · · · ⊃ J0

u

⊃ ∅

u

B ⊃ · · · ⊃ B(s) ⊃ B(s−1) ⊃ · · · ⊃ B(0) ⊃ ∅.
We use this filtration to obtain a spectral sequence. Putting the methods

of Chapter 2 into action, we first obtain an exact couple giving the spectral
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sequence. Consider, for eachs, the long exact sequence of homology groups
for the pair(Js, Js−1) and assemble these sequences into an exact couple:

Hr(Js−1;G) w
i∗ Hr(Js;G)



�
j∗Hr−1(Js−1;G)

Hr(Js, Js−1;G)
AAAAA

AD
∂

ThusE1
p,q = Hp+q(Jp, Jp−1;G) and the first differentiald1 is given by

j∗ ◦ ∂ : Hr(Js, Js−1;G)
∂
−→ Hr−1(Js−1;G)

j∗−→ Hr−1(Js−1, Js−2;G),

which is the boundary homomorphism in the long exact sequence of homology
groups for the triple(Js, Js−1, Js−2).

Alternatively, we can begin withC∗(E;G), the singular chains onE with
coefficients inG, and filter it by

FsC∗(E;G) = im(C∗(Js;G)→ C∗(E;G)).

This is an increasing filtration and, by an easy argument (using the compactness
and dimension of simplices), this filtration is exhaustive. The inclusions are
monomorphisms, so that

E1
p,q = Hp+q(FpC∗(E;G)/Fp−1C∗(E;G)) = Hp+q(Jp, Jp−1;G).

The argument of Proposition 2.11 carries over and so we have that the two
spectral sequences presented are the same. Since the filtration onE ends over
the 0-skeleton ofB, this is a first-quadrant spectral sequence. Adding the con-
vergence of the spectral sequence we can summarize the discussion as follows:

Proposition 5.3.Given a fibrationF ↪→ E
π
−→Bwith base space a CW-complex,

there is a first-quadrant spectral sequence,{En∗,∗, dn}, with

E1
s,r
∼= Hr+s(π−1(B(s)), π−1(B(s−1));G)

andd1 = ∆, the boundary homomorphism in the exact sequence in homology
for the triple(π−1(B(s)), π−1(B(s−1)), π−1(B(s−2))). The spectral sequence
converges toH∗(E;G).

For cohomology with coefficients in a commutative ringR, we have the
analogous long exact sequences for the pairs(Js, Js−1) and so the exact couple

Hr(Js;R) w
i∗ Hr(Js−1;R)



�
δHr+1(Js;R)

Hr+1(Js, Js−1;R)
AAAAA

AD
j∗



        

138 5. The Leray-Serre Spectral Sequence I

and a spectral sequence withd1 = ∆, the boundary homomorphism in the
long exact sequence in cohomology for the triple(Js, Js−1, Js−2). The dual
filtration ofC∗(E;R) is given by

F sC∗(E;R) = ker(C∗(E;R) −→ C∗(Js−1;R)),

and the dual version of Proposition 5.3 holds for cohomology.
The next step in establishing Theorems 5.1 and 5.2 is the determination of

theE2-term. Consider the simplest case of a trivial fibration,E = B×F . By in-
duction over the skeleta ofB, one can show that(Js, Js−1) = (B(s), B(s−1))×
F in this case and so the K¨unneth theorem can be applied to show that

E1
p,q
∼= Cellp(B)⊗Hq(F ;G)

with d1 given byd1 = ∂cell ⊗ 1. ThusE2
p,q
∼= Hp(B;Hq(F ;G)). In the case

of an arbitrary fibration, the ‘twisting’ of the fibre and base spaces in the total
space is a global and possibly nontrivial phenomenon and so this prevents a
simple expression forE1 and hence forE2.

In §5.3 we define the chains on a space with coefficients in a bundle of
groups. The relevant bundle of (graded) groups associated to a fibration is given
by

H∗(F ;G) = {H∗(π−1(b);G) | b ∈ B},

equipped with the collection of isomorphisms,

{h[λ] : H∗(π−1(b2);G)→ H∗(π−1(b1);G) | λ ∈ Ω(B, b1, b2)}

indexed over the homotopy classes of paths,λ, in B from b1 to b2. The main
results of§5.3 are that

E1
p,q
∼= Cellp(B;Hq(F ;G))

and thatd1 = ∂cell on these groups. This establishes Theorem 5.1.
In the examples of§5.2 a particular class of bundles of groups often occurs

for which all of the isomorphismsh[λ] may be taken to be the identity. This is
called asimple system of local coefficientsfor which

E1
p,q
∼= Cellp(B;Hq(F ;G)), d1 = ∂cell,

that is, the contribution of the varying fibres gives the system ofconstantgroups
Hq(F ;G). If B is simply-connected, then any fibration overB leads to a simple
system of local coefficients (Proposition 5.20); thus we can identify theE1- and
E2-terms of this spectral sequence directly for a large class of examples. We
state Theorem 5.1 for this case as follows:
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Theorem 5.4. LetG be an abelian group. Given a fibration,F ↪→ E
π
−→B,

whereB is path-connected,F is connected, and the system of local coefficients
on B determined by the fibre is simple. Then there is a spectral sequence,
{Er∗,∗, dr}, with

E2
p,q
∼= Hp(B;Hq(F ;G)),

and converging toH∗(E;G).

Multiplicative properties of the spectral sequence

Theorem 5.2 asserts that, for a commutative ringR and a fibrationF ↪→
E

π
−→ B with B path-connected andF connected, there is a spectral sequence

of algebras with
Ep,q2

∼= Hp(B;Hq(F ;R))

and converging toH∗(E;R) as an algebra. First a word about the proof: For the
Čech or Alexander-Spanier cohomology theories, the multiplicative structure is
carried along transparently in the construction of the spectral sequence and so
we get a spectral sequence of algebras directly with convergence toH∗(E;R)
as an algebra ([Leray50], [Borel51]). The result for singular theory, however,
is more difficult—it is one of the technical triumphs of Serre’s celebrated thesis
([Serre51]).

We present a proof of the product structure for this spectral sequence in
§5.3 following the exposition of [Brown, E94]. The interested reader should
consult the thesis of [Serre51], not only for the first proofs of Theorems 5.1
and 5.2, but also for a model of exposition. Alternative presentations appear in
Chapter 6, in expos´e 9 of the 1950 Cartan S´eminaire by [Eilenberg50], and in the
books of [Hu59], [Hilton-Wylie60], and [Whitehead, GW78]. An exposition
of the result forČech theory appears in the book of [Bott-Tu82].

By introducing some simplifying hypotheses, the spectral sequence takes
a manageable form.

Proposition 5.5.Suppose that the system of local coefficients onB determined
by the fibre is simple, thatF is connected, and thatF andB are of finite type;
then, for a fieldk, we have

Ep,q2
∼= Hp(B; k)⊗k Hq(F ; k).

We leave the proof to the reader with the hint that you should apply the Universal
Coefficient theorem.

Suppose that the system of local coefficients is simple and thatB andF
are connected. Then

Ep,02
∼= Hp(B;H0(F ;R)) ∼= Hp(B;R)

and E0,q
2
∼= H0(B;Hq(F ;R)) ∼= Hq(F ;R).

For any bigraded algebra, likeE∗,∗2 , bothE∗,02 andE0,∗
2 are subalgebras.
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Proposition 5.6.When restricted to the subalgebrasE∗,02 andE0,∗
2 , the prod-

uct structure in the spectral sequence onE∗,∗2 coincides with the cup product
structure onH∗(B;R) andH∗(F ;R), respectively. Furthermore, if, for allp,
q, Hp(B;R) andHq(F ;R) are freeR-modules of finite type, and the system
of local coefficients onB is simple, thenE∗,∗2

∼= H∗(B;R)⊗RH∗(F ;R) as a
bigraded algebra.

The proof of the first part of this proposition is postponed to Example 5.E
where it follows from the naturality of the spectral sequence. The rest of the
proposition is an application of the Universal Coefficient theorem.

As the reader begins the applications in§5.2, we remind her or him of
the examples in Chapter 1; the techniques sketched there can be applied to the
Leray-Serre spectral sequence with considerable success.

5.2 Immediate Applications

In this initial collection of applications we interpret topologically some
of the formal consequences of having a spectral sequence. The second set of
applications will be concerned with the problem of computing the cohomology
of certain Lie groups by using the Leray-Serre spectral sequence as applied to
the fibrations that result from quotients by subgroups. Finally, we investigate
the path-loop fibration over a space.

We begin with some dimensional arguments.

Example 5.A.SupposeF ↪→ E
π
−→B is a fibration withB path-connected and

the system of local coefficients onB induced by the fibre is simple. IfR is
Noetherian and two of the spacesF , E, or B have cohomology a finitely gen-
eratedR-module in each dimension, then the other space also has cohomology
finitely generated in each dimension.

Case 1: SupposeB andF have cohomology that is finitely generated in
each dimension. The moduleHn(E;R) is associated to

⊕
p+q=n

Ep,q∞ via the

associated graded module to the filtration onH∗(E;R) and so it suffices to
show that eachEp,q∞ is finitely generated overR. We begin with anE2-term
given byEp,q2

∼= Hp(B;Hq(F ;R)) which is finitely generated by an argument
using the Universal Coefficient theorem. SinceEp,q3 is a subquotient ofEp,q2 ,
it is finitely generated becauseR is Noetherian. SimilarlyEp,q4 ,Ep,q5 , . . . , and
so finallyEp,q∞ are all finitely generated.

Case 2: SupposeE andB have cohomology that is finitely generated in each
dimension. We show by induction thatHn(F ;R) is also finitely generated.
SinceH0(F ;R) = E0,0

∞ = H0(E;R), it is finitely generated. Letn be the least
integer such thatHn(F ;R) is not finitely generated. ThenE0,n

2 = Hn(F ;R)
is not finitely generated and so neither is

E0,n
3 = ker d2 : E0,n

2 → E2,n−1
2

∼= H2(B;Hn−1(F ;R))
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because the target module is finitely generated by the induction hypothesis;
E3,n−2

3 is a subquotient ofH3(B;Hn−2(F ;R)), so it is finitely generated and
henceE0,n

4 = ker d3 : E0,n
3 → E3,n−2

3 cannot be finitely generated. Con-
tinuing this argument, we get thatE0,n

∞ is not finitely generated but this is a
contradiction, sinceE0,n

∞ is a subquotient ofHn(E;R).

Case 3: SupposeE andF have cohomology that is finitely generated in
each dimension. By an argument similar to the one in case 2, we derive a
contradiction if, for somen,Hn(B;R) = En,02 is not finitely generated. ut

Suppose the assumptions of Example 5.A hold and thatR = k, a field.
Then we haveEp,q2

∼= Hp(B; k)⊗kHq(F ; k) and we can speak of the Poincar´e
series and the Euler-Poincar´e characteristic. We refer the reader to Example 1.F
where we show thatP (E, t) ≤ P (B, t) × P (F, t) andχ(E) = χ(B) · χ(F ),
whenever these expressions are meaningful.

Example 5.B.SupposeF ↪→ E
π
−→B is a fibration withF connected,B of

finite type, path-connected, and the system of local coefficients onB induced
by the fibre is simple. Supposek is a field, thatHi(B; k) = {0} for i > p
andHj(F ; k) = {0} for j > q. ThenHi(E; k) = {0} for i > p + q and
Hp+q(E; k) = Hp(B; k)⊗Hq(F ; k).

These assumptions imply thatEr,s2
∼= Hr(B; k)⊗kHs(F ; k) and further-

more, thatE∗,∗2 is nonzero only in the box pictured.

Since the spectral sequence converges toH∗(E; k) and, k is a field,
Hn(E; k) ∼=

⊕
r+s=nE

r,s
∞ as a vector space implies thatHi(E; k) = {0}

for i > p + q. Also from the picture, no differential can affectEp,q2 , so it
persists toEp,q∞ ∼= Hp(B; k)⊗k Hq(F ; k). Since this is the only vector space
contributing toHp+q(E; k), the result follows.

A corollary to this formal consequence of the data is the following seminal
result of [Borel-Serre50].
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Theorem 5.7. SupposeF ↪→ R
n π
−→B is a locally trivial fibration withB

a polyhedron andF connected. ThenB andF are acyclic spaces (that is,
H̃∗(B) ∼= {0} ∼= H̃∗(F )).

Proof: By the tail end of the homotopy exact sequence,

· · · → π1(Rn)→ π1(B)→ π0(F )→ · · ·

we can see immediately thatπ1(B) = {0}and so the system of local coefficients
induced byB on F is simple. Observe thatHi(B) andHi(F ) are trivial
wheneveri > n. To see this we make some simple observations from dimension
theory:

(1) F is a subset ofRn and
(2) B has a system of neighborhoods,{U}, so thatπ−1(U) is homeomor-

phic toU × F for eachU in the system.

Sinceπ−1(U) is a subset ofRn, U must have dimension≤ n. The argument
of Example 5.B applies to show that

Hp+q(Rn) ∼= Hp(B)⊗Hq(F ) + TorZ1 (Hp+1(B), Hq(F )))
∼= Hp(B)⊗Hq(F )

whenp andq are the greatest nonzero dimensions in whichB andF , respec-
tively, have nontrivial integral homology. SinceRn is acyclic,p + q = 0 and
we conclude thatB andF are acyclic. (For the interested reader, we note that
the argument of [Borel-Serre50] is given in terms of Alexander-Spanier coho-
mology with compact supports and original spectral sequence of [Leray50].)
ut

Another example of this kind of argument, using the spectral sequence as
guide, is given by sphere bundles over spheres with spheres as total space. That

is, we have a fibrationSm ↪→ Sn
π
−→ S`. In this case, using cohomology with

coefficients in a fieldk, ourE2-term has the following form:
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There is a nontrivial differential since the vector-spaces

E0,m
2 = H0(S`;Hm(Sm; k)) ∼= Hm(Sm; k) = k

andE`,02
∼= H`(S`;H0(Sm; k)) = k must be mapped isomorphically to each

other if we are to have the cohomology of a sphere atE∞. Since differentials
have bidegree(r, 1 − r), we conclude thatm = ` − 1 and, following Exam-
ple 5.B,n = ` + m = 2` − 1. For ` = 2, 4 and8, the Hopf fibrations are
examples of such fibrations.

Example 5.C (the Gysin sequence).SupposeF ↪→ E
π
−→B is a fibration

with B path-connected and the system of local coefficients onB induced by
the fibre is simple. Suppose further thatF is a homologyn-sphere, that is,
H∗(F ) ∼= H∗(Sn), for somen ≥ 1. Then there is an exact sequence:

→ Hk(B;R)
γ
−→ Hn+k+1(B;R)

π∗

−→ Hn+k+1(E;R)
Q
−→ Hk+1(B;R)→

whereγ(u) = z ^ u for somez inHn+1(B;R) and, ifn is even and2 6= 0 in
R, then2z = 0.

SinceF is a homologyn-sphere,Hm(F ;R) ∼= R whenm = 0 or n,
andHm(F ;R) is trivial in the other dimensions. WithB path-connected, the
E2-term of the spectral sequence can be pictured:

By the placement of holes,E2
∼= E3

∼= · · · ∼= En+1 andH(En+1, dn+1) ∼=
En+2

∼= E∞. By the argument of Example 1.D there is an exact sequence

→ Ek,n2

dn+1

−−−→Ek+n+1,0
2 → Hk+n+1(E;R)→ Ek+1,n

2

dn+1

−−−→Ek+n+2,0
2 →

Supposeh is a generator ofHn(F ;R). Since we have a simple system of local
coefficients andF is a homologyn-sphere, we can write

E∗,∗n+1
∼= (H∗(B;R)⊗ 1)⊕ (H∗(B;R)⊗ h).
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Let z be the element inHn+1(B;R) such thatdn+1(1⊗ h) = z ⊗ 1. (Notice
thatdn+1(x ⊗ 1) = 0 for dimensional reasons.) Proposition 5.6 tells us what
kind of spectral sequence of algebras we have, and so

(−1)n deg xdn+1(x⊗ h) = dn+1((1⊗ h) ^ (x⊗ 1))
= dn+1(1⊗ h) ^ (x⊗ 1) + (−1)n(1⊗ h) ^ dn+1(x⊗ 1)
= (z ⊗ 1) ^ (x⊗ 1) = (z ^ x)⊗ 1.

IdentifyingEk,n2 = Hk(B;R)⊗ h andEn+k+1,0
2 = Hn+k+1(B;R)⊗ 1, we

defineγ(x) = dn+1(x⊗ h) and we get the exact sequence as described.
If n is even, then we use the Leibniz rule and the fact thath ^ h = 0 to

compute:

0 = dn+1(1⊗ (h ^ h)) = dn+1((1⊗ h) ^ (1⊗ h))
= (z ⊗ 1) ^ (1⊗ h) + (−1)n(1⊗ h) ^ (z ⊗ 1)
= 2z ⊗ h.

Since2h 6= 0, we must have2z = 0.

The long exact sequence in this example is called theGysin sequence
([Gysin41]). With this sequence, we can computeH∗(CP (n);R) as an algebra.
Then-dimensional complex projective space,CP (n), sits in a fibration with
spherical fibre,S1 ↪→ S2n+1 −→ CP (n). We haveCP (1) ∼= S2 andCP (n)
is simply-connected for alln. Thus the system of local coefficients is always
simple. We next show that

H∗(CP (n);R) ∼= R[x2]
/

(xn+1
2 ),

thetruncated polynomial algebraof heightn+1 on one generator of degree 2.
First notice that,x2 = γ(1) generatesH2(CP (n);R) from the initial part

of the Gysin sequence:

H0(CP (n);R)
γ
−→ H2(CP (n);R)→ H2(S2n+1;R)→ · · ·

Moving on a little further, we find, forn ≥ 1, the short exact sequence

{0} → H1(CP (n);R)
γ
−→H3(CP (n);R)→ {0}

where the trivial modules areHk(S2n+1;R) for k = 2, 3. SinceCP (n) is
simply-connected,H1(CP (n);R) is trivial and hence, so isH3(CP (n);R).

By induction, suppose that(x2)k generatesH2k(CP (n);R). Then con-
sider the portion of the Gysin sequence,

→ H2k(CP (n);R)
γ
−→ H2k+2(CP (n);R)→ H2k+2(S2n+1;R)→ .



q

p p+q

5.2. Immediate Applications 145

Whenk < n, we have thatγ is an isomorphism, sox2 ^ (x2)k = (x2)k+1

generatesH2k+2(CP (n);R). In odd dimensions, the pattern of trivial modules
continues.

Finally, whenk = n, we have the short exact sequence,

0→ H2n+1(CP (n);R)→ H2n+1(S2n+1;R)
Q
−→

H2n(CP (n);R)
γ
−→ H2n+2(CP (n);R)→ 0.

SinceCP (n) is a2n-dimensional manifold,γ is the trivial homomorphism and
Q is an isomorphism. Sinceγ((x2)n) = 0 andγ((x2)n) = xn+1

2 , we conclude
(x2)n+1 = 0.

We leave it for the reader to derive theWang sequence([Wang49]) for a
fibrationF ↪→ E → B with B, a simply-connected homologyn-sphere andF
path-connected:

· · · → Hk(E;R)→ Hk(F ;R)
θ
−→ Hk−n+1(F ;R)→ Hk+1(E;R)→ · · ·

In this case, ifn is even, the mappingθ can be shown to be a derivation and, if
n is odd, an antiderivation (that is,θ(x ^ y) = θ(x) ^ y + x ^ θ(y)).

Example 5.D.SupposeF ↪→ E
π
−→ B is a fibration withB path-connected and

the system of local coefficients onB induced by the fibre is simple. Suppose
further thatHi(B;R) = {0} for 0 < i < p andHj(F ;R) = {0} for 0 < j <
q. Then there is an exact sequence:

0→ H1(B;R)→ H1(E;R)→ H1(F ;R)→ H2(B;R)→ · · ·
→ Hp+q−2(F ;R)→ Hp+q−1(B;R)→

Hp+q−1(E;R)→ Hp+q−1(F ;R).

We first consider the diagram that pictures these conditions:
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In total degrees less thanp+ q the only possible nonzero differentials are of the
form

dj : Hj−1(F ;R) = E0,j−1
2 −→ Ej,02 = Hj(B;R).

Arguing as in the derivation of the Gysin sequence, we get a diagram of short
exact sequences spliced together:

A
AAC

u

Hj−1(E;R)

u

A
AAC

0

u

0 w E0,j−1
∞

u

w E0,j−1
2 w Ej,02 wA

AAC

Ej,0∞ w

u

0

0 Hj(E;R)

u

A
AAC

0 w E0,j
∞ w E0,j

2

The sequence remains valid untilj = p + q. Making the identifications
E0,j−1

2
∼= Hj−1(F ;R) andEj,02

∼= Hj(B;R) gives the desired sequence.
As we will see in Example 5.E, the homomorphisms in the sequence are given
by the differentials,dj , plusπ∗ andi∗ from the fibration. Furthermore, in§6.2,
we will identify thedj with the geometric homomorphism called the transgres-
sion. Without the connectivity assumptions, the resulting short exact sequence
has five terms and is given in Example 1.A. The reader can establish the dual
sequence in homology where the analogy with the long exact sequence in ho-
motopy is more apparent. This sequence has become known as theSerre exact
sequence([Serre51, Chapitre III,§4]). We record some immediate corollaries.

Corollary 5.8. For a fibrationF ↪→ E
π
−→ B with B path-connected and for

which the local coefficient system is simple,

(a) if E is acyclic andHi(B;R) = {0} for 0 < i < p, thenHi(F ;R) ∼=
Hi+1(B;R) for i < 2p− 2;

(b) if B or F is acyclic theni : F → E or π : E → B, respectively, is a
weak homotopy equivalence.

We return to these ideas later in this section where they apply to the path-loop
fibration.

Example 5.E,in which we exploit naturality.

Consider the descending filtration onHq = Hq(E;R),

Hq = F 0Hq ⊃ F 1Hq ⊃ · · ·F q−1Hq ⊃ F qHq ⊃ F q+1Hq = {0},
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and its associated graded module,En,q−n∞ ∼= FnHq/Fn+1Hq. SinceF q+1Hq

= {0}, we haveEq,0∞ ⊂ Hq(E;R). Furthermore, there is the short exact
sequence,

0 −→ F 1Hq −→ Hq(E;R) −→ E0,q
∞ −→ 0.

The modules along the bottom row of theE2-term of a first quadrant spectral
sequence are determined by quotientsEq,02 by the image of the incoming differ-
ential. Thus we have a series of quotients (here−→−→ denotes an epimorphism):

Eq,02 −→−→Eq,03 −→−→· · ·−→−→Eq,0q −→−→Eq,0q+1 = Eq,0∞ .

The terms of the modules along the “y-axis” of theE2-term of a first-quadrant
spectral sequence are the kernels of successive differentials, and so we get a
sequence of inclusions:

E0,q
∞ = E0,q

q+1 ⊂ E0,q
q ⊂ · · · ⊂ E0,q

3 ⊂ E0,q
2 .

These facts are formal consequences of having a first-quadrant spectral se-
quence.

Theorem 5.9.Given a fibrationF
i
↪→ E

π
−→ B withB path-connected,F con-

nected, and for which the system of local coefficients onB is simple; then the
composites

Hq(B;R) = Eq,02 −→−→Eq,03 −→−→· · ·
−→−→Eq,0q −→−→Eq,0q+1 = Eq,0∞ ⊂ Hq(E;R)

andHq(E;R)−→−→E0,q
∞ = E0,q

q+1 ⊂ E0,q
q ⊂ · · · ⊂ E0,q

2 = Hq(F ;R) are the
homomorphisms

π∗ : Hq(B;R)→ Hq(E;R) and i∗ : Hq(E;R)→ Hq(F ;R).

Proof: Consider the diagram of fibrations:

∗

u

Fu

u

i

Fu

=

u

=

B

u

=

Eu

π

u

π

Fu

i

u

B Bu

= ∗u

By the naturality of the Leray-Serre spectral sequence, we get induced mappings
of the spectral sequences

Er(B,B, ∗)
π∗

−→ Er(B,E, F )
i∗

−→ Er(∗, F, F ),
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which converge toi∗ andπ∗ at E∞. However,E2(∗, F, F ) consists of the
columnE0,∗

2 = H∗(F ;R) and so collapses at theE2-term. AlsoE2(B,B, ∗)
is the single row,E∗,02 = H∗(B;R) and the induced mappings of spectral
sequences projectH0(B;H∗(F ;R)) ontoH∗(F ;R) and injectH∗(B;R) into
H∗(B;H0(F ;R)). In order to prove the theorem, it remains to consider how
the mappingsi∗ andπ∗ are approached by the successive homologies in the
spectral sequence and this is given in terms of the inclusions and quotients in
the theorem. ut

Some immediate consequences of the theorem have already been men-
tioned. Since the induced maps are morphisms of algebras, we have established
Proposition 5.6 on the product structure ofE0,∗

2 andE∗,02 . Furthermore, the
corresponding mapping in the Gysin sequence is given byπ∗ and in the Serre
exact sequence byπ∗ andi∗.

A topological invariant of the inclusion ofF inE is the homomorphismi∗.
We say thatF is totally nonhomologous to zeroin E with respect to the ring
R if the homomorphismi∗ : H∗(E;R) → H∗(F ;R) is onto (introduced by
[Samelson41]). In the case of a trivial fibration, this holds for obvious reasons.
We can deduce something of a converse.

Theorem 5.10 (the Leray-Hirsch theorem).Given a fibrationF
i
↪→ E

π
−→ B

withF connected,B of finite type, path-connected, and for which the system of
local coefficients onB is simple; then, ifF is totally nonhomologous to zero in
E with respect to a fieldk, we have

H∗(E; k) ∼= H∗(B; k)⊗k H∗(F ; k)

as vector spaces.

Proof: The theorem follows immediately from the following stronger asser-
tion.

Fact. F is totally nonhomologous to zero inE with respect tok if and only if
the spectral sequence,Er(B,E, F ), collapses at theE2-term.

To establish this fact, examine the expression fori∗ given by Theorem 5.9:

i∗ : Hq(E;R)−→−→E0,q
∞ = E0,q

q+1 ↪→ E0,q
q ↪→ · · ·
↪→ E0,q

3 ↪→ E0,q
2 = Hq(F ;R).

If the spectral sequence collapses at theE2-term, then all of these inclusions are
equalities andi∗ is onto. Conversely, ifi∗ is onto, then all of these inclusions
must be equalities and sodr, restricted to they-axis, must be zero. AtE2

however,Ep,q2 = Ep,02 ⊗E0,q
2 sincek is a field andd2 onEp,02 is already zero.

Sinced2 is a derivation with respect to this representation,d2 = 0 andE3 = E2.



       

5.2. Immediate Applications 149

The same argument applies tod3 and, continuing in this fashion, we establish
that the spectral sequence collapses atE2. ut

By Theorems 5.9 and 5.10 it follows that ifi∗ is onto, thenπ∗ is injective.
It was conjectured that the converse also held. We sketch a counterexample due
to G. Hirsch (see [Borel54]) showing thatπ∗ can be injective withouti∗ onto.
A systematic set of counterexamples was found by [Gottlieb77].

Hirsch’s example begins with the Hopf fibrationν : S7 → S4 (see§4.3),
which has fibreS3. As mentioned in Example 5.B, the Leray-Serre spectral
sequence forν has a nonzero differential,d4, taking the generator of̃H∗(S3;R)
to the generator of̃H∗(S4;R). Consider the mapping of degree 1 fromS2 ×
S2 → S4 that can be constructed as the compositeS2 × S2 → S2 ∧ S2 = S4.

Finally consider the projectionS2 × S2
pr1−−→ S2 onto the first factor. Put the

ingredients together in the diagram:

S3

u

S3

u

E w

u
p

S7

u
ν

S2 × S2
w

deg 1

u
pr1

S4

S2

whereE is the total space of the fibration gotten by pullingν back over the
degree 1 map. By naturality, the spectral sequence for(S3, E, S2 × S2) does

not collapse;d4 6= 0. Consider the fibrationS3 × S2 ↪→ E
pr1◦p−−−→ S2. Let

s : S2 → S2 × S2 split pr1. Examines∗ on the generators of theE2-term
of the spectral sequence for(S3 × S2, E, S2). For dimensional reasons, this
splitting implies that(pr1 ◦ p)∗ is injective. However, the spectral sequence
does not collapse since we know already thatH∗(E;R) is not isomorphic to
H∗(S2 × S2 × S3;R). We leave it to the reader to determine the nonzero
differential.

Particular fibrations

The importance of Lie groups in homotopy theory cannot be overempha-
sized. It is often necessary to compute the homotopy-theoretic invariants of
various Lie groups and homogeneous spaces. Their structure naturally leads to
some useful fibrations where the Leray-Serre spectral sequence can be applied.
It would be impossible to sketch all of the applications in topology where Lie
groups and homogeneous spaces play a crucial role. For a sampling of some
of these results we refer the reader to the accounts of [Steenrod51], [Borel55],
[Milnor-Stasheff74], [Mimura-Toda91], and [Dwyer-Wilkerson94]. In the next
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few examples, we compute the cohomology algebras of some of these spaces as
much to illustrate some further techniques with spectral sequences as to obtain
these important data. These computations are based on the thesis of [Borel53].

Example 5.F,in which we computeH∗(SU(n);R).

The classical Lie group SU(n) is the group of(n× n) complex-valued unitary
(AĀt = I) matrices of determinant 1. If we fix a vector~x0 ∈ Cn, then we
defineρ : SU(n) → S2n−1 by sending a matrixA to A~x0. This mapping
can be proved to be a fibration (see§4.3) with fibre the subgroup of SU(n)
that fixes~x0, which is SU(n − 1). The group SU(2) may be identified as the
unit sphere inR4 or S3 (by quaternionic representation). We next prove that
H∗(SU(n);R) ∼= Λ(x3, x5, . . . , x2n−1), the exterior algebra on generators,
xi, wheredeg xi = i.

We proceed by induction onn. Forn = 2,

H∗(SU(2);R) ∼= H∗(S3;R) = Λ(x3).

Consider the fibration SU(n − 1) ↪→ SU(n)
π
−→S2n−1 and apply the Leray-

Serre spectral sequence. Supposey2n−1 generatesH∗(S2n−1;R) as an exterior
algebra. By induction, we have

H∗(SU(n− 1);R) ∼= Λ(x3, x5, . . . , x2n−3).

Since this is a spectral sequence of algebras, we need consider only the algebra
generators in describing differentials. Forn ≥ 2, S2n−1 is simply-connected
and so the system of local coefficients on the base space is simple. Furthermore,
by an application of the Universal Coefficient theorem, we have

E∗,∗2
∼= H∗(B;R)⊗H∗(F ;R) ∼= Λ(y2n−1)⊗ Λ(x3, x5, . . . , x2n−3).

The algebra generators are found in bidegrees so that all of the differentials
are zero and the spectral sequence collapses at theE2-term. We argue as in
Example 1.K to conclude that

H∗(SU(n);R) ∼= TotE∗,∗∞ ∼= Λ(x3, x5, . . . , x2n−3, y2n−1)

and the induction is completed.
We can extend the computation toH∗(U(n);R), where U(n) is the group

of linear transformations ofCn which preserve the complex inner product. The
group U(n) relates to SU(n) via the fibration:

SU(n)
inc
−−→ U(n)

det
−−→ S1
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and furthermore, U(n) ' U(1)× SU(n) ' S1 × SU(n). Thus,H∗(U(n);R)
∼= Λ(x1, x3, . . . , x2n−1). These methods also apply to the symplectic group,
Sp(n), of linear transformations ofHn (quaternionicn-space) that preserve
the inner product. It is left as an exercise to show thatH∗(Sp(n);R) ∼=
Λ(x3, x7, . . . , x4n−1).

A space that is important in the study of cobordism (see Chapter 9) is the
infinite special unitary group, SU, which is the direct limit (union) of the
sequence of inclusions

SU(2) ⊂ SU(3) ⊂ · · · ⊂ SU(n− 1) ⊂ SU(n) ⊂ · · · ⊂ SU.

By choosing a unit vector~x0 in S2n−1, we can realize the usual inclusion of
SU(n−1) ⊂ SU(n) as the inclusion of the fibre SU(n−1) ↪→ SU(n)→ S2n−1.
By Theorem 5.9, we can describe

i∗ : H∗(SU(n);R)→ H∗(SU(n− 1);R)

as the mapping takingxi toxi except onx2n−1 which is sent to zero. Since each
i∗ is an epimorphism,lim

←n,i∗
1 H∗(SU(n);R) = {0} (§3.2) and soH∗(SU;R) ∼=

Λ({x2i−1 | i = 2, 3, . . . }). Similar results hold for the analogous groups U
and Sp.

We take up the real case of SO(n) in Example 5.H.

Example 5.G,in which we computeH∗(Vk(Cn);R).

The Stiefel manifoldsVk(Rn), Vk(Cn), andVk(Hn) consist of the orthonormal
k-frames in eachn-dimensional space over the given (skew) field. These spaces
play an important role in the study of characteristic classes (see [Milnor- Stash-
eff74] and§6.2) and in the study of vector fields on manifolds; they are among
the simplest examples of homogeneous spaces. In this example, we compute
H∗(Vk(Cn);R) using the Leray-Serre spectral sequence (see§7.2 for another
approach). We will take upH∗(Vk(Rn);R) in Example 5.H, and we leave the
computation ofH∗(Vk(Hn);R) to the reader.

Let ei ∈ Cn denote theith elementary vector,

ei = (0, . . . , 0, 1, 0, . . . , 0),

with the1 in theith place. Consider the mapping (forn ≥ 2), SU(n)→ Vk(Cn)
given by applying the matrixA to eachei in turn to get the orthonormalk-frame
(Ae1, Ae2, . . . , Aek). This map is clearly onto and continuous and each given
k-frame can be varied by the action ofA on then− k remaining vectors in the
standardn-frame forCn. Therefore, the fibre over a point inVk(Cn) is a copy
of SU(n − k). By including a matrix in SU(n − k) into SU(n) as the bottom
right hand(n− k)× (n− k) block of an otherwisen× n identity matrix, we
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see thatVk(Cn) is homeomorphic to SU(n)/SU(n − k). Thus we have the
fibration

SU(n− k)
inc
−−→ SU(n) −→ Vk(Cn)

It is immediate from the definitions thatV1(Cn) = S2n−1 and thatVn(Cn) =
SU(n). With the identification ofVk(Cn) as a homogeneous space, we can
apply a little group theory to obtain some short exact sequences that give us
new fibrations. The inclusion of subgroups SU(n − k − 1) ⊂ SU(n − k)
provides us with the fibration

0→ SU(n− k)/SU(n− k − 1)→ SU(n)/SU(n− k − 1)
→ SU(n)/SU(n− k)→ 0,

which may be identified asS2(n−k)−1
inc
−−→ Vk+1(Cn) −→ Vk(Cn).

Proposition 5.11.H∗(Vk(Cn);R) ∼= Λ(x2(n−k)+1, x2(n−k)+3, . . . , x2n−1).

Proof: We proceed by induction onk. For k = 1, H∗(V1(Cn);R) =
H∗(S2n−1;R) = Λ(x2n−1) and the proposition holds. Now suppose the state-
ment holds for the valuek. The Leray-Serre spectral sequence for the fibration
(S2(n−k)−1, Vk+1(Cn), Vk(Cn)) hasE2-term given by

E∗,∗2 = H∗(Vk(Cn);H∗(S2(n−k)−1;R))
∼= Λ(x2(n−k)+1, x2(n−k)+3, . . . , x2n−1)⊗ Λ(y2(n−k)−1)

by the Universal Coefficient theorem and the fact that the system of local coef-
ficients is simple. We obtain the following diagram of the algebra generators
in theE2-term of the spectral sequence:

For dimensional reasons, the spectral sequence collapses and so

E∗,∗∞ ∼= Λ(y2(n−k)−1, x2(n−k)+1, . . . , x2n−1).

Once again, following Example 1.K,Hn(Vk+1(Cn);R) ∼=
⊕

p+q=n
Ep,q∞ and

this completes the induction. ut
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Example 5.H.We computeH∗(Vk(Rn);F2) and, by lettingk = n, we compute
H∗(SO(n);F2).

The new feature about these computations is how naturality can determine
certain differentials. We proceed a step at a time.

Step 1: ComputeH∗(V2(Rn)).
We start with the fibration,Sn−2 ↪→ V2(Rn) → V1(Rn) that leads to an

E2-term in the Leray-Serre spectral sequence as in the diagram

The only possible nontrivial differential may be written

dn−1 : Hn−2(F )→ Hn−1(B).

Consider the tangent bundle overSn−1, Rn−1 ↪→ TSn−1 → Sn−1, and the
associated sphere bundle of unit tangent vectors,Sn−2 ↪→ T0S

n−1 → Sn−1.
By the geometry of the sphere elements inT0S

n−1 are pairs of vectors inRn,
(u, v), with u in Sn−1 andv orthogonal tou, that is,(u, v) is a 2-frame inRn.
The mappingT0S

n−1 → Sn−1 is simply projection on the first factor so we
get an isomorphism of fibrations

Sn−2

y

u

Sn−2

y

u

V2(Rn) w

u

T0S
n−1

u

V1(Rn) w
= Sn−1.

Thus to study the spectral sequence forV2(Rn), we replace it with the spectral
sequence forSn−2 ↪→ T0S

n−1 → Sn−1. As a sphere bundle, we can apply
the Gysin sequence for which the relevant portion is given by

H0(Sn−1)
z^
−−→Hn−1(Sn−1) −→ Hn−1(T0S

n−1) −→ H1(Sn−1)→ · · · .
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The unit1 ∈ H0(Sn−1) goes to the cohomology classz following Example 5.C.
If n is even, then the classz satisfies2z = 0. SinceHn−1(Sn−1) ∼= Z, this is
only possible ifz = 0.

Whenn is odd, we need a little more information about the classz. In fact,
for a vector bundle like the tangent bundle,z is identified with the Euler class
of the bundle. (See the accounts of [Milnor-Stasheff74] and [Husemoller66].)
Since the classz is a multiple of the generator ofHn−1(Sn−1) and the cap prod-
uct ofz with the canonical generator ofHn−1(Sn−1) gives the Euler character-
istic for Sn−1, we see thatz is twice the generator anddn−1 is multiplication
by two. It follows (forn ≥ 4):

H∗(V2(Rn)) =


if n is odd


Z, for ∗ = 0, 2n− 3,

Z/2Z, for ∗ = n− 1,

0, elsewhere.

if n is even

{
Z, for ∗ = 0, n− 2, n− 1, 2n− 3,

0, elsewhere.

As a corollary, from the Universal Coefficient theorem, we have (forn ≥ 4)

H∗(V2(Rn);F2) =
{
F2, for ∗ = 0, n− 2, n− 1, 2n− 3,

0, elsewhere.

Step 2: Some comments on simple systems of generators.

Definition 5.12. SupposeH∗ is a graded commutative algebra overR. A set
of elements{xi | i = 2, 3, . . . } is called asimple system of generatorsif the
elements 1 andxi1 · xi2 · · ·xin with i1 < i2 < · · · < in form a basis overR
for H∗.

The notion of a simple system of generators was introduced by [Borel53].
If H∗ is anR-algebra with a simple set of generators, then the homogeneous
degreem part ofH∗ is a freeR-module on the collection of monomialsxi1 ·
xi2 · · ·xin with i1 < i2 < · · · < in and

∑n
j=1 deg xij = m. Notice that this

says less about the algebra structure ofH∗ than one would like; for example,
these conditions do not determine(xj)2 for anyj. The polynomial algebraR[x]
has a simple system of generators given by{x, x2, x4, x8, . . . }. An exterior
algebra,Λ(x1, x2, . . . , xn), has{x1, . . . , xn} as a simple system of generators.
The key theorem on simple systems of generators is the following analogue of
Example 1.K. We leave the proof to the reader.

Theorem 5.13.SupposeH∗ is a filtered graded commutative algebra overR
andE∗,∗0 , the associated bigraded algebra, lies in the first quadrant. IfE∗,∗0

has a simple system of generators{x̄i} and the elements{xi} in H∗ project to
{x̄i} in E∗,∗0 , then{xi} is a simple system of generators forH∗.
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Step 3: H∗(SO(n);F2) has a simple system of generators

{x1, x2, . . . , xn−1}, wheredeg xi = i.

We proceed by induction. Forn = 2, SO(2) ∼= S1 and the statement holds.

Consider the fibration SO(n−1)
inc
−−→ SO(n) −→ Sn−1. The spectral sequence,

by the induction hypothesis, has a lacunary placement of algebra generators with
dn−1 the only possibly nontrivial differential.

To show thatdn−1 is the zero differential we consider the morphism of
fibrations

SO(n− 1) w

u

SO(n) w

u

Sn−1

Sn−2
w V2(Rn) w Sn−1.

This morphism is a consequence of the following diagram of short exact se-
quences of groups:

1

u

1

u

1

u

1 w SO(n− 2) w

u

SO(n− 1) w

u

SO(n− 1)/SO(n− 2) w

u

1

1 w SO(n− 2) w

u

SO(n) w

u

SO(n)/SO(n− 2) w

u

1

1 w Sn−1
w=

u

SO(n)/SO(n− 1) w

u

1

1 1
In the morphism of spectral sequences induced by the morphism of fibra-
tions, the generator ofH∗(Sn−1;F2) is mapped toyn−1 and the generator
ofH∗(Sn−2;F2) toxn−2. In Step 1, we established thatdn−1 for the spectral
sequence associated to(Sn−2, V2(Rn), Sn−1) is zero modulo 2. By naturality,
dn−1 is zero in our original spectral sequence. Thus the spectral sequence col-
lapses at theE2-term. Furthermore, by Theorem 5.13,E∗,∗2 has a simple system
of generators,{x1, x2, . . . , xn−2, yn−1} and the induction is completed.

Step 4: H∗(Vk(Rn);F2) has a simple system of generators

{xn−k, xn−k+1, . . . , xn−1}, wheredeg xi = i.

As in Step 3, we begin with the fibration

Sn−k−1
inc
−−→ Vk+1(Rn) −→ Vk(Rn)



. 
. 

.
d

1 . . . x . . .n - k xn - k + 1 xk - 1

yn - k + 1

n - k

→
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By induction and the spectral sequence associated to the fibration, we get a
diagram of algebra generators, with, once again, one possibly nontrivial differ-
ential,dn−k.

The assertion inStep 4 is proved if we can show thatdn−k is the zero
differential. To settle this, we consider the inclusionVk−1(Rn−1) ⊂ Vk(Rn)
given by considering each(n − 1)-vector as ann vector with 0 last entry and
sending the(k− 1)-frame(v1, v2, . . . , vk−1) to (v1, v2, . . . , vk−1, en) (where
en is the vector(0, . . . , 0, 1)). With this injection we get a sequence of maps
of fibrations:

Sn−k−1

u

Sn−k−1

u

· · · Sn−k−1

u

Sn−k−1

u

V2(Rn−k+1) w

u

V3(Rn−k+2)

u

· · · w Vk(Rn−1) w

u

Vk+1(Rn)

u

Sn−k w V2(Rn−k+2) · · · w Vk−1(Rn−1) w Vk(Rn).

Each inclusionVk−1(Rn−1) ⊂ Vk(Rn) is the inclusion of the fibre in the
fibrationVk−1(Rn−1) ↪→ Vk(Rn)→ Sn−1 and so, by step 3, the classxn−k is
mapped to the correspondingxn−k by i∗. By naturality, we have reduced the
question of the collapse of the spectral sequences for allk to computingdn−k in
the spectral sequence for the particular fibration(Sn−k−1, V2(Rn−k+1), Sn−k)
that was shown to be zero modulo 2 inStep 1. As inStep 3, the induction is
completed with Theorem 5.13. ut

Loops on a space

Let X be a topological space. We associate two important spaces toX
as follows: Suppose∗ is a basepoint inX. Let PX = {λ : [0, 1] → X |
λ is continuous andλ(0) = ∗} denote thespace of pathsin X based at∗. Let
ΩX = {λ : [0, 1] → X | λ is continuous andλ(0) = λ(1) = ∗}, thespace
of based loopsin X at ∗ with the compact-open topology. The evaluation
mappingev1 : PX → X given byev1(λ) = λ(1) has fibreΩX. In §4.3 we
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showed thatev1 : PX → X has the homotopy lifting property and so we have
a fibration

ΩX ↪→ PX
ev1−−→ X.

The spacePX is contractible with the immediate consequence that, for all
i > 0, πi(ΩX) ∼= πi+1(X) (Corollary 4.31).

An important feature ofΩX is that it is an H-space, that is, there is a
multiplication,µ : ΩX × ΩX → ΩX,

µ(λ1, λ2)(t) = λ1 ∗ λ2(t) =
{
λ1(2t), if 0 ≤ t ≤ 1

2 ,

λ2(2t− 1), if 1
2 ≤ t ≤ 1.

Up to homotopy,µ has an identity and is associative making the cohomology
algebra ofΩX a Hopf algebra. We also recall thatπ1(ΩX) is abelian as a
consequence of the H-structure.

Example 5.I.SupposeX is q-connected. Then,Hi(ΩX;R) ∼= Hi+1(X;R)
for i < 2q−2. The analogous isomorphism,Hi(ΩX;R) ∼= Hi+1(X;R) holds
in homology fori < 2q − 2.

This follows by the acyclicity ofPX and Corollary 5.8, the Serre exact se-
quence. We discuss these isomorphisms in§6.2. We apply these ideas to prove
the classical result.

Theorem 5.14 (the Hurewicz theorem).If X is a connected space so that
πi(X) = {0} for 1 ≤ i < q, thenHi(X) = {0} for 1 ≤ i < q andπq(X) ∼=
Hq(X).

Proof: We proceed by induction on the connectedness ofX. If X is simply-
connected, that is,πi(X) = {0} for i < 2, then

π2(X) ∼= π1(ΩX) ∼= H1(ΩX) ∼= H2(X),

where the middle isomorphism is the classical theorem of Poincar´e and the fact
that the fundamental group of an H-space is abelian, and the last isomorphism
follows from the Serre exact sequence.

Suppose the theorem is true for spaces that are(q−1)-connected andX is
q-connected (q ≥ 2). By the isomorphism,πi−1(ΩX) ∼= πi(X), we have that
ΩX is (q−1)-connected and so by induction,Hi(ΩX) = {0} for 0 < i < q−1
andπq−1(ΩX) ∼= Hq−1(ΩX). Finally we use the isomorphisms implied by
the fibration in homology and homotopy

πq(X) ∼= πq−1(ΩX) ∼= Hq−1(ΩX) ∼= Hq(X).

For 1 < i < q, sincei < 2q − 2,Hi(X) ∼= Hi−1(ΩX) = {0}, andH1(X) =
{0} becauseπ1(X) = {0}. ut

Example 5.A for the case of the path-loop fibration implies that ifR is
Noetherian andH∗(X;R) is finitely generated in each dimension, then so is
H∗(ΩX;R).



(n,i)

H* (ΩX;k)

i+1

i+n -1

{0} = 

n
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Example 5.J,in which we consider a remarkable theorem of[Morse34].

Let P (X, a, b) denote the space{λ : [0, 1] → X | λ(0) = a, λ(1) = b} of
paths joininga to b inX, a subspace ofmap([0, 1], X). If we suppose thatX is
path-connected, then we can use a path joininga to b to construct a homotopy
equivalence betweenP (X, a, b) andΩ(X, a).

Theorem 5.15 ([Morse34]). SupposeM is a complete, connected Riemann-
ian manifold,a and b are points inM andk is a field. Suppose further that
Hi(P (M,a, b); k) 6= {0} for infinitely many values ofi. Then there are in-
finitely many geodesics inM joining a to b.

The question of the number of geodesics joininga to b inM is reduced by
this theorem to a homological question. SinceM is complete and connected,
it is path-connected by the Hopf-Rinow theorem ([Hopf-Rinow31]) and so we
studyH∗(ΩM ; k) and the following result of [Serre51].

Proposition 5.16.Supposek is a field and there is an integern ≥ 2 so that
Hi(X; k) = {0} for i > n andHn(X; k) 6= {0}. Then, for anyi ≥ 0, there
is an integerj, 0 < j < n, such thatHi+j(ΩX; k) 6= {0}. That is, there does
not exist a set of(n − 1) consecutive positive integers where the homology of
ΩX with coefficients ink is trivial in those degrees.

Proof: In the spectral sequence associated with the path-loop fibration, no
nonzero classes inE2

∗,∗ persist toE∞ sincePX is contractible. Supposei is
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the least integer for which the proposition fails andHi(ΩX; k) 6= {0}. Since
k is a field,

E2
n,i = Hn(X;Hi(ΩX; k)) ∼= Hn(X; k)⊗Hi(ΩX; k) 6= {0}.

If the proposition fails, then we have the diagram on the previous page around
(n, i) in theE2-term. In particular, there are no nonzero vector spaces that
can act as a target of a differential fromE2

n,i. By assumption, there are no
differentials whose target isE2

n,i. ThusE2
n,i
∼= E∞n,i 6= {0}, a contradiction.ut

Proposition 5.16 together with the theorem of Morse proves that, ifM is
a complete, connected, Riemannian manifold such thatHi(M) 6= {0} for at
least one value ofi > 1, then any pair of points inM , a, b, a 6= b, are joined by
infinitely many geodesics inM .

The reader can computeH∗(ΩS2n−1;Q) to illustrate Proposition 5.16:
This computation is the result of Example 1.H.

Example 5.K,in which we prove thatπi(S2n−1) is a finite group fori > 2n−1.

Since our methods all center on homology and cohomology, we need to turn
problems about homotopy groups into problems in homology. To do this we ex-
ploit the classical isomorphism of Poincar´e,H1(X) ∼= π1(X)/[π1(X), π1(X)].
The proof of the assertion in this example is broken into steps (following
[Serre51]).

Step 1. LetX be a connected, simply-connected space. We associate toX
a sequence of spaces as follows:X0 = X, T1 = X̃0, the universal cover of
X0 andX1 = ΩT1. Let T2 = X̃1 andX2 = ΩT2. By recursion, we define
Tn = X̃n andXn+1 = ΩTn.

The universal cover of a spaceY is simply-connected and the covering
Ỹ → Y induces an isomorphismπi(Ỹ ) ∼= πi(Y ) for i > 1. Among the
homotopy groups of the spaces in the sequence,{Xj | j = 0, 1, . . . }, we have
the following relations:

πi(Xn) ∼= πi+1(Xn−1) ∼= · · · ∼= πi+n(X0) = πi+n(X).

SupposeHi(X) is finitely generated for alli, that is,X is of finite type. We
proved in Example 5.A thatX of finite type guarantees thatΩX is of finite type.
We would like to extend this algebraic condition to homotopy groups. A naive
argument can be made from the spaces{Xj}: If we knew that wheneverXi is of
finite type, then so isXi+1, we would haveH1(Xi) ∼= π1(Xi) ∼= πi+1(X) and
thatH1(Xi) is finitely generated implies thatπi+1(X) is finitely generated.
However, the situation is more subtle than that. In order to make such an
argument work, we need to study universal covers, which do not necessarily
exist without some point set topological assumptions. [Massey67] shows that
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a connected, locally simply-connected space has a universal cover. To prove
that universal covers exist for each of the spacesXi, [Serre51] introduces the
point set conditionULC (uniformement localement contractile): A spaceY is
ULC if there is a neighborhoodU of the diagonal inY × Y and a homotopy
F : U × I → Y such thatF (x, x, t) = x for all x ∈ Y and t ∈ I; and
F (x, y, 0) = x, F (x, y, 1) = y for all (x, y) ∈ U . The relevant result is
that if Y is ULC, thenỸ exists,Ỹ is ULC andΩY is ULC. Spaces that are
ANRs (absolute neighborhood retracts, [Whitehead, GW78]) are ULC, and this
includes spaces of the homotopy type of locally finite CW-complexes.

Proposition 5.17.If X is ULC, of finite type, connected and simply-connected,
thenπi(X) is finitely-generated for alli.

Proof: To study the relationship betweenY andỸ , we do not have the Leray-
Serre spectral sequence as a tool—the fibre is not connected. The tool of choice
is theCartan-Leray spectral sequence(see [Cartan48] and Theorem 8bis.9),
converging toH∗(X;A) for A, an abelian group, and for which

E2
p,q
∼= Hp(π1(X), Hq(X̃;A)),

where we are using the homology of the groupπ1(X) with coefficients in the
π1(X)-moduleH∗(X̃;A). (See Chapter 8bis for definitions.)

We proceed by induction. ForX0 = X, sinceX is simply-connected,̃X =
X = T1 and soX1 = ΩT1 is of finite type by the argument of Example 5.A.
By induction we suppose thatXn−1 is of finite type and considerTn = X̃n−1.
[Serre51] showed that the abelian groupπ1(Xn−1) acts trivially onH∗(Tn)
(sinceXn−1 is an H-space—Corollary 8bis.3). TheE2-term of the Cartan-
Leray spectral sequence for the coveringTn −→ Xn−1 simplifies for a trivial
action:

E2
p,q
∼= Hp(π1(Xn−1), Hq(Tn))
∼= Hp(π1(Xn−1))⊗Hq(Tn)⊕ TorZ1 (Hp−1(π1(Xn−1)), Hq(Tn)).

By induction,π1(Xn−1) ∼= H1(Xn−1) is finitely generated, from which it
follows that the homology groups of the groupπ1(Xn−1) with coefficients in the
trivial moduleZ, Hi(π1(Xn−1)), are finitely generated (they are subquotients
of the bar construction). Since the target groupsHp+q(Xn−1) are finitely
generated for allp + q and theTor terms are finitely generated, the argument
of Example 5.A applies to prove thatTn is of finite type, and hence, so is
Xn = ΩTn.

Using the Cartan-Leray spectral sequence establishes the necessary details
for our naive argument, and so we have proved thatπn(X) is finitely generated
for all n, sinceπn(X) ∼= π1(Xn−1) ∼= H1(Xn−1). ut
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If an abelian group is finitely generated, then by tensoring withQ we
can determine whether the group is finite or not. In particular, ifΠ is finitely
generated,Π⊗ZQ = {0} if and only if the groupΠ is finite. We use the spaces
Xi to studyπ∗(X)⊗ZQ. In fact, we do more and establish a generalization of
the Hurewicz theorem with coefficients due to [Serre51]. We write⊗ for ⊗Z
in what follows.

Theorem 5.18 (the rational Hurewicz theorem).If X is ULC, connected,
simply-connected, and of finite type, andHi(X;Q) = {0} for 0 < i < n, then
πi(X)⊗Q = {0} for 0 < i < n andπn(X)⊗Q is isomorphic toHn(X;Q).

Proof: We establish the following fact for the sequence of spaces{Xi}.

Fact: WithX as in Theorem 5.18,Hi(Xj ;Q) = {0} if i > 0 and i + j < n
and,Hi(Xj ;Q) = Hn(X;Q), if i+ j = n.

Proof of Fact: If j = 0, the fact follows from the identificationX0 = X.
Suppose it is true for0 ≤ m ≤ j − 1. For j ≥ 2, Xj−1 is a loop space and
so the abelian groupπ1(Xj−1) acts trivially onH∗(Tj ;Q). The Cartan-Leray
spectral sequence takes the form

E2
p,q
∼= Hp(π1(Xj−1))⊗Hq(Tj ;Q) ⊕ TorZ1 (Hp−1(π1(Xj−1)), Hq(Tj ;Q)).

The five-term exact sequence associated to the lower left hand corner of the
E2-term (Example 1.A for homology) takes the form

0→ E∞2,0 −→ E2
2,0

d2

−→ E2
0,1 −→ H1(Xj−1;Q) −→ E2

1,0 → 0.

By induction,H1(Xj−1;Q) = {0} and this implies that

E2
0,1
∼= H1(π1(Xj−1))⊗H0(Tj ;Q) ∼= {0}.

Sinceπ1(Xj−1) is finitely generated—it isomorphic toH1(Xj−1)—it follows
thatH1(π1(Xj−1)) ∼= π1(Xj−1) is finitely generated. Finally,H0(Tj ;Q) ∼= Q

implies thatπ1(Xj−1) is finite. In computing the homology of a group we can
use explicit resolutions (see Chapter 8bis), and so we can deduce (from the
bar construction) thatHp(π1(Xj−1)) is finite for all p > 0 and so, when
tensored with a rational vector space, givesE2

p,q = {0} for p > 0. The Cartan-
Leray spectral sequence collapses to the leftmost column and, by convergence,
Hi(Tj ;Q) ∼= Hi(Xj−1;Q) for all i > 0.

Finally, by Example 5.I fori < 2(n− j + 1)− 2, we haveHi(Xj ;Q) =
Hi(ΩTj ;Q) ∼= Hi+1(Tj ;Q) ∼= Hi+1(Xj−1;Q). By the induction hypothesis,
we have thatHi(Xj ;Q) = {0} for i > 0 andi + j < n andHn−j(Xj ;Q) ∼=
Hn(X;Q). ut
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From the fact we prove the theorem. ConsiderH1(Xj) ∼= π1(Xj) ∼=
πj+1(X). Forj < n−1, j+1 < n and soH1(Xj ;Q) = {0}. By the Universal
Coefficient theorem, it follows that{0} = H1(Xj)⊗Q ∼= πj+1(X)⊗Q. For
j = n−1,πn(X)⊗Q ∼= π1(Xn−1)⊗Q ∼= H1(Xn−1)⊗Q ∼= H1(Xn−1;Q) ∼=
Hn(X;Q). ut
Step 2. Consider the Eilenberg-Mac Lane spacesK(Z, n). We compute
H∗(K(Z, n);Q) using the Leray-Serre spectral sequence as follows: We have
the fibrations

K(Z, n− 1) = ΩK(Z, n) ↪→ PK(Z, n) −→ K(Z, n)

andK(Z, 1) = S1. To begin the induction,H∗(K(Z, 1);Q) = Λ(x1), an
exterior algebra on one generator of dimension one. The reader may now apply
the argument of Example 1.H to prove, fordeg xn = n,

H∗(K(Z, n);Q) =
{

Λ(xn), if n is odd,

Q[xn], if n is even.

Step 3. There is a mappingp : S2n−1 −→ K(Z, 2n − 1) that classifies the
generator ofH2n−1(S2n−1). As we described in§4.3, we can turnp into a
fibration with fibreF2n−1. From the long exact sequence in homotopy, we know
thatπi(F2n−1) ∼= πi(S2n−1) for i > 2n− 1. We next show thatπi(F2n−1)⊗
Q = {0} for i > 2n− 1. Consider the mapping of fibrations:

∗ w

u

F2n−1

u

S2n−1 S2n−1

u

p

S2n−1
w

p
K(Z, 2n− 1)

This mapping induces a morphism of spectral sequences in which

H∗(S2n−1;Q) = E∗,02

p∗

←−Ē∗,02 = H∗(K(Z, 2n− 1);Q)

is an isomorphism and atE∞ we have an isomorphism of bigraded modules
because the classx2n−1 in the base is the only class of degree2n − 1 that
can survive (we know thatF2n−1 is at least(2n)-connected). By the Zeeman
comparison theorem (Theorem 3.26) the fibres must have isomorphic rational
cohomology. Thus̃H∗(F2n−1;Q) = {0}. We apply Theorem 5.18 to conclude
thatπi(F2n−1) ⊗ Q = {0} for i > 2n − 1. SinceS2n−1 is of finite type, for
i > 2n− 1, πi(S2n−1)⊗Q = {0} implies thatπi(S2n−1) is finite. ut
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A slightly fancier argument (outlined in the exercises) shows thatπi(S2n)
is finite for i > 2n except ifi = 4n− 1.

Example 5.K first appeared in Serre’s thesis. This paper firmly established
the place of spectral sequences in homotopy theory. The reader who is inter-
ested in the further applications of the Leray-Serre spectral sequences should
skip to Chapter 6 where more structure on the spectral sequence is developed
and applications given. We close this chapter with a proof of Theorems 5.1
and 5.2, establishing the homology version of the spectral sequence and the
multiplicative property for the cohomology version.

5.3 Appendices

Having sketched a construction of the spectral sequence in§5.1 and dis-
cussed many of its applications, we fill in the missing steps that establish Theo-
rem 5.1. They are: 1) setting up the apparatus of singular chains in a system of
local coefficients and recognizing theE1-term of the spectral sequence in this
context; 2) showing thatd1, the first differential in the spectral sequence, can be
identified with the differential on these chain groups. Finally, we establish the
multiplicative property of the cohomology spectral sequence (Theorem 5.2).

This exposition is based primarily on the article of [Brown, E94], which
in turn is based on Serre’s thesis ([Serre51]). In§6.3, there is a discussion of
different constructions of the spectral sequence; most details of the proof due
to [Dress67] are given. The reader can compare these different constructions to
see what they reveal about the structure of fibrations. Finally, the reader should
consult the proof of [Serre51] for the contrast between cubical singular theory
and simplicial singular theory.

Systems of Local Coefficients®N
Instances in topology where local data are patched together into global

data often require more sensitive systems of coefficients in homology or coho-
mology. For example, at a point in ann-dimensional manifold,x ∈ Mn, one
can consider the groupHn(M,M − {x}), which is infinite cyclic by excision
arguments. A coherent choice of generator for each of these groups asx varies
overM determines an orientation of the manifold. Obstruction theory ([Steen-
rod43]) presents another example of the need for more sensitive coefficients
when extending cellular maps a skeleton at a time. The obstructions to lifting
maps through a fibration lie in cohomology groups where the coefficients are
sensitive to which cell in the base you are lifting over. A more general system of
coefficients will permit a precise expression of the geometric data in the exact
couple of§5.1.

Let Ω(B, a, b) denote the set of paths inB joining a to b, {λ : I → B |
λ continuous,λ(0) = a, λ(1) = b}.
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Definition 5.19. A bundle, G, of groups over a spaceB is a collection of
groups,{Gb; b ∈ B}, together with a collection of homomorphismsh[λ] : Gb1 →
Gb0 , one for each element inΩ(B, b0, b1). This collection of homomorphisms
must satisfy:

(1) If cb denotes constant path inΩ(B, b, b), thenh[cb] = id: Gb → Gb.
(2) If λ andλ′ satisfyλ(0) = λ′(0), λ(1) = λ′(1), andλ ' λ′ relative to

the endpoints, thenh[λ] = h[λ′].
(3) If λ ∈ Ω(B, b0, b1) andµ ∈ Ω(B, b1, b2) andλ ∗ µ is the product path

of λ andµ, thenh[λ ∗ µ] = h[λ] ◦ h[µ] : Gb2 → Gb0 .

We also referG as asystem of local coefficientsonB.

Notice that (1) and (2) together imply that eachh[λ] is an isomorphism:
If we denoteλ−1(t) = λ(1 − t), thenλ ∗ λ−1 ' cb0 ∈ Ω(B, b0, b0) and so
h[λ ∗ λ−1] = h[λ] ◦ h[λ−1] = id. Categorically speaking, a bundle of groups
is a contravariant functor from thefundamental groupoid of the spaceB (the
category with objects points inB and morphisms homotopy classes of paths
between points) to the category of groups.
Examples: (a) Given any groupG there is thetrivial bundle of groups over
B, also denoted byG, with Gb = G for all b in B andh[λ] = id for all λ in
Ω(B, b0, b1).

(b) Let Π denote the bundle of fundamental groups overB, a path-connected
space. HereGb = π1(B, b) for eachb in B. If λ ∈ Ω(B, b0, b1), thenλ
determines an isomorphismh[λ] : π1(B, b1)→ π1(B, b0) by [α] 7→ [λ−1 ∗α ∗
λ]. The properties of the∗ operation imply that we have a bundle of groups.

(c) Suppose we have a fibrationF ↪→ E
π
−→B with B path-connected. For a

ring R we can form a bundle ofR-modules,Hn(F ;R), as follows: Define
Gb = Hn(Fb;R) whereFb = π−1(b). Let Λ: Ωp → EI be a lifting function
for π (see§4.3) and suppose givenλ : I → B with λ(0) = b0 andλ(1) = b1.
Then defineΦλ : Fλ(1) → Fλ(0) by Φλ(x) = Λ(λ−1, x)(1). We let

h[λ] = Φλ∗ : Hn(Fb1 ;R) −→ Hn(Fb0 ;R).

By the properties of a lifting function, this is a bundle ofR-modules. It is this
bundle of groups that plays the key role in this chapter.

(d) If we fix a basepoint∗ in B and letG be a group, then any representation,
ρ : π1(B, ∗) → Aut(G), gives rise to a bundle of groups,Gρ, overB. Let
Gb = G, for eachb in B; choose some[λb] ∈ π1(B, b, ∗) and leth[λb] = id.
Then, for any[µ] ∈ π1(B, b0, b1) leth[µ] = ρ[λ−1

b0
∗µ∗λb1 ]. This construction

yields a bundle of groups associated to the representationρ. Conversely, a
bundle of groups gives rise to a representationρ′ : π1(B, b) → Aut(Gb) for b
in B.
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(e) Given a path-connectedn-dimensional manifoldM , we can letGx =
Hn(M,M − {x}) for all x ∈ M . Via the topology of the manifold, we
get a bundle of groups with which one can study the notion of orientation of the
manifold.

(f) A sheaf of groups over a spaceB induces a bundle of groups onB, if B is
a reasonable space (for example, a CW-complex). For the relevant definitions,
the reader can consult the books of [Godement57] or [Warner71].

A morphism of bundles of groups, Ξ: G1 → G2, is a collection of homo-
morphismsΞb : (G1)b → (G2)b, for eachb in B, satisfying the property that
the diagram

(G1)b1 w
h1[λ]

u

Ξb1

(G1)b0

u

Ξb0

(G2)b1 w
h2[λ]

(G2)b0

commutes for all[λ] in π1(B, b0, b1). A morphism of bundles of groups is a
natural transformation of contravariant functors on the fundamental groupoid.

(g) Suppose we have a fibre-preserving map of fibrations,f̂ : E → E′, that is
a commutative diagram

F w
f̃ |

y
u

F ′y
u

E w
f̃

u
p

E′

u
p′

B B.

Thenf̃∗ induces a morphism of bundlesHn(F ;R)→ Hn(F ′;R).

A morphism of bundles,Ξ: G1 → G2 is anisomorphism if eachΞb is an
isomorphism. We call a bundle of groupsG simple if there is an isomorphism
Ξ: G → G, the trivial bundle of groups for some groupG. The topology ofB
can sometimes determine a bundle of groups.

Proposition 5.20. If B is path-connected and simply-connected andG is a
bundle of groups onB, thenG is simple.

Proof: Let b be a point inB andG = Gb. By assumptionπ0(Ω(B, b, x))
contains only one homotopy class of paths. If we let[λ] denote this class and
Ξx = h[λ], thenΞ: G → G is an isomorphism. ut

Fix a bundle of abelian groupsG over a spaceB. LetC∗(B) denote the
singular chains onB. If ∆p denotes the standardp-simplex inRp+1, then let
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v0 denote the leading vertex of∆p, that is, the point(1, 0, . . . , 0). Define the
set ofsingular p-chains with coefficients in the bundleG by

Cp(B;G) ={finite formal sums
∑
i gi ⊗ Ti | where, for eachi,

Ti : ∆p → B is continuous andgi ∈ GT (v0)}.

The singular p-cochains with coefficients in the bundle of groupsG are
defined by

Cp(B;G) = {functionsf : Cp(B)→
⋃

b∈B
Gb | f(T : ∆p → B) ∈ GT (v0)}.

We describe the differential onC∗(B;G). The usual simplicial boundary opera-
tor behaves as follows with respect to the leading vertex (see§4.2 for a reminder
of the formulas):

(∂iT )(v0) =
{
T (v0), if i 6= 0,
T (v1), if i = 0.

Since the coefficients on a given simplex depend on the group in the bundle
associated to the image of the leading vertex, a change of leading vertex must be
entered into our local data. IfT : ∆p → B is ap-simplex, letTLv0

v1
: [0, 1]→ B

be defined
TLv0

v1
(t) = T (tv0 + (1− t)v1)

be the path joiningT (v1) to T (v0). The boundary homomorphism∂h on
C∗(B;G) is defined on the basis by

∂h(g ⊗ T ) = h[TLv0
v1

](g)⊗ ∂0T +
∑p

j=1
(−1)jg ⊗ ∂jT.

Lemma 5.21. ∂h ◦ ∂h = 0.

Proof: From the definition of the∂i we have(∂iT )Lv0
v1

= TLv0
v1

if i > 1 and
(∂1T )Lv0

v1
' (∂0T )Lv0

v1
∗ TLv0

v1
; now compute. ut

We define thehomology ofB with local coefficients inG to be

H∗(B;G) = H(C∗(B;G), ∂h).

Homology with local coefficients generalizes ordinary homology.

Proposition 5.22. If the bundle of abelian groupsG is simple, then the local
coefficient system may be taken to be constant, that is,H∗(B;G) ∼= H∗(B;G)
whereG = Gx for anyx in B.

Proof: LetΞ: G → G be an isomorphism of the bundles of groups. Since the
isomorphism commutes with the homomorphismsh[λ], Ξ induces an isomor-
phism of chain complexes,Ξ: C∗(B;G) → C∗(B;G). In the case of a trivial
bundle of groups, the expression given for∂h reduces to the ordinary boundary
operator and soH(C∗(B;G), ∂h) gives ordinary homology. ut
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Proof of the Main Theorem®N
Our strategy in proving Theorem 5.1 is to follow a proof of the Eilenberg-

Zilber theorem, but for a twisted product. Recall that there are mappings

AW: C∗(X × Y )←→ C∗(X)⊗ C∗(Y ) : EZ,

satisfying (1)AW◦EZ = id onCp(X)⊗Cq(Y ); (2) there is a chain homotopy
DEZ: Cr(X×Y )→ Cr+1(X×Y ) such thatEZ◦AW− id = ∂DEZ+DEZ∂.
If we filter Cr(X × Y ) by

Fp =
∑

s≤p
im(EZ: Cs(X)⊗ Cr−s(Y )→ Cr(X × Y )),

the resulting spectral sequence leads to a proof of the Eilenberg-Zilber theorem,
if we use homology with coefficients in a field, and to the K¨unneth theorem
more generally.

SupposeF ↪→ E
π
−→B is a fibration withF andB connected spaces. Re-

call thatπ comes equipped with a lifting function,Λ: Uπ →WE whereUπ =
{(λ, e) | λ : [0, 1] → B, e ∈ E, andλ(0) = π(e)}, WE = map([0, 1], E),
andΛ has the properties;π ◦ Λ(λ, e) = λ andΛ(λ, e)(0) = e (§4.3).

Our goal is to analyzeC∗(E) in terms ofC∗(B) andC∗(F ) by introducing
analogues ofAW and EZ. We assume throughout that we havenormalized
singular chains, that is, degenerate singular simplices are set equal to zero.

We first introduce some combinatorial structure available in the setting of
simplicial singular chains. Let∆[p]• denote the combinatorialp-simplex,

∆[p]n = {(i0, i1, . . . , in) | ij ∈ {0, 1, . . . , p} andi0 ≤ i1 ≤ · · · ≤ in}.

Given(i0, i1, . . . , in) ∈ ∆[p]nwe can define a mapping∆n → ∆p by requiring
that thejth vertex of∆n map to theij

th vertex of∆p and extending linearly to
the rest of∆n. We denote this mapping by(i0, i1, . . . , in) : ∆n → ∆p. The
construction leads to a pairing

Cp(X)×∆[p]n −→ Cn(X)

given on the basis by

(T : ∆p → X) 7→ T (i0, . . . , in) : ∆n
(i0,... ,in)
−−−−−−→∆p

T
−→X.

An example of the use of this pairing is the classical Alexander-Whitney map-
ping,AW: C∗(X × Y )→ C∗(X)⊗ C∗(Y ). In this notation we have

AW(T ) =
∑p+q

n=0
(pr1T )(0, 1, . . . , n)⊗ (pr2T )(n, n+ 1, . . . , p+ q),



          

168 5. The Leray-Serre Spectral Sequence I

wherepri denotes projection onto theith factor.
We next introduce the analogue ofC∗(X) ⊗ C∗(Y ). By Cp(B;Cq(Fb))

we mean finite sums of tensor products,U⊗V , whereV : ∆p → B is a singular
p-simplex onB andU : ∆q → FV (v0) = π−1(V (v0)), a singularq-simplex
on the fibre overV (v0), the image of the leading vertex ofV in B. This
is not exactly the group ofp-chains with local coefficients since we have not
introduced the homomorphisms required for such a system of groups. However,
these groups will lead eventually to chains with local coefficients inHq(F ).

We construct the analogue ofEZbased on an operation onCp(B;Cq(Fb)).
SupposeU ⊗ V is a generator whereV : ∆p → B andU : ∆q → FV (v0). Let
v ands denote points in∆p and denote the straight line path joiningv to s by
Lsv : [0, 1]→ ∆p,Lsv(t) = ts+ (1− t)v. We defineU#V : ∆q ×∆p → E by

U#V (s1, s2) = Λ(V ◦ Ls2v0
, U(s1))(1).

SinceV ◦Ls2v0
(0) = V (v0) = πU(s1),U#V is well-defined. Notice, from the

properties of lifting functions, thatπ(U#V )(s1, s2) = V (s2). Furthermore, if
σ ∈ ∆[q]q′ andτ ∈ ∆[p]p′ , andτ(v0) = v0, then

U#V (σ × τ) = (Uσ)#(V τ).

We can define the Eilenberg-Zilber map forπ as

ψ : Cp(B;Cq(Fb)) −→ Cp+q(E)
ψ(U ⊗ V ) = (U#V )∗(EZ((0, 1, . . . , q)⊗ (0, 1, . . . , p))),

that is,ψ takesU ⊗ V to the image of the chain(0, 1, . . . , q) ⊗ (0, 1, . . . , p)
under the composite

Cq(∆[q]•)⊗ Cp(∆[p]•)
EZ
−→Cp+q(∆[q]• ×∆[p]•)

−→ Cp+q(∆q ×∆p)
(U#V )∗
−−−−−→Cp+q(E).

The next ingredient in the proof is the filtration. LetFpCr(E) be the
subgroup ofCr(E) generated byT : ∆r → E, such thatπT = S(i0, . . . , ir),
for ir ≤ p andS : ∆p → B. This is an increasing filtration withFrCr(E) =
Cr(E).

Lemma 5.23. The homomorphismψ : Cp(B;Cq(Fb)) → Cp+q(E) satisfies
the following properties:

(1) ψ(Cp(B;Cq(Fb))) is contained inFpCp+q(E).
(2) ∂ψ ≡ ψ(∂F ⊗ 1) modFp−1.
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Proof: From the properties of lifting functions we have the commutative
diagram:

∆q ×∆p
w

U#V

u

pr2

E

u

π

∆p
w

V
B.

It follows that

π∗(U#V )∗(EZ((0, 1, . . . , q)⊗ (0, 1, . . . , p))

= V∗(EZ((0, 1, . . . , q)⊗ (0, 1, . . . , p)) =
∑

V (i0, . . . , ip+q)

whereip+q ≤ p for all summands.
To prove (2) we observe that the ordinary singular differential can be

written as follows: ForW ∈ Cr(X),

∂(W ) =
∑r

i=0
(−1)i∂i(W ) =

∑r

i=0
(−1)iW (0, 1, . . . , î, . . . , r).

Since the singular differentials commute with all the maps that make up the
composite that definesψ, we have

∂ψ(U ⊗ V ) = (U#V )∗(EZ(∂((0, . . . , q)⊗ (0, . . . , p))))

= (U#V )∗(EZ
(∑

i
(−1)i (0, . . . , ı̂, . . . , q)⊗ (0, . . . , p)

+
∑

j
(−1)j+q(0, . . . , q)⊗ (0, . . . , ĵ, . . . , p)

)
)

= ((∂FU)#V )∗
(∑

(σ′i, σ
′′
i )
)

+ (−1)q(U#(∂BV ))∗
(∑

(τ ′j , τ
′′
j )
)

= ψ(∂F ⊗ 1)(U ⊗ V ) moduloFp−1Cp+q(E),

where this last equality follows because∂BV determines a chain in filtration
p− 1. ut

Next up is the analogue of the Alexander-Whitney map: On generatorsT
of FpCp+q(E) let

φ(T ) = T (0, . . . , q)⊗ πT (q, . . . , p+ q).

If φ(T ) 6= 0, thenπT (q, . . . , p+ q) is a nondegenerate singularp-chain onB.
SinceπT (q, . . . , p+ q) = S(i0, . . . , ip+q)(q, . . . , p+ q) whereS : ∆p → B,
we find that this is nondegenerate only when

(i0, . . . , ip+q) = (0, . . . , 0, 1, . . . , p).

It follows thatπT (0, . . . , q) = πT (0, . . . , 0) and so theq-simplexT (0, . . . , q)
is a mapping∆q → FπT (q,... ,p+q)(v0). Thusφ : FpCp+q(E)→ Cp(B;Cq(Fb)).
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Lemma 5.24.The homomorphismφ : FpCp+q(E)→ Cp(B;Cq(Fb)) satisfies
the following properties:

(1) φψ = id.
(2) There is a chain homotopyD : FpCp+q(E) → FpCp+q+1(E) with

∂D +D∂ = ψφ− id.
(3) φ(Fp−1Cp+q(E)) = 0. And soφ induces a homomorphismφ0 : E0

p,q →
Cp(B;Cq(Fb)).

Proof: To establish (1) we observe that we can write

EZ((0, . . . , q)⊗ (0, . . . , p))

= ((0, 1, . . . , q, q, . . . , q)× (0, 0, . . . , 0, 1, . . . , p)) +
∑

i
(τ ′i , τ

′′
i ),

whereτ ′′i (0, . . . , p) is degenerate. If we writeσ′ = (0, 1, . . . , q, q, . . . , q) and
σ′′ = (0, 0, . . . , 0, 1, . . . , p), it follows that

φψ(U ⊗ V ) = φ((U#V )∗(EZ((0, . . . , q)⊗ (0, . . . , p))))
= φ((U#V )∗(σ′, σ′′))
= (U#V )∗(σ′, σ′′)(0, . . . , q)⊗ π(U#V )∗(σ′, σ′′)(q, . . . , p+ q).

Since(0, . . . , 0, 1, . . . , p)(0, . . . , q) = (0, 0, . . . , 0), we get

= Λ(V (0, . . . , 0)L(0,... ,0)(−)
v0

, U(0, . . . , q)(−))(1)⊗ V
= Λ(V ◦ Lv0

v0
, U(0, . . . , q)(−))(1)⊗ V

= U ⊗ V.

Here we have used the property of the lifting function that constant paths lift to
constant paths.

To establish the second assertion, we introduce another operation on sing-
ular simplices onE. If T : ∆q → E is a singular simplex onE, then define
T̂ : ∆q ×∆q → E by

T̂ (s1, s2) = Λ(πT ◦ Ls2s1 , T (s1))(1).

The relevant properties of̂T are thatπT̂ (s1, s2) = πT (s2), that T̂ (s1, s1) =
T (s1), and the following formula:

T̂ ((0, . . . , q)× (q, . . . , p+ q)) = T (0, . . . , q)#πT (q, . . . , p+ q),

which can be seen by computing

T (0, . . . , q)#πT (q, . . . , p+ q)(s1, s2)
= Λ(πT ◦ L(q, . . . , p+ q)s2v0

, T (0, . . . , q)(s1))(1)

= T̂ ((0, . . . , q)× (q, . . . , p+ q))(s1, s2).
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Using this new operation we define the chain homotopyD : Cp+q(E)→
Cp+q+1(E) by

D(T ) = (T̂ )∗(DEZ((0, . . . , p+ q)× (0, . . . , p+ q))).

Because∂DEZ +DEZ∂ = EZ◦AW− id, we compute

∂D(T ) = ∂(T̂ )∗(DEZ((0, . . . , p+ q)× (0, . . . , p+ q)))

= (T̂ )∗(∂DEZ((0, . . . , p+ q)× (0, . . . , p+ q)))

= (T̂ )∗(−DEZ∂((0, . . . , p+ q)× (0, . . . , p+ q))
+ EZ◦AW((0, . . . , p+ q)× (0, . . . , p+ q))
− (0, . . . , p+ q)× (0, . . . , p+ q))

= −D(∂T ) + (T̂ )∗(EZ◦AW)((0, . . . , p+ q)× (0, . . . , p+ q))

− (T̂ )∗((0, . . . , p+ q)× (0, . . . , p+ q)).

The last term in the list isT as it isT̂ on diagonal elements. Thus the assertion
comes down to showing that

(T̂ )∗(EZ◦AW)((0, . . . , p+ q)× (0, . . . , p+ q)) = ψφ(T ).

To establish this, chase through the commutative diagram:

Cp+q(∆p+q)

u

σ×σ

NNNNNNNNNNNNNNNNP
T∗

Cp+q(∆p+q ×∆p+q)

u
AW

w
(T̂ )∗

Cp+q(E)

u

φ∑
Cn(∆p+q)⊗ Cp+q−n(∆p+q)

u
EZ

w
T (0,... ,q)∗⊗πT (q,... ,p+q)∗

Cp(B;Cq(Fb))

u

ψ

Cp+q(∆p+q ×∆p+q) w
(T̂ )∗

Cp+q(E)

The top triangle commutes because we haveT̂ on diagonal elements; the middle
square is commutative by the definition ofφ, and the bottom square commutes
becausêT ((0, . . . , q) × (q, . . . , p + q)) = T (0, . . . , q)#πT (q, . . . , p + q).
Thus∂D +D∂ = ψφ− id.

We next show thatφ induces a mapping onE0
p,q = Fp/Fp−1. Suppose

U ∈ Fp−1Cp+q(E). Thenφ(U) = U(0, . . . , q) ⊗ πU(q, . . . , p + q) and
πU = S(i0, . . . , ip+q) with ip+q ≤ p − 1. But (i0, . . . , ip+q)(q, . . . , p + q)
is always degenerate whenip+q ≤ p− 1. Thusφ induces a mapping,

φ0 : E0
p,q → Cp(B;Cq(Fb)). ut
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Lemma 5.25.φ∂(T ) = (∂F ⊗ 1)(φ(T )), that is,φ0 : E0
p,q → Cp(B;Cq(Fb))

is a chain mapping.

Proof: We compute directly:

φ(∂T ) =
∑p+q

i=0
(−1)iφ(T (0, . . . , î, . . . , p+ q))

=
∑p+q

i=0
(−1)i[T (0, . . . , î, . . . , p+ q)(0, . . . , q − 1)

⊗ πT (0, . . . , î, . . . , p+ q)(q − 1, . . . , p+ q − 1)].

It follows from the definition of the pairing that

(0, . . . , î, . . . , p+ q)(q − 1, . . . , p+ q − 1)

=
{

(q, . . . , p+ q) for i ≤ q,
(q − 1, q − 1, q, . . . , î, . . . , p+ q) for i > q.

(0, . . . , ı̂, . . . , p+ q)(0, . . . , q − 1) = (0, . . . , ı̂, . . . , q), for i ≤ q.

SinceπT = πT (0, . . . , 0, 1, . . . , p), we know that, forj > 0,

πT (q − 1, q, . . . , q̂ + j, . . . , p+ q) = πT (0, 0, 1, . . . , ĵ, . . . , p),

which is degenerate. Our formula becomes

φ(∂T ) =
∑q

i=0
(−1)i [T (0, . . . , ı̂, . . . , q)⊗ πT (q, . . . , p+ q)]

= (∂F ⊗ 1)(φ(T )).

Thus we have the homomorphismφ1 = H(φ0) : E1
p,q → Cp(B;Hq(F )). ut

So far we have proven that there is a chain equivalence betweenE0
p,q and

Cp(B;Cq(F )). To finish the proof of Theorem 5.1, we need to show that we
have a commutative diagram,

(5.26)

E1
p,q w

φ1=H(φ0)

u
d1

Cp(B;Hq(F ))

u

(−1)q∂h

E1
p−1,q w

φ1 Cp−1(B;Hq(F )).

To do this we introduce another chain homotopy, this time

D2 : Cp(B;Hq(F ))→ Fp−1Cp+q(E).

To define the chain homotopy we require one more operation derived from the
lifting function. Suppose givenV : ∆p → B andU : ∆q → FV (v0). Define
U ∗ V : ∆q ×∆p−1 ×∆1 → E by

U ∗ V (s1, s2, t) = Λ(V ◦ L(1,... ,p)(s2)
(1−t)v0+tv1

,Λ(V ◦ Lv1
v0
, U(s1))(t))(1).
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Lemma 5.27.For singular simplicesV : ∆p → B andU : ∆q → FV (v0) we
have the following

(1) U ∗ V (s1, s2, 0) = U#V (s1, (1, . . . , p)(s2)).
(2) U ∗ V (s1, s2, 1) = ΦV ◦Lv0v1∗(U)#(∂0V )(s1, s2).
(3) π(U ∗ V )(s1, s2, t) = (∂0V )(s2).

Proof: We leave (1) and (3) for the reader and establish (2). (RecallΦλ∗ is
defined on p.164.) We observe first that

(∂0V )(t0, . . . , tp−1) = V (0, t0, . . . , tp−1) = V (1, . . . , p)(t0, . . . , tp−1),

and so(∂0V ) ◦ Ls2v0
= V ◦ L(1,... ,p)(s2)

v1 . It follows that

U ∗ V (s1, s2, 1) = Λ(V ◦ L(1,... ,p)(s2)
v1

,Λ(V ◦ Lv1
v0
, U(s1))(1))(1)

= Λ((∂0V ) ◦ Ls2v0
,ΦV ◦Lv0v1∗(U)(s1))(1)

= ΦV ◦Lv0v1∗(U)#(∂0V )(s1, s2). ut

Define the desired chain homotopy by

D2(U⊗V ) = (−1)p+q(U∗V )∗(EZ(EZ((0, . . . , q)⊗(0, . . . , p−1))⊗(0, 1))).

Lemma 5.28.D2(Cp(B;Cq(Fb))) ⊂ Fp−1Cp+q(E) and

∂ψ(U ⊗ V ) = ψ(∂FU ⊗ V ) + (−1)qψ(ΦV ◦Lv0v1∗(U)⊗ (∂0V ))

+
∑

i>0
(−1)i+qψ(U ⊗ ∂iV ) + (−1)q∂D2(U ⊗ V )

+ (−1)qD2((∂FU)⊗ V ) +W,

whereW is a sum of elements fromFp−1Cp+q−1(E).

Proof: By Lemma 5.27(3), we get the commutative diagram

Cp+q(∆q ×∆p−1 ×∆1) w
(U∗V )∗

u

pr2

Cp+q(E)

u
π∗

Cp+q(∆p−1) w
(∂0V )∗

Cp+q(B).

Since the simplices mapping into the second factor ofπD2(U ⊗V ) come from
EZ(0, . . . , p− 1),D2 takes its image in filtrationp− 1.
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We compute directly

∂ψ(U ⊗ V ) = ∂(U#V )∗(EZ((0, . . . , q)⊗ (0, . . . , p)))
= (U#V )∗(EZ(∂((0, . . . , q)⊗ (0, . . . , p))))
= ψ((∂FU)⊗ V ) + (−1)q(U#V )∗(EZ((0, . . . , q)⊗ (1, . . . , p)))

+
∑p

i=1
(−1)i+qψ(U ⊗ (∂iV )).

By examining the image of the Eilenberg-Zilber mapEZ on nondegenerate
simplices one establishes that

(U#V )∗(EZ((0, . . . , q)⊗ (1, . . . , p)))
= (U ∗ V )∗(EZ(EZ((0, . . . , q)⊗ (0, . . . , p− 1))⊗ (0))).

Consider the chain homotopy:

∂D2(U ⊗ V )
= (−1)p+q∂((U ∗ V )∗(EZ(EZ((0, . . . , q)⊗ (0, . . . , p− 1))⊗ (0, 1))))
= −D2((∂FU)⊗ V )

+ (−1)p+q+1
∑

i
(U ∗ V )∗(EZ(EZ((0, .. , q)⊗ (0, .. , ı̂, .. , p− 1))⊗ (0, 1)))

+ (U ∗ V )∗(EZ((0, . . . , q)⊗ (0, . . . , p− 1), 0))
− (U ∗ V )∗(EZ((0, . . . , q)⊗ (0, . . . , p− 1), 1)).

LetW denote the big sum with terms coming fromEZapplied to a product
involving (0, . . . , ı̂, . . . , p − 1). These classes are all of filtrationp − 1. By
Lemma 5.27, the rest of the morass becomes

∂D2(U ⊗ V ) +D2((∂FU)⊗ V )
= W + (−1)q∂ψ(U ⊗ V )− (−1)qψ((∂FU)⊗ V )

−
∑p

i=1
(−1)iψ(U ⊗ ∂iV )− ψ(ΦV ◦Lv0v1∗(U)⊗ (∂0V )). ut

For filtration reasons we have

φ(W ) = φ(∂D2(U ⊗ V )) = φ(D2(∂FU ⊗ V )) = 0.

If U represents a class inHq(FV (v0)), then we can applyφ to get

(−1)qφ∂ψ(U ⊗ V ) = φψ(∂h(U ⊗ V )).

This establishes the commutativity of (5.26), and we have finished the proof of
Theorem 5.1 for pairs(B, ∅).
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Multiplicative Matters®N
We close the chapter with a proof of Theorem 5.2. Duality allows us to

identify theE2-term asH∗(B;H∗(F )). The dual filtration on cochains is given
by

F pCp+q(E) = {f ∈ Cp+q(E) | f(T ) = 0 for all T ∈ Fp−1Cp+q(E)}.

Thus we only need to establish that we have a spectral sequence of algebras.
For any spaceX, supposef ∈ Cp(X) andf ′ ∈ Cp

′
(X). We define

the cup-productf ^ f ′ ∈ Cp+p
′
(X) and the cup1-productf ^1 f ′ ∈

Cp+p
′−1(X) as follows: IfT ∈ Cp+p′(X) andU ∈ Cp+p′−1(X), then

(f ^ f ′)(T ) = f(T (0, . . . , p))f ′(T (p, . . . , p+ p′)),
and(f ^1 f

′)(U) =∑p+p′−1

i=0
± f(U(0, . . . , i, i+ p′, . . . , p+ p′ − 1))f ′(U(i, . . . , i+ p′)).

The cup1-product plays a key role in proving the graded commutativity of the
cup-product as the following formula shows:

δ(f ^1 f
′) = f ^ f ′−(−1)pp

′
[f ′ ^ f ]−[(δf) ^1 f

′]−(−1)p[f ^1 (δf ′)].

There is a subtlety to the duality when we use local coefficients: An element
of Cp(B;Cq(Fb)) is a mapping of the formf : Cp(B) → Hom(Cq(Fb),Z).
If we employ the Hom-Tensor interchange, then we have a linear mapping
f : Cq(Fb)⊗ Cp(B)→ Z. However, the differential must satisfy

〈δf, U ⊗ V 〉 = 〈f, ∂(U ⊗ V )〉.

Since∂ is a derivation with respect to the tensor product, the pairing on the
right is with (∂U)⊗ V + (−1)qU ⊗ (∂V ). To accommodate the cross term in
a different bidegree we represent a classu ∈ Hp(B;Hq(F )) as a pair{f, g}
with f : Cp(B)→ Hom(Cq(Fb),Z) andg : Cp+1(B)→ Hom(Cq−1(Fb),Z).
This pair satisfies, forT ∈ Cp+1(B), U ∈ Cq(Fb),

〈δf, T 〉(U) = 〈f, ∂T 〉(U)− 〈g, T 〉(∂U).

If u = {f, g} is a cohomology class, thenδf(T ) = 0 andf(∂T ) = g(T ) ◦ ∂
as elements ofCq(Fb).

Givenf ∈ Cp(B;Cq(Fb)) andf ′ ∈ Cp′(B;Cq
′
(Fb)) we define a new

cochainD(f, f ′) ∈ Cp+p
′+q+q′−1(E) by the following recipe: LetT ∈

Cp+p′+q+q′−1(E). Form two new cochains, given by

U ∈ Cp(E) 7→ f(πU)(T (0, . . . , q))
U ′ ∈ Cq′(E) 7→ f ′(πT (p+ q + q′ − 1, . . . , p+ p′ + q + q′ − 1))(U ′).

Form their cup1-product and apply it toT (q, . . . , p+q+q′−1). This procedure
definesD(f, f ′)(T ).
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Lemma 5.29.D(f, f ′) has filtrationp + p′ whenf ∈ Cp(B;Cq(Fb)) and
f ′ ∈ Cp′(B;Cq

′
(Fb)). Furthermore, we have

δD(f, f ′) = φ∗(f) ^ φ∗(f ′)− (−1)pq
′
φ∗(f ^ f ′)

±D(δ1f, f ′)±D(δ2f, f ′)±D(f, δ1f ′)±D(f, δ2f ′),

whereδ1f(U)(S) = f(∂U)(S), δ2f(U)(S) = f(U)(∂S) and 〈f, φ∗T 〉 =
〈φ∗f, T 〉.

Proof: LetU ∈ Fp+p′−1Cp+p′+q+q′−1(E). Then we can write

πU = πU(0, . . . , 0, 1, . . . , p+ p′ − 1).

To applyD(f, f ′) to U we form a certain cup1-product and evaluate on the
chainU(q, . . . , p+ q+ q′). However,πU(q, . . . , p+ q+ q′) is degenerate and
soD(f, f ′)(U) = 0. Therefore,D(f, f ′) ∈ F p+p′Cp+p′+q+q′−1(E).

SupposeV ∈ Cp+p′+q+q′(E). We compute(δD(f, f ′))(V ) which is
made up of cup products and cup1-products evaluated on expressions involving
V (q, . . . , p+ q+ q′). Using the defining property of the cup1-product, we can
examine each summand in turn:

(f ^ f ′)(V (q, . . . , p+ q + q′)) =
f(πV (q, . . . , p+ q + q′)(0, . . . , q))(V (0, . . . , q))·

f ′(πV (p+ p′ + q′, . . , p+ p′ + q + q′))(V (q, . . , p+ q + q′)(p, . . , p+ q′))
=f(πV (q, . . . , p+ q))(V (0, . . . , q))·

f ′(πV (p+ q + q′, . . . , p+ p′ + q + q′))(V (p+ q, . . . , p+ q + q′))
=〈f, φ∗(V (0, . . . , p+ q))〉 · 〈f ′, φ∗(V (p+ q, . . . , p+ p′ + q + q′))〉
=(φ∗(f) ^ φ∗(f ′))(T ).

The sign(−1)pq
′
in front of the next summand comes from the formula for the

differential applied to a cup1-product and the fact that we are using ap-cochain
and aq′-cochain.

(f ′ ^ f)(V (q, . . . , p+ q + q′)) =
f ′(πV (p+ q + q′, . . , p+ p′ + q + q′))(V (q, . . , p+ q + q′)(0, . . , q′))·
f(πV (q, . . . , p+ q + q′)(q, . . . , p+ q′))(V (0, . . . , q))

=f(πV (q + q′, . . . , p+ q + q′))(V (0, . . . , q))·
f ′(πV (p+ q + q′, . . . , p+ p′ + q + q′))(V (q, . . . , q + q′))

=〈f, V (0, . . . , p+ q)⊗ πV (q + q′, . . . , p+ q + q′)〉·
〈f ′, V (q, . . . , q + q′)⊗ πV (p+ q + q′, . . . , p+ p′ + q + q′)〉

=〈f ^ f ′, V (0, . . . , q + q′)⊗ πV (q + q′, . . . , p+ p′ + q + q′)〉
=〈f ^ f ′, φ∗(T )〉 = (φ∗(f ^ f ′))(T ).
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We are looking to establish a map on theE2-term and so we may think of our
classf as representingu ∈ Hp(B;Hq(F )), that is, it is part of a pair{f, g}
with δf(U)(S) = δ1f(U)(S) + δ2f(U)(S).

((δf) ^1 f
′)(V (q, . . . , p+ q + q′))

=
∑

i
± 〈δf, V (q, . . . , p+ q + q′)(0, . . . , i, i+ q′, . . . , p+ q′)〉·

〈f ′, V (q, . . . , p+ q + q′)(i, . . . , i+ q′)〉.
The cochain〈δf, V (q, . . . , p+ q+ q′)(0, . . . , i, i+ q′, . . . , p+ q′)〉 applied to
aq-chain onF gives something of the form〈f, ∂U〉(S) + 〈g, U〉(∂S). Sincef
is a cocycle, the first part of this sum vanishes and so〈δf, U〉(S) = 〈g, U〉(∂S).
Thus(δf) ^1 f

′ has filtrationp + p′ + 1 and it vanishes when we take the
associated graded module. At theE2-term,〈g, U〉 is a cocycle and so all terms
involving δ2 vanish. Since these remarks apply to all the terms coming from
(δf) ^1 f

′ andf ^1 (δf ′), we get in theE2-term

(φ∗2f) ^ (φ∗2f
′) = (−1)pq

′
φ∗2(f ^ f ′)

and we have proved Theorem 5.2. ut

Exercises

5.1. Prove that the cellular filtration that gives rise to the Leray-Serre spectral se-
quence is exhaustive.

5.2. Derive theWang long exact sequencefor a fibrationF ↪→ E → B with B a
simply-connected homologyn-sphere,n ≥ 2, andF , path-connected:

· · · −→ Hk(E;R)
i∗

−→ Hk(F ;R)
θ
−→ Hk−n+1(F ;R)

j∗

−→ Hk+1(E;R) −→ · · ·
Show further thatθ is a derivation, ifn is even and whenn is odd,θ is an antideriva-
tion (θ(x ^ y) = θ(x) ^ y + x ^ θ(y)).

5.3. Establish the Serre exact sequence (Example 5.D) in the case of homology.

5.4. Prove Proposition 5.5.

5.5. Theorem 5.1 can be extended to fibrations over a CW-pair(B,A). Suppose

F ↪→ E
p
−→ B is a fibration,A ⊂ B, EA ⊂ E, andp−1(A) = EA, that is, we

have a fibration of pairs,

F ↪→ (E,E′)
p
−→ (B,A).

Sketch a proof of the homology Leray-Serre spectral sequence for pairs for which
theE2-term takes the form

E2
p,q
∼= Hp(B,A;Hq(F ;G)),

and the spectral sequence converges toH∗(E,EA;G).
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5.6. There is another notion of fibration for pairs: LetF ↪→ E
p
−→ B is a fibration,

F0 ⊂ F , andE0 ⊂ E, such thatp|E0 : E0 → B is a fibration with fibreF0. That
is, we have a fibration of pairs

(F, F0) ↪→ (E,E0)
p
−→ B.

Derive the homology Leray-Serre spectral sequence in this case for whichE2
p,q
∼=

Hp(B;Hq(F, F0;G)), converging toH∗(E,E0;G).

5.7. Prove Corollary 5.8.

5.8. Show thatF is totally homologous to zero with respect tok if and only if the
following holds for the Poincar´e series with respect tok:

P (E, t) = P (B, t)× P (F, t).

5.9. Determine the nonzero differential in Hirsch’s example of a fibrationF ↪→
E

p
−→ B with p∗ injective but for which the cohomology Leray-Serre spectral

sequence does not collapse. (Another example is given by thefree loop space
associated to a spaceX: LetLX = map(S1, X), the space of unbased loops on

X. Evaluation at1 ∈ S1 gives a fibrationΩX ↪→ LX
ev1−−→ X. Sendingx ∈ X

to the constant loop atx gives a section ofev1, and soev∗1 is injective. However,
the associated Leray-Serre spectral sequence need not collapse (see[Smith, L81]
and[McCleary90]for explicit examples).

5.10. Show thatVk(Cn) ∼= SU(n)/SU(n − k) whereSU(n − k) ⊂ SU(n) is
included as the lower right hand corner of an otherwisen× n identity matrix.

5.11. Prove Theorem 5.13.

5.12. Show thatVk(Rn) is (n− k)-connected.

5.13. The symplectic groups,Sp(n), are the analogues of the special orthogonal
or unitary groups over the quaternions. There are fibrations defined analogously,
Sp(n− 1) ↪→ Sp(n)→ S4n−3. FromSp(1) ∼= S3, computeH∗(Sp(n)), for all
n. The quaternionic Stiefel manifoldsVk(Hn) are defined similarly to the real and
complex Stiefel manifolds. ComputeH∗(Vk(Hn)).

5.14. ComputeH∗(SO(n);Fp), for p, an odd prime.

5.15. The exceptional Lie group,G2, is represented by the group of automorphisms
of the Cayley numbers,K. (See[Whitehead, GW78, Appendix A]for a discussion
of this division algebra.) There is a fibration that results from this observation;
S3 ↪→ G2 → V2(R7). ComputeH∗(G2;F2).

5.16. Show thatSn is ULC.
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5.17. LetSn−1 ↪→ V2(Rn+1) → Sn be the fibration sending the orthonormal 2-
frame(v1, v2) tov1. Show that this fibration has no section ifn is even. Modify the
argument of Example 5.K, using this fibration, to show thatπi(S2m) is finite, except
wheni = 2m or i = 4m− 1. In particular, show thatπ4m−1(S2m) ∼= Z⊕ finite.
(Hint: ComputeH∗(V2(Rn+1);Q) and apply the rational Hurewicz theorem. Then
study the long exact sequence of homotopy groups associated to the fibration.)
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The Leray-Serre Spectral Sequence II

“ . . . the behavior of this spectral sequence. . . is a bit
like an Elizabethan drama, full of action, in which the
business of each character is to kill at least one other
character, so that at the end of the play one has the stage
strewn with corpses and only one actor left alive (namely
the one who has to speak the last few lines).”

J. F. Adams

We begin with a classical computation that demonstrates further the poten-
tial of the Leray-Serre spectral sequence in homotopy theory; we also introduce
several of the notions that will play as leitmotifs through this chapter. Our first
goal is to prove the following result.

Theorem 6.1.π4(S2) ∼= Z/2Z.

Though this fact may be obtained by more elementary means ([Whitehead,
GW50]), the proof here is based on a general method (albeit limited) for investi-
gating homotopy groups and which leads to such results as the proof of [Brown,
E57] that the homotopy groups of finite complexes are finitely computable. The
technique is to apply the spectral sequence to stages of the Postnikov tower of
S2 (§4.3). Each stage is a pullback of the path-loop fibration over an Eilenberg-
Mac Lane space (S2 is simply-connected). We computeH∗(K(π, n)) in some
low dimensions in order to proceed. Further progress might be possible if more
were known aboutH∗(K(π, n)). This problem was solved by [Cartan54].
The computation ofH∗(K(π, n);Fp), however, is simplified significantly by
the presence of the Steenrod algebra. The key to the modp computation is
the transgression and its properties. The development of this feature of the
Leray-Serre spectral sequence occupies the first third of the chapter and culmi-
nates in the determination ofH∗(K(Z/pZ, n);Fp) andH∗(K(Z, n);Fp) due
to [Serre53] forp = 2 and to [Cartan54] forp an odd prime. [Serre53] used
these calculations to demonstrate the nonvanishing of the homotopy groups
of finite complexes in infinitely many dimensions. His argument involves an
ingenious use of Poincar´e series and the method of ‘killing homotopy groups’.
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The middle third of the chapter turns the spectral sequence apparatus, to-
gether with the transgression, to computations of the cohomology of classifying
spaces and characteristic classes of fibre bundles following [Borel53]. We begin
with a sketch of the theory of classifying spaces and their construction. The
computation ofH∗(BG; k) makes up a major portion of this section that closes
with the relation of these computations to the notion of characteristic classes.

In the final third of the chapter, we discuss some different approaches to the
construction of the Leray-Serre spectral sequence. We begin with a discussion
of the original construction of [Leray50] and a structure result for differentials
due to [Fadell-Hurewicz58]. The next construction considered is due to [Brown,
E59] and has its roots in the classical theorem of [Hirsch, G54] on the cochains
on the total space of a fibration. [Brown, E59] introduced the machinery of
twisting cochains, a kind of generalization of the Eilenberg-Zilber theorem,
to determine how the cochains on the total space are related to those on the
base and fibre. A spectral sequence arises naturally from this construction that
is identifiable with the Leray-Serre spectral sequence. The other construction
considered in detail in§6.3 is due to [Dress67], where a bisimplicial set is
associated with a fibration. The Leray-Serre spectral sequence is derived from
the double complex associated to a bisimplicial set. Finally, some results on
the uniqueness of the Leray-Serre spectral sequence, due to [Barnes85], are
described to close out the chapter.

6.1 A Proof of Theorem 6.1

We begin by recalling the Postnikov tower forS2:

...

u
P4S

2
w

k5

u

K(π5(S2), 6)

S2
h

h

hjf4

w

f3
A
A
ACf2

P3S
2

w

k4

u

K(π4(S2), 5)

P2S
2

w

k3 K(π3(S2), 4)

Each space,PnS2 satisfies the properties

(1) πi(PnS2) ∼=
{
πi(S2), for i ≤ n,

{0}, for i > n.

(2) fn∗ : πi(S2)→ πi(PnS2) induces the isomorphism fori ≤ n.
(3) The mappingPnS2 → Pn−1S

2 is the fibration pulled back from the path-
loop fibration with baseK(πn(S2), n+ 1) over the mappingkn.



        

182 6. The Leray-Serre Spectral Sequence II

By (1) and the fact thatπ2(S2) ∼= Z (the classical theorem of Brouwer),
P2S

2 has the homotopy type of the Eilenberg-Mac Lane spaceK(Z, 2). Fur-
thermore, we can identifyK(Z, 2) with CP (∞). Thus we know the integral
cohomology ofP2S

2 completely;H∗(P2S
2) ∼= Z[x2], wherex2 has degree 2.

Next observe that (2) and the Whitehead theorem imply that, fori ≤ n,
Hi(fn) : Hi(S2) → Hi(PnS2) is an isomorphism, and fori = n + 1, an
epimorphism. The Universal Coefficient theorem allows us to compute the low
dimensional integral cohomology ofPnS2:

Hi(PnS2) =
{
Z, if i = 0, 2,
{0}, if i = 1, 3, 4, . . . , n+ 1.

As we work our way up the Postnikov tower,H∗(PnS2) can be deter-
mined, in principle, in terms ofH∗(Pn−1S

2) andH∗(K(πn(S2), n)) via the
Leray-Serre spectral sequence. We record some values, in low dimensions, of
H∗(K(π, n)) andH∗(K(π, n)).

Lemma 6.2.For π, a finite abelian group, andn ≥ 2, Hn(K(π, n)) ∼= π ∼=
Hn+1(K(π, n)) andHn(K(π, n)) = {0} = Hn+1(K(π, n)).

Proof: By the Hurewicz theorem we know thatHn−1(K(π, n)) = {0} and
Hn(K(π, n)) ∼= π. The Universal Coefficient theorem gives the short exact
sequence

0→ Ext(Hn−1(K(π, n)),Z) −→ Hn(K(π, n))
−→ Hom(Hn(K(π, n)),Z)→ 0.

SinceHom(π,Z) is {0} for π, a finite group, we findHn(K(π, n)) = {0}.
We next consider the path-loop fibration

K(π, n− 1) −→ PK(π, n) −→ K(π, n).

By the connectivity ofK(π, n) and repeated application of the Serre exact
sequence (Example 5.D), we have

Hn+1(K(π, n)) ∼= Hn(K(π, n− 1)) ∼= · · · ∼= H3(K(π, 2)).

By the fundamental theorem for finitely-generated abelian groups and the
properties of Eilenberg-Mac Lane spaces, it suffices to prove the theorem for
π = Z/mZ andn = 2. The short exact sequence0→ Z −→ Z −→ Z/mZ→ 0

gives a fibrationK(Z, 2)→ K(Z, 2)
p
−→K(Z/mZ, 2) (up to homotopy) realiz-

ing the short exact sequence of groups on homotopy. In low dimensions there
is a single differential in the associated spectral sequence to determine:

d3 : H3(K(Z/mZ, 2)) −→ Z = H2(K(Z, 2)).
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If H3(K(Z/mZ, 2)) were finite, thend3 ≡ 0 and this finite group would persist
toE∞ to give a nontrivial contribution toH3(K(Z, 2)) = {0}.

The Serre exact sequence in homology gives the exact sequence

0→ H3(K(Z/mZ, 2))
d3−→H2(K(Z, 2))
−→ H2(K(Z, 2)) −→ H2(K(Z/mZ, 2))→ 0.

ThusH3(K(Z/mZ, 2)) can be identified with a subgroup ofZ. It follows that
E∞0,2 ∼= Z/qZ for someq. This presents an extension problem to reconstruct
H2(K(Z, 2)) ∼= Zwith the dataE∞0,2 ∼= Z/qZ,E∞1,1 = {0} andE∞2,0 ∼= Z/mZ.
Since this is impossible,H3(K(Z/mZ, 2)) = {0}.

A second use of the Universal Coefficient theorem gives the exact sequence

0→ Ext(Hn(K(π, n)),Z) −→ Hn+1(K(π, n))
−→ Hom(Hn+1(K(π, n)),Z)→ 0.

SinceExt(π,Z) ∼= π, the short exact sequence givesπ ∼= Hn+1(K(π, n)). ut

From the properties ofHom andExt, we deduce that, wheneverπ is a
finitely generated abelian group,Hn(K(π, n)) = Z andHn+1(K(π, n)) =
{0} imply thatπ = Z.

Consider the next fibration in the Postnikov system:

K(π3(S2), 3)
inc
−−→P3S

2 −→ CP (∞).

The homology Leray-Serre spectral sequence forP3S
2 → P2S

2 leads to the
diagram.

By the connectivity of the mappingf3 : S2 → P3S
2 and the Whitehead theo-

rem,H3(P3S
2) ∼= H4(P3S

2) = {0}. But this can only occur if the differential
d4 : E4

4,0
∼= Z −→ π3(S2) ∼= E4

0,3 is an isomorphism. Thusπ3(S2) ∼= Z.
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To obtain further homology groups ofP3S
2, we must considerH∗(K(Z, 3))

in a few more dimensions. The path-loop fibration overK(Z, 3) gives the fol-
lowing diagram for the cohomology spectral sequence in low dimensions:

Sinced3 is a derivation,d3(x2) = 2xy. Furthermore, the group? in the

diagram must be part of an exact sequence,0 → Zx2
d3−→ Zxy

d3−→ ? → 0.
Thus?∼= Z/2Z = H6(K(Z, 3)). Putting this further data into the cohomology
Leray-Serre spectral sequence forK(Z, 3) → P3S

2 → P2S
2 ' CP (∞), we

see that the bottom degree class inH3(K(Z, 3)) must go to the generator
of H4(CP (∞)) in order thatH3(P3S

2) = {0}. The algebra structure of
the spectral sequence takes over; the next possible case of a differential must
come fromH6(K(Z, 3)) but such a class has nowhere to go and we conclude
H6(P3S

2) ∼= Z/2Z.
Finally, consider the fibrationK(π4(S2), 4) → P4S

2 → P3S
2. In the

cohomology spectral sequence, we have the dataE2,0 ∼= Z,E6,0
2
∼= Z/2Z, and

Ei,02 = {0} for 2 < i < 6. This leavesHi(K(π4(S2), 4)) unknown fori = 4
and5.

SinceH4(P4S
2) ∼= {0}, it follows from the placement of holes that

H4(K(π4(S2), 4)) = {0}. (This is also a corollary of the argument of Ex-
ample 5.K for even-dimensional spheres, that is,π4(S2) is finite.) From the
Universal Coefficient theorem we deduce thatH5(P4S

2) = {0}. It follows
that

d6 : H5(K(π4(S2), 4)) −→ H6(P3S
2)

is an isomorphism:H5(K(π4(S2), 4)) ∼= Z/2Z and, by Lemma 6.2, we have
proved Theorem 6.1. ut

In the course of the proof of Theorem 6.1, we have computed some of
the groupsH∗(K(π, n)). The reader is encouraged to try his or her hand at
extending the computation. Thep-primary components ofH∗(K(Z, 3)) plan
an important role and this reveals the difficulty of computing these groups
in general. Employing the philosophy that problems, taken one prime at a
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time, may be more accessible, we turn to the computation of the algebras
H∗(K(π, n);Fp), for p a prime andπ a finitely generated group. The key tool
in these computations is the transgression and its algebraic realization in the
Leray-Serre spectral sequence.

6.2 The transgression

The Russian term for a fibration is literally a ‘twisted product’ (of the fibre
and base). An algebraic measure of the nontriviality of the twisting is found in
the long exact sequence of homotopy groups of the fibration:

· · · → πq(F )
i∗−→ πq(E)

p∗−→ πq(B)
∂
−→ πq−1(F )

i∗−→ · · · .
The nontriviality of∂, the connecting homomorphism, gives an indication of
how the base and fibre are twisted together to form the total space. Though
historically inaccurate, we follow [James61] and call∂ the transgressionof
the fibration(F,E, p,B). (See [Chern48], [Hirsch48], and [Koszul50] for the
first notions of the transgression.)

To define the transgression on homology groups we consider the follow-
ing commutative diagram whereh : πq(X) → Hq(X) denotes the Hurewicz
homomorphism:

w πq(F ) w

i∗

u

h

πq(E) w

p∗

u

h

N
N
NNPj∗

πq(B) w
∂

u
∼=

πq−1(F ) w

u

hπq(E,F )
h

h

hhj

∂

u
h

w Hq(F ) w

i∗

u

Hq(E) w

j∗

u
p∗

Hq(E,F ) w
∂

u

p0∗

Hq−1(F ) w

u
w Hq(∗) w Hq(B) w

j∗

�
�
�
�
�
�
�
�
�
��

τ

Hq(B, ∗) w Hq−1(∗) w

Herep0 : (E,F ) → (B, ∗) is the induced fibration of pairs. The exactness of
the two bottom rows is used to define the transgression homomorphism.

Definition 6.3. Let τ denote the homomorphism,

τ : j−1
∗ (im p0∗) −→ Hq−1(F )/∂(ker p0∗)

given byτ(z) = ∂r + ∂(ker p0∗) wherez ∈ j−1
∗ (im p0∗), andp−1

0∗ (j∗(z)) =
r + ker p0∗. The homomorphismτ is called thetransgression.

We leave it to the reader to prove thatτ is well-defined. Notice thatτ maps a
subgroup ofH∗(B) to a quotient ofH∗(F ). The definition ofτ for homology
with coefficients other thanZ is clear from the diagram. The following is an
immediate consequence of the definition.
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Proposition 6.4.If a classu ∈ Hq(B) is spherical, that is,u is in the image of
the Hurewicz homomorphism, thenτ(u) is spherical inHq−1(F )/∂(ker p0∗),
that is,τ(u) lies in the image of the composite mapping

πq−1(F )→ Hq−1(F )−→−→Hq−1(F )/∂(ker p0∗).

The dual notion may be defined for cohomology as follows: Consider the
commutative diagram with exact rows:

w Hq−1(∗) w
δ

u

Hq(B, ∗) w

j∗

u

p∗0

Hq(B) w

u
p∗

Hq(∗) w
δ

u
w Hq−1(F ) w

δ

�
�
�
�
�
�
�
�
�
�
���

τ

Hq(E,F ) w

j∗
Hq(E) w Hq(F ) w

δ

Defineτ : (δ−1(im p∗0) ⊂ Hq−1(F ))→ Hq(B)/j∗(ker p∗0) byτ(z) = j∗(r)+
j∗(ker p∗0) wherez ∈ δ−1(im p∗0) andp∗0(r+ker p∗0) = δz. If we replaceH∗( )
withH∗( ;R), we get the definition ofτ for cohomology with coefficients in a
ringR. In particular, forR = Fp), p a prime, the action of the Steenrod algebra
commutes with all of the homomorphisms in the diagram.

Proposition 6.5. If θ is in Ap, the modp Steenrod algebra, andz, a class in
δ−1(im p∗0) ⊂ Hq−1(F ;Fp), thenτ(θz) = θτ(z).

Here equality means as cosets ofker p∗ inH∗(B;Fp) or as elements ofim p∗ ∼=
H∗(B;Fp)/ker p∗. It is this property of the transgression that is the key to later
computations.

The main theorem of this section identifiesτ , a feature of the homological
data of the spaces in a fibration, with an algebraic feature in the Leray-Serre
spectral sequence.

Theorem 6.6.Given a fibrationF ↪→ E
p
−→B with baseB and fibreF con-

nected, the following hold for its associated Leray-Serre spectral sequence

(1) Enn,0
∼= j−1
∗ (im p∗0) ⊆ Hn(B),

(2) En0,n−1
∼= Hn−1(F )/∂(ker p0∗), and

(3) dn : Enn,0 → En0,n−1 is the transgression.

Proof: We begin with a proof of part (1). Consider the map of fibrations

E w

j

u

p

(E,F )

u
p0

B w
j

(B, ∗)
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By the naturality of the spectral sequence (Theorem 5.1), the inclusions induce a
mappingj∗ : Erm,q → Ērm,q for all r,m, q whereE2

m,∗ ∼= Hm(B;H∗(F )) and
Ē2
m,∗ ∼= Hm(B, ∗ ;H∗(F )). Observe that̄E2

0,∗ ∼= H0(B, ∗ ;H∗(F )) = {0},
andE2

m,q
∼= Ē2

m,q for m > 0. Sincej∗ commutes with the differentials,
j∗ : Ekn,0 ∼= Ēkn,0 for k ≤ n. Furthermore,̄E2

0,∗ = {0} impliesĒn+1
n,0
∼= Ēnn,0.

By Theorem 5.9̄En+1
n,0 can be identified withim(p0∗ : Hn(E,F )→ Hn(B, ∗))

and so the isomorphismj∗ : Enn,0 → Ēnn,0 determinesEnn,0 ∼= j−1
∗ (im p0∗).

This proves assertion (1).
We next consider some important diagrams. The first displays a reformu-

lation of the definition of the transgression:

0 w ker p0∗ w

u
∂

Hn(E,F ) w

p0∗

u
∂

im p0∗ w

u
τ

0

0 w ∂(ker p0∗) w Hn−1(F ) w Hn−1(F )/∂(ker p0∗) w 0.

The second diagram, with rows exact, is based on the naturality of the spectral
sequence (Theorem 5.9).

0

u

0

u
ker p0∗ w

∂

u

∂(ker p0∗)

u
Hn(E) w

j∗

u
p∗

Hn(E,F )

(A)

w
∂

u
p0∗

Hn−1(F ) w

i∗

u
ζ

Hn−1(E)

0 w E∞n,0 w

u

Enn,0 w
dn

u

En0,n−1 w

u

E∞0,n−1 w

u

0

Hn(B) w

∼=
j∗

Hn(B, ∗) 0

Most of the diagram commutes for obvious reasons; however, it remains to
prove that the middlemost square commute. The homomorphismζ denotes the
surjection given by the composite

Hn−1(F ) ∼= E2
0,n−1−→−→E3

0,n−1−→−→· · ·−→−→En−1
0,n−1−→−→En0,n−1.
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Lemma 6.7.(A) is a commutative square.

We postpone the proof of this lemma briefly and gather its corollaries. We
first prove part (2) of Theorem 6.6: Supposeu 6= 0 is inHn−1(F ) andζ(u) = 0.
Theni∗(u) = 0 by the commutativity of the diagram and sou is in ker i∗ =
im ∂. Let w be inHn(E,F ) with ∂(w) = u. By the commutativity of(A)
dn(p0∗(w)) = 0. If p0∗(w) 6= 0, thenp0∗(w) lies in ker dn = E∞n,0 = im p∗.
Thus there is av in Hn(E) with p0∗(j∗(v)) = p0∗(w). Letw′ = w − j∗(v).
Thenp0∗(w′) = 0 and∂(w′) = ∂(w) − ∂j∗(v) = ∂(w) = u. Thusker ζ =
∂(ker p0∗) and (2) follows.

To derive part (3) of Theorem 6.6, return to the first important diagram
after the theorem and substitute the conclusions of parts (1) and (2) to obtain
the commutative diagram

0 w ker p0∗ w

u
∂

Hn(E,F ) w

u
∂

Enn,0 w

u
dn

0

0 w ∂(ker p0∗) w Hn−1(F ) w En0,n−1 w 0.

To complete the proof of Theorem 6.6 it suffices to establish Lemma 6.7.

Proof of Lemma 6.7: We use the definition of the groups appearing in this
part of the spectral sequence. In particular,

Enn,0 = Znn,0/Bn−1
n,0 + Zn−1

n−1,1
, En0,n−1 = Zn0,n−1/Bn−1

0,n−1
,

where

Znn,0 = {x ∈ FnCn(E) | ∂(x) ∈ F0Cn−1(E) = Cn−1(F )}
Bn−1
n,0 = {x ∈ FnCn(E) | there isy ∈ F2n−1Cn+1(E) with ∂(y) = x}

= Bn(E)
Zn−1
n−1,1 = {x ∈ Fn−1Cn(E) | ∂(x) ∈ F0Cn−1(E) = Cn−1(F )}

Zn0,n−1 = {x ∈ F0Cn−1(E) | ∂(x) ∈ FnCn−2(E)} = F0Cn−1(E)

Bn−1
0,n−1 = {x ∈ F0Cn−1(E) | there isy ∈ Fn−1Cn(E) with ∂(y) = x}.

At the level of the definitions, the differentialdn can be written as

dn(x+Bn(E) + Zn−1
n−1,1) = ∂(x) +Bn−1

0,n−1.

However,Hn(E,F ) = Hn(Cn(E)/F0Cn(E)) and the mappingp0∗ takes
u ∈ Hn(E,F ) to the classu + Bn(E) + Zn−1

n−1,1; since∂(u) ∈ F0Cn−1(E),
and we have an increasing filtration, this is well-defined. Furthermore,∂(u) ∈



θ

θ

d

dn+k

n
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Hn−1(F ) is given by the class∂(u) + Bn−1(F ). The mappingζ takesy +
Bn−1(F ) ∈ Hn−1(F ) to the cosety+Bn−1

0,n−1. However,Bn−1(F ) ⊂ Bn−1
0,n−1

so this is well-defined.
Finally, we chase around the square in each direction. A classu+F0Cn(E)

with ∂(u) ∈ F0Cn−1(E) goes bydn ◦ p0∗ to ∂(u) + Bn−1
0,n−1. Likewise, the

same class is the image ofu+ F0Cn(E) underζ ◦ ∂. ut
For completeness we include a statement of Theorem 6.6 for cohomology.

The proof is left to the reader.

Theorem 6.8.Given a fibrationF ↪→ E
p
−→B with baseB and fibreF con-

nected, the following hold for its associated cohomology Leray-Serre spectral
sequence

(1) En,0n
∼= Hn(B)/ker p∗,

(2) E0,n−1
n

∼= δ−1(im p∗0) ⊆ Hn−1(F ),
(3) dn : E0,n−1

n → En,0n is the transgression.

Combining Theorem 6.6, Proposition 6.5 and Theorem 5.2 we obtain the
following corollary for modp cohomology.

Corollary 6.9. Supposeu in Hn−1(F ;Fp) survives toE0,n−1
n andθ is inAp,

the modp Steenrod algebra. Ifθ has degreek then

dn+k(θu) = θ(dnu).

We can present Corollary 6.9 pictorially in the diagram:

The homology transgression is an example of anadditive relation, a ho-
momorphism defined on a subquotient of a module to another subquotient.
Consider the part of the long exact sequence in homology of the pair(E,F ):

Hq−1(F )
∂
←− Hq(E,F )

p0∗−−→ Hq(B, ∗) = Hq(B).
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The transgression is defined on the image ofp0∗ and it is determined up to the
kernel ofp0∗. So we have the equivalent expression

τ : im p0∗ ∼= Hq(E,F )/ ker p0∗
∂̄
−→ Hq−1(F )/∂(ker p0∗).

For a pointed space(X,x0), we includeX ⊂ CX as the subspace of classes
[x, 1]. For a cofibrant space,CX/X ∼= SX and the pair(CX,X) yields a
similar pair of homomorphisms:

Hq−1(X)
∂
←− Hq(CX,X)

Q
−→∼= Hq(SX, ∗).

Since the cone onX is contractible,∂ is an isomorphism and the homomorphism
Σ = Q◦∂−1 : Hq−1(X)→ Hq(SX) is the classical suspension isomorphism.

Suppose(F,E, p,B) is a fibration andHq(E) = Hq−1(E) = {0}. Then

the homomorphismHq−1(F )
∂
←− Hq(E,F ) is an isomorphism and we can

form the composite, opposite to the transgression but in the order of the classical
suspension, to produce thehomology suspension

σ = p0∗ ◦ ∂−1 : Hq−1(F ) −→ Hq(B).

WhenE = PY in the path-loop fibration,(ΩY, PY, ev1, Y ), the homo-
logy suspension is defined for allq > 0, Σ∗ : Hq−1(ΩY ) → Hq(Y ). This
homomorphism was introduced by [Eilenberg-Mac Lane50] in their study of
the homology ofK(π, n)’s, and further developed by [Serre51]. From the
Serre exact sequence for the path-loop fibration, ifY is (n − 1)-connected,
then Σ∗ : Hq−1(ΩY ) → Hq(Y ) is the inverse of the transgression and an
isomorphism forq ≤ 2n− 2.

More generally, [Serre51] proved the following result.

Proposition 6.10.SupposeF ↪→ E
p
−→B is a fibration withB path-connected

andF connected. Suppose thatHq(E) ∼= Hq−1(E) = {0}. Then the homology
suspensionΣ∗ : Hq−1(F ) → Hq(B) is well-defined and makes the following
diagram commute:

Eqq,0 w
dq

∼=
y

u

Eq0,q−1

Hq(B) Hq−1(F )u
Σ∗

u
u

ζ

In particular, Σ∗ has the same kernel asζ and the same image as the inclusion
Eqq,0 ↪→ Hq(B).

The proposition follows from Lemma 6.7.
We next relate the suspension isomorphism with the homology suspension.
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Lemma 6.11.Let f : X → ΩY be a pointed map andadj(f) : SX → Y its
adjoint. Then there is a mapping̃f : CX → PY making the following diagram
commute

X y w

u
f

CX w

Q

u
f̃

SX

u
adj(f)

ΩY y w PY wev1
Y .

Proof ([Adams60]): Recall the identity of all the maps in the diagram: If
f : X → ΩY is written f(x) = λx, thenadj(f)([x, t]) = λx(t) = f(x)(t).
The quotient mapQ : CX → SX takes[x, t] to itself whenx 6= x0 and for
0 < t < 1, and[x, 0], [x, 1], and[x0, t] all go to the same class, the basepoint
of SX.

Sincef is pointed,f(x0) = cy0 , the constant loop aty0 ∈ Y , the base-
point of Y . Define f̃ : CX → PY by f̃([x, t])(s) = f(x)(st). Notice that
f̃([x, t])(0) = f(x)(0) = y0 and f̃([x, 1])(s) = f(x)(s) and so the left side
of the diagram commutes. Sincẽf([x, t])(1) = f(x)(t) = adj(f)([x, t]), the
right square commutes. ut

On homology we get the following diagram relatingΣ andΣ∗:

Σ u
Hq−1(X)

u
f∗

Hq(CX,X)u ∂
∼= w

Q∗

u
f̃∗

Hq(SX)

u
adj(f)∗

Hq−1(ΩY ) Hq(PY,ΩY )u ∂
∼= wev1

Hq(Y )

Σ∗

u

When Y = SX and j : X → ΩSX is the mapping satisfyingadj(j) =
id: SX → SX, we obtain the commutative diagram:

Hq(X) w

j∗
[
[
[]
∼=

Σ

Hq(ΩSX)
�

�
��

Σ∗

Hq+1(SX)

By the Serre exact sequence for(ΩSX,PSX, ev1, SX) we know thatΣ∗ is
an isomorphism forq ≤ 2n whereX is (n − 1)-connected. This implies
that j∗ is an isomorphism in this range and the Whitehead theorem implies
thatj∗ : πq(X,x0) → πq(ΩSX, Sx0) is an isomorphism in this range and an
epimorphism whenq = 2n + 1. Since the adjoint of the identity mapping on
SX induces the suspension mapping on homotopy groups, we have proved the
classical theorem:
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Theorem 6.12 (the Freudenthal suspension theorem).If X is (n − 1)-
connected, thenΣ∗ : πq(X,x0) → πq+1(SX, Sx0) is an isomorphism for all
q ≤ 2n and an epimorphism forq = 2n+ 1.

We investigate the homology suspension and its dual further in§8.2. In the next
section, we investigate another way in which the Steenrod algebra appears in
the workings of the transgression.

Kudo’s theorem

In this section we restrict our attention to modp cohomology forp a
prime. Many computations in which the transgression figures prominently
involve fibrations with acyclic total space—a nontrivial transgression should be
expected since∂ : πn(B) −→ πn−1(F ) is an isomorphism in this case. Special
attention must be given to every possibly nonzero class in the spectral sequence;
in particular, the transgression can give rise to nonzero product elements. In
light of this, we extend the definition of the transgression to include such classes.

Definition 6.13. Supposeu ∈ Es,t2 . We say thatu is transgressiveif d2(u) =
d3(u) = · · · = dt(u) = 0 and dt+1(u) 6= 0 in Es+t+1,0

t+1 . If v in Es+t+1,0
2

survives to representdt+1(u), then we say thatu transgressesto v.

Notice that it is not properlyu that survives toEs,tt+1 but thatu represents
a class inEs,tt+1 with nonzero image underdt+1. Elements in the subspace
δ−1(im p∗0) of Hn−1(F ;Fp) (see§6.1) are transgressive according to this def-
inition when their image under the cohomological transgression is nonzero.

Suppose a classx ∈ H2k(F ;Fp) is transgressive andy ∈ H2k+1(B;Fp)
representsd2k+1(x). Becaused2k+1 is a derivation (Theorem 5.5), we have,
for 1 ≤ i < p, d2k+1(xi) = iy ⊗ xi−1. However, two phenomena come into
play wheni = p. First, from the derivation property and the modp coefficients,
we haved2k+1(xp) = py ⊗ xp−1 = 0. Alternatively,xp = P kx and so, by
Corollary 6.9, ifP kx survives toE0,2kp

2kp+1, thend2kp+1(P kx) = P ky. This

leavesy ⊗ xp−1 a nonzero class inE2k+1,2k(p−1)
2k+2 .

[Kudo56] determined the behavior of these elements in the spectral se-
quence in terms of the Steenrod algebra action onH∗(B;Fp).

Theorem 6.14 (the Kudo transgression theorem).If a classx in E0,2k
2

∼=
H2k(F ;Fp) is transgressive andx transgresses to the element represented
by y in E2k+1,0

2
∼= H2k+1(B;Fp), thenP kx = xp and y ⊗ xp−1 are also

transgressive withd2pk+1(xp) = P ky andd2(p−1)k+1(y ⊗ xp−1) = −βP ky.
(Hereβ denotes the modp Bockstein inAp.)
Idea of the Proof: A complete proof of Kudo’s theorem requires careful
consideration of a construction of the Steenrod algebra action at the cochain
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x

x
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x y⊗x

y⊗x

y⊗x 

Pky −βPky

3

22

p
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level on the cohomology of a space. Following [Steenrod57], [May70] gives
such a construction in a very general setting. Steenrod operations are based on
theFp[Z/pZ]-free, acyclic complex

W 0
δ
−→W 1

δ
−→ · · ·

δ
−→Wn

δ
−→ · · ·

with Wn the freeFp[Z/pZ]-module on a single generatoren. If Z/pZ is
generated by an elementα (written multiplicatively), then

δ(e2i) = (1 + α+ · · ·+ αp−1)e2i−1, δ(e2i+1) = (α− 1)e2i.

The complex(W ∗, δ) plays a role in the cohomology of groups (see§8bis.2).
The additional structure needed to define Steenrod operations is a mor-

phismΘ of Fp[Z/pZ]-complexes, whereFp[Z/pZ] acts trivially on the target
C∗, and permutes the factors of(C∗)⊗p,

Θ: W ∗ ⊗ (C∗)⊗p −→ C∗.

The mappingsDi(a) = Θ∗(ei ⊗ a⊗p) are identified with the cocycles repre-
senting the Steenrod operations applied to[a] ∈ H(C∗). The structure map
Θ extends thep-fold iterated product one0 ⊗ (C∗)⊗p. [May70, pp. 166-7]
presents an algorithm for constructing cochain representatives for these oper-
ations. We can apply the construction toC∗(E;Fp) and to representatives of
transgressive elements. As we saw in the proof of Theorem 6.6, being trans-
gressive is a condition on filtration degrees. [May70] shows that ifx ∈ E0,2k

2k

transgresses toy ∈ E2k+1,0
2k , thend2(p−1)k+1(y ⊗ xp−1) has a cochain repre-

sentative∂Θ(e0 ⊗ xp−1y) that represents−βP k(y) modulo terms of higher
filtration.

The key to the proof is the careful construction of cochain level operations
along with the identification of the transgression with a condition on filtration
degree. May’s technical but elegant proof applies more generally to other
spectral sequences. ut
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Kudo’s theorem shows that the elements of the formy ⊗ xp−1 and the
Steenrod algebra action play crucial roles in describing the transgression. We
make two further comments along these lines.

In the calculation ofH∗(K(π, n);Fp) andH∗(K(π, n);Fp) as algebras,
[Cartan54] had already noticed the role of the classesy ⊗ xp−1. Cartan in-
troduced the idea of anacyclic construction of algebras overFp: a triple,
(A,N,M), with A, N , andM algebras whereM possesses a differential and
H(M,dM ) ∼= Fp; M is a twisted version ofA⊗N with the differential onM
a morphismA → N of degree±1 (depending on whether we are computing
the homology or cohomology). The motivating idea is to obtain a version of
the chains on the total space of a fibration from the chains on the base and fibre
when the total space is acyclic. If one ignores the filtration in the Leray-Serre
spectral sequence and considers the total complex,

(totalE)q =
⊕

r+s=q
E2
r,s
∼=
⊕

r+s=q
Hr(B;Fp)⊗Hs(F ;Fp)

along with all of the differentials simultaneously, then this gives a suggestive im-
age for the idea of a construction. The technical details are given by [Cartan54]
(also see [Moore76] and [Stasheff87]).

For (A,N,M), an acyclic, multiplicative, graded-commutative construc-
tion overFp, Cartan defined an additive function forq > 0,

ψ : p(A2q) −→ H2pq+2(N)

wherep(A2q) = {a ∈ A2q such thatda = 0 andap = 0},. The function
ψ determines the reduction inN of a classy in M with dy = ap−1x and
dx = a. Under further conditions, satisfied in the problem of computing
H∗(K(π, n);Fp), the mappingψ determines a homomorphism

ϕ : H2q(A) −→ H2pq+2(N)

called thetranspotence. In the case of Eilenberg-Mac Lane spaces, the trans-
potence is a function

ϕp : H2q(K(π, n);Fp) −→ H2pq+2(K(π, n+ 1);Fp)

that is dual to the mapping sendingx in H2q(K(π, n);Fp) to −βP q(τx) in
H2pq+2(K(π, n + 1);Fp). The transpotence is the extra piece of structure
needed to design constructions inductively and so computeH∗(K(π, n);Fp)
for all n.

Returning to the action of the Steenrod algebra, we observe thatAp acts
onE∗,02 andE0,∗

2 as isomorphic toH∗(B;Fp) andH∗(F ;Fp), respectively. A
natural question, posed by [Massey55], is whether there is anAp-action on all
of E∗,∗r , for all r, that converges to the action ofAp onH∗(E;Fp). A solution
to this problem was given independently by [V´azquez57] and [Araki57] who
proved the following result.
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Theorem 6.15.On the modp cohomology spectral sequence associated to a

fibrationF ↪→ E
p
−→ B, there are operations

for p, odd

{
FP

s : Ea,br → E
a,b+2s(p−1)
r , 1 ≤ r ≤ ∞,

BP
s : Ea,br → E

a+(2s−b)(p−1),pb
r , 2 ≤ r ≤ ∞

for p = 2
{

FSqi : Ea,br → Ea,b+ir , 1 ≤ r ≤ ∞
BSqi : Ea,br → Ea+i−b,2b

r , 2 ≤ r ≤ ∞
that converge to the action ofAp onH∗(E;Fp), commute with the differentials
in the spectral sequence, satisfy analogues of Cartan’s formula and the Adem
relations and reduce to theAp-action onH∗(B;Fp) andH∗(F ;Fp) when
r = 2 anda = 0 or b = 0 (that is, onE∗,02 andE0,∗

2 ).

These operations have been developed further by [Kristensen62]. [Kuo65]
has given a general approach to the construction of families of operations on
spectral sequences. [Singer73] has constructed Steenrod operations on certain
first quadrant spectral sequences that include the Leray-Serre spectral sequence
as an example.

OnH∗(K(π, n);Fp); the theorems of Cartan and Serre

We can now turn to the major goal of this section—the computation of
H∗(K(π, n);Fp) for a fixed primep andπ a finitely generated abelian group.
By the fundamental theorem for abelian groups and the fact thatK(π1⊕π2, n) ∼=
K(π1, n)×K(π2, n), the task reduces to the consideration of the casesπ = Z,
Z/`Z andZ/`kZ for some primè. We reduce the task further to the case` = p.

Lemma 6.16.If π is a finitely generated abelian group,n ≥ 1, andk is a field,
thenH̃∗(K(π, n); k) = {0} if and only ifπ ⊗ k = {0}.

Proof: If H̃∗(K(π, n); k) = {0}, then we haveHn(K(π, n); k) = {0}. By
the Hurewicz theorem and the Universal Coefficient theorem,Hn(K(π, n); k) ∼=
π ⊗ k and soπ ⊗ k = {0}.

If π⊗ k = {0}, by the fundamental theorem for finitely generated abelian
groups, we can fixπ = Z/mZ for an integerm relatively prime to the charac-
teristic of the fieldk. The fibrationK(π, n− 1)→ PK(π, n)→ K(π, n) and
the Leray-Serre spectral sequence for homology with coefficients in the fieldk
show that if the lemma holds forn− 1, then it holds forn. It suffices to prove
the lemma forH̃q(K(Z/mZ, 1); k).

Consider the fibrationK(Z/mZ, 1)→ K(Z, 2)
−×m
−−−→K(Z, 2) where the

mapping,− ×m, induces the ‘timesm’ map on the second homotopy groups
and hence on the second homology groups ofK(Z, 2) = CP (∞). Since
Z/mZ ⊗ k = {0} implies thatm is a nonzero unit ink, the homomorphism
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induced by−×m induces an isomorphism onH( ; k) between the base and total
spaces. This implies that the first nonzero vector spaceHq(K(Z/mZ, 1); k)
persists toE∞ and hence contributes toHq(CP (∞); k) which has already been
accounted for by the base space. This proves the lemma. ut

We recall from Chapter 4 some facts about the Steenrod algebra. Whenp is
an odd prime, a sequence of nonnegative integersI = (ε0, s1, ε1, . . . , sm, εm),
withεj = 0or1 for all j, represents the operationStI = βε0P s1βε1 · · ·P smβεm
in Ap. Such a sequence represents an element in a basis forAp overFp when-
ever the sequence isadmissible, that is,si ≥ psi+1 + εi form > i ≥ 1. When
p = 2, we write such a sequence asI = (s1, . . . , sm) to which we associate
the operationStI = Sqs1Sqs2 · · ·Sqsm ∈ A2. A sequence is admissible mod 2
whensi ≥ 2si+1 for m > i ≥ 1.

Definition 6.17. For p an odd prime letI = (ε0, s1, ε1, . . . , sm, εm) be an
admissible sequence. Thedegreeof the associated operation is denoted by|I|
and is given by|I| = 2(p− 1)(s1 + · · ·+ sm) + ε0 + · · ·+ εm. If x is a class
in Hr(X;Fp), then StIx is a class inHr+|I|(X;Fp). Theexcessof I is given
by

e(I) = 2(s1 − ps2) + 2(s2 − ps3) + · · ·+ 2(sm−1 − psm)
+ 2sm + ε0 − ε1 − · · · − εm

= 2s1p+ 2ε0 − |I|.
Whenp = 2, I = (s1, . . . , sm), |I| = s1 + · · ·+ sm ande(I) = 2s1 − |I|.

Before stating the main theorem, we state a rather technical lemma that
describes how admissible sequences of a certain excess can be constructed from
those of lower excess. The proof is an exercise in the definitions of admissibility
and excess, with some careful bookkeeping, and is left to the reader. This lemma
is crucial in the proof of the main result of this section.

Lemma 6.18.Letp be an odd prime and define the admissible sequences

J tk = (0, ptk, 0, pt−1k, . . . , 0, pk, 0, k) J̄ tk = (1, ptk, J t−1
k ).

SupposeI = (ε0, s1, ε1, . . . , sm, εm) is an admissible sequence withe(I) ≤ n
for somen.

(1) Whenn+|I| is even andt ≥ 0, letk = (1/2)(n+|I|). WriteJ◦I = (J, I)
for the concatenation of admissible sequences. ThenJ tk ◦ I is admissible
ande(J tk◦I) = n. Furthermore,J̄ tk◦I is admissible ande(J̄ tk◦I) = n+1.

(2) If K is any admissible sequence withe(K) = n+ 1, then there is at ≥ 0
and a subsequenceI of K with e(I) ≤ n such thatK = J tk ◦ I and
2k = n+ 1 + |I|; or K = J̄ tk ◦ I with 2k = n+ |I|; or K = J tl1 ◦ J̄ t

′

l2
◦ I

with l1 = l2p
t′+1 + 1 and2l2 = n+ 1 + |I|.

The analogous lemma for the prime 2 is left to the reader.
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Theorem 6.19 ([Cartan54]). Letp be an odd prime.(1)H∗(K(Z/pZ, n);Fp) is
a free, graded-commutative algebra on generators StI ın whereın denotes the
fundamental class inHn(K(Z/pZ, n);Fp) and I is an admissible sequence
with e(I) < n or with e(I) = n and I = (1, s, I ′). (2) H∗(K(Z, n);Fp)
is a free, graded-commutative algebra on generators StI ın whereın denotes
the fundamental class inHn(K(Z, n);Fp) and I is an admissible sequence,
I = (ε0, s1, ε1, . . . , sm, εm), with εm = 0 and e(I) < n, or e(I) = n
and I = (1, s, I ′). (3) For k > 1, H∗(K(Z/pkZ, n);Fp) is a free, graded-
commutative algebra on generators StI

kın whereın ∈ Hn(K(Z/pkZ, n);Fp)
andI = (ε0, s1, ε1, . . . , sm, εm) is admissible withe(I) < n or e(I) = n and
I = (1, s, I ′), and ifεm = 1, then StIkın = St(ε0,s1,ε1,... ,sm)(βkın), whereβk
is thekth power Bockstein operation.
Theorem 6.19 ([Serre53]). (1) H∗(K(Z/2Z, n);F2) is a polynomial alge-
bra on elements StI ın whereın ∈ Hn(K(Z/2Z, n);F2) is the fundamental
class andI = (s1, s2, . . . , sm) is an admissible sequence withe(I) < n.
(2) If n > 1, thenH∗(K(Z, n);F2) is a polynomial algebra on genera-
tors StI ın where ın ∈ Hn(K(Z, n);F2) is the fundamental class andI =
(s1, s2, . . . , sm) is an admissible sequence withe(I) < n and sm > 1.
(3) For k > 1, H∗(K(Z/2kZ, n);F2) is a polynomial algebra on elements
StIkın whereın ∈ Hn(K(Z/2kZ, n);F2) is the fundamental class andI =
(s1, s2, . . . , sm) is an admissible sequence withe(I) < n and ifsm = 1, then
StIkın = St(s1,... ,sm−1)βkın, whereβk is thekth power Bockstein homomor-
phism.

Thekth power Bockstein operation is defined by examining the long exact
sequence in cohomology that arises from the short exact sequence of coeffi-
cients,

0→ Z/pZ→ Z/pk+1Z→ Z/pkZ→ 0.

The connecting homomorphism carries the fundamental class,ın, toβkın;

· · · → Hn(K(Z/pkZ, n);Z/pkZ)
βk−→Hn+1(K(Z/pkZ, n);Fp)→ · · · .

See Chapter 10 for other details of such operations.
We present the proof of Theorem 6.19 in detail forp an odd prime andπ =

Z/pZ. This case was first computed by [Cartan54] using acyclic constructions.
Our proof follows the argument of [Serre53] for the casep = 2 as outlined by
[Postnikov66] for odd primes.

We proceed by induction. The key to the general inductive step is a theorem
of [Borel53] for which we need an odd primary notion that substitutes for the
mod 2 simple system of generators (Definition 5.12).

Definition 6.20.A graded-commutative algebra overFp,W ∗, is said to have a
p-simple system of generators{xi | i ∈ J} for J some totally ordered set, if
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W ∗ is generated as a vector space overFp by the monomialsxm1
i1
xm2
i2
· · ·xmkik

wherei1 < i2 < · · · < ik and, for1 ≤ j ≤ k, 0 ≤ mj ≤ p − 1, if deg xij is
even;0 ≤ mj ≤ 1, if deg xij is odd.

A canonical example isFp[u], the polynomial algebra, withu of even
degree. The uniqueness of the basep expansion of a natural number implies that
{u, up, up2

, . . . } is ap-simple system of generators. This system of generators
can be represented using Steenrod operations: Supposedeg u = 2k, then the
sequence becomes{u, P ku, P kp(P ku), P kp

2
(P kp(P ku)), . . . }. The reader

can compare the next theorem with Example 1.I and Theorem 3.27.

Theorem 6.21. Suppose{E∗,∗r , dr} is a first-quadrant spectral sequence of
algebras overFp satisfying the following hypotheses:

(1) E∗,∗2
∼= V ∗ ⊗W ∗ withE∗,02

∼= V ∗ andE0,∗
2
∼= W ∗ as algebras,

(2) E∗,∗∞ is trivial,
(3) W ∗ has ap-simple system of transgressive generators{xi | i ∈ J}.

ThenV ∗ is a free, graded-commutative algebra on generators{yi, zj | i, j ∈ J}
whereyi = τ(xi) andzj = τ(yj ⊗ xp−1

j ) whenxj has even degree. Hereτ
denotes the transgression,deg yi = 1 + deg xi anddeg zj = 2 + p deg xj .

Proof ([Borel53,§§16, 17]): The proof follows the same outline as the proof
of Theorem 3.27. We introduce two versions of elementary spectral sequences:
Fors odd, letE(s) denote the spectral sequence with

E(s)∗,∗2
∼= Fp[y]⊗ Λ(x)

wherebideg x = (0, s), bideg y = (s + 1, 0), andτ(x) = y. We can picture
E(s) in this case as in the diagram:

The spectral sequenceE(s) satisfies the hypotheses and conclusion of
Theorem 6.21 and furthermore,Fp[y] has ap-simple system of generators.

Fors even, letE(s) denote the spectral sequence with

E(s)∗,∗2
∼= Λ(y)⊗ Fp[z]⊗ Fp[x]/〈xp = 0〉

wherebideg x = (0, s), bideg y = (s+ 1, 0), bideg z = (2 + sp, 0), τ(x) = y
andτ(y⊗xp−1) = z. We pictureE(s) in this case as in the diagram on the next
page. Once again,E(s) satisfies the hypotheses and conclusion of the theorem.
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y

x2

x3
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Suppose the hypotheses of Theorem 6.21 hold anddeg xi = si for the
generators ofW ∗. Form the spectral sequence,

⊗
i∈J

E(si) together with the

mapping ofE2-terms,
⊗

i∈J
E(si)

∗,∗
2 −→ E∗,∗2 that induces an isomorphism⊗

i∈J
E(si)

0,∗
2 → E0,∗

2
∼= W ∗. By Zeeman’s comparison theorem (Theorem

3.26) we deduce that
⊗

i∈J
E(si)

∗,0
2 → E∗,02

∼= V ∗ is an isomorphism of

Fp-vector spaces.
ExaminingE(si)

∗,0
2 in each case, we find the expected free, graded-

commutative algebras. It remains to show thatV ∗ is free. The argument is
similar to the one given in Example 1.K and so we leave it to the reader.ut

To prove Theorem 6.19 we apply induction on the integern and the Leray-
Serre spectral sequence for the fibration

K(Z/pZ, n) −→ PK(Z/pZ, n+ 1) −→ K(Z/pZ, n+ 1).

Whenn = 1, K(Z/pZ, 1) has the homotopy type of the lens spaceL∞(p),
which can be constructed as the direct limit of orbit spaces,

· · · ↪→ S2k+1/
Z/pZ ↪→ S2k+3/

Z/pZ ↪→ · · · .

HereS2k+1 is taken to be the unit vectors inCk+1 andZ/pZ acts diagonally as
the group ofpth roots of unity inC. It is elementary to computeH∗(L∞(p);Fp)
from the cell structure (see, for example, [Whitehead, GW78, p.92]):

H∗(K(Z/pZ, 1);Fp) = Λ(ı1)⊗ Fp[βı1],

whereı1 ∈ H1(K(Z/pZ, 1);Fp) is the fundamental class. To begin the induc-
tion, we establish thatH∗(K(Z/pZ, 1);Fp) satisfies the conditions of Theorem
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6.19. According to the definition of excess,e(I) = 0 can only be satisfied by
the admissible sequence(0) giving the elementı1. Whene(I) = 1 we have the
sequences(1) and (0, pt, 0, pt−1, . . . , 0, p, 0, 1, 1), corresponding to(βı1)p

t

for t ≥ 0. Only (1) produces a generator, and the sequencesJ t1 ◦ (1) determine
ap-simple system of generators forH∗(K(Z/pZ, 1);Fp).

We apply Borel’s theorem as the inductive step. Suppose that the al-
gebraH∗(K(Z/pZ, n);Fp) is given as described in the theorem. IfI =
(ε0, s1, ε1, . . . , sm, εm) is an admissible sequence withe(I) ≤ n, then the
generatorStI ın transgresses toStI ın+1 by Corollary 6.9 and the fact thatın
transgresses toın+1. WhenStI ın is of even degree, it contributes thep-simple
system of generators{StI ın, (StI ın)p, (StI ın)p

2
, . . . } toW ∗. We can write this

system as
{StI ın, P

kStI ın, P
kp(P kStI ın), . . . }

where2k = n+ |I|. These elements transgress to generatorsStJ
t
k◦I ın+1 where

J tk is described in Lemma 6.18. ThusH∗(K(Z/pZ, n);Fp) has ap-simple
system of transgressive elements.

The spectral sequence for the path-loop fibration overK(Z/pZ, n + 1)
provides the rest of the hypotheses and soH∗(K(Z/pZ, n + 1);Fp) is a free,
graded-commutative algebra on certain generators. It remains to determine that
the generators are the ones described in the theorem.

Whendeg(StI ın) is odd. ThenStI ın+1 generates a polynomial subalgebra
of H∗(K(Z/pZ, n+ 1);Fp).

Whendeg StI ın is even, let2k = n + |I| and we get elements{StI ın+1,

StJ
0
k◦I ın+1,StJ

1
k◦I ın+1, . . . } in Hodd(K(Z/pZ, n + 1),Fp), all of the form

StI
′
ın+1 wheree(I ′) ≤ n. The new generators take the form

{τ [StI ın+1 ⊗ (StI ın)p−1], τ [P k(StI ın+1)⊗ (P kStI ın)p−1], . . . }.

Here2k = n + |I| with e(I) ≤ n. The Kudo transgression theorem implies
that

τ [StJ
t
k◦I ın+1 ⊗ (StJ

t
k◦I ın)p−1] = −βP kptStJ

t
k◦I ın+1 = −StJ̄

pt+1

k
◦I ın+1

From Lemma 6.19 we concludee(J̄p
t+1

k ◦I) = n+1. Since the converse part of
Lemma 6.19 describes all admissible sequences of excess equal ton+1, we have
proved thatH∗(K(Z/pZ, n+1);Fp) is a free, graded-commutative algebra on
generatorsStK ın+1 whereK is an admissible sequence withe(K) < n+ 1 or
e(K) = n+ 1 andK = (1, s, I) for some sequenceI with e(I) ≤ n.

To prove the stated results forK(Z, n) andK(Z/pkZ, n) we simply ob-
serve that the inductions begin as described. ForK(Z, 2) we takeCP (∞) as
a representative of its homotopy type andH∗(CP (∞);Fp) ∼= Fp[ı2] satisfies
the theorem. The same proof goes overmutatis mutandis. For higher powers
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of p, we can representK(Z/pkZ, 1) as the lens spaceL∞(pk). By a careful
accounting of the Bockstein homomorphism, it is elementary to prove that

H∗(L∞(pk);Fp) ∼= Λ(ı1)⊗ Fp[βkı1]

and the induction is off and running. Finally, we remark that the analogous
argument works for the prime 2. ut

Having completed these calculations, let us put them to work. For the
rest of this section, we fixp = 2. (The case of odd primes is similar but the
bookkeeping is more complicated. See the paper of [Umeda59].) In this case all
the algebras involved are free and strictly commutative and have simple systems
of generators as in Definition 5.12.

Recall from Example 1.F, the definition of the Poincar´e series of a space,
here given for coefficients in the fieldF2:

P (X, t) =
∑∞

i=0
(dimF2 H

i(X;F2))ti.

Let P (π, q, t) = P (K(π, q), t). Theorem 6.19 states

H∗(K(Z/2Z, q);F2) ∼= F2[StI ıq | I = (s1, . . . , sm), admissible, e(I) ≤ q].

It follows thatP (Z/2Z, q, t) =
∏

I, admissible, e(I)≤q

1
1− tq+|I| .

In what follows, we make a closer analysis of these formal power series. To
wit, consider an admissible sequenceI = (s1, s2, . . . , sm). Sincesi ≥ 2si+1,
the sequence can be described by an associated one,(α1, α2, . . . , αm) defined
by αm = sm and, fori < m, αi = si − 2si+1. Notice that the excess (how
muchsi exceeds2si+1) is equal to

∑
i αi. If we denote a typical factor of

P (Z/2Z, q, t) by 1/(1− tN ), thenN = q + |I|, and

N − q = |I| =
∑m

i=1
si =

∑m

i=1
αi(2i − 1).

The last equation can be seen as follows;

sm = αm sm−1 = αm−1 + 2sm
= αm−1 + 2αm

sm−2 = αm−2 + 2sm−1

= αm−2 + 2αm−1 + 4αm,

and one continues by induction. Introduceα0 = q−1−
∑m

i=1
αi. This allows

us to write

|I| = N − q =
∑m

i=1
αi2i −

∑m

i=1
αi =

∑m

i=1
αi2i − (q − 1− α0)

=
∑m

i=0
αi2i − q + 1.
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ThusI is determined by a sequence(α0, α1, . . . , αm) whose sum isq− 1 and
for which

n = q + |I| = 1 +
∑m

i=0
αi2i

= 1 + 20 + · · ·+ 20︸ ︷︷ ︸
α0

+ 21 + · · ·+ 21︸ ︷︷ ︸
α1

+ · · ·+ 2m + · · ·+ 2m︸ ︷︷ ︸
αm︸ ︷︷ ︸

q−1 powers of 2

= 1 + 2h1 + 2h2 + · · ·+ 2hq−1 with 0 ≤ h1 ≤ h2 ≤ · · · ≤ hq−1.

This implies the following expression.

Proposition 6.22.P (Z/2Z, q, t) =
∏

0≤h1≤···≤hq−1

1

1− t1+2h1+···+2hq−1
.

A similar development forP (Z, q, t) yields

P (Z, q, t) =
∏

0≤h1≤···≤hq−3<hq−2

1

1− t1+2h1+···+2hq−2
.

In the case of higher order torsion, a higher order Bockstein takes the place of
the ordinary Bockstein, and it follows thatP (Z/2kZ, q, t) = P (Z/2Z, q, t).

We record some facts about these Poincar´e series with regard to their
analytic properties. For proofs, the interested reader should consult the proofs
of [Serre53], [Ahlfors66, p. 191] or the local analytic number-theorist.

Fact 1. For π, a finitely generated abelian group,P (π, q, t) is a convergent se-
ries, on the open unit disk{ t ∈ C; |t| < 1 }with an evident essential singularity
at t = 1.

In order to study the behavior of these functions neart = 1, Serre intro-
duced the functions, defined forx large,

φ(π, q, x) = log2 P (π, q, 1− 2−x).

Fact 2. φ(Z/2Z, q, x) ∼ xq

q!
, andφ(Z, q, x) ∼ xq−1

(q − 1)!
, wheref(x) ∼ g(x)

if lim
x→∞

f(x)/g(x) = 1.

SinceP (Z/2Z, 1, t) =
1

1− t (K(Z/2Z, 1) ∼= RP (∞)), φ(Z/2Z, 1, x) = x.

The proof ofFact 2 follows by induction and a careful use of the product
expansion in Proposition 6.22.

From these facts about the Poincar´e series of Eilenberg-Mac Lane spaces,
we prove a remarkable theorem of [Serre53].
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Theorem 6.23. If X is a finite CW-complex that is connected and simply-
connected, andX is not contractible, thenπi(X) contains a subgroup isomor-
phic toZ or Z/2Z for infinitely manyi.

Toward the proof, we introduce another construction associated to a space
X, a tower of fibrations withX at the bottom.

u
K(π2(X), 1) w X〈3〉

u
K(π1(X), 0) w X〈2〉

u
X

At each successive stage, we “kill” the bottom dimensional homotopy group
of the previous stage by attaching the appropriate series of higher dimensional
cells.

Definition 6.24. Theupside-down Postnikov towerof a spaceX is a tower
of fibrations satisfying the properties:

(1) X〈2〉 is the universal cover ofX,
(2) the composite map,p : X〈n〉 → X induces an isomorphism, ifj ≥ n,

πj(p) : πj(X〈n〉)→ πj(X).

(3) πj(X〈n〉) = {0} for j < n.

The homotopy long exact sequence for each fibrationX〈n〉 → X〈n− 1〉
shows that the fibre is aK(πn−1(X), n − 2). Such towers were introduced
independently by [Cartan-Serre52] and by [Whitehead, GW52]. The upside-
down Postnikov tower can be related to the usual Postnikov tower by observing
that the spaceX〈n〉 can be constructed as the homotopy-theoretic fibre of the
mappingX → PnX wherePnX is thenth space in the Postnikov tower forX.
Up to homotopy we have the fibrationX〈n〉 → X → PnX.

Proof of Theorem 6.23: SupposeN is the largest integer for which
πN (X) contains a subgroupZ orZ/2Z. Consider the fibration

K(πN (X), N − 1)→ X〈N + 1〉 → X〈N〉.

If H̃∗(X〈N + 1〉;F2) = {0}, then the Zeeman comparison theorem im-
pliesH∗(X〈N〉;F2) ∼= H∗(K(πN (X), N);F2). We prove the vanishing of
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H̃∗(X〈N+1〉;F2): By Lemma 6.16,̃H∗(K(πN+k(X), N+k−2);F2) = {0}
for all k > 0 and so the mod 2 cohomology Leray-Serre spectral sequence for
the fibrationK(πN+k(X), N + k − 2)→ X〈N + k〉 → X〈N + k − 1〉 col-
lapses to yieldH∗(X〈N + k〉;F2) ∼= H∗(X〈N + k− 1〉;F2). Stringing these
isomorphisms together we have thatH∗(X〈N+1〉;F2) ∼= H∗(X〈N+k〉;F2)
for all k > 0. SinceX〈N + k〉 can be made to be arbitrarily highly connected,
H̃∗(X〈N + 1〉;F2) = {0}.

Recall, from Chapter 1, some of the properties of Poincar´e series:

(1) If {E∗,∗r , dr} is a first quadrant spectral sequence, converging toH∗, then
P (E∗,∗2 , t) ≥ P (H∗, t). (Recall thatP (A, t) ≥ P (B, t) if the power
seriesp(t) = P (A, t) − P (B, t) has all nonnegative coefficients.) In

particular, ifF ↪→ E
p
−→ B is a fibration, thenP (B, t) × P (F, t) ≥

P (E, t).
(2) If π = π1 ⊕ π2, all finitely generated abelian groups, thenP (π, q, t) =

P (π1, q, t)×P (π2, q, t). (Here× denotes the Cauchy product of power
series.)

When we apply these observations to the upside-down Postnikov tower,
we have

P (X〈N〉, t) = P (πN (X), N, t)
≤ P (πN−1(X), N − 2, t)× P (X〈N − 1〉, t)
≤ P (πN−1(X), N − 2, t)× P (πN−2(X), N − 3, t)× P (X〈N − 2〉, t)

...

≤ P (X, t)×
∏N−1

j=2
P (πj(X), j − 1, t)

Because these power series have only positive coefficients, the inequality of
power series gives an actual inequality on evaluation whent is in the interval
[0, 1). Also, log2 is an order-preserving function. Thus, forx large, we have

φ(πN (X), N, x) ≤ log2(P (X, 1− 2−x)) +
∑N−1

j=2
φ(πj(X), j − 1, x).

If we express a finitely generated abelian groupπ as a direct sum

π ∼= Z⊕ Z⊕ · · · ⊕ Z⊕ Z/2k1Z⊕ · · · ⊕ Z/2krZ⊕ stuff of odd torsion,

then, at the prime 2,P (π, q, t) =
(∏s

1
P (Z, q, t)

)
×
(∏r

1
P (Z/2Z, q, t)

)
and it follows thatφ(π, q, x) =

∑s
1 φ(Z, q, x) +

∑r
1 φ(Z/2Z, q, x). From this

equation we have thatφ(π, q, x) ∼ rxq/q!, or, if r = 0, thenφ(π, q, x) ∼
sxq−1/(q − 1)! wheres is the number of factors ofZ appearing in the decom-
position.
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Since the spaceX is a finite CW-complex,P (X, t) is a polynomial int
and solimx→∞ P (X, 1 − 2−x) = P (X, 1). Thus,log2(P (X, 1 − 2−x)) ∼
a constant. Putting this together with the inequality boundingP (X〈N〉, t), we
see that the left hand side (lhs)φ(πN (X), N, x) converges likerNxN/N ! or
sNx

N−1/(N − 1)! asx grows unbounded, depending on the decomposition of
πN (X). On the right hand side (rhs) of the inequality, we find the relation

log2(P (X, 1− 2−x)) +
∑N−1

j=2
φ(πj(X), j − 1, x) ∼ A · xN−2

(N − 2)!
.

However, asx goes to infinity, the inequality must be violated at somex since

rN
xN

N !
∼ lhs ≤ rhs ∼ A xN−2

(N − 2)!
.

This contradiction to the existence of such anN establishes the theorem. ut
Around 1950, little was known about homotopy groups. These groups

were known to be denumerable for finite CW-complexes. For spheres,πn(Sn),
π3(S2),π7(S4) andπ15(S8) had been computed and shown to be isomorphic to
Z⊕finite. Other cases were computed by [Freudenthal37] (πn+1(Sn) ∼= Z/2Z)
and [Whitehead, GW50] (πn+2(Sn) ∼= Z/2Z). It was not known whether the
groups were nontrivial after a certain range of dimensions (by analogy with ho-
mology groups). In his thesis [Serre51] proved thatπi(X) is finitely generated
whenX is a simply-connected, finite CW-complex (Proposition 5.17). He also
established the finiteness ofπi(Sn) for i 6= n (and i 6= 2n − 1 for n even)
as in Example 5.K. With the further development of these methods (Theorem
6.23) [Serre53] proved the nontriviality of infinitely many homotopy groups
of any noncontractible finite complex. To quote [Whitehead, GW83] from his
history of homotopy theory, “It is no exaggeration to say that Serre’s thesis
revolutionized the subject.”

The analogous theorem for odd primes given by Theorem 6.23 was proved
by similar means by [Umeda59]. The theorem for all primes has been extended
by [McGibbon-Neisendorfer84] to remove the finiteness assumption and replace
it with the conditions thatX be simply-connected,Hn(X;Fp) 6= {0} for some
n ≥ 2, andHn(X;Fp) = {0} for n sufficiently large. They conclude further
that there isp-torsion in infinitely many homotopy groups ofX. Their proof
relies on the study of [Miller, H84] of the space of mappingsmap(BZ/2Z, X)
for X a finite complex.

The upside-down Postnikov tower may be used to prove a generalization
of the rational Hurewicz theorem (Theorem 5.18) to fields of arbitrary charac-
teristic.

Theorem 6.25 (the Hurewicz-Serre theorem).Suppose thatk is a field andX
a simply-connected space of finite type. IfHi(X; k) = {0} for 1 ≤ i < n, then
πi(X)⊗ k = {0} for 1 ≤ i < n andπn(X)⊗ k ∼= Hn(X; k).
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Proof: We show by induction onj that, under the assumptions,Hi(X〈j〉; k) =
{0} for 0 < i < n and0 ≤ j ≤ n. Forj = 1,X〈2〉 = X becauseX is simply-
connected. Furthermore,π1(X)⊗ k = {0} for trivial reasons.

The key to the induction step is the Leray-Serre spectral sequence for
the fibrationsK(πj(X), j − 1) → X〈j + 1〉 → X〈j〉. We assume that
Hi(X〈j〉; k) = {0} for 0 < i < n. TheE2-term for the fibration takes
the formE2

p,q
∼= Hp(X〈j〉; k) ⊗k Hq(K(πj(X), j − 1); k). If πj(X) ⊗ k ∼=

Hj−1(K(πj(X), j−1); k) were nonzero, thenE2
0,j−1 6= {0} and sinceE2

i,0 =
{0} for 0 < i < n andj < n, there is no nonzero differential to hitE2

0,j−1

and soHj−1(X〈j + 1〉; k) 6= {0}, which contradicts the fact thatX〈j + 1〉
is j-connected. Thusπj(X) ⊗ k = {0} for j < n and, by Lemma 6.16,
H̃∗(K(πj(X), j − 1); k) = {0}. This implies thatH∗(X〈j + 1〉; k) ∼=
H∗(X〈j〉; k) and the induction is complete.

When j = n − 1, we have shown thatHn(X; k) ∼= Hn(X〈n〉; k) ∼=
πn(X)⊗ k. ut

In the special case ofX = S2n−1 we can be very explicit about the
computation. The following result of [Serre51] extends our knowledge of the
homotopy groups of spheres.

Proposition 6.26.For n > 1, Hi(S2n−1〈2n〉;Fp) = {0} for 0 < i < 2n +
2p− 3 andH2n+2p−3(S2n−1〈2n〉;Fp) ∼= Fp.

Proof: Since we know thatπ2n−1(S2n−1) ∼= Z, we have the fibration

K(Z, 2n− 2)→ S2n−1〈2n〉 → S2n−1.

By Theorem 6.19,H∗(K(Z, 2n−2);Fp) is a free graded-commutative algebra
on generatorsStI ı2n−2 for admissible sequencesI = (ε0, s1, ε1, . . . , sm, εm)
with εm = 0 ande(I) ≤ 2n−2. The transgression takesı2n−2 to the generator
u ∈ H2n−1(S2n−1;Fp) and the powersıj2n−2 map tou ⊗ ıj−1

2n−2 for j < p.
The class in least degree that persists toE∞ and determines the connectivity of
H∗(S2n−1〈2n〉;Fp) is P 1ı2n−2 ∈ H2n−2+2(p−1)(K(Z, 2n − 2);Fp). Since
P 1 corresponds to the admissible sequence(0, 1, 0) of excess 2,P 1ı2n−2 is
found inH∗(K(Z, 2n− 2),Fp) for all n > 1. ut

By constructionπj(S2n−1〈2n〉) ∼= πj(S2n−1) for j > 2n− 1 and so the
Hurewicz-Serre theorem implies the following result.

Corollary 6.27. πi(S2n−1) ⊗ Fp = {0} for 2n − 1 < i < 2n + 2p − 3 and
π2n+2p−3(S2n−1)⊗ Fp ∼= Fp.

Analogous results for even-dimensional spheres can be obtained by similar
arguments. The argument for Corollary 6.27 and the Freudenthal suspension
provide the basis for an induction that motivates the Adams spectral sequence
of Chapter 9.
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6.3 On classifying spaces and characteristic classes

Among the successful applications of homotopy theory, few are as spec-
tacular as those found in the study of vector fields on manifolds. It was already
known, in the “ancient” origins of the subject, that geometric problems of this
sort could be tackled with topological tools. For example, the Poincar´e in-
dex theorem ([Poincar´e1881]) relates the index of a vector field to the Euler
characteristic of the manifold.

Certain problems on differentiable manifolds can be seen to involve, if not
reduce to, the problem of the existence of linearly independent vector fields
on a manifold. An example is the problem of embedding anm-dimensional
manifoldM in a Euclidean spaceRN . Such an embedding leads to a bundle of
(N−m)-dimensional vector spacesνM overM of normal vectors to the tangent
space. A necessary condition that the manifold be embedded in a dimension
lower inRN−1 is a nonzero vector field of vectors inνM . Another problem that
can be formulated this way is the problem of the existence of a division algebra
structure onRn (see [Adams60] and Chapter 9 for this idea).

[Stiefel36] in Switzerland [Whitney35], then at Harvard, introduced the
idea ofcharacteristic classestoward solving the problem of determining the
number of linearly independent vector fields on a manifold in a given vector bun-
dle. Following [Steenrod51], these characteristic classes arise as follows: Let
Gk(Rn) denote theGrassmann manifoldof k-dimensional linear subspaces in
R
n. Triangulate the manifoldM and suppose there is a bundle ofn-dimensional

real vector spaces overM . Assignk linearly independent vectors at each ver-
tex of the triangulation. This gives a mapping,M (0) → Gk(Rn), sending each
vertex in the 0-skeleton ofM to thek-dimensional subspace spanned by thek
vectors in an identification of the vector space at a point withR

n. The problem
is to extend this assignment from the 0-skeleton to the 1-simplices, and then to
M (1), the 1-skeleton ofM , and so on, proceeding a dimension at a time. The
obstruction to extending the assignment at dimension(i− 1) to an assignment
on thei-skeleton is a cocycle inCi(M,πi−1(Gk(RnM ))), the cochains onM
with coefficients in the system of local coefficients,

πi−1(Gk(the vector space at each point inM)).

By reducing mod 2, these obstructions determine classeswi ∈ Hi(M ;F2)
now known as theStiefel-Whitney classesof the bundle under consideration.
Analogous constructions given by [Chern48] for bundles of complex vector
spaces and by [Pontryagin47] are important tools in the study of manifolds.

Characteristic classes are useful in the classification of vector bundle struc-
tures on manifolds. One can reverse the process by building vector bundles on
manifolds using the properties of specially constructed spaces calledclassifying
spaces. The algebraic topology of classifying spaces is the subject to which
we next turn the Leray-Serre spectral sequence. We first introduce some of
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the fundamental notions of vector bundles with structure and sketch the con-
struction and properties of classifying spaces. We then study the cohomology
of classifying spaces with the aid of the Leray-Serre spectral sequence. These
computations were first done by [Borel53] in his celebrated thesis. Finally,
we reconsider characteristic classes, having computed the cohomology of the
classifying spaces and apply those results to some geometric problems.

The details of the theory of characteristic classes would easily double
the length of this book and take us, not unhappily, far afield of our central
concern. There are many good expositions of these topics, for example, the
papers of [Borel53, 55], and the books of [Milnor-Stasheff74], [Dupont78],
[Husemoller66], and [Bott-Tu82]. Our goal is to demonstrate to the reader the
crucial role played by the Leray-Serre spectral sequence in this development.

On vector bundles and classifying spaces

We begin with the observation that the tangent bundle to a manifold is
more than a fibration—it carries extra structure.

Definition 6.28. A fibrationF ↪→ E
p
−→B is a fibre bundle with structure

group G if the following hold

(1) G is a topological group and there is an action ofG on F , the fi-
bre, µ : G × F → F , satisfying, for allg1, g2 ∈ G and all x ∈ F ,
µ(g1, µ(g2, x)) = µ(g1g2, x) andµ(e, x) = x. Furthermore, the ac-
tion iseffective, that is, ifµ(g, x) = x for all x in F , theng = e.

(2) There is a family,{Uj | j ∈ J} of open sets ofB that coverB and, for
eachj in J , a homeomorphism,ϕj : Uj ×F → p−1(Uj), satisfying the
equationpϕj(x, y) = x.

(3) For each pair,i, j in J , andx in Ui∩Uj , the mappinggij(x) defined by

gij(x) = ϕi(x,−)−1 ◦ ϕj(x,−) : F → p−1({x})→ F

is continuous inx and given by left multiplication by an element ofG,
that is, the mapgij determines a continuous functionUi ∩Uj → G and
gij(x)(y) = µ(gij(x), y).

The principal example is the tangent bundle to a manifold. There the fibre
isRm forM , anm-dimensional manifold, and the structure group may be taken
to beGl(m,R), the group of invertible(m×m)-matrices. If we consider only
the unit tangent vectors at each point inM , we have a fibre bundle withSm−1 as
fibre and structure group O(m), the group of invertible, real(m×m)-matrices
A with AtA = 1. If the manifoldM is orientable, then the structure group for
the associated sphere bundle may be taken as SO(m).

In order to classify the fibre bundles with given fibreF and structure group
G over a fixed spaceB, we introduce a notion of equivalence of such bundles.
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Definition 6.29.A morphism of fibre bundles,

(f, f̃) : (G,F,E, p,B) −→ (G,F ′, E′, p′, B′)

is a pair of maps,f : B → B′ andf̃ : E → E′ such that the following diagram
commutes,

E w

f̃

u
p

E′

u
p′

B w
f

B′,

andf̃
∣∣
F

: F → F ′ over each point is aG-equivariant map, that is, for allg ∈ G
andx ∈ F , f̃(µ(g, x)) = µ′(g, f̃(x)). For B = B′, we say that a morphism
(1, f̃) is an equivalence of bundlesif f̃

∣∣
F

: F → F ′, over each point, is a
homeomorphism.

A sufficiently differentiable mapping of manifolds,f : M → N , provides
a bundle morphism of the tangent bundles and a diffeomorphism of a manifold
to itself provides an example of an equivalence of the tangent bundle with itself.

The first reduction of the problem of classifying all fibre bundles over a
spaceB with a given fibre and structure group is to focus on bundles of a certain
type.

Definition 6.30.A fibre bundle is said to be aprincipal bundle if it has structure
groupGand fibreGwith the action ofGon the fibre given by left multiplication.

Let ξ = (G,F,E, p,B) denote a fibre bundle with structure groupG. We
associate a principal bundle to this bundle by taking the dataϕj : Uj × F →
p−1(Uj) andgij(x) : F → F and replacingF with G everywhere. Property
(3) of Definition 6.28 guarantees that another fibre bundle results. We call the
new bundle constructed in this manner theassociated principal bundleto ξ,
and denote it byPrin(ξ) = (G,G,E, p,B).

SupposeF is aG-space with an effective actionµ : G×F → F . Suppose
further thatη = (G,G,E, p,B) is a principal bundle. We construct a fibre
bundle overB with fibreF , structure groupG, andµ the given action as follows:
Let {Ui} be the open cover ofB given in the principal bundle structure onE.
LetZ =

∐
Ui×G×F denote the disjoint union of the setsUi×G×F . Define

an equivalence relation onZ for which an element ofUi×G×F is denoted by
(x, i, g, f) and we require, forx ∈ Ui∩Uj , (x, i, g, f) ∼ (x, j, gij(x)g, f) and,
for allh ∈ G, (x, i, g, f) ∼ (x, i, gh, h−1f). We denote byE×GF the quotient
space ofZ by this relation together with the projection̄p([x, i, g, f ]) = x.
The reader can check thatη[F ] = (G,F,E ×G F, p̄, B) is a fibre bundle (see
[Husemoller66,§5.3.2]). This procedure is seen to be effective for our purposes
in the next proposition. For a proof the reader can consult the classic books of
[Steenrod51] or [Husemoller66].
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Proposition 6.31.Let ξ = (G,F,E, p,B) denote a fibre bundle with fibreF
and structure groupG. Let η = (G,G,E′, p′, B) denote a principal bundle
overB with structure groupG. Thenξ is equivalent as a bundle toPrin(ξ)[F ]
andη is equivalent as a bundle toPrin(η[F ]).

The proposition reduces the classification problem to determining principal
G-bundles overB. If we viewG as a group of transformations on the fibreG,
then the motivating example of classification is the theory of covering spaces
and the fundamental group; any covering space over a space can be constructed
from the universal covering space. By analogy we seek a universal principal
G-bundle over a space. The following proposition allows us to identify the
defining property of such a universal principal bundle. It is also makes use of
another ingredient in the construction of fibrations—the pullback of a fibration
over a continuous mapping (§4.3).

Proposition 6.32.Supposeξ = (G,G,E, p,B) is a principalG-bundle over
B, a Hausdorff, paracompact space. Supposef, g : X → B are homotopic
maps, thenf∗ξ = (G,G, f∗E, f∗p,X) andg∗ξ = (G,G, g∗E, g∗p,X), the
induced principal bundles overX, are equivalent.

Sketch of proof: Consider the diagram withH a homotopy fromf to g.

f∗E × I w

u
f∗p×1

E

u
p

X × I w
H

B

This diagram is completed by the homotopy lifting property for fibrations and so
this gives the data for a bundle homotopy fromf∗E tog∗E. One can argue from
the unique lifting of paths that the bundle homotopy provides an isomorphism
of bundles. For all of the details, see [Husemoller66,§4.9]. ut

Definition 6.33. A principalG-bundleη = (G,G,E, p,B) is n-universal if
πi(E) = {0} for i ≤ n. If πi(E) = {0} for all i, then we say thatη is a
universal bundleand we denoteE byEG,B byBG. The spaceBG is called
theclassifying spacefor G.

To establish the “universality” of these bundles one supposes given a prin-
cipalG-bundle,(G,G,E, p,B). Over each finite skeleton ofB, a mapping can
be constructed,B(k) → BG, that pulls back to the given bundle. The obstruc-
tions to extending the mapping to the next skeleton lie in the cohomology of
B with coefficients in the homotopy ofEG and so they vanish. If we restrict
B to be a CW-complex of dimensionn, then a principalG-bundle overB is
the pullback of ann-universal bundle over a continuous mapping. When we
combine these ideas with Proposition 6.31, we have proved the following result.
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Theorem 6.34.If χ(n) = (G,G,E(n,G), p, B(n,G)) is ann-universal bundle
andB a CW-complex of dimension≤ n, then the set{ equivalence classes of
principal G-bundles overB } is in one-to-one correspondence with the set of
homotopy classes of maps[B,B(n,G)].

Corollary 6.35. If χ = (G,G,EG, p,BG) is a universal bundle forG andB
of the homotopy type of a CW-complex, then the set{ equivalence classes of
principalG-bundles overB } is in one-to-one correspondence with[B,BG].

Some examples are in order:
(a) SupposeG = Z/2Z. Then, for eachn, we have the bundle

Z/2Z −→ Sn −→ RP (n)

whereRP (n) denotes the real projectiven-space. ThusRP (n) is a version of
B(n− 1,Z/2Z). The series of equatorial inclusions gives the system

Sn w

u

Sn+1
w

u

· · · w S∞

u
RP (n) w RP (n+ 1) w · · · w RP (∞).

The direct limit is theZ/2Z-bundleZ/2Z ↪→ S∞ → RP (∞) with S∞ weakly
contractible, a universal bundle forZ/2Z. ThusRP (∞) is a classifying space
for Z/2Z.
(b) Recall from Chapter 5 the Stiefel manifolds of orthonormalk-frames inRn,
Vk(Rn). Consider the mapping,Vk(Rn)→ Gk(Rn) which sends ak-frame in
R
n to thek-dimensional linear subspace it spans. This determines a fibre bundle

with O(k) as structure group. A careful argument with the integral homology
Leray-Serre spectral sequence shows thatπi(Vk(Rn)) = {0} for k 6= n and
i < n− k. ThusGk(Rn) is an(n− k− 1)-classifying space for O(k), and the
standard inclusions,Vk(Rn) ↪→ Vk(Rn+1) andGk(Rn) ↪→ Gk(Rn+1), yield,
in the direct limit, the spaceGk(R∞) a classifying space,BO(k).

These examples were known in the 1940’s and, in the book of [Steenrod51]
there are classifying spaces for closed subgroups of O(k) constructed by using
representation theory. A direct construction ofBG for any topological groupG
was first given by [Milnor56] with later refinements by [Dold-Lashof59], [Stash-
eff63’] and [Milgram67]. We give a construction, following [Milgram67]: If
G is a topological group, letBG denote the quotient space

BG =
⋃

n
∆n ×Gn/ ∼

whereGn isG×G× · · · ×G (n times) and∼ denotes the relations

(t0, . . . , tn, g1, . . . , gn) ∼
{

(. . . , t̂i, . . . , gigi+1, . . . ), if ti = 0
(. . . , ti−1 + ti, . . . , ĝi, . . . ), if gi = e.
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The interested reader can refer to the cited papers for details. Here are some
pertinent facts about this construction.

(1) This definition can be extended to define classifying spaces for associative
H-spaces. The role of associativity and applications of these more general
classifying spaces can be found in [Stasheff63, 63’], [May75] and [Madsen-
Milgram79].

(2) The construction of [Milgram67] is functorial on the category of topological
groups. An example of this functoriality at work is the case when one classifies
the fibration associated to a closed subgroupH ↪→ G.

H ↪→ G −→ G/H

The following diagram commutes:

H

u
i

H w
i

u

G

u
G w

u

EH w

u

EG

u
G/H w BH w

Bi
BG

where the mappingG/H → BH is the classifying map. From functoriality
and the long exact sequence of homotopy groups, we obtain relations among
these spaces. First, the acyclicity ofEG implies thatπi(G) ∼= πi+1(BG),
or more descriptively, thatG has the same homotopy type asΩBG. Indeed,
if G is a simply-connected CW-complex, the Whitehead theorem implies that
G ' ΩBG. Also observe that the classifying mapG/H → BH acts like
the inclusion of the fibre ofBi : BH −→ BG. Thus, for homotopy-theoretic
purposes, we have the fibration

G/H
inc
−−→ BH

Bi
−→ BG.

This plays an important role in Chapter 8 where we computeH∗(G/H; k).
(3) Finally, supposeG is a discrete group. Thenπ0(G) ∼= G andπi(G) = {0}
for i > 0. Thusπ1(BG) ∼= G andπi(BG) = {0} for i 6= 1. It follows that
BG ' K(G, 1) andEG is its universal covering space. Thus the theory of
classifying spaces is a generalization of the theory of covering spaces.

On the cohomology of classifying spaces

With Corollary 6.28, we have reduced the classification of principalG-
bundles over a spaceB to the determination of[B,BG], the set of homotopy
classes of maps fromB to the classifying spaceBG. A crude way to study
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[B,BG] is to consider the image of elements in this set under the cohomology
functor, that is,[f ] : B → BG is sent to

[f ] ∈ [B,BG] 7→ f∗ : H∗(BG;R) −→ H∗(B;R).

We call the image,f∗(H∗(BG;R)) ⊆ H∗(B;R), thecharacteristic ring of
the bundle whose classifying map isf ; nonisomorphic characteristic rings imply
nonequivalent bundles. To make use of the characteristic ring for classification,
we need then to computeH∗(BG;R) for various ringsR.

We would like to apply the Leray-Serre spectral sequence to the fibration
G ↪→ EG→ BG. If we can work backward from knowledge ofH∗(G;R) and
the fact thatH∗(EG;R) ∼= R, then we can computeH∗(BG;R). This situation
recalls the computation ofH∗(K(π, n);Fp), where we knew the cohomology of
the fibre as the inductive hypothesis and proceeded to compute the cohomology
of the base space.

The structure ofH∗(G;R) is based on the fact that cohomology of an
associative H-space of finite type is a graded-commutative Hopf algebra. The
algebraic structure of such Hopf algebras was first studied by [Hopf41] fork, a
field of characteristic zero and, for other fields, by [Borel53].

Theorem 6.36 (the Hopf-Borel theorem).Letk denote a field of characteristicp
wherep may be zero or a prime. A connected Hopf algebraH overk is said
to bemonogenicif H is generated as an algebra by1 and one homogeneous
elementx of degree> 0. If H is a monogenic Hopf algebra, then

(1) if p 6= 2 and degreex is odd, thenH ∼= Λ(x),
(2) if p 6= 2 and degreex is even, thenH ∼= k[x]/〈xs〉 wheres is a power

of p or is infinite (H ∼= k[x]),
(3) if p = 2, thenH ∼= k[x]/〈xs〉 wheres is a power of 2 or is infinite.

If k contains thepth root of each of its elements,k is said to beperfect. A
graded-commutative Hopf algebraH, of finite type over a perfect fieldk is
isomorphic as an algebra to a tensor product of monogenic Hopf algebras.

The algebra generators in the isomorphism given in the theorem constitute
a simple orp-simple system of generators forH. Thus all Hopf algebras of the
type described havep-simple systems of generators.

Proof: We prove the first part of the theorem for the primep and the field
Fp, which is perfect. The reader can provide the characteristic zero case for
himself or herself from the argument here. Chapter 10 also contains the result.
If x has odd degree inH, a monogenic graded-commutative Hopf algebra, then
x · x = −x · x, and if p is odd, thenH ∼= Λ(x). If H has finite dimension
and the generatorx has even degree (orp = 2), then, for someh > 0, xh = 0
while xh−1 6= 0. Such a positive integerh is called theheight of the element
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x. Sincex is also the element of least nonzero degree inH, x is primitive, that
is, ∆(x) = 1⊗ x+ x⊗ 1. It follows that

0 = ∆(xh) = (∆(x))h

= (1⊗ x+ x⊗ 1)h

=
∑h

i=0

(
h

i

)
xi ⊗ xh−i.

Since

(
h

i

)
is congruent to zero modp for all 0 < i < h if and only if h = ps

for some powers (Lucas’s Lemma), the stated form for the monogenic Hopf
algebra holds. WhenH is infinite-dimensional, no power of the generator
vanishes andH ∼= k[x].

To prove the second half of the theorem, we order the algebra generators of
H by degree:deg x1 ≤ deg x2 ≤ deg x3 ≤ · · · . LetAn denote the subalgebra
of H generated by the elementsx1, . . . , xn and 1. The degreewise ordering
of the generators implies that the coproduct∆ is closed onAn and soAn is a
sub-Hopf algebra ofH. Likewise,An−1 is a sub-Hopf algebra ofAn.

We writeBn = An//An−1 forAn/(A+
n−1 ·An) whereA+

n−1 is the degree
positive part ofAn−1 (An−1 = A+

n−1 ⊕ k) andA+
n−1 · An is the ideal ofAn

consisting of products fromA+
n−1 andAn. This quotient is also a Hopf algebra

and monogenic with generatorx̄n. We admit for the moment that we can choose
xn ∈ An with xn 7→ x̄n by the quotientAn → Bn and, more delicately, that
the height ofxn is the same as the height ofx̄n. Let η : Bn → An denote the
algebra monomorphismη(x̄n) = xn.

Consider the composite:

An−1 ⊗Bn
inc⊗η
−−−−→ An ⊗An

µ
−→ An

∆
−→ An ⊗An

1⊗pr
−−−→ An ⊗Bn.

Applied to an elementa⊗ x̄n we get

(1⊗ pr) ◦∆ ◦µ(a⊗ x̄n) = (1⊗ pr)(∆(a) ·∆(xn)) = a⊗ x̄n +
∑

i
y′i⊗ y′′i ,

where the elementsy′i andy′′i are determined by∆ onxn anda. In particular,
no y′i ⊗ y′′i equals−a ⊗ x̄n, and the composite is a monomorphism. Since
An−1 together withxn = η(x̄n) generate all ofAn, the first part of the com-

posite,An−1 ⊗Bn
inc⊗η
−−−−→ An ⊗An

µ
−→ An is an epimorphism, and hence an

isomorphism. This is the inductive step. WritingA1 = B1, the induction can
start and the theorem is proved.

It remains to show that we can choosexn ∈ An of the same height as
x̄n ∈ Bn. Let’s assume thatchar k = p and eitherp = 2 or deg x is even.
The case of interest isBn ∼= k[x̄n]/〈x̄ps〉 for somes > 0. The problem is that
there could be some nontrivial relation—it could happen thatxp

s

n ∈ A+
n−1 ·An
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andxp
s

n 6= 0 for all choices ofxn that map tox̄n. We show that we can
choose a representative forxn such thatxp

s

n = 0. Consider theFrobenius
homomorphism ζ : H → H given byζ(a) = ap. This mapping preserves
the coproduct structure, the algebra structure whenH is graded-commutative,
and takes primitives to primitives. LetZ = ζs(An−1) and form the diagram of
Hopf algebras (we have used the property that ifC ⊂ B ⊂ A is a sequence of
normal inclusions of Hopf algebras, then(A//C)//(B//C) ∼= A//B:

Z
y

u

Z
y

u
An−1 w

uu
qn−1

An w

pr

uu
qn

Bn

An−1//Z w An//Z w
π Bn

Sinceπ is onto, there is ay ∈ An//Z withπ(y) = x̄n. We show thatyp
s

=
0. Consider∆(y) = y⊗1+1⊗y+

∑
j
a′j⊗a′′j . Sinceπ(a′j) = 0 = π(a′′j ), the

elementsa′j , a
′′
j lie inAn−1//Z. Therefore∆(yp

s

) = yp
s⊗1+1⊗yps , that is,

yp
s

is primitive. However, there are no primitives inBn of degreeps deg x̄n and
there are no primitives inAn−1//Z in that dimension. The relations between
the terms of the bottom row imply the exactness of the sequence of primitives:

0→ Prim(An−1//Z)→ Prim(An//Z)→ Prim(Bn).

Thus yp
s

= 0. If we let w be an element inAn with qn(w) = y, then
qn(wp

s

) = yp
s

= 0 and sowp
s ∈ Z. SinceZ = ζs(An−1), there is a

classv ∈ An−1 with wp
s

= vp
s

. But then(w − v)p
s

= 0 andqn(w − v) = y.
We takew− v for our representative ofxn and it has the same height asx̄n. ut

We apply this theorem toH∗(G; k), which has the structure of a connected
Hopf algebra overk whenG is a topological group (actually, as in§4.4, it
suffices forG to be an H-space with homotopy associative product). IfG has
the homotopy type of a finite CW-complex, thenH∗(G; k), for k perfect, has a
decomposition, as an algebra,

H∗(G; k) ∼= Λ(x1, . . . , xr)⊗ k[y1]/〈yp
h1

1 〉 ⊗ · · · ⊗ k[ys]/〈yp
hs

s 〉

with all hi <∞.
In the case thatchar k = 0, the finite dimensionality ofH∗(G; k) im-

plies thatH∗(G; k) ∼= Λ(x1, . . . , xr). This is Hopf’s original theorem (and
Theorem 10.2). When the integral cohomology,H∗(G), has no torsion at the
primep, then itsp-primary information is the reduction of the torsion-free part
of H∗(G) and this is calculable fromH∗(G;Q).
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Proposition 6.37.If G is a topological group of the homotopy type of a finite
CW-complex,k a perfect field of characteristicp, andH∗(G) has no torsion at
the primep, thenH∗(G; k) ∼= Λ(x1, . . . , xr) as an algebra overk with each
xi of odd degree.

In this case, Theorem 3.27 applies to computeH∗(BG; k).

Theorem 6.38. If G is a topological group of the homotopy type of a finite
CW-complex,k a perfect field of characteristicp, andH∗(G) has no torsion
at the primep, H∗(BG; k) ∼= k[y1, . . . , yr] whereyi corresponds toxi under
the transgression.

The computations in Chapter 5 provide data for this theorem. In Example
5.F, we computedH∗(U(n);R) ∼= Λ(x1, x3, . . . , x2n−1) for any commutative
ring of coefficients. For a perfect fieldk, then, Theorem 6.39 implies that
H∗(BU(n); k) ∼= k[c2, c4, . . . , c2n], where the polynomial generatorsci have
degreeci = i and eachci corresponds toxi−1 under the transgression. By
the Universal Coefficient Theorem, we lift the generators to integer coefficients
and soH∗(BU(n)) ∼= Z[c2, c4, . . . , c2n]. The inclusions U(n) ⊂ U(n+ 1) ⊂
· · · ⊂ U determine the infinite unitary group. Computing the inverse limit of
the homomorphisms induced by the inclusions we find nolim

←
1-term and so

H∗(BU) ∼= Z[c2, c4, c6, . . . ].
For the group SO(n) as in Example 5.H (step 3), the Hopf-Borel theorem

(and direct calculation) implies thatH∗(SO(n);F2) has a simple system of
generators{x1, . . . , xn−1}. By Theorem 6.27, we obtainH∗(BSO(n);F2) ∼=
F2[w2, . . . , wn]. Taking the limit of inclusions SO(2) ⊂ SO(3) ⊂ · · · ⊂ SO,
we getH∗(BSO;F2) ∼= F2[w2, w3, w4, . . . ].

To computeH∗(BO(n);F2) recall that the determinant homomorphism
together with the inclusion, SO(n) ⊂ O(n), gives a sequence of maps

SO(n) ↪→ O(n)
det
−−→ Z/2Z −→ BSO(n)

Bi
−→ BO(n)

Bdet
−−−→ BZ/2Z

any three of which form a fibration. ThusBSO(n) is a universal covering
space forBO(n) andH1(BO(n);F2) ∼= F2 with generatorw1. If we apply the
Cartan-Leray spectral sequence for the universal coveringBSO(n)→ BO(n),
theE2-term is given byE2

p,q
∼= Hp(Z/2Z;Hq(BSO(n);F2)). SinceZ/2Z

acts trivially onH∗(BSO(n);F2) andH∗(Z/2Z,F2) ∼= H∗(RP (∞);F2) ∼=
F2[w1], we can rewrite theE2-term as

E∗,∗2
∼= F2[w1]⊗F2 F2[w2, . . . , wn].

By studying auxiliary quotient spaces related to this covering (using Stiefel man-
ifolds), we find that the spectral sequence collapses and soH∗(BO(n);F2) ∼=
F2[w1, . . . , wn]. Furthermore,H∗(BO;F2) ∼= F2[w1, w2, . . . ].
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In these cases, we observe that a classifying map,f : B → BU(n), or
f : B → BO(n) has its characteristic ring inH∗(B) andH∗(B;F2), generated
as an algebra by the classesf∗(c2), . . . , f∗(c2n) or f∗(w1), . . . , f∗(wn). In
the next section, we relate these generators to the characteristic classes.

Applications

We turn our attention, once again, to vector bundles and the problem of
computing the characteristic classes associated to a bundle. Using the vec-
tor space structure on each fibre, we define the following operation on vector
bundles:

Definition 6.39. Supposeξ = (Rn, E, p,B) and η = (Rm, E′, p′, B) are
two vector bundles over a spaceB. TheWhitney sum of ξ andη, ξ ⊕ η =
(Rn+m, E⊕E′, p⊕p′, B) is the vector bundle given by the pullback diagram:

R
n+m

y

u

w

∼=
R
n × Rm
y

u
E ⊕ E′ w

u
p⊕p′

E × E′

u
p×p′

B w

diag
B ×B

The definition allows us to take the fibres ofξ andη over a point inB and form
their direct sum over that point. The pullback operation provides the appropriate
topological glue.

Stiefel-Whitney classes for a vector bundleξ, wi(ξ) in Hi(M ;F2), can
be described constructively in the obstruction theory framework and they can
be constructed via the action of the Steenrod algebra in conjunction with the
Thom isomorphism as proved by [Thom52] based on the work of [Wu50].
We describe these classes uniquely through a set of axioms first suggested by
[Hirzebruch66].

Axioms for Stiefel-Whitney classes.Letξ = (Rn, E, p,M) be a vector bundle
over a base spaceM .

I. There are classeswi(ξ) ∈ Hi(M ;F2) andw0(ξ) = 1, wj(ξ) = 0 for j > n.
II. If f : B1 → B2 is a continuous mapping that is covered by a bundle map

(f, f̃) : ξ1 → ξ2 that is a linear isomorphism on the fibres, thenwi(ξ1) =
f∗(wi(ξ2)).

III. For two vector bundles,ξ andη, theWhitney sum formula holds;

wk(ξ ⊕ η) =
∑

i+j=k
wi(ξ) ^ wj(η).

IV. Letγ1
1 = (R, E, p,RP (1)) be the canonical line bundle overRP (1), then

w1(γ1
1) 6= 0.
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The proof that these axioms uniquely determine the Stiefel-Whitney classes
can be found in the book of [Milnor-Stasheff74, p. 86]. We establish the ex-
istence of Stiefel-Whitney classes by constructing them from the cohomology
of the appropriate classifying space. To wit, letξ = (Rn, E, p,M) be a vector
bundle overM and supposeξ is classified by a mapfξ : M → BO(n), that is,
following Theorem 6.34,ξ is equivalent tof∗ξ χ(n)[Rn] whereχ(n) : EO(n)→
BO(n) denotes the universal principal O(n)-bundle andf∗ξ χ(n) is the pullback
overfξ. We define classes inH∗(M ;F2) for ξ by the formula

wi(ξ) = f∗ξ (wi)

wherewi ∈ Hi(BO(n);F2) is one of the transgressive generators identified in
Theorem 6.38.

Theorem 6.40.The cohomology classes defined by the classifying map satisfy
the axioms for the Stiefel-Whitney classes.

Sketch of a proof: We provide a series of observations (with references)
as a complete proof would take us too far afield. First notice that Axiom I holds
trivially from our definition and the cohomology ofBO(n).

Axiom II, the naturality of the Stiefel-Whitney classes, follows from the
universal properties of the pullback operation and the definition of a bundle
map to replace the bundleξ1 with f∗ξ2. Then the classifying map forξ1,
fξ1 : B1 → BO, is homotopic tofξ2 ◦ f .

E(ξ1) w

f̃

u

E(ξ2) w

u

EO

u

E(ξ1)u

u
B1 w

f
B2 w

fξ2
BO B1u

fξ1

The relations between the Stiefel-Whitney classes follow.
Axiom III, the Whitney sum formula, hangs on an extra piece of structure.

Consider the mappingϕn,m : O(n)×O(m)→ O(n+m) defined on matrices
A ∈ O(n) andB ∈ O(m) by

ϕn,m(A,B) =
(
A 0
0 B

)
.

This group homomorphism induces a mapping,Bϕn,m : BO(n)×BO(m)→
BO(n+m), whose key property is recorded in the following lemma.
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Lemma 6.41.The homomorphism,

(Bϕn,m)∗ : H∗(BO(n+m);F2)→ H∗(BO(n);F2)⊗H∗(BO(m);F2),

satisfies(Bϕn,m)∗(wi) =
∑
r+s=i wr ⊗ ws.

A proof of this lemma may be found in [Borel53’,§6]. The crucial feature of
Borel’s proof is the identification of an important abelian subgroup of O(n),
Q(n), of diagonal matrices with entries±1. The subgroupQ(n) is isomor-
phic to the product ofn copies ofZ/2Z and we can examine the induced
mappingB inc : BQ(n) → BO(n). SinceBQ(n) is the product ofn copies
of BZ/2Z = RP (∞), we know its mod 2 cohomology:H∗(BQ(n);F2) ∼=
F2[y1, . . . , yn] wheredeg yi = 1 for all i. The representation theory of Lie
groups may be pressed into service to identify the image of

(B inc)∗ : H∗(BO(n);F2)→ H∗(BQ(n);F2)

as the symmetric functions in{y1, . . . , yn}, Sym(y1, . . . , yn). By a counting
argument,(B inc)∗ is an isomorphism ofH∗(BO(n);F2) onto the algebra
Sym(y1, . . . , yn). From this rather deep structural result, the lemma follows.

The Whitney sum formula can now be proved by examining the pullback
diagram that describes the associated principal bundle forξ ⊕ η:

E(Prin(ξ ⊕ η)) w

u

f∗ξ χ(n)×f∗ηχ(m) w

u

EO(n)×EO(m) w

u

EO(n+m)

u
M w

diag
M ×M w

fξ×fη
BO(n)×BO(m) w

Bϕn,m
BO(n+m)

Finally, we establish Axiom IV for the canonical line bundle overRP (1)
by considering the geometry of the bundleγ1

1 carefully. The canonical line
bundle overRP (n) can be described by the total space,

E(γ1
1) = { ({±~x}, t~x), where~x ∈ Sn andt ∈ R };

the first projection provides the bundle map. Forn = 1, this description identi-
fiesE(γ1

1) as the open M¨obius band. It is an elementary fact thatE(γ1
1) is not

homotopy equivalent toRP (1)×R, the total space of the trivial bundle. On the
classifying space level, we can identifyw1(γ1

1) with [fγ1
1
] in [RP (1), BO(1)].

Since O(1) ∼= Z/2Z, we compute:[RP (1), BO(1)] = [RP (1), BZ/2Z] =
[RP (1),K(Z/2Z, 1)] = H1(RP (1);F2). Finally,RP (1) is homeomorphic to
S1, and sow1(γ1

1) is either the generator ofH1 or zero. Ifw1(γ1
1) = 0, then

fγ1
1

would be null-homotopic andγ1
1 would be equivalent to the trivial bun-

dle. Since this would imply the equivalence of the total spaces, the observation
shows thatw1(γ1

1) 6= 0. ut
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Similar axioms were given by [Hirzebruch66] for theChern classesof a
complex vector bundle over a spaceM . In the original paper of [Chern48], these
classes are constructed using de Rham cohomology and specific differential
forms, which have relevance to developments in mathematical physics (see also
[Milnor-Stasheff74, appendix C], [Dupont78], or [Bott85]). In our formulation,
the classifying space forn-dimensional complex bundles isBU(n) and so we
can take the construction of the Stiefel-Whitney classes and carry it over to
define, forξ a complex bundle,

c2i(ξ) = f∗ξ (c2i) ∈ H2i(M).

Notice that the Chern classes lie in the integral cohomology ofM (a fact related
to the quantization of magnetic charge; see the papers of [Dirac35], [Atiyah79],
and, for an elementary exposition of these topics, [McCleary92]).

For a complex vector bundle,ξ = (Cn, E, p,M) we have its Chern classes
c2i(ξ) ∈ H2i(M). These classes reduce mod 2 to determine classesc̄2i(ξ) ∈
H2i(M ;F2). Furthermore, by identifyingCn with R2n, we obtain Stiefel-
Whitney classes forξ, wi(ξ) ∈ Hi(M ;F2). How do these reduced Chern
classes,̄c2i(ξ), relate to the Stiefel-Whitney classes?

Theorem 6.42.For a complex vector bundle,ξ = (Cn, E, p,M), the Stiefel-
Whitney classes of the associated2n-dimensional real bundle satisfy the rela-
tionsw2i+1(ξ) = 0 andw2i(ξ) = c̄2i(ξ), for 0 ≤ i ≤ n.

Proof: The theorem follows if these relations hold amid the universal classes.
Consider the orthogonal group O(2m) of metric preserving linear transforma-
tions ofR2m. The identification ofCm with R2m allows us to treat U(m) as a
subgroup of O(2m). Consider the subgroup O(2m− 1) ⊂ O(2m). If we take
the intersection, O(2m− 1)∩U(m), because U(m) acts on coordinates “pair-
wise,” we get O(2m− 1)∩U(m) = U(m− 1). Furthermore, this intersection
behaves correctly with respect to the inclusion and so we get the diagram:

U(m− 1)

u

w

⊂ O(2m− 1)

u
U(m)

u

w

⊂ O(2m)

u
U(m)/U(m− 1) S2m−1 O(2m)/O(2m− 1).

This gives a mapping of fibrations

S2m−1 y w BU(m− 1) w
B inc

u
B(⊂)

BU(m)

u
B(⊂)

S2m−1 y w BO(2m− 1) w
B inc

BO(2m).
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In the Leray-Serre spectral sequence for these fibrations the classs2m−1 ∈
E0,2m−1

2 corresponding to the generator ofH2m−1(S2m−1;F2) transgresses
to w2m ∈ H2m(BO(2m);F2) andc̄2m ∈ H2m(BU(m);F2), respectively. If
we identifyBU(1) with BSO(2), then we can prove inductively that

H∗(BO(2m);F2)
B(⊂)∗

−−−−→H∗(BU(m);F2)

takesw2i+1 to zero andw2i to c̄2i by the naturality of the transgression modulo
its indeterminacy.

The theorem follows by observing that the classifying map forξ, as a
2n-dimensional real vector bundle, factors throughBU(n)→ BO(2n). ut

An immediate geometric corollary of these relations is the following result.

Corollary 6.43. SupposeM is a real 2n-dimensional manifold with tangent
bundleτM . If M can be obtained from ann-dimensional complex manifold by
the usual identifications, thenw2i+1(τM ) = 0 andw2i(τM ) is the reduction of
an integral class for0 ≤ i ≤ n.

Thus the Stiefel-Whitney classes provide obstructions to the existence
of a complex manifold structure on an even-dimensional real manifold. The
satisfaction of these conditions is not sufficient to guarantee a complex structure
(see the paper of [Massey61]) but these classes provide a first set of obstructions.

In this short discussion of classifying spaces and characteristic classes
we have touched on very few topics in a rich area of study. The reader who
is interested in these matters will find a wealth of applications and deeper
developments in the literature. The role of spectral sequences in this work has
been firmly established.

6.4 Other constructions of the spectral sequence®N
In Chapter 5, we constructed the Leray-Serre spectral sequence for simpli-

cial singular homology and identified theE2-term. In this section we discuss
some different settings that lead to the construction of a spectral sequence for
fibrations. We supply some of the details of an elegant construction due to
[Dress67]. The apparatus introduced there has other applications in topology;
for example, it provided [Singer73] and [Turner98] with a useful framework in
which to construct Steenrod operations in spectral sequences.

The motivating examples of fibre spaces are the homogeneous spaces,
H ↪→ G → G/H, whereG is a compact, connected, Lie group andH a
closed subgroup. Investigations of the topological invariants of Lie groups had
proceeded using analytic tools like de Rham cohomology and the associated
Lie algebra cohomology ([Koszul50], [Cartan51]). The problem of relating the
homology groups of the fibre, base and total space was undertaken by J. Leray
in a series of boldly original papers that appeared from 1946 to 1950 ([Leray46,
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50]). Leray based his investigations on a cohomology theory that generalized
features of de Rham cohomology to more topological settings.

Supposef : E → X is a surjective mapping whereX is a compact poly-
hedron with agoodcovering,U ; good is taken here to mean that any finite
intersection,Uα1 ∩Uα2 ∩ · · ·∩Uαn , of subsets in the cover is contractible. Be-
causef is surjective, this covering lifts to a cover ofE, f−1U . As an instance of
Leray’s theory, we can consider theČech cochains determined by this cover with
coefficients in the constant presheafR, a commutative ring,̌C∗(f−1U ;R). (For
definitions ofČech theory and presheaves see [Spanier66].) [Leray50] studied
the cochainšC∗(f−1U ;R) within a product structure (of thecouverturewith
the sheaf) that compares witȟC∗(U ; Č∗(f−1U∗;R)), the cochains onX with
coefficients in the nonconstant sheafČ∗(f−1U∗;R). The subsequent filtra-
tion induced by weights leads to the spectral sequence. Whenf is a fibration,
f−1(Uα) ' F , the fibre, and so we get a system of local coefficients onX.
The spectral sequence associated to the filtration hasE2-term identifiable with
Ȟ∗(X; Ȟ∗(F ;R)), whereF is the fibre of the mappingf : E → X. The
morass of algebra in [Leray46] was greatly simplified by [Koszul47] who intro-
duced the standard construction of a spectral sequence. The desired applications
to the structure of Lie groups and homogeneous spaces soon followed in work
by [Leray50], [Koszul50], [Cartan51], and [Borel53]. A careful modern treat-
ment of this construction may be found in [Bott-Tu82]. A discussion of the
development of Leray’s work is given by [Borel98].

The next development was a spectral sequence of this kind for simpli-
cial singular homology and cohomology, which had been recognized as more
versatile tools in homotopy theory. This was accomplished by [Serre51] in
his celebrated thesis. A key technical feature of Serre’s work is the determi-
nation of the homology spectral sequence. Serre established this result and
the multiplicative structure of the cohomology spectral sequence using cubi-
cal cochains on a space rather than the classical simplicial cochains. That
these multiplicative properties held for simplicial singular theory was proved
by [Gugenheim-Moore57] in their thorough study of singular theory applied to
fibrations via the method of acyclic models.

While we are discussing the various manifestations of classical cohomol-
ogy, it is natural to ask about analogous results for generalized cohomology
theories. Though beyond the intended scope of this book, we mention that the
filtration by cellular skeleta of a CW-complex leads to a spectral sequence intro-
duced by [Atiyah-Hirzebruch69] (though known to [Lima59] and [Whitehead,
GW62]) for the computation of the generalized cohomology of the complex.
Analogous results for a fibration lead to a generalization of this spectral sequence
with coefficients in the generalized cohomology of the fibre (see [Dyer69],
[Switzer75], or [Prieto79]). For more details we refer the reader to§11.2.

Further developments of the structure of fibrations revealed other features
of the Leray-Serre spectral sequence. One result in this vein is due to [Fadell-
Hurewicz58].
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Theorem 6.44.Suppose(F,E, p,B) is a fibration andB is n-connected for
somen ≥ 2. Then, in the associated homology spectral sequence, the differen-
tials, di, are trivial for 2 ≤ i ≤ n. Furthermore, for allp ≥ 0, q ≥ 0,

Hp(B;Hq(F ;G)) ∼= En+1
p,q

dn+1

−−−→En+1
p−n−1,q+n

∼= Hp−n−1(B;Hq+n(F ;G))

is given bydn+1(x) = γ ∩ x where the classγ is the fundamental class of
B in Hn+1(B;πn+1(B)) and the cap product is defined by a suitable pairing
∩ : πn+1(B)⊗Hq(F ;G)→ Hq+n(F ;G).

The differential in the theorem is similar in spirit to the transgression—in
both cases, a geometric interpretation is found for a particular differential in the
spectral sequence. These results were proved independently by [Shih62]. The
proof of [Fadell-Hurewicz58] uses the lifting function for the fibration and the
pairing takes the form∩ : Hn(ΩB;G) ⊗Hq(F ;G) → Hq+n(F ;G), induced
by evaluation at 1 (see§4.3).

Another basic viewpoint from which to study the algebraic topology of
fibrations is the Eilenberg-Zilber theorem. In particular, does the local product
structure of a fibre space mean we can compareC∗(E) withC∗(B) andC∗(F )?
In the case of a trivial fibration, we are comparingC∗(B × F ) with C∗(B) ⊗
C∗(F ) and the Eilenberg-Zilber theorem provides a mapping at the chain level
that induces an isomorphismH∗(B×F ) ∼= H∗(B)⊗H∗(F ). For an arbitrary
fibration, [Hirsch54] generalized the Eilenberg-Zilber theorem by showing,
whenk is a field, that a differential can be constructed onC∗(B; k)⊗H∗(F ; k)
along with a homomorphismC∗(B; k) ⊗H∗(F ; k) → C∗(E; k) inducing an
isomorphism,H(C∗(B;K)⊗H∗(F ; k)) ∼= H∗(E; k). This result provides a
smaller cochain complex forH∗(E; k). We could also try to provideC∗(B)⊗
C∗(F ) with a new differential,D, so thatH(C∗(B) ⊗ C∗(F ), D) ∼= H∗(E).
Such a generalization was obtained by [Brown, E59]. Two pieces of the structure
of a fibration come into play: The first is thelifting functionfor a fibration and
the action ofΩB on the fibreF it provides,µ : ΩB × F → F , µ(α, x) =
λ(α, x)(1). At the chain level, this induces an action ofC∗(ΩB) onC∗(F ),
C∗(ΩB) ⊗ C∗(F ) → C∗(F ). The second piece of structure introduced in
[Brown, E59] is the notion of atwisting cochain, Φ: C∗(B) → C∗−1(ΩB).
We give the definition in the more general setting of differential homological
algebra.

Definition 6.45. Let (C, dC) denote a supplemented, differential graded coal-
gebra and(A, dA) an augmented, differential graded algebra,η : R→ C0 and
ε : A0 → R the supplementation and augmentation, respectively. AnR-module
homomorphismτ : C → A of degree−1 is a twisting cochain if τη = 0 = ετ
anddAτ = (−1)nτdC + τ ^ τ whereτ ^ τ is the composite

C
coalgebra
−−−−−−→ C ⊗ C

τ⊗τ
−−→ A⊗A

algebra
−−−−→ A.
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The diagonal and Alexander-Whitney maps provideC∗(B) with a natural
coalgebra structure and the multiplication of loops inΩB providesC∗(ΩB) with
an algebra structure. [Brown, E59] constructed a twisting cochain in this case
using the simplicial structure of singular chains and acyclic models. Suppose
Φ: C∗(B) → C∗−1(ΩB) is a twisting cochain; this gives a differential on
C∗(B)⊗ C∗(F ) as the composite

dΦ : C∗(B)⊗ C∗(F )
coalgebra⊗1
−−−−−−−→ C∗(B)⊗ C∗(B)⊗ C∗(F )

−−−−→
1⊗Φ⊗1

C∗(B)⊗ C∗(ΩB)⊗ C∗(F ) −−−→
1⊗µ∗

C∗(B)⊗ C∗(F ).

The properties of the twisting cochain imply thatD = d⊗−dΦ is a differential
on C∗(B) ⊗ C∗(F ). The main theorem proved by [Brown, E59] is that the
chain complex(C∗(B) ⊗ C∗(F ), d⊗ − dΦ) is chain equivalent toC∗(E) and
hence has the same homology.

There is a filtration of(C∗(B)⊗ C∗(F ), D) as a double complex

Fp =
⊕

q≤p
Cq(B)⊗ C∗(F ).

The associated spectral sequence converges, by Brown’s theorem, toH∗(E).
The properties of a twisting cochain, along with Theorem 2.15 imply that the the
E2-term is isomorphic toH∗(B;H∗(F ;R)). Brown carefully compared this
spectral sequence with Serre’s to prove that they are isomorphic. Furthermore,
Theorem 6.44 is a corollary of this comparison of spectral sequences. The notion
of a twisting cochain was introduced by [Cartan54] as the algebraic analogue
of the simplicial twisting functions introduced by [Moore56]. The interested
reader can consult the book of [May67] or the paper of [Husemoller-Moore-
Stasheff74] for more details. An example of an explicit spectral sequence
calculation using this level of control of the first differential can be found in
[McCleary90].

An algebraic development founded on these ideas is known ashomologi-
cal perturbation theory[Gugenheim-Lambe-Stasheff91]. The main idea is to
generalize the relation betweend⊗ andd⊗ − dΦ onC∗(F ) ⊗ C∗(B). Given
a tensor product of differential graded modules,(M,dM ) ⊗ (N, dn), there is
the tensor differential onM ⊗ N given byd⊗ = dM ⊗ 1 + (±)1 ⊗ dN . A
perturbation ofd⊗ with respect to a decreasing filtrationF∗ ofM ⊗N is a sum

D = d⊗ + d2 + d3 + · · · ,

with ds(Fk) ⊂ Fk−s. The conditionD ◦D = 0 places a strong restriction on
the homomorphismsdi. When a perturbation exists there is a spectral sequence
withE2-term given byH(M ⊗N, d⊗) and converging toH(M ⊗N,D). Fur-
thermore, the differentials in the spectral sequence are closely related to the
di in the sum. [Gugenheim60] gave this formulation of the results of [Brown,
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E59] and [Hirsch54]. Since then a very elegant and satisfactory theory has been
developed. See the papers of [Lambe92] and [Huebschmann-Kadeishvili91]
for recent reviews of the subject, as well as the work of [Chen77] and [Gugen-
heim82].

Bisimplicial sets and Dress’ construction®N
The idea of a locally trivial product with a global twisting is realized

algebraically in the twisted tensor product (the tensor product with the new
differential). We next describe a more geometric construction that leads to the
Leray-Serre spectral sequence by exploiting the local product structure. The
construction is due to [Dress67]. The double complex involved was introduced
in [Fadell-Hurewicz58] without the explicit simplicial structure. There is also
a nice discussion of this work to be found in [Liulevicius67].

Our point of departure is an object that carries the local product data of a
fibration in an fashion analogous to the way that the simplicial structure of a
space carries its homology.

Definition 6.46. A bisimplicial set, X••, is a bigraded collection of sets,
Xp,q, for p, q ≥ 0, together with vertical and horizontal face and degeneracy
maps,∂hi : Xp,q → Xp−1,q, shj : Xp,q → Xp+1,q, ∂vk : Xp,q → Xp,q−1, and
svl : Xp,q → Xp,q+1, indexed over the usual sets, commuting with each other
and satisfying the standard simplicial identities in each direction.

A bisimplicial set may also be defined as a simplicial object over the cate-
gory of simplicial sets (a simplicial simplicial set). The fundamental example
is the bisimplicial set∆•• with ∆pq = ∆p ×∆q and∂hi , s

h
j , ∂

v
k , s

v
l , the usual

face and degeneracy maps.
To an epimorphism of spaces,f : E → B, we associate a bisimplicial set

K••(f) as follows: LetKpq(f) = {(u, v) | u : ∆p × ∆q → E, v : ∆p →
B continuous withf ◦ u = v ◦ pr1}; herepr1 is the first projection mapping.
Thus(u, v) is inKpq(f) if the following diagram commutes

∆p ×∆q
w

u

u
pr1

E

u
f

∆p
wv B.

Let (u, v) be inKpq(f). The face maps

∂hi : Kpq(f)→ Kp−1,q(f) and ∂vk : Kpq(f)→ Kp,q−1(f)
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are described by the diagrams for∂hi (u, v) and∂vk(u, v);

∂hi (u, v) : ∆p−1 ×∆q
w

εi×1

u
pr1

∆p ×∆q
w

u

u
pr1

E

u
f

∆p−1
wεi
∆p

wv B

∂vk(u, v) : ∆p ×∆q−1
w

1×εk

u
pr1

∆p ×∆q
w

u

u
pr1

E

u
f

∆p ∆p
wv B.

Hereεj denotes the inclusion of thejth-face of the image simplex. The degen-
eracies are defined similarly.

Apply the free abelian group functorFA to K••(f) to get a bisimplicial
group that we denote bySpq(f) = FA(Kpq(f)). This bisimplicial group deter-
mines a double complex by takingd′ : Spq(f)→ Sp−1,q(f) andd′′ : Spq(f)→
Sp,q−1(f) to be

d′ =
∑p

j=0
(−1)jFA(∂hj ) and d′′ =

∑q

k=0
(−1)q+kFA(∂vk).

The signs and the simplicial identities conspire to gived′ ◦ d′ = d′′ ◦ d′′ =
d′ ◦ d′′ + d′′ ◦ d′ = 0. When we apply the analogue of Theorem 2.15 for such
double complexes, we obtain two spectral sequences.

Theorem 6.47.For the double complex{S∗,∗(f), d′, d′′}, the following hold;

Hp(Hq(S∗,∗(f), d′′), d̄′) ∼=
{
Hq(E), if p = 0,
0, if p 6= 0.

If f is a fibration with fibreF , then

Hp(Hq(S∗,∗(f), d′), d̄′′) ∼= Hp(B;Hq(F ))

whereH∗(F ) is the local coefficient system given by the homology of the fibre
over each point inB.

Thus the double complex(S∗,∗(f), d′, d′′) gives rise to the Leray-Serre
spectral sequence. This approach provides considerable simplicity of the con-
struction of the spectral sequence as well as a framework for studying the
spectral sequence for various chain and cochain functors that support classical
homology and cohomology, for example, de Rham cohomology (see [Grivel79]
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and [McCleary82]). The argument given here can also be generalized to obtain
the spectral sequence for fibrations of pairs ([Liulevicius67]).
Proof: We display the double complexS∗,∗(f) as follows

u u u u
S20(f)

u

S21(f)u

u

S22(f)u

u

S23(f)u

u

u

S10(f)

u
d′

S11(f)u

u

S12(f)u

u

S13(f)u

u

u

S00(f) S01(f)u
d′′

S02(f)u S03(f)u u

First considerH∗(Si∗(f), d′′). This is clearly the homology of the setKi∗(f).
Furthermore,H∗(S0∗(f), d′′) = H∗(E) follows from the definition ofK0q(f)
and that of the singular complex forE. To establish the first part of Theorem
6.47, we examine the complex of graded abelian groups:

H∗(S0∗(f), d′′)
∂0∗−∂1∗←−−−−−H∗(S1∗(f), d′′)

∂0∗−∂1∗+∂2∗←−−−−−−−−H∗(S2∗(f), d′)←−

Lemma 6.48.For all j ≥ 0,K0∗(f) ' Kj∗(f).

Proof: In fact, we prove a bit more by showing that there are mappings
Jj : K0,∗(f)→ Kj,∗(f) that are homotopy equivalences and that the following
diagram commutes up to homotopy

K0,∗(f)

u
Jj

K0,∗(f)

u
Ji−1

Kj,∗(f) w
∂j

Kj−1,∗(f).

The mappings,Jj , are induced by taking the collapse map∆j → ∆0, which is a
homotopy equivalence with homotopy inverse∆0 → ∆j defined by taking∆0

to the barycenter of∆j . The maps induced by the collapse and its inverse give
a homotopy equivalence. Furthermore, this homotopy equivalence is chosen
to be compatible with the face mapsε : ∆j → ∆j+1 that induce the simplicial
structure onK••(f).

It follows that the homotopy equivalence induces a mapping of simplicial
spaces:
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w
id

w

... K0∗
w

id

w
id

w
id

u
J2

K0∗

u
J1

w
id

w
id

K0∗

u
= J0

w

∂0

w

... K2∗
w

∂0

w

∂2
w

∂1 K1∗ w

∂0

w
∂1

K0∗(f).

The mappingsJj induce the identity onH∗(E) for all iand so mappings induced
by ∂i may be taken to be the identity for alli. ut

Applying the result of the lemma, the graded complex that computes
H∗(S∗∗(f), d′′) can be identified as the complex:

H∗(E)
0
←− H∗(E)

id
←− H∗(E)

0
←− H∗(E)

id
←− · · ·

and so part (i) of the theorem is established.
We sketch a proof of the second half of Theorem 6.47. Examine a(p, q)-

simplex,(u, v).
∆p ×∆q

w
u

u
pr1

E

u
f

∆p
wv B.

This identifies ap-simplex ofB and a family ofq-simplices off−1(v(x0)),
parametrized by pointsx0 in ∆p. Since∆p is contractible to its leading vertex,
if f is a fibration, thenf−1(v(x0)) is homotopy-equivalent tof−1(v(e0)) =
Fv(e0), the fibre overv(e0), the image of the leading vertex of∆p. Fix v : ∆p →
B and consider the set{chains

∑
j aj(uj , v) ∈ Spq(f), for anyq}. Each

(uj , v) identifies a mapping,∆q → f−1(v(e0 ∈ ∆p)), and so the homology,
with respect tod′, of this set overv isH∗(f−1(v(e0 ∈ ∆p))) ∼= H∗(Fv(e0)).
Eachv and each(uj , v) contribute an generating chain toCp(B;H∗(F )) (see
§5.3 for the relevant definitions) and so we have established thatH(S∗,∗(f), d′)
∼= C∗(B;H∗(F )).

To complete the proof, it suffices to show how̄d′′ induces the differential
for chains onB with local coefficients. To do this, one must keep track of
the leading vertex of an elementary chain onB through the identifications
and boundary maps∂vi . When the leading vertex does not map to a leading
vertex, however, the identification of the coefficients withH∗(Fv(e0)) is carried
across the simplex along the path given in the definition of homology with
local coefficients (see§5.3) and sōd′′ determines the correct differential. This
establishes the second half of the theorem. [Dress67] identified the notion of
systems of local coefficients with certain functors on the category of simplicial
objects over a fixed space. The details of his proof provide a combinatorial
description of local coefficients. ut
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We have discussed several constructions of the Leray-Serre spectral se-
quence. We mention one other method of construction of the Leray-Serre
spectral sequence: [Eilenberg50] and [Damy96] gave constructions based on
the use of a Cartan-Eilenberg system. The fact that these different construc-
tions give rise to the same spectral sequence reflects the restrictions imposed
by the structure of a fibration. These restrictions can be made very precise.
[Barnes85] introduced axioms that a functorF, from the category of fibrations
with all spaces locally finite CW-complexes to the category of filtered chain
complexes, must satisfy in order to give a spectral sequence like the Leray-
Serre spectral sequence. Such a functor is called afibration spectral sequence
constructor. He shows that the constructions we have discussed fit into this
framework. Furthermore, there is a comparison theorem for natural transfor-
mations between constructorst : F→ F′ that implies when two such functors
give rise to the same spectral sequence. There are notions of a free and cofree
functor, for which there are always natural transformations and the construc-
tion of [Dress67] is a free functor. [Barnes85] proved the following uniqueness
result via an acyclic models argument.

Theorem 6.49.Let F andF′ be two fibration spectral sequence constructors.
Then there is a canonical isomorphismt : Er∗,∗F → Er∗,∗F

′, for all r ≥ 2, of
the associated spectral sequences as functors on the category of CW-fibrations.

The Leray-Serre spectral sequence takes information about the fibre and
base of a fibration and proceeds to information about the total space. As we have
already seen in Theorems 6.19 and 6.38, we may want to go from data about the
fibre and total space to the base (for example, the cohomology of classifying
spaces) or from data about the base and total space to the fibre (for example, the
cohomology ofΩX). In the most successful examples (Eilenberg-Mac Lane
spaces and classifying spaces) the answer depends heavily on the manageable
form of the input—for example, when there is ap-simple system of generators.
Then the output takes the form of a homological functor on the input. How
systematic is this algebraic phenomenon? Can it be generalized? Thereis a
unified approach to these computations, and once again, it comes in the form
of a spectral sequence. The construction, due to [Eilenberg-Moore66], and its
applications are the subject of the next two chapters.

Exercises

6.1. We used certain facts aboutExt in the computation ofπ4(S2). Prove that
Ext(π,Z) ∼= π whenπ is a finite group.

6.2. Show that the transgression (Definition 6.3) is well-defined.
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6.3. SupposeF ↪→ E
p
−→ B is a fibration andH̃∗(E;R) ∼= {0}. Show that

Hi(F ;R) = {0} for 0 < i < q if and only if Hj(B;R) = {0} for 0 < j <
q + 1 and furthermore, the transgression,τ : Ht(F ;R) → Ht+1(B;R) is an
isomorphism fort < 2q.

6.4. Show that the transgression annihilates products.

6.5. Prove the following theorem of[Borel50]: Supposek is a field andF ↪→ E →
B is a fibration withH∗(E; k) ∼= H∗(Sn; k). Suppose further thatH∗(F ; k) ∼=
H∗(S2m1+1×S2m2+1× · · ·×S2ms+1; k), the cohomology of a product of odd
spheres andB a finite complex. Thens = 1.

6.6. Prove Theorem 6.8.

6.7. Computeπ5(S2) by the method of killing homotopy groups, that is, using the
associated upside-down Postnikov system.

6.8. Prove Lemma 6.18.

6.9. Complete the proof of Theorem 6.19 (theorems of Cartan and Serre) by com-
putingH∗(K(Π, n);Fp) whenΠ = Z/pkZ. Also prove the mod 2 version of
Theorem 6.19.

6.10. Use Theorem 4.43 and the results of Cartan and Serre in§6.2 to show that
the Steenrod algebra, as described in Chapter 4, contains all stable cohomology
operations overZ/pZ.

6.11. Show that the transgression,τ : Hn−1(Sn−1)→ Hn(Sn), for the fibration,
Sn−1 ↪→ T0S

n → Sn, the sphere bundle associated to the tangent bundle, is given
by multiplication by the Euler number ofSn.

6.12. Generalize the Hopf algebra argument of the proof of the Hopf-Borel theorem:
SupposeA ⊂ H is a sub-Hopf algebra of a given commutative Hopf algebraH . Let
M ∼= H//A be a sub-vector space ofM such thatq| : M → H//A, the restriction
of the canonical quotient map, is an isomorphism. Show thatA⊗M is isomorphic
toH as leftA-modules. (Hint: Consider the composite mapping

A⊗M
inc⊗(q|)−1

−−−−−−−→ H ⊗H
µ
−→ H

∆
−→ H ⊗H

1⊗q
−−→ H ⊗ (H//A).

Show that the composite is a monomorphism. Show also thatA together withM
generateH as an algebra, so the composite of the first two maps in the display is
onto.)

6.13. Prove that the Whitney sum formula follows from Lemma 6.41.

6.14. The axioms for Chern classes are given forξ = (Cn, E, p,M), a complex
vector bundle over the base space M, as follows:

I. There are classesc2i(ξ) ∈ H2i(M) andc0(ξ) = 1, c2i(ξ) = 0 if i > n.
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II. If f : M1 → M2 is a continuous mapping that is covered by a bundle map,
(f, f̃) : ξ1 → ξ2, that is a linear isomorphism on the fibres, thenc2i(ξ1) =
f∗(c2i(ξ2)).

III. For two vector bundles,ξ andη, the Whitney sum formula holds:

c2k(ξ ⊕ η) =
∑

i+j=k
c2i(ξ) ^ c2j(η).

IV. Let η1
1 = (C1, E, p,CP (1)) be the canonical complex line bundle over

CP (1). Thenc2(η1
1) 6= 0.

Prove the analogue of Theorem 6.22 for Chern classes andH∗(BU(n)). You
can assume that the analogue of Lemma 6.23 holds for the mappingBU(n) ×
BU(m)→ BU(n+m).

6.15. To prove the analogue of Lemma 6.41 forBU(n), one uses the maximal torus
in U(n), Tn ∼= S1× · · · ×S1 (n times). The inclusion ofTn in U(n) induces an
isomorphism,

H∗(BU(n)) ∼= H∗(BTn)Σn

= {Symmetric polynomials iny1, . . . , yn | deg yj = 2 }.

The result still holds modp andH∗(BTn;Fp) has a particularly simpleAp-struc-
ture. From this, deduce theAp-structure onH∗(BU(n);Fp). Do the analogous
computation forH∗(BSO(n);F2).

6.16. ComputeH∗
(O(2m)/U(m);F2

)
andH∗

(U(n)/Tn
)
.
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The Eilenberg-Moore Spectral Sequence I

“ . . . , the application to topology of homological
algebra leads to somewhat different developments. . . ,
which may be included under the heading of differential
homological algebra.”

J. C. Moore

The Leray-Serre spectral sequence provides a method for computing the
cohomology of the total space of a fibration from knowledge of the coho-
mology of the base space and the fibre. By arguing backward through the
spectral sequence, the inverse problems of computing the cohomology of the
fibre (as for the path-loop fibration) or the cohomology of the base space (as
in the case of classifying spaces or Eilenberg-Mac Lane spaces) from the co-
homology of the other two spaces in the fibration can sometimes be solved
(Theorems 5.16, 6.20, and 6.39). In the particular case of the computation of
H∗(BG; k) fromH∗(G; k) whenG is a compact Lie group, the algebraic re-
lation betweenH∗(G; k) andH∗(BG; k) is often expressible in the language
of homological algebra and derived functors. In pioneering work, [Cartan54],
[Moore59], and [Eilenberg-Moore66] developed the correct algebraic setting
to explain this relation. We present in this chapter the homological framework
that leads to a general method of computation.

To begin, we extend the problem of computing the cohomology of the fibre
from the cohomology of the base and total space to a more general question.
Supposeπ : E → B is a fibration with fibreF andf : X → B is a continuous
function. A new fibration,π′ : Ef → X, can be constructed from these data,
namely the pullback (§4.3) off : X → B ← E : π, as in the diagram

F
y

u

F
y

u

Ef w

u
π′

E

u
π

X w
f

B.
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Problem: ComputeH∗(Ef ;R) from knowledge ofH∗(E;R), H∗(B;R),
H∗(X;R), f∗ andπ∗, whereR is a commutative ring with unit.

This problem includes the problem of computingH∗(F ;R) from H∗(B;R)
andH∗(E;R): Let b0 be a basepoint forB andb0 : ∗ → B, the unique map in
Top that selects the basepoint. If we takef = b0 in the pullback diagram, then
Ef = F and the initial data areH∗(E;R),H∗(B;R) andπ∗.

The solution to the problem comes in the form of a spectral sequence,
introduced by [Moore59] and developed by [Eilenberg-Moore66].

Theorem 7.1.Letπ : E → B be a fibration with connected fibre for which the
system of local coefficients onB determined byπ is simple. Letf : X → B
be a continuous function andEf be the total space of the pullback fibration
of π overf . Then there is a second quadrant spectral sequence,{E∗,∗r , dr },
converging toH∗(Ef ;R), with

E∗,∗2
∼= Tor∗,∗H∗(B;R)(H

∗(X;R), H∗(E;R)).

WhenB is simply-connected, the spectral sequence converges strongly.

New algebraic functors,Tor∗,∗H∗(B;R)(−,−) andTor∗,∗(C∗(B;R),δ)(−,−) were
introduced by [Moore59] that generalize the derived functorsTorR(−,−) of
the tensor product to the category of differential graded modules over a differ-
ential graded algebra. The cup-product structures onH∗(X;R) andH∗(E;R)
together withf∗ andπ∗, respectively, provide each with anH∗(B;R)-module
structure. The bulk of this chapter (§7.1) treats the algebraic foundations that
support the construction of the spectral sequence of Theorem 7.1 and make
it calculable. In§7.2 the algebra is translated into topology. In§7.3 we fur-
ther streamline the homological computations in special cases using the Koszul
resolution. In this context we compute again the cohomology of the complex
Stiefel manifolds (compare Example 5.G). The Stiefel manifolds are a special
case of the computation of the cohomology of a homogeneous space: IfH is
a closed connected subgroup of the Lie groupG, thenG/H may be taken to
be the fibre of the mappingB(inc) : BH → BG induced by the inclusion.
Theorem 6.38 providesH∗(BG; k) in many cases and so Theorem 7.1 may be
applied to computeH∗(G/H; k) (see§8.1). We also consider the computation
of the cohomology of the based loop space of an H-space.

In §7.4 we discuss the dual case of a pushout diagram and the Eilenberg-
Moore spectral sequence for homology. This is especially useful in computing
H∗(BG; k). We postpone a complete discussion of the problem of strong
convergence of the Eilenberg-Moore spectral sequence to Chapter 8bis. More
sophisticated applications and the development of the deeper structure of the
spectral sequence are taken up in Chapter 8.

The reader with little exposure to homological algebra can consult§2.4 for
a primer on the homological algebra that is generalized in this chapter.
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7.1 Differential homological algebra

LetRdenote a commutative ring with unit and letC∗(Y ) denoteC∗(Y ;R),
the singular cochains onY with coefficients inR. We begin our discussion of
homological algebra with the motivating topological example.

The Alexander-Whitney map providesC∗(Y ) with a multiplication,

^ : Cp(Y )⊗R Cq(Y ) −→ Cp+q(Y )

for all p, q. The differential,δ : Cp(Y )→ Cp+1(Y ), satisfies the Leibniz rule,
δ(a ^ b) = δ(a) ^ b+(−1)deg aa ^ δ(b), and so(C∗(Y ), δ) is a differential
graded algebra overR. We can apply the cochain functor to a pullback diagram
to get the commutative square:

Ef w

u
π′

E

u

π

X w
f

B

=⇒
C∗( ;R)

C∗(Ef ) C∗(E)u

C∗(X)

u

C∗(B).u

f∗

u

π∗

The morphisms of differential graded algebras,f∗ andπ∗, endowC∗(E) and
C∗(X) with C∗(B)-module structures: The (right) module structure map for
C∗(X) is given byϕ : C∗(X) ⊗R C∗(B) −→ C∗(X), which denotes the
composite

C∗(X)⊗R C∗(B)
1⊗f∗
−−−→ C∗(X)⊗R C∗(X)

^
−→ C∗(X)

and similarly,ψ =^ ◦(π∗ ⊗ 1) : C∗(B) ⊗R C∗(E) → C∗(E) denotes the
(left) module structure map forC∗(E). We take these module structures
as the basic data. The spaceEf associated tof : X → B ← E : π en-
joys the universal properties of pullbacks. It is natural to ask whether or not
C∗(Ef ) shares any dual universal properties in the category ofC∗(B)-mod-
ules. A first guess forC∗(Ef ) might beC∗(Ef ) ∼= C∗(X) ⊗C∗(B) C

∗(E)
(with the right hand side properly defined to generalize the case of the tensor
product of twoR-modules). We will see later (Lemma 7.3) that this implies
H∗(Ef ;R) ∼= H∗(X;R) ⊗H∗(B;R) H

∗(E;R). If we apply this guess to the
path-loop fibration, it fails to compute the cohomology of the based loop space.

Notice, however, that whenB = ∗, the guess above is correct. A more
sophisticated second guess can be made by observing that the first guess works
for B = ∗ becauseC∗(X) andC∗(E) are freeC∗(∗)-modules. (This is the
Künneth theorem.) Furthermore, ifπ andf are projections, the same argument
works. The deviation from “freeness” ofC∗(X) andC∗(E) asC∗(B)-mod-
ules reflects the nontrivial twisting of the base and fibre as a product in the
fibration,π : E → B, and further as pulled back over the mappingf : X → B.
In the case of modules overR and differential graded modules overR (see
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§2.4), this information is expressed through the derived functorsTorR(−,−)
of the tensor product. The correct expression forH∗(Ef ;R) in terms of the
data provided byf : X → B ← E : π is based on a generalization of the
theory of differential graded modules overR to a theory of differential graded
modules over a differential graded algebra overR. In our exposition, we follow
[Moore59] and [Smith, L67].

Differential graded modules over a differential graded algebra

Let (Γ, d) denote a differential graded algebra overR. For completeness,
we recall Definition 1.4:

(1) Γ =
⊕

n≥0
Γn is a differential graded module overR. We taked, the

differential, to have degree+1.
(2) There is anR-module homomorphism,m : Γ⊗R Γ→ Γ, the multipli-

cation, which is associative, that is, the following diagram commutes:

Γ⊗R Γ⊗R Γ w
m⊗1

u

1⊗m

Γ⊗R Γ

u

m

Γ⊗R Γ wm Γ.

(3) d is a derivation with respect tom, that is, if we writem(a⊗ b) = a · b,
thend(a · b) = d(a) · b+ (−1)deg aa · d(b).

(4) Γ has a unit, that is, there is an injectionη : R→ Γ of rings, so that the
following diagram commutes

Γ⊗R R w
1⊗η
''
''
''
''''

Γ⊗R Γ

u

m

R⊗R Γu

η⊗1

[[
[[

[[
[[[[

Γ

The ringRmay be taken to be the differential graded algebra,(R, d = 0), with
R in degree zero,{0} in higher degrees, and the zero differential.

Those differential graded module morphisms,ϕ : (Γ, d) → (Γ′, d′), of
degree zero that commute with the multiplications and the units comprise the
morphisms of differential gradedR-algebras and so determine a category, de-
notedDGAlgR. Singular cochains on a space with coefficients inR and the
cohomology of a space (with zero differential), both with the cup product, are
functorsTop→ DGAlgR from spaces to differential graded algebras.

A left module,N , overΓ is a differential graded module overR, together
with an action of Γ, ψ : Γ ⊗R N → N , which is a morphism of differential
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gradedR-modules such that the following diagrams commute:

Γ⊗R Γ⊗R N w
m⊗1

u

1⊗η

Γ⊗R N

u

ψ

R⊗R N

u

η⊗1

44
44
4444

Γ⊗R N w
ψ

N Γ⊗R N w
ψ

N .

A morphism of left Γ-modules, ρ : N → N ′, is a homomorphism of differ-
ential gradedR-modules that is compatible with theΓ-actions. The left (dif-
ferential graded)Γ-modules constitute a category that we denote byDGΓMod.
The category ofright (differential graded)Γ-modules, DGModΓ, is defined
similarly.

SupposeM is a rightΓ-module andN a leftΓ-module with structure maps
ϕ andψ, respectively. We defineM ⊗Γ N , the tensor product of M andN
overΓ, via the short exact sequence inDGModR

M ⊗R Γ⊗R N
ϕ⊗1−1⊗ψ
−−−−−−→M ⊗R N −→M ⊗Γ N −→ 0.

ThusM⊗ΓN can be described asM⊗RN modulo the relations(m ·γ)⊗n =
m ⊗ (γ · n), for all γ ∈ Γ, m ∈ M , andn ∈ N . ForN in DGΓMod, the
unit in Γ may be used to construct an isomorphism betweenN andΓ ⊗Γ N
as leftΓ-modules: Consider theR-module homomorphismsf : N → Γ⊗Γ N
given byf(n) = 1 ⊗Γ n, andg : Γ ⊗Γ N → N given byg(γ ⊗Γ n) = γ · n.
By the definition of⊗Γ, f andg are inverses. We considerΓ ⊗Γ N as a left
Γ-module with the actionγ ⊗ (γ′ ⊗Γ n) 7→ (γγ′) ⊗Γ n. The identification
(γγ′) · n = γ · (γ′ · n) is equivalent to the fact thatf andg areΓ-module
homomorphisms. ThusN ∼= Γ ⊗Γ N as leftΓ-modules. By the symmetric
argument for a rightΓ-moduleM ,M ⊗Γ Γ ∼= M as rightΓ-modules.

We next define the derived functors of−⊗Γ−, for which we need a notion
of exact sequence. Let

· · · −→ (Qn, dn) −→ (Qn+1, dn+1) −→ (Qn+2, dn+2) −→ · · ·

be a sequence of morphisms of leftΓ-modules. Recall from the case of dif-
ferential graded modules overR (§2.4) that the sequence isproper exact if it
satisfies

(1) · · · → (Qn)# → (Qn+1)# → (Qn+2)# → · · · is exact in the cate-
gory of gradedΓ#-modules, where( )# : DGΓMod → GΓMod is the
forgetful functor that ignores differentials.

(2) · · · → Z(Qn)→ Z(Qn+1)→ Z(Qn+2)→ · · · is exact in the category
of gradedR-modules, whereZ(Qn) = Z(Qn, dn) = ker dn.

(3) · · · → H(Qn, dn) → H(Qn+1, dn+1) → H(Qn+2, dn+2) → · · · is
exact in the category of gradedR-modules.
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If N is a left Γ-module, we define aproper resolution of N to be a proper
exact sequence inDGΓMod:

· · ·
δ
−→ Q−n

δ
−→ Q−n+1

δ
−→ · · ·

δ
−→ Q−1

δ
−→ Q0

ε
−→ N −→ 0.

Having defined the notion of exactness, there is a corresponding notion
of projective. We say that aΓ-module,P , is (proper)projective if, for any
morphism,σ : P → N andproper epimorphismζ : M → N in DGΓMod,
there is an extension,̃σ : P →M in DGΓMod so thatζ ◦ σ̃ = σ:

P

u

σ
i

i
iik

σ̃

M w
ζ

N w 0.

We observe that the categoryDGΓMod has enough projective modules.

Proposition 7.2.SupposeΓ andH(Γ) are flat modules overR andN is a left
Γ-module. Then there is a projectiveΓ-module,P , and a proper epimorphism,
π : P → N . That is, every leftΓ-module is the image of a proper projective
Γ-module.

Proof: We first introduce the notion of anextended module. SupposeV is
a proper projective differential gradedR-module; thenV ,Z(V ) andH(V ) are
all projective modules overR (see§2.4). Consider̃V = Γ ⊗R V and giveṼ
the leftΓ-module structure,cV : Γ⊗R Ṽ → Ṽ as in the diagram

Γ⊗R Ṽ w
cV Ṽ

Γ⊗R Γ⊗R V w
m⊗1

Γ⊗R V.

We claim thatṼ is a projectiveΓ-module.
Supposeζ : M → N is a proper epimorphism andσ : Ṽ → N is a (left)

Γ-module homomorphism. Observe thatV sits in Ṽ as1 ⊗R V sinceΓ has a
unit.

M

u

ζ

V
44
44

44
44
46

σ̃|V

y w Ṽ wσ

i
i
iijσ̃

N

u

0
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Becauseζ is a proper epimorphism,M
ζ
−→ N → 0 is exact inDGModR and so

we can extendσ|V : V → N to anR-module homomorphism̃σ|V : V →M .
Extend σ̃|V to all of Ṽ by σ̃(γ ⊗ v) = γ · σ̃|V (v). Sinceσ is a Γ-module
homomorphism,̃σ is our desired extension.

To complete the proof of the proposition, we use the fact that there are
enough projective differential gradedR-modules and takeπ0 : P 0 → N , any
proper epimorphism inDGModR. Extendπ0 to theΓ-module homomorphism
π : Γ⊗ P 0 → N , which is the composite

π : Γ⊗R P 0
1⊗π0−−−→ Γ⊗R N

ϕN−−→ N.

It remains to show thatπ : Γ⊗ P 0 → N is proper epic.

Lemma 7.3.Suppose thatΓ andH(Γ) are flat modules overR, P an extended
(hence projective) leftΓ-module andB a right Γ-module. ThenH(B⊗Γ P ) ∼=
H(B)⊗H(Γ) H(P ).

Proof: With the assumption of flatness, the K¨unneth theorem allows us to
giveH(B) anH(Γ)-module structure by

H(B)⊗R H(Γ)
∼=−→ H(B ⊗R Γ)

H(ψB)
−−−−→ H(B).

SinceP is an extended module overΓ, we can writeP = Γ⊗RV and compute,
applying the Künneth theorem at the appropriate points,

H(B ⊗Γ P ) = H(B ⊗Γ Γ⊗R V ) ∼= H(B ⊗R V )
∼= H(B)⊗R H(V ) ∼= H(B)⊗H(Γ) H(Γ)⊗R H(V )
∼= H(B)⊗H(Γ) H(Γ⊗R V ) ∼= H(B)⊗H(Γ) H(P ). ut

We define aproper projective resolution of a left Γ-module,N to be a
proper exact sequence

· · ·
δ
−→ P−i

δ
−→ P−i+1

δ
−→ · · ·

δ
−→ P−1

δ
−→ P 0

ε
−→ N −→ 0

for which eachP−i is a proper projectiveΓ-module fori ≥ 0. Lemma 2.19
guarantees that proper projective resolutions can always be constructed.

Corollary 7.4.SupposeΓ andH(Γ) are flat modules overR and

· · ·
δ
−→ P−i

δ
−→ P−i+1

δ
−→ · · ·

δ
−→ P−1

δ
−→ P 0

ε
−→ N −→ 0

is a proper projective resolution ofN , then

H(δ)
−−−→ H(P−i)

H(δ)
−−−→ · · ·

H(δ)
−−−→ H(P−1)

H(δ)
−−−→ H(P 0)

H(ε)
−−−→ H(N) −→ 0
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is a projective resolution ofH(N) as anH(Γ)-module.

Proof: By Lemma 7.3 we may take all of theP−i to be extended modules
overΓ. SinceΓ is flat,H(P−i) ∼= H(Γ)⊗RH(V −i) by the Künneth theorem.
We takeV −i to be proper projective, soH(V −i) is projective overR. Thus
H(P−i) is an extended module overH(Γ). Since a proper projective resolution
is proper exact, andH(Γ) is flat, the sequence on homology is long exact. Hence
we have anH(Γ)-projective resolution ofH(N). ut

As in Chapter 2, we have chosen the homological grading for the resolu-
tions in such a way that, with the internal degree, we have a double complex:

· · · w (P−1)2 w

u

(P 0)2 w

u

N2 w

u

0

· · · w (P−1)1 w

u

(P 0)1 w

u

N1 w

u

0

· · · w
δ

(P−1)0 w
δ

u

d−1

(P 0)0 wε

u

d0

N0 w

u

dN

0.

Suppose(P •, δ) is the complex

· · · −→ P−i
δ
−→ P−i+1

δ
−→ · · ·

δ
−→ P−1

δ
−→ P 0.

This complex has homologyH(P •, δ) = (N, dN ). Form theZ-graded differ-
ential module,(total(P •), D) by letting

[total(P •)]j =
⊕

m+n=j
(Pm)n, D =

∑
m

(δ + (−1)mdm).

(We write the direct sum with the word of warning that, in the general case, this
sum may be infinite and so the weak direct sum is intended. In certain situations
of topological interest, such large sums do not occur.)

There is aΓ-module structure on(total(P •), D) given by restricting the
Γ-action, Γ ⊗R P−i → P−i to (P−i)m+i. Since the action determines a
mappingΓk ⊗R (P−i)m+i → (P−i)m+i+k, we getΓk ⊗R [total(P •)]m →
[total(P •)]m+k. If M is a rightΓ-module, we form theZ-graded differential
R-module

(M ⊗Γ total(P •), dM ⊗ 1 + (−1)deg ⊗D)

where the sign is given bydM ⊗ 1 + (−1)q1 ⊗D on elements represented in
Mq ⊗ total(P •).
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Definition 7.5. TorΓ(M,N) = H(M ⊗Γ total(P •), dM ⊗ 1± 1⊗D).

We leave it as an exercise (compare Proposition 2.17) to verify that the
definition is independent of the choice of proper projective resolution as well as
independent of the choice to resolveN in DGΓMod and tensor on the left with
M or to resolveM in DGModΓ and tensor on the right withN or resolve both
and tensor the resolutions together. (In the topological applications to come,
we will resolve right modules.) Furthermore, the reader should verify thatTorΓ

is the correct generalization ofTorR, in the sense thatTorΓ(M,−) behaves as
the left derived functors ofM ⊗Γ −.

We make the following useful observations:

(1) TorΓ(M,N) is bigraded.

This follows by writing

Tor−i,∗Γ (M,N) = H−i,∗(M ⊗Γ total(P •), dM ⊗ 1 + (−1)deg ⊗D)
= a subquotient ofM ⊗Γ P

−i.

Those elements coming fromMm⊗Γ (P−i)n have bidegree(−i,m+n). The
first degree is the homological degree and the second is the internal degree.

(2)
⊕

i
Tor0,i

Γ (M,N) = M ⊗Γ N .

This follows from the fact thatH(P •, δ) = (N, dN ). ThusTorΓ(M,N) con-
tains not onlyM ⊗Γ N but also the deviation from exactness of the functor
M ⊗Γ − and the deviation from being projective ofN . In the topological in-
terpretation,TorC∗(B)(C∗(X), C∗(E)) measures the twisting effect off∗ as
the deviation from exactness ofC∗(X) ⊗C∗(B) − and the nontriviality ofπ∗

as the deviation from freeness ofC∗(E) as aC∗(B)-module.

(3) total(P •) is filtered.

An increasing filtration oftotal(P •) is a consequence of having a double com-
plex and so we get the filtration:

{0} = F 1 ⊂ F 0 ⊂ F−1 ⊂ · · · ⊂ F−n ⊂ · · · ⊂ total(P •)

defined by(F−n)r =
⊕

(P i)j where the sum is overi+ j = r andi ≥ −n.

We can picture the submoduleF−n as in the diagram:
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It is immediate thatD : F−n → F−n and eachF−n is aZ-gradedΓ-mod-
ule. We filterM ⊗Γ total(P •) byF−n = M ⊗Γ F

−n. By Theorem 2.6 this
filtration leads to a spectral sequence.

Theorem 7.6 (the first Eilenberg-Moore theorem).SupposeΓ andH(Γ) are
flat modules overR. Then there is a second quadrant spectral sequence with

E∗,∗2
∼= Tor∗,∗H(Γ)(H(M), H(N))

and converging toTor∗,∗Γ (M,N).

Proof: Having set up the algebra carefully, we use Theorem 2.6 to get most of
the theorem. It suffices to compute theE2-term. The initial term of the spectral
sequence isE−n,∗1

∼= H∗(F−n/F−n+1) and, as in the proof of Theorem 2.20
(the Künneth spectral sequence), we have

E−n,∗1
∼= H∗(F−n/F−n+1) ∼= H∗(M ⊗Γ P

−n).

By Lemma 7.3 we obtainE−n,∗1
∼= H(M)⊗H(Γ)H(P−n) andd1 = 1⊗H(δ).

Corollary 7.4 and the definition ofTor give us the desiredE2-term. ut
As in the discussion of Theorem 2.20, the strong convergence of this spec-

tral sequence may be delicate—the stages in the filtration areZ-graded. A
judicious choice of resolution can sometimes be made that insures strong con-
vergence (for example, in the discussion to follow on the bar construction).
General convergence results are discussed in Chapter 8bis. An important corol-
lary of the theorem is due to [Moore59] that motivates a number of results in
Chapter 8.

Corollary 7.7. SupposeΓ andΛ are differential graded algebras overR, M
is a right Γ-module,N is a leftΓ-module,M ′ is a right Λ-module, andN ′ is
a left Λ-module. Suppose we have homomorphisms,f : Γ → Λ, g : M → M ′

andh : N → N ′ satisfying

(1) f : Γ→ Λ is a homomorphism of differential gradedR-algebras.
(2) The following diagrams commute

M ⊗R Γ w
ϕM

u

g⊗f

M

u

g

Γ⊗R N w
ψN

u

f⊗h

N

u

h

M ′ ⊗R Λ wϕM′
M ′ Λ⊗R N ′ w

ψN′
N ′.

(3) H(f),H(g) andH(h) are all isomorphisms.
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Then, when the associated spectral sequences converge strongly,

Torf (g, h) : TorΓ(M,N)→ TorΛ(M ′, N ′)

is an isomorphism.

Proof: The corollary follows directly from Theorem 3.9 and the fact that
TorH(f)(H(g), H(h)) is an isomorphism of theE2-terms of the associated
spectral sequences. ut

This corollary indicates howTor, under suitable conditions, “sees” only
the homology of the objects involved. The subtleties of what is lost in this
procedure figure prominently in the applications of this spectral sequence to the
computation of the cohomology of homogeneous spaces.

At this point we should introduce the topology and interpret this algebraic
spectral sequence for topologists. The impatient reader can look ahead to§7.2.
However, before we leave the algebra, it is useful to recast our results in a
(theoretically) computable rather than categorical context.

The bar construction

In order to computeTorΓ(M,N), we need a proper projective resolu-
tion of the leftΓ-moduleN . Since any proper projective resolution will do,
a constructive, functorial complex is desirable that perhaps carries some extra
structure that can be exploited in calculation. One of the most useful explicit
constructions in homological algebra is thebar construction, which was intro-
duced by [Eilenberg-Mac Lane53] in their study of the cohomology of abelian
groups. For the sake of simplicity, we assume that our commutative ringR is a
field k. The interested reader can extend the construction (led by the K¨unneth
theorem) to arbitrary rings (see the exercises).

Suppose thatΓ is connected, that is, the unit,η : k → Γ is an isomorphism
in degree zero. Denote the cokernel ofη by Γ̄. SinceΓ is connected, we have
thatΓ̄ = Γ+ = {γ ∈ Γ | deg γ > 0}. Define

B
−n(Γ, N) = Γ⊗k

n times︷ ︸︸ ︷
Γ̄⊗k · · · ⊗k Γ̄⊗kN.

Notice thatB−n(Γ, N) is a leftΓ-module with the extended module action. It
is customary to write an element ofB−n(Γ, N) asγ[γ1 | γ2 | · · · | γn]a and to
write γ[ ]a for elements ofB0(Γ, N). To simplify signs in many formulas, we
adopt the following

Convention: If α is an element of a differential graded module, then

ᾱ = (−1)1+degαα.
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The internal differentiald−n defined onB−n(Γ, N) takes the form

d−n(γ[γ1 | · · · | γn]a) =

(dΓγ)[γ1 | · · · | γn]a+
∑n

i=1
γ̄[γ̄1 | · · · | γ̄i−1 | dΓγi | γi+1 | · · · | γn]a

+ γ̄[γ̄1 | · · · | γ̄n](dNa).

We leave it to the reader to check thatd−n is Γ-linear.
We assemble the differential gradedΓ-modules(B−n(Γ, N), d−n) into

a resolution by introducing the homological differentialδ : B−n(Γ, N) →
B
−n+1(Γ, N).

(−1)deg γδ(γ[γ1 | · · · | γn]a) =

(γ · γ1)[γ2 | · · · | γn]a+
∑n−1

i=1
γ[γ̄1 | · · · | γ̄i−1 | γ̄i · γi+1 | · · · | γn]a

+ γ[γ̄1 | · · · | γ̄n−1](γna).

(Our sign convention follows [May67] and agrees with [Smith, L67]. Though
more complicated than [Mac Lane70], it simplifies some notation used in§8.2.)
The reader can verify easily thatδδ = 0, δ is Γ-linear andd−n+1δ+ δd−n = 0.
If we let ε = ϕN : B0(Γ, N) = Γ ⊗k N → N , then we have the complex of
Γ-modules

· · ·
δ
−→ B

−n(Γ, N)
δ
−→ · · ·

δ
−→ B

−1(Γ, N)
δ
−→ B

0(Γ, N)
ε
−→ N −→ 0

(ε is onto, becauseΓ has a unit).

Proposition 7.8. (B•(Γ, N), δ, d•, ε), as a complex of differential gradedΓ-
modules, satisfies

(1) H(B•(Γ, N), δ, ε) = {0}, that is, the sequence is exact.
(2) H(B−n(Γ, N), d−n) = B

−n(H(Γ), H(N)).
(3) (B•(Γ, N), δ, ε) is a proper projective resolution ofN overΓ.

Proof: Consider the contracting homotopy:

s(γ[γ1 | · · · | γn]a) =
{

1[γ | γ1 | · · · | γn]a, if deg γ > 0,
0, if deg γ = 0,

ands(a) = 1[ ]a. We verifyδs+ sδ = id:

δs(γ[γ1 | · · · | γn]a) = δ(1[γ | γ1 | · · · | γn]a)

= γ[γ1 | · · · | γn]a+
∑n−1

i=1
1[γ̄ | γ̄1 | · · · | γ̄iγi+1 | · · · | γn]a

+ 1[γ̄ | γ̄1 | · · · | γ̄n−1](γna) + 1[γ̄γ1 | · · · | γn]a.
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Next we computesδ:

sδ(γ[γ1 | · · · | γn]a) =
s (−γ̄γ1[γ2 · · · | γn]a)− γ̄[γ̄1 | · · · | γ̄n−1](γna))

− s
(∑n−1

i=1
γ̄[γ̄1 | · · · | γ̄iγi+1 | · · · | γn]a

)
= −1[γ̄γ1 | γ2 | · · · | γn]a− 1[γ̄ | γ̄1 | · · · | γ̄n−1](γna)

−
∑n−1

i=1
1[γ̄ | γ̄1 | · · · | γ̄iγi+1 | · · · | γn]a.

Combining the two displays we find thatδs + sδ = id whenn ≥ 1. For
the bottom of the resolution, observe thatδs(a) = δ(1[ ]a) = a andsδ(a) =
s(0) = 0.

It follows immediately fromδs + sδ = id that the complex is exact.
Observe fromδd−n + d−n+1δ = 0 that

δ(Z(B−n(Γ, N), d−n)) ⊂ Z(B−n+1(Γ, N), d−n+1).

The reader can verify thatsd−n + d−n−1s = 0 with the consequence thats
carriesker d−n into ker d−n−1. If we restricts toZ(B•(Γ, N), d•), it remains
a contracting homotopy and so the sequence of gradedR-modules

−→ Z(B−n(Γ, N), d−n)
δ
−→ Z(B−n+1(Γ, N), d−n+1)

δ
−→ · · ·

· · ·
δ
−→ Z(B−1(Γ, N), d−1)

δ
−→ Z(B0(Γ, N), d0)

ε
−→ Z(N, dN ) −→ 0

is exact. Furthermore, when we ignore the internal differentials, the complex
remains exact becauseδs + sδ = id does not involve the internal differential.
This proves (1). To complete the proof of (3), we establish (2). From the
Künneth theorem and the fact thatk is a field, (2) follows from

H(B−n(Γ, N), d−n) = H(Γ)⊗k

n times︷ ︸︸ ︷
H(Γ̄)⊗k · · · ⊗k H(Γ̄)⊗k H(N)

= B
−n(H(Γ), H(N)).

Passing to homology,δs+ sδ becomesH(δ)H(s) +H(s)H(δ) = id and the
sequence of homologies of theB−n(Γ, N) is exact. ut

The proper projective resolution ofN overΓ, (B•(Γ, N), δ, d•, ε), is called
thebar resolution of N overΓ. We define

B
−n(M,Γ, N) = M ⊗Γ B

−n(Γ, N)
= M ⊗k Γ̄⊗k · · · ⊗k Γ̄︸ ︷︷ ︸

n times

⊗kN,

with internal differential,dM ⊗ 1 + (−1)deg ⊗ d•, and external differential,
1⊗Γ δ. The next result follows from the definitions.



m
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Corollary 7.9. (1)H(total(B•(M,Γ, N)), totalD) = TorΓ(M,N).

(2) If Γ is connected and simply-connected (that is,Γ1 = {0}), then the
spectral sequence of Theorem 7.6 converges strongly.

Proof: The first part of the corollary follows from Proposition 7.8 and the
definition of Tor. To establish the second part, observe that a typical element
γ[γ1 | · · · | γn]a ∈ B−n(M,Γ, N) has internal degree

deg γ + deg a+
∑n

i=1
deg γi ≥ 2n.

Thus eachB−n(M,Γ, N) is at least(2n − 1)-connected and the resulting fil-
tration ontotal(B•(M,Γ, N)) is bounded. By the proof of Theorem 2.6 and
Definition 3.8, the spectral sequence converges strongly. ut

Let us consider a simple example that illustrates a calculation with the
bar construction. LetΓ = Λ(x), the exterior algebra overk with deg x = m
and trivial differential. To computeTorΛ(x)(k, k) considerB•(k,Λ(x), k). In
homological degree−n, we find

B
−n(k,Λ(x), k) ∼= k ⊗Λ(x) Λ(x)⊗k

n times︷ ︸︸ ︷
Λ̄⊗k · · · ⊗k Λ̄⊗k k

∼= Λ̄⊗k · · · ⊗k Λ̄ (n times).

HereΛ̄ = coker η is the vector space generated byx in dimensionm and so
B
−n(k,Λ(x), k) has dimension 1 overk generated by[x | · · · | x] of bidegree

(−n,mn). Sincex2 = 0, the formula for the external differential gives us that
δ = 0 and so

TorΛ(x)(k, k) ∼= B
•(k,Λ(x), k).

Tor∗,∗Λ(x)(k, k) can be displayed as a bigraded module giving theE2-term of the
spectral sequence of Theorem 7.6 in the diagram:
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Suppose(Γ, d) is any connected differential graded algebra overk for which
H(Γ, d) ∼= Λ(x). By the placement of the nontrivial entries ofTorΛ(x)(k, k),
no nontrivial differentials can arise in the spectral sequence and so we conclude

TorΓ(k, k) ∼= TorΛ(x)(k, k).

In §7.2 we apply this calculation to computeH∗(ΩS2l+1; k).

TorΓ(k, k) enjoys an additional useful piece of structure.

Proposition 7.10.If Γ is a connected, differential graded algebra overk, then
B
•(k,Γ, k) is a differential coalgebra and this induces a coalgebra structure

on TorΓ(k, k) as well as on the spectral sequence withE2
∼= TorH(Γ)(k, k),

converging toTorΓ(k, k) as a coalgebra.

Proof: The coproduct,

∆: B−n(k,Γ, k) −→
⊕

r+s=n
B
−r(k,Γ, k)⊗ B−s(k,Γ, k),

is defined on a typical element[γ1 | · · · | γn] by

∆([γ1 | · · · | γn]) =
∑n

j=0
[γ1 | · · · | γj ]⊗ [γj+1 | · · · | γn],

where the empty bracket,[ ] = 1, is taken whenj = 0 or n. It then follows,
by explicit computations, that∆ commutes with the external and internal dif-
ferentials onB•(k,Γ, k) and so we have a differential coalgebra. The mapping
induced on homology by∆ provides the coalgebra structure onTorΓ(k, k).

Observe that the comultiplication∆ respects the filtration ofB•(k,Γ, k)
that gives rise to the spectral sequence of Theorem 7.6, that is,∆(F−n) ⊂⊕

r+s=n F
−r ⊗ F−s. This follows because the filtration in this case simply

counts the “number of bars.” Thus the spectral sequence is a spectral sequence
of coalgebras and this coalgebra structure converges to the coalgebra structure
onTorΓ(k, k). ut

This coproduct has been applied in the study of local rings to determine
the structure of the Poincar´e series associated toTorR(k, k) (see [Assmus59]).

There is a great deal of further structure that can be imposed on the
Eilenberg-Moore spectral sequence via the bar construction and more generally
from the structure ofTorΓ(M,N). Furthermore, these structures have useful
topological interpretations that we will present in the later sections of the chap-
ter. Before leaving the bar construction, we consider some further structure in
the special case ofB•(k,Γ, k).
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Lemma 7.11.Let Γ andΛ be two differential graded algebras overk. Then,
as coalgebras,

TorΓ(k, k)⊗ TorΛ(k, k) ∼= TorΓ⊗Λ(k, k).

Proof: We exploit another feature of the bar construction—it can be viewed
as a simplicial object (§4.2). LetB̂n(Γ) = Γ⊗n and endoŵB•(Γ) with face
and degeneracy maps

∂i([γ1 | · · · | γn]) =


[γ2 | · · · | γn], i = 0
(−1)i[γ̄1 | · · · | γ̄iγi+1 | · · · | γn], 0 < i < n

(−1)n[γ̄1 | · · · | γ̄n−1], i = n.

sj([γ1 | · · · | γn] = [γ1 | · · · | γj | 1 | γj+1 | · · · | γn], 0 ≤ j ≤ n.

The complex(B̂•, d) with differentiald =
∑
i(−1)i∂i is called theun-

normalized bar constructionand it has the same homology as the bar construc-
tion (see [Mac Lane70]), that is,H(B̂•(Γ), d) ∼= TorΓ(k, k). The simplicial
nature of the unnormalized bar construction suggests the key idea of the proof.

Let B̂•(Γ)× B̂•(Λ) denote the product of simplicial sets (recall that means
(B̂•(Γ)× B̂•(Λ))n = B̂n(Γ)× B̂n(Λ)). There is a natural identification

B̂•(Γ)× B̂•(Λ)←→ B̂•(Γ⊗ Λ)

given by identifying[γ1 | · · · | γn]×[λ1 | · · · | λn] with [γ1⊗λ1 | · · · | γn⊗λn]
and this is an isomorphism of coalgebras.

To prove the lemma we comparêB•(Γ)⊗ B̂•(Λ) andB̂•(Γ)× B̂•(Λ) by
taking the homomorphism at the heart of the Eilenberg-Zilber theorem (Theo-
rem 4.36): There is a chain equivalence of coalgebras

B̂•(Γ)⊗ B̂•(Λ)
EZ
−→ B̂•(Γ)× B̂•(Λ) ∼= B̂•(Γ⊗ Λ)

given by the shuffle map

EZ([γ1 | · · · | γp]⊗ [λ1 | · · · | λq])
=

∑
(p,q)-shuffles,σ

(−1)s(σ)[cσ(1) | cσ(2) | · · · | cσ(p+q)]

wherecσ(i) = γσ(i)⊗1 if 1 ≤ σ(i) ≤ p and1⊗λσ(i)−p if p+1 ≤ σ(i) ≤ p+q.
The sign is determined bys(σ) =

∑
(deg ci + 1)(deg cj+p + 1) summed over

all pairs(i, j+p) with σ(i) > σ(p+ j) (this is the sign convention that reflects
a change of sign when elements are permuted past each other, according to their
total degrees). The classical argument of [Eilenberg-Mac Lane53] completes
the proof. ut
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The bar constructionB•(k,Γ, k) is a functor from the category of differ-
ential graded algebras overk to the category of differential graded coalgebras.
A differential graded algebra morphismφ : Γ→ Λ induces a mapping of coal-
gebras

Torφ(1, 1) : TorΓ(k, k) −→ TorΛ(k, k).

If (Γ, d) is a graded-commutative differential graded algebra, then the multi-
plication is a morphism of differential graded algebras. Putting the induced
mappingB•(k,Γ⊗ Γ, k)→ B

•(k,Γ, k) together with Lemma 7.11 we get the
following result.

Corollary 7.12.If (Γ, d) is a graded-commutative, differential graded algebra
overk, thenB•(k,Γ, k) is a differential graded Hopf algebra andTorΓ(k, k) is
a commutative, cocommutative Hopf algebra with product induced by the shuffle
product followed by multiplication onΓ. Furthermore, the spectral sequence
converging toTorΓ(k, k) withE2-termTorH(Γ)(k, k) is a spectral sequence of
Hopf algebras.

Finally, we record an algebraic consequence of the presence of a Hopf
algebra structure on a spectral sequence that is most handy in topological ap-
plications. (See, especially, Chapter 10.)

Lemma 7.13.If {Er, dr; r = 2, 3, . . . } is a spectral sequence of Hopf algebras,
then, for eachr, in the lowest degree on which the differentialdr is nontrivial, it
is defined on an indecomposable element and has as value a primitive element.

Proof: Sincedr is a derivation with respect to the multiplication it follows
from the Leibniz formula that in the least degree in which it is nontrivialdr is
defined on an indecomposable element. Suppose that element isa. Then

∆(dr(a)) = dr(∆(a)) = dr

(
a⊗ 1 + 1⊗ a+

∑
i
a′i ⊗ a′′i

)
= dr(a)⊗ 1 + 1⊗ dr(a) +

∑
i
(dr(a′i)⊗ a′′i ± a′i ⊗ dr(a′′i )) .

Sincedeg a′i < deg a and deg a′′i < deg a, the assumption of least degree
impliesdr(a′i) = 0 = dr(a′′i ) and so∆(dr(a)) = dr(a)⊗ 1 + 1⊗ dr(a). ut

7.2 Bringing in the topology

We return to the basic problem of this chapter and the fibre square

Ef w
f̃

u
π′

E

u

π

X w
f

B
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with π a fibration with fibreF andπ′ the fibration induced byπ overf . Let
C∗( ) = C∗( ; k) denote the cochain functor with coefficients in a fieldk.
ApplyingC∗( ) to the fibre square yieldsC∗(B)-modulesC∗(X) andC∗(E)
via f∗ andπ∗ and the cup-product. To make our “second guess” atH∗(Ef ; k)
we compareTorC∗(B)(C∗(X), C∗(E)) with C∗(Ef ) orH∗(Ef ; k).

Define the mappingα : C∗(X)⊗k C∗(E)→ C∗(Ef ) by the composite

α : C∗(X)⊗k C∗(E)
(π′)∗⊗f̃∗
−−−−−−→ C∗(Ef )⊗k C∗(Ef )

^
−→ C∗(Ef ).

In the definition of the tensor product overΓ, we also have the homomorphism

ξ = (1 ^ f∗)⊗ 1− 1⊗ (π∗ ^ 1) :
C∗(X)⊗k C∗(B)⊗k C∗(E) −→ C∗(X)⊗k C∗(E).

We show thatα ◦ ξ = 0:

α((x ^ f∗(b))⊗ e− x⊗ (π∗(b) ^ e))

= [(π′)∗(x ^ f∗(b)) ^ (f̃)∗(e)]− [(π′)∗(x) ^ (f̃)∗(π∗(b) ^ e)]

= [(π′)∗(x) ^ (f ◦ π′)∗(b) ^ (f̃)∗(e)]

− [(π′)∗(x) ^ (π ◦ f̃)∗(b) ^ (f̃)∗(e)].

Sinceπ ◦ f̃ = f ◦ π′, we haveα ◦ ξ = 0 and soα induces a mapping

ᾱ :
[
C∗(X)⊗k C∗(E)

/
im ξ

]
= C∗(X)⊗C∗(B) C

∗(E) −→ C∗(Ef ).

SupposeQ•
ε
−→C∗(X)→ 0 is a proper projective resolution ofC∗(X) as

a rightC∗(B)-module. There is a homomorphismε : total(Q•) → C∗(X)
given ontotaln(Q•) byεon(Q0)n and zero on(Q−i)n+iwheni > 0. Consider
the compositeθ as in the diagram

total(Q•)⊗C∗(B) C
∗(E)A

A
A
AC

θ

u

ε⊗1

C∗(X)⊗C∗(B) C
∗(E) w

ᾱ
C∗(Ef ).

The relationship between the topology of the pullback diagram and the result-
ing algebra of cochains is described in a remarkable theorem of [Eilenberg-
Moore66].
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Theorem 7.14 (the second Eilenberg-Moore theorem).Supposeπ : E → B
is a fibration with connected fibreF for which the system of local coefficients
induced by the fibre onB is simple. Supposef : X → B is a continuous
mapping andπ′ : Ef → X is the pullback fibration ofπ over f . Then the
mappingθ = ᾱ ◦ (ε⊗ 1) is a homology isomorphism, that is,

θ : total(Q•)⊗C∗(B) C
∗(E) −→ C∗(Ef )

induces an isomorphism on homology,

θ∗ : TorC∗(B)(C∗(X), C∗(E)) −→ H∗(Ef ; k).

Proof: The strategy of proof is to (a) filter the domain and codomain ofθ
conveniently, (b) obtain spectral sequences that are isomorphic atE2 via θ and
(c) apply Theorem 3.5 to secure the desired isomorphism. SinceC∗(Ef ) and
C∗(E) are each algebras of cochains of the total space of a fibration, they can
be filtered as in the Leray-Serre spectral sequence (§5.1). Explicitly, we write

F qC∗(Ef ) = ker(i∗ : C∗(Ef )→ C∗(Jq−1
f ))

whereJq−1
f is the subspace ofEf that lies over the(q − 1)-skeleton ofX.

If we filter C∗(E) similarly over the skeleta ofB, and filterC∗(B) by de-
gree,F qC∗(B) =

⊕
i≥q C

i(B), then we obtain a tensor product filtration on
C∗(B)⊗k C∗(E):

F r(C∗(B)⊗k C∗(E)) =
⊕r

i=0
F iC∗(B)⊗k F r−iC∗(E).

The cochains inF qC∗(B) are supported on skeleta of dimension at leastq and
soπ∗(F qC∗(B)) ⊂ F qC∗(E). Also, the cup product onC∗(E) respects the
filtration by inverse images of skeleta. Thus, theC∗(B)-module structure on
C∗(E) is filtration-preserving:

F q(C∗(B)⊗k C∗(E))
π∗⊗1
−−−→

q⊕
i=0

F iC∗(E)⊗k F q−iC∗(E)
^
−→ F qC∗(E).

Filtertotal(Q•) by total degree, that is,F q(total(Q•)) =
⊕

i+j≥q
(Qi)j ;

this respects theC∗(B)-module structure. Filtertotal(Q•)⊗C∗(B) C
∗(E) as

a tensor product

F q(total(Q•)⊗C∗(B) C
∗(E)) =

⊕
i+j=q

F i total(Q•)⊗C∗(B) F
jC∗(E).

Such a tensor product on the right is possible because both filtrations preserve
theC∗(B)-module structure. Observe that the mapθ is filtration-preserving:

θ : F q(total(Q•)⊗C∗(B) C
∗(E))

ε⊗1
−−→ F q(C∗(X)⊗C∗(B) C

∗(E))
(π′)∗⊗(f̃)∗

−−−−−−−→ F q(C∗(Ef )⊗k C∗(Ef ))
^
−→ F q(C∗(Ef )).
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The mappingε ⊗ 1 is filtration-preserving, since it only sees the total degree
and^ is already known to be filtration-preserving;(π′)∗ and(f̃)∗ preserve
the filtration as geometric maps that preserve skeleta. Thusθ induces a map of
spectral sequences by Theorem 3.5.

Recall from the construction of the Leray-Serre spectral sequence and
the assumptions of the theorem, that the filtration onC∗(Ef ) hasE1-term,
C∗(X;H∗(F ; k)) and becausek is a field and the system of local coefficients is
simple,E2-term given byH∗(X; k)⊗k H∗(F ; k). For the filtered differential
graded module,total(Q•)⊗C∗(B) C

∗(E), we have theE0-term,F q/F q+1 =⊕
i+j=q

F i total(Q•)⊗C∗(B)F
jC∗(E)

/⊕
l+m=q+1

F l total(Q•)⊗C∗(B)F
mC∗(E).

The filtration ontotal(Q•) is given by total degree andd• + δ raises total
degree. It follows thatd0, the zeroth differential in the Leray-Serre spectral
sequence forE, is zero on thetotal(Q•) part. Since the filtration is decreasing,
we compute thatF q/F q+1 ∼= [total(Q•)]q⊗Eq0C∗(E) andd0 = 1⊗ d̄0. Thus
Eq,∗1 = H(F q/F q+1) ∼= [total(Q•)]q ⊗C∗(B) C

∗(B;H∗(F ; k)). Since the
local coefficient system induced by the fibre is simple, we can writeEq,∗1

∼=

[total(Q•)]q ⊗C∗(B) ⊗kC∗(B)⊗k H∗(F ; k) ∼= [total(Q•)]q ⊗k H∗(F ; k)

with d1 given by(d• + δ)⊗ 1. To computeH(total(Q•), d• + δ), recall from
the proof of Theorem 2.20 that, if we viewtotal(Q•) as a double complex, then
there are two filtrations, one of which yields a spectral sequence that collapses
to a column at theE2-term. This gives

H(total(Q•), d• + δ) = H(C∗(X), dX) = H∗(X; k).

Therefore, theE2-term derived from this filtration ontotal(Q•)⊗C∗(B)C
∗(E)

is isomorphic toH∗(X; k)⊗k H∗(F ; k).
To complete the proof of the theorem, it suffices to show thatθ induces an

isomorphism ofE2-terms. First, at theE1-term, the induced homomorphism

E1θ : total(Q•)⊗k H∗(F ; k) −→ C∗(X)⊗k H∗(F ; k),

is induced by(f̃)∗ on theH∗(F ; k) factor and so, by the construction of a
pullback, is an isomorphism. Furthermore, the mappingE1θ on thetotal(Q•)
factor is induced by the mapε, which is the mapping in the proof of Theo-
rem 2.20 (the K¨unneth spectral sequence) that yieldsH(total(Q•), d• + δ) ∼=
H(C∗(X), dX). Thus,E2θ is an isomorphism. By Theorems 3.5 and 5.2
(the Leray-Serre spectral sequence) we haveH(total(Q•)⊗C∗(B) C

∗(E)) =

TorC∗(B)(C∗(X), C∗(E)) andTorC∗(B) (C∗(X), C∗(E))
∼=−→
θ∗

H∗(Ef ; k).ut
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The interested reader may want to rework the proof with coefficients in a
ringR. We remark that the entire algebraic setting and topological interpretation
(for pushouts) can be developed dually in homology ([Eilenberg-Moore66]);
this is described later in the chapter.

SupposeB is simply-connected. By normalizing the cochains onB, we can
takeC∗(B) to be simply-connected as a differential graded algebra. Combining
the first and second Eilenberg-Moore theorems with Corollary 7.9 (2), we obtain
the solution to the problem posed in the introduction to the chapter.

Theorem 7.15.SupposeB is simply-connected,π : E → B, a fibration with
connected fibreF , andf : X → B, a continuous mapping. Letπ′ : Ef → X
be the induced fibration overf given as a pullback. Then there is a spectral
sequence, lying in the second quadrant, with

E2
∼= TorH∗(B;k)(H∗(X; k), H∗(E; k))

and converging strongly toH∗(Ef ; k).

An immediate corollary to Theorem 7.15 is a spectral sequence withE2-
termTorH∗(X;k) (k, k) converging strongly toH∗(ΩX; k) whenX is simply-
connected. More generally, the cohomology of the fibre of a fibration is recov-
erable from the base and total space.

Corollary 7.16.If π : E → B is a fibration with base spaceB simply-connected
and fibreF connected, then there is a spectral sequence withE2-term given by
TorH∗(B;k)(k,H∗(E; k)) and converging strongly toH∗(F ; k).

With this corollary, we can apply the calculation ofTorΛ(x)(k, k) in §7.1
to a topological computation. Consider the fibre square

ΩS2n+1 w

u

PS2n+1' ∗

u

∗ w S2n+1.

By Corollary 7.16,H∗(ΩS2n+1; k) is the target of the Eilenberg-Moore spectral
sequence withE2-termEi,j2

∼= Tori,jΛ(x2n+1)(k, k), wheredeg x2n+1 = 2n+ 1.
Our calculation shows that this spectral sequence collapses and we conclude
the classical result—as vector spaces,

Ht(ΩS2n+1; k) ∼= totalt(Tor∗,∗Λ(x2n+1)(k, k)) ∼=
{
k, if t = 2nr for r ≥ 0,
{0}, otherwise.

In fact, we can do a little more here. SinceΩS2n+1 is an H-space,
we can wonder about the Hopf algebra structure onH∗(ΩS2n+1; k). Since
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H∗(ΩS2n+1; k) ∼= TorΛ(x2n+1)(k, k), there is a product structure already at
the level of the bar resolution. Define

γm([x]) = [x | · · · | x] (m times),

where[x] has bidegree(−1, 2n+ 1) or total degree2n. The shuffle product on
these generators is given by

γp([x]) ∗ γq([x]) =
∑

(p,q)-shufflesσ

(−1)s(σ)γp+q([x]).

Since2n+ 1 is odd,s(σ) is even for all(p, q)-shuffles and so

γp([x]) ∗ γq([x]) =
(
p+ q

p

)
γp+q([x]),

where

(
p+ q

p

)
is the binomial coefficient;

(
p+ q

p

)
is the number of(p, q)-

shuffles. The reader can find this structure in the definition found in Exercise 1.7
of adivided power algebraon an element[x] of even degree2n.

The comultiplication resulting from the bar construction is described by

∆(γs([x])) =
∑s

i=0
γi([x])⊗ γs−i([x]),

whereγ0([x]) = 1. Thus,TorΛ(x)(k, k) ∼= Γ([x]), the divided power algebra
on [x], as a Hopf algebra overk.

It is tempting to conclude that we have determined the Hopf algebra
structure onH∗(ΩS2n+1; k). However, to do that we need to assume that
TorC∗(S2n+1;k)(k, k) is isomorphic as a Hopf algebra toTorH∗(S2n+1;k)(k, k),
and that the Hopf algebra structure coincides with the Hopf algebra structure
onH∗(ΩS2n+1; k). With a bit more effort, we will be able to conclude this.
However, observe thatC∗(S2n+1; k) is not a graded-commutative differential
graded algebra like its homology! This subtlety needs to be considered next.

Multiplicative matters

Our goal in this section is to prove that, in fact, the Eilenberg-Moore spec-
tral sequence carries information on the cup-product structure ofH∗(Ef ; k).

Proposition 7.17. On TorC∗(B)(C∗(X), C∗(E)), there is a natural algebra
structure and furthermore,

θ : TorC∗(B)(C∗(X), C∗(E)) −→ H∗(Ef ; k)

is an isomorphism of algebras.
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To prove the proposition, we begin with a natural product structure on the
TorΓ(−,−) functor of the form

TorΓ(M1, N1)⊗k TorΓ(M2, N2)
Φ
−→ TorΓ⊗Γ(M1 ⊗kM2, N1 ⊗k N2).

LetN1 andN2 be leftΓ-modules and let

· · · −→ P−i −→ P−i+1 −→ · · · −→ P 0 −→ N1 −→ 0,
· · · −→ Q−i −→ Q−i+1 −→ · · · −→ Q0 −→ N2 −→ 0

be left proper projective resolutions ofN1 andN2 overΓ. Let

R−i =
⊕

m+n=i
P−m ⊗k Q−n;

the Künneth theorem implies that

· · · −→ R−i −→ R−i+1 −→ · · · −→ R0 −→ N1 ⊗N2 −→ 0

is a left proper projective resolution ofN1⊗N2 overΓ⊗Γ that acts onN1⊗N2

by the composite

Γ⊗ Γ⊗N1 ⊗N2

1⊗T⊗1
−−−−→ Γ⊗N1 ⊗ Γ⊗N2

ϕ1⊗ϕ2−−−−→ N1 ⊗N2.

Letξ : M⊗Γ⊗N →M⊗N be the mappingξ(m⊗γ⊗n) = mγ⊗n−m⊗
γn forM ∈ DGModΓ andN ∈ DGΓMod. Recall thatM ⊗ΓN = coker ξ. If
M1 andM2 are rightΓ-modules, thenim(ξ ⊗ ξ) ⊂ (M1 ⊗N1)⊗ (M2 ⊗N2)
is carried by the interchange1⊗ T ⊗ 1 to the image ofξ:

(M1 ⊗M2)⊗ (Γ⊗ Γ)⊗ (N1 ⊗N2) w
ξ

u

1⊗T⊗T⊗1

(M1 ⊗M2)⊗ (N1 ⊗N2)

(M1 ⊗ Γ⊗M2)⊗ (N1 ⊗ Γ⊗N2)

u

1⊗1⊗T⊗1⊗1

(M1 ⊗ Γ⊗N1)⊗ (M2 ⊗ Γ⊗N2) w
ξ⊗ξ (M1 ⊗N1)⊗ (M2 ⊗N2)

u

1⊗T⊗1

and so the interchange induces a homomorphism, for allm andn,

(M1 ⊗Γ P
−m)⊗ (M2 ⊗Γ Q

−n) −→ (M1 ⊗M2)⊗Γ⊗Γ (P−m ⊗Q−n).

This homomorphism induces the pairing

Φ: TormΓ (M1, N1)⊗k TornΓ(M2, N2) −→ Torm+n
Γ⊗Γ (M1 ⊗kM2, N1 ⊗k N2).
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Recall from§4.4 that the coproduct on the chains of a space is the compo-
sition:

C∗(X)
∆∗−−→ C∗(X ×X)

AW
−−→ C∗(X)⊗ C∗(X).

This factorization, however, is not one of coalgebra mappings. In particular,AW
is not a coalgebra mapping. The inverse ofAWup to homotopy is the Eilenberg-
Zilber mapEZ, based on shuffles;EZ isa mapping of coalgebras. Thus we get
an honest coproduct structure on homology but only up to homotopy at the chain
level. In cohomology, to factor the cup-product in terms of algebra mappings
we meet a new problem:(C∗(X)⊗ C∗(X))dual is rarelyC∗(X)⊗C∗(X)—it
is a completed tensor product. We can, however, consider the maps

C∗(X)⊗ C∗(X)
i
−→ (C∗(X)⊗ C∗(X))dual EZ∗

←−− C∗(X ×X)
∆∗

−−→ C∗(X),

wherei denotes the inclusion into the completion. Every mapping here is a
differential graded algebra mapping and on homology we can fit the induced
homomorphisms into a product becauseEZ is a homology equivalence. Its
inverse on homology is also an algebra mapping.

To prove the proposition, we consider the diagram in whichA = C∗(B)

TorA(C∗(X),C∗(E))⊗kTorA(C∗(X),C∗(E)) w
θ∗⊗θ∗
∼=

u
Φ

H∗(Ef )⊗k H∗(Ef )

TorA⊗A(C∗(X)⊗k C∗(X), C∗(E)⊗k C∗(E))

u
Tori(i,i)

Tor(C∗(B)⊗C∗(B))∗((C∗(X)⊗ C∗(X))∗, (C∗(E)⊗C∗(E))∗)

TorC∗(B×B)(C∗(X ×X), C∗(E × E))

u

TorEZ∗ (EZ∗,EZ∗) ∼=

w
θ∗

∼=

u
Tor∆(∆,∆)

H∗(Ef × Ef )

u

∼= EZ∗

u
∆∗

TorC∗(B)(C∗(X), C∗(E)) w
∼=
θ∗

H∗(Ef ).

We leave it to the reader to check that the Eilenberg-Zilber maps,EZ,
commute with the actions ofC∗(B) andC∗(B×B) on the appropriate modules,
so they induce the vertical isomorphism as shown; since they are homology
isomorphisms, Corollary 7.7 implies thatTorEZ∗(EZ∗,EZ∗) is an isomorphism.

We claim that the entire diagram commutes. The bottom square com-
mutes by the naturality of the homomorphismθ and the geometric mappings of
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fibrations

F w

u

∆

Ef w

u

∆

X

u

∆ and

F w

u

∆

E w

u

∆

B

u

∆

F × F w Ef × Ef w X ×X F × F w E × E w B ×B.

The top square commutes because the morphisms constructed to carry the map-
pings cover the composite∆∗ ◦ (EZ∗)−1 ◦ i∗, which is the cup-product. Since
the composite on the left side is the product induced by∆ on Tor and the
product on the right is the cup-product, we have proved Proposition 7.17.ut

In the proof of Proposition 7.17, the reader can check that all maps in sight
preserve the filtration leading to the Eilenberg-Moore spectral sequence. This
implies the following useful result.

Corollary 7.18.The Eilenberg-Moore spectral sequence is a spectral sequence
of algebras, converging to its target as an algebra.

In the special case of the path-loop fibration, our factorization of the cup-
product into differential graded algebra morphisms, albeit dizzying in direction,
induces a Hopf algebra structure onTor because the crucial (backward pointing)
morphism is an equivalence.

Corollary 7.19.The Eilenberg-Moore spectral sequence associated to the path-
loop fibration onX, a simply-connected space, withE2

∼= TorH∗(X;k)(k, k)
is a spectral sequence of Hopf algebras, converging toH∗(ΩX; k) as a Hopf
algebra.

In §7.1 we computedTor(A∗,∂)(k, k) ∼= Γ([x]) for any differential graded
algebra(A∗, ∂) with H(A∗, ∂) ∼= Λ(x) anddeg x odd. Corollary 7.19 implies
that Γ([x]) ∼= E0(H∗(ΩS2n+1; k)) as Hopf algebras. To obtain the Hopf
algebraH∗(ΩS2n+1; k) exactly, we need to settle the extension problems. As
a vector space, there are no problems asΓ([x]) is concentrated in even degrees.
As an algebra the extension problem depends on the characteristic ofk. If
char k = 0, thenΓ([x]) is isomorphic to a polynomial algebra on one generator
and there are no vanishing products. As in Example 1.K, we have established
the product structure completely. If the characteristic ofk is finite, then we
must turn to another argument. Here the structure of the Leray-Serre spectral
sequence for the path-loop fibration settles the extension problems. To wit, the
issue at hand is the vanishing ofpth powers of the class[x]. They vanish in the
structure of a divided power algebra (Proposition 7.26). In the cohomology of
ΩS2n+1, the appearance of apth power implies a class on which the first (and
only) nontrivial differential in the Leray-Serre spectral sequence vanishes. This



       

7.3. The Koszul complex 257

leaves a nontrivial class inH+(PS2n+1; k) and gives a contradiction. Thus
the product structure onH∗(ΩS2n+1; k) coincides with the product structure
of Γ([x]) and we have recoveredH∗(ΩS2n+1; k) as a Hopf algebra.

The cup-product on cochains fails to be a differential graded algebra map-
ping. However, special circumstances (an explicit and nice homotopy inverse)
allowed us to produce an algebra structure on the spectral sequence. If(A∗, dA)
and(B∗, dB) are differential graded algebras, we can ask more generally for
conditions on ak-module morphism(A∗, dA) → (B∗, dB) to define a mor-
phism onTor, even for the case ofTor(A∗,dA)(k, k)→ Tor(B∗,dB)(k, k). This
question withA∗ = C∗(X; k) ⊗ C∗(X; k) andB∗ = C∗(X; k) includes the
case of the cup-product. We discuss this question in the next chapter.

7.3 The Koszul complex

With the bar construction and Corollary 7.19 the Eilenberg-Moore spec-
tral sequence leads to the computation ofH∗(ΩS2n+1; k) as a Hopf algebra.
TheE2-term in this case is rather simple and the spectral sequence collapses.
In contrast, the same computation with the Leray-Serre spectral sequence (as
outlined in Example 1.H) involves a flurry of nontrivial differentials, some of
which settle the extension problems for theE∞-term of the Eilenberg-Moore
spectral sequence.

Lest the reader come to believe that the Eilenberg-Moore spectral sequence
is a more facile method for computation, we describe a symmetric situation
where the Leray-Serre spectral sequence associated to a fibration is quite simple
while the Eilenberg-Moore spectral sequence requires a panoply of differentials.

Consider the Hopf fibration,S3 ↪→ S7
ν
−→ S4, which is associated to the

quaternionic multiplication. We can computeH∗(S3; k) as the cohomology
of the fibre ofν by applying the Eilenberg-Moore spectral sequence. Here
theE2-term is TorH∗(S4;k)(k,H∗(S7; k)) which we compute using the bar
construction. In particular, as a vector space,B

−n(k,H∗(S4; k), H∗(S7; k))
is generated by

n times︷ ︸︸ ︷
[x4 | · · · | x4] and

n times︷ ︸︸ ︷
[x4 | · · · | x4] y7.

On each generator, the exterior differential,δ, is zero and so

TorH∗(S4;k)(k,H∗(S7; k)) ∼= B
•(k,H∗(S4; k), H∗(S7; k)).

By a dimension argument, the only possibly nontrivial differential isd2.
If d2([x4 | x4]) = [ ]y7, then the multiplicative structure implies the rest of the
nontrivial differentials needed to obtain a finite-dimensionalE∞-term. Thus



-1-2-3
[ ]

[ ]

y7[x4 | x4]

d2
y7[x4][x4 | x4 | x4]

d2
y7

[x4 | x4]

[x4]
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[x4] remains to generateH∗(S3; k) in total degree3 = 4− 1.

This computation is not at all efficient as a way to determine the cohomol-
ogy of the fibre ofν. It does reveal, however, some of the algebraic topology
associated to the Hopf fibration: In Chapter 8, the nature of the differentials in
the Eilenberg-Moore spectral sequence is discussed and the interpretation of dif-
ferentials in terms of higher cohomology operations may be applied in this case.
The reader can contrast this computation with the discussion of the Leray-Serre
spectral sequence for fibrations of spheres by spheres after Example 5.B.

In any application of the Eilenberg-Moore spectral sequence, it is necessary
to computeTorH(Γ)(H(M), H(N)) in order to begin with theE2-term. In the
examples we have considered so far, the bar construction has been manageable as
a result of the sparseness of the algebraic input. For algebras with more than one
generator and some relations, the bar construction can become quite large and
complicated. One of the features of homological algebra is the invariance of the
derived functors with regard to the choice of resolution and so the construction
of smaller and more manageable resolutions is important. Though this cannot
be achieved in general, there is a considerable reduction possible whenH(Γ)
is a free graded commutative algebra overk.

Let J denote a graded set. Thefree graded commutative algebra,S(J),
generated byJ is determined by a universal property: The setJ includes
in S(J) as a generating set for the algebra. IfA is any graded commutative
algebra overk andJ → A any mapping of sets, then there is a unique mapping
of algebrasS(J)→ A extendingJ → A.

We may writeJ = Jeven∪ Jodd whereJeven = {x ∈ J | deg x is even}
andJodd = J − Jeven(If char k = 2, then letJeven = J). If J is a singleton
setJ = {x}, thenS({x}) ∼= k[x] whenx has even degree orchar k = 2,
andS({x}) ∼= Λ(x) whenx has odd degree. IfJ has finitely many elements
in each degree, then an application of the universal property showsS(J) ∼=
k[Jeven] ⊗k Λ(Jodd), that is, the tensor product of the polynomial algebra on
the elements inJevenand the exterior algebra on the elements inJodd.
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Definition 7.20. Let J be a positively graded set (that is,Jr = ∅, for r ≤ 0)
which is finite in each degree. TheKoszul complexassociated toS(J) is the
differential graded algebra

K(J) = (G(s−1J)⊗k S(J), dK),

wheres−1J is thedesuspensionofJ , given by the graded set(s−1J)m = Jm+1

and
G(s−1J) = Λ(s−1Jeven)⊗k Γ(s−1Jodd).

The differentialdK is given on generators by

dK(1⊗ x) = 0, for x ∈ S(J),
dK(s−1x⊗ 1) = 1⊗ x, for x ∈ Jeven,

dK(γn(s−1x)⊗ 1) = γn−1(s−1x)⊗ x, for x ∈ Jodd,

and extended as a derivation.

Proposition 7.21.For J a positively graded set that is finite in each degree, the
homology of the associated Koszul complex is trivial, that is,

H(K(J), dK) ∼= {0}.

Proof: If J = {x} is a singleton set andx has even degree, then the argument
given in Example 1.H applies to prove this case. IfJ = {x} andx has odd
degree, then observe thatΓ(s−1x) ∼= B

•(k,Λ(x), k) via the mapping,

γm(s−1x) 7→ [x | · · · | x] (m times).

It follows thatK({x}) ∼= totalB•(Λ(x),Λ(x)), which is acyclic.
To complete the proof for an arbitrary generating setJ , filter J by degree

and apply the K¨unneth theorem and induction to the successive filtrations.ut
In order to construct a resolution from the Koszul complex, we introduce

a bigrading: Because we can write

K(J) = (Λ(s−1Jeven)⊗k Γ(s−1Jodd))⊗k (k[Jeven]⊗k Λ(Jodd)),

we assign the bigradings as follows: Ifx ∈ J , bideg(1⊗ x) = (0,deg x) and
bideg(s−1x ⊗ 1) = (−1,deg x) and, if y ∈ Jodd, bideg(γn(s−1y) ⊗ 1) =
(−n, n deg y). All other elements inK(J) are bigraded as in the tensor product
of bigraded algebras. TakingG(s−1J) to be bigraded according to this scheme,
we observe thatK−p,∗(J) = G−p,∗(s−1J) ⊗k S(J), that is,K−p,∗(J) is an
extendedS(J)-module. Furthermore, the differential on the Koszul complex is
defined so thatdK| : K−p,∗(J) −→ K−p+1,∗(J).
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Corollary 7.22.The sequence,

· · ·
dK−−→ K−p,∗(J)

dK−−→ · · ·
dK−−→ K−1,∗(J)

dK−−→ S(J)
ε
−→ k −→ 0,

is a resolution ofk as a rightS(J)-module, called theKoszul resolution.

We apply the resolution immediately to computeTorS(J)(k, k). Following
Definition 7.5,

TorS(J)(k, k) = H(K(J)⊗S(J) k, dK ⊗ 1)

= H(G(s−1J)⊗ S(J)⊗S(J) ⊗k, dK ⊗S(J) 1)

= H(G(s−1J), 0) = G(s−1J).

More generally, supposeL is a leftS(J)-module.

Corollary 7.23.For L a leftS(J)-module,

TorS(J)(k, L) ∼= H(G(s−1J)⊗k L, dL),

where the complexG(s−1J)⊗ L has the differential,dL, given by

dL(1⊗ l) = 0,
dL(s−1x⊗ l) = 1⊗ xl, for x ∈ J ,

dL(γn(s−1x)⊗ l) = γn−1(s−1x)⊗ xl, for x ∈ Jodd.

If L is a graded commutative algebra overS(J), thenTorS(J)(k, L) is isomor-
phic toH(G(s−1J)⊗ L, dL) as bigraded algebras overk.

The result follows from Corollary 7.22 and the definition ofTor:

TorS(J)(k, L) ∼= H(G(s−1J)⊗k S(J)⊗S(J) L, d⊗S(J) 1)
∼= H(G(s−1J)⊗k L, dL).

To recover the algebra structure onTorS(J)(k, L) check that the following
diagram of graded algebras commutes:

G(s−1J)⊗ L⊗G(s−1J)⊗ L

u

w L⊗ L

u

G(s−1J)⊗ L w L.

We next apply this new tool to a familiar cohomology computation, Exam-
ple 5.G. The complex Stiefel manifold,Vl(Cn), of l-frames inCn, is homeo-
morphic to U(n)/U(n−l), the quotient of the unitary groups, U(n−l) ⊂ U(n),
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by the usual inclusion. We have already remarked that a homogeneous space
G/H can be taken to be the fibre of the mappingBinc: BH → BG. Thus we
have the fibre square

Vl(Cn) w

u

BU(n− l)

u

Binc

∗ w BU(n).

The Eilenberg-Moore spectral sequence for this fibre square begins

E∗,∗2
∼= Tor∗,∗k[c2,... ,c2n](k, k[c2, . . . , c2(n−l)]),

therefore, we can apply Corollary 7.23 to compute theE2-term. The action
of k[c2, . . . , c2n] on k[c2, . . . , c2(n−l)] may be described by writing the al-
gebrak[c2, . . . , c2(n−l)] as the quotientk[c2, . . . , c2n]/(c2(n−l)+2, . . . , c2n).
Corollary 7.23 gives the complex

Λ(x1, . . . , x2n−1)⊗k k[c2, . . . , c2(n−l)],

which we can rewrite as

Λ(x2(n−l)+1, . . . , x2n−1)⊗k Λ(x1, . . . , x2(n−l)−1)⊗k k[c2, . . . , c2(n−l)].

The explicit differential on the complex is fashioned out of thek[c2, . . . , c2n]-
action onk[c2, . . . , c2(n−l)]. This complex splits as the acyclic Koszul complex
(Λ(x1, . . . , x2(n−l)−1)⊗k k[c2, . . . , c2(n−l)], dK) for k[c2, . . . , c2(n−l)], leav-
ingE2

∼= Λ(x2(n−l)+1, . . . , x2n−1). Because all of the algebra generators for
E∗,∗2 lie in E−1,∗

2 , the spectral sequence collapses and

E∗,∗∞ ∼= Λ(x2(n−l)+1, . . . , x2n−1).

Since this is a free graded commutative algebra, there are no extension problems
and so we conclude, as in Example 5.G,

H∗(Vl(Cn); k) ∼= Λ(x2(n−l)+1, . . . , x2n−1).

The Koszul resolution plays an important role in the study of the cohomol-
ogy of homogeneous spaces to be considered more deeply in Chapter 8.

The free graded commutative algebraS(J) whenJ is locally finite enjoys
some further structure—S(J) is a graded commutative Hopf algebra. The
Hopf-Borel structure theorem (Theorem 6.36) allows us to write a locally finite
graded commutative Hopf algebraH over a perfect field as a tensor product
of monogenic Hopf algebras. To computeTorH(k, k) in this case we can use
the splitting ofH into monogenic factors (Lemma 7.11). The Koszul complex
handles the free graded commutative pieces leaving the case of a truncated
polynomial algebra factor over a field of characteristicp > 0. This case admits
a similar resolution described by [Tate57] in the ungraded case and extended to
the graded case by [Jozefiak72].
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Proposition 7.24. Suppose thatk is a field of characteristicp > 0. Then
Tor

k[x2n]/(xp
s

2n)
(k, k) ∼= Λ(a2n−1)⊗ Γ(b2nps−2), wherea2n−1 corresponds to

[x2n] andb2nps−2 corresponds to[xp
s−1

2n | x2n] in the bar construction.

The elementb2nps−2 is called thetranspotence elementas it plays the role of
the element(τx)p

s−1 ⊗ x in the Leray-Serre spectral sequence (see§6.2).

Proof: To carry out the computation we proceed naively. We can form
(Λ(a2n−1) ⊗ k[x2n]/(xp

s

2n), d) with differential given byd(a2n−1) = x2n,
d(x2n) = 0 and extended as a derivation. This does not yield a resolution as the
homology of this complex is nonzero. In particular, there is a nonzero homology
class given bya⊗xps−1 and the homology is isomorphic to an exterior algebra
generated by this class. Next form the differential graded algebra

(Γ(b2nps−2)⊗ Λ(a2n−1)⊗ k[x2n]/(xp
s

2n), d′)

whered′ = d on the subalgebra whered is defined, andd′(b) = a ⊗ xps−1.
The extension of the differential to the other generators of the divided power
algebra is given by

d′(γm(b)) = γm−1(b)⊗ a⊗ xps−1.

The proposition follows by showing that this complex is acyclic. If we bigrade
the complex according to the rulebideg(x) = (0, 2n), bideg(a) = (−1, 2n)
andbideg(b) = (−2, 2nps), then filtering by homological degree leads to a
spectral sequence that separates out theΓ(b) factor fromΛ(a)⊗k[x2n]/(xp

s−1
2n )

in the first term and looks likeΓ(b) ⊗ Λ(a ⊗ xp
s−1) in the next term. The

argument for the Koszul complex proves acyclicity and the bigrading provides
the resolution. ut

When(X,µ) is a locally finite H-space,H∗(X; k) is a graded commutative
Hopf algebra andTorH∗(X;k)(k, k) is theE2-term of the Eilenberg-Moore
spectral sequence that computesH∗(ΩX; k). With such complete control of
theE2-term in this case, [Gitler62] and [Clark65] proved the following result.

Theorem 7.25.Let (X,µ) be a simply-connected H-space that is of the homo-
topy type of a finite complex. Then, in the Eilenberg-Moore spectral sequence
converging toH∗(ΩX;Fp) for p a prime, the only possible nontrivial differen-
tials dr satisfyr = ps − 1 or r = 2ps − 1.

Proof: From the assumptions we know thatH∗(X;Fp) is isomorphic as an
algebra to a tensor product of the following form

H∗(X;Fp) ∼= Λ(x1, . . . , xm)⊗
(
Fp[y1]/(yp

s1

1 )
)
⊗ · · · ⊗

(
Fp[yn]/(yp

sn

n )
)
.
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It follows thatTorH∗(X;Fp)(Fp,Fp) = E2 takes the form

Γ(a1, . . . , am)⊗ Λ(b1, . . . , bn)⊗ Γ(c1, . . . , cn)

where theai have bidegree(−1, |xi|), thebj have bidegree(−1, |yj |) and thecj
have bidegree(−2, |yj |). By Lemma 7.13 the lowest degree differential takes
an indecomposable to a primitive. We first consider the primitives. According
to the Hopf algebra structure onE2, the primitives are spanned overFp by the
set{ai, bj , cj}. Since the bidegree of the differentials is(r, 1− r) andr ≥ 2,
the primitives are all permanent cycles.

To determine the indecomposables ofE2, we need to know a little more
about divided power algebras overFp. Since a divided power algebra is locally
finite and commutative, it is described by the Hopf-Borel theorem as a tensor
product of monogenic Hopf algebras.

Lemma 7.26. Γ(u2l) ∼=
⊗∞

i=0

(
Fp[γpi(u2l)]/(γpi(u2l)p)

)
.

Proof: Let u = u2l. The Poincar´e series forΓ(u) is given byP (Γ(u), t) =
1

1− t2l . This can be seen by identifyingΓ(u) with B
•(Fp,Λ(su),Fp). The

Poincaré series for the tensor product of truncated polynomial algebras is given
by ∏∞

i=0

1− t2lpi+1

1− t2lpi =
1

1− t2l
Notice that the tensor product of truncated algebras has the property that

every element haspth power zero. We note that this is also true inΓ(u): Given
any generators,γr(u) andγs(u), the defining relation forΓ(u) is

γr(u)γs(u) =
(
r + s

s

)
γr+s(u).

By induction (γr(u))p =
(
pr

r

)
γpr(u) and the binomial coefficient is zero

modp.
Since everypth power vanishes inΓ(u), there is a homomorphism of alge-

brasφ :
⊗∞

i=0
Fp[γpi(u)]/((γpi(u))p) → Γ(u) takingγpi(u) to itself. From

the equality of the Poincar´e series it suffices to show that this homomorphism
is an epimorphism.

Recall Lucas’s Lemma ([Hardy-Wright38]): If A andB are positive
integers andA = α0 +α1p+ · · ·+ανp

ν andB = β0 + β1p+ · · ·+ βνp
ν are

the basep expressions ofA andB (in particular,0 ≤ αi, βj < p), then(
A

B

)
≡

ν∏
i=0

(
αi
βi

)
mod p.
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We show that we can express a typical generatorγA(u) in the divided power
algebra in terms of theγpi(u): WriteA = α0 + α1p+ · · ·+ ανp

ν .

Claim: γA(u) = CA(γ1(u))α0(γp(u))α1 · · · (γpν (u))αν with CA 6≡ 0 mod p.

We prove the claim by induction onν. For ν = 0, there are only the

generatorsγi(u) where1 ≤ i < p. We have the identityγi(u) =
(
i

1

)
(γ1(u))i

in this range and so the induction is begun.
Assuming the claim for sums out topν−1, we write

A = α0 + α1p+ · · ·+ ανp
ν

= α0 + p(α1 + · · ·+ ανp
ν−1) = α0 + pA′.

The defining relation for the divided power algebra gives(
α0 + pA′

α0

)
γA(u) = γα0(u)γpA′(u).

By Lucas’s Lemma,

(
α0 + pA′

α0

)
≡ 1 mod p and so we have

γA(u) = Cα0(γ1(u))α0γpA′(u).

Consider the mappingF : γi(u) 7→ γpi(u) defined onΓ(u). Though this
is not a morphism in the category of graded vector spaces, it is nonetheless a
multiplicative monomorphism by Lucas’s Lemma. By induction we can express
γA′(u) as in the claim. Apply this Frobenius mappingF onΓ(u) to obtain the
expression forγA(u) in the claim. It follows that the homomorphismφ is an
epimorphism and the lemma is proved. ut

The decomposition in Lemma 7.26 implies that the indecomposables of
TorH∗(X;Fp)(Fp,Fp) lie in bidegrees(−ps, (deg ai)ps) or (−2ps, (deg cj)ps).
These bidegrees have even total degree and so a differential cannot have an
image among the primitives of even total degree. Thus a differential that is
nontrivial must land in bidegree(−1, even). It follows that the first nontrivial
differential in the spectral sequence must be defined onEn wheren = ps − 1
or n = 2ps − 1.

If we take such a differential and restrict our attention to its domain and
image, we find a differential Hopf algebra of the form(Γ(U) ⊗ Λ(V ), d),
whereU = γps(u2l) andd(U) = V , a class among the odd degree primitives
in Tor−1,∗. The homology of this piece of the spectral sequence is given by

H(Γ(U)⊗ Λ(V ), d) ∼= Γ(U)/(γt(U) | t ≥ ps).

Though this homology produces a new primitive, it is in an even degree and
so determines a permanent cycle. Furthermore, no new indecomposables are
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created. If we compare the initial differential Hopf algebra with the quotient by
this differential sub-Hopf algebra, then we get a splitting of anyEn-term into
differential Hopf algebras of this form and ones with trivial differentials. This
proves the theorem. ut

More can be said about the differentials that appear in Theorem 7.25. We
postpone the discussion to Chapter 8 where we develop a general setting for de-
scribing differentials in the Eilenberg-Moore spectral sequence. Theorem 7.25
plays an important role in the study of torsion in H-spaces—one of the main
topics of Chapter 10 (see the paper of [Kane75]).

7.4 The homology of quotient spaces of group actions

In this section we consider another situation where the differential homo-
logical algebra of§7.1 may be applied and the spectral sequence of Theorem 7.6
interpreted topologically. We assume that the reader is acquainted with the fol-
lowing notions:G is a topological group, andGacts on spacesX andY . Denote
these actions byψX : X × G → X (a right action) andψY : G × Y → Y (a
left action). To such data, we associate a new space,X ×G Y , the pushout of
ψX × 1 and1× ψY , as in the diagram

X ×G× Y w
ψX×1

u

1×ψY

X × Y

u

X × Y w X ×G Y,

that is,X ×G Y is the quotient ofX × Y by the relation(xg, y) ∼ (x, gy) for
all x ∈ X, y ∈ Y andg ∈ G. Some examples of this situation are:
(1) SupposeG acts onY andY/G is its orbit space. Then, ifX = ∗, a point

endowed with the trivial action ofG, we recoverY/G as∗×GY . Observe
that whenever the action ofG on Y is free, we get a principal fibration,
G ↪→ Y → Y/G.

(2) An important example of the situation in (1) has been described in Chap-
ter 6: WhenEG is an acyclic space on whichG acts freely, thenEG/G =
BG is the classifying space for principalG-bundles and we have the fi-
brationG ↪→ EG→ BG.

(3) SupposeG ↪→ E → X is a principalG-bundle andF is a rightG-space.
Then we can form the fibre bundle overX with fibreF and structure group
G. This is the associated fibration

F ↪→ F ×G E −→ X = E/G.

This construction is discussed in§6.2.

From the description ofX×GY , we pose the problem dual to the problem
of the introduction to the chapter.
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Problem. ComputeH∗(X ×G Y ; k) from knowledge ofH∗(X; k), H∗(Y ; k),
H∗(G; k) and the actions ofG onX andY .

In order to place ourselves in the algebraic setup of§7.1, apply the singular
chain functor, with coefficients in a fieldk, to theG-action maps. We write
C∗( ) for C∗( ; k). ThenC∗(G) is a differential graded algebra with the
Pontryagin multiplication induced by the group multiplication onG. Further
we have actions ofC∗(G),

C∗(X)⊗ C∗(G) −→ C∗(X) and C∗(G)⊗ C∗(Y ) −→ C∗(Y )

induced byψX∗ andψY ∗. Therefore,C∗(X) andC∗(Y ) become right and
left modules overC∗(G). In this setting we can construct a proper projective

resolution ofC∗(X) as a rightC∗(G)-module,Q•
ε
−→ C∗(X)→ 0. Note that

Q• can be presented as a first quadrant double complex since the differential
onC∗(X) has degree−1. From the pushout diagram, there is a mapping of
C∗(G)-modules,

ᾱ : C∗(X)⊗C∗(G) C∗(Y ) −→ C∗(X ×G Y ).

We introduce the compositeθ, as in the diagram

total(Q•)⊗C∗(G) C∗(X)

u

ε⊗1

A
A
A
AC

θ

C∗(X)⊗C∗(G) C∗(Y ) w
ᾱ

C∗(X ×G Y ).

The following theorem is due to [Moore59].

Theorem 7.27.SupposeG is a connected topological group,X is a rightG-
space, andY is the total space of a principalG-bundle whereG acts onY on
the left. Then the mappingθ is a homology isomorphism, that is, there is an
isomorphism

θ∗ : TorC∗(G)(C∗(X), C∗(Y )) −→ H∗(X ×G Y ).

The proof follows the same outline as the proof of Theorem 7.14 with
homology substituted for cohomology. The source of the comparison with the
Leray-Serre spectral sequence is the fibration induced by theG-mapX → ∗.

X −→ X ×G Y −→ Y/G = ∗ ×G Y.

Further details are given in the exercises.
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Observe that we have displayed the variance ofTor by writingC∗(G) as a
superscript. We follow the conventions described in Chapter 2—all the differ-
entials in sight have degree−1 and so our resolutions are positively graded. In
particular,Q• → C∗(X) → 0, the resolution, andTorC∗(G)(C∗(X), C∗(Y ))
are bigraded with both integers of the bidegree nonnegative. We can filter
total(Q•) ⊗C∗(G) C∗(Y ) in the same fashion as in the proof of Theorem 7.6
and the same arguments (this time in the first quadrant) yield the following
result.

Theorem 7.28.SupposeG is a connected topological group,X is a rightG-
space, andY is the total space of a principalG-bundle whereG acts on the left
onY . Then there is a first quadrant spectral sequence with

E2 ∼= TorH∗(G;k)(H∗(X; k), H∗(Y ; k))

and converging strongly toH∗(X ×G Y ; k).

In order to computeTor in this case, the bar construction, suitably regraded,
provides a proper projective resolution,

Bn(M,Γ, N) = M ⊗Γ

n times︷ ︸︸ ︷
Γ̄⊗ · · · ⊗ Γ̄⊗ΓN,

whereΓ̄ denotes the cokernel of the unit ofΓ. In the special case ofM = k = N ,
Proposition 7.10 still applies andB•(k,Γ, k) is a differential coalgebra with the
usual comultiplication. In this case, the spectral sequence of Theorem 7.21
converges to the homology of a space that has a natural coalgebra structure
induced by the diagonal mapping. Since this is a homological feature of the
homology of a space, it is no surprise that our constructions determine it.

Corollary 7.29. LetG be a connected topological group. Then the mapping
θ induces an isomorphism of coalgebras,θ∗ : TorC∗(G)(k, k) −→ H∗(BG; k).
Furthermore, there is a spectral sequence of coalgebras, with

E2 ∼= TorH∗(G;k)(k, k)

and converging toH∗(BG; k) as a coalgebra.

Sketch of proof: RegardB•(k,C∗(G), k) as a coalgebra and filter it as
in Theorem 7.14. This filtration respects the coalgebra structure and induces
the desired coalgebra structure onTorH∗(G;k)(k, k). Thus we have a spectral
sequence of coalgebras, converging toTorC∗(G)(k, k) as a coalgebra.

To show thatTorC∗(G)(k, k) is isomorphic toH∗(BG; k) as a coalgebra, it
suffices to compareB•(k,C∗(G), k) withC∗(BG) via the classical description
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of the comultiplication on a space. The comparison is implicit in the paper of
[Milnor56]. It also follows from the simplicial construction ofBG given by
[Stasheff63] and [Milgram67]. ut

The spectral sequence of Corollary 7.29 has received considerable attention
in the literature. It has been referred to as thebar spectral sequence, the
Milnor spectral sequence, thehomology Eilenberg-Moore spectral sequence,
theMoore spectral sequence, and theRothenberg-Steenrod spectral sequence.
In each case,H∗(BG; k) is the target of the spectral sequence. The problem of
computing this homology may be approached in two ways. The first is algebraic
in nature, due to Eilenberg and Moore, as sketched in this section. The second
approach is geometric and begins with Milnor’s description of the spaceBG as
the direct limit of quotients of iterated joins of the groupG ([Milnor56’]). This
construction provides a filtration ofBG by join coordinates and thus a spectral
sequence converging toH∗(BG; k). [Milnor56’] identified theE1-term of the
spectral sequence as

E1
n,q
∼=
⊕

i1+···+in=q
H̃i1(G; k)⊗ · · · ⊗ H̃in(G; k).

He also gave an explicit expression for the first differential in terms of the
iterated diagonal mapping. [Rothenberg-Steenrod65] analyzed Milnor’s con-
struction further and computed theE2-term of the spectral sequence along
with the further structure described in Corollary 7.29. In order to show that
the algebraic and geometric constructions of these spectral sequences yield the
same spectral sequence, a comparison at the level of chains is needed. This
comparison was carried out by [Stasheff63] and [Milgram67] who introduced
a different construction ofBG that compares well with Milnor’s along with a
filtration that leads to the same spectral sequence and carries enough structure
to allow a comparison of chains. Their definition ofBG is given in Chapter 6.
An equivalent and elegant definition ofBG as ageometric bar construction,
BG = B(∗, G, ∗), is given by [May75]. The spaceB(∗, G, ∗) is the geometric
realization of the simplicial space,B•(∗, G, ∗), where the space ofn-simplices
is given by

Bn(∗, G, ∗) = G×G× · · · ×G (n times),

and the face and degeneracy maps are given by

∂i([g1, . . . , gn]) =


[g2, . . . , gn], if i = 0,

[g1, . . . , gi · gi+1, . . . , gn], if 1 ≤ i < n,

[g1, . . . , gn−1], if i = n,

si([g1, . . . , gn]) = [g1, . . . , gi, e, gi+1, . . . , gn].

An explicit chain equivalenceB•(k,C∗(G), k) −→ C∗(B(∗, G, ∗)) can be
given. These comparisons imply the identification of the algebraic and geomet-
ric spectral sequences as the same.
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Recall that the functorTor−(k, k) respects tensor products of algebras.
We apply this fact (Lemma 7.11) to give a different proof of Theorem 6.38 of
[Borel53]:

Theorem 7.30. If G is a connected topological group withH∗(G; k) ∼=
Λ(x1, . . . , xr) as an algebra overk, wheredeg xi is odd for alli, then

H∗(BG; k) ∼= k[y∗1 , . . . , y
∗
r ],

as algebras, withdeg y∗i = deg xi + 1.

Proof ([Moore59]): As algebras we have the isomorphisms

H∗(G; k) ∼= Λ(x1, . . . , xr) ∼= Λ(x1)⊗ · · · ⊗ Λ(xr).

Consider theE2-term of the spectral sequence of Corollary 7.29,

E2 ∼= TorH∗(G;k)(k, k) ∼= TorΛ(x1,... ,xr)(k, k) ∼=
⊗r

i=1
TorΛ(xi)(k, k).

By the same argument that computesH∗(ΩS2n+1; k) as a coalgebra, the bar
resolution yields

TorΛ(xi)(k, k) ∼= Γ(yi)

whereΓ(yi) is the divided power algebra on the generatoryi = [xi] with
deg yi = deg xi+1 (recall the bar resolution is positively graded in homology).
Thus, as coalgebras,

E2 ∼= Γ(y1, . . . , yr)

with all yi are of even total degree. Since every element oftotal(E2) has
even degree and differentials decrease total degree by1, the spectral sequence
collapses andE0(H∗(BG; k)) ∼= Γ(y1, . . . , yr).

By an argument dual to the one given in Example 1.K for free graded
commutative algebras,Γ(y1, . . . , yr) plays the role of a free cocommutative
coalgebra and soH∗(BG; k) ∼= Γ(y1, . . . , yr) as a coalgebra. Since all the
elements ofH∗(BG; k) lie in even dimensions,

H∗(BG; k) ∼= H∗(BG; k)dual∼= Γ(y1, . . . , yr)
dual

,

as algebras. We leave it to the reader to prove that, as an algebra, the dual of the
coalgebraΓ(y1, . . . , yr) is the polynomial algebrak[y∗1 , . . . , y

∗
r ] with y∗j dual

to yj . This completes the proof. ut
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Exercises

7.1. Prove that every proper projective differential graded module overΓ, a differ-
ential graded algebra over a ringR, is a direct summand of an extended module
overΓ.

7.2. OnTorΓ(M,N):

a) Verify that the definition ofTorΓ(M,N) given in Definition 7.5 does not depend
on the choice of proper projective resolution ofN .

b) Verify thatTorΓ(M,N) is the homology of the complextotal(Q•)⊗ΓN with

differentialD ⊗ 1 + (−1)deg ⊗ dN for Q•
ε
−→ M → 0 a proper projective

resolution ofM in DGModΓ.

c) Verify that, given a short exact sequence inDGΓMod,

0 −→ N1 −→ N2 −→ N3 −→ 0,

andM in DGModΓ, we get a long exact sequence of modules overR

→TornΓ(M,N1)→TornΓ(M,N2)→TornΓ(M,N3)
∂
−→Torn−1

Γ (M,N1)→

· · ·→Tor1
Γ(M,N3)

∂
−→M ⊗Γ N1→M ⊗Γ N2→M ⊗Γ N3→0.

d) Verify that, for a proper projective moduleP overΓ, ToriΓ(M,P ) = {0} for
all M and alli > 0.

e) Verify thatTorΓ(M,N) is a functor in each variable separately and determine
what conditions are necessary to considerTor as a functor in three variables.

7.3. Show that the bar construction,B•(Γ, N), is a resolution when dealing with
algebras and modules over any ringR. Show, however, that some further flatness
conditions are needed in order to guarantee

H(B•(Γ, N), dint) ∼= B•(H(Γ), H(N)).

7.4. On the bar construction.

a) Verify thatδ δ = 0 whereδ is the external differential for the bar resolution.

b) Verify that d−n d−n = 0 whered−n is the internal differential for the bar
resolution.

c) Verify thatd−n is Γ-linear and thatδ ◦ d−n + d−n+1 ◦ δ = 0.

d) Verify that d−n−1s + sd−n = 0 wheres is the contracting homotopy on
B
•(Γ, N).
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7.5. In the Eilenberg-Moore spectral sequence to calculateH∗(F ; k) forF the fibre

of a fibrationF ↪→ E
π
−→ B, show that

E0,∗
∞ = im(i : H∗(E; k) −→ H∗(F ; k)).

7.6. Suppose thatπ : E → B is a fibration andf : X → B a continuous mapping.
Show that the Eilenberg-Zilber mapEZ: C∗(B × B) → C∗(B) commutes with
theC∗(B×B)- andC∗(B)-module structures onC∗(E×E) andC∗(E), respec-
tively, as well as the module structures onC∗(X ×X) andC∗(X), respectively.

7.7. On the homology Eilenberg-Moore spectral sequence:

a) IfC is a differential graded coalgebra over a fieldkwith counitε, then acomodule
overC is a differential graded moduleA overk equipped with a comodule mapping
λ : A→ A⊗k C so that the following diagrams commute:

A w
λ

u

λ

A⊗ C

u

λ⊗1

A

u

λ

A

u

∼=

A⊗ C w
1⊗∆

A⊗ C ⊗ C A⊗ C w
1⊗ε A⊗ k

Given a fibre square
Ef w

u

E

u

π

X w
f

B

verify thatC∗(X; k) andC∗(E; k) are comodules overC∗(B; k).

b) Define thecotensor product

AtuCB = ker (A⊗k B
λA⊗1−1⊗λB−−−−−−−−→ A⊗k C ⊗k B)

whenA is a right comodule overC andB, a left comodule. VerifyAtuCC = A.

c) Give a definition for the notion of aninjective comoduleoverC as dual to
the idea of a projective module over an algebra. Define the idea of an injective
resolution and then define

CotorC(A,B) = H(X∗tuCB; d⊗ 1)

when0 → A → X0 → X1 → X2 → · · · is an injective resolution ofA by
comodules overC.

d) State and prove the homology analogue forCotor of the first and second
Eilenberg-Moore theorems (Theorems 7.6 and 7.14). (The reader is directed to
the classic paper of[Eilenberg-Moore66]for complete details.)
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7.8. Prove Corollary 7.18.

7.9. Prove Theorem 7.27. The following strategy is helpful: Begin by considering
the principalG-bundle,G ↪→ Y → ∗ ×G Y , that is, prove the theorem first for
X = ∗. The general case follows the proof of Theorem 7.14 and applying those
ideas to the fibration

X ↪→ X ×G Y → Y/G = ∗ ×G Y.

7.10. Use the bar construction to computeH∗(ΩCP (n); k). Use a Koszul complex
to do the same computation.

7.11. Prove that the divided power Hopf algebraΓ(y) on the generatory is the free
cocommutative coalgebra ony. Prove that the dual of the coalgebraΓ(y) is the
polynomial algebrak[y∗] wherey∗ is the element dual toy.

7.12. Suppose there is a fibration,F ↪→ E → B, withE acyclic andH∗(B; k) a
polynomial algebra on finitely many generators, all of even degrees. Compute the
cohomologyH∗(F ; k) of F .

7.13. In the divided power algebraΓ(x) overFp let (γ1(x), γp(x), . . . , γps−1(x))
denote the ideal generated byγpt(x) for 0 ≤ t < s. Show that

Γ(x)/(γ1(x), γp(x), . . . , γps−1(x)) ∼= Γ(γps(x)).

7.14. The homotopy equivalenceBΩK(π, n) ' K(π, n) shows that we can in-
ductively define the Eilenberg-Mac Lane spaces asK(π, n) = BK(π, n−1). Set
up the homology Eilenberg-Moore spectral sequence over a fieldk that hasE2-term
determined byH∗(K(π, n−1), k) and converges toH∗(K(π, n); k). Begin with
K(Z, 1) and see how far you can computeH∗(K(Z, n); k) without needing more
information to decide a differential.
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The Eilenberg-Moore Spectral Sequence II

“By ‘differential algebra’ we mean algebra in the differ-
ential category; this includes homological algebra which
has significance as a point of view beyond the results
which constitute the field.”

From [Stasheff-Halperin70]

In Chapter 7 we constructed the Eilenberg-Moore spectral sequence with
which the cohomology of the fibre of a fibration can be computed from the
cohomology of the base and total space. In this chapter we consider some
substantial applications of this spectral sequence in situations that would be
ambiguous at best with the Leray-Serre spectral sequence.

The first third of the chapter concerns the problem of computing the co-
homology of homogeneous spaces. IfH is a closed subgroup of a Lie groupG
andi : H → G the inclusion, then we have the fibration

G/H−→BH
Bi
−→BG,

and so the Eilenberg-Moore spectral sequence can be applied to compute
H∗(G/H; k). In many cases (Theorem 6.38),H∗(BG; k) is a polynomial
algebra, that is, a free, graded commutative algebra. The homological algebra
leading to the computation ofE2

∼= TorH∗(BG;k)(k,H∗(BH; k)) may sim-
plify sufficiently to induce the collapse of the spectral sequence. For the case
k = R, this collapse is found in the work of [Cartan50] and it was conjectured
to hold in general. The extent to which the conjecture holds is the topic of§8.1.

In the middle third of the chapter, we give a description of the differentials
in the Eilenberg-Moore spectral sequence. We begin with the suspension homo-
morphism (§6.2), which is known to annihilate products. [Uehara-Massey57]
and [Massey58] introduced a secondary operation based on the vanishing of
cup products, now called the Massey triple product. Generalizations of this
secondary operation to higher orders, due to [Kraines66] and [May68], lead
to a complete description of the kernel of the suspension homomorphism and
the differentials in the Eilenberg-Moore spectral sequence. [Massey68/98] also
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related the triple product to higher order linking phenomena. In low dimen-
sions Massey products were conjectured by [Stallings65] to be related to the
µ̄-invariants of [Milnor57]. These relations were made precise by various au-
thors making Massey products a useful tool in the study of low dimensional
topology.

A spectral sequence can be endowed with extra structure that converges
to the appropriate structure on the target. For example, the Steenrod algebra
structure on the modp cohomology of the total space is carried along in the
associated Leray-Serre spectral sequence (see Theorem 6.15). In the final third
of this chapter, we determine a Steenrod algebra structure on the Eilenberg-
Moore spectral sequence by giving two geometric constructions of the spectral
sequence from which this extra structure follows directly. The first construction
is due to [Smith, L70] and follows an investigation, suggested by [Atiyah62] and
[Hodgkin68], of the categoryTop/B of continuous functions with codomain
B. The Eilenberg-Moore spectral sequence can be viewed as the topological
Künneth spectral sequence for this category. The second construction is due to
[Rector70] who introduced a cosimplicial space associated to a pair of mappings
π : E → B andf : X → B. Cosimplicial spaces ([Bousfield-Kan72]) as well
as the categoryTop/B ([Crabb-James98]) have other applications in homotopy
theory.

We close the chapter with a brief description of further applications of
the spectral sequence and its algebraic analogues. The question of the strong
convergence of the Eilenberg-Moore spectral sequence for spaces that are not
simply-connected is taken up in the next chapter.

8.1 Homogeneous spaces

In the applications of spectral sequences to topology, computations may
involve deep geometric information (to determine the differentials; see Example
5.H) or may proceed almost miraculously via algebraic features that determine
collapse at some calculable stage (see Example 5.F). We find an excellent mix-
ture of these features when we apply the Eilenberg-Moore spectral sequence to
a natural class of examples, homogeneous spaces.

To H, a closed subgroup of a Lie group,G, we associate the fibration

G/H ↪→ BH
Bi
−→ BG (as in§6.2). The cohomology ofG/H is an invariant

of the inclusion map—howH sits geometrically inG. A nontrivial example of
the importance of the choice of inclusion is seen by considering two inclusions
of U(n) in U(n+ 1). There is the usual inclusioni1 : U(n)→ U(n+ 1) given
by

i1 : A 7→


1 0 · · · 0
0
... A
0
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that yields U(n+ 1)/U(n) ∼= S2n+1. Another inclusion is given byi2,

i2 : A 7→


detA−1 0 · · · 0

0
... A
0


for which we have U(n+ 1)/U(n) ∼= S1 × CP (n) ([Baum68]).

We fix some assumptions that are satisfied in most of the situations of
interest. Takek to be a field,H, a closed, simply-connected subgroup of
G, a compact, simply-connected Lie group. Suppose further thatH∗(G) and
H∗(H) have torsion only of orders prime to the characteristic ofk. Under
these assumptions, by Proposition 6.37,H∗(G; k) andH∗(H; k) are exterior
algebras and it follows thatH∗(BG; k) ∼= k[x1, . . . , xn] andH∗(BH; k) ∼=
k[y1, . . . , ym], polynomial algebras on generators of even dimension greater
than or equal to two. ThusBi∗ is expressible as an algebra homomorphism

Bi∗ : k[x1, . . . , xn] −→ k[y1, . . . , ym].

The Eilenberg-Moore spectral sequence, converging toH∗(G/H; k), has as
E2-term,E2

∼= TorH∗(BG;k)(k,H∗(BH; k)) that we may write as

E2
∼= Tork[x1,... ,xn](k, k[y1, . . . , ym]).

From an algebraic viewpoint, this seems to be a tractable computation
(see§7.3); perhaps the structure of thisE2-term is tight enough to force the
collapse of the spectral sequence and so determine the algebraH∗(G/H; k) up
to extension problems. The following collapse theorem will be considered in
various forms in this section.

Theorem 8.1 (the collapse theorem).If k is a field, either of characteristic zero
or of characteristicp andH∗(G) has nop-torsion, then the Eilenberg-Moore
spectral sequence forG/H ↪→ BH −→

Bi
BG collapses at theE2-term and so,

as a graded vector space,

H∗(G/H; k) ∼= TorH∗(BG;k)(k,H∗(BH; k)).

Before we describe the various approaches toward proving such a theorem,
we consider the motivating case due to [Cartan50].

Theorem 8.2.If H is a closed, simply-connected subgroup ofG, a compact,
simply-connected Lie group, then

H∗(G/H;R) ∼= TorH∗(BG;R)(R, H∗(BH;R)).
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Sketch of Proof: We exploit the analytic structure of Lie groups and
compute their real cohomology using de Rham cohomology (see the books
of [Warner83] or [Bott-Tu82] for details). The de Rham theorem tells us that
H∗deR(M) ∼= H∗(M ;R) as algebras overR for a manifoldM and so no structure
is lost in this choice.

Let Ω∗(M) denote the de Rham algebra of differential forms on the man-
ifold M . Following essentially the same proof as given for Theorem 7.14, it
can be shown that

H∗deR(G/H) ∼= TorΩ∗(BG)(R,Ω∗(BH)).

The de Rham algebra makes sense forBG andBH because these spaces can
be approximated to any dimension by homogeneous spaces ([Steenrod51]). To
prove the theorem, it suffices to show that

TorΩ∗(BG)(R,Ω∗(BH)) ∼= TorH∗deR(BG)(R, H∗deR(BH))

and so the Eilenberg-Moore spectral sequence collapses.
Since the fieldR has characteristic zero,H∗(G;R) is an exterior algebra

andH∗(BG;R) is a polynomial algebra. WriteH∗deR(BG) ∼= R[u1, . . . , un].
Consider the mappingh : H∗deR(BG) → Ω∗(BG) defined by choosing a rep-
resentative for eachui (for example, the harmonic representative of Hodge
theory). SinceΩ∗(BG) is a graded-commutative, differential graded algebra,
we can extend the mapping to an algebra mappingH∗deR(BG)→ Ω∗(BG) that
induces the identity on homology. We can do the same forBH.

Though the diagram

H∗deR(BG) w
Bi∗

u
h

H∗deR(BH)

u
h

Ω∗(BG) w
Bi∗

Ω∗(BH)

need not commute without further assumptions, the algebra mappings endow
Ω∗(BH) with two H∗deR(BG)-module structures that coincide on homology.
By applying Corollary 7.7 a number of times, we establish the desired isomor-
phism and the theorem. (See the paper of [Baum-Smith67] for further details
and a generalization.) ut

Theorem 8.1 refers to any field of coefficients and so it is a generaliza-
tion of Cartan’s theorem. We present three versions of Theorem 8.1. The
first version is due to [Baum68] and depends on the explicit algebraic struc-
ture ofTork[x1,... ,xn](k, k[y1, . . . , ym]). The geometric input is a theorem of
[Borel53] on the role of the maximal torus of the subgroupH in the computation
of TorH∗(BG;k)(k,H∗(BH; k)). Though Baum’s theorem requires a supple-
mentary algebraic condition for collapse, it remains useful and we apply it to
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compute the modp cohomology of the real Stiefel manifolds,H∗(Vk(Rn);Fp),
for p, an odd prime. The range of applicability of Baum’s method remains an
open question.

In the second version, we present work of [Gugenheim-May74] who ex-
ploited the simplification afforded by a theorem of [Baum68] on the maximal
torus, and constructed special resolutions as well as explicit mappings for tori,
C∗(BTn; k) → H∗(BTn; k), that induce the identity on homology. This
implies a collapse theorem in the manner of the proof of Theorem 8.2. The res-
olutions considered in their work are based on a definition ofTor andExt for
differential algebras that relates more closely to the homology of the modules
and algebras involved. These new definitions allow the construction of more
computable resolutions.

The third version of Theorem 8.1 is based on the freeness ofH∗(BG; k)
and examines mappings,H∗(BG; k)→ C∗(BG; k), which can be constructed
because we have a free algebra basis, but are obstructed as algebra mappings
by the lack of commutativity of the cup product onC∗(BG; k). The system of
higher homotopies needed to remove the obstructions is catalogued by the bar
resolution and its coalgebra structure. Motivated by a similar phenomena in the
study of H-spaces, [Stasheff-Halperin70] began a study of coalgebra mappings
of the bar construction as a system of higher homotopies. This line of ideas
culminated in the powerful collapse theorem of [Munkholm74]. (The statement
of Theorem 8.1 is due to [Wolf77] and follows by similar means.)

With the development of the topics in§8.1, we settle a special case of the
collapse of the Eilenberg-Moore spectral sequence. From the examples of ho-
mogeneous spaces and the computation of the cohomology of certain two-stage
Postnikov systems, one might conjecture the collapse of the Eilenberg-Moore
spectral sequence whereE2

∼= TorA(B,C) andA, B andC are free graded
commutative algebras. [Hirsch] posed this problem for two-stage Postnikov
systems and [Schochet71] gave a counterexample to Hirsch’s conjecture. The
Eilenberg-Moore spectral sequence is a natural tool for the study of two-stage
Postnikov systems (see the papers of [Smith, L67, 71]).

Baum’s thesis

The homotopy-theoretic computation ofH∗(G/H; k) was begun in the
papers of [Samelson41], [Koszul50], [Leray50], and [Cartan50]. These devel-
opments were focused on the real cohomology ofG/H. Among the structural
features revealed in these papers, a key role was played by maximal tori and
maximal rank subgroups. Recall that therank of a Lie group , G, may be
defined as the number of algebra generators ofH∗(G;Q). WhenG has no
torsion of order a power of the characteristic of the fieldk, this rank is also
the number of algebra generators ofH∗(G; k) orH∗(BG; k). [Borel53] com-
puted the cohomology ofG/H for more general coefficients under the following
conditions:
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Theorem 8.3.SupposeH is a closed subgroup ofG and rankG = rankH
and thatH∗(G) andH∗(H) have nop-torsion wherep = char k. Then

(1) As anH∗(BG; k)-module, induced by the algebra homomorphismBi∗,
H∗(BH; k) is finitely-generated and isomorphic to the extended module
H∗(BG; k)⊗H∗(G/H; k).

(2) k −→ H∗(BG; k)
Bi∗

−−→ H∗(BH; k)
j∗

−→ H∗(G/H; k) −→ k is
coexact, that is, j∗ is onto andker j∗ is generated as an ideal by
Bi∗(H+(BG; k)).

Proof: The Leray-Serre spectral sequence for the fibrationG/H ↪→ BH →
BG implies thatH∗(BH; k) is a subquotient ofH∗(BG; k) ⊗H∗(G/H; k).
Sincek[x1, . . . , xn] ∼= H∗(BG; k) is Noetherian, it follows thatH∗(BH; k)
is finitely-generated overH∗(BG; k).

Since rankG = rankH, H∗(BH; k) is a polynomial algebra on the
same number of generators asH∗(BG; k) and is also finitely-generated. It
follows ([Zariski-Samuel58/60]) thatH∗(BH; k) is free as anH∗(BG; k)-
module (Corollary 3.10 of [Baum68]).

Apply the Eilenberg-Moore spectral sequence to the fibrationBi. Since
H∗(BH; k) is free overH∗(BG; k),

TorH∗(BG;k)(k,H∗(BH; k)) ∼= k ⊗H∗(BG;k) H
∗(BH; k)

and the spectral sequence collapses to the columnE0,∗
2 . Thus

H∗(BH; k) ∼= H∗(BG; k)⊗k k ⊗H∗(BG;k) H
∗(BH; k)

∼= H∗(BG; k)⊗k H∗(G/H; k).

The coexactness of the sequence follows from the fact thatim j∗ = E0,∗
∞

andk⊗H∗(BG;k) H
∗(BH; k) is the set of indecomposables with respect to the

H∗(BG; k)-module action, as required. ut
The following aspect of Lie group structure is central to the computations

of H∗(G/H; k).

Definition 8.4. LetG be a compact connected Lie group. A subgroupT is
called amaximal torus of G if T is abelian, compact and connected (from
which it follows thatT is isomorphic toS1 × · · · × S1 (n times) for somen)
and ifU is another such subgroup withT ⊂ U ⊂ G, thenT = U . From the
classical theory of Lie groups (see[Borel55]or [Mimura-Toda91]) we know

(1) All maximal tori are conjugate to one another.
(2) Given a torus subgroupT ′ ofG, there is a maximal torusT with T ′ ⊂

T ⊂ G.
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(3) rankT = rankG.
(4) If NT is the normalizer ofT in G, thenT has finite index inNT . The

finite group,W (G) = NT /T , is called theWeyl group ofG.
(5) The Weyl group acts onH∗(BT ) = Z[v1 . . . , vn], deg vj = 2 for

all j. If i : T ↪→ G is the inclusion andH∗(G) has nop-torsion for
p = char k, thenBi∗ : H∗(BG; k) → H∗(BT ; k) mapsH∗(BG; k)
isomorphically ontok[v1, . . . , vn]W (G), wherek[v1, . . . , vn]W (G) de-
notes the ring of invariants of the Weyl group action onH∗(BT ; k).

[Baum68] reduced the problem of the collapse of the Eilenberg-Moore
spectral sequence for computingH∗(G/H; k) to the case ofH∗(G/TH ; k)
whereTH is a maximal torus inH.

Lemma 8.5.LetTH ⊂ H be a maximal torus ofH. Then, for alli ≤ 0,

Tori,∗H∗(BG;k)(k,H
∗(BH; k)) 6= {0}

if and only if Tori,∗H∗(BG;k)(k,H
∗(BTH ; k)) 6= {0}.

Proof: SincerankTH = rankH, by Theorem 8.3,H∗(BTH ; k) is iso-
morphic toH∗(BH; k) ⊗ H∗(H/TH ; k) as anH∗(BH; k)-module. The
H∗(BG; k)-module structure onH∗(BTH ; k) is derived from the inclusion
TH ⊂ H ⊂ G and so it factors throughH∗(BH; k). Thus, as anH∗(BG; k)-
module,H∗(BTH ; k) is still isomorphic toH∗(BH; k) ⊗H∗(H/TH ; k) and
so, as vector spaces,

Tori,∗H∗(BG;k)(k,H
∗(BTH ; k))∼=Tori,∗H∗(BG;k)(k,H

∗(BH; k))⊗H∗(H/TH ; k).

SinceH/TH is connected, the result follows. ut

Corollary 8.6. Let TH ⊂ H be a maximal torus ofH. Then the Eilen-
berg-Moore spectral sequence, converging toH∗(G/H; k) for the fibration
G/H ↪→ BH → BG, collapses at theE2-term if and only if the corresponding
spectral sequence forG/TH ↪→ BTH → BG, converging toH∗(G/TH ; k)
collapses at theE2-term.

Proof: It suffices to observe that the morphism of spectral sequences in-
duced byTH ⊂ H respects the isomorphism of the proof of Lemma 8.5 as
well as the splitting as a tensor product. ThusE2 = E∞ for G/TH ↪→
BTH

Bi
−→ BG impliesE2 = E∞ for G/H ↪→ BH

Bi
−→ BG by natural-

ity. The converse follows from the injection ofTorH∗(BG;k)(k,H∗(BH; k))
into TorH∗(BG;k)(k,H∗(BTH ; k)) as a factor with the quotientH∗(H/TH ; k)
concentrated inE0,∗

2 . ut
With Corollary 8.6 we can prove the following technical lemma that leads

to Baum’s collapse theorem.
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Lemma 8.7.Tori,∗H∗(BG;k)(k,H
∗(BH; k)) = {0} if i < rankH − rankG.

Proof: It suffices to prove this forTori,∗H∗(BG;k)(k,H
∗(BTH ; k)), TH ⊂

H, a maximal torus. LetT ⊂ G be a maximal torus ofG containingTH
and∆ = T/TH with π : T → T/TH , the canonical projection. The maps
∆ ← T → G induce the mapsB∆ ← BT → BG, which on coho-
mology provideH∗(BT ; k) a module structure overH∗(B∆; k) as well as
overH∗(BG; k). As an algebra,H∗(BT ; k), is isomorphic toH∗(B∆; k) ⊗
H∗(BTH ; k) (just count theS1 factors) and soH∗(BT ; k) is a freeH∗(B∆; k)-
module. SincerankG = rankT , Theorem 8.3 implies thatH∗(BT ; k) is also
a freeH∗(BG; k)-module.

In the presence of free modules over pairs of related algebras, we have a
change-of-rings theorem forTor. We leave the proof of the following elemen-
tary fact to the reader.

Fact: SupposeA,B, andC are algebras over a fieldk. If M is a rightA-, right
B-module,N is a leftA-, rightC-module, andL a leftA-, leftB-module, and
TornA(M,N) = {0} = TornC(N,L) for n > 0, then

Tor∗B⊗C(M ⊗A N,L) ∼= Tor∗A⊗B(M,N ⊗C L).

In our case,A = k, B = H∗(B∆; k), C = H∗(BG; k), M = N = k and
L = H∗(BT ; k). Because every algebra in sight is graded commutative, we
can apply the change of rings to obtain the isomorphisms,

TorH∗(B∆;k)(k, k ⊗H∗(BG;k) H
∗(BT ; k))

TorH∗(B∆;k)⊗H∗(BG;k)(k,H∗(BT ; k))

u

u
TorH∗(BG;k)(k, k ⊗H∗(B∆;k) H

∗(BT ; k)).

Sincek⊗H∗(B∆;k)H
∗(BT ; k) is isomorphic toH∗(BTH ; k) as anH∗(BG; k)-

module, we finish the proof of the lemma by observing that

Tori,∗H∗(B∆;k)(k, k ⊗H∗(BG;k) H
∗(BT ; k)) = {0}

wheni < rankH − rankG. This follows becauseH∗(B∆; k) is a polyno-
mial algebra onrankG − rankH generators. In homological degreesi <
rankH − rankG, the Koszul resolutions for modules overH∗(B∆; k) are
trivial (Corollary 7.23). ut

We focus on some homological algebra: What can be said about the struc-
ture of Tork[x1,... ,xn](k, k[y1, . . . , ym]) in the case wherek[y1, . . . , ym] is a
k[x1, . . . , xn]-module through an algebra homomorphismBi∗ : k[x1, . . . , xn]
−→ k[y1, . . . , ym]?
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Definition 8.8. SupposeA is a connected, commutative, finitely-generated
algebra overk that is concentrated in even degrees. Apresentation ofA is a
coexact sequence

k[w1, . . . , ws]
g
−→ k[v1, . . . , vt]

f
−→ A

ε
−→ k,

for which the induced mappinḡg = 1⊗ g

ḡ : k ⊗k[w1,... ,ws] k[w1, . . . , ws]+ −→ k ⊗k[w1,... ,ws] ker f

is an isomorphism of graded vector spaces overk.

The sequence being coexact means thatker ε is generated as an ideal by
{f(v1), . . . , f(vt)}, andker f is generated by{g(w1), . . . , g(ws)}. In general,
the sequence of maps due to the fibration

H∗(BG; k)
Bi∗

−−→H∗(BH; k)
j∗

−→H∗(G/H; k),

does not comprise a presentation ofH∗(G/H; k) nor is it coexact. However, as
proved in the next few results, the conditions described in the definition provide
some control of the algebra of theE2-term of the associated spectral sequence.

Given a presentation of an algebra

k[w1, . . . , ws]
g
−→ k[v1, . . . , vt]

f
−→ A

ε
−→ k,

the elements{g(w1), . . . , g(ws)} in k[v1, . . . , vt] minimally generate the ideal
ker f in the following sense; no proper subset of theg(wi) generates the ideal
ker f . This follows by the vector space isomorphismḡ = 1⊗ g

ḡ : k{w1, . . . , ws} → k⊗k[w1,... ,ws]ker f ∼= ker f/(k[w1, . . . , ws])+ · ker f.

When we have such an isomorphism for an idealI in k[v1, . . . , vt], we say that
the set{g(w1), . . . , g(ws)} forms anonredundant set of generatorsfor I.

In the next proposition we connect presentations of an algebra and the
homological algebra of polynomial rings. Recall that the graded vector space
of indecomposables of a connected algebraB is given byQ(B) = B+/B+ ·
B+ ∼= k ⊗B B+, wherek is aB-module by the augmentationε : B → k and
B+ = ker ε. The vector space of homogeneous elements of degreei in Q(B)
is denoted byQi(B).
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Proposition 8.9.If A is a connected, commutative, finitely-generated algebra
overk that is concentrated in even degrees, and

k[w1, . . . , ws]
g1−→ k[v1, . . . , vt]

f1−→ A −→ k

and k[x1, . . . , xp]
g2−→ k[y1, . . . , yq]

f2−→ A −→ k

are two presentations ofA, then

Tork[w1,... ,ws](k, k[v1, . . . , vt]) ∼= Tork[x1,... ,xp](k, k[y1, . . . , yq])

as bigraded algebras overk. Furthermore, for anyi,

dimkQ
i(k[w1, . . . , ws])− dimkQ

i(k[v1, . . . , vt])
= dimkQ

i(k[x1, . . . , xp])− dimkQ
i(k[y1, . . . , yq]).

Proof: We first treat a special case. Suppose thatg1 andg2 have the same
domain and range, that is,f1 = f2 = f , butg1 6= g2.

k[w1, . . . , ws] w
g1

wg2
k[v1, . . . , vt] w

f
A w

ε k.

Following §7.3, we computeTork[w1,... ,ws](k, k[v1, . . . , vt]) in each case via
the Koszul resolution. LetL∗,∗= Λ(e1, . . . , es) ⊗ k[v1, . . . , vt] and L̄∗,∗=
Λ(ē1, . . . , ēs)⊗ k[v1, . . . , vt] denote the Koszul complexes for the given data.
The differentials on each complex are determined by the mappingsg1 andg2

that induce thek[w1, . . . , ws]-module structures:d(1⊗ vj) = 0 = d̄(1⊗ vj),
d(ei ⊗ vj) = 1⊗ g1(wi) · vj and d̄(ēi ⊗ vj) = 1⊗ g2(wi) · vj .
Since the two pairs of mappings(gi, f) are presentations of the algebraA,

the sets{g1(w1), . . . , g1(ws)} and{g2(w1), . . . , g2(ws)} are nonredundant
sets of generators ofker f . Let ḡi : k{w1, . . . , ws} → k ⊗k[w1,... ,ws] ker f
denote the reduction ofgi modulo the module actions. Then the sets{ḡi(wj)},
for i = 1, 2 and1 ≤ j ≤ s, are vector space bases ofk ⊗k[w1,...ws] ker f . It

follows that we can writeg1(wj) =
∑

l
g2(wl)ujl for ujl ∈ ker f .

Using the matrix of elementsujl ∈ ker f , define a mapping of Koszul
complexes given by

θ : L∗,∗ → L̄∗,∗, θ(1⊗ u) = 1⊗ u, θ(ej ⊗ V ) =
∑

l
ēl ⊗ ujlV,

where we extend as a mapping of modules overk[v1, . . . , vt]. The mappingθ
commutes with the differentials:

θd(ej ⊗ V ) = θ(1⊗ g1(wj)V )

= 1⊗ g1(wj)V =
∑

l
1⊗ (g2(wl)ujl)V

=
∑

l
1⊗ g2(wl)(ujlV ) = d̄

(∑
l
ēl ⊗ ujlV

)
= d̄θ(ej ⊗ V ).
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In k ⊗k[w1,... ,ws] ker f , {ḡi(wj)} are bases. The change of basis matrix

is given byḡ1(wj) =
∑

l
ḡ2(wl)ε(ujl and so(ε(ujl) is an invertible matrix.

It follows thatQθ(ej) =
∑

l
ēlε(ujl) and soQθ is onto. SinceL∗,∗ is a free

graded commutative algebra,Qθ onto impliesθ is onto. As finite dimensional
vector spaces overk, Lp,q andL̄p,q have the same dimensions and soθ is an
isomorphism, andθ induces an isomorphism on homology.

For the general case of two different presentations, build an intermediate
complex. First take the composite

k[v1, . . . , vt]⊗ k[y1, . . . , yq]
f1⊗f2−−−−→ A⊗A

ϕ
−→ A

asf3 and then chooseg3 for r = s+ p

k[u1, . . . , ur]
g3−→ k[v1, . . . , vt]⊗ k[y1, . . . , yq]

f3−→ A −→ k

so that the Koszul complex for this presentation has an acyclic factor and a factor
with homologyTork[w1,... ,ws](k, k[v1, . . . , vt]). By a symmetric construction,
one can choose ag4 with the same domain and range and having an acyclic
factor and homology given byTork[x1,... ,xp](k, k[y1, . . . , yq]). By the first
case we have established the theorem.

To prove the assertion about the dimensions of theQi, one argues by
comparing dimensions of indecomposables for the two Koszul complexes used
in the argument for the general case. ut

With this proposition, two homological invariants of the algebraA emerge.
First, we have the bigraded algebra

J∗,∗(A) = Tor∗,∗k[w1,... ,ws]
(k, k[v1, . . . , vt])

constructed from any presentation ofA. ThoughJ(A) is not functorial inA, it
is determined up to isomorphism and furthermore,J(A)0,∗ ∼= A.

Secondly, define the integers

dfi(A) = dimkQ
i(k[w1, . . . , ws])− dimkQ

i(k[v1, . . . , vt])

and thedeficiency of A as df(A) =
∑
i dfi(A). [Baum68] identified the

class of algebras for whichJ(A)i,∗ = {0} for i < 0 or, equivalently forA
finite-dimensional, withdf(A) = 0. He refers to such algebras asE-algebras
and they can be characterized by being generated, as an algebra, by aregular
sequence, that is, a set of elementsa1, . . . , at in A+ so that, fori ≥ 1, the
class[ai] inA/(a1, . . . , ai−1) is not a zero divisor. Polynomial algebras are the
simplest examples ofE-algebras. The class ofE-algebras has been studied in
algebraic geometry and research on local rings where they are calledcomplete
intersections. In topology,E-algebras sometimes occur as the cohomology of
a space—see the work of [Smith, L82] and [Vigu´e-Poirrier95].

The new invariants ofA, J∗,∗(A) anddf(A), combine with coexactness
to give us a toehold on the structure ofTork[w1,... ,ws](k, k[v1, . . . , vt]).
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Theorem 8.10.If the sequence of algebra mappings,

k[w1, . . . , ws]
g
−→ k[v1, . . . , vt]

f
−→ A −→ k,

is coexact (but not necessarily a presentation), then

Tork[w1,... ,ws](k, k[v1, . . . , vt]) ∼= E ⊗ J(A),

as bigraded algebras, whereE = Λ(e1, . . . , er), is an exterior algebra on the
elementsei of bidegree(−1, si). Furthermore, for eachi,

dimk E
−1,i = dimkQ

i(k[w1, . . . , ws])− dimkQ
i(k[v1, . . . , vt])− dfi(A).

Proof: Suppose thatai = g(wi) and the set{ai} generateker f , not neces-
sarily in a nonredundant manner. Suppose thatas = as−1us−1 + · · ·+ a1u1.
Let (L∗,∗, d) be the Koszul complexΛ(e1, . . . , es) ⊗ k[v1, . . . , vt] with dif-
ferential given byd(1 ⊗ u) = 0, d(ei ⊗ u) = 1 ⊗ aiu. Let (L̄∗,∗, d̄) be the
bigraded algebra with̄L = Λ(ē1, . . . , ēs)⊗k[v1, . . . , vt] and differential given
by d̄(ēi ⊗ u) = 1 ⊗ aiu for 1 ≤ i < s, d̄(ēs ⊗ 1) = 0 = d̄(1 ⊗ u). Define a
homomorphismψ : L∗,∗ −→ L̄∗,∗ byψ(1⊗u) = 1⊗u, ψ(ei⊗ 1) = ēi⊗ 1 for
i < s and, finally,ψ(es ⊗ 1) = ēs ⊗ 1 + ēs−1 ⊗ us−1 + · · ·+ ē1 ⊗ u1. Then
ψ commutes with the differentials and it induces an isomorphism onTor. The
theorem follows. ut

Notice that the bigraded algebraE∗,∗ in the theorem measures the failure
of the coexact sequence to be a presentation. Thus, if the coexact sequence
contains superfluous algebra generators (ḡ is not an isomorphism), thenE has
a generator for eachwi that is superfluous.

In the case of a homogeneous space and the absence of torsion at the
characteristic ofk, Theorem 8.3 implies that we have the sequence of algebra
mappings:

H∗(BH; k)
Bi∗

−−→ H∗(BG; k)
j∗

−→ H∗(G/H; k)
ε
−→ k.

HereH∗(BH; k) ∼= k[w1, . . . , ws] andH∗(BG; k) ∼= k[v1, . . . , vt]. The
sequence need not be coexact, however. In order to define deficiency in this
case, we focus onBi∗. For any mappingf : A→ B of commutative algebras,
we defineB//f to be the quotientB/f(A+)·B. With this notation, the sequence

H∗(BG; k)
Bi∗

−−→ H∗(BH; k) −→ H∗(BH; k)//Bi∗
ε
−→ k

is coexact and so Theorem 8.10 applies. We define thedeficiency ofH inG by

df l(H,G; k) = dfl(H∗(BH; k)//Bi∗) and df(H,G; k) =
∑

l
df l(H,G; k).
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Theorem 8.11. For H, a closed, simply-connected subgroup of a compact,
simply-connected Lie group,G, if df(H,G; k) ≤ 2, then the associated Eilen-
berg-Moore spectral sequence collapses, that is, as bigraded algebras,

E∗,∗0 (H∗(G/H; k)) ∼= Tor∗,∗H∗(BG;k)(k,H
∗(BH; k)).

Proof: Theorem 8.10 implies thatTorH∗(BG;k)(k,H∗(BH; k)) is isomor-
phic as a bigraded algebra toE⊗ J(H∗(BH; k)//Bi∗) whereE is an exterior
algebra generated byE−1,∗. Furthermore,

dimk E
−1,∗ = rankG− rankH − df(H,G; k)
≥ rankG− rankH − 2.

If J l,∗(H∗(BH; k)//Bi∗) 6= {0} for l < −2, thenE ⊗ J(H∗(BH; k)//Bi∗)
will be nontrivial in homological degrees less thanrankH − rankG by ten-
soring with the appropriate numbers of exterior generators. However, this con-
tradicts Lemma 8.7. Therefore, as an algebra,TorH∗(BG;k)(k,H∗(BH; k)) is
generated by elements of bidegree(p, q) with−2 ≤ p ≤ 0. Since the Eilenberg-
Moore spectral sequence is a spectral sequence of algebras, the differentials are
determined by their values on the generators.

Notice thatd2, of bidegree(2,−1), is zero—the generators all lie in even
total degrees, which follows from the form of the Koszul complex. The higher
differentials, of bidegree(r, 1 − r), take the generators inE−2,∗, E−1,∗ and
E0,∗ to zero. Therefore,E2 = E∞ and the theorem follows. ut

As a sample application of Theorem 8.11, we computeH∗(Vl(Rn);Fp)
for p, an odd prime. Recall (Example 5.H) thatVl(Rn) denotes the Stiefel
manifold of l-frames inRn. We can representVn−l(Rn) as the homogeneous
space SO(n)/SO(l) where SO(l) is a subgroup of SO(n) by the mapping

i : A 7→
(
In−l 0

0 A

)
(In−l is the(n− l)× (n− l) identity matrix). We taken andl to be even and
considerBi∗ : H∗(BSO(n);Fp) → H∗(BSO(l);Fp). If subscripts indicate
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dimension, thenBi∗ is determined by

Bi∗ : Fp[x4,x8, . . . , x2n−4, xn
′] −→ Fp[y4, y8, . . . , y2l−4, yl

′],
Bi∗(x4i) = y4i, for 1 ≤ i ≤ (l/2)− 1,

Bi∗(x2l) = (yl′)2,

Bi∗(x4i) = 0, for (l/2) + 1 ≤ i ≤ (n/2)− 1,

Bi∗(xn′) = 0.

It follows directly thatH∗(BSO(l);Fp)//Bi∗ = Fp[yl′]/(yl′)2 and the presen-
tation

Fp[w2l] −→ Fp[vl] −→ Fp[yl′]/(yl′)2 −→ Fp

shows thatdf(SO(l),SO(n);Fp) = 0. By Theorems 8.3 and 8.11, we obtain

H∗(Vn−l(Rn);Fp) ∼= E∗,∗ ⊗ J(H∗(BSO(l);Fp)//Bi∗)
∼= Λ(e2l+3, . . . e2n−5, en−1

′)⊗ Fp[yl′]/(yl′)2.

The factorΛ(e2l+3, . . . , e2n−5, en−1
′) comes from the kernel ofBi∗. The other

factorJ(H∗(BSO(l);Fp)//Bi∗) isTorFp[x4,... ,x2l](Fp,Fp[y4, . . . , y2l−4, yl
′]).

The Koszul complex for thisTor splits into an acyclic factor and the complex
(Λ(e2l−1)⊗ Fp[yl′], d) with d(e2l−1 ⊗ 1) = 1⊗ (yl′)2. The homology of this
small complex contributesFp[yl′]/(yl′)2.

Another approach to differential homological algebra®N
In the previous section, the Eilenberg-Moore spectral sequence was used

to computeH∗(G/H; k) in many cases. Baum’s algebraic condition,

df(H,G; k) ≤ 2,

insures that plenty of ‘holes’ are strewn about theE2-term of the spectral se-
quence and so it collapses. The limitations of this approach for proving a more
extensive collapse theorem are clear—the conditiondf(H,G; k) ≤ 2 is not
generic.

In this section and the next we consider more general situations in which
the spectral sequence collapses. IfH is a closed subgroup of a compact Lie
groupG, as in Theorem 8.1, then we seek conditions that guarantee

TorH∗(BG;k)(k,H∗(BH; k)) ∼= TorC∗(BG;k)(k,C∗(BH; k)).

Corollary 7.7 and its application in the proof of Theorem 8.2 provide an ap-
proach. When there exist algebra mappings

C∗(BG; k) −→ H∗(BG; k) and C∗(BH; k) −→ H∗(BH; k)
or H∗(BG; k) −→ C∗(BG; k) and H∗(BH; k) −→ C∗(BH; k)
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that induce the identity on homology and commute with respect toBi∗, we
obtain the desired collapse. An obstruction to the existence of such mappings is
the fact thatH∗(X; k) is a graded commutative algebra, butC∗(X; k) is com-
mutative only up to chain homotopy. The success of the proof of Theorem 8.2
relies on the graded commutativity of the de Rham complex of a manifold that
allows us to construct honest algebra mappings.

Our next approach toward a proof of Theorem 8.1 is in three parts; we first
redefine the functorTor, following [Gugenheim-May74] and [Felix-Halperin-
Thomas95], in order to exploit resolutions that make clearer the relationship
betweenTorΓ(M,N) and TorH(Γ)(H(M), H(N)). Next we consider the
failure of commutativity of the singular cochain complex of a space and how
it is measured by the cup1-product. This cup1-product, together with the free
commutative algebraH∗(BG; k), leads to a resolution of the appropriate form.
Finally we apply this special resolution to the geometry of homogeneous spaces
and obtain a collapse theorem.

Definition 8.12. Let (Γ, dΓ) be a differential graded algebra over a fieldk. A
Γ-module(X, d) is semifreeif X is an increasing union of submodules

X(1) ⊂ X(0) ⊂ X(−1) ⊂ · · · ⊂ X(−n) ⊂ · · · ⊂ X

such thatX(1) andX(−n)/X(−n+ 1) are free overΓ on a basis of cycles. A
semifree resolutionof aΓ-module(M,d) is a semifree module(X, d) together
with a homology isomorphism ofΓ-modulesα : (X, d)→ (M,d).

The key features of semifree resolutions follow from the filtered structure
that is part of the definition. We filter(X, d) by F−pX = X(−p). The
associated graded moduleE−p,∗0 (X,F ) = X(−p)/X(−p+ 1) ∼= X̄−p,∗ ⊗ Γ
for p ≥ 0 and for some gradedk-vector spacēX−p,∗. The quotient mapping
X(−p)→ X̄−p,∗ ⊗ Γ splits to giveX(−p) ∼= X(−p+ 1)⊕ X̄−p,∗ ⊗ Γ. The
differential onE∗,∗0 takes the form1⊗ dΓ and hence the restriction ofd to the
basis satisfiesd| : X̄−p,∗ → X(−p+ 1).

In the differential homological algebra of Chapter 7, the total differential
on a resolution has the formdtotal = d0 + d1, that is, the total differential is
the sum of an internal differential and a resolution differential. In the case of
a semifree resolution, the differential may be further refined;d =

∑
r≥0 dr

wheredr(X(−p)) ⊂ X(−p+ r).
We associate the usual spectral sequences to the filtered module(X,F ).

By the definitions,E1,∗
1 (X) = H∗(M) andEi,∗1 (X) ∼= X

i,∗⊗H(Γ) for i ≤ 0.
If the sequence

· · · −→ Ep,∗1 (X) −→ Ep+1,∗
1 (X) −→ · · ·

E1(d)
−−−→ E0,∗

1 (X) −→ H∗(M) −→ 0

is exact, we say thatX is a resolution of M . Furthermore, if eachEp,∗1 (X)
is a flatH(Γ)-module, then we define, for(N, dN ), a left differential graded
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module overΓ,
TorΓ(M,N) = H(X ⊗Γ N).

The induced filtration onX⊗ΓN , given byF p(X⊗ΓN) = F pX⊗ΓN , yields
a spectral sequence converging toTorΓ(M,N). By the Künneth theorem,

E2
∼= TorH(Γ)(H(M), H(N)),

whereTor is the classical functor for graded modules overH(Γ). If we take
Y• → M → 0 is a proper projective resolution ofM over (Γ, dΓ), we can
compare it with a semifree resolution by using the projective property and
Corollary 7.7 to obtain an isomorphism betweenTorΓ(M,N) andTorΓ(M,N).

We next state a theorem that describes the computational advantage of this
new functorTor. The proof is by a direct construction given in [Gugenheim-
May74, p. 12].

Theorem 8.13.SupposeM is a right differential graded module overΓ and
H(M) has a projective resolution overH(Γ) of the form

· · · → X
p,∗⊗H(Γ)→ X

p+1,∗⊗H(Γ)→ · · · → X
0,∗⊗H(Γ)→ H(M)→ 0.

Then there is a differential on the filteredΓ-module,X = X
∗,∗ ⊗ Γ and a

homology isomorphismα : X → M so thatX is a resolution ofM whose
associatedE1-term agrees with the given resolution.

To apply this framework to homogeneous spaces, we study the singular
cochain algebra. The cup product onH∗(X; k) is graded commutative, while
C∗(X; k) is only commutative up to homotopy. The failure of graded com-
mutativity onC∗(X; k) gives rise to cohomology operations as in the classical
construction of the Steenrod operations. We realize the chain homotopy for the
cup product by the cup1-product (§5.3) and generalize this structure to differ-
ential graded algebras as follows:

Definition 8.14. A differential graded algebra(Γ, µ, d) overk is said to have
a cup1-product if there is ak-linear mapping for allp andq

^1 : Γp ⊗k Γq −→ Γp+q−1

satisfying theHirsch formulas; if we writeµ(a, b) = a · b, then

d(a ^1 b) = a · b− (−1)|a| |b|b · a− d(a) ^1 b− (−1)|a|a ^1 d(b),

(a · b) ^1 c = (−1)|a|a · (b ^1 c) + (−1)|b| |c|(a ^1 c) · b.
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For singular cochains with coefficients ink = F2 the cup1-product deter-
mines an operation on the cocycles ofX; for eachs,

Sq1 : Zs(X;F2) −→ Z2s−1(X;F2),

defined bySq1(z) = z ^1 z. This passes to a homomorphism

Sq1 : Hs(X;F2) −→ H2s−1(X;F2)

andSq1 = Sqs−1, the operation in the mod 2 Steenrod algebra (see the con-
struction in [Steenrod-Epstein62]).

The first of the Hirsch formulas provides a chain homotopy between the
mappingsµ andµ ◦ T : Γ ⊗ Γ → Γ. The second formula can be understood
to say that for eachc ∈ Γ, the mappinga 7→ a ^1 c is a derivation with
respect toµ. Note that the homology of a differential graded algebra with
cup1-product is graded commutative. Furthermore, ifν : Γ → H(Γ) is an
algebra homomorphism that induces the identity on homology and commutes
with cup1-products, thenνmust annihilate cup1-products. We will soon see that
the condition that a differential graded algebra mappingΓ→ H(Γ) annihilate
cup1-products is sufficient to induce the isomorphism we are seeking for the
collapse theorem.

SupposeΓ is a differential graded algebra with cup1-product such that
H(Γ) is a polynomial algebra on even degree generators,H(Γ) ∼= k[x1, . . . , xn].
LetM = k; by Corollary 7.23, the Koszul resolution,K(H(Γ)) = Λ({ai})⊗
H(Γ), provides a resolution ofk of the form given in Theorem 8.13. If we
let K(Γ) = Λ({ai}) ⊗ Γ with the obvious augmentation,ε : K(Γ) → k, then
Theorem 8.13 implies that there is a differential onK(Γ) such thatK(Γ)ε is a
resolution ofk andE1(K(Γ)) is the Koszul resolution ofk overH(Γ).

[Gugenheim-May74] give the differential onK(Γ) explicitly. The vector
space generators forΛ(a1, . . . , an) are indexed over the set of sequencesI =
(i1 < i2 < · · · < ip). We writeaI = ai1ai2 · · · aip . If H(Γ) ∼= k[x1, . . . , xn]
and, fori = 1, . . . , n, bi ∈ Γ is a representative forxi ∈ H(Γ), then we
associate to each sequenceI the element

bI = (· · · ((bi1 ^1 bi2) ^1 bi3) ^1 · · · ) ^1 bip)

(b(i1) = bi1 andb∅ = 0). The differential onK(Γ) takes the form

d(aI) = −
∑
J⊂I
±(I, J) aI−J ⊗ bJ ,

whereJ is a subsequence ofI andI − J is the complementary subsequence.
The sign is given by±(I, J) = (−1)p−r+ε(J) wherer is the length ofJ and
ε(J) =

∑r
t=1(J(t)− t). With this definition, it is shown thatdd = 0.

With an explicit semifree resolution, [Gugenheim-May74] prove the fol-
lowing algebraic collapse theorem.
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Theorem 8.15.SupposeΛ andΓ are differential graded algebras overk that
have cup1-products. Supposef : Γ→ Λ is a differential graded algebra map-
ping that commutes with the cup1-products. IfΓ is augmented,H(Γ) is a
polynomial algebra, and there is a mappingg : Λ → H(Λ) of differential
graded algebras withH(g) = id such thatg annihilates cup1-products, then,
as graded vector spaces,TorΓ(k,Λ) ∼= TorH(Γ)(k,H(Λ)).

The proof reduces to examining the induced differential onK(Γ) ⊗Γ Λ
where the expression for the differential onK(Γ) and the fact thatg annihilates
cup1-products imply the isomorphism.

Having developed the algebra to this point, we add a geometric fact that
turns the key for the desired collapse theorem for homogeneous spaces. The
proof of the next proposition is found in the appendix of [Gugenheim-May74]
and it follows by applying the simplicial techniques in [Eilenberg-Mac Lane53].

Proposition 8.16. Let Tn = S1 × · · · × S1 (n times). For any commutative
ring R with unit, there is a morphism of differential graded algebras overR

χ : C∗(BTn;R) −→ H∗(BTn;R)

that induces the identity on homology and annihilates cup1-products.

Theorem 8.17. If H is a closed, simply-connected subgroup of a compact,
simply-connected Lie groupG, satisfying the conditions given in Theorem 8.1,
then, as a graded vector space,

H∗(G/H; k) ∼= TorH∗(BG;k)(k,H∗(BH; k)).

Proof: Let TH ⊂ H be a maximal torus forH. By Corollary 8.6, it suffices
to prove thatH∗(G/TH ; k) is isomorphic toTorH∗(BG;k)(k,H∗(BTH ; k)).
But TH ∼= Tn for somen and so, by Proposition 8.16, there is a mapping
χ : C∗(BTH ; k)→ H∗(BTH ; k) that preserves products and annihilates cup1-
products. By the assumptions onG andH in Theorem 8.1, the rest of the
assumptions of Theorem 8.15 are satisfied and so

TorH∗(BG;k)(k,H∗(BTH ; k)) ∼= TorC∗(BG;k)(k,C∗(BTH ; k))

and the theorem is proved. ut
[Gugenheim-May74] developed their results over a ring and so they apply

more generally with the correct flatness assumptions. The dual theory for the
functorExt is also developed. Finally, the assumption of a finite polynomial
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ring for H(Γ) plays no role in the proof and so it is possible to study the
Eilenberg-Moore spectral sequence for a two-stage Postnikov system:

ΩK1

u

ΩK1

u
E w

u
π

PK1

u
π′

K2 wκ K1.

HereK1 andK2 are taken to be Eilenberg-Mac Lane spaces andπ′ the path-loop
fibration. Whenk = F2 the cohomology ofKi is polynomial (Theorem 6.19)
and the homological algebra of [Gugenheim-May74] may be applied.

[Schochet71] studied an important example that turns on the cup1-product
structure. Letıandbe the fundamental classes inH2(K(Z/2Z⊕Z/2Z, 2);F2)
and take

κ = ı ^  : K(Z/2Z⊕ Z/2Z, 2) −→ K(Z/2Z, 4).

[Schochet71] showed that there is a class inE−2,17
2 of the associated Eilenberg-

Moore spectral sequence on whichd2 is nonzero. This gave a counterexample
to a conjecture of [Hirsch] that asserted an additive isomorphismH∗(E;F2) ∼=
TorH∗(K1;F2)(F2, H

∗(K2; k)) becauseH∗(K1;F2) andH∗(K2;F2) are poly-
nomial algebras.

SupposeX is a space with exactlytwononvanishing homotopy groups:

πr(X) =


G1, if r = n,

G2, if r = n+ k,

{0}, otherwise.

Up to homotopy,X can be realized by the pullback over a mapping of Eilen-
berg-Mac Lane spaces of a path-loop fibration:

K(G2, n+ k)

u

K(G2, n+ k)

u
E w

u

PK(G2, n+ k + 1)

u
K(G1, n) wκ K(G2, n+ k + 1).

The two-stage Postnikov system,X, depends on the choice of[κ];

[κ] ∈ [K(G1, n),K(G2, n+ k + 1)] = Hn+k+1(K(G1, n);G2).
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Thus [κ] can be interpreted as a primary cohomology operation. In§9.1, we
define higher order cohomology operations and find that the spaceX is the
universal example for the secondary operation based on[κ]. This motivates
the study ofH∗(X;R). [Kristensen63] studied such spaces using the Leray-
Serre spectral sequence and the action of the Steenrod algebra (Theorem 6.15).
[Smith, L67’] and [Kraines73] applied the Eilenberg-Moore spectral sequence
in their study of two-stage and higher stage Postnikov systems.

Extending the functorTor®N
We return again to the main idea of Corollary 7.7—whenf : Λ → Γ is

a morphism of differential graded algebras,g : M → M ′ andh : N → N ′

are morphisms of modules, and all of these mappings induce isomorphisms on
homology, then

TorΛ(M,N) ∼= TorΓ(M ′, N ′).

ThusTor only ‘sees’ the chain homotopy type of the algebra and modules. In
this section we extendTor to accept morphisms that are algebra and module
mappings up to chain homotopy.

The idea that properties up to homotopy are the more fundamental notion
appears crucially in the study of H-spaces. For example, a morphism of chain
complexes need not be a morphism of algebras or modules but induces such
a morphism on homology. Perhaps the simplest example is the homotopy
associativity of the loop multiplication onΩ(X,x0). Here the multiplication
is associative up to homotopy, has inverses up to homotopy, and a unit up to
homotopy. More dramatically, we know that there is a multiplication onS7 (the
unit Cayley numbers), which is not associative. We can ask in reverse whether
it can be deformed into an associative multiplication.

[Sugawara57] and [Stasheff63] constructed a homotopy invariant way to
study associativity. The notion ofAn-structures ([Stasheff63]) stratifies possi-
ble ‘degrees’ of associativity—anA3-space is a homotopy associative H-space
and anA∞-space is homotopy equivalent to an associative H-space. [Clark65]
extended these notions to study the commutativity of the loop multiplication on
ΩX whenX is an H-space. The analogous structures for differential graded
algebras and modules over them were identified by [Stasheff-Halperin70] who
proposed the following approach to the problem of the collapse of the Eilenberg-
Moore spectral sequence for homogeneous spaces: SinceH∗(BG; k) is a poly-
nomial algebra in the case of Theorem 8.1, it is free as a commutative algebra.
One can study a mappingH∗(BG; k)→ C∗(BG; k) that chooses a representa-
tive for each generator. If this mapping is systematically homotopy equivalent
to an algebra homomorphism, then we have a situation like Cartan’s proof of
Theorem 8.2 and a chance to prove the collapse result.

To studyTor as a functor ‘up to homotopy,’ we fix the class of differential
objects we plan to consider, and choose the bar construction as the basic object;
TorΓ(M,N) = H(B•(M,Γ, N)). Let B̄(Γ) = B

•(k,Γ, k) and recall that
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(B̄(Γ), d• + δ) is a differential coalgebra whered• is the internal differential
(andγ̄ = (−1)1+deg γγ),

d•([γ1 | · · · | γn]) =
∑n

i=1
[γ̄1 | · · · | γ̄i−1 | dΓ(γi) | · · · | γn],

δ is the external differential,

δ([γ1 | · · · | γn]) =
∑n−1

i=1
[γ̄1 | · · · | γ̄i−1 · γi | · · · | γn],

and the comultiplication is given by

∆([γ1 | · · · | γn]) =
∑n

i=0
[γ1 | · · · | γi−1]⊗ [γi | · · · | γn].

If f : Λ→ Γ is a mapping of differential graded algebras, thenf induces
a mapping of differential coalgebras,B̄(f) : B̄(Λ)→ B̄(Γ). The central obser-
vation that makes the extension ofTor possible is that maps,̄B(Λ)→ B̄(Γ), of
differential coalgebras carry the chain homotopy information we need. Further-
more, not every map of differential graded coalgebras,B̄(Λ)→ B̄(Γ), is B̄(f)
for some algebra mapping,f : Λ→ Γ. These observations are made precise in
the following result of [Stasheff-Halperin70].

Theorem 8.18.SupposeΛ and Γ are connected differential graded algebras
over a fieldk. LetDCoalg(B̄(Λ), B̄(Γ)) denote the set of morphisms of differ-
ential coalgebras,̄B(Λ)→ B̄(Γ). ThenDCoalg(B̄(Λ), B̄(Γ)) is in one-to-one
correspondence with the set of sequences ofk-linear mappings,(f1, f2, . . . )
where

(1) f i :

n times︷ ︸︸ ︷
Λ⊗ · · · ⊗ Λ→ Γ has degree1− n,

(2) for all n,

dB̄(Γ)f
n(a1 ⊗ · · · ⊗ an)−

∑n

i=1
fn(ā1 ⊗ · · · ⊗ āi−1 ⊗ dΛ(ai)⊗ · · · ⊗ an)

=
∑n−1

i=1
fn−1(ā1 ⊗ · · · ⊗ āi · ai+1 ⊗ · · · ⊗ an)

−
∑n−1

i=1
f i(ā1 ⊗ · · · ⊗ āi−1) · fn−i(ai+1 ⊗ · · · ⊗ an).

Proof: If F : B̄(Λ) → B̄(Γ) is a morphism of differential coalgebras, then
the result follows by direct calculation. Given such a sequence of mappings as
described above, define the mappingB̄f• : B̄(Λ)→ B̄(Γ) by

B̄f•([a1 | · · · | an])

=
n∑
k=1

∑
S(n,k)

[f i1(a1 ⊗ · · · ⊗ ai1) | · · · | f ik(an−ik+1 ⊗ · · · ⊗ an)]
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whereS(n, k) is the set{(i1, . . . , ik) |
∑k

1 ij = n}. Another direct calculation
shows that this is a mapping of differential coalgebras. (See the papers of
[Clark65] or [Wolf77] for more details.) ut

To see how this theorem relates to ‘algebras up to homotopy,’ observe that,
for n = 2, the formulas above give

dB̄(Γ)f
2(a⊗ b)− f2(dΛ(a)⊗ b+ ā⊗ dΛ(b)) = f1(a · b)− f1(a) · f1(b),

that is,f1 induces an algebra mapping on homology. In order forf1 to induce
an associative multiplication,f3 is needed to fill in the appropriate chain ho-
motopies. To quote from [Wolf77], “. . . f2 is a chain homotopy measuring
how farf1 deviates from being multiplicative. Thus, in a sense,f2 atones for
the sins off1—but adds a few of its own.f3, in turn, is a chain homotopy of
chain homotopies, and atones for the sins off1 andf2—but . . . and so on.”

Definition 8.19. A sequence of mappings,(f1, f2, . . . ), that arises from a
differential coalgebra morphism̄B(Λ) → B̄(Γ) is called anshm (strongly
homotopy multiplicative)map, denotedΛ =⇒ Γ. We also say that a mapping
of differential graded modules overk, f : Λ → Γ is an shm map, if there is a
sequence as above(f1, f2, . . . ) with f1 = f .

The terminology of ‘strongly homotopy multiplicative’ mappings and the sys-
tems of higher homotopies that express the relations implied by associativity
were first codified in [Sugawara57] and [Stasheff63].

Extend the categoryDGAlgk of differential graded algebras overk to a
new categoryDASHk with the same objects asDGAlgk but with the sets of
morphisms given by

DASHk(Λ,Γ) = DCoalg(B̄(Λ), B̄(Γ)).

The categoryDGAlgk embeds inDASHk by sending an algebra homomorphism
f : Λ→ Γ to the sequence(f, 0, 0, . . . ). We denote a morphism inDASHk by
f : Λ =⇒ Γ.

To prove Theorem 8.1, we develop the notions of algebras and mod-
ules over algebras having sh-structure maps and extend the functorTor to
accept sh-objects and shm maps as variables. This extension was carried out in
[Gugenheim-Munkholm74]. [Stasheff-Halperin70] observed that, for the dif-
ferential graded algebraC∗(BG; k), satisfying the assumptions of Theorem 8.1,
there is an shm map,H∗(BG; k) =⇒ C∗(BG; k), inducing the identity map-
ping on homology. By getting the sh-module structure correct, the desired
isomorphism onTor follows.

The following series of remarks and results, stated without proofs, gives
the steps in this program leading to the proof of the powerful collapse theorem
of [Munkholm74]. The interested reader can find details in the references cited
along the way.
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A. If Γ is a differential graded algebra, then aleft sh-module over Γ is a
differential graded module,M , together with a sequence ofk-linear mappings

gn : Γ⊗ · · · ⊗ Γ︸ ︷︷ ︸
n copies

⊗M −→M,

such that

(1) gn has degree1− n, and
(2) the adjoint mappings adgn : Γ⊗· · ·⊗Γ −→ Hom(M,M) form an shm

map.

A similar definition can be given forright sh-modules overΓ.
The definition of sh-modules allows us to induce sh-module structures

from mappings inDASHk: If f : Λ =⇒ Γ is a mapping inDASHk, thenΓ is
an sh-module overΛ via the mappingf .

B. If Λ and Γ are differential graded algebras,f : Λ =⇒ Γ, a mapping in
DASHk,M ,N are, respectively, right and left differential graded modules over
Λ, andM ′,N ′ are similarly differential graded modules overΓ, then we write
g : M =⇒M ′ andh : N =⇒ N ′ for mappingsg : B(M,Λ, k)→ B(M ′,Γ, k)
andh : B(k,Λ, N)→ B(k,Γ, N ′) that commute withf as comodules over the
coalgebras̄B(Λ) andB̄(Γ). Such mappings induce a natural homomorphism

Torf (g, h) : TorΛ(M,N) −→ TorΓ(M ′, N ′),

extending the classical case. The following generalization of Corollary 7.7 is
due to [Gugenheim-Munkholm74].

Theorem 8.20.Supposef : Λ =⇒ Γ is a mapping inDASHk andg : M =⇒
M ′ and h : N =⇒ N ′ are sh-module mappings. Then we can writef =
(f1, f2, . . . ), g = (g0, g1, . . . ) and h = (h0, h1, . . . ) with f1 : Λ → Γ,
g0 : M →M ′ andh0 : N → N ′. If H(f1),H(g0) andH(h0) are all isomor-
phisms, then so isTorf (g, h).

C. We say that a differential graded algebraΓ is shc(strongly homotopy com-
mutative) if the multiplication onΓ,m : Γ⊗Γ→ Γ, is an shm map. Examples
of such shc algebras areC∗(X; k), for X a space and multiplication given by
the cup-product. WhenY is an H-space, thenC∗(ΩY ; k) is an shc algebra
([Sugawara60] and [Clark65]). [Stasheff-Halperin70] observed an important
property of shc algebras of a certain type that applies to the problem of com-
putingH∗(G/H; k).

Proposition 8.21. SupposeΓ is an shc algebra andH(Γ) ∼= k[x1, . . . , xn].
Then there is an shm map,ψ : H(Γ)→ Γ inducing the identity on homology.

The proof follows by induction on the number of polynomial generators.
Forn = 1, the definition of an shc algebra allows us to construct the mapping
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by sending the generator to a representative of its class. Generally, the choice of
a representative leads to a shm mapk[x1]⊗· · ·⊗k[xn]→ Γ⊗· · ·⊗Γ that can
be multiplied down to an shm mapk[x1, . . . , xn]→ Γ becausem : Γ⊗Γ→ Γ
is shm.

To apply the proposition to the problem of homogeneous spaces, there
are shm mapsH∗(BG; k) =⇒ C∗(BG; k) andH∗(BH; k) =⇒ C∗(BH; k)
inducing the identities on homology. The desired collapse theorem can be
derived from Theorem 8.20 if the sh-module structures can be brought into
place. This requires a careful consideration of when diagrams such as

H∗(BG; k) w

u
Bi∗

C∗(BG; k)

u
Bi∗

H∗(BH; k) w C∗(BH; k)

commute up to homotopy.

D. Proposition 8.21 does not restrict us to the case of homogeneous spaces but
applies to the cochain algebras of spaces withH∗(X; k) a polynomial algebra.
Thus the extra structure of Lie theory is unnecessary for the collapse theorem.
The general theorem is due to [Munkholm74].

Theorem 8.22.Suppose we have the pullback diagram withπ, a fibration and
B, simply-connected:

Ef w

u

E

u
π

X w
f

B.
If H∗(E; k),H∗(B; k) andH∗(X; k) are all polynomial algebras overk in at
most countably many variables, and ifchar k = 2, we suppose further that Sq1

vanishes onH∗(E; k) andH∗(X; k), then, as gradedk-vector spaces

H∗(Ef ; k) ∼= TorH∗(B;K)(H∗(X; k), H∗(E; k)).

That is, the Eilenberg-Moore spectral sequence, converging toH∗(Ef ; k), col-
lapses at theE2-term.

Theorem 8.1, the collapse result for homogeneous spaces, follows as a
corollary. Theorem 8.22 also applies to two-stage Postnikov systems. The
restriction onSq1, the cup1-product, is best possible by the example of [Scho-
chet71]. [Wolf77] gave another proof of Theorem 8.1, similar to [Munkholm74],
but using the geometric properties of homogeneous spaces. [Husemoller-
Moore-Stasheff74] developed a general theory of differential homological al-
gebra that applies to the problem of computingH∗(G/H; k) via the homology
Eilenberg-Moore spectral sequence and they are able to prove a similar collapse
result.
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The methods of strongly homotopy multiplicative maps in differential alge-
bra and more generally, the notion of algebraic properties up to homotopy were
developed into powerful organizing principles under the rubric of operads during
the 1970s ([May72]) and this idea has found its way into mathematical physics
and quantum algebra ([Loday96]), [Stasheff97]). The perturbation theory of
a differential on a resolution or of a differential on a graded algebra that un-
derlies Theorem 8.15 was introduced by [Gugenheim60], [Liulevicius63], and
[Gugenheim-Milgram70], and has enjoyed considerable development (with an
especially neat formalism due to [Brown, R67]). For a survey of these advances,
see the papers of [Huebschmann-Kadeishvili91] and [Lambe92].

8.2 Differentials in the Eilenberg-Moore spectral sequence

The underlying category for the Eilenberg-Moore spectral sequence has
objects differential graded algebras and modules over them where the module
structures are induced by algebra mappings and multiplications. The functor
Tor, defined by resolutions, encodes nontrivial relations in the classical sense
of syzygies. These relations are due to the multiplicative structures involved
and the interplay between homology and the product.

When a pair of products vanish,u · v = 0 = v · w, a secondary op-
eration,〈u, v, w〉 may be defined that was introduced by [Uehara-Massey57].
In this section, we introduce the Massey triple product and its generalizations
due to [Massey58], [Kraines66], and [May68]. A motivating example is the
loop suspension homomorphism that may be described as follows: The functor
Hn( ; k) is representable as[ ,K(k, n)] for eachn ≥ 0. This description of
cohomology allows us to define a mappingHn(X; k) → Hn−1(ΩX; k) by
applying the topological loop functor:

Ω∗ : [X,K(k, n)]→ [ΩX,ΩK(k, n)] = [ΩX,K(k, n− 1)], f 7→ Ω(f).

[Eilenberg-Mac Lane50] introduced the loop suspension homomorphism in
their study of the spacesK(Π, n) and [Serre51] developed it in homology
(§6.2), relating it to the Leray-Serre spectral sequence. [Whitehead, GW55]
proved thatΩ∗ annihilates products and furthermore,Ω∗ is an isomorphism for
n less than three times the connectivity ofX. [Kraines66] showed that the higher
operations based on products, the higher Massey products, are also annihilated
by Ω∗. These operations were developed further and shown to determine the
differentials in the Eilenberg-Moore spectral sequence. [May68] applied these
results to obtain collapse theorems similar to those of§8.1.

To begin we describe the cohomology loop suspension homomorphism for
a fibration and, in particular, for the path-loop fibration. We next introduce the
classical Massey triple product and describe some of its geometric applications.
Then we consider the generalization of the triple product to an arbitrary number
of variables. These higher order operations are related to the cohomology
loop suspension homomorphism via the differentials in the Eilenberg-Moore
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spectral sequence. Finally, we consider matric Massey products that generalize
the higher order products and a structure theorem that expresses the differentials
in the spectral sequence in terms of matric Massey products.

The cohomology loop suspension homomorphism

Dual to the transgression homomorphism (§6.2) is thesuspension(or loop

suspension) associated to a fibration,F ↪→ E
π
−→ B. It is defined as an additive

relation by the homomorphisms

Hq(B) ∼= Hq(B, ∗)
π∗0−→ Hq(E, f)

δ
←− Hq−1(F )

as in the diagram:

w Hq−1(∗) w

u

Hq(B, ∗) w
∼=

u

π∗0

Hq(B)
((((((((((*

Ω∗

w

u
π∗

Hq(∗) w
δ

u
w Hq−1(F ) w

δ
Hq(E,F ) w Hq(E) w Hq(F ) w.

The homomorphismΩ∗ : (π∗0)−1(im δ)→ Hq−1(F )/ker δ ∼= im δ is induced
by π∗0 . It is a homomorphism from a submodule ofHq(B) to a quotient of
Hq−1(F ).

For the path-loop fibration,E = PX ' ∗, soδ is an isomorphism and
Ω∗ is a homomorphismHq(X) → Hq−1(ΩX). [Serre51, I.n◦ 3] showed
for the path-loop fibration, thatΩ∗ has the same image as the monomorphism
E0,q−1
q ↪→ Hq−1(ΩX) and the same kernel as the surjectionHq(X)−→−→Eq,0q ,

whereE∗,∗q refers to theEq-term of the Leray-Serre spectral sequence for
ΩX ↪→ PX → X (see Proposition 6.10). In the Eilenberg-Moore spectral
sequence the loop suspension homomorphism will be seen to have a very simple
expression in the case of the path-loop fibration. The motivating problem for
§8.2 and its subsections is to describe the kernel ofΩ∗. Following [Smith, L67],
we approach this question by looking at the filtration due to the homological
nature of the Eilenberg-Moore spectral sequence.

Fix a fibrationπ : E → B with connected fibreF and letf : X → B be
a continuous mapping. LetEf → X denote the pullback fibration. Recall that
Ef ⊂ X × E. Let

π̂ : X × E → X ×B × E and f̂ : X × E → X ×B × E

be given byπ̂(x, e) = (x, π(e), e) andf̂(x, e) = (x, f(x), e). It follows that
π̂ and f̂ agree on the subsetEf . These data determine adifference homo-
morphism, (f̂ − π̂)∗ : H∗(X × B × E; k) −→ H∗(X × E,Ef ; k), following
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[Steenrod47], that is defined as a lifting at the cochain level in the diagram:

0 w C∗(X × E,Ef ; k) w C∗(X × E; k) w C∗(Ef ; k) w 0.

C∗(X ×B × E; k)

u

f̂∗−π̂∗i
i
ik

(f̂−π̂)∗

Fix a fieldk and writeH∗(X) = H∗(X; k). By the Künneth theorem, we have
H∗(X ×B × E) ∼= H∗(X)⊗H∗(B)⊗H∗(E).

Next consider the boundary homomorphismδ : Hq−1(Ef )→ Hq(X×E)
of the long exact sequence for the pair(X ×E,Ef ). Together,(f̂ − π̂)∗ andδ
determine an additive relationΦ similar to the suspension and the transgression:

H∗(X)⊗ H̃∗(B)⊗H∗(E)
(f̂−π̂)∗

−−−−→ H∗(X × E,Ef )
δ

←−−−− H∗(Ef )

whereΦ: ((f̂ − π̂)∗)−1(im δ) −→ H∗(Ef )/ ker δ is induced by(f − π̂)∗.
For the path-loop fibration,ev1 : PB → B, we obtain the fibreΩB as the

pullback over a choice of basepointη : ∗ → B. The difference homomorphism
reduces toev∗1 in this case becausePB ' ∗. Thus the following diagram
commutes:

H∗(B, ∗) w
ev∗1 H∗(PB,ΩB)

k ⊗ H̃∗(B)⊗ k w
(η̂−êv1)∗

H∗(PB,ΩB)

In this case, the additive relationΦ is Ω∗.
For a general fibration, recall that

H∗(X)⊗ H̃∗(B)⊗H∗(E) = B
−1(H∗(X), H∗(B), H∗(E))

is the(−1)-column of the bar construction forTorH∗(B)(H∗(X), H∗(E)). Let
φ : H∗(X)⊗H̃∗(B)⊗H∗(E)→ H∗(X)⊗H∗(E) be given byφ(u⊗a⊗u) =
ūa⊗ v + ū⊗ āv, wherex̄ = (−1)1+deg xx. This is the bar differential and so
we get an epimorphism

T : kerφ−→−→Tor−1,∗
H∗(B)(H

∗(X), H∗(E)).

We next identifykerφwith the domain of the additive relationΦ. Consider
the diagram:

H∗(X × E,Ef )

u
j∗

H∗(X)⊗ H̃∗(B)⊗H∗(E) w
f̂∗−π̂∗

A
A
AACφ

[
[
[
[]

(f̂−π̂)∗

H∗(X × E) w
i∗ H∗(Ef )

'
'

'
'*

δ

H∗(X)⊗H∗(E)
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The left triangles commute by the definitions off̂ and π̂ and the Künneth
theorem. The right triangle is exact. It follows that:

(f̂ − π̂)∗(w) ∈ im δ ⇐⇒ j∗(f̂ − π̂)∗(w) = 0

⇐⇒ (f̂∗ − π̂∗)(w) = 0
⇐⇒ φ(w) = 0.

Thus we can writeΦ: kerφ→ H∗−1(Ef )/ ker δ.

Proposition 8.23. Suppose thatB is a simply-connected space. Then

F 0H∗(Ef ) = im{i∗ : H∗(X)⊗H∗(E) −→ H∗(Ef )}.

Furthermore,F−1H∗(Ef )/F 0H∗(Ef ) is additively generated by elements of
the formΦ(w) for somew ∈ H∗(X)⊗ H̃∗(B)⊗H∗(E).

Proof ([Smith, L67]): To prove the assertion aboutF 0, we consider the
mappingk → C∗(B; k) given by a choice of basepoint. Then there are algebraic
spectral sequences withE2-terms related by the map induced by the unit

Tor∗,∗k (H∗(X), H∗(E)) −→ Tor∗,∗H∗(B)(H
∗(X), H∗(E))

and converging toTork(C∗(X), C∗(E)) −→ H∗(Ef ). However, sincek is
a field, Tork(H∗(X), H∗(E)) ∼= H∗(X) ⊗k H∗(E), concentrated in the 0-
column. Furthermore, the mapping induced by the basepoint is given by the
morphism induced by the inclusionEf ⊂ X × E, as seen by examining the
bar constructions.

In the Eilenberg-Moore spectral sequence converging toH∗(Ef ), there
is an edge phenomenon similar to the one in Example 5.E for the Leray-Serre
spectral sequence. Sincedr has bidegree(r, 1−r), dr ≡ 0 onE−1,∗

r for r ≥ 2.
ThusE−1,∗

n+1
∼= E−1,∗

n / im dn and there is a sequence of epimorphisms

kerφ T−→−→Tor−1,∗
H∗(B)(H

∗(X), H∗(E))−→−→E−1,∗
3 −→−→· · ·−→−→E−1,∗

∞ .

ThusE−1,∗
∞ = F−1H∗(Ef )/F 0H∗(Ef ) is generated by the image of the

classes fromkerφ underT . Notice, however, thatΦ factors throughT

kerφ−→−→Tor−1,∗
C∗(B)(C

∗(X), C∗(E)) ↪→ H∗−1(Ef )/ ker δ.

As the diagram identifying the domain ofΦ with kerφ shows, bothT andΦ
have the same kernel and the second assertion is proved. ut

In fact, we can say more. Recall that we have the short exact sequence

0→ F 0H∗(Ef ) −→ F−1H∗(Ef ) −→ E−1,∗
∞ → 0.
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Following [Smith, L67], there is an explicit way to represent all of the elements
in F−1H∗(Ef ) via Φ. If w ∈ kerφ, then we can writew =

∑
i xi ⊗ ai ⊗ yi.

Let Xi, Ai andYi denote choices of cochain representatives for the classes
appearing inw. Sinceφ(w) = 0, there is a classU ∈ C∗(X) ⊗ C∗(E) with
d⊗(U) =

∑
i±XiAi ⊗ Yi +±Xi ⊗AiYi. Form the element

Z =
∑

i
Xi[Ai]Yi − U ∈ B

•(C∗(X), C∗(B), C∗(E)).

The association ofw with the class ofZ in Tor−1,∗
C∗(B)(C

∗(X), C∗(E)) has an

indeterminacy given byF 0H∗(Ef ). We can represent the suspension homo-
morphism by choosing representatives and varying a class given byΦ(w) over
the indeterminacy. The result is well-defined in the spectral sequence.

Corollary 8.24. For the path-loop fibration, the image of the loop suspension
homomorphism is given byF−1H∗(ΩB). Furthermore, this homomorphism
is given by the rule:x ∈ H̃n(B) goes to[X] ∈ Tor−1,n

C∗(B)(k, k) for any
representativeX of the classx.

Finally, we examine the consequences of having a spectral sequence. Since
Tor−1

C∗(B)(k, k) is a quotient ofTor−1
H∗(B)(k, k), we can use theE2-term to

help describe the image ofΩ∗. In particular, the bar construction differential
B
−2 → B

−1 is given by the multiplication onH∗(B) and soQHn+1(B) ∼=
Tor−1,∗

H∗(B)(k, k) by way of the inclusion,x 7→ [x]. We may take the domain

of the loop suspension to beQH∗+1(B). [Whitehead, GW55] showed thatΩ∗

annihilates decomposables.
The codomain ofΩ∗ is Tor−1

C∗(B)(k, k) and is contained in the space of
primitives inH∗(ΩB) with respect to the coproduct on the bar construction.
We examine the consequences of connectedness for the loop suspension homo-
morphism in a result due to [Whitehead, GW55] and [Smith, L67].

Corollary 8.25.If B is n-connected (n ≥ 1), then

Ω∗ : QHq+1(B) −→ PrimHq(ΩB)

is an isomorphism forq ≤ 3n.

Proof: By Corollary 7.19, it suffices to show that no element inE−1,q
2 for q

less than or equal to3n + 1 is in the image of a differential, and hence such
elements survive toE∞. Sincedr has bidegree(r, 1− r), an element inE−1,t

2

would be hit by a differentialdr only if there are elements inE−(r+1),t+r−1
r .

SinceE−(r+1),s
2 = {0} for s < (n+1)(r+1) by the connectedness assumption,

dr : E−(r+1),s
r → E−1,s−r+1

r is zero for allr ≥ 1. Froms < (n + 1)(r + 1)
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we gets−r+1 < n(r+1)+2. Starting atr = 2 it follows thatt = s−r+1 <
3n + 2. The total degree of such elements is then less than3n + 1 and so the
result follows. ut

These results make the Eilenberg-Moore spectral sequence the tool of
choice to study the loop suspension homomorphism. We take up the problem
of describing possible differentials in subsequent sections. We remark that
F−1H∗(Ef ;Fp) as described by the partial homomorphismΦ is determined by
geometric maps and hence is closed under the action of the Steenrod algebra.
[Smith, L67] asked if the higher filtration pieces were also closed under the
action of the Steenrod algebra. This problem is taken up in§8.3.

Another interpretation of the filtration submodules in the special case of
the Eilenberg-Moore spectral sequence converging to the cohomology of a
classifying space was given by [Toomer74] and is related to the Lusternik-
Schnirelmann category of a space. Generalizations of this notion are due to
[Fadell-Husseini92] and [Strom]—essential category weightof a cohomology
class, and by [Rudyak99]—strict category weight. In both cases the Eilenberg-
Moore spectral sequence and Massey products (even matric Massey products)
play a role.

Massey’s triple product

Let (Γ, d, µ) denote a differential graded algebra over a ringR and denote
the multiplication onΓ andH(Γ) = H(Γ, d) by µ(u, v) = u · v. Suppose[u],
[v] and[w] denote classes inH(Γ), represented byu ∈ Γp, v ∈ Γq andw ∈ Γr.
If [u] · [v] = 0 = [v] · [w] in H(Γ), then we introduce a new cohomology class
definable because[u] · [v] · [w] = 0 for two different reasons. It is constructed
as follows: Since[u] · [v] = 0, there is an elements ∈ Γp+q−1 with ds = ū · v
(recall that̄u = (−1)1+deg uu). Similarly, there is an elementt ∈ Γq+r−1 with
dt = v̄ · w. The element̄s · w + ū · t determines a cocycle inΓp+q+r−1:

d(s̄ · w + ū · t) = (−1)p+qds · w + (−1)pū · dt
= (−1)p+qū · v · w + (−1)p+q+1ū · v · w = 0.

We define theMassey triple product of [u], [v] and[w] as the set of all coho-
mology classes that can be defined in this manner:

〈[u], [v], [w]〉 ={[s̄ · w + ū · t] ∈ Hp+q+r−1(Γ),whereu, v, w represent

[u] ∈ Hp(Γ), [v] ∈ Hq(Γ), and[w] ∈ Hr(Γ), respectively, and

s, t vary over choices that satisfyds = ū · v anddt = v̄ · w.}

By regarding our choices more carefully, we can identify the indeterminacy.
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Proposition 8.26.The Massey triple product〈[u], [v], [w]〉 is an element of the
quotient groupHp+q+r−1(Γ)/([u] ·Hq+r−1(Γ) +Hp+q−1(Γ) · [w]) .

Proof: We need to show that different choices do not affect the coset in
Hp+q+r−1(Γ) given above. For example, ifs ands′ are chosen withds =
ū · v = ds′ andt is chosen withdt = v̄ · w, then

(s̄ · w + ū · t)− (s̄′ · w + ū · t) = (s̄− s̄′) · w,

which, on homology, lies inHp+q−1(Γ) · [w]. Similar arguments complete the
proof. ut

Some of the formal properties of the triple product (for example, naturality
and relations with the product) are special cases of more general results proved
later. Therefore, we postpone listing those properties until then and discuss
some of the geometric applications of the triple product.

A. If α ∈ πp(X) andβ ∈ πq(X), then theWhitehead product of α and
β, [α, β] ∈ πp+q−1(X) is defined as follows: Letf : (Ip, ∂Ip) → (X, ∗) and
g : (Iq, ∂Iq)→ (X, ∗) representα andβ, respectively. ThenIp×Iq represents
an(p+ q)-cell and so∂(Ip × Iq) = Ip × ∂Iq ∪ ∂Ip × Iq ∼= Sp+q−1. Define
[α, β] to be the homotopy class of the mappingh : (Sp+q−1, ∗)→ (X, ∗) given
by

h(x, y) =
{
f(x), if x ∈ Ip, y ∈ ∂Iq,
g(y), if x ∈ ∂Ip, y ∈ Iq.

Whenp = q = p + q − 1 = 1, [α, β] = αβα−1β−1, the actual commutator,
and hence the notation. The elementary properties of the Whitehead product
include[α, β] = (−1)pq[β, α], an indication of the choice of signs for a graded
Lie algebra. This operation was introduced by [Whitehead, JHC41] and was
conjectured by Weil to satisfy the Jacobi identity for a graded Lie algebra
by analogy with the product of [Samelson54] for the homotopy groups of a
group-like space. Several approaches to proving the identity appeared about
the same time in work of [Whitehead, GW54], [Nakaoka-Toda54], [Hilton55],
and [Uehara-Massey57].

[Uehara-Massey57] proved the Jacobi identity by applying the triple prod-
uct. ConsiderX = Sp∨Sq ∨Sr and supposeα ∈ πp(X), β ∈ πq(X) andγ ∈
πr(X) are generators. Form the adjunction space,K = X ∪[α,[β,γ]] e

p+q+r−1.
This is the universal example for the triple Whitehead product. In this case,
H∗(K) has generators in degreesp, q, r andp + q + r − 1 that we denote by
[u], [v], [w] and[z].

Theorem 8.27.For K = (Sp ∨ Sq ∨ Sr) ∪[α,[β,γ]] e
p+q+r−1 and[u], [v], [w],

[z] in H∗(K) as described,

〈[u], [v], [w]〉 = (−1)p[z], 〈[v], [w], [u]〉 = (−1)pq+pr+p[z]
〈[w], [u], [v]〉 = 0.
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Thus the triple product is an operation that detects the triple Whitehead
product,[α, [β, γ]]. In order to prove that the Whitehead product satisfies the
Jacobi identity for graded Lie algebras, form the mapping

(−1)pr[α, [β, γ]] + (−1)pq[β, [γ, α]] + (−1)qr[γ, [α, β]] = [f ]

and consider the complexKf = (Sp∨Sq∨Sr)∪f ep+q+r−1. By the properties
of adjunction spaces and Theorem 8.27, [Uehara-Massey57] showed thatf is
nullhomotopic if the following identity holds for triple products inH∗(Kf );

(−1)pr〈[u], [v], [w]〉+ (−1)qp〈[v], [w], [u]〉+ (−1)rq〈[w], [u], [v]〉 = 0.

This holds, however, by the basic formal properties of triple products and so
the desired identity is established.

B. The cup product is useful geometrically in the classical theory of intersections
of subcomplexes ofRn. If Sp andSq are disjoint spheres inRn, wheren =
p+ q + 1, then, by Alexander duality,H∗(Rn − (Sp ∪ Sq)) has infinite cyclic
generators in dimensionsp, q andp + q. The cup product of the generators
in dimensionsp andq is a multiple of the generator in dimensionp + q and
this multiple can be shown to be the linking number of the spheres up to sign
([Rolfsen76, p. 132ff.]). If three piecewise unlinked spheres are considered,
then a higher order linking number can be introduced by computing the triple
product. [Massey68/98] showed that this higher order linking number is nonzero
in the case of the ‘Borromean rings.’

This gives a rigorous proof that, though pairwise unlinked, the three rings cannot
be pulled apart. Applications of this higher order link invariant are discussed
in the next section along with its generalization to many component links.

C. [Viterbo98] has applied the triple Massey product to the problem of deter-
mining the minimal number of critical points of a function on a Hilbert manifold
X. Through Morse theory this problem can be related to classical Lusternik-
Schnirelmann category and hence to the cup length of a space, that is, the
maximal number of cohomology classes with nonzero cup product. Viterbo
introduced the notion of tied cohomology classes and tie length to bound the
number of critical points. He then used Massey products to give examples of
bounds for tie length that are greater than the cup length and hence closer to the
desired number of critical points.
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Higher order Massey products

When two triple products are defined〈[u], [v], [w]〉 and〈[v], [w], [x]〉, then
it can happen that there is a choice of elements in(Γ, d) for which

dY1 = t̄0 · v + ū · t1, wheredt0 = ū · v anddt1 = v̄ · w
dY2 = t̄1 · w + v̄ · t2, wheredt2 = w̄ · x.

In this case,0 ∈ 〈[u], [v], [w]〉 and0 ∈ 〈[v], [w], [x]〉, and we can form the
element

ū · Y2 + t̄0 · t2 + Ȳ1 · x.

This expression is a cocycle and as we vary our choices we obtain a subset of
H |u|+|v|+|w|+|x|−2(Γ, d) that we denote by〈[u], [v], [w], [x]〉.

A triple product is formed when certain products among three cohomology
classes vanish. A fourfold product is defined when certain triple products among
four cohomology classes contain the zero cohomology class. In like manner
we could define fivefold Massey products and so on. We next give a uniform
definition, for all orders, of higher order Massey products. A definition was
first given by [Massey58]. The following definition (with its choice of signs) is
due to [Kraines-Schochet72].

Definition 8.28. Suppose(Γ, d) is a differential graded algebra and[γ1], [γ2],
. . . , [γn] are classes inH∗(Γ, d) with [γi] ∈ Hpi(Γ, d). A defining system,
associated to〈[γ1], . . . , [γn]〉, is a set of elements(aij) for 1 ≤ i ≤ j ≤ n and
(i, j) 6= (1, n) with aij ∈ Γ satisfying

(1) aij ∈ Γpi+pi+1+···+pj−j+i,
(2) ai,i is a representative of[γi] in Hpi(Γ, d),

(3) d(aij) =
j−1∑
r=i

āir · ar+1,j .

To a defining system we associate the cocycle,∑n−1

r=1
ā1,r · ar+1,n ∈ Γp1+···+pn−n+2 .

Then-fold Massey product, 〈[γ1], . . . , [γn]〉, is the set of cohomology classes
of cocycles associated to all possible defining systems for〈[γ1], . . . , [γn]〉.

First observe how this definition generalizes the Massey triple product. To
give a defining system for〈[u], [v], [w]〉, we need a “matrix” of values fromΓ, a11 a12

a22 a23

a33

 =

u s
v t

w

 .
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The defining properties of a Massey product can be summarized in a kind of
partial matrix multiplication:

d

u s
v t

w

 =

 0 ūv
0 v̄w

0

 ,

 ū s̄
v̄ t̄

w̄

 v t
w

 =

 ūv ūt+ s̄w
v̄w


The cocycle associated with this defining system appears in the upper right hand
corner and represents an element in the Massey product. Extending this matrix
notation to more classes recovers Definition 8.28.

Then-fold Massey product may be thought of as annth order cohomology
operation because the data provide that the related(n−1)st order and lower order
Massey products must be defined and contain zero in a coherent manner. For
example, for〈[γ1], [γ2], [γ3], [γ4]〉, the defining system provides the boundaries
that show0 ∈ 〈[γ1], [γ2], [γ3]〉 and0 ∈ 〈[γ2], [γ3], [γ4]〉.

We record some of the properties of then-fold Massey product. Most of
these properties are straightforward consequences of the definition (with the
exception of (5)). We encourage the reader to provide proofs of these assertions
(one can also refer to the paper of [Kraines66] for details with slightly different
signs).

Theorem 8.29.Let (Γ, d) be a differential graded algebra over a ringR and
[γ1], . . . , [γn] be inH∗(Γ, d). Where the following make sense, they hold:

(1) (Linearity) if λ ∈ R, then, for all1 ≤ i ≤ n,

λ〈[γ1], . . . , [γn]〉 ⊂ 〈[γ1], . . . , λ[γi], . . . , [γn]〉.

(2) (Naturality) if f : Γ→ Λ is a morphism of differential graded algebras,
then

f∗〈[γ1], . . . , [γn]〉 ⊂ 〈f∗[γ1], . . . , f∗[γn]〉.

(3) (Associativity) forv ∈ H∗(Γ, d),

〈[γ1], . . . , [γn]〉v ⊂ 〈[γ1], . . . , [γn]v〉
v〈[γ1], . . . , [γn]〉 ⊂ (−1)deg v〈v[γ1], . . . , [γn]〉

Suppose further that(Γ, d) has a cup1-product satisfying the Hirsch
formulas (Definition 8.12), then

〈[γ1], . . . , [γt]v, . . . , [γn]〉 ∩ (−1)deg v〈[γ1], . . . , [γt], v[γt+1], . . . , [γn]〉 6= ∅
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(4) (Symmetry) ifpj = deg γj andl =
∑

1≤r≤s≤n
prps + (n− 1)(n− 2)/2,

then
〈[γn], . . . , [γ1]〉 = (−1)l〈[γ1], . . . , [γn]〉.

(5) If k = Fp for p, an odd prime and[γ] ∈ H2m+1(X;Fp) then

−βPm[γ] ∈ 〈[γ], . . . , [γ]︸ ︷︷ ︸
p times

〉.

Property (5) plays a role in the analysis ofH∗(ΩX;Fp) whenX is an
H-space; see Chapter 10 and the paper of [Kane75]. In the special case of co-
efficients inFp for p, an odd prime, every odd dimensional class has square
zero and so one can try to form the triple product. By using a particular
choice of defining system based on the cup1-product, [Kraines66] showed that
〈[γ], . . . , [γ]〉 (p many), is defined. Furthermore, since we can use some of the
data in the defining system iteratively, we can define a cohomology operation,
denoted〈[γ]〉p that lies inH2mp+2(Γ, d) when[γ] ∈ H2m+1(Γ, d) and satisfies
〈[γ]〉p ⊂ 〈[γ], . . . , [γ]〉 (p many).

[Kraines66] showed that the operation[γ] 7→ 〈[γ]〉p is equal to−βPm[γ]
with zero indeterminacy. The proof is by universal example. This result was
thought to be surprising at the time as it relates an unstable operation, the iter-
ated Massey product, to a stable operation−βPm. In response to a question
posed by [Stasheff68], [Kraines73] applied the Eilenberg-Moore spectral se-
quence tok stage Postnikov systems to extend property (5) and relate〈[γ]〉pk

to −βkP p
k−1m · · ·Pm[γ] for [γ] ∈ H2m+1(X;Fp) andX a space for which

there is a mapping satisfying certain conditions,f : X → Ek, the universal
example for the iterated Massey product operation.

We return to the question of determiningker Ω∗ with the definition of
n-fold Massey products. A connection is made through the following formal
lemma, the “staircase argument” for double complexes, which is the argument
that led to the discovery of spectral sequences (see Lemme 2 of n◦ 4 of [Leray45]
and the discussion of [Borel98]). In this presentation we follow [Kraines-
Schochet72].

Lemma 8.30.Let(An,m, d′, d′′) be a double complex anda1, . . . , as elements
in A∗,∗. Supposed′′ar+1 − d′ar = 0 for 1 ≤ r ≤ s − 1 and definea =
a1 − a2 + · · · + (−1)s−1as. Thenda = d′a + d′′a = d′′a1 + (−1)s−1d′as
and, in the spectral sequence associated to the double complex, ifd′′a1 = 0,
thenas survives toEs and(−1)sds([as]) = [d′as].

Proof: First we show that ifa1 anda2 exist as assumed, thend1 is zero on
a1 andd2 applied to the class determined bya1 is the same as the class ofd′a2.
Finally, if a3 exists as assumed, then[d1a2] = 0 andd2[a1] = 0.
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By the assumptions, it is clear thata1, . . . , as all have the same total
degree so we can picture the double complex with its filtration as in the picture:

0

a1

u

d′′

w
d′ •

a2

u

d′′

w
d′ •

a3

u

d′′

w
d′ •

−→| −→| −→|
Fp Fp+1 Fp+2

Consider the classa1− a2. Note that[a1] = [a1− a2] in Ep0 = F p/F p+1

and, sinced′′a1 = 0 andd′a1 − d′′a2 = 0, we have

d(a1 − a2) = d′′a1 + d′a1 − d′′a2 − d′a2 = −d′a2.

In the subquotientsd′a2 is a class in the same filtration determined byd(a1−a2)
and henced2[a1] = [−d′a2]. Denotetotal∗(A∗,∗) by T∗; in the proof of
Theorem 2.6,d2 is described explicitly as

FpTp+q∩d−1(Fp+2Tp+q+1)
/
Fp+1Tp+q∩d−1(Fp+1Tp+q+1)+FpTp+q∩d(Fp−1Tp+q−1)

= Ep,q2

d2−−−−−−−−→
induced by d

Ep+2,q−1
2 =

Fp+2Tp+q+1∩d−1(Fp+4Tp+q+2)
/
Fp+3Tp+q+1∩d−1(Fp+3Tp+q+2)+Fp+2Tp+q+1∩d(Fp+1Tp+q)

Observe thatd′a2 lies in Fp+2Tp+q+1 and sinced(d′a2) = 0, d′a2 is in
Ep+2,q−1

2 . Alsoa2 lies inFp+1Tp+q∩d−1(Fp+1Tp+q+1) and soa1 ∼ a1−a2.
If a3 exists as assumed, thena3 lies inFp+2Tp+q and we get

a1 ∼ a1 − a2 ∼ a1 − a2 + a3

and d(a1) ∼ d(a1 − a2) ∼ d(a1 − a2 + a3) = d′a3,

which is inFp+3Tp+q+1∩d−1(Fp+3Tp+q+2). So, ifa3 exists,d2[a1] = 0, that
is, a1 persists toE3. The general case ofs > 3 is similar. ut

We apply this lemma immediately to the algebraic Eilenberg-Moore spec-
tral sequence for computingTorΓ(k, k) = H(B•(k,Γ, k), d) to prove a result
of [May68] that was conjectured by Massey. By the results of§7.2, we take the
E1-term of this spectral sequence to beB

•(k,H(Γ), k).
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Theorem 8.31.If 〈[u1], . . . , [us]〉 is defined inH(Γ, d), then[u1 | · · · | us]
survives toEs−1 and

ds−1([u1 | · · · | us]) ∈ ±[〈[u1], . . . , [us]〉].

Proof: Let (bij) be a defining system for〈[u1] · · · , [us]〉 with bi,i = ui. In
B
•(k,Γ, k) define

a1 = [b11 | · · · | bss]
a2 =

∑
r

[b11 | b22 | · · · | br−1,r−1 | br,r+1 | br+2,r+2 | · · · | bss]

...

al =
∑

[b1i1 | bi1+1,i2 | · · · | bil−1+1,s]

...

as−1 =
∑
r

[b1r | brk],

where the summation foral is over all sequences1 ≤ i1 ≤ i2 · · · ≤ il−1 ≤ s
such that|i1 − 1| ≤ l, |il−1 − s| ≤ l and|ij − ij+1| ≤ l. We haved•a1 = 0
(sincedΓ(bii) = 0) and, by a routine calculation,d•ar+1− δar = 0 for eachr
(whereδ is the external andd• the internal differential onB•(k,Γ, k)). By the
staircase argument,

ds−1[a1] = ±[δas−1] = ±
[∑

r

b̄1r · brs
]
∈ ±[〈u1, . . . , us〉].

Since[a1] = [u1 | · · · | us], the theorem follows. ut

Corollary 8.32.If 〈[u1], [u2], . . . , [us]〉 is defined inH∗(X; k), then

Ω∗(〈[u1], [u2], . . . , [us]〉) = 0.

Proof: In the Eilenberg-Moore spectral sequence, converging toH∗(ΩX; k),
[〈[u1], . . . , [us]〉] is an element ofE−1,∗

1 and its survival in the spectral sequence
determines its image inH∗−1(ΩX; k) underΩ∗ by Corollary 8.24. Theorem
8.31, however, shows that[〈[u1], . . . , [us]〉] is a boundary atEs−1 and hence it
does not persist toE∞. ThusΩ∗ must annihilate〈[u1], . . . , [us]〉. ut

In low dimensions the notion ofn-fold Massey products can be used to
study links withn components that are unlinked pairwise, three-wise, etc., up
to (n − 1)-wise. The class ofBrunnian links([Brunn1892]) includes such
links as the Borromean rings, and others that are pairwise unlinked, but linked
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in some higher order. Higher order Massey products are ideal for defining
invariants of such links and considerable work has been done in this direction
(see [Cochran90] and the bibliography there).

The classical invariants of knots and links are defined from the fundamen-
tal group of the complement inS3 of the knot or link. [Milnor57] introduced
theµ̄-invariants of a link, defined as elements in the quotients of the fundamen-
tal group of the complement by its lower central series (Definition§8bis.15).
[Stallings65] conjectured a relation between Milnor’sµ̄-invariants and Massey
products in the cohomology of the complement. This connection was made
precise by [Dwyer75”], [Turaev76], and [Porter80], and further developed by
[Fenn-Sjerve84]. New link invariants defined by [Cochran90], [Orr91], and
[Stein90] are closely related to Massey products and show considerable more
subtlety than classical invariants such as the Alexander module.

The techniques of Koszul complexes, Massey products and spectral se-
quences of Eilenberg-Moore type have also found deep applications in the study
of local rings. IfR is a local ring with maximal ideal,m, then thePoincaré
seriesof the ringR is given by

PR(t) =
∞∑
i=0

(−1)i dimR/m(TorRi (R/m, R/m))ti .

The homological structure of the ringR is closely related to the properties of
this series. For example, [Golod62] gave a condition, equivalent to the vanish-
ing of all higher order Massey products in the homology of a Koszul complex,
which leads to explicit expressions forPR(t). [Avramov81] introduced a spec-
tral sequence related to the algebraic Eilenberg-Moore spectral sequence that
can be used to define obstructions to multiplicative structures on minimal free
resolutions of a certain type. In fact, there is a well-defined “dictionary” be-
tween ideas in algebraic topology and local ring theory, described in detail by
[Avramov-Halperin86].

Another important topological application of Massey products is to the
study of Kähler manifolds. In a fundamental paper [Deligne-Griffiths-Morgan-
Sullivan 75] proved, using Sullivan’s methods of rational homotopy theory, that
the vanishing of Massey products of all orders is a necessary condition for the
existence of a K¨ahler structure. Such a manifold is said to beformal , that is,
its real homotopy type is a formal consequence of its real cohomology ring.
The relation between formality and the vanishing of Massey products has been
studied by [Halperin-Stasheff79]. Massey products also play a key role in the
classification of rational homotopy types ([Schlessinger-Stasheff85])

To what degree do higher order Massey products determine differentials in
the Eilenberg-Moore spectral sequence? To answer this question and to com-
plete the analysis ofker Ω∗, we need to introduce a more involved generalization
of the Massey products.
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Matric Massey products®N
One of the features of the homological invariants we have discussed through-

out this book is their independence of choice of projective resolution for com-
putation. In particular, we have seen how a carefully constructed resolution can
reveal subtle geometric information (for example, in§8.1 and§8.2) or permit
straightforward algebraic computation (for example, in§7.3). In unpublished
work, Massey constructed a version of the bar construction using matrices of
elements in the algebras and modules and differentials defined with the slide
products of [Mac Lane55]. [May68, 69] introduced a powerful generalization
of the Massey product that was inspired by Massey’s bar construction. With
this generalization as a tool, May was able to complete the analysis ofker Ω∗

and to obtain some previously inaccessible collapse theorems for homogeneous
spaces. Furthermore, a complete conceptual description of the differentials
in the Eilenberg-Moore spectral sequence is possible with the matric Massey
products of [May68]. In this section, we define May’s matric Massey products
and discuss some of their applications.

We begin with(Γ, d), a differential graded algebra over a ringR and let
Mat(H(Γ)) denote the set of matrices with entries inH(Γ, d) = H(Γ) and
similarly, Mat(Γ), the set of matrices with entries inΓ. If V = (γij) is in
Mat(Γ), then we letdV = (dγij) andV̄ = (γ̄ij) = ((−1)1+deg γijγij). For a
given matrixV , consider the matrix inMat(Z) defined byD(V ) = (deg γij).
We say that two matrices,V andW , aremultipliable if V is a(p× q)-matrix
andW is a(q× r)-matrix and the sumeij = deg vik + degwkj is independent
of k. WhenV andW are multipliable, we find thatVW makes sense and
D(VW ) = D(V )D(W ) = (eij).

We define the matric Massey products inductively. LetV1, V2, . . . , Vn be
in Mat(H(Γ)) and supposeVi andVi+1 are multipliable fori = 1, . . . , n− 1.
We takeAi−1,i in Mat(Γ) to be a matrix of representatives for the entries in
Vi. When V̄iVi+1 = (0), there are matricesAi−1,i+1 ∈ Mat(Γ) for which
dAi−1,i+1 = Āi−1,iAi,i+1. As in the case of the Massey triple products,

Āi−1,iAi,i+2 + Āi−1,i+1Ai+1,i+2

is a matrix of cocycles inΓ. The set of all associated matrices of homology
classes defined in this manner give〈Vi, Vi+1, Vi+2〉 a subset ofMat(H(Γ)).
Inductively, we are seekingAij in Mat(Γ), for 0 ≤ i < j ≤ n, (i, j) 6= (0, n),
so that[Ai−1,i] = Vi in Mat(H(Γ)) and, for1 < j − i < n,

dAij =
∑j−1

k=i+1
ĀikAkj ≡ Ãij .

It is a straightforward calculation to show thatdÃ0n = d
(∑n−1

k=1
Ā0kAkn

)
=

(0), and so we say that the homology class[Ã0n] lies in 〈V1, . . . , Vn〉. Such
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a system of matrices is adefining systemfor the matric Massey product
〈V1, . . . , Vn〉 = {[Ã0n] ∈ Mat(H(Γ)) | (Aij) is a defining system forV1,
. . . , Vn}.

By reindexing and taking only(1× 1)-matrices, we recover the definition
of the higher order Massey products. Furthermore, the analogues of the prop-
erties listed in Theorem 8.29 hold for matric Massey products. We list some
applications.

A. In a first version of his study of the Eilenberg-Moore spectral sequence,
[May68’] used a complex (following Massey) built of matrices and with a differ-
ential based on slide cycles to serve as the bar construction. By making precise
the homology isomorphism between this complex and the bar construction, it
followed directly that the differentials in this algebraic Eilenberg-Moore spec-
tral sequence are expressible as matric Massey products. The details, however,
are intricate. [Gugenheim-May74] (see§8.1) reframe this kind of differential
homological algebra. Their choice of fundamental object is the ‘mapping cylin-
der’ associated to a semi-free resolution and a mapping to a module,M . This
leads to a resolution

−→ X
p∗⊗H(Γ) −→ X

p−1,∗⊗H(Γ) −→ · · · −→ X
0∗⊗H(Γ) −→ H(M) −→ 0.

The modulesX
p∗

can be taken to be free overR, and so one can introduce
ordered bases for eachX

p∗
and consider each basis as a row vector. In the

complex,X ⊗Γ N , used to computeTorΓ(M,N), typical elements can be
expressed in terms of a row matrix times a column matrix. Given the particular
form of a semifree resolution, we focus attention on certain canonically defined
matric Massey products that arise from the expression of the differential on
X̄ ⊗Γ N in terms of the bases. It follows that the associated differentials in the
Eilenberg-Moore spectral sequence are expressible in terms of these canonical
matric Massey products.

B. The first immediate corollary of this characterization of the differentials in
the Eilenberg-Moore spectral sequence is the collapse theorem of§8.1. For
a space with polynomial algebra as cohomology, all matric Massey products
vanish, and with them, all potential differentials in the spectral sequence.

C. Another immediate corollary is the determination of the elements inker Ω∗

as those classes inH∗(X; k) that are representable as matric Massey products.
The proof is similar to the proof of Corollary 8.32. This makes precise the most
general notion of when a class is ‘decomposable’ with regard to the cup product
and its associated higher order operations.

D. Finally, these homological methods have applications to the dual problem
of computing and describingExtΓ(M,N) (see§9.2). Via these descriptions,
[May68] obtained results on the stable homotopy of spheres through the study
of ExtAp(Fp,Fp) and the Adams spectral sequence.
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8.3 Further structure

The Eilenberg-Moore spectral sequence, as developed in Chapter 7, is prin-
cipally an algebraic tool that relatesTorΓ(M,N) to TorH(Γ)(H(M), H(N))
for Γ, M , andN in the appropriate differential categories. The application
to topology follows from the second theorem of Eilenberg and Moore (Theo-
rem 7.14) that asserts, for a pullback diagram withπ a fibration,

Ef w

u

E

u
π

X w
f

B,

we have an isomorphismH∗(Ef ; k) ∼= TorC∗(B;k)(C∗(X; k), C∗(E; k)). The
spectral sequence converging toH∗(Ef ; k) has been to this point an algebraic
artifact of the definition of cohomology.

One of the advantages enjoyed by singular cohomology is its rich structure.
Cohomology is an algebra via the cup product and Proposition 7.17 shows the
homological product onTor is compatible with that ofH∗(Ef ; k) and the
spectral sequence. Whenk = Fp, for p, a prime,H∗(Ef ;Fp) carries an action
of the modp Steenrod algebraAp. A natural question to ask is whether this
extra structure onH∗(Ef ;Fp) is also available in the Eilenberg-Moore spectral
sequence.

In the light of this question, the construction of the Eilenberg-Moore spec-
tral sequence appears somewhat ad hoc and the role of the underlying geometric
data in the construction becomes muddled. One route to the existence of further
structure would be a geometric construction of the spectral sequence where all
differentials and subquotients are seen to be consequences of applying an alge-
braic functor to a system of spaces and so the extra structure follows for free. We
present two geometric constructions of the Eilenberg-Moore spectral sequence,
both achieving this goal of uncovering some of the deeper structure. We pay
particular attention to the Steenrod algebra structure that can be recovered in
this manner.

The first construction is due to [Smith, L70] and is motivated by efforts
of [Atiyah62], [Landweber66], [Hodgkin68], and [Conner-Smith69] toward
proving a Künneth theorem for generalized cohomology theories such as K-
theory and bordism theories. The main idea is to develop the properties of the
categoryTop/B of spaces overB in which the product in the category is the
pullback to which the Eilenberg-Moore spectral sequence applies. Thus the
Künneth theorem for spaces, when applied to products in the new category,
takes the form of the Eilenberg-Moore spectral sequence. After developing
the homotopy theory of the new categoryTop/B, [Smith, L70] constructed a
geometric resolution whose associated exact couple gives rise to the desired
spectral sequence.
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In the second construction, due to [Rector70], we introduce a cosimplicial
space associated to a pullback diagram. By defining the appropriate face and de-
generacy maps on the bar construction, it is easy to see that it is the condensation
of a simplicial module. Rector’s geometric cobar construction (here presented
as a geometric bar construction) takes this idea and derives the Eilenberg-Moore
spectral sequence directly from the geometry of the cosimplicial space. This
approach is a special case of constructions of [Bousfield-Kan72] to be discussed
in the next chapter.

Both of the constructions sketched below not only provide us with the
sought after further structure but are examples of methods that have been suc-
cessful in homotopy theory. At the end of this section we mention some further
work of [Singer75], [Dwyer80], and [Turner98] that captures some of the further
subtleties of the action of the Steenrod algebra on a spectral sequence.

The Eilenberg-Moore spectral sequence as a K¨unneth theorem

For spacesX andY and a commutative ringR, the Künneth theorem
allows us to compareH∗(X ×Y ;R) andH∗(X;R)⊗RH∗(Y ;R). When the
flatness assumptions needed for the K¨unneth theorem fail, then the K¨unneth
spectral sequence (Theorem 2.20) applies to make this comparison. We now
recast these results in a way that allows a generalization.

We can write the productX × E in Top as the pullback of the unique
mappingsX → ∗ andE → ∗:

X × E w

u

E

u
X w ∗

If we apply the Eilenberg-Moore spectral sequence to this diagram, then, over
a fieldk,

E2
∼= Tork(H∗(X; k), H∗(E; k)) ∼= H∗(X; k)⊗k H∗(E; k),

and we recover the K¨unneth theorem. In what follows we will take the K¨unneth
theorem and the K¨unneth spectral sequence as basic functors on products and
develop the geometry of pullbacks to fit this framework.

Definition 8.33.LetTop/B denote the category with objects given by continu-
ous functions,f : Tf → B, whereTf denotes the domain off . A morphism in
Top/B, α : f → g is a mappingα : Tf → Tg, so that the following diagram
commutes:

Tf w
α

�
�
��f

Tg

N
N
NQ

g

B
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This category has been the focus of considerable development since its
introduction ([James71, 89] and [Crabb-James98]). For the Eilenberg-Moore
spectral sequence, the key observation is that the categorical product inTop/B,
f ×B g, is given by the pullback off : Tf → B ← Tg : g

T (f ×B g) w

u

4
4
4
46

Tf

u
f

Tg wg B.

This product generalizes the case ofB = ∗ to include fibre squares overB.
In Top/B the ‘one-point space’ (a terminal object) is given by the mapping

idB : B → B. Our goal is to prove geometrically the following analogue of the
Künneth theorem.

Theorem 8.34 (the K¨unneth theorem forTop/B). For f , g in Top/B, there is
a spectral sequence withE2-term given by

E2
∼= TorH∗(idB ;k)(H∗(f ; k), H∗(g; k))

and converging toH∗(f × g; k).

The functorH∗(f ; k) associatesH∗(Tf ; k) to an objectf in Top/B. The
theorem gives the Eilenberg-Moore spectral sequence whenf is a fibration.
We get the expected collapse to the K¨unneth theorem whenB = ∗. More
generally, it is sometimes possible to substitute other generalized cohomology
theories forH∗. What makes this approach attractive is an insight of [Atiyah62]
that the Künneth theorem for K-theory does not follow as in the case of ordinary
singular cohomology but requires a construction of spaces whose K-theory has
the correct homological properties. A generalization of this sort of construction
is needed to obtain the Eilenberg-Moore spectral sequence.

In order to develop a homotopy theory forTop/B with the usual geometric
constructions, we require a notion of spaces overB with basepoints.

Definition 8.35. Let (Top/B)∗ denote the category of pointed spaces over
B, with objects,(f, s), wheref : Tf → B is in Top/B and s : B → Tf
is a continuous section, that is,f ◦ s = idB . A morphism in(Top/B)∗,
α : (f, s)→ (g, t), is a mapping,α : Tf → Tg so that the following diagrams
commute

Tf w
α

�
�
��f

Tg

4
4
47

g

and Tf w
α Tg

B B

h
h
hk

s

'
'
')
t
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SinceB
s
−→ Tf

f
−→ B is idB , the one-point space (now an initial and ter-

minal object) in(Top/B)∗ is given by(idB , idB). Notice thatH∗(f ; k) is
anaugmentedH∗(B; k)-module via the mappingf∗ and its splittings∗. We
extendH∗( ; k) to a functor on(Top/B)∗ by taking the cohomology of the
pair,

H∗((f, s); k) = H∗(Tf, sB; k).

The geometric constructions to follow are based on the fundamental notions of
homotopy theory for the category(Top/B)∗.

Proposition 8.36.In the category(Top/B)∗, the following can be defined:

(1) homotopies between morphisms;
(2) fibrations and cofibrations;
(3) mapping cylinders, mapping cones, suspensions, smash products, and
(4) the Barratt-Puppe sequence.

A homotopybetween two morphisms in(Top/B)∗, say

ϕ0, ϕ1 : (f, s) −→ (g, t),

is a family of mappings,ψr : (f, s) → (g, t) with r ∈ [0, 1] such thatψr
is continuous inr and onTf , andψ0 = ϕ0 andψ1 = ϕ1. Whenf and
g are fibrations, this definition coincides with the notion of a fibre homotopy
([Spanier66, p. 99]). This notion of homotopy gives rise to an equivalence
relation. Let[(f, s), (g, t)] denote the set of homotopy classes of morphisms
(f, s)→ (g, t).

A morphism in(Top/B)∗, φ : (f, s) → (g, t), is acofibration if it has
the homotopy extension property, that is, for any diagram of mappings and a
homotopy

(f, s) w
φ

u
ψr

(g, t)
�

�
���

ψ̃0

(h, u)

that commutes whenr = 0, there is a homotopỹψr : (g, t)→ (h, u) such that,
for all r ∈ [0, 1], the following diagram commutes:

(f, s) w
φ

u
ψr

(g, t)
�

�
���

ψ̃r

(h, u)
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There is an analogous definition for fibrations in(Top/B)∗. The notions of
fibration and cofibration enjoy the usual exactness properties with respect to
sets of homotopy classes of mappings.

Forα : (f, s) → (g, t), let (MB(α), sMB(α)) denote themapping cylin-
der defined by

T (MB(α)) = Tg ∪ (Tf × I)
/

α(x) ∼ (x, 0), if x ∈ Tf
t(b) ∼ (s(b), r), if b ∈ B, r ∈ I

whereMB(α)(x) = g(x), if x ∈ Tg, andMB(α)(y, r) = f(y), if y ∈ Tf and
r ∈ I. The section is defined bysMB(α)(b) = t(b) = (s(b), r) for b ∈ B. By
forming further quotients by subspaces of(MB(α), sMB(α)), one can construct
themapping cone, (CB(α), sCB(α)), of α.

Thesuspensionof an object(f, s), denoted by(SBf, SBs), is defined by

T (SBf) = Tf × I
/

(x, 0) ∼ (x′, 0), (x, 1) ∼ (x′, 1), if f(x) = f(x′)
(s(b), r) ∼ (s(b), r′), for b ∈ B, r, r′ ∈ I,

,

withSBf(x, r) = f(x) andSBs(b) = (s(b), r). The suspension of a morphism
in (Top/B)∗ is also easily defined.

We put these objects together to form theBarratt-Puppe sequenceof a
morphism in(Top/B)∗:

(f, s)
α
−→ (g, t) −→ (CB(α), sCB(α)) −→ (SBf, SBs)

SB(α)
−−−−→ (SBg, SBt)→,

which gives an exact sequence on application of the functor[−, (h, u)].
The product inTop/B is the pullback. This product can be extended to

(Top/B)∗ by giving the section: Given(f, s) and(g, t), then(f ×B g, s×B t)
is given byT (f ×B g) = {(x, y) | s ∈ Tf, y ∈ Tg, f(x) = g(y)}, together
with the mappingsf ×B g(x, y) = f(x) = g(y) ands×B t(b) = (s(b), t(b)).
Thesmash product(f, s) ∧B (g, t) = (f ∧B g, s ∧B t) is defined by

T (f ∧B g) = T (f ×B g)
/

(x, t(b)) ∼ (s(b), y), (x, y) ∈ T (f ×B g),

(f ∧B g)(x, y) = f(x) = g(y) and(s ∧B t)(b) = s(b) ∧B t(b).
If we apply a generalized cohomology functor to(Top/B)∗, then the

coefficients of the theory are carried by the analogue of the zero-sphere. In
(Top/B)∗ this is the object(S0 × B, s0) whereS0 × B is shorthand for the
projection mappingS0 × B → B ands0(b) = (1, b). [Smith, L70] gave par-
ticular care to identifying the conditions on a generalized cohomology functor
for which the desired K¨unneth theorem and spectral sequence results (there are
ten conditions). Singular cohomologyH∗( ; k) with coefficients in a fieldk
determines one such generalized theory on(Top/B)∗.

The constructions of Proposition 8.36 allow us to begin to build a geometric
homological algebra, following [Atiyah62].
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Lemma 8.37. Given(f, s) in (Top/B)∗, there is(h, u) in (Top/B)∗ and a
morphismα : (f, s)→ (h, u) so that

(1) H∗(α) : H∗((h, u); k)→ H∗((f, s); k) is an epimorphism,
(2) H∗((h, u); k) is a projectiveH∗((S0 ×B, s0); k)-module.

Proof: Let α : Tf → (Tf/sB) × B be the mappingα(x) = (π(x), f(x))
whereπ : Tf → Tf/sB is the quotient map. If(h, u) denotes the ob-
ject in (Top/B)∗ with h : Tf/sB × B → B, the second projection, and
u : B → Tf/sB × B given byb 7→ (sB/sB, b), thenα determines a map-
pingα : (f, s) → (h, u). Let β : (Tf/sB × B)/uB → Tf/sB be given by
β(x, u) = x. It is well-defined and satisfiesβ ◦ α = id. Therefore,H∗(α) is
an epimorphism. Furthermore, by the K¨unneth theorem,

H∗((h, u); k) ∼= H∗(Tf/sB ×B, uB; k) ∼= H∗(Tf, sB; k)⊗H∗(B; k),

and (2) holds. ut
With Lemma 8.37 as a tool, we can iterate the procedure in the proof to

obtain a sequence of cofibration sequences:

(f, s) w
α0 (h0, u0) w (f−1, s−1)

(f−1, s−1) w
α−1 (h−1, u−1) w (f−2, s−2)

...
...

...

(f−n, s−n) w
α−n (h−n, u−n) w (f−n−1, s−n−1)

...
...

...

such that, for alli,

(1) H∗((h−i, s−i); k) is a projectiveH∗((S0 ×B, s0); k)-module,
(2) H∗(α−i) is an epimorphism.

Such a sequence is called anH∗( ; k)-display of (f, s). To such a display we
associate an exact couple via the Barratt-Puppe sequences. First, we note that
when(f, s) is a fibration with section overB, suchH∗( ; k)-displays always
exist ([Smith, L70, Proposition 3.8]). Furthermore, as required of a resolution
in homological algebra, any two displays may be compared with displays that
act as free objects in(Top/B)∗ and behave well underH∗( ; k) ([Smith, L70,
Proposition 3.6]). Therefore, we can standardize our displays. For example,
if k = Fp, carefully chosen products of Eilenberg-Mac Lane spaces may be
taken.

Consider the Barratt-Puppe sequence forα−i : (f−i, s−i) → (h−i, u−i).
The cofibration sequences,(f−i, s−i) −→ (h−i, u−i) −→ (f−i−1, s−i−1), in-
duces mappings,∆i+1 : (f−i−1, s−i−1) → (SBf−i, SBs−i), and so, for each
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n, we get a geometric filtration of(SnBf, S
n
Bs):

(f−n, s−n) −−→
∆n

(SBf−n+1, SBs−n+1) −−−−−→
SB∆n−1

· · · −−−−−→
Sn−1
B

∆1

(SnBf, S
n
Bs).

Notice that the suspensions are imposed on us by the Barratt-Puppe sequence.
However, the cohomology is only affected by a shift in degree by suspension—
this does not change essentially the module structure overH∗((S0×B, s0); k)
or, in the casek = Fp, overAp.

Theorem 8.38. SupposeB is a connected, simply-connected space. Given
(f, s) and(g, t), objects in(Top/B)∗, with (f, s) a fibration with section over
B, there is a spectral sequence with

E2
∼= TorH∗((S0×B,s0);k)(H∗((g, t); k), H∗((f, s); k)),

and converging toH∗(g ∧B f, t ∧B s; k), whereg ∧B f is the smash product
of two objects,g andf , in (Top/B)∗.

Sketch of proof: We first make the observation that theH∗( ; k)-displays
provide partial projective resolutions ofH∗((SnBf, S

n
Bs); k). By running out

the Barratt-Puppe sequences for each line of the display, we can applyH∗( ; k)
and splice together the resulting exact sequences; we get an exact sequence

0←− H∗((SnBf, SnBs); k)←− H∗((SnBh0, S
n
Bu0); k)←− · · ·

←− H∗((Sn−iB h−i, S
n−i
B u−i); k)←− · · · ←− H∗((h−n, u−n); k).

EachH∗((h−i, u−i); k) is a projective module overH∗((S0 × B, s0); k) and
the effect ofSmB is simply a shift in dimension. Therefore the modules,
H∗((SmB h−i, S

m
B u−i); k), remain projective.

Apply (g, t) ∧B − to the display and the other associated spaces. For a
fixed positive integern, we get the space(g ∧B SnBf, t ∧B SnBs) filtered by
successive images:

(g ∧B f−n, t ∧B s−n) −→ (g ∧B SBf−n+1, t ∧B SBs−n+1) −→ · · · −→
(g ∧B Sn−1

B f−1, t ∧B Sn−1
B s−1) −→ (g ∧B SnBf, t ∧B SnBs).

This leads to an exact coupleC(n) given by

D−p,q = H−p+q−1((g ∧B Sn−pB f−p, t ∧B Sn−pB s−p); k)

and E−p,q = H−p+q((g ∧B Sn−pB h−p, t ∧B Sn−pB u−p); k)
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together with a spectral sequence{Er(n), dr(n)}. We make the observation
that, for(f, s) and(g, t), objects in(Top/B)∗,

(g, t) ∧B SB(f, s) ' SB((g, t) ∧B (f, s)),

soEp,qr (n) ∼= Ep,q+1
r (n+ 1), whenp > 1− n. Leaving the dependence onn

behind, we can define

Ep,qr = Ep,q+nr (n), for p > 1− n,

and obtain a spectral sequence{Er, dr} associated to(g, t) and(f, s).
In order to identify theE2-term of this spectral sequence, we note that the

usual Künneth theorem implies that there are natural isomorphisms

H∗((g, t); k)⊗H∗((S0×B,s0);k) H
∗((SmB h−i, S

m
B u−i); k)

u
∼=

H∗((g ∧B SmB h−i, t ∧B SmB u−i); k).

Furthermore,E2(n) is the homology of the complex

0←− H∗((g ∧B SnBh0, t ∧B SnBu0); k)←−
H∗((g ∧B Sn−1

B h−1, t ∧B Sn−1
B u−1); k)←−

· · · ←− H∗((g ∧B h−n, t ∧B u−n); k)←− 0

It follows that

Ep,q2 (n) ∼= TorH∗((S0×B,s0);k)(H∗((g, t); k), H∗(SnB(f, s); k).

Accounting for the shifts in dimension, we have, forp > 1− n,

Ep,q2
∼= Torp,qH∗((S0×B,s0);k)(H

∗((g, t); k), H∗((f, s); k)).

All this was derived from the successive filtrations of(g, t) ∧B SnB(f, s) with
the correction for the dimension shift. A careful argument is needed en route,
using the simple connectivity ofB, to prove thatHj((f−p, s−p); k) = {0}
for j < 2p. Thus the spectral sequence converges additively to the desired
cohomology. ut

In the proof of Theorem 8.38, the homomorphisms in the exact couples
and the differentials in the derived spectral sequences are all given by applying
H∗( ; k) to continuous functions in the Barratt-Puppe sequence. Whenk = Fp,
this means that the spectral sequence is a spectral sequence of modules over the
Steenrod algebraAp.

In order to remove the basepoint from the discussion, one can use the
functor( )+ : Top/B → (Top/B)∗ that is analogous to the topological functor
that adds a disjoint basepoint—one associates tof , an object inTop/B the
pointed object(f+, s) whereT (f+) = Tf

∐
B, the disjoint union,f+ = f

onTf andf+ = idB onB, ands(b) = b. With this functor, smash products
correspond to regular products inTop/B.
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Corollary 8.39. Supposep is a prime,B is simply-connected,H∗(B;Fp) is
of finite type andf andg are objects inTop/B. Supposeg is a fibration and
H∗(Tg;Fp) is also of finite type. Then there is a spectral sequence with

E2
∼= TorH∗(B;Fp)(H∗(Tf ;Fp), H∗(Tg;Fp))

and converging strongly toH∗(T (f × g);Fp). Furthermore, forr ≥ 2 and
for eachs ≤ 0, Es,∗r is a module over the modp Steenrod algebra,Ap, dr is
Ap-linear andEs,∗∞ is isomorphic toEs,∗0 (H∗(T (f ×g);Fp)) asAp-modules.

The corollary provides the Eilenberg-Moore spectral sequence with a verti-
cal Steenrod algebra structure that converges to theAp structure onH∗(Ef ;Fp).
The result answers the question posed by [Smith, L67] whether the filtration
underlying the Eilenberg-Moore spectral sequence is closed under the action of
the Steenrod algebra. It is a more delicate issue to prove that thisAp-structure
is compatible with the product structure of Corollary 7.18 (for example, that the
Cartan formula holds in the spectral sequence). This compatibility does hold,
however, and we direct the reader to [Smith, L70,§7] for a proof.

This geometric construction also provides an approach to the Eilenberg-
Moore spectral sequence for a class of generalized cohomology theories made
precise by [Smith, L70] and [Hodgkin68]. [Yamaguchi86] has computed
h∗(ΩB) in this way for generalized homology theories and deduced positive
results for the Morava K-theory of double loop spaces of complex Stiefel mani-
folds. [Jeanneret-Osse98] have applied the Eilenberg-Moore spectral sequence
to compute the generalized cohomology of fibre squares when the base space
of the fibration hash∗(ΩB) an exterior algebra on odd degree generators. This
applies top-compact groups, a generalization of Lie groups suited to homo-
topy theory methods. The general convergence properties of such spectral
sequences is a very delicate issue that remains an open question. Examples
due to [Hodgkin75] and [Ghazal89] give indications of the extent to which
the Eilenberg-Moore spectral sequence can fail: For example, there are finite
complexesX for which K̃∗(X) = {0} while K̃∗(ΩX) 6= {0}.

Cosimplicial techniques

In his geometric construction of the Eilenberg-Moore spectral sequence,
[Smith, L70] introducedH∗( ; k)-displays comprised of sequences of objects in
(Top/B)∗, {(h−i, u−i)}, whose cohomology algebras are projective modules
overH∗((S0 × B, s0); k) and that lead to projective resolutions. By analogy
with the bar construction, it would be convenient to standardize the construc-
tion of spaces that lead to the spectral sequence and furthermore, to base the
constructions entirely on the initial datum, the pullback diagram:

Ef w

u

E

u
π

X w
f

B.
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[Rector70] carried out this analogy exactly by constructing ageometric co-
bar construction. When one applies the homology functor,H∗( ;Fp), to
the associated sequence of spaces, one gets an exact couple that gives the ho-
mology Eilenberg-Moore spectral sequence with an apparent Steenrod algebra
comodule structure. We present this construction for the cohomology spectral
sequence.

Definition 8.40.A cosimplicial objectA• in a categoryC consists of

(1) A sequence of objects inC,A0, A1, A2, . . . .
(2) For eachn ≥ 0, a collection of morphisms inC, di : An−1 → An, for

0 ≤ i ≤ n, calledcoface mapsand
(3) for eachn ≥ 0, a collection of morphisms inC, si : An+1 → An, for

0 ≤ i ≤ n, calledcodegeneracy maps.

The coface and codegeneracy maps satisfy the identities:

dj ◦ di = di ◦ dj−1, if i < j,

sj ◦ di =


di ◦ sj−1, if i < j,

id, if i = j or i = j + 1,

di−1 ◦ sj , if i > j + 1.

sj ◦ si = si−1 ◦ sj , if i > j.

Examples: A. If V• is a simplicial vector space over a fieldk, then letVdual
•

be the cosimplicial vector space with(Vdual
• )m = V

dual
m . The coface and

codegeneracy maps are dual to the face and degeneracy maps ofV•.

B. Denote the category of sets and functions byEns. For Y a set, we can
apply levelwise theHom functor,Ens(—, Y ) to a simplicial setX• to obtain a
cosimplicial set denoted(XY )• = Ens(X•, Y ).
C. [Eilenberg-Moore65] introduced the idea of atriple (R,ϕ, ψ), which is a
functorR : C→ C, together with two natural transformationsϕ : id→ R and
ψ : R ◦R→ R satisfying

(Rϕ)R = (ϕR)ϕ, ψ(Rψ) = ψ(ψR) andψ(Rϕ) = id = ψ(ϕR).

If S andT are any pair of adjoint functors

T a S S : C −→ D, T : D −→ C,

then the composite functor,ST : D → D is a triple with the structure maps
coming from the adjointness relations.

A triple gives rise to a cosimplicial object inC for each object inC, defined
by the sequence of functors,Rn = Rn−1◦R andR0 = id. LetX be an object in
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C. Then(CoR(R)X)• (thecosimplicial resolution) is defined by the sequence
of objects(CoR(R)X)n = Rn+1X together with the coface and codegeneracy
morphisms defined by the natural transformations, for0 ≤ i, j ≤ n,

di = RiϕRn−i : Rn → Rn+1, sj = RjψRn−j−1 : Rn+1 → Rn.

The relations satisfied byϕ andψ imply the cosimplicial identities.
Applications of cosimplicial objects derived in this manner to homotopy

theory are of considerable importance (see the treatise of [Bousfield-Kan72]).

Suppose we have a pair of mappings,f : X → B andπ : E → B. To
these data we associate a cosimplicial space,G•(X,B,E), defined as follows:

Gn(X,B,E) = X ×B × · · · ×B︸ ︷︷ ︸
n times

×E

di(x, b1, . . . , bn, e) =


(x, f(x), b1, . . . , bn, e), if i = 0,

(x, b1, . . . , bi, bi, . . . , bn, e), if 1 ≤ i ≤ n,

(x, b1, . . . , bn, π(e), e), if i = n+ 1.

si−1(x, b1, . . . , bn+1, e) = (x, b1, . . . , bi−1, b̂i, bi+1, . . . , bn+1, e),
for 1 ≤ i ≤ n+ 1.

By the Künneth theorem, ifk is a field, when we applyH∗( ; k) to each space in

G•(X,B,E) and letδ =
∑n

i=0
(−1)i(di)∗, then we get the bar construction,

B•(H∗(X; k), H∗(B; k), H∗(E; k)), as desired. We next derive the Eilenberg-
Moore spectral sequence from the cosimplicial spaceG•(X,B,E).

We first normalize the spaces,Gi = Gi(X,B,E) to get a sequence

∗ −→ G0
N

δ1

−→ G1
N

δ2

−→ G2
N

δ3

−→ · · · .
The normalization goes as follows: LetG0

N = G0(X,B,E)/∅, which is the
disjoint union ofG0(X,B,E) with a new basepoint,G0(X,B,E) t ∗. Then
define

GiN = Gi(X,B,E)/im d1 ∪ · · · ∪ im di .

Sinced0◦di = di+1◦d0, the remaining mapd0 induces a map,δi : GiN → Gi+1
N ,

and furthermore,δi+1 ◦δi = ∗. We next construct something like theH∗( ; k)-
displays of [Smith, L70]. LetX0 = G0

N , and formX1 as the mapping cone,
Mδ1 , to get a cofibration sequence,X0 → G1

N → X1. Sinceδ2 ◦ δ1 = ∗, we
can form the diagram

X0 w

u
δ1

∗

u
G1
N w

δ2

u

G2
N

X1
�
�
���δ̃2
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where the liftδ̃2 exists by the properties of mapping cones. Inductively, we
have

Xp−1 w

u
δ̃p

∗

u
GpN w

δp+1

u

Gp+1
N

Mδ̃p = Xp
�
�
���δ̃p+1

and, from the Barratt-Puppe sequences, we have the sequence of cofibrations

G0
N w X1 w SX0

G1
N w X2 w SX1

...

GlN w X l+1 w SX l

...

Apply H̃∗( ; k) to each line of the sequence to obtain an exact couple:

D−l,q = H̃q(X l; k), E−l,q = H̃q(GlN ; k),

with the maps in the couple given by the cohomology of the maps in the cofi-
brations and the connecting maps from the Barratt-Puppe sequence. The exact
couple in turn gives a spectral sequence. Furthermore, ifk = Fp, all of the
mappings in the couple and hence the differentials in the spectral sequence are
Ap-linear.

To see that the spectral sequence converges toH∗(Ef ; k), observe that
there is a natural inclusionε : Ef ↪→ X × E, as a pullback. This map-
ping satisfiesd1 ◦ ε = d0 ◦ ε and so this induces a geometric augmentation,
ε : Ef/∅ → G0

N with δ1 ◦ ε = ∗. Comparing the cofibration sequences forε
andδ1 we get the diagram:

Ef/∅ w
ε

u
ε

G0
N w

u
δ1

Mε w

u

S(Ef/∅)
�

�
��� u

Sε

X0 wε G1
N w X1 w SX0.

The conditionδ1 ◦ε = ∗ implies a liftS(Ef/∅)→ X1 that commutes withSε.
By induction we can continue through the construction of theXp to obtain

mappingsSl(Ef/∅) → X l that are compatible with the mappingsX l →
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SX l−1. This determines a mapping from the direct limit of the mappings
D−l,r → D−l+1,r−1 associated to the exact couple. Using the techniques of
Chapter 3, we get a relation between the target of the spectral sequence and
H̃∗(Ef ; k).

To summarize in the casek = Fp, we have a spectral sequence, related
to H∗(Ef ;Fp) and, forr ≥ 1, theEr-terms are modules overAp and the
differentials areAp-linear. In order to establish the analogue of Corollary 8.39
for this construction, we need to determine theE2-term of the spectral sequence.

Lemma 8.41.H̃∗(GlN ; k) ∼= H∗(Gl(X,B,E); k)/〈im(d1)∗⊕· · ·⊕im(dl)∗〉.

Proof: By induction, we show that

H̃∗
(
Gl(X,B,E)/im dl−j ∪ · · · ∪ im dl ; k

)
∼= H̃∗(Gl(X,B,E); k)/〈im(dl−j)∗ ⊕ · · · ⊕ im(dl)∗〉.

The cosimplicial identities imply the assertion forj = 0. Sincesn ◦ di =
di−1 ◦ sn, for i > n, sn induces a mapping

Gl(X,B,E)/im dn+1 ∪ · · · ∪ im dl
s̄n

−→ Gl(X,B,E)/im dn ∪ · · · ∪ im dl−1

such that̄sn ◦ dl = id. This gives us the cofibration sequence

Gl−1(X,B,E)/im dn ∪· · ·∪ im dl−1 −→ Gl(X,B,E)/im dn+1 ∪· · ·∪ im dl

−→ Gl(X,B,E)/im dn ∪ · · · ∪ im dl .

To complete the proof, applỹH∗( ; k) and the induction hypothesis. ut

Corollary 8.42. The homology of the complex obtained by applyingH∗( ; k)
to

∗ −→ G0
N

δ1

−→ G1
N

δ2

−→ G2
N

δ3

−→ · · ·
is isomorphic to the homology of the complexH∗(Gl(X,B,E); k) with δ =∑l

i=0
(−1)i(di)∗. Therefore theE2-term for the spectral sequence associated

to the geometric cobar construction is given by

E2
∼= TorH∗(B;k)(H∗(X; k), H∗(E; k)).

The rest of the proof follows by comparing this geometrically defined
spectral sequence with the algebraic bar construction spectral sequence. In
the case thatπ : E → B is a fibration, the second Eilenberg-Moore spectral
sequence applies to identify the target of the spectral sequence withH∗(Ef ; k)
when it converges strongly. Finally, ifk = Fp, we have derived the Steenrod
operations of Corollary 8.39.
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Before leaving the simplicial point of view, we mention other approaches
that obtain Steenrod algebra operations in spectral sequences. One way is to
construct them directly at the level of the filtered cochains and then keep track of
how these operations behave in the spectral sequence. Using the construction of
the mod 2 Steenrod algebra operations derived from the diagonal approximation
of the Eilenberg-Zilber map (`a la [Steenrod53], [Dold62], or [May70]), this
program was carried out, first by [Singer73] for first-quadrant spectral sequences
and later by [Dwyer80] for second-quadrant spectral sequences. Singer’s work
yields not only vertical operations

Sqk : Ep,qr −→ Ep,q+kr

but also a diagonal actionSqk : Ep,qr → Ep+k−q,2qr when k ≥ q. These
new operations fill a deficit of operations that should be available in the target
cohomology and they also provide more structure on the spectral sequence that
can be exploited in computation. (See the papers of [Singer73] and [Mimura-
Mori77] for examples.)

Dwyer’s work by contrast does not yield unstable operations and creates
another deficit. In order for the unstable axioms for the action of the Steenrod
algebra to be satisfied by the target of this second quadrant spectral sequence,
[Dwyer80] constructs new operations

δi : E
−p,q
2 → E−p−i,2q2 , 2 ≤ i ≤ p,

which interact with the differentials to insure that the unstable axioms hold at
E∞. Analogous operations for odd primes have been constructed by [Mori79]
and [Sawka82].

In another direction, the spacesΩnX appear as the fibres of path-loop
fibrations, and so their cohomology and homology may be computed by the ap-
propriate Eilenberg-Moore spectral sequences. In his Ph.D. thesis, [Hunter89]
computedH∗(Ωn+2

0 Sn+1;F2) using this method and further structure. For
such iterated loop spaces, however, the modp homology enjoys the action of
the Dyer-Lashof algebra ([Araki-Kudo56], [Dyer-Lashof62]). This structure is
particularly useful for the class of infinite loop spaces and it would be useful if the
Eilenberg-Moore spectral sequence carried this structure. [Ligaard-Madsen75]
and [Bahri83] described an action of the Dyer-Lashof algebra on the homology
Eilenberg-Moore spectral sequences, and these results have led to successful
computations of the homology of certain classifying spaces found in geometric
topology. [Turner98] has given a uniform construction of operations on spec-
tral sequences beginning from the point of view of [Dold61] and [May70] and
generalizing the results of Singer, Dwyer, and Bahri.

Chapter 7 and 8 do not come near to exhausting the applications of the
Eilenberg-Moore spectral sequence. A particularly nice case of a fibre square
is the situation where the spacesX, B andE are H-spaces and the mappings
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f : X → B and π : E → B are H-maps, that is, ifmX andmB are the
multiplications onX andB, respectively, thenmB ◦ (f × f) ' f ◦ mX

and similarly forπ. By the properties of pullbacks, the spaceEf pulled back
from π overf , is also an H-space. Therefore, the algebraic input for the Eil-
enberg-Moore spectral sequence consists of Hopf algebras and Hopf algebra
morphisms. Also, the target,H∗(Ef ; k), of the spectral sequence is a Hopf
algebra. In the best situation, the spectral sequence is a spectral sequence of
Hopf algebras, converging toH∗(Ef ; k) as a Hopf algebra. [Moore-Smith68]
exploit this ideal situation to show that, under certain assumptions (satisfied by
many two-stage Postnikov systems), the only possibly nontrivial differential in
the associated Eilenberg-Moore spectral sequence isdp−1 wherep = char k 6=
0 andp is odd. This fact has been applied by [Kane75] and others in the study
of H-spaces.

In the presence of Hopf algebras,Tor computations are much more ac-
cessible. [Cohen-Moore-Neisendorfer79] gave examples of the power of these
methods in their study of exponents of homotopy groups.

Another source of fibre squares is a Postnikov tower. The(n − 1)-
connective cover of a spaceX is defined as the homotopy fibres of the natural
mappings to the Postnikov tower:

X(n, · · · ,∞)→ X
fn−→ PnX.

In his Ph.D. thesis [Singer68] used the Eilenberg-Moore spectral sequence to
computeH∗(BU(2r, . . . ,∞);Fp) andH∗(U(2r+ 1, . . . ,∞);Fp) wherep is
a prime and U is the infinite unitary group associated to complex K-theory.

Finally, we mention that the Eilenberg-Moore spectral sequence plays an
important computational role in the work of [Dror-Farjoun-Smith90] on the
cohomology of certain mapping spaces, expression of which is given in terms
of theT -functor of [Lannes92].

Exercises

8.1. Prove that the two inclusionsi1, i2 : U(n) ↪→ U(n+ 1) described in§8.1 lead
to different homogeneous spacesU(n+ 1)/U(n).

8.2. Prove the fact: SupposeA,B, andC are algebras over a fieldk. If M is a right
A-, rightB-module,N is a leftA-, rightC-module, andL a leftA-, leftB-module,
andTornA(M,N) = {0} = TornC(N,L) for n > 0, then

Tor∗B⊗C(M ⊗A N,L) ∼= Tor∗A⊗B(M,N ⊗C L).

8.3. Show that, in the caseH∗(G; k) andH∗(H; k) are exterior algebras overk,
thenTorH∗(BG;k)(k,H∗(BH; k)) is a Poincar´e duality algebra.
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8.4. Use the Sullivan-de Rham complex for rational cohomology (for definitions and
applications, see the book of[Griffiths-Morgan81]) to obtain the rational analogue
of Cartan’s result, Theorem 8.2;

H∗(G/H;Q) ∼= TorH∗(BG;Q)(Q, H
∗(BH;Q).

8.5. Show that a polynomial algebraA onn indeterminates that is also a finitely-
generated module over another polynomial algebraB onn indeterminates, via an
algebra homomorphismφ : B → A, is free as aB-module (Corollary 3.10 of
[Baum68]).

8.6. Prove that anE-algebra,A (a graded commutative algebra over a fieldk,
generated by a regular sequence), has zero deficiency,df(A) = 0.

8.7. Prove the assertions in§8.1 about the values of(Bi)∗ = H∗(Bi;Fp) for
i : SO(l) → SO(n), the usual inclusion andp an odd prime. (Hint: Use the
Leray-Serre spectral sequence as needed.)

8.8. Show that the cup1 product introduced in the last section of Chapter 5 satisfies
the Hirsch formulas.

8.9. Complete the proof of Theorem 8.18.

8.10. Compute the cohomology of the complement of the Borromean rings.

8.11. Prove the assertions (1) through (4) of Theorem 8.29 for higher order Massey
products.

8.12. Suggested by Claude Schochet: Suppose given a pullback fibration of the
path-loop fibration over a spaceB with respect to a mappingf : B0 → B, as in
the diagram

ΩB

u

ΩB

u
E w

u

PB

u
π

B0 w
f

B.

Show that the Eilenberg-Moore spectral sequence converging toH∗(E; k) with
E2
∼= TorH∗B;k)(H∗(B; k), k) collapses atE2 if and only if the Leray-Serre

spectral sequence withE2
∼= H∗(B0;H∗(ΩB; k)) converging toH∗(E; k) has

all differentials arising from transgressions.

8.13. Show that a pair of adjoint functors

T a S S : C −→ D, T : D −→ C,

leads to a triple and hence cosimplicial resolutions of objects in the categoryD.
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Nontrivial fundamental groups

“One of the advantages of the category of nilpotent
spaces over that of simply-connected spaces is that it
is closed under certain constructions.”

E. Dror-Farjoun

The category of simply-connected spaces is blessed with certain features
that make homotopy theory tractable. In the first place, there is the White-
head Theorem (Theorem 4.5) that tells us when a mapping of spaces of the
homotopy type of CW-complexes is a homotopy equivalence—the necessary
condition that the mapping induces an isomorphism of integral homology groups
is also sufficient. Secondly, the Postnikov tower of a simply-connected space
is a tower of principal fibrations pulled back via thek-invariants of the space
(Theorem 8bis.37). This makes cohomological obstruction theory accessible,
if not computable ([Brown, E57], [Sch¨on90], [Sergeraert94]). Furthermore,
the system of local coefficients that arises in the description of theE2-term of
the Leray-Serre spectral sequence is simple when the base space of a fibration
is simply-connected, and the cohomology Eilenberg-Moore spectral sequence
converges strongly for a fibration pulled back from such a fibration.

A defect of the category of simply-connected spaces is the fact that certain
constructions do not stay in the category. The dishearteningly simple example
is the based loop space functor—if(X,x0) is simply-connected,Ω(X,x0) need
not be. Furthermore, the graded group-valued functor, the homotopy groups of a
space, does not always distinguish distinct homotopy types of spaces that are not
simply-connected. A classic example is the pair of spacesX1 = RP 2m × S2n

andX2 = S2m × RP 2n; the homotopy groups in each degreek are abstractly
isomorphic,πk(X1) ∼= πk(X2). If we had principal Postnikov towers, we could
use the abstract isomorphisms to try to build a weak homotopy equivalence.
However, the cohomology rings overF2 “know” that X1 is not homotopy
equivalent toX2.

In this chapter we introduce the larger category of nilpotent spaces. These
spaces enjoy some of the best homotopy-theoretic properties of simply-connected
spaces, like a Whitehead theorem ([Dror71]) and reasonable Postnikov towers.
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Furthermore, this category is closed under many constructions such as the for-
mation of function spaces. Group-theoretic functors, like localization and com-
pletion, have topological extensions in this category. A subtler result related
to nilpotent spaces is due to [Dwyer74] who showed that the Eilenberg-Moore
spectral sequence for the fibre of a fibration converges strongly if and only if
the action ofπ1(B) onHi(F ;A) is nilpotent for alli ≥ 0 (Theorem 8bis.29).

In §8bis.1, we discuss the various actions of a nontrivial fundamental group.
The action of a group on a module leads to a right exact functor, the coinvariants
of the group action, whose left-derived functors are the homology groups of a
group. This theory is developed briefly in§8bis.2 with an eye to its application
to nilpotent spaces. In particular, we construct the Lyndon-Hochschild-Serre
spectral sequence associated to a group extension, and the Cartan-Leray spectral
sequence associated to a group acting freely and properly on a space.

With these tools in place we study the category of nilpotent groups and
spaces in§8bis.3. We first prove the generalized Whitehead Theorem of [Dror71].
We then discuss the Postnikov tower of a nilpotent space. This tower character-
izes such spaces and provides a tool for making new spaces such as the localiza-
tion of a space `a la [Sullivan71]. Cosimplicial methods offer a functorial route to
localization and we give a short survey of the foundational work of [Bousfield-
Kan72]. We also prove Dwyer’s convergence theorem for the Eilenberg-Moore
spectral sequence. The (co)simplicial constructions described here have proved
to be fundamental in homotopy theory. We end with a theorem of [Dror73] that,
for connected spaces, any homotopy type can be approximated up to homology
equivalence by a tower of nilpotent spaces.

§8bis.1 Actions of the fundamental group

We begin with a small digression. Let(G, e, µ) denote a topological group
with identity elemente and writeg · h for µ(g, h). It is an elementary fact that
π0(G) is a group with multiplication induced byµ. There is an action of
π0(G) onπn(G, e) defined as follows: Ifg ∈ [g] ∈ π0(G) is a point in a path
component ofG andα : (Sn, e1) → (G, e) represents a class[α] in πn(G, e),
consider

g · α · g−1 : (Sn, e1) −→ (G, e), defined byg · α · g−1(x) = g · α(x) · g−1.

When we vary the choice ofg in [g] or the choice of representative for[α], we
get homotopic maps and so this recipe determines a pairing

π0(G)× πn(G, e)
νn−→ πn(G, e), ([g], [α]) 7→ [g · α · g−1].

Since the multiplication onπ0(G) is determined by[g] · [h] = [g · h], we have
νn([g] · [h], [α]) = νn([g], [h] · [α]). Furthermore, the addition onπn(G, e)
agrees with the operation induced byµ and so we haveνn([g], [α] + [β]) =
νn([g], [α]) + νn([g], [β]). Thusπn(G, e) is a module over the groupπ0(G).
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When(X,x0) is a pointed space of the homotopy type of a countable CW-
complex, [Milnor56] showed how to replace the based loop spaceΩ(X,x0)
with a topological group. In this case we writeν̄Xn = νn−1 : π0(Ω(X,x0)) ×
πn−1(Ω(X,x0)) → πn−1(Ω(X,x0)) and we have proved the following theo-
rem.

Theorem 8bis.1. Given a connected, pointed space(X,x0), for eachn ≥ 1,
πn(X,x0) is a module overπ1(X,x0) via the pairing

ν̄n : π1(X,x0)× πn(X,x0) −→ πn(X,x0).

Furthermore, whenn = 1, π1(X,x0) acts on itself by conjugation, that is,
ν̄1([ω], [λ]) = [ω] · [λ] · [ω]−1 = [ω ∗ λ ∗ ω−1] where∗ denotes composition of
paths.

In our discussion of the failure of the homotopy groups to distinguish the
pair of spacesRP 2m × S2n andS2m × RP 2n, we only used the observation
that, for allk, πk(RP 2m × S2n) ∼= πk(RP 2n × S2m), as groups. They differ
asπ1-modules. It is a consequence of the interpretation of the action of the
fundamental group as deck transformations thatπ1 = Z/2Z acts nontrivially
on theZ factor inπ2m(RP 2m×S2n) andπ2n(RP 2n×S2m) coming from the
projective space. Since these factors ofZ as nontrivialZ/2Z-modules occur
in different dimensions, the spaces could not be homotopy equivalent, and the
homotopy groups, considered as gradedπ1-modules, distinguish the spaces as
different.

The fundamental group acts on other groups when we have a fibration

F ↪→ E
p
−→ B with connected fibreF . Consider the long exact sequence of

homotopy groups:

· · ·
∂
−→ πn(F, e)

i∗−→ πn(E, e)
p∗−→ πn(B, p(e))

∂
−→ πn−1(F, e)

i∗−→ · · · .

We can induce an action ofπ = π1(E, e) onπn(B, p(e)) via the composite

νE,Bn : π × πn(B, p(e))
p∗×1
−−−→ π1(B, p(e))× πn(B, p(e))

ν̄Bn−−→ πn(B, p(e)).

Thus we can viewπn(B, p(e)) as aπ1(E, e)-module and the mappingp∗ as a
module homomorphism. In fact, more is true.

Proposition 8bis.2. WhenF ↪→ E
p
−→ B is a fibration of connected spaces, the

long exact sequence on homotopy is a long exact sequence ofπ1(E, e)-modules
and module homomorphisms.

Proof: We first construct the action ofπ = π1(E, e) on πn(F, e) here
taken to beπn−1(ΩF, ce). Let α : (Sn−1, ~e1) → (ΩF, ce) represent[α] ∈
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πn−1(ΩF, ce) andω ∈ [ω] ∈ π1(E, e). The action ofπ on πn−1(ΩE, ce)
associates to[ω] and[i ◦ α] the class[β] = νEn−1([ω], [i ◦ α]), whereβ(~u) =
ω ∗ i ◦ α(~u) ∗ ω−1. The mappingΩp : ΩE → ΩB takesβ to

p◦β( ) = (p◦ω)∗(p◦ i◦α( ))∗(p◦ω)−1 = (p◦ω)∗cp(e) ∗(p◦ω)−1 ' cp(e).

Leth : I×I → B denote a pointed homotopy betweenp◦β andcp(e). Construct
the homotopyH : Sn−1 × I → ΩB given byH(~u, t)(r) = h(r, t). Thus
H(~u, 0)(r) = (p ◦ ω) ∗ cp(e) ∗ (p ◦ ω)−1(r) andH(~u, 1)(r) = p(e). Consider
the homotopy lifting problem posed by the diagram:

Sn−1 × {0} w
β

y

u

(ΩE, ce)

u

Ωp

Sn−1 × I w
H

O
O
O
OOP

Ĥ

(ΩB, cp(e)).

SinceΩp is a fibration, there is a liftingĤ : Sn−1 × I → (ΩE, ce) with
Ĥ(~u, 0)(r) = β(~u)(r). Becausep ◦ Ĥ = H, the mappingβ′(~u)(r) =
Ĥ(~u, 1)(r) determines a loop inF . We define the action ofπ onπn−1(ΩF, ce)
to be the rule that associates[β′] to [ω] ∈ π and [α] ∈ πn−1(ΩF, ce). By
the properties of fibrations this is well-defined and gives a module action. We
denote this action byνE,Fn : π1(E, e)× πn−1(ΩF, ce) −→ πn−1(ΩF, ce).

Notice thati ◦ β′ ' β. Because the class[β] representsνEn−1([ω], [i ◦α]),
we have thati∗(ν

E,F
n−1([ω], [α]) = νEn−1([ω], i∗([α])) and the homomorphism

i∗ : πn−1(ΩF, ce) → πn−1(ΩE, ce) is a homomorphism ofπ-modules. Fur-
thermore, if[ω] = i∗([ω′]) for [ω′] ∈ π1(F, e), then i∗(νFn−1([ω′], [α])) =
νEn−1(i∗([ω′]), i∗([α])).

Finally, we consider the transgression∂ : πn(B, p(e)) → πn−1(F, e). It
is best here to substitute a geometric mapping for∂. Consider the pullback
diagram:

ΩB w
j

Eev1,p w

u

q

PB

u

ev1

E wp B.

Hereev1 : PB → B is the path-loop fibration. BecausePB is contractible,
Eev1,p has the homotopy type ofF andj∗ = ∂. The spaceEev1,p is the subspace
ofE×PB given by{(y, λ) | y ∈ E, λ : I → B, such thatλ(0) = p(e), λ(1) =
p(y)}. The mappingj : ΩB → Eev1,p is given byj(γ) = (e, γ). The action of
a loopω ∈ [ω] ∈ π may be expressed at this level as(e, γ) 7→ (e, (p ◦ ω) ∗ γ ∗
(p ◦ ω)−1). In the definition of the action ofπ onπn(ΩB, cp(e)), the mapping

j∗ takes the classνBn ([ω], [α]) to ν̄F,En−1([ω], j∗([α])) after the identification of
the fibre withEev1,p. Thusj∗ = ∂ is aπ-homomorphism.
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After all the relevant identifications are made, we have shown that the long
exact sequence

· · · → πn(F, e)
i∗−→ πn(E, e)

p∗−→ πn(B, p(e))
∂
−→ πn−1(F, e)→ · · ·

is an exact sequence ofπ-modules andπ-module homomorphisms. ut
In certain cases theπ1-action is trivial, even forπ1 a nontrivial group. For

example, ifX is an H-space, we have the following result of [Serre51].

Corollary 8bis.3. If (X,µ, e) is an H-space, then the action̄νXn of π1(X, e) on
πn(X, e) is trivial for all n.

Proof: Let ω ∈ [ω] ∈ π1(X, e). If α : (Sn−1, e1) → (ΩX, ce) represents a
class inπn(X, e), then consider the homotopyH : Sn−1×I → (ΩX, ce) given
byH(~u, t)(r) = µ((ce∗α(~u)∗ce)(r), h(r, t)) whereh : I×I → X is a pointed
homotopy betweence andω ∗ ce ∗ ω−1. From the definitionH(~u, 0)(r) =
µ((ce ∗α(~u) ∗ ce)(r), e) ' α(~u)(r) andH(~u, 1)(r) = (ω ∗α(~u) ∗ω−1)(r). It
follows thatνXn−1([ω], [α]) = [α]. ut

This result extends the fact that the fundamental group of an H-space is
abelian.

Another rich source of actions of the fundamental group is the notion of
bundles of groups (§5.3) over a space. For example, whenF ↪→ E → B is
a fibration, thenπ1(B, b0) acts on the homology ofFb0 , the fibre overb0. In
Chapters 5 and 6 the applications of the Leray-Serre spectral sequence involved
simple systems of local coefficients, that is, whereπ1(B, b0) acts trivially on
Hi(Fb0 ;R). When the bundle of groups is not simple, then theE2-term of the
spectral sequence need not be a product, even for field coefficients. In the next
proposition we give the first case of such a difference. The functorΓ2

π( ) on
π-modules defined in the proposition is the first of a family described fully in
Definition 8bis.17.

Proposition 8bis.4.SupposeG is a bundle of abelian groups over a pointed, path-
connected space(X,x0) andG0 = Gx0 . ThenH0(X;G) ∼= G0/Γ2

πG0, where
Γ2
πG0 is the subgroup ofG0 generated by all elements of the form[α] · g − g

with [α] ∈ π = π1(X,x0) andg ∈ G0.

Proof: Consider the mappingφ : G0 → H0(X;G) given byg 7→ g ⊗ x0.
Suppose thatα ∈ [α] ∈ π1(X,x0). Then we associate tog ∈ G0 and
α : (∆1, ∂∆1) → (X,x0) the elementg ⊗ α in C1(X;G). The boundary
of g ⊗ α is given by the formula in§5.3:

∂h(g ⊗ α) = h[α−1](g)⊗ α(1)− g ⊗ α(0) = (h[α−1](g)− g)⊗ x0.
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Sinceα andg were arbitrary, we see thatφ takesΓ2
πG0 to 0 and so induces a

homomorphism̄φ : G0/Γ2
πG0 → H0(X;G).

To show thatφ̄ is an isomorphism, we describe its inverse. Supposeu ∈
H0(X;G). We can write

u =
∑n

i=1
gi ⊗ xi +B0(X;G).

Let λi : [0, 1]→ X denote a path inX joining x0 to xi. Then we have the iso-
morphismh[λi] : Gxi −→ G0 for eachi. We defineψ : H0(X;G)→ G0/Γ2

πG0

by

ψ
(∑n

i=1
gi ⊗ xi +B0(X;G)

)
=
∑n

i=1
h[λi](gi).

To see thatψ is well-defined, we notice thatψ takes boundaries to zero—let
h[α−1](g)⊗α(1)− g⊗α(0) denote a generator ofB0(X;G). The homomor-
phismψ applied to such an element givesh[β1](h[α−1](g))− h[β0](g) where
βi is a path inX starting atx0 and ending atα(i). There is a loop based atx0

given byβ0 ∗ α ∗ β−1
1 and

h[β0 ∗ α ∗ β−1
1 ](h[β1](h[α−1](g))− h[β0](g))

= h[β0](g)− h[β0 ∗ α ∗ β−1
1 ](h[β0](g)),

which is an element ofΓ2
πG0. SinceΓ2

πG0 is closed under the action of
π1(X,x0), ψ takesB0(X;G) to zero.

We must account for the choices made in the construction ofψ. If λi and
µi are paths joiningx0 to xi, then we compareh[λi](gi) andh[µi](gi), the
images ofgi ⊗ xi with respect to the different paths. The difference between
these values can be rewritten

h[λi](gi)− h[µi](gi) = h[µi ∗ λ−1
i ]h[λi ∗ µ−1

i ](h[λi](gi)− h[µi](gi))
= h[µi ∗ λ−1

i ](h[λi ∗ µ−1
i ](h[λi](gi))− h[λi](gi)),

which is an element inΓ2
πG0. Thusψ is well-defined and the inverse ofφ̄. ut

By Theorem 5.1, it follows for an arbitrary fibration with path-connected
base and connected fibre,F ↪→ E → B, that the associated Leray-Serre spectral
sequence hasE2

0,∗ ∼= H∗(F ; k)/Γ2
πH∗(F ; k) as the leftmost column of theE2-

term. Though this seems to put us in murkier waters, we can still see our way
to deep results in homotopy theory by studying abstractly the action of groups
on abelian groups.

§8bis.2 Homology of groups

If π denotes a group andM a module over a ringR, then we say that
π acts onM , or M is a π-module, if there is a homomorphismρ : π −→
AutR(M), whereAutR(M) is the group ofR-linear isomorphisms ofM to
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itself. More generally,π acts on a groupG if there is a homomorphismρ : π →
Aut(G). To study modules over a groupπ we introduce the homology of
groups, a homological functor analogous toTor. The homology groups of a
groupπwith coefficients in aπ-moduleM satisfy the axioms for the left-derived
functors ([Cartan-Eilenberg56]) of the functor that associates to aπ-moduleM
its coinvariants,

( )π : M 7→Mπ = M/Γ2
πM.

HereΓ2
πM is the submodule ofM generated by elements of the formam−m

wherea ∈ π andm ∈ M . (More generally, ifG is a nonabelian group acted
on byπ, let Γ2

πG be the normal subgroup generated by elements of the form
(ag)g−1.) Sinceb(am−m) = (bab−1)bm−bm,Γ2

πM is aπ-module. Thus aπ-
equivariant module homomorphism induces a homomorphism on coinvariants.
The induced action ofπ onMπ is trivial. In fact,Mπ may be characterized
as thelargestquotient ofM on whichπ acts trivially. By ‘largest’ quotient
we mean that, ifM/M ′ is another quotient ofM by aπ-submoduleM ′ and
π acts trivially onM/M ′, then Γ2

πM ⊂ M ′ and there is an epimorphism
M/Γ2

πM −→−→M/M ′.
To see that the functor( )π is right exact, we give another expression for

Mπ whenM is aπ-module.

Lemma 8bis.5.LetZdenote the ring of integers, taken as a trivial rightπ-module.
If M is aπ-module, thenMπ

∼= Z⊗ZπM , whereZπ denotes the integral group
ring of π.

Proof: Recall thatZ⊗Zπ M is defined as the cokernel in the sequence

Z⊗ Zπ ⊗M
ψ⊗1−1⊗φ
−−−−−−→ Z⊗M −→ Z⊗Zπ M → 0,

whereφ : Z⊗Zπ → Z is the trivial right action ofπ onZ, andψ : Zπ⊗M →M
is the left action ofπ onM . In this case,⊗ = ⊗Z and so the sequence becomes

Zπ ⊗M
η
−→M −→ Z⊗Zπ M → 0,

whereη(a⊗m) = m− am. ThusZ⊗Zπ M = M/ im η = M/Γ2
πM . ut

The lemma implies that( )π is a right exact functor sinceZ ⊗Zπ ( ) is
right exact.

Definition 8bis.6. Thehomology of a groupπ with coefficients in a (left) π-
moduleM is defined by

Hi(π,M) = TorZπi (Z,M).

We writeHi(π) for Hi(π,Z) whenZ is the trivial leftπ-module.
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To compute group homology we introduce a convenient functorial resolu-
tion. LetBn denote the free abelian group on(n+ 1)-tuples of elements ofπ.
ThenBn is a rightπ-module with theπ-diagonal action

(x0, . . . , xn)a = (x0a, . . . , xna).

As aZπ-module,Bn is free on those(n+ 1)-tuples with last entry 1. Consider
the complex

· · · −→ Bn

∂
−→ Bn−1

∂
−→ · · ·

∂
−→ B2

∂
−→ B1

∂
−→ Zπ

ε
−→ Z→ 0

where∂ =
∑
i(−1)id̄i andd̄i(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn); ε is the

usual group ring augmentation given byε (
∑
i niai) =

∑
i ni. This complex

is exact since there is the contracting homotopy defined bys(x0, . . . , xn) =
(1, x0, . . . , xn) ands(1) = 1. To make the freeZπ-module structure evident,
we introduce thebar notation for generators overZπ: Forn = 0, [ ] = 1, and
for n > 0,

[x1 | · · · | xn] = (x1x2 · · ·xn, x2x3 · · ·xn, . . . , xn−1xn, xn, 1) ∈ Bn.
The differential∂ can be rewritten as∂ =

∑
i(−1)idi where

di([x1 | · · · | xn]) =


[x2 | · · · | xn], for i = 0,

[x1 | · · · | xi−1 | xixi+1 | · · · | xn], for 0 < i < n,

[x1 | · · · | xn−1]xn, for i = n.

This is the familiarbar construction on π that gives a functorial free right
Zπ-module resolution of the trivial moduleZ.

Although it is large, the bar construction can still be used to prove structure
results.

Proposition 8bis.7. If π is a finite group of order|π| andM is aπ-module, then
every element ofHi(π,M) for i > 0 has order a divisor of|π|.

Proof: Consider theπ-module homomorphism ,s : Bn → Bn+1, given on
generators bys([x1 | · · · | xn]) =

∑
y ∈ π[y | x1 | · · · | xn]. We show that

∂ ◦ s+ s ◦ ∂ = |π| id:

∂ ◦ s([x1 | · · · | xn]) = ∂
(∑

y∈π
[y | x1 | · · · | xn]

)
=
∑

y∈π

∑
i
(−1)idi([y | x1 | · · · | xn])

= |π|[x1 | · · · | xn]−
∑

y∈π

{
[yx1 | · · · | xn]− [y | x1x2 | x3 | · · · | xn]

+ · · ·+ (−1)i+1[y | x1 | · · · | xixi+1 | · · · | xn]

+ · · ·+ (−1)n+1[y | x1 | · · · | xn−1]xn
}

= |π|[x1 | · · · | xn]− s ◦ ∂([x1 | · · · | xn]).
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We have used the fact that
∑
y∈π

[yx1 | x2 | · · · | xn] =
∑
y∈π

[y | x2 | · · · | xn]. If∑
j [x1j | · · · | xnj ]⊗mj represents a homology class inHn(π,M), then

∂ ◦ s
(∑

j
[x1j | · · · | xnj ]⊗mj

)
= |π|

∑
j
[x1j | · · · | xnj ]⊗mj

and so|π| times any homology class inHn(π,M) is zero. ut
Particular groups may have smaller resolutions. Forπ = Z/mZ, the cyclic

group of orderm, there is a very small resolution:Lett denote a generator of
π, thought of as a multiplicative group. LetWi denote the freeZπ-module on
a single generatorwi. There is an acyclic complex

· · · −→W2n

N
−→W2n−1

T
−→ · · ·

T
−→W2

N
−→W1

T
−→W0

ε
−→ Z→ 0

whereT (w2n−1) = tw2n−2−w2n−2 (trace), andN(w2n) = w2n−1+tw2n−1+
· · · + tm−1w2n−1 (norm). This resolution allows us to computeHi(Z/mZ)
immediately from the complexW• ⊗Zπ Z which takes the form

· · ·
×m
−−→ Z

0
−→ Z

×m
−−→ Z

0
−→ Z

×m
−−→ Z.

ThusH2i+1(Z/mZ) = {0} andH2i(Z/mZ) = Z/mZ for all i ≥ 0.
We close this discussion with a useful lemma.

Lemma 8bis.8. If M is a free leftZπ-module, thenHi(π,M) = {0} for i > 0
andH0(π,M) = Mπ. If M is a trivial leftZπ-module that is free overZ, then
Hi(π,M) ∼= Hi(π)⊗M .

Proof: The assertion about a free module follows simply from the properties
of TorZπ∗ (Z,M). For trivial modules we can writeB• ⊗Zπ M = (B•)π ⊗M
and the result follows. ut

The Cartan-Leray spectral sequence

Suppose(X,x0) is a connected, pointed space on which agroup π acts
freely and properly, that is,
(1) for all x ∈ X, the subgroupGx = {g ∈ G | gx = x} is trivial;
(2) every pointx ∈ X has a neighborhoodU such thatgU ∩ U = ∅ for all

g ∈ π, g 6= 1.
For example, if(X,x0) is a connected, locally simply-connected space, then the
fundamental group,π = π1(X,x0) acts freely and properly oñX, the universal
covering space ofX.

Supposeπ acts freely and properly onX. For any abelian groupG, it is
a classical result thatC∗(X/π;G) ∼= C∗(X;G)π, whereC∗( ;G) denotes the
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singular chains with coefficients inG andC∗(X;G) is aπ-module by viewing
eacha ∈ π as a mappinga : X → X. Moreover,Ci(X) = Ci(X;Z) is a free
Zπ-module for alli.

Let F• −→ Z −→ 0 denote a free, right,Zπ-module resolution ofZ as a
trivial π-module. Consider the double complexC•,∗ given by

Cp,q = Fp ⊗Zπ Cq(X), ∂F ⊗ 1 + (−1)q1⊗ ∂X .

When we filterC•,∗ row-wise, we getE0
∗,p = F• ⊗Zπ Cp(X), d0 = ∂F ⊗ 1,

which is the complex computingH∗(π,Cp(X)). However,Cp(X) is a free
Zπ-module and so theE1-term is concentrated in the 0-column where we
find H0(π,Cp(X)) = Cp(X)π = Cp(X/π). By the appropriate version of
Theorem 2.15,d1 = 1 ⊗π ∂X = ∂X/π and so the spectral sequence collapses
atE2 toH∗(X/π).

When we filter byC•,∗ column-wise, we getE0
p,∗ = Fp ⊗Zπ C∗(X),

d0 = 1⊗ ∂X . ViewingFp as an extended module of the formFp = Ap ⊗ Zπ
with Ap a free abelian group, we get the identification

Fp ⊗Zπ C∗(X) = Ap ⊗ C∗(X)

and soE1
p,∗ = Ap⊗H∗(X) = Fp⊗ZπH∗(X). This is the complex computing

H∗(π,H∗(X)) and so we have proved the following result of [Cartan-Leray49].

Theorem 8bis.9 (the Cartan-Leray spectral sequence).IfX is a connected space
on which the groupπ acts freely and properly, then there is a spectral sequence
of first quadrant, homological type, with

E2
p,q
∼= Hp(π,Hq(X))

and converging strongly toH∗(X/π).

More generally, we can use homology with coefficients in an abelian group
G taken as a trivialπ-module. For the case of the fundamental group acting on
the universal cover, the spectral sequence hasE2

p,q
∼= Hp(π,Hq(X̃)), where

π = π1(X,x0) and converges toH∗(X). From this spectral sequence we prove
a theorem that relates the fundamental group and its homology groups to the
higher homology and homotopy groups of a space. The case ofn = 1 was first
proved by [Hopf42] using other methods. This paper launched the study of the
homology and cohomology of groups.

Theorem 8bis.10. Suppose(X,x0) is a connected, locally simply-connected
space whose universal covering spaceX̃ isn-connected. Letπ denoteπ1(X,x0).
Then there are isomorphismsHi(X) ∼= Hi(π) for 1 ≤ i ≤ n, and an exact
sequence

Hn+2(X) −→ Hn+2(π) −→ (Hn+1(X̃))π −→ Hn+1(X) −→ Hn+1(π) −→ 0.
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Proof: SinceHi(X̃) = {0} for 1 ≤ i ≤ n, we have a big hole in the
Cartan-Leray spectral sequence converging toH∗(X). The theorem follows
from interpreting the lowest degree information. The isomorphismsHi(X) =
Hi(X̃/π) ∼= Hi(π) for 1 ≤ i ≤ n follow because there are no differentials
involved. The first place there is a possible differential isdn+1 : E2

n+2,0 →
E2

0,n+1. This leads to the following short exact sequences:

Hn+2(X) −→ E∞n+2,0 −→ 0

0 −→ E∞n+2,0 −→ Hn+2(π)
dn+1

−−−→ (Hn+1(X̃))π −→ E∞0,n+1 −→ 0

0 −→ E∞0,n+1 −→ Hn+1(X) −→ E∞n+1,0 −→ 0.

Splicing these sequences together (as in Example 5.D) and substitutingHn+1(π)
for E2

n+1,0 = E∞n+1,0 we get the desired exact sequence. ut

Sinceπi(X) ∼= πi(X̃) for i ≥ 2, we can substituteπn+1(X) for the
term in the middle of the exact sequence of Theorem 8bis.10 by the Hurewicz
theorem. There is a natural epimorphism of aπ-module onto its coinvariants,
so we can truncate the short exact sequence to obtain another exact sequence

πn+1(X) −→ Hn+1(X) −→ Hn+1(π) −→ 0.

Whenn = 1, there is no restriction onX except that it have a universal
covering space. We conclude from the theorem thatH1(X) ∼= H1(π) and so
H1(π) ∼= π/[π, π] follows from Poincar´e’s classical isomorphism. We also get
theshort exact sequence of Hopf:

π2(X) −→ H2(X) −→ H2(π) −→ 0.

For anaspherical space, that is, a spaceX whose universal cover has
trivial higher homotopy groups, the integral homology ofX is determined by its
fundamental group,Hi(X) ∼= Hi(π1(X,x0)) for all i. Examples of aspherical
spaces are the Eilenberg-Mac Lane spacesK(π, 1). The study of the homology
of groups was one of the motivations for [Eilenberg-Mac Lane53] to introduce
the spacesK(π, n). [Kan-Thurston76] reversed the process of studying groups
using spaces by showing that for any pointed, connected space(X,x0) there
is a groupGX and a mappingtX : K(GX, 1) → X that induces an integral
homology isomorphism.

Using the same filtration that leads to the Cartan-Leray spectral sequence,
we can investigate systems of local coefficients further. In particular, forX a
connected space andG a system of groups onX, we restrict our attention to the
reduced homology. Consider the group of the reduced chainsC̃q(X;G) given
by sums of expressionsg⊗uwhereu : (∆q, (∆q)(0))→ (X,x0) andg ∈ Gx0 ,
where the singular simplexu sends all its vertices to the basepointx0, andg
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lies in the group over the basepoint. By the properties of homology groups with
coefficients, the study ofHq(X;G) may be carried out using̃C∗(X;G). We
quote here a result of [Eilenberg47] and refer the reader to [Whitehead, GW78,
VI.3] for a proof.

Theorem 8bis.11.If (X,x0) is a pointed, path-connected space andG a bundle
of groups overX, thenHq(X;G) is isomorphic to the homology of the complex
G0⊗πC∗(X̃) whereG0 = Gx0 ,π = π1(X,x0) andX̃ is the universal covering
space ofX together with its action ofπ.

The proof follows by a direct comparison. We note a useful corollary.
SinceX̃ is one-connected, the complexC∗(X̃) up to degree two is acyclic and
free overπ. Thus we could use this complex as part of a free resolution ofZ

overπ and so identifyH1(X;G) with H1(π1(X);G0). This extends Propo-
sition 8bis.4 and the identification of homology groups with local coefficients
to includeq = 1. The homology of the complexG0 ⊗π C∗(X̃) was termed
theequivariant homology ofX by [Eilenberg47] and it represents one of the
basic functors in the study of equivariant homotopy theory.

The Lyndon-Hochschild-Serre spectral sequence

The Leray-Serre spectral sequence expresses the relation between the total
space of a fibration and its base and fibre. In the realm of groups, a “fibration”
is an extension of the form

1→ H −→ π −→ Q→ 1,

whereH is normal inπ andQ ∼= π/H. The “total space”π is the extension
of the “base”Q and “fibre” H. There is a corresponding spectral sequence
relating the homology of a group to a normal subgroup and associated quotient.

To describe the spectral sequence we observe that the quotient groupQ

acts on the homology ofH. Let F•
ε
−→ Z → 0 be a free rightZπ-module

resolution ofZ. Then it is also a free rightZH-module resolution. IfM is
a left π-module, it likewise is a leftH-module by restriction. Ifg ∈ π, then
define(g)∗ : F• ⊗ZH M → F• ⊗ZH M by (g)∗(x ⊗ m) = xg−1 ⊗ gm. It
follows formally that(g)∗ commutes with the differential onF• ⊗ZH M and
so(g)∗ induces a homomorphism(g)∗ : H∗(H,M) → H∗(H,M). From the
definition of the tensor product overZH, (h)∗ = id for all h ∈ H and so
this action ofπ onH∗(H,M) induces an action ofπ/H onH∗(H,M). With
this bit of structure in place we construct a spectral sequence associated to an
extension of groups.



         

8bis.2. Homology of groups 341

Theorem 8bis.12 (the Lyndon-Hochschild-Serre spectral sequence).Let 1 →
H −→ π −→ Q → 1 be a group extension. SupposeM is a module overπ.
Then there is a first quadrant spectral sequence with

E2
p,q
∼= Hp(Q,Hq(H,M)),

and converging strongly toH∗(π,M).

Proof: We begin with some elementary algebraic observations. When we
take the coinvariants of aπ-moduleM with respect to the action ofH, we make
the action ofH trivial onMH . Thusπ/H acts onMH by gH · (m+ Γ2

HM) =
gm+Γ2

HM , whereΓ2
HM is the submodule ofM generated by elementshm−m

for h ∈ H andm ∈M .
We next consider the coinvariants ofMH via theQ = π/H action and

prove the following formula:

(MH)Q ∼= Mπ.

This follows from the relationZQ ⊗Zπ M ∼= MH by using the isomorphism
Z⊗Zπ M ∼= Z⊗ZQ ZQ⊗Zπ M .

Consider the mappingφ : MH → ZQ⊗ZπM given bym 7→ 1⊗m. Since
1 ⊗m = 1 ⊗ h−1hm = 1 · h ⊗ hm = 1 ⊗ hm, we see thatφ is defined on
MH . An inverse toφ is the mappingψ : gH ⊗m 7→ gm + Γ2

HM . Thatψ is
well-defined follows from the fact thatMH is aQ-module.

We put these elementary observations to work and suppose thatF• −→
Z → 0 is a free, right,Zπ-module resolution ofZ. Consider the complex
computingH∗(π,M), that is,F• ⊗Zπ M . SinceF• ⊗ZM is aZπ-module by
the diagonal action (g · (x⊗m) = xg−1⊗ gm), it is a simple exercise to show
that

(F• ⊗ZM)π ∼= F• ⊗Zπ M,

and soF• ⊗Zπ M ∼= ((F• ⊗M)H)Q.
We also have thatH(F•⊗ZHM) = H∗(H,M). We want to compute the

coinvariants of the action ofQ on these homology groups. Let̃F• −→ Z → 0
be a free rightZQ-module resolution ofZ. Form the double complex

C•∗ = F̃• ⊗ZQ (F∗ ⊗M)H ,

whereQ acts on(F∗ ⊗M)H by the diagonal action. When we filter column-
wise, we get the complex(F̃•⊗ZQ (Fq ⊗ZHM), d⊗ 1). However, treatingFq
as an extendedZπ-module (on the left via the antiautomorphismg 7→ g−1 on
Zπ), we can writeFq = Zπ ⊗Aq for some freeZ-moduleAq. It follows that

Fq ⊗ZHM = Z⊗ZH (Fq ⊗M) = Z⊗ZH (Zπ⊗Aq ⊗M) = ZQ⊗Aq ⊗M,
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because(Zπ)H = ZQ. Thus we haveE0
•,q ∼= F̃• ⊗ZQ ZQ⊗ Aq ⊗M and so

E1
p,q
∼= Hp(Q, (Fq ⊗ZH M)) = {0} if p > 0 and ifp = 0 E1

0,q is isomorphic
to (Fq ⊗ZH M)Q = (Fq ⊗Zπ M). ThusE2

0,∗ = H∗(π,M), and the double
complex has total homology given byH∗(π,M).

When we filter row-wise, we haveE0
p,∗ = F̃p ⊗ZQ (F∗ ⊗ZH M) and

d0 = 1 ⊗ d. We argue similarly and writẽFp as an extended rightZQ-
module,Ãp ⊗ ZQ, to getE0

p,∗ ∼= Ãp ⊗ (F∗ ⊗ZH M), d0 = 1 ⊗ d and so

E1
p,∗ ∼= Ãp ⊗ H∗(H,M) ∼= F̃p ⊗ZQ H∗(H,M) and d1 = d ⊗ 1. Thus

E2
p,q
∼= Hp(Q,Hq(H,M)). ut
The first calculations of some of the relations implied by this spectral se-

quence appeared in Chicago Ph.D. thesis of [Lyndon48] without the benefit of
the structure made apparent in the work of [Leray46]. The cohomology version
of the spectral sequence of Theorem 8bis.12 first appeared in the Comptes Ren-
dues note of [Serre50’]. [Hochschild-Serre53] introduced the spectral sequence
of Theorem 8bis.12 along with a formalism that allowed analogous construc-
tions for Lie algebras. Their work was based on a different filtration on the
cochain complex whose homology gives the cohomology of a group. Another
point of view that gives rise to this spectral sequence is due to [Grothendieck57].
The composition of functors spectral sequence (see Chapter 11) for the com-
position of the coinvariants of theH action followed by the coinvariants of the
π/H action gives another construction of the Lyndon-Hochschild-Serre spectral
sequence. The fact that these alternative constructions give isomorphic spectral
sequences from theE2-term is due to [Beyl81].

A simple example of the use of the spectral sequence is the case of the
extension associated to a Sylowp-subgroup when it is normal in a finite group.

Proposition 8bis.13. Supposeπ is a finite group andP is a normal Sylowp-
subgroup. Then

Hi(π,Fp) ∼= Hi(P,Fp)Q,

whereπ acts onFp trivially andQ = π/P .

Proof: The spectral sequence associated to the extension1 → P → π →
Q → 1 hasE2-term given byE2

p,q
∼= Hp(Q,Hq(P,Fp)). Since the order of

Q is relatively prime top andp times any element inHq(P,Fp) is zero, we
conclude from Proposition 8bis.7 thatE2

p,q
∼= {0} for p > 0. Thus the spectral

sequence collapses to a single column given byE2
0,q
∼= Hq(P,Fp)Q and the

result follows. ut
We next consider the “lower left-hand corner” of the spectral sequence.

Theorems 8bis.14 and 8bis.16 were first obtained by [Stallings65] and [Stamm-
bach66].
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Theorem 8bis.14.To an extension of groups1 → H −→ π −→ Q → 1, there is
an exact sequence

H2(π) −→ H2(Q) −→ H/[π,H] −→ H1(π) −→ H1(Q)→ 0.

Proof: This is simply the five-term exact sequence from splicing together the
differentiald2 with the associated graded filtration forH1(π) (Example I.1) as
in the diagram:

H2(π)

u

�
�
���

0

u

0 w E∞2,0 w

u

E2
2,0 w

d2
E2

0,1 w�
�
���

E∞0,1 w

u

0

0 H2(Q) (H1(H))Q H1(π)

u

E∞1,0

u

H1(Q)

0

To complete the proof we make the identification(H1(H))Q ∼= H/[π,H].
Recall thatH1(H) = H/[H,H] and thatQ acts on this group by conjugation.
The conjugation action ofπ on itself has coinvariantsπ/[π, π] = H1(π) and
it is the residue of this action that remains asQ acts onH1(H). TheQ-
coinvariants of the conjugation action onH/[H,H] are given byH/[π,H] and
so the theorem is proved. ut

To extend this theorem further we recall the lower central series of a
group—a version of this series will play an important role in the study of
nilpotent groups and spaces.

Definition 8bis.15.Let π denote a group. Thelower central seriesof π is the
family of subgroups defined inductively,

· · · ⊂ Γrπ ⊂ Γr−1π ⊂ · · · ⊂ Γ2π ⊂ π
Γ2π = [π, π], Γrπ = [π,Γr−1π].

To the lower central series ofπ we associate thecompletionof π:

π̂ = lim
←r

π/Γrπ.

We can extend the lower central series to higher ordinals by lettingΓαπ =
[π,Γβπ] whenα = β + 1 andΓαπ =

⋂
β<α Γβπ whenα is a limit ordinal.
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Theorem 8bis.16. Supposeφ : π −→ π′ is a homomorphism of groups that in-
duces an isomorphismH1(φ) : H1(π) → H1(π′) and a surjectionH2(φ) :
H2(π)−→−→H2(π′). Then the induced mappinḡφ : π/Γrπ → π′/Γrπ′ is an
isomorphism for all positive integersr. Furthermore,φ induces an isomorphism
of completionŝφ : π̂ → π̂′.

Proof: We work by induction. We letΓ1π = π andΓ1π′ = π′, and so
the induction begins trivially. Next consider the extension1 → Γrπ −→ π −→
π/Γrπ → 1 and similarly forπ′. By Theorem 8bis.14 we have short exact
sequences

H2(π) w

u

φ∗

H2(π/Γrπ) w

u

φ̃∗

Γrπ/[π,Γrπ] w

u

H1(π) w

u

φ∗

H1(π/Γrπ) w

u

φ̃∗

0

H2(π′) w H2(π′/Γrπ′) w Γrπ′/[π′,Γrπ′] w H1(π′) w H1(π′/Γrπ′) w 0

The induction hypothesis together with the Five-lemma implies thatφ induces
an isomorphismΓrπ/[π,Γrπ] −→ Γrπ′/[π′,Γrπ′]. Furthermore, by definition,
Γrπ/[π,Γrπ] = Γrπ/Γr+1π, and so there is a short exact sequence

1→ Γrπ/Γr+1π −→ π/Γr+1π −→ π/Γrπ → 1

and similarly forπ′. The homomorphismφ induces a morphism of short ex-
act sequences and the Five-lemma implies thatφ induces an isomorphism of
π/Γr+1π with π′/Γr+1π′. ut

Applications of the Lyndon-Hochschild-Serre spectral sequence abound.
We refer the reader to the book-length treatments of the cohomology of groups
by [Brown, K82], [Evens93], [Weibel94], [Thomas86], [Benson91], and [Adem-
Milgram94] for more of the algebraic details, applications, and structure of this
spectral sequence. [Huebschmann81, 91] has studied the differentials in the
cohomology Lyndon-Hochschild-Serre spectral sequence and made successful
use of this information to compute the cohomology of some important classes
of groups. Some of the exercises at the end of the chapter expose the algebraic
possibilities afforded by this tool.

§8bis.3 Nilpotent spaces and groups

When a group fails to be abelian, the lower central series is a composition
series whose consecutive quotients are abelian. One direction to generalize the
category of abelian groups is to consider groups whose lower central series is
bounded in length. A groupπ is said to benilpotent of nilpotence classc if
c = max{r | Γrπ 6= {1}} is finite. ThusΓc+kπ = [π,Γc+k−1π] = {1} for
k ≥ 1.

If we viewπ as a group on whichπ acts by conjugation, thenΓ2π = [π, π]
is the smallest normal subgroup for which the quotient has an induced trivial
action. We generalize this idea to the action of a groupπ on a moduleM .
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Definition 8bis.17.Thelower central seriesassociated to the action of a group
π on a moduleM is the series of submodules

· · · ⊂ ΓrπM ⊂ Γr−1
π M ⊂ · · · ⊂ Γ2

πM ⊂M

whereΓ2
πM is theZπ-submodule ofM generated by elements of the form

am−m for a ∈ π andm ∈M , andΓrπM = Γ2
π(Γr−1

π M). We say thatπ acts
nilpotently on M of nilpotence classc if c = max{r | ΓrπM 6= {0}} is finite.

To a group or to a group action on a module, we associate various com-
pletion functors:

π̂ = lim
←r

π/Γrπ, M̂ = lim
←r

M/ΓrπM.

By the universal property of the inverse limit there are canonical homomor-
phismsi : π → π̂ andi : M → M̂ . Define

Γ∞π = ker(i : π → π̂) Γ∞π M = ker(i : M → M̂)

Γ′∞π = coker(i : π → π̂) Γ′∞M = coker(i : M → M̂).

By Lemma 3.10,Γ∞π M =
⋂
r ΓrπM .

Notice that, for a nilpotent group or nilpotent group action,i is an isomor-
phism and the functorsΓ∞ andΓ′∞ vanish. Before turning to some examples,
we introduce one more functor. A submoduleN of a π-moduleM is said to
π-perfect if Γ2

πN = N . If we take the familyPM of all π-perfect submodules
of M , then we can define

ΓM = submodule generated by the union of the familyPM .

We leave it to the reader to show thatΓM is alsoπ-perfect;ΓM is themax-
imal π-perfect submoduleof M as it contains allπ-perfect submodules. By
construction,ΓM ⊂ Γ∞π M .

A nice example of a nonnilpotent group action is given by our example
πn(S2m×RP 2n). Here the generator ofπ1(S2m×RP 2n) = Z/2Z acts onZ
by 1 7→ −1. The lower central series for this action is seen to be

· · · ⊂ 2rZ ⊂ 2r−1Z ⊂ · · · ⊂ 2Z ⊂ Z

and so the action is nonnilpotent. The completion ofZ is the group of2-adic
integers,Γ∞

Z/2ZZ = {0} = ΓZ. Notice thatΓ′∞Z is an uncountable group.
If M is a module over the groupπ, then we develop another expression

for the terms in the lower central series forM . Let Iπ denote the kernel of the
augmentationε : Zπ → Z, given byε(

∑
g∈π ngg) =

∑
g∈π ng.
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Lemma 8bis.18.Γ2
πM = Iπ ·M , that is,Γ2

πM is the submodule ofM generated
by expressions of the formxm with x ∈ Iπ andm ∈M .

Proof: SinceΓ2
πM is the submodule ofM generated byam−m with a ∈ π

andm ∈M , we can write

am−m = (a− 1)m ∈ Iπ ·M.

Thus Γ2
πM ⊂ Iπ · M . To obtain the reverse inclusion, take any element

a =
∑
g∈π ngg inZπ and consider

∑
g∈π ngg−

∑
g∈π ng1. This is an element

in Iπ. For any elementm in M we can now write(∑
g∈π

ng(g − 1)
)
·m =

∑
g∈π

ng(gm−m) ∈ Γ2
πM.

It remains to show that every element ofIπ has the form
∑
g∈π ng(g − 1).

To see this, writea =
∑
g∈π ngg = n11 +

∑
g∈π,g 6=1 ngg. Whena ∈ Iπ,∑

g∈π,g 6=1 ng = −n1, and so we can writea =
∑
g∈π,g 6=1 ngg−

∑
g∈π,g 6=1 ng1.

ThusIπ ·M ⊂ Γ2
πM . ut

Corollary 8bis.19. If 0 → K → M → Q → 0 is a short exact sequence of
π-modules andπ-module homomorphisms, thenM is a nilpotentπ-module if
and only ifK andQ are.

We next introduce the topological category of interest.

Definition 8bis.20.A pointed connected CW-complex(X,x0) is said to benilpo-
tent if π1(X,x0) is a nilpotent group that acts nilpotently onπn(X,x0) for all
n ≥ 2.

The category of all nilpotent spaces together with continuous mappings
contains all simply-connected spaces, all H-spaces (Corollary 8bis.3), and the
Eilenberg-Mac Lane spacesK(π, 1) for π nilpotent. As we will soon see, this
category is also closed under certain constructions of importance in homotopy
theory.

There are spaces that are not nilpotent. Some general constructions are
possible: (1) closed surfaces of genus greater than one; (2) the wedge product
X ∨ Y of any two non-simply connected spacesX andY ; (3) if X has funda-
mental groupπ and there is an epimorphismπ → G with G finite andG acts
nontrivially on the rational homology of the covering space ofX corresponding
to the kernel ofπ → G, thenX is not nilpotent.

We begin our investigation of some of these constructions with a useful
analogue of Corollary 8bis.19.
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Proposition 8bis.21. If F ↪→ E
p
−→ B is a fibration withF connected andE

nilpotent, thenF is nilpotent.

Proof: We can apply Lemma 8bis.18 inductively to show thatΓrπM =
(Iπ)r−1 ·M . Suppose that the nilpotence class ofπn(E) as a module over
π = π1(E) is c. ThenΓc+1

π πn(E) = {0}, and so(Iπ)c · πn(E) = {0}.
Suppose thatω ∈ π1(F ) andα ∈ πn(F ) for n ≥ 2. Thenω ·α = (i∗ω) ·α

in terms of theπ1(E)-module structure onπn(F ). Suppose thatω ∈ (Iπ)c.
Sincei∗ is aπ1(E)-module homomorphism,i∗(ω · α) = (i∗ω) · (i∗α) = 0.
Thusω · α = ∂β for someβ ∈ πn+1(B). Suppose thatη ∈ π1(F ). Then
i∗η ∈ π1(E) and

∂((i∗η − 1) · β) = (i∗η − 1)(∂β) = (i∗η − 1)(ω · α) = (η − 1)(ω · α).

However,π1(E) acts onπn+1(B) viap∗, and so(i∗η−1)·β = (p∗i∗η−1)·β =
−β. Thusη · ω · α = 0. This shows that(Iπ1(F ))c+1 · πn(F ) = {0} and so
the nilpotence class ofπn(F ) overπ1(F ) is less than or equal toc+ 1.

Whenn = 1 the argument forπ1(F ) acting on itself by conjugation is
similar and left to the reader. ut

We next present one of the first results on nilpotent spaces, due to [White-
head, GW54] in a paper in which the nilpotence class is related to the Lusternik-
Schnirelmann category (for the purposes of proving the Jacobi identity for the
Whitehead product!).

Theorem 8bis.22. Suppose(A, a0) is a finite, connected, pointed CW-complex
and (X,x0) is a connected, pointed CW-complex. Supposef : (A, a0) →
(X,x0) is a fixed pointed map. In the compact-open topology, the space
mapf ((A, a0), (X,x0)) of pointed maps in the component off is a nilpo-
tent space. Furthermore, ifX is nilpotent, then the space of unpointed maps
mapf (A,X) is nilpotent.

Proof: We proceed by induction. We assume thatA(0), the 0-skeleton of
A, consists of a single point,a0. Then the theorem is seen to be true for
mapf ((a0, a0), (X,x0)) andmapf (A(0), X).

Consider the cofibration
∨k

i=1
Sn −→ A(n) −→ A(n+1) that determines the

addition of cells to the next skeleton. Apply the functormapf (—, (X,x0)) to
obtain a fibration (see§4.3):

mapf ((A(n+1), a0), (X,x0))→ mapf |((A
(n), a0), (X,x0))

→ mapf |((
∨k

i=1
Sn, ∗), (X,x0)).

By induction, we assume thatmapf |((A(n), a0), (X,x0)) is nilpotent. Propo-

sition 8bis.21 finishes the proof. ut
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A generalized Whitehead Theorem

When does a mappingf : X → Y of connected spaces that induces an
isomorphism of homology groups induce an isomorphism of homotopy groups
here taken as a family ofπ1-modules? An answer to this question would gen-
eralize the Whitehead theorem (Theorem 4.5) to non-simply connected spaces.
The functors introduced to study the action of a group on a module in fact give
the key to the answer. The following theorem of [Dror71] helped to establish
the category of nilpotent spaces as an appropriate category for homotopy theory.

Theorem 8bis.23 (the generalized Whitehead theorem).Let f : X → Y be a
map of connected pointed spaces such thatH∗(f) : H∗(X) → H∗(Y ) is an
isomorphism. Thenπ∗(f) is also an isomorphism if, in addition,f satisfies the
three conditions:

(1) Γ∞π∗(f) : ker(π∗(X) → ̂π∗(X)) → ker(π∗(Y ) → ̂π∗(Y )) is an
epimorphism.

(2) Γ′∞π∗(f) : coker(π∗(X) → ̂π∗(X)) → coker(π∗(Y ) → ̂π∗(Y )) is a
monomorphism.

(3) Γπ∗(f) : Γπ∗(X)→ Γπ∗(Y ) is a monomorphism.

Theorem 8bis.23 fixes the role of the various limit functors. For example, if
X andY are aspherical spaces andf : X → Y is a map for whichΓπ∗(f) is an
isomorphism, thenf is a homotopy equivalence. When the functorsΓ∞π , Γ′π and

Γ all vanish onπ∗(X), then the completion homomorphismπ∗(X)→ ̂π∗(X)
is an isomorphism and the spaceX is calledπ-complete. When a map between
π-complete spaces is a homology isomorphism, it induces an isomorphism of
homotopy groups. All nilpotent spaces areπ-complete.

Corollary 8bis.24.If X andY are connected nilpotent spaces andf : X → Y is
a mapping that induces an isomorphism on integral homology, thenf induces
an isomorphism of homotopy groups as graded modules over their fundamental
groups.

To prove the theorem we sneak up on it inductively. LetSn denote the
collection of statements:

1n. πj(f) : πj(X)→ πj(Y ) is an isomorphism ofπ1-modules for0 ≤ j ≤
n− 1.

2n. Hn(f) : Hn(X)→ Hn(Y ) is an isomorphism andHn+1(f) is an epi-
morphism.

3n. Γ∞πn(f) : Γ∞π1(X)πn(X) −→ Γ∞π1(Y )πn(Y ) is an epimorphism.

4n. Γ′∞πn(f) : Γ′∞πn(X) −→ Γ′∞πn(Y ) is a monomorphism.
5n. Γπn(f) : Γπn(X) −→ Γπn(Y ) is a monomorphism.
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The conditionS1 holds by the assumptions of Theorem 8bis.23. We claim that
Sn implies thatπn(f) is an isomorphism and hence thatSn+1 holds. Proving
this claim gives us the theorem. We first prove that, amongSn, the statements
1n and 2n imply that ̂πn(f) : ̂πn(X) → ̂πn(Y ) is an isomorphism. This
follows from two remarkable lemmas due to [Dror71], the first of which extends
Theorem 8bis.16.

Lemma 8bis.25.Supposeφ : M → M ′ is a homomorphism of modules over a
groupπ. If H0(φ) : H0(π,M)→ H0(π,M ′) is an isomorphism andH1(φ) :
H1(π,M) → H1(π,M ′) is an epimorphism, thenφ induces an isomorphism
M/ΓrπM →M ′/ΓrπM

′ for all r ≥ 1 and hence, an isomorphism̂φ : M̂ → M̂ ′

of completions.

Proof: To the short exact sequence ofπ-modules

0→ Γ2
πM →M →M/Γ2

πM → 0,

there is a long exact sequence of homology groups, ending with

H1(π,M)→ H1(π,M/Γ2
πM)→ H0(π,Γ2

πM)
→ H0(π,M)→ H0(π,M/Γ2

πM).

H0(π,M) = M/Γ2
πM , and, sinceM/Γ2

πM has a trivialπ-action,

H0(π,M/Γ2
πM) ∼= H0(π)⊗M/Γ2

πM
∼= Z⊗M/Γ2

πM
∼= H0(π,M).

This shows that the last homomorphism in the exact sequence is the isomorphism
of coinvariantsMπ → (Mπ)π. The interesting part of the long exact sequence
becomesH1(π,M)→ H1(π,M/Γ2

πM)→ H0(π,Γ2
πM)→ 0.

SupposeH1(φ) : H1(π,M) → H1(π,M ′) is an epimorphism and that
φ induces an isomorphismφ : M/Γ2

πM → M ′/Γ2
πM

′. Then we have the
diagram

H1(π,M) w

uu

H1(π,M/Γ2
πM) w

u

∼=

Γ2
πM/Γ2

π(Γ2
πM) w

u

0

H1(π,M ′) w H1(π,M ′/Γ2
πM

′) w Γ2
πM

′/Γ2
π(Γ2

πM
′) w 0.

The Five-lemma implies an isomorphismΓ2
πM/Γ3

πM → Γ2
πM

′/Γ3
πM

′. By
the same quotient argument as in the proof of Theorem 8bis.16, we see that
φ induces an isomorphismM/Γ3

πM → M ′/Γ3
πM

′. The lemma follows by
applying the same argument inductively. ut
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Corollary 8bis.26.If φ : M →M ′ is aπ-module homomorphism,M andM ′ are
nilpotent, andφ induces an isomorphismH0(φ) and an epimorphismH1(φ),
thenM andM ′ are isomorphic.

The next lemma provides another step in proving the generalized White-
head Theorem.

Lemma 8bis.27.SupposeX is a connected space andK(πn(X), n) ↪→ PnX →
Pn−1X is thenth fibration in the Postnikov tower forX. Then there is an exact
sequence, functorial inX, given by

Hn+2(PnX) −→ Hn+2(Pn−1X) −→ H1(π1(X), πn(X)) −→ Hn+1(PnX)
−→ Hn+1(Pn−1X) −→ (πn(X))π −→ Hn(X) −→ Hn(Pn−1X)→ 0

Proof: The Leray-Serre spectral sequence for this fibration hasE2-term given
byE2

p,q
∼= Hp(Pn−1X;Hq(K(πn(X), n)), where the action ofπ = π1(X) on

πn(X) determines the local coefficients. SinceHn+1(K(πn(X), n)) = {0} (a
consequence of Lemma 6.2) andK(πn(X), n) is (n− 1)-connected, we get a
lacunaryE2-term in bidegrees(∗, i) for i ≤ n+1—there are only two nonzero
stripes in bidegrees(∗, 0) and(∗, n). As in the derivation of the Gysin sequence
(Example 1.D) we get short exact sequences

0→ E∞n+1,0 −→ E2
n+1,0

dn+1

−−−→ E2
0,n −→ E∞0,n → 0

0→ E∞n+2,0 −→ E2
n+2,0

dn+1

−−−→ E2
1,n −→ E∞1,n → 0

0→ E∞0,n −→ Hn(PnX) −→ E∞n,0 → 0

0→ E∞1,n −→ Hn+1(PnX) −→ E∞n+1,0 → 0

Splicing these together we get

Hn+2(PnX) −→ Hn+2(Pn−1X) −→ H1(Pn−1X,Hn(K(πn(X), n)))
−→ Hn+1(PnX) −→ Hn+1(Pn−1X) −→ H0(Pn−1X;Hn(K(πn(X), n)))

−→ Hn(PnX) −→ Hn(Pn−1X)→ 0

However, from Proposition 8bis.4 and Theorem 8bis.10 we know that

Hi(Pn−1X;Hn(K(πn, n))) ∼=
{

(πn(X))π, i = 0,

H1(π, πn(X)), i = 1.

By the definition of a Postnikov tower, we have thatHn(PnX) = Hn(X). Fur-
thermore,Hn(X)−→−→Hn(Pn−1X) becauseHn(Pn−1X) = E2

n,0 = E∞n,0.
The lemma follows after we make these substitutions in the exact sequence.ut
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We now complete the proof of Theorem 8bis.23. Suppose that our map
f : X → Y satisfies the conditionsSn. Thenf induces a map of Postnikov
towers and by naturality of the short exact sequence of Lemma 8bis.27 we get
a morphism of exact sequences

Hn+1(PnX)

u

2n. epi

w Hn+1(Pn−1X)

u

∼=

w (πn(X))π

u

f∗

w Hn(X)

u

2n. ∼=

w Hn(Pn−1X)

u

∼=

w 0

Hn+1(PnY ) w Hn+1(Pn−1Y ) w (πn(Y ))π w Hn(Y ) w Hn(Pn−1Y ) w 0.

The leftmost horizontal map is seen to be an epimorphism by considering the
next stage of the Postnikov tower where we haveHn+1(X)−→−→Hn+1(PnX),
and similarly forY . SinceHn+1(f) is an epimorphism by2n, we get the
first vertical epimorphism. By the Five-lemma,(πn(X))π → (πn(Y ))π is an
isomorphism. Next consider the other end of the exact sequence:

Hn+2(Pn−1X)

u

2n. ∼=

w H1(π1(X),πnX)

u

w Hn+1(PnX)

u

2n. epi

w Hn+1(Pn−1X)

u

∼=

w πn(X)π

u

f∗ ∼=

Hn+2(Pn−1Y ) w H1(π1(Y ),πnY ) w Hn+1(PnY ) w Hn+1(Pn−1Y ) w πn(Y )π.

The Five-lemma implies thatH1(π1(X), πn(X))→ H1(π1(Y ), πn(Y )) is an
epimorphism. By Lemma 8bis.25 we have thatπn(f) induces an isomorphism
betweenπn(X)/Γrππn(X) andπn(Y )/Γrππn(Y ) for all r and hence induces

an isomorphism̂πn(f). Finally we use the remaining conditions ofSn.
There are exact sequences of functors given by

0→ Γ∞πn −→ πn −→ π̂n −→ Γ′∞πn → 0

0→ Γπn −→ πn −→ πn/Γπn → 0.

The Five-lemma and conditions3n, 4n, and5n for πn(f) imply thatπn(f) is
an epimorphism.

To prove thatπn(f) is a monomorphism, we use5n, that is,Γπn(f) is a
monomorphism. We only need to show thatπnX/Γπn(X)→ πn(Y )/Γπn(Y )
is a monomorphism. The lower central series has the property thatΓrπM ⊂
Γr−1
π M is always strictly decreasing until it becomes stable. This is because

ΓrπM = Γ2
π(Γr−1

π M). We also know thatΓM ⊂ ΓrπM for all r. In fact,
this inclusion extends tor, any transfinite ordinal, as follows: Ifα = β + 1
are ordinals, then letΓαπM = Γ2

π(ΓβπM); if α is a limit ordinal, letΓαπM =⋂
β<α ΓβπM . It still follows thatΓM ⊂ ΓαπM for all ordinalsα. But the lower

central series always decreases soΓM = ΓγπM for some ordinalγ. We have
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shown already thatπn(X)/Γrππn(X)→ πn(Y )/Γrππn(Y ) is an isomorphism
for finite r. Introducing the limit ordinals, we get an isomorphism forr = ω
and the argument of Lemma 8bis.25 works for the higher ordinals. Thus,πn(f)
induces an isomorphismπn(X)/Γπn(X) → πn(Y )/Γπn(Y ) and so, by the
Five-lemma,πn(f) is a monomorphism. ut

A characterization of nilpotent spaces

In Chapter 4 (Theorem 4.35) we constructed the Postnikov tower of a space
and stated that, for simply-connected spaces, the fibrations in the tower could
be taken to beprincipal , that is, eachpn : PnX −→ Pn−1X is a pullback of the
path-loop fibration over the Eilenberg-Mac Lane spaceK(πn(X), n+ 1) via a
k-invariant,kn : Pn−1X −→ K(πn(X), n+ 1):

K(πn(X), n)
y

u

K(πn(X), n)
y

u

PnX w

u

pn

PK(πn(X), n+ 1)

u

Pn−1X w
kn K(πn(X), n+ 1).

We next give a proof of this property of simply-connected spaces and generalize
it to nilpotent spaces.

Lemma 8bis.28.LetA be a finitely generated abelian group and letE andB be

spaces of finite type. A fibrationK(A,n) ↪→ E
p
−→ B is principal if and only

if it is simple, that is, the action ofπ1(B) onK(A,n) is trivial.

Proof: Let’s assume thatp : E −→ B is principal and it is pulled back over
a classifying mapθ : B −→ K(A,n + 1). The relevant part of the long exact
sequence of homotopy groups may be written

0 w πn+1(E) w
p∗

u

=

πn+1(B) w
τ

u

=

πn(K(A,n)) w

u

=

πn(E) w
p∗

u

=

πn(B) w

u

=

0

0 w πn+1(E) wp∗ πn+1(B) w
θ∗
πn+1(K(A,n+ 1)) w πn(E) w πn(B) w 0.

The action ofπ1(B) onA can be identified in the second row with the action
of the fundamental group of the total space of the fibrationθ on the base space
K(A,n + 1). But this factors through the action of the fundamental group of
K(A,n+ 1), which is trivial. Hence, the fibration is simple.
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Suppose next thatπ1(B) acts trivially onA = Hn(K(A,n)). Consider the
cohomology Leray-Serre spectral sequence for the fibration with coefficients in
the abelian groupA. Then,E0,n

2
∼= Hn(K(A,n);A) contains the fundamental

classı corresponding to the identity map onK(A,n). SinceK(A,n) is (n−1)-
connected, the first differential to arise onı is the transgressiondn+1, and this
gives a classdn+1(ı) = [θ] ∈ Hn+1(B;A); we can form the pullback over
θ : B → K(A,n + 1). This produces a spaceEθ together with a mapping
g : E → Eθ. Checking the long exact sequence of homotopy groups,g induces
an isomorphism on homotopy, and so, in the category of spaces of the homotopy
type of CW-complexes of finite type,g is a homotopy equivalence, andp is a
principal fibration. ut

It follows immediately from the lemma that a simply-connected spaceX
has a Postnikov tower of principal fibrations. For an arbitrary spaceX, let
{PnX, pn, fn} denote its Postnikov tower. We say thatpn : PnX −→ Pn−1X
admits a principal refinement if there is a sequence of principal fibrations

PnX = Pn,cX
qc−→ Pn,c−1X

qc−1

−−−→ · · ·
q3−→ Pn,2X

q2−→ Pn,1X = Pn−1X

with pn = q2 ◦ q3 ◦ · · · ◦ qc. With this extension of the notion of a principal
fibration, we can now give a characterization of nilpotent spaces.

Theorem 8bis.29.A spaceX is nilpotent if and only if every stage of its Postnikov
tower admits a principal refinement.

Proof: Since eachqj is a principal fibration, we can write its classifying
map asθn,j : Pn,jX −→ K(An,j , n + 1). We proceed by induction. By the
properties of a Postnikov tower,πn(Pn,1X) = πn(Pn−1X) = {0} and so
π1(X) acts trivially (hence nilpotently) onπn(Pn,1X). Suppose thatπ1(X)
acts nilpotently onπn(Pn,j−1X) of nilpotency class≤ j − 1. View thek-
invariantθn,j as a fibration (up to homotopy) andqj : Pn,jX → Pn,j−1X as
the inclusion of the fibre. By Proposition 8bis.21, π1(X) acts nilpotently on
πn(Pn,jX) of class≤ j. By induction,π1(X) acts nilpotently onπn(Pn,cX) ∼=
πn(PnX) ∼= πn(X).

Suppose thatX is a nilpotent space andπ = π1(B). The lower central
series forπn(X) as aπ-module has the form

{0} ⊂ Γcππn(X) ⊂ Γc−1
π πn(X) ⊂ · · · ⊂ Γ2

ππn(X) ⊂ πn(X).

By construction each quotientΓtππn(X)/Γt+1
π πn(X) is a trivial π-module.

Consider the fibrationpn : PnX → Pn−1X. The homology Leray-Serre spec-
tral sequence (Lemma 8bis.27) for this fibration gives the exact sequence

Hn+1(PnX)
pn∗−−→ Hn+1(Pn−1X)

dn+1

−−−→ πn(X)/Γ2
ππn(X) −→ · · · .
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Consider the cohomology Leray-Serre spectral sequence with coefficients in
(πnX)π = πn(X)/Γ2

ππn(X) for which

Ep,q2
∼= Hp(Pn−1X;Hq(K(πn(X), n); (πn(X))π)).

There is a class ∈ Hn(K(πn(X), n); (πn(X))π) that represents the quo-
tient πn(X) → (πn(X))π. This class transgresses to a class[l2] lying in

Hn+1(Pn−1X; (πn(X))π) which representsHn+1(Pn−1X)
dn+1

−−−→ (πn(X))π
and for which we take a representativel2 : Pn−1X → K((πn(X))π, n + 1).
Let q2 : Pn,2X → Pn−1X be the pullback of the path-loop fibration overl2
and letu2 : PnX −→ Pn,2X be a lifting ofpn throughPn,2X. Such a lifting
exists becausel2 ◦ pn ' ∗.

We can modifyu2 to be a fibration and consider a portion of the homotopy
exact sequences

Γ2
ππn(X) w

∼=

u

πn(fibre(u2))

u

0 w πn(X) w

u

πn(PnX) w
pn∗

u

u2∗

πn(Pn−1X) w · · ·

0 w (πn(X))π w∼= πN (Pn,2X) w
l2∗

πn(Pn−1X) w · · · .

From this diagram we see that the fibre ofu2 isK(Γ2
ππn(X), n). If we repeat

this construction withu2 replacingpn, then we get a spacePn,3X together
with a principal fibrationq3 : Pn,3X −→ Pn,2X. Continuing in this way, ifX
is nilpotent, we eventually get toΓc+1

π πn(X) = {0} and the process stops with
uc = qc andpn refined by principal fibrations. ut

The sequence ofk-invariants that a tower of principal fibrations admits may
be applied to many problems in classical homotopy theory. For example, thek-
invariants are the data for classical obstruction arguments. Another application
was introduced by [Sullivan71] in his work on the Adams conjecture. [Serre53]
showed, in his development of classes of abelian groups, that homotopy theory
can become simpler when viewed one prime at a time. Making this notion
topological rather than algebraic is the goal of localization at a prime. To
localize a spaceX at a primep, first consider thering of integers localized at
the prime p, denotedZp, and given by the subring ofQ of fractionsa/b with
b relatively prime top. The functor on abelian groups,A 7→ A⊗ Zp, is called
localization at the primep; it eliminates all torsion prime top and so leaves
only thep-primary data. This functor can be extended to spaces by modifying
the refinement of the Postnikov tower by composing the classifying mapsθn,j
with the mapping induced by the localization,K(An,j , n)→ K(An,j⊗Zp, n),
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and then pulling back carefully. The resulting spaceXp has homotopy groups
πn(Xp) ∼= πn(X)⊗Zp and integral homology groupsHn(Xp) ∼= Hn(X)⊗Zp.

Later in the chapter, we will present an alternate construction of the local-
ization of a space, due to [Bousfield-Kan72] and carried out simplicially.

Convergence of the Eilenberg-Moore spectral sequence®N
Theorem 8bis.23, the generalized Whitehead theorem, illustrates how the

nilpotence condition can control the effect of the fundamental group. The rela-
tions between the homotopy groups of a space and their nilpotent completions
provide the data for measuring the departure from the simply-connected case of
the Whitehead theorem. Another naive situation in which simple connectivity
plays a role is the convergence of the Eilenberg-Moore spectral sequence. The
goal of this section is to prove the following result of [Dwyer74] that shows
how the nilpotence of a certain action of the fundamental group is decisive in
generalizing the naive convergence criterion.

Theorem 8bis.30.SupposeF ↪→ E
p
−→ B is a fibration with all spaces connected,

andA is an abelian group. Then the Eilenberg-Moore spectral sequence for the
fibre ofp converges strongly toH∗(F ;A) if and only ifπ1(B) acts nilpotently
onHi(F ;A) for all i ≥ 0.

Following [Rector71] (§8.3) we associate to the pullback dataX
f
−→ B

p
←− E

the cosimplicial space (the geometric cobar construction)G•(X,B,E) where
Gn(X,B,E) = X × B×n × E for n ≥ 0 and with coface and codegeneracy
maps given by

di(x, b1, . . . , bn, e) =


(x, f(x), b1, . . . , bn, e) i = 0,
(x, b1, . . . , bi, bi, . . . , bn, e) 1 ≤ i ≤ n,
(x, b1, . . . , bn, p(e), e) i = n+ 1.

sj(x, b1, . . . , bn, e) = (x, b1, . . . , b̂i+1, . . . , bn, e), 0 ≤ i ≤ n− 1.

In this discussion we take all spaces involved to be simplicial sets. Thus
G•(X,B,E) is a cosimplicial simplicial set. We explore the combinatorial
structure of such an object in what follows.

Let A denote an abelian group andX, a simplicial set (§4.2). Then we
define the simplicial abelian groupA ⊗ X by (A ⊗ X)n =

⊕
x∈XnA, for

n ≥ 0, with face and degeneracy maps induced by the maps on the generators
and extended to beA-linear. It follows thatπ∗(A ⊗ X) ∼= H∗(X;A) and
problems concerning homology become open to homotopy methods.

In homological algebra, the basic datum of a resolution of a moduleM

is the augmentationF•
ε
−→ M → 0. We can view a cosimplicial spaceY • as
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a kind of resolution (for example, when constructed from a triple; [Bousfield-
Kan72, I,§5]). We consider all possible augmentations ofY •, that is, maps
ε : Z → Y 0 satisfyingd0 ◦ ε = d1 ◦ ε. Themaximal augmentationassociated
to Y • is the subspaceaY • of Y 0 that gives the equalizer (as simplicial sets)
of the coface mappingsd0, d1 : Y 0 → Y 1. In detail, the spaceaY • is given
by aY • = {y ∈ Y 0 | d0(y) = d1(y)}. The maximal augmentation has the
following characterization in the category of cosimplicial spaces.

Lemma 8bis.31. The maximal augmentationaY • of a cosimplicial spaceY •

is the simplicial setCoSimp(∗, Y •) of cosimplicial maps from the constant
cosimplicial space∗.

We leave the proof of the lemma to the reader. The Hom-set of cosimplicial
maps betweenX• andY •, CoSimp(X•, Y •), has the structure of a simplicial
set withn-simplices given by the cosimplicial maps∆[n] ×X• → Y •. Here
∆[n]• denotes the standard simplicialn-simplex, whoses-simplices are given
by

∆[n]s = {〈x0, x1, . . . , xs〉 | 0 ≤ x0 ≤ x1 ≤ · · · ≤ xs ≤ n}.
The face and degeneracy maps onCoSimp(X•, Y •) are induced by the standard
maps. The inclusionsεi : ∆[n]→ ∆[n+ 1] are given byεi(〈x0, x1, . . . , xs〉) =
〈X0, X1, . . . , Xs〉, whereXj = xj , if j < i, andXj = xj + 1, if j ≥ i. The

face mapping is given bydi : ∆[n]×X•
εi×1
−−−→∆[n+1]×X• → Y •. The degen-

eracy maps are defined by the combinatorial collapse onto thejth face, namely
ηj : ∆[n] → ∆[n− 1], given byηj(〈x0, x1, . . . , xs〉) = 〈X0, X1, . . . , Xs〉,
whereXl = xl, if l < j, andXl = xl−1, if l ≥ j. Thussj : ∆[n]×X•

ηj×1

−−−→
∆[n− 1]×X• → Y •.

A desirable property of resolutions is homotopy invariance. For cosim-
plicial spaces, we want a similar property—iff : Y • → Z• is a morphism of
cosimplicial spaces that satisfies the condition thatf : Y n → Zn is a homotopy
equivalence of simplicial sets for alln, thenf ought to induce a homotopy equiv-
alence of maximal augmentations. However, this is too much to ask for. The fix
for this desideratum is to replace the construction of the maximal augmentation
with one that is more robust homotopically.

Definition 8bis.32.Given a cosimplicial spaceY •, let Tot(Y •) denote the sim-
plicial setCoSimp(∆•, Y •) where∆• denotes the cosimplicial space with∆[n]
at leveln and coface and codegeneracy mappings induced by the canonical face
inclusions,εi, and projections,ηj , respectively.

This functor was introduced by [Bousfield-Kan72] and forms the basis for
their study of localization and completion.Tot(Y •) can be built up canoni-
cally from a tower of fibrations. Let∆•(s) denote thes-skeleton of the cosim-
plicial space∆•, that is, at leveln, one takes thes-skeleton of∆[n]. Define
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Tots(Y •) = CoSimp(∆•(s), Y •). The cofibrations∆•(s) → ∆•(s+1) in-
duce fibrationsTots+1(Y •)→ Tots(Y •), whose inverse limit isTot∞(Y •) =
Tot(Y •). Notice thatTot0(Y •) = Y 0, and ifε : Z → Y • is any augmentation,
thenε induces a mappingZ → Tots(Y •), for all s ≤ ∞.

A tower of fibrations gives rise to an exact couple based on the long exact
sequences of homotopy groups. TheE1-term is determined by the homo-
topy groups of the fibres ofTots → Tots−1. A typical fibre takes the form
Ωs((NY •)s) where(NY •)s may be written asY s∩ker s0∩· · ·∩ker ss−1 when
the simplicial sets at each level ofY • arefibrant (that is,Y n → ∗ is a fibration
for all n). It follows from the grading for the exact couple that this is a second
quadrant spectral sequence. There are general conditions for its strong con-
vergence toπ∗(Tot(Y •)) (see [Bousfield-Kan72, IX,§5]). We will obtain the
Eilenberg-Moore spectral sequence in this manner by taking the homotopy spec-
tral sequence associated to the tower of fibrations{Tots(A⊗G•(X,B,E))}.

In the category of cosimplicial spaces we find the usual notions of homo-
topy theory such as fibrations, cofibrations, and homotopy equivalences. The
case of interest is the following diagram depicting a fibration of cosimplicial
spaces along with an augmenting fibration of spaces:

F w
ε

y

u

G•(∗, B,E)
y

u

E w
ε

u

p

G•(B,B,E)

u

q

B w
= B.

HereB denotes the constant cosimplicial space withB at all levels and the
identity map for all coface and codegeneracy maps. The maps forG•(B,B,E)
are given byid : B −→ B ←− E : p. The mappingq is given by first projection
off the productB × B×n × E. Thus, at each level, we have a trivial fibration
and soπ1(B) acts trivially on each fibreGn(∗, B,E). We next show that the
action ofπ1(B) onHi(F ;A) is compatible via the augmentation with this trivial
action.

Proposition 8bis.33.The augmentation mapε : F → ∗ × E = G0(∗, B,E) in-
duces aπ1(B)-equivariant homomorphismε∗ : H∗(F ;A)→ H∗(E;A), where
π1(B) acts trivially onH∗(E;A)

Proof: We argue with spaces and lifting functions as in§4.3. The simplicial
versions of these structures can be found in [May67]. The pullback spaces for the
fibrationsp andq are given byΩp = {(λ, e) | λ ∈WB, e ∈ E, λ(0) = p(e)},
andΩq = {(λ, b, e) | λ ∈WB, (b, e) ∈ B ×E, λ(0) = b}. The augmentation
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maps induce a mapping between these pullbacksΩp → Ωq, given explicitly by
(λ, e) 7→ (λ, p(e), e). This gives rise to the diagram

ΩB × F y w

u

Ωp w
Λ

u

WE w
ev1

u

F

u

ΩB × (∗ × E) y w Ωq w
Λ′

W (B × E) wev1
(∗ × E).

As described in§4.3, the lifting function for the trivial fibration is given by
Λ′(λ, b, e) = (λ, ce), wherece denotes the constant path ate. Since the action of
π1(B) is induced by these composites, compatibility of the actions is equivalent
to the homotopy commutativity of this diagram. LetH : ΩB×F×I → (∗×E)
be given byH((ω, y), t) = (∗,Λ(ω, y)(t)). ThenH makes the leftmost square
commute up to homotopy and so proves the proposition. ut

The fibration of cosimplicial spacesG•(∗, B,E) → G•(B,B,E) → B
provides control of theπ1(B)-action in the tower of fibrations that give rise to
the Eilenberg-Moore spectral sequence.

Lemma 8bis.34.For all i ≥ 1, πi(Tots(A⊗G•(∗, B,E))) is a nilpotentπ1(B)-
module.

Proof: We prove this by induction overs. Whens = 0, we have the trivial
fibration E → B × E → B that describes the 0-level of the fibration of
cosimplicial spaces. Thusπ1(B) acts trivially onπi(Tot0(A⊗G•(∗, B,E))).

By induction we consider the fibration

Totn(A⊗G•(∗, B,E))→ Totn−1(A⊗G•(∗, B,E)).

[Bousfield-Kan72, X,§6] give an explicit expression for the fibre of this fibra-
tion from which we deduce its structure as aπ1(B)-module. To wit, the fibre of
Totn(Y •)→ Totn−1(Y •), for any cosimplicial spaceY •, is given by the func-

tion spaceHom((Sn, ∗), (NY n, ∗)) whereNY n = ker(Y n
s
−→Mn−1Y •) and

Mn−1Y • is the(n−1)st matching spaceconsisting of simplices in(Y n−1)×n,
written (x0, . . . , xn−1), that satisfysixj = sj−1xi whenever0 ≤ i < j ≤
n − 1. The mappings : Y n → Mn−1Y • is given byy 7→ (s0y, . . . , sn−1y).
In the case of a cosimplicial simplicial abelian group, the homotopy groups of
the fibre may be written

πi(fibre(Totn(Y •)→ Totn−1(Y •))) ∼= πi+n(NY n)
= πi+n(Y n) ∩ ker s0 ∩ · · · ∩ ker sn−1.

WhenY • = A ⊗ G•(∗, B,E), the homotopy groups of the fibre have
aπ1(B)-action inherited from the inclusion intoA ⊗ Gn(∗, B,E). However,
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πi+n(A⊗Gn(∗, B,E)) is a trivialπ1(B)-module, and so then are the homotopy
groups of the fibre ofTotn(Y •) → Totn−1(Y •). By induction, we assume
that the groupsπj(Totn−1(A ⊗ G(∗, B,E))) are nilpotentπ1(B)-modules.
The long exact sequence of homotopy groups for the fibrationTotn(Y •) →
Totn−1(Y •) and the triviality of theπ1(B)-action on the homotopy groups of
the fibre complete the induction. ut

From the lemma we can deduce half of the proof of Theorem 8bis.30.
Suppose that the spectral sequence converges strongly toH∗(F ;A). Then there
is a filtration ofHi(F ;A) for eachi with E∞p,i−p isomorphic to the associated
graded group to this filtration. Strong convergence implies that the direct limit
of the sequence

· · · → πi(A⊗Tots(A⊗G•(∗, B,E)))→ πi(Tots−1(A⊗G•(∗, B,E)))→ · · ·
vanishes and so there is an injection

E∞p,∗ → Rp =
⋂

r
im(π∗(Totp+r(A⊗G•)→ Totp(A⊗G•))

⊂ π∗(Totp(A⊗G•(∗, B,E))).

It follows that eachE∞p,∗ is a nilpotentπ1(B)-module. Strong convergence also
implies that the nonzeroπ1(B)-modulesE∞p,i−p are finite in number. Arguing

inductively using Corollary 8bis.19 we have proved thatHi(F ;A) is a nilpotent
π1(B)-module.

To prove the other half of Theorem 8bis.30 we use the towers of fibrations
that arise from the application of the functorTots to the cosimplicial fibration
G•(∗, B,E) → G•(B,B,E) → B. The augmentation from the fibrationp
may be depicted in the diagram:

F w
ε

u

Tot0G
•(∗, B,E)

u

Tot1G
•(∗, B,E)u

u

· · ·u TotG•(∗, B,E)u

u

E w
ε

u

Tot0G
•(B,B,E)

u

Tot1G
•(B,B,E)u

u

· · ·u TotG•(B,B,E)u

u

B w= B Bu = · · ·u = B.u =

Lemma 8bis.35.Tot(G•(B,B,E)) ' E.

Proof: The projection off the last coordinateGn(B,B,E)→ E provides an
inverse to the augmentationE → G•(B,B,E). ut

It follows that we can compare the augmentation fibration with the limit
fibration. The nilpotency condition plays a role in the following proposition
that is a form of the Zeeman comparison theorem. The proposition was known
in the early 1970’s—it is stated explicitly by [Hilton-Roitberg76].
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Proposition 8bis.36.SupposeF ↪→ E → B andF ′ ↪→ E′ → B are fibrations
withB connected, andf : E → E′ is a map overB inducing an isomorphism
on homology. Ifπ1(B) acts nilpotently onHi(F ) and onHi(F ′), for all i, then
f | : F → F ′ induces an isomorphism on homology.

Proof: We proceed by induction on the degreei ofHi(f |). In the casei = 0,
H0(f) = H0(f |) becauseB is connected.

SupposeHi(f |) is an isomorphism for0 ≤ i ≤ n−1. This implies that the
E2-terms of the associated Leray-Serre spectral sequences are isomorphic in
bidegrees(∗, i) for i ≤ n−1. We consider the morphism of spectral sequences
in bidegrees(0, n) and (1, n), where we haveE2

0,n
∼= H0(B,Hn(F )) →

H0(B,Hn(F ′)) ∼= E′20,n. By Proposition 8bis.4,

H0(B,Hn(F )) ∼= H0(π,Hn(F )) = (Hn(F ))π,

whereπ = π1(B). By Theorem 8bis.11, E2
1,n
∼= H1(π,Hn(F )). On the

vertical edge of the spectral sequence the map of spectral sequences gives

E2
0,n ww

u

E3
0,n ww

u

· · · ww En+1
0,n

u

∼=

= E∞0,n

E′
2
0,n ww E′

3
0,n ww · · · ww E′

n+1
0,n = E′

∞
0,n.

Since theE2-terms are isomorphic in bidegrees(∗, i) for i ≤ n−1, the differen-
tials arising to make the successive epimorphisms along the vertical edges are the
same in each spectral sequence and so we conclude thatH0(π,Hn(F )) is iso-
morphic toH0(π,Hn(F ′)) viaHn(f |). Similarly, we find thatH1(π,Hn(F ))
maps ontoH1(π,Hn(F ′)) viaHn(f |). Theorem 8bis.16 implies thatHn(F )
is isomorphic toHn(F ′), and the inductive step follows. ut

The second half of the proof of the Theorem 8bis.30 follows because the
homotopy spectral sequence for the tower of fibration{Tots(A⊗G•(∗, B,E))}
converges toπ∗(Tot(A ⊗ G•(∗, B,E))). Proposition 8bis.36 implies that
π∗(Tot(A⊗G•(∗, B,E))) ∼= H∗(F ;A).

Theorem 8bis.30 has been extended to connective generalized homology
theories ([Bousfield87]), nonconnected basesB ([Dror-Farjoun–Smith, J90], a
useful case when dealing with function spaces) and to pullback fibre squares

with dataX
f
−→ B

p
←− Y for which the setπ0(X) ×π0(B) π0(Y ) is finite and,

for all y ∈ Y , π1(B, p(y)) acts nilpotently onH∗((Y )y) where(Y )y denotes
the component ofY containingy ([Shipley96]).

The development of convergence criteria for the Eilenberg-Moore spectral
sequence is, in fact, a spinoff of the investigation of the general convergence
properties of theBousfield-Kan spectral sequence.
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Theorem 8bis.37.Given a fibrant, pointed, cosimplicial spaceY •, there is a spec-
tral sequence associated to the tower of fibrations{Totn(Y •)→ Totn−1(Y •)}
with

Es,t1 (Y •) ∼= πt(Y s) ∩ ker s0 ∩ · · · ∩ ker ss−1, t ≥ s ≥ 0

and converging under favorable conditions toπ∗(Tot(Y •)).

General results indicating favorable conditions were obtained by [Bousfield87],
[Shipley96], and [Goodwillie98]. The fundamental example introduced by
[Bousfield-Kan72] is the cosimplicial space associated to the completion of a
space with respect to a ringR.

TheR-completion of a pointed space(X,x0) is obtained by applying
the totalization functor,Tot, to the cosimplicial spaceR•X obtained from the
triple {R,φ, ψ} as follows: If (X,x0) is a pointed simplicial set, then define
the simplicialR-moduleRX by (RX)n = R ⊗ Xn/R ⊗ x0. The natural
transformationφX : X → RX is defined byx 7→ [1 ⊗ x], and the natural
transformationψX : R2X → RX is given by[r ⊗ [s ⊗ x]] 7→ [rs ⊗ x]. The
R-completion ofX is defined by

R∞X = Tot(R•X) = Hom(∆•, R•X),

whereRkX = R(Rk−1X) andR0X = RX. The cosimplicial structure is
based on the natural transformationsφ andψ, with the coface and codegeneracy
maps given by

di : RkX → Rk+1X, di = Ri(φRk−iX),
sj : RkX → Rk−1X, sj = Rj(ψRk−jX).

It follows from the properties ofTot thatR∞X is the inverse limit of a tower
of fibrationsRsX → Rs−1X whereRsX = Tots(R•X). This tower of
fibrations is augmented by a family of mappingsfs : X → RsX and it leads to
the spectral sequence of [Bousfield-Kan72].

WhenR is a subring ofQ, then, one can prove that, for some setP of
primes,

R = ZP = {a/b ∈ Q | p - b, for all p ∈ P}.
TheR-completion of a nilpotent space(X,x0) coincides in this case with its
ZP -localization ([Bousfield-Kan72, V,§4]). Thus (co)simplicial techniques
generalize the localization construction via Postnikov towers of [Sullivan71] to
general rings. The basic algebraic condition on the ringR that guarantees good
completion properties is thatR besolid, that is, the multiplication onR induces
an isomorphismR⊗R→ R.

When f∞∗ : H̃∗(X;R) −→ H̃∗(R∞X;R) is an isomorphism, then we
say thatX is R-good. For R-good spaces theR-completion,f∞ : X →
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R∞X, enjoys certain universal properties. For example, a mappingf : X →
Y induces an isomorphismH∗(f) : H∗(X;R) → H∗(Y ;R) if and only if
R∞f : R∞X → R∞Y is a homotopy equivalence ([Bousfield-Kan72, I.5.5]).
However, there are spaces that are notR-good—for example, an infinite wedge
of circles is notZ-good. Nilpotent spaces areZ-good. With this language
we can describe the solution to the natural question—what is the target of the
Eilenberg-Moore spectral sequence in general? [Dwyer75] found the answer
for the Eilenberg-Moore spectral sequence associated to the fibre of a fibration
p : E → B: The spectral sequence converges to the homology of thenilpotent
completion of the fibration, that is, toH∗(F̃ ;R), whereF̃ is the fibre of the
fibrationR∞p : R∞E → R∞B.

Completion and localization constructions have become fundamental in
homotopy theory and a complete exposition of these ideas would take us too
far afield. Nice expositions of this circle of ideas may be found in [Sul-
livan71], [Mimura-Nishida-Toda71], [Hilton75], [Hilton-Mislin-Roitberg75],
and [Arkowitz76]. The most complete exposition of these ideas is the work of
[Bousfield-Kan72].

A consequence of the cosimplicial construction of theR-completion is a
result of [Dror73] that shows the extent to which nilpotent spaces approximate
general homotopy types. To state precisely what sort of approximation we mean,
we compare a connected spaceX with the associated tower of fibrations{RsX}.
By the definition ofTots, we have the augmentation mappingsfs : X → RsX
for all s ≥ 0 and these mappings are compatible with the sequence of fibrations
Rs+1X → RsX. Thus the mappings{fs} determine a mapping of towers of
spaces{X} → {RsX}.

A tower of groups{Gs} is a sequence of homomorphismsGs+1 → Gs for
s ≥ 0. A homomorphism of towers of groups,ξ : {Gs} → {Hs}, is a sequence
of group homomorphismsξs : Gs → Hs, compatible with the tower mappings.
The natural mapsfs : X → RsX determine, for eachi ≥ 0, a homomorphism
of towers of groupsf∗ : {Hi(X;R)} → {Hi(RsX;R)}.

Definition 8bis.38.A homomorphism of towers of groups,ξ : {Gs} → {Hs}, is
a pro-isomorphism if, for any groupA, ξ induces an isomorphism

ξ∗ : lim
→

HomGrp (Hs, A)→ lim
→

HomGrp (Gs, A).

We leave it as an exercise to show thatξ : {Gs} → {Hs} is a pro-
isomorphism if and only if, for eacht ≥ 0, there is a valuet′ ≥ t and a
homomorphismut : Ht′ → Gt such that the following diagram commutes:

Gt′ w
ξt′

u

pG
t′,t

Ht′

u

pH
t′,t

h
h

h
hk

ut

Gt w
ξt

Ht.
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Here pGt′,t denotes the compositionGt′ → Gt′−1 → · · ·Gt+1 → Gt and
likewise forpHt′,t. We also leave it to the reader to show that a pro-isomorphism
induces an isomorphism of limits:

ξ : lim
←s

Gs ∼= lim
←s

Hs andξ : lim
←s

1Gs ∼= lim
←s

1Hs.

We say that a pointed space(X,x0) isR-nilpotent if X is nilpotent and,
for eachn ≥ 1, there is a central series ofπ1(X,x0)-modules

πn(X,x0) = M1 ⊃M2 ⊃ · · · ⊃Mc−1 ⊃Mc ⊃Mc+1 = {0},

for which each subquotientMj/Mj+1 is a trivial π1(X,x0)-module and an
R-module. A space is nilpotent when it isZ-nilpotent.

Proposition 8bis.39. For an arbitrary connected, pointed space(X,x0), the
spacesRsX = Tots(R•X) areR-nilpotent for alls ≥ 0. Furthermore, the
natural mapsfs : X → RsX induce, for alli ≥ 1, a pro-isomorphism of towers
of homology groupsf∗ : {Hi(X;R)} → {Hi(RsX;R)}.

Sketch of a proof: The spaceRX is R-nilpotent since it is an H-space
and anR-module. According to [Bousfield-Kan72, III.5.5], ifp : E → B is
a principal fibration with connected fibreF and any two ofE, B, andF are
R-nilpotent, then so is the third. Their Proposition II.2.5 asserts thatRsX →
Rs−1X is a principal fibration with fibre a connected simplicialR-module.
Thus the spacesRsX areR-nilpotent for alls ≥ 0.

To establish that we have a homology pro-isomorphism, we observe that
Hk(X;R) ∼= πk(RX, x0) and so we can compare the tower of homotopy groups
{πk(RX, x0)} with {πk(RRsX,x0)}. When comparing the spacesRX and
RRsX, we have a triple structure available and hence mappings

φ : RX ↔ RRsX : ψ with ψφ = id .

[Dror73] interpolates a condition that implies that a pro-isomorphism on ho-
motopy is induced by{RX} → {RRsX}, namely, that the map of towers
{RnX} → {RsRnX} induce a pro-isomorphism. He then uses the conver-
gence of the homotopy spectral sequence associated to the tower{RsX} to
obtain the pro-isomorphism{Hk(X;R)} → {Hk(RsX;R)} for k ≥ 1. ut

It follows from the proposition that every connected, pointed homotopy
type may represented by a tower ofR-nilpotent spaces, up to homology equiv-
alence. This approximation is analogous to the Stone-Weierstrass theorem:
Every homotopy type (continuous function) may be represented by a tower
of R-nilpotent spaces (a sequence of polynomials) such thatH̃∗(X;R) ∼=
lim
←s

H̃∗(RsX;R) (limits agree). To study whether a space isR-good, we can

focus on the relation betweenlim
←s

H̃∗(RsX;R) andH̃∗(R∞X;R).
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Exercises

8bis.1. Show thatπ1(RP 2n) acts nonnilpotently onπ2n(RP 2n).

8bis.2. Show that the actionνE,Fn : π1(E, e) × πn(F, e) → πn(F, e) is well-
defined and thati∗ : πn(F, e)→ πn(E, e) is aπ1(E, e)-module homomorphism.

8bis.3. Suppose thatM is a module over a groupπ. Show that the coinvariantsMπ

is the largest quotient ofM on whichπ acts trivially. Show directly that the functor
M 7→Mπ is right exact.

8bis.4. Letπ denote the cyclic group of orderm, with generatort ∈ π. Show that
the complex

· · · →Wn → · · · →W2

N
−→W1

T
−→W0

ε
−→ Z→ 0

is a resolution ofZ overZπ, whereWk the freeZπ-module on a single generator
wk and boundary homomorphismsT : W2n+1 → W2n given byT (w2n+1) =
tw2n − w2n andN : W2n → W2n−1 given byN(w2n) = w2n−1 + tw2n−1 +
· · ·+ tm−1w2n−1.

8bis.5. Suppose thatπ is a finitely generated group. Show thatHi(π,M) is finitely
generated wheneverM is finitely generated overZπ andi ≥ 0.

8bis.6. Prove directly thatH1(π) ∼= π/[π, π].

8bis.7. Prove Theorem 8bis.11.

8bis.8. Suppose that1→ H → π → Q→ 1 is an extension of groups. Complete
the proof of Theorem 8bis.14 by showing that theQ-coinvariants of the conjugation
action onH/[H,H] are given byH/[π,H].

8bis.9. Suppose that1→ R → F → π → 1 is a presentation of the fundamental
groupπ = π1(X) of a spaceX, whereF andR are free groups. Prove the classic
result of Hopf thatH2(X)/h∗(π2(X)) ∼= R∩[F, F ]/[F,R] whereh∗ : π2(X)→
H2(X) denotes the Hurewicz homomorphism.

8bis.10. Suppose that1 → H → π → Q → 1 is a central extension, that is,H
maps to a subgroup of the center ofπ. Show that there is an exact sequence:

H2(π)→ H2(Q)→ H → H1(π)→ H1(Q)→ 0.

8bis.11. Prove Corollary 8bis.19.

8bis.12. Suppose thatF ↪→ E
p
−→B is a fibration of connected spaces. Suppose that

E is nilpotent. Show thatπ1(F ) acts nilpotently on itself by conjugation.

8bis.13. Supposeπ acts nilpotently onM andH0(π,M) = {0}. Conclude that
M = {0}.
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8bis.14. The functorΓ associates to aπ-module the submoduleΓM generated by
the union of the family of all perfect submodules ofM , that is, submodulesN with
N = Γ2

πN . Show thatΓM is also perfect and that it is the maximalπ-perfect
submodule ofM . Show thatΓM ⊂ ΓnπM for all n.

8bis.15. Show thatΓnπM = Γn+1
π M implies thatΓnπM = Γn+k

π M for all k ≥ 0.
Thus the lower central series is a sequence of proper inclusions until it stablilizes.

8bis.16. Show that all nilpotent spaces areπ-complete.

8bis.17. Show that the maximal augmentation of a cosimplicial spaceY • is given
by aY • = CoSimp(∗, Y •).
8bis.18. If R ⊂ Q is a subring ofQ, then show that there is a set of primesP
(possibly empty) for whichR = ZP .

8bis.19. Show that a homomorphism of towers of groups,ξ : {Gs} → {Hs}, is
a pro-isomorphism if and only if, for eacht ≥ 0, there is a valuet′ ≥ t and a
homomorphismut : Ht′ → Gt such that the following diagram commutes:

Gt′ w
ξt′

u

pG
t′,t

Ht′

u

pH
t′,t

h
h

h
hk

ut

Gt w
ξt

Ht.

Show further that a pro-isomorphism induces an isomorphism of limits:

ξ : lim
←s

Gs ∼= lim
←s

Hs andξ : lim
←s

1Gs ∼= lim
←s

1Hs.



        

9
The Adams Spectral Sequence

“In (various papers) it is shown that homological algebra
can be applied in stable homotopy-theory.”

J. F. Adams

One of the principal unsolved problems in modern mathematics is the
determination of the homotopy groups,π∗(X), of any nontrivial finite CW-
complexX. These groups play a key role in the solution of certain geometric
problems and in the classification of CW-complexes up to homotopy. The
computation ofπ∗(X), however, remains difficult if not intractable. (For a
discussion of the computability ofπ∗(X)⊗Q, see the paper of [Anick85]; for
some interesting progress forX = Sn, see the work of [Wu, J]).

A first approximation toπ∗(X) is provided by the Freudenthal suspension
theorem (Theorem 4.10). The limit groups,limk→∞[Sn+k, SkX] = πSn (X),
are called thestable homotopy groupsof X and they enjoy some regularity
and further structure. Knowledge of these groups may also be sufficient for the
solution of geometric problems (§9.4). A classical example is the celebrated
theorem of [Adams60] on the nonexistence of elements of Hopf invariant one
(Theorem 9.38). As this theorem was part of the motivation for the construction
of the Adams spectral sequence, we discuss some of the details.

The question settled by Adams arose with W. R. Hamilton (see [Ebbing-
haus90]): For whichn, doesRn have a division algebra structure? That is, for
whichn is there a bilinear mapping,µ : Rn × Rn → R

n, so thatµ(~u,~v ) = 0
implies that either~u = 0 or ~v = 0. Forn = 1, 2, 4 or 8, there are the real,
complex, quaternionic, and Cayley multiplications, respectively, that were clas-
sically known. If one requires further that‖µ(~x, ~y )‖ = ‖~x ‖‖~y ‖ (a normed
algebra), then [Radon22] and [Hurwitz23] showed that these classical multipli-
cations are the only examples. [Hopf31, 35] used the classical multiplications
to construct mappings,η : S3 −→ S2, ν : S7 −→ S4, andσ : S15 −→ S8, which
are not homotopic to the constant map. These are the first examples of nontriv-
ial elements in the homotopy groups of spheres (other than the degree maps in
πn(Sn)). Hopf’s proof is geometric and proceeds, in the modern parlance, by
introducing a homomorphismH : π2n−1(Sn) → Z, constructed by counting
linking numbers of the inverse images of points inSn. Hopf showed that the
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linking numbers are a homotopy invariant and then applied the division algebra
structure to deduce that the maps derived from the classical multiplications have
H-invariant equal to one.

One can also compute linking numbers with the cup-product in coho-
mology. [Steenrod49] studied the Hopf invariant,H : π2n−1(Sn) → Z, us-
ing functional cup products: Given γ : S2n−1 → Sn, form the mapping
cone,K = Sn ∪γ e2n. The Hopf invariant can be defined as follows: Let
xn ∈ Hn(K) andy2n ∈ H2n(K) be generators for the free abelian group in
each dimension. Thenxn ^ xn = ±H(γ)y2n.

When we reduce to mod2 coefficients, we can make the transition to stable
homotopy. IfH(γ) = 1, thenxn ^ xn = y2n. By the unstable axioms for
the action of the Steenrod algebra (Theorem 4.45),Sqnxn = y2n. We can
suspend the mapγ : S2n−1 → Sn, and form the mapping cone. ThenΣK '
Sn+1 ∪Σγ e

2n+1. The suspension isomorphism determinesH∗(ΣK;F2) as
a module over the Steenrod algebra. In particular,Sqnxn+1 = y2n+1, where
xn+1 ∈ Hn+1(ΣK;F2) andy2n+1 ∈ H2n+1(ΣK;F2) are generators. This
implies immediately thatΣγ is not homotopic to the constant map. By iterating
this procedure we see that ifH(γ) = 1, thenγ determines a nontrivial element
in πSn−1 = πSn−1(S0) = the (n − 1)st stem of the stable homotopy groups of
spheres. The existence of a division algebra structure onR

n, then, implies a
nonzero element[γ] exists inπSn−1 with the mapping cone exhibiting a nonzero
Sqn operation in mod 2 cohomology.

This reduction is already useful. According to the Adem relations (Theo-
rem 4.45),Sqn factors into sums of products of lower degree Steenrod opera-
tions, unlessn = 2k, for somek. For example, the relation

Sq3Sq4 =
∑1

j=0

(
4− 1− j

3− 2j

)
Sq7−jSqj ,

impliesSq7 = Sq3Sq4. It follows thatSq7 cannot act nontrivially on the coho-
mology of the mapping cone,H∗(Sn ∪f en+7;F2), becauseSq1 throughSq6

act trivially for dimensional reasons. We conclude, then, thatR
7 cannot carry

a division algebra structure. In fact,Rn is a candidate for a division algebra
structure only ifn = 2k.

To settle the division algebra problem, we are led to an analysis ofSq2
k

and
the possible factorizations that might arise through secondary or higher order
operations associated to the Steenrod algebra. [Adams60] completed this analy-
sis to prove that the classical examples ofR,R2,R4, andR8 provide a complete
list of real vector spaces with a division algebra structure. In the course of this
work, [Adams60] also introduced his eponymous spectral sequence that has be-
come one of the fundamental tools in the study of stable homotopy theory. The
aim of this chapter is the construction and elaboration of this spectral sequence.
The first section contains some motivation, a statement of the main theorem,
and a discussion of secondary and higher order cohomology operations. Based
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on the motivating discussion, we take a brief detour into homological algebra to
introduce another important tool in the study of categories of modules over an
algebra, theExt functor. During this digression we introduce a change-of-rings
spectral sequence.

In §9.3 we construct the spectral sequence and derive its basic properties. In
keeping with the spirit of previous chapters, we do not utilize the technology of
spectra and the stable homotopy category ([Elmendorf-Kriz-Mandell-May97]).
The reasons for this choice are as follows: The approach using spaces is con-
tained in the original papers of [Adams58] and, though cumbersome, it can be
understood by the novice. Also, there are now several careful and complete ex-
positions of the spectrum approach, [Adams69], [Switzer75], [Ravenel86] and
[Kochman96], on which this author could not improve. The reader may safely
skip to§9.4 if he or she accepts the main results and wishes to go quickly to the
computations. The references, especially Adams’s papers, may also substitute
for this material.

In §9.4 we explore some of the geometric consequences of the existence and
explicit form of the spectral sequence. We focus on the role played by the Adams
spectral sequence in computing cobordism rings (the work of [Thom54], [Mil-
nor60], [Liulevicius62], and [Wall60]). This section is written backwards—we
take as basic the spectral sequence and search for applications. This emphasizes
technique over the deeper geometric insight of [Thom54] and others. However,
it gives a smooth transition into this set of remarkable results and offers a natural
motivation for the study of spectra and stable objects.

In §9.5 some of the simpler, low-dimensional calculations are made and the
geometric consequences explored. In particular, the first nonzero differential
in the spectral sequence at the prime 2 settles one case of the division algebra
problem. The low-dimensional stable homotopy groups of spheres at the primes
2 and 3 are also deduced.

In the final section of the chapter, we consider further structure in the
spectral sequence. A product structure allows one to define Massey products and
these are seen to converge to the secondary composition products of [Toda62].
The structure of the Steenrod algebra as a Hopf algebra imposes homological
conditions on the spectral sequence including a large region of the first quadrant
where all of the input atE2 is trivial. There is also a periodicity operator that
acts across part of the spectral sequence. The formidable task of determining
theE2-term of the Adams spectral sequence is developed in§9.6. The tool
of choice is the May spectral sequence, introduced by [May64] in his doctoral
thesis. We describe this spectral sequence in§9.6. We close the chapter with
some tables and a discussion of further applications.

9.1 Motivation: What cohomology sees

The computation ofπ∗(X) orπS∗ (X) is a special case of the more general
problem of determining[Y,X] or {Y,X}k = lim

→
[Sn+kY, SnX]. Here we
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assume that our mappings are basepoint preserving,X andY are connected
and of the type of CW-complexes and, finally, thatY is finite-dimensional. A
naive “picture” of[Y,X] may be obtained by considering the image of the modp
cohomology functor,

H∗( ;Fp) : [Y,X] −→ Hom(H∗(X;Fp), H∗(Y ;Fp))

([Greenlees88] develops this idea for other cohomology theories). Because
the modp cohomology of a space carries a rich structure, thisHom may be
taken to be a set of mappings in various categories. Of course,H∗(f ;Fp) is a
homomorphism of graded vector spaces. It is also a graded algebra mapping.
This can be used, for example, to distinguishCP (2) fromS2 ∨S4—the modp
cohomology of these spaces are isomorphic as graded vector spaces but not as
graded algebras. Finally,H∗(f ;Fp) is a mapping of unstable modules over the
Steenrod algebra—with this structure we distinguishΣCP (2) andS3 ∨ S5.

In the rest of this section, we fix a primepand letH∗(X) denoteH∗(X;Fp).
Let Ap denote the modp Steenrod algebra andM andN graded leftAp-
modules.

Let Homt
Ap(M,N) denote the set ofAp-linear mappings ofM to N

that have degree−t, that is, for allq, f(Mq) ⊂ Nq−t. The iterated suspen-
sion functor on graded modules overAp is defined as follows: Fork ∈ Z,
sk : ModAp → ModAp is given on objects by(skM)n ∼= Mn−k and on mor-
phismsφ : M → N by (skφ)n = (−1)kφn−k. This generalizes the topological
suspension isomorphisms : H̃ l(X) ∼= H̃ l+1(SX).

We construct a mapping{Y,X}t −→ Homt
Ap(H∗(X), H∗(Y )) as fol-

lows: A mapping,f : Sn+tY → SnX, determines a morphismH∗(f) of
modules over the Steenrod algebra. However, as modules overAp, H̃∗(SnX)
∼= snH̃∗(X), H̃∗(Sn+tY ) ∼= sn+tH̃∗(Y ) andH̃∗(f) determines a mapping
in Homt

Ap(H∗(X), H∗(Y )). Furthermore,Sf : Sn+t+1Y → Sn+1X deter-
mines the same mapping as in the diagram

H̃∗(SnX) w
s
∼=

u
f∗

H̃∗+1(Sn+1X)

u
sf∗

H̃∗(Sn+tY ) w
s
∼= H̃∗+1(Sn+t+1Y ).

ThusH∗( ) : {Y,X}t → Homt
Ap(H∗(X), H∗(Y )) is a well-defined mapping

(the choice of pointed maps and connected spaces determines the mappings
on H0). The image of this mapping may be taken as an approximation to
{Y,X}t. It is, however, only a coarse approximation. A worst case is given
by H∗( ) : πSt −→ Homt

Ap(Fp,Fp). The only classes inπSt that are mapped
nontrivially are generated byı : Sn → Sn, the identity map inπS0 . The best
case, however, suggests a course of action. Consider a free, leftAp-module
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on one generator of degreen. This can be constructed as an extended module
Ap ⊗ snFp wheresnFp is the gradedFp-vector space with one copy ofFp
in degreen and{0} in every other degree. We introduce the notation∼=t for
a homomorphism of graded modules that is an isomorphism in degrees less
thant. A consequence of the Cartan-Serre theorem onH∗(K(Z/pZ, n);Fp)
(Theorem 6.20) is the bounded isomorphism

Ap ⊗ snFp ∼=2n−1 H̃
∗(K(Z/pZ, n);Fp).

This isomorphism leads to an isomorphism in the limit over the system of
homomorphisms induced by the loop suspension mapping (Theorem 6.11)

H l+1(K(Z/pZ, n + t + 1);Fp)
∼=−→ H l(K(Z/pZ, n + t);Fp), for n + t ≤

l ≤ 2n+ 2t− 1:

Ap ⊗ snFp ∼= lim
←t

s−tH̃∗(K(Z/pZ, n+ t);Fp).

ForY a finite dimensional CW-complex andn < 2 dimY , the fundamental
correspondence[Y,K(Z/pZ, n)] ∼= Hn(Y ;Fp) implies

{Y,K(Z/pZ, n)}t = Homt
Ap(Ap ⊗ snFp, H∗(Y ;Fp)).

Thus our approximation is on the mark when we consider spaces that carry a
freeAp-module structure, that is, Eilenberg-Mac Lane spaces. To increase the
accuracy of the approximation, we could include the information that measures
how far a moduleM overAp differs from being a free module. To do this, we
introduce the functorsExtsAp(M,−), the derived functors ofHom∗Ap(M,−),
to be discussed in§9.2. The reader should compare this discussion with§7.1
where the derived functors of the tensor product,M ⊗Γ − are considered. The
role of these derived functors is seen in the main theorem of this chapter, due
to [Adams58].

For an abelian groupG, (p)G denotes the quotient

(p)G = G
/
{elements of finite order prime top}.

It is elementary to show that the set{elements of finite order prime top} forms
a subgroup ofG. Since{Y,X}t is an abelian group,(p){Y,X}t makes sense.

Theorem 9.1.For X andY spaces of finite type, withY a finite dimensional
CW-complex, there is a spectral sequence, converging to(p){Y,X}∗, withE2-
term given by

Es,t2
∼= Exts,tAp(H∗(X;Fp), H∗(Y ;Fp)),

and differentialsdr of bidegree(r, r − 1).
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Before beginning our discussion ofExt and the construction of the spectral
sequence, let us consider how one might show that a mappingf : Sn+t → Sn

is not homotopic to a constant map. Supposet > 0 and we form the mapping
cone,C(f) = Sn ∪f en+t+1. Then there is a cofibration sequence:

Sn
include bottom cell
−−−−−−−−−−−→ C(f)

smash bottom cell
−−−−−−−−−−→ Sn+t+1.

The exact sequence in cohomology,

0 −→ H̃∗(Sn+t+1) −→ H̃∗(C(f)) −→ H̃∗(Sn) −→ 0,

determines an extension ofFp by Fp over the algebraAp and so a class in
extAp(Fp,Fp), here of degreet+ 1. ThisextAp(Fp,Fp) is the classicalExt or
Ext1 group that figures in the Universal Coefficient theorem for cohomology
([Massey91, p. 314]). When one provides an abelian group structure onExt,
the correspondence between a representative of a stable mappingSn+t → Sn

and the extension it determines gives a homomorphism (ane-invariant),

e : πn+t(Sn) −→ extAp(Fp,Fp).

In the case of the classical Hopf maps,e(Hopf map) 6= 0.
Whenevere([f ]) 6= 0, H̃∗(C(f)) is a nontrivial module overAp. In

general, the Steenrod operations onH̃∗(C(f)) are trivial on two-cell complexes.
It may be the case, however, that a secondary or higher order operation, coming
from relations inAp, is nontrivial onH̃∗(C(f)). This also implies thatf 6' ∗.
With this in mind, we next discuss higher order cohomology operations.

Higher order cohomology operations

SupposeW is a space andθ : K(Z/pZ, n)→ K(Z/pZ, n+ t) represents
an element in the Steenrod algebra. Supposex ∈ Hn(W ;Fp) is a cohomology
class and thatθ(x) = 0. Under these conditions, a secondary operation can
be defined. LetE denote the total space of the pullback of the path-loop
fibration overK(Z/pZ, n + t) with respect to the mappingθ. Let α : E →
K(Z/pZ,m) represent a class inHm(E;Fp). Sinceθ(x) = 0, x lifts (not
necessarily uniquely) to a mapping̃x : W → E. The set of all composites,
α◦ x̃ ∈ Hm(W ;Fp), varied over all liftings̃x, defines the secondary operation,
Φα,θ(x) ⊂ Hm(W ;Fp).

K(Z/pZ, n+ t− 1) w
i E w

α

u

K(Z/pZ,m)

W w
x

5
5
5
5
5
5
556

x̄

K(Z/pZ, n) w
θ K(Z/pZ, n+ t).

We make several observations about this construction:
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1) If t < n, then[θ] ∈ Hn+t(K(Z/pZ, n);Fp) is primitive and hence a loop
map (θ = Ωθ′; Corollary 8.25). It follows thatE is a loop space, that is,
there is a spaceZ with E = ΩZ. Thus[W,E] is a group and we can identify
Φα,θ(x) as a coset ofHm(W ;Fp). In particular, two liftings̃x andx̂ : W → E,
differ by a mapping ofW to K(Z/pZ, n + t − 1). (Recall the exactness of
[W,F ] −→ [W,E] −→ [W,B] for a fibrationF ↪→ E → B.) It follows that
Φα,θ(x) determines elements{α ◦ x̃} in

Hm(W ;Fp)
/
α ◦

(
i∗Hn+t−1(W ;Fp)

)
,

wherei∗ : [W,K(Z/pZ, n+t−1)]→ [W,E] is (pre-)composition. As always,
indeterminacies can be difficult to make explicit. In the best cases, dimensions
conspire to makeΦα,θ : ker θ → Hm(W ;Fp) a well-defined function.

2) This definition can be made for different coefficient groups and more gen-
eral cohomology operations ([Maunder64]). We will not need this level of
generality.

3) If V is a finite dimensional graded vector space overFp, then we can write

V =
⊕s

j=1
snjFp, where thenj correspond to the dimensions of basis ele-

ments forV . LetK(V ) =
s∏
j=1

K(Z/pZ, nj). Then, as graded vector spaces,

π∗(K(V )) ∼= V . A class in[W,K(V )] is representable as a vector(x1, . . . , xs)

in
s∏
j=1

Hnj (W ;Fp). Furthermore, the (abelian) addition onZ/pZ determines

a mapping,
+: K(Z/pZ⊕ Z/pZ, n) −→ K(Z/pZ, n),

which induces the vector addition on such spaces.
We generalize the definition of secondary operations to vectors of classes.

LetA : K(V0)→ K(V1) represent ann-tuple of cohomology classes(x1, . . . ,
xn) ∈

⊕
iH

i(K(V0);Fp). Then we have the analogous diagram defining a
secondary operation associated toA:

K(s−1V1) w
i E w

u

K(Z/pZ,m)

W w

\
\
\
\\]

K(V0) w
A K(V1).

For example, consider the Adem relationSq2Sq2 + Sq3Sq1 = 0. LetA denote
the mapping

A =
(

Sq1

Sq2

)
: K(V0) = K(Z/2Z, n) −→

K(Z/2Z, n+ 1)×K(Z/2Z, n+ 2) = K(V1).



=

τ

τ

A*

Sqιn + Sqιn+1
23

Sqιn+1 + Sqιn+2
23

(SqSq + SqSq)ιn
3 1 2 2
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By the naturality of the Leray-Serre spectral sequence we get a mapping of
spectral sequences whose source is associated to the path-loop fibration over
K(V1) with target associated to the pullback of the path-loop fibration with
respect to the mappingA. The class in the cohomology of the fibre

Sq3ın + Sq2ın+1 ∈ H∗(K(s−1V1);F2)

goes to zero under the transgression in the target spectral sequence because the
Adem relation holds.

The class[Sq3ın + Sq2ın+1] ∈ En+3,0
∞ represents a classα ∈ Hn+3(E;F2),

whereE is the total space of the pullback overA. This gives a secondary
operation as in the diagram:

E w
α

u

K(Z/2Z, n+ 3)

W w
x
�
�
��

x̄

K(V0) w
A

K(V1).

If x ∈ Hn(W ;F2) and Sq1x = 0 and Sq2x = 0, then lifts x̃ to E of x
exist andΦα,A(x) is defined. Furthermore, the indeterminacy is the subgroup
Sq3Hn(W ;F2) + Sq2Hn+1(W ;F2) of Hn+3(W ;F2).

This example was employed by [Adem57] to show the nontriviality of
η2 = η ◦ η : Sn+2 → Sn whereη denotes a suspension of the Hopf map
η : S3 → S2. OnH∗(C(η2);F2), the operationΦα,A carries the generator
in degreen to the generator in degreen + 3. We say thatη2 is detected by
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the secondary cohomology operationΦα,A. More generally, any mapping
f : Sn+r → Sn for which a secondary cohomology operation acts nontrivially
onH∗(C(f);Fp) is said to be detected by this operation and, in particular,f is
not homotopic to the constant map.

4) The Adem relationSq3Sq1 + Sq2Sq2 = 0 holds universally on the cohomol-
ogy of any space. Any such quadratic relation between primary operations can

be expressed as a composite,K(V1)
ξ
−→ K(V2)

χ
−→ K(V3), withχ◦ ξ ' ∗. For

example, in the case of the given Adem relation we have

K(snF2)
(Sq1

Sq2)
−−−→ K(sn+1F2 ⊕ sn+2F2)

+◦(Sq3

Sq2)
−−−−−→ K(sn+4F2).

Generally, we can construct a diagram of spaces on which to define the associ-
ated secondary operation:

K(s−1V1) w
i E w

u

p

K(s−1V2)

W wx

\
\
\
\\]

K(V0) w
ξ

K(V1) wχ K(V2).
HereE is the pullback of the path-loop fibration overK(V1) with respect to
ξ. The mappingχ, as a cohomology operation, produces classes inH∗(E;Fp)
because classes that transgress from the fibre of the fibrationp are annihilated
by χ. If x : W → K(V0) represents a vector of classes inH∗(W ;Fp) with
ξ ◦ x ' ∗, then we obtain the secondary cohomology operation due to the
relationχ ◦ ξ ' ∗ as a subset of[W,K(s−1V2)].
5) In order to capture all of the relations between primary operations we turn to
a homological description. Let

0←− H∗(X;Fp)
ε
←− C0

d1←− C1

d2←− C2

be an exact sequence ofAp-modules, withC0,C1 andC2 freeAp-modules;C0

can be taken as the free module on a set ofAp-generators ofH∗(X;Fp). We
can think ofC1 as the free module on theAp relations among the generators
of H∗(X;Fp), andC2 as the free module on the secondary relations, that is,
relations among the relations. IfX is (n − 1)-connected andCi ∼= Ap ⊗
Vi ∼=2n−1 H

∗(K(Vi);Fp) for Vi, a graded vector space, then we associate a
diagram of spaces, where we have written the name of theAp-module map for
a continuous map that induces it. (The identification of algebraic mappings
di : Ci → Ci−1 with di : K(Vi−1)→ K(Vi) follows from the representability
of modp cohomology.)

K(s−1V1) w E w

u

p

K(s−1V2)

X wε

\
\
\
\\]

K(V0) w
d1

K(V1) w
d2

K(V2).
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Applying the modp cohomology functor to the bottom row gives the sequence
of Ap-modules, exact in dimensions less than2n− 1,

0←− H∗(X;Fp)
ε
←− C0

d1←− C1

d2←− C2.

The secondary operation arising from this diagram lies in[X,K(s−1V2)]. We
say that this operation is thesecond order operation associated toC0 ←−

d1C1 ←−
d2

C2.

6) Paragraph 5) can be generalized tomth order cohomology operations. Con-
tinue the exact sequence of freeAp-modules:

0←− H∗(X;Fp)←− C0 ←− C1 ←− · · · ←− Cm.

This gives rise to a tower of fibrations:

K(s−(m−1)Vm−1) w
i Em−1 w

u

K(s−(m−1)Vm)

...

u

K(s−2V2) w
i E2 w

u

K(s−2V3) w
s−2d4

K(s−2V4)

K(s−1V1) w
i E1 w

u

K(s−1V2) w
s−1d3

K(s−1V3)

X wε K(V0) w
d1

K(V1) w
d2

K(V2).

In degrees less than2n− r, the map in cohomology, induced by the composite
K(s−(r−1)Vr−1)→ Er−1 → K(s−(r−1)Vr), iss−(r−1)dr. This follows from
the Serre exact sequence (Example 5.D), applied inductively to each fibration.

In order to get a lifting ofε : X → K(V0) to ε̃ : X → Em−1 and so define
anmth order cohomology operation on[X,K(s−(m−1)Vm)], it is necessary
that therth order operations defined by this tower, forr < m, all contain the
zero class. Only then is a lift to the next stage possible. Whenf : Sn+t → Sn is
a mapping andX = Sn∪f en+t+1, if the lifts of the class inHn(X) determine
only nonzero classes inHn+t+1(X), then we say thatf is detected by anmth

order operation andf is not homotopic to the constant map.

7) The dependence on the connectivity ofX can be removed by considering only
stablemth order operations. Such an operationΦ determines a commutative
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diagram
sHn(X;Fp) w

s◦Φ

u

∼=

sHn+t(X;Fp)

u

∼=

Hn+1(SX;Fp) w
Φ

Hn+t+1(SX;Fp)

The details of the construction of these operations and their properties can be
found in the work of [Maunder63]. The connection between higher order stable
cohomology operations and the spectral sequence of Theorem 9.1 lies in the
interpretation of the filtration on(p)πS∗ and (p){Y,X}∗ to which the spectral
sequence data converge.

Proposition 9.2.If an elementu ∈ (p)π
S
∗ can be detected by annth order stable

cohomology operation, then, for somem ≤ n, u ∈ Fm((p)π
S
∗ ), themth stage

of the filtration of(p)πS∗ associated to the Adams spectral sequence.

A proof of this proposition will emerge with the construction of the spectral
sequence. The role of higher order operations in homotopy theory is fundamen-
tal and the Adams spectral sequence helps to codify and suggest their further
use. The interested reader can consult the papers of [Cohen, R81] and [Lin76]
for other possible applications.

9.2 More Homological Algebra; the FunctorExt

Before we construct the spectral sequence, a digression into homological
algebra is necessary to secure the algebraic tools. In this section we also con-
struct a spectral sequence associated to an extension of Hopf algebras based on
the change-of-rings spectral sequence of [Cartan-Eilenberg56] and elaborated
by [Adams58].

In Chapters 3 and 7, we studied the categories of modules and differential
modules over rings and over differential algebras. The tool of choice was the
functor Tor that measures the deviation from (left) exactness of the functor
M ⊗R −; TorRi (M,−) is theith left derived functor ofM ⊗R −.

One of the fundamental relations in homological algebra is theHom-tensor
interchange: WhenA is a leftΛ-module,B is a rightΛ-module andB andC
are leftΓ-modules

HomΛ(A,HomΓ(B,C)) ∼= HomΓ(B ⊗Λ A,C).

This isomorphism plays a key role in the Universal Coefficient theorems in
topology. The functorsHomΓ(M,−) andHomΓ(−, N) are half exact. We
next study their derived functors.

We begin by identifying the category of interest. Let(Γ, ϕ) denote a graded
algebra, over a fieldk, with productϕ. We generally assume thatΓ has a unit,
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ε : k → Γ, as well as an augmentation,η : Γ → k (we assumeη ◦ ε = idk).
The category of graded leftΓ-modules is denoted byΓMod, and we take the
morphisms in this category to be of degree zero. Denote theΓ-linear maps
between two leftΓ-modules,M andN by ΓMod(M,N).

The suspension functor onΓMod is defined as follows: IfM ∈ ΓMod,
then sM is the graded vector space,(sM)n = Mn−1, with Γ-action given
by γ · (sx) = (−1)deg γs(γ · x), wherex ∈ Mn andsx is the corresponding
element in(sM)n+1. Define the iterated suspension bysn = s ◦ sn−1 and
s1 = s. The graded version of theHom-functor is given by

Homn
Γ(M,N) = ΓMod(M, snN).

Equivalently, aΓ-module homomorphism inHomn
Γ(M,N) can be thought of

as a homomorphismf : M → N that lowersdegree byn.
To study the derived functors ofHom∗Γ(M,−), we resolve a leftΓ-module

M by projectiveΓ-modules. That is, construct a long exact sequence inΓMod;

0←−M
ε
←− P0

d
←− P1

d
←− · · ·

d
←− Pn

d
←− · · ·

where eachPi is a projective module overΓ. (The reader should contrast this
with the accounts in§2.4 and§7.1 where the presence of a differential is part of
the construction.) LetN ∈ ΓMod and applyHom∗Γ(−, N) to this sequence

Hom∗Γ(P0, N)
d
−→ Hom∗Γ(P1, N)

d
−→ · · ·

d
−→ Hom∗Γ(Pn, N)

d
−→ · · · .

The homology of this sequence definesExt∗,∗Γ (M,N). We leave it to the reader
to verify the usual properties of this derived functor:

(1) The definition is independent of the choice of projective resolution.
(2) Ext0,∗

Γ (M,N) = Hom∗Γ(M,N).
(3) Given a short exact sequence of leftΓ-modules,0 →A →B →C → 0,
there are long exact sequences,

→ Extn,∗Γ (C,N)→ Extn,∗Γ (B,N)→ Extn,∗Γ (A,N)
δ
−→ Extn+1,∗

Γ (C,N)→
and

→Extn,∗Γ (M,A)→Extn,∗Γ (M,B)→Extn,∗Γ (M,C)
δ
−→Extn+1,∗

Γ (M,A)→ .

(4) Ext is functorial in each of its three variables.
(5)Extn,∗Γ (P,M) = {0} if n > 0,P is a projectiveΓ-module, andM is any left
Γ-module. Furthermore,Extn,∗Γ (M,J) = {0}, if n > 0 andJ is aninjective
Γ-module andM is any leftΓ-module.

The notion of aninjective module over Γ is the formal dual (mono re-
placing epi and arrows reversed) of the notion of a projective module. The key
property of an injective moduleJ is the exactness of the functorHomΓ(−, J).
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We could have definedExt∗,∗Γ (M,N) by forming an injective resolution of the
moduleN and applying the functorHomΓ(M,−).

The Ext groups are bigraded. If we writeExts = Exts,∗, the single
grading refers to homological degree and forgets the internal degree of the
mapping.

In the applications to follow, we focus on the computation ofπS∗ (X) =
{S0, X}∗. Theorem 9.1 introduces a spectral sequence, converging to(p)π

S
∗ (X),

with theE2-term given byExt∗,∗Ap(H∗(X;Fp),Fp). Anticipating these com-

putations, we consider the computation ofExt∗,∗Γ (M,k) and some convenient
resolutions for computation. In the particular caseM = k, we write

Ext∗,∗Γ (k, k) = H∗,∗(Γ),

andH∗,∗(Γ) is called thecohomology of the algebraΓ. The dual situation,
given byTorΓ

∗,∗(k, k) = H∗,∗(Γ), defines thehomology of the algebraΓ.
Henceforth, we assume that the algebraΓ is of finite type overk (that

is, in each degreen, Γn is finite-dimensional overk). For graded vector
spaces of finite type, the definition of thedual is straightforward:(Γdual)n =
Homk(Γn, k). Furthermore, ifM ′ andM ′′ are both of finite type, then so is
M ′ ⊗k M ′′ and (M ′ ⊗kM ′′)dual ∼= M ′dual⊗k M ′′dual. It follows that an
algebra(Γ, ϕ) and a leftΓ-moduleM , of finite type, with module structure
mapψ : Γ⊗M →M , yield by duality a coalgebra(Γdual, ϕ∗) and a comodule
Mdual, over the coalgebra,Γdual, with structure map

ψ∗ : Mdual−→ Γdual⊗kMdual.

Recall from§7.1 the definition of the bar resolution:

0←−M ←− Γ⊗M ←− Γ⊗ I(Γ)⊗M ←− Γ⊗ I(Γ)⊗ I(Γ)⊗M ←− · · · ,

whereBn(Γ,M) = Γ ⊗ I(Γ)⊗n ⊗ M and I(Γ) = ker(η : Γ → k). The
differential and the contracting homotopy are given in Proposition 7.8. To
computeExtΓ(M,k), we applyHom∗Γ(−, k) to the bar resolution. Sincek, as
a Γ-module, is theI(Γ)-trivial module concentrated in degree 0, it follows via
the Hom-tensor interchange that

Homt
Γ(N, k) = Homt

k(k ⊗Γ N, k) = ((k ⊗Γ N)dual)t.

The bar resolution becomes the sequence

Mdual ψ̄
∗

−→ I(Γ)dual⊗Mdual d
∗

−→ I(Γ)dual⊗ I(Γ)dual⊗Mdual d
∗

−→ · · ·

whereψ̄∗ is the composite

Mdual ψ
∗

−→ Γdual⊗Mdual i
∗⊗1
−−−→ I(Γ)dual⊗Mdual
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(i∗ is the dual ofI(Γ) ↪→ Γ) andd∗ is given by

d∗([α1 | · · · | αn]λ) =
∑n

i=1

∑ni

j=1
[ᾱ1 | · · · | ᾱi−1 | ᾱ′i,j | α′′i,j | · · · | αn]λ

+
∑m

l=1
[ᾱ1 | · · · | ᾱn−1 | ᾱ′l]λ′′l

(recall thatᾱ = (−1)1+degαα for α, an element in a graded module) where

ϕ∗(αi) =
∑ni

j=1
α′i,j ⊗ α′′i,j andψ̄∗(λ) =

∑m

l=1
αl ⊗ λ′′l . Thus

Ext∗Γ(M,k) = H(B̄(Γ)dual⊗Mdual, d∗),

whereB̄(Γ)n = I(Γ)⊗n.
To compute the cohomology of the algebraΓ then, we can usēB(Γ)dual

which consists of elements[α1 | · · · | αn] with αi ∈ I(Γ)dual, and differential

d∗([α1 | · · · | αn]) =
∑n

i=1

∑ni

j=1
[ᾱ1 | · · · | ᾱi−1 | ᾱ′i,j | α′′i,j | · · · | αn].

We point out that such a construction can be made with any augmented coal-
gebra,(C,∆, η), where∆ is the coproduct,J(C) = coker(η : k → C) is the
cokernel of the augmentation, which is the dual ofI(Cdual). This functor on
coalgebras is sometimes denotedF∗(C) and called thecobar constructionon
(C,∆, η). It was first introduced by [Adams56] to computeH∗(ΩX) as a func-
tor of the chains onX,C∗(X), as a coalgebra. We can express the cohomology
of Γ in terms of the cobar construction byH∗,∗(Γ) = H(F∗(Γdual), d∗).

Another application of the Hom-tensor interchange shows the duality be-
tween the cohomology and homology of an algebra. Since we are over a field,
the Universal Coefficient theorem allows us to interchange the homology oper-
ator withHomk and obtain the equation, whenΓ is of finite type,

ExtΓ(k, k) = H(HomΓ(B(Γ), k)) = H(Homk(k ⊗Γ B(Γ), k))

= Homk(H(k ⊗Γ B(Γ)), k) = TorΓ(k, k)
dual

.

In the next section, the natural coalgebra structure onTorΓ(k, k) provides a
natural product onExtΓ(k, k). Some calculations are eased by working in the
dual.

Finally, when speaking of the computation ofExt, we mention another
computationally convenient type of resolution.

Definition 9.3. A homomorphism,f : M → N of left Γ-modules is said to be
minimal if f(M) ⊂ I(Γ) · N . A projective resolution of a moduleM is said
to be aminimal resolution if every mapping in the resolution is minimal.
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Proposition 9.4.Let 0←−M
ε
←− P0

d
←− P1

d
←− P1

d
←− P2

d
←− · · · be a minimal

resolution ofM by projectiveΓ-modules. ThenExtsΓ(M,k) ∼= HomΓ(Ps, k).

Proof: We assume everything in sight is of finite type. We exploit the duality
betweenExt andTor for a proof. The duality in this case is betweenExtΓ(M,k)
andTorΓ(k,M), and the dual statement of the proposition is thatTorΓ

s (k,M) ∼=
k⊗ΓPs. However, for anyΓ-moduleX, k⊗ΓX = X/I(Γ) ·X, which follows
from the definition ofk ⊗Γ X as

k ⊗X/{(1 · γ)⊗ x− 1⊗ (γ · x)},

where1·γ = 0 whenγ is inI(Γ). Sinced(Ps) ⊂ I(Γ)·Ps−1, 1⊗d : k⊗ΓPs →
k ⊗Γ Ps−1 is the zero homomorphism for everys ≥ 1 and soTorΓ

s (k,M) =
k ⊗Γ Ps. Passing to the dual, we get a complex with all differentials zero and
soExtsΓ(M,k) ∼= HomΓ(Ps, k). ut

Minimal resolutions come in handy for doing low-dimensional calculations
or to begin an induction. As an exercise, the reader should computeH∗,∗(Λ(x))
whereΛ(x) is the exterior algebra on one generatorx, here taken to have odd
degree. A minimal resolution or the bar construction can be applied to obtain
H∗,∗(Λ(x)) ∼= k[y] as vector spaces, wherey has bidegree(1,deg x). In the
next section, the multiplicative properties ofExt are developed and we find that
this isomorphism is true at the algebra level.

Multiplicative structure onExt

The bigradedFp-vector spaceExt∗,∗Ap(H∗(X;Fp), H∗(Y ;Fp)) enjoys some
further structure. There is a product whenX = Y , and more generally, pair-
ings ofExt groups. We give two constructions of the same operation. We will
present the first construction in detail and sketch the second. The first identified
by [Yoneda54]. Suppose thatΓ is an algebra over a fieldk.

Theorem 9.5.LetL, M , andN be leftΓ-modules. Then there is a bilinear,
associative pairing, called thecomposition product, defined for allp, t, q,
t′ ≥ 0, ◦ : Extp,tΓ (L,M)⊗ Extq,t

′

Γ (M,N) −→ Extp+q,t+t
′

Γ (L,N).

Proof: Let0← L← P• be a projective resolution ofL, and0←M ← Q• a
projective resolution ofM . If [f ] lies inExtp,tΓ (L,M) and[g] in Extq,t

′

Γ (M,N),
then[f ] may be represented byf : Pp → stM and[g] by g : Qq → st

′
N . The

following elementary facts about the suspension functor are left to the reader to
prove:

(1) If X is projective, thensX is projective. (Hint:s(Γ ⊗ V ) ∼= Γ ⊗ sV
for a graded vector spaceV .)

(2) ΓMod(sW, sX) ∼= ΓMod(W,X).
(3) If 0← X ←W• is a projective resolution ofX, then0← sX ← sW•

is a projective resolution ofsX.
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We define[f ] ◦ [g] as follows: Using the defining property of projec-
tive modules, liftf : Pp → stM up the resolution tofq : Pp+q → stQq for
q ≥ 0. Suspendg to stg : stQq → st+t

′
N and let[f ] ◦ [g] = [stg ◦ fq] in

Extp+q,t+t
′

Γ (L,N). The following diagram depicts this construction:

0 Lu P0u · · ·u Ppu
4
4
47

f

u

f0

Pp+1u

u

f1

· · ·u Pp+qu

u

fq

u

0 stMu stQ0u stQ1u · · ·u stQqu

u
stg

u

st+t
′
N

Because we can liftfq tofq+1 andg◦dM = 0, it follows from the equation
stg ◦ fq ◦ dL = stg ◦ stdM ◦ fq+1 = 0 thatstg ◦ fq is a cycle. To show that all
of the choices made in the construction are irrelevant, observe that two choices
differ by a chain homotopy and so the difference vanishes on homology. The
bilinearity and associativity are elementary to establish.

We remark that speaking of the suspension is the same as speaking of
maps that change degree and so, by introducing the appropriate signs, this
entire discussion can be carried out without the suspension. We do this later.ut

Yoneda’s original construction of the composition pairing is useful both
conceptually and computationally. The construction depends on the identifica-
tion of ExtnΓ(L,M) with equivalence classes of exact sequences ofΓ-modules
of the form

0→M → En−1 → En−2 → · · · → E0 → L→ 0 (n > 0).

Two exact sequences of this form are said be equivalent if there are homomor-
phismsϕi : Ei → E′i that commute with the morphisms in the sequences and
the identity maps onL andM .

Given classes inExtpΓ(L,M) andExtqΓ(M,N) we can take representative
exact sequences,

0→M → Ep−1 → Ep−2 → · · · → E1 → E0 → L→ 0
and 0→ N → Fq−1 → Fq−2 → · · · → F1 → F0 →M → 0.

To represent the product splice these two sequences together atM :

MAAC

0 w N w Fq−1 w · · · w F0 w

���

Ep−1 w · · · w E0 w L w 0.

[Yoneda54] showed that this pairing coincides with the composition product.
An immediate consequence of this identification is the following result.
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Proposition 9.6. If 0 → A → B → C → 0 is a short exact sequence of
Γ-modules representing a classα in Ext1

Γ(C,A), then the coboundary maps in
the long exact sequences derived from the sequence,

δ : ExtsΓ(A,N)→ Exts+1
Γ (C,N) and δ : ExtsΓ(N,C)→ Exts+1

Γ (N,A),

are given by left and right multiplication byα, respectively.

The internal degree of such ann-fold extension is given by the total change
in degree from left to right. That the internal degree of a product is the sum of
the internal degrees follows immediately.

Corollary 9.7. Ext∗,∗Γ (M,M) is a bigraded algebra overk with the compo-
sition product as multiplication. Furthermore,Ext∗,∗Γ (L,M) is a right, and
Ext∗,∗Γ (M,L) a left,Ext∗,∗Γ (M,M)-module.

With a concrete resolution like the cobar construction on hand, it is rea-
sonable to attempt to represent the composition product onExt∗,∗Γ (k, k) at the
level of elements in the cobar resolution. Let[α1 | · · · | αp] be inFp(Γdual) and
[β1 | · · · | βq] be inFq(Γdual). Notice that the internal degree ofα : I(Γ)→ k
is the degree on whichα is nonzero, that is,degα = t if α 6= 0 as a mapping
I(Γ)t → k. We define a product onF∗(Γdual) by juxtaposition

[α1 | · · · | αp]⊗ [β1 | · · · | βq] 7→ [α1 | · · · | αp | β1 | · · · | βq].

This mapping is clearly bilinear and associative. To see that it induces a product
on Ext∗,∗Γ (k, k), we show that the differential is a derivation. LetU = [α1 |
· · · | αp] andV = [αp+1 | · · · | αp+q], then

d∗(UV ) = d∗([α1 | · · · | αp+q])

=
∑p+q

i=1

∑
j
[ᾱ1 | · · · ᾱi−1 | ᾱ′i,j | α′′i,j | · · · | αp+q]

=
∑p

i=1

∑
j

[ᾱ1 | · · · ᾱi−1 | ᾱ′i,j | α′′i,j | · · · | αp][αp+1 | · · · | αp+q]

+
∑q

r=1

∑
u

[ᾱ1 | · · · ᾱp][ᾱp+1 | · · · | ᾱp+r−1 | ᾱ′p+r,u | α′′p+r,u | · · · | αp+q]

= d∗(U)V + (−1)p+tUd∗(V ),

wheret is the internal degree ofU , that is,t =
∑p
i=1 degαi. Thus, this juxta-

position product induces a product onExt∗,∗Γ (k, k) with the correct bidegree.
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Theorem 9.8.The composition product and juxtaposition product coincide on
Ext∗,∗Γ (k, k).

Proof: We show how to lift a given mapping through the bar construction.
Suppose[f ] ∈ ExtsΓ(k, k) and[g] ∈ ExttΓ(k, k). Consider the diagram where
fi(γ[γ1 | · · · | γs+i]) = γ̄[γ̄1 | · · · | γ̄i]f([γi+1 | · · · | γi+s]).

· · · w Γ⊗ I(Γ)s+t

u

ft

w · · · w Γ⊗ I(Γ)s+1

u

f1

w Γ⊗ I(Γ)s

u

f0

wN
N
NNP
f

Γ⊗ I(Γ)s−1
w · · ·

· · · w Γ⊗ I(Γ)t

u

g

w · · · w Γ⊗ I(Γ) w Γ w k w 0.

k

This lifting satisfiesd ◦ fi = fi−1 ◦ d and so we have a mapping of part of
the one resolution to the other. By the definition of the composition product
[f ] ◦ [g] = [g ◦ ft]. The value ofg ◦ ft on a typical classγ[γ1 | · · · | γs+t] is
g(γ̄[γ̄1 | · · · γ̄t])f([γt+1 | · · · | γt+s]). When we represent[f ] and[g] in the
cobar complex as tensor products of elements ofΓdual we get exactly the value
obtained by applying the juxtaposed dual elements to a typical argument and
adjusting signs for the suspensions. Thus the products coincide. ut

The simplicity of the product induced by juxtaposition allows one to do
computations at the level of the cobar construction. This is especially useful
for determining such secondary phenomena as Massey products (see§8.2) and
^1-products.

SupposeΓ is a Hopf algebra with cocommutative coproductψ : Γ→ Γ⊗Γ
and counitη : Γ → k. We assume further thatΓ is of finite type overk. With
these data, there is yet another way to induce a multiplication onExt∗,∗Γ (k, k).
Suppose we are given a projective resolution ofk, X• → k → 0 with the
homomorphismε : X0 = Γ → k → 0, the counit ofΓ. LetX• ⊗ X• be the
complex with(X• ⊗X•)s =

⊕
i+j=s

Xi ⊗Xj and differentiald⊗(x⊗ y) =

d(x) ⊗ y + (−1)p+rx ⊗ d(y) (x ∈ (Xp)r), thenX• ⊗ X• can be given a
Γ⊗ Γ action via the twist map and we obtain a projectiveΓ⊗ Γ resolution of
k = k ⊗k k.

Using properties of the coproduct, counit and projective modules, we can
construct a map,∆: X• → X•⊗X•, making the following diagram commute:

0 ku

u

=

Γu ε

u

ψ

X•u

u
∆

0 k ⊗k ku Γ⊗ Γu
ε⊗ε X• ⊗X•u
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Applying the functorHom∗Γ( , k) induces a product

HomΓ(X•, k)⊗HomΓ(X•, k) −→ HomΓ(X•, k)

that reduces to a product

µ : Exts,tΓ (k, k)⊗ Exts
′,t′

Γ (k, k) −→ Exts+s
′,t+t′

Γ (k, k).

One can construct an explicit∆ on the cobar resolution from which it is easily
seen thatµ is the same product as the one induced by juxtaposition.

We introduce this construction to prove the following result.

Theorem 9.9.If the coproduct onΓ is cocommutative, then the multiplication
onExt∗,∗Γ (k, k) is graded commutative with signs given by

α · β = (−1)ss
′+tt′β · α

for α ∈ Exts,tΓ (k, k) andβ ∈ Exts
′,t′

Γ (k, k).

Proof: We extend the diagram in the construction to another row:

0 ku

u
=

Γu ε

u
ψ

X•u

u
∆

0 k ⊗k ku

u
=

Γ⊗ Γu ε⊗ε

u
T

X• ⊗X•u

u
T

0 k ⊗k ku Γ⊗ Γu ε⊗ε X• ⊗X•u

SinceΓ is cocommutative,ψ = Tψ and∆ is chain homotopic toT∆. This
proves the theorem. ut

On the cobar resolution with its juxtaposition product it is apparent that
∆ andT∆ are not the same mapping. An explicit chain homotopy can be
constructed. If we restrict our attention tok = F2, this chain homotopy allows
us to definê i-products and hence Steenrod operations onH∗,∗(Γ). For
k = Fp, a similar construction over the(p − 1)st iterate of the coproduct,
ψp : Γ → Γ ⊗ · · · ⊗ Γ (p times), allows one to define the modp Steenrod
operations onH∗,∗(Γ). We refer the reader to [Adams58] and [Liulevicius62]
for details of these constructions. The elementary properties of these operations
are listed next for later applications.
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Theorem 9.10.Let (Γ, ψ,∆, ε, η) be a cocommutative Hopf algebra overFp.
(a)p = 2. There are operations Sqi onExt∗,∗Γ (F2,F2) that satisfy the following
properties:

(1) Sqi : Exts,tΓ (F2,F2)→ Exts+i,2tΓ (F2,F2),
(2) Sqi(ab) =

∑
m+n=i

Sqm(a)Sqn(b),

(3) SqrSqs =
∑[s/2]

t=0

(
s− t− 1
r − 2t

)
Sqr+s−tSqt,

(4) Sq0({[α1 | · · · | αn]}) = {[α2
1 | · · · | α2

n]},
(5) Sqsx = x2 if x ∈ ExtsΓ(F2,F2).

(b) p, an odd prime. There are operationsP i andβP i on Ext∗,∗Γ (Fp,Fp) that
satisfy the following properties:

(1) P i : Exts,tΓ (Fp,Fp) −→ Exts+(2i−t)(p−1),pt
Γ (Fp,Fp),

βP i : Exts,tΓ (Fp,Fp) −→ Exts+(2i−t)(p−1)+1,pt
Γ (Fp,Fp),

(2) P i(ab) =
∑

i≥j≥0
P j(a)P i−j(b),

βP i(ab) =
∑

i≥j≥0
βP j(a)P i−j(b) + (−1)deg aP j(a)βP i−j(b),

(3) P rP s =
∑[r/p]

t=0
(−1)r+t

(
(p− 1)(s− t)− 1

r − pt

)
P r+s−tP t,

P rβP s =
∑[r/p]

t=0
(−1)r+t

(
(p− 1)(s− t)

r − pt

)
(βP r+s−t)P t

+
∑[r−1/p]

t+0

(
(p− 1)(s− t)− 1

r − pt− 1

)
P r+s−t(βP t),

(4) P 0({[α1 | · · · | αn]}) = {[αp1 | · · · | αpn]}.
(5) P ra = ap if a ∈ Exts,tΓ (Fp,Fp) and2r = s+ t.

These operations differ from the usual Steenrod operations becauseSq0

andP 0 are not the identity mappings andSq1 andβ are not Bockstein operators.
The explicit expression forSq0 on a class in the cobar construction will be useful
later.

We consider a simple example overk = F2: Suppose the Hopf algebra,
Γ, is the divided power algebra on a single generatorΓ(x). Recall thatΓ(x) is
generated as an algebra by generatorsγi(x) for i = 0, 1, . . . with γ0(x) = 1,
γ1(x) = x anddeg γi(x) = ideg x. The product is determined by the relations

γi(x)γj(x) =
(
i+ j

i

)
γi+j(x)

and the coproduct is given on generators by

ψ(γi(x)) =
∑i

j=0
γj(x)⊗ γi−j(x).
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We choose this Hopf algebra to study because its dual is given byΓ(x)dual =
F2[y], wherey is dual tox. The reader can easily read the Hopf algebra structure
on k[y] from the product and coproduct onΓ(x) and it agrees with the usual
polynomial multiplication and coproduct

ψ(yq) =
∑q

i=0

(
q

i

)
yi ⊗ yq−i .

To computeH∗,∗(Γ(x)), we can apply the cobar construction to the coal-
gebra(F2[y], ψ). The following lemma holds generally.

Lemma 9.11. Let Γ be a Hopf algebra of finite type over a fieldk. Then
H1,∗(Γ) = Ext1,∗

Γ (k, k) = Prim∗(Γdual) ∼= Q∗(Γ).

Proof: We recall thatPrim∗( ) is the functor that associates to a Hopf alge-
bra its graded vector subspace (in fact, sub-Lie algebra) of primitive elements
(see§4.4). Also the functorQ∗( ) associates to a Hopf algebra its quotient
vector space of indecomposable elements. WhenΓ is of finite type overk,
Prim∗(Γdual) ∼= Q∗(Γ), so it suffices to computePrim∗(Γdual). This may be
defined as the kernel of the reduced coproduct

ϕ∗ : I(Γdual) −→ I(Γdual)⊗ I(Γdual).

From the cobar construction, this kernel is exactlyExt1,∗
Γ (k, k). ut

To obtainH1,∗(Γ(x)) then, we find the primitives inF2[y]. The arithmetic
of binomial coefficients (Lucas’s Lemma, see§7.3) determines the primitive
classesli = [y2i ] ∈ Ext1,∗

Γ(x)(k, k), for i = 0, 1, . . . . The products of these
classes can be identified in the cobar construction, where they are cycles;lilj ,
for example, corresponds to[y2i | y2j ]. Coboundary formulas, such as

δ[y3] = [y2 | y] + [y | y2] = l1l0 + l0l1,

show that the product on the sub algebra determined by the generators{li} is
commutative.

To complete the computation, one must show that the products of theli’s
are not boundaries and furthermore, that no other class can be a cycle. Again

the arithmetic of

(
q

i

)
mod 2 can be applied and one deduces that

H∗,∗(Γ(x)) ∼= F2[ li | i = 0, 1, . . . ] ,

as bigraded algebras where eachli has bidegree(1, 2i deg x). A corollary of this
computation is the fact thatSq0(li) = li+1 andSq1(li) = l2i in Ext∗,∗Γ(x)(F2,F2).
The reader should provide any further details needed to feel comfortable with
this computation. We will use the results in computing the cohomology ofA2,
the Steenrod algebra.
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A change-of-rings spectral sequence

We next introduce an analogue of the Lyndon-Hochschild-Serre spectral
sequence (Theorem 8bis.12) to computeH∗,∗(Γ), whenΓ is an extension of
Hopf algebras

0 −→ Λ −→ Γ
π
−→Γ//Λ −→ 0.

HereΓ//Λ = Γ/I(Λ)·Γ andΛ is normal inΓ, that is,I(Λ) · Γ = Γ · I(Λ). This
spectral sequence can be derived additively by methods of [Cartan-Eilenberg56];
its multiplicative properties were proved by [Adams60].

Theorem 9.12.Let Λ be a sub-Hopf algebra of a Hopf algebraΓ. SupposeΛ
is central in Γ, that is,ab = (−1)deg a deg bba for a ∈ Λ, b ∈ Γ. Then there is
a spectral sequence, converging toH∗(Γ), with

Ep,q2
∼= Hq(Λ)⊗k Hp(Γ//Λ),

and differentialsdr of bidegree(r, 1− r). Furthermore, this spectral sequence
converges toH∗(Γ) as an algebra with the product structure on theE2-term
given in the isomorphism by

(x⊗ y) · (x′ ⊗ y′) = (−1)pq+tt
′
(xx′)⊗ (yy′)

wheny ∈ Hp,t(Γ//Λ) andx′ ∈ Hq,t′(Λ).

Proof: Before beginning the proof, we observe that this spectral sequence is
actually trigraded—the third grading is given by the internal gradingt inH∗,t( ).
All of the differentials preserve this grading and so it is carried through toE∗,∗∞ ,
where it corresponds to the internal grading onH∗,∗(Γ). This hidden grading
plays a key role in computations (§9.6).

The proof exploits duality and so we begin with̄B(Γ), the reduced bar
construction onΓ. Filter B̄(Γ) by

F pB̄(Γ) = { [γ1 | · · · | γs] for which at leasts− p of theγi lie in I(Λ)}.

This is an increasing filtration withF 0
B̄(Γ) = B̄(Λ) andF sB̄s(Γ) = B̄

s(Γ).
SinceΛ is a sub-Hopf algebra,d(F pB̄(Γ)) ⊂ F pB̄(Γ). Thus we have a spectral
sequence, converging toTorΓ(k, k) with E1-term given by

E1
p,q = Hp+q(F pB̄(Γ)/F p−1

B̄(Γ), d0).

To prove the theorem we first establish a chain equivalence between theE0-
term,(F pB̄(Γ)/F p−1

B̄(Γ), d0), and(B̄(Λ)⊗ I(Γ//Λ)⊗p, d⊗ 1).
Consider the mapping,νp : F pB̄(Γ)→ B̄(Λ)⊗ I(Γ//Λ)⊗p

νp([γ1 | · · · | γs]) = [γ1 | · · · | γs−p]⊗ πγs−p+1 ⊗ · · · ⊗ πγs,



     

388 9. The Adams Spectral Sequence

whereπ : Γ → Γ//Λ is the projection. Sinceπλ = 0 for λ ∈ I(Λ) and[γ1 |
· · · | γs] is inF pB̄(Γ) if at leasts−p of theγi lie in I(Λ), νp([γ1 | · · · | γs]) = 0
unless exactlyγ1 throughγs−p lie in I(Λ). Henceνp is well-defined.

We show that the following diagram commutes

F pB̄(Γ) w
νp

u
d

B̄(Λ)⊗ I(Γ//Λ)⊗p

u
d⊗1

F pB̄(Γ) w
νp

B̄(Λ)⊗ I(Γ//Λ)⊗p.

Sinceνp is zero except on elements of the form[λ1 | · · · | λs−p | γs−p+1 |
· · · | γs], we check thatνp ◦ d = (d⊗ 1) ◦ νp on such an expression. We write

d([λ1 | · · · | λs−p | γs−p+1 | · · · | γs]) =∑s−p−1

i=1
[λ̄1 | · · · | λ̄iλi+1 | · · · | λs−p | γs−p+1 | · · · | γs]

+ [λ̄1 | · · · | λ̄s−p−1 | λ̄s−pγs−p+1 | · · · | γs]

+
∑p−1

j=1
[λ̄1 | · · · | λ̄s−p | γ̄s−p+1 | · · · | γ̄s−p+jγs−p+j+1 | · · · | γs].

Observe thatνp([λ̄1 | · · · | λ̄s−p−1 | λ̄s−pγs−p+1 | · · · | γs]) = 0 because
π(λ̄s−pγs−p+1) = 0 and that

νp([λ̄1 | · · · | λ̄s−p | γ̄s−p+1 | · · · | γ̄s−p+jγs−p+j+1 | · · · | γs])
= [λ̄1 | · · · | λ̄s−p−1]⊗ πλ̄s−p ⊗ πγ̄s−p+1 ⊗ · · · ⊗ πγs = 0

by the definition ofνp on B̄(Γ)s−1,∗.
Finally, observe thatνp takesF p−1

B̄(Γ) to {0} and so we get an induced
mapping of complexes

ν̄p : (F pB̄(Γ)/F p−1
B̄(Γ), d0) −→ (B̄(Λ)⊗ I(Γ//Λ)⊗p, d⊗ 1).

We can rewriteF pB̄(Γ)/F p−1
B̄(Γ) as

k ⊗Λ Λ⊗ F pB̄(Γ)/F p−1
B̄(Γ)

and so we plot a circuitous route to showingν̄p is a chain equivalence by showing

gp = 1⊗ ν̄p : Λ⊗ F pB̄(Γ)/F p−1
B̄(Γ) −→ Λ⊗ B̄(Λ)⊗ I(Γ//Λ)⊗p

is a homology equivalence.
We introduce some associated complexes: LetC(p) = Λ⊗F p+Γ⊗F p−1,

where we writeF p = F pB̄(Γ). Then the bar construction differentiald, defined
onB(Γ,Γ, k), takesC(p) to itself, as does the chain homotopys. (You’ll find
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the formulas in Proposition 7.8). It follows thatC(p) is acyclic. There is
a surjectionC(p) −→ Λ ⊗ F p/F p−1 that is induced by1 ⊗ pr wherepr is
projection. The kernel of this surjection isΓ ⊗ F p−1. Increasep to p + 1
and the surjectionC(p + 1)−→−→Λ ⊗ F p+1/F p takesC(p) as a subspace of
C(p + 1) to 0. This leads to a short exact sequence, which defines another
complexK(p) as kernel,

0→ K(p) −→ C(p+ 1)/C(p) −→ Λ⊗ F p+1/F p → 0.

The associated long exact sequence on homology implies

Hq(K(p)) ∼= Hq+1(Λ⊗ F p+1/F p),

becauseC(p + 1)/C(p) is acyclic. We next analyze the complexK(p) that
leads to the desired result via induction.

Up to this point we have been using only part of our hypotheses—thatΛ
is a normal subalgebra of the algebraΓ. In the case of Hopf algebras we can
apply the following remarkable consequence of the Hopf algebra structure due
to [Milnor-Moore65] (Exercise 6.12):

Fact. SupposeΛ is a sub-Hopf algebra ofΓ and Λ is normal inΓ. ThenΓ
has a basis as aΛ-module, consisting of1 and certain homogeneous elements
in I(Γ); Γ is free as a rightΛ-module on this basis. Furthermore, the basis
projects to a vector space basis forΓ//Λ.

We denote such a basis forΓ by {γi} and its image inΓ//Λ by {ωi = π(γi)}.
It follows that we can writeΓ as a rightΛ-module by

Γ ∼= (Γ//Λ)⊗ Λ = Λ + I(Γ//Λ)⊗ Λ.

Since the kernel ofC(p + 1)−→−→Λ ⊗ F p+1/F p is Γ ⊗ F p, K(p) may be
written as the image of the inclusion followed by a quotient:

K(p) = im(Γ⊗ F p → C(p+ 1)/C(p)).

Replacing our expression forΓ as a rightΛ-module, we get

K(p) = im(Γ⊗ F p → C(p+ 1)/C(p))
= im(Λ⊗ F p + I(Γ//Λ)⊗ Λ⊗ F p −→(

Λ⊗ F p+1 + I(Γ//Λ)⊗ Λ⊗ F p/Λ⊗ F p + I(Γ//Λ)⊗ Λ⊗ F p−1

))
∼= I(Γ//Λ)⊗ Λ⊗ F p/F p−1.

We proceed by induction to prove the following assertion:

(9.13) Hq(Λ⊗ F p/F p−1) ∼=
{
I(Γ//Λ)⊗p, if q = p,

0, elsewhere.
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Consider the composite, denoted byfp,

fp : Λ⊗ F p/F p−1
1⊗νp
−−−→ Λ⊗ B̄(Λ)⊗ I(Γ//Λ)⊗p

ε⊗1
−−→ I(Γ//Λ)⊗p

For p = 0, f0 is simply the mappingΛ ⊗ B̄(Λ) → k given by the augmen-
tation. But this is an equivalence by the properties of the bar construction.
Assume (9.13) forp, that is,H(fp) : H(Λ ⊗ F p/F p−1) → I(Γ//Λ)⊗p is an
isomorphism. By the properties of the complexK(p), we have

H(K(p)) ∼= H(I(Γ//Λ)⊗ Λ⊗ F p/F p−1),

where the differential onI(Γ//Λ) is zero. Thus we have

H(K(p)) ∼= I(Γ//Λ)⊗H(Λ⊗ F p/F p−1) ∼= I(Γ//Λ)⊗p+1.

SinceHq+1(Λ ⊗ F p+1/F p) ∼= Hq(K(p)), we have shown that the assertion
(9.13) holds in case ofp+ 1, and hence for allp by induction.

When we applyk ⊗Λ − to gp, we obtain the desired chain equivalence
betweenF pB̄(Γ)/F p−1

B̄(Γ) and B̄(Λ) ⊗ I(Γ//Λ)⊗p. TheE1-term of the
spectral sequence is given by

E1
∗,p ∼= H∗(B̄(Λ)⊗ I(Γ//Λ)⊗p, d⊗ 1) ∼= TorΛ

∗ (k, k)⊗ I(Γ//Λ)⊗p .

To compute theE2-term of this spectral sequence, we introduce a chain
mappingµ̄p : B̄(Λ)⊗I(Γ//Λ)⊗p −→ F p/F p−1 that acts as an inverse toν̄p and
induces a chain equivalence onB̄(Γ//Λ). First, use the basis forΓ//Λ, {ωi}, to
split the projectionπ and obtain a mapσ : Γ//Λ→ Γ of graded vector spaces.
Next, introduce a version of shuffle map,µp : B̄(Λ) ⊗ I(Γ)⊗p → F pB̄(Γ),
given by

µp([a1 | · · · | ar]⊗ [ar+1 | · · · | ar+p]) =
∑

(r,p)-shuffles σ

(−1)ε(σ)[aσ(1) | · · · | aσ(r+p)].

Recall that an(r, p)-shuffle is an(r+ p)-permutation that preserves order on1
throughr and onr+1 throughr+p. The signε(σ) is the sign of the permutation
(see the proof of Lemma 7.11). The key property of the shuffle product in this
setting is the formulad(µp(a⊗ b)) = µp(d(a)⊗ b))± µp−1(ā⊗ d(b)), where
a ∈ B̄(Λ) andb ∈ B̄(Γ). This equation depends on the centrality ofΛ in Γ.

Let µ̄p denote the composite

µ̄p : B̄(Λ)⊗ I(Γ//Λ)⊗p −−−→
1⊗σp

B̄(Λ)⊗ I(Γ)⊗p

−→
µp

F pB̄(Γ) −→ F pB̄(Γ)/F p−1
B̄(Γ) .
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We leave it to the reader to verify thatν̄p ◦ µ̄p = id. Next consider the diagram

Hq(B̄(Λ)⊗ I(Γ//Λ)⊗p) w
1̄⊗d̄

u

µ̄p∗

Hq(B̄(Λ)⊗ I(Γ//Λ)⊗p−1)

E1
p,q w

d1 E1
p−1,q

u

ν̄p−1
∗

.

Fora ∈ B̄(Λ) with d(a) = 0 andb ∈ I(Γ//Λ)⊗p,

ν̄p−1
∗ d1µ̄p∗(a⊗ b) = ν̄p−1

∗ d̄µp∗(1⊗ σp)(a⊗ b)
= ν̄p−1
∗ µp−1

∗ (ā⊗ d̄σpb)
= (1⊗ πp−1)(ā⊗ d̄σpb)
= ā⊗ d̄πpσpb
= ā⊗ d̄b.

Thus the diagram commutes andE2
p,q
∼= Hq(Λ)⊗Hp(B̄(Γ//Λ)).

The last step in proving Theorem 9.12 is the construction of a coproduct
structure on the spectral sequence (we are still in the dual spectral sequence
for H∗(Γ)). Recall thatB̄(Γ) has a natural coproduct given byψ : B̄(Γ) →
B̄(Γ)⊗ B̄(Γ),

ψ([γ1 | · · · | γs]) =
∑s

i=0
[γ1 | · · · | γi]⊗ [γi+1 | · · · | γs]

This coproduct is dual to the juxtaposition product on the cobar construction.
We filter B̄(Γ)⊗ B̄(Γ) with the tensor product filtration,

F p(B̄(Γ)⊗ B̄(Γ)) =
∑p

i=0
F iB̄(Γ)⊗ F p−iB̄(Γ).

One can check that

(1) ψ is filtration-preserving and commutes with the differentials;
(2) ν̄p and µ̄p commute withψ if we equip B̄(Λ) and B̄(Γ//Λ) with the

same coproduct. (This requires that the shuffle product commute with
ψ, which it does.)

With these facts the isomorphisms yield that the coproduct on theE2-term is
isomorphic to the tensor product of the coproducts onH∗(Λ) andH∗(Γ//Λ).

Finally, to obtain Theorem 9.12, it suffices to dualize this proof. We have
proved the dual of Theorem 9.12 for the homology of Hopf algebras. ut

A consequence of the proof of the multiplicative properties of the spectral
sequence is the analogue of Corollary 6.9 that the Steenrod operations onH∗(Λ)
andH∗(Γ//Λ) commute with the transgression,dr : E0,r−1

r → Er,0r . These
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operations, fork = F2, act classically on the homological degree but double the
hidden, internal degree. To prove the analogue of Corollary 6.9, one must work
directly with the cobar complex and the explicit chain homotopies that give
rise to the Steenrod operations. The interested reader can consult the papers of
[Adams60] and [Liulevicius62].

With the necessary algebra all in place, we return to the problem of con-
structing the spectral sequence of Theorem 9.1.

9.3 The spectral sequence

The goal of the chapter is the computation of the groups,{Y,X}∗, where
X andY are spaces of finite type andY is a finite dimensional CW-complex.
The tools of choice, in this exposition, are elementary;

(1) the properties of fibrations, in particular, the construction of towers
of principal fibrations and the exact sequences that result from these
constructions,

(2) the properties of the suspension, including Freudenthal’s Theorem (The-
orem 4.10) and

(3) exact couples and their subsequent spectral sequences.

We first construct certain towers of fibrations, known asAdams resolu-
tions that realize geometrically an algebraic resolution of the modpcohomology
of a space. The reader can compare these constructions with the Postnikov tower
of a space (§4.3 and§6.1) and the towers built in§9.1 to describe higher order
cohomology operations. By building such a resolution for a spaceX, then
SX, thenS2X, and so forth, the modp cohomology of the Adams resolutions
assembles into better and better approximations of a freeAp-module resolu-
tion of H∗(X;Fp). The application of the functor[SmY,−] to the system of
fibrations results in an exact couple and a spectral sequence. Our analysis of
the construction allows us to identify theE2-term.

We remark that the bigrading on the spectral sequence that results from
the exact couple is not standard and, in fact, does not conform to the definitions
in Chapter 2. This could be avoided by an unnatural regrading of everything in
sight, but this would complicate matters further. The nonstandard grading does
not affect the arguments that follow but might seem odd on first exposure.

Next the properties of Adams resolutions are developed to demonstrate the
convergence of the spectral sequence. Then a geometric pairing is defined at
theE1-level that provides us with a spectral sequence of algebras. The pairing
is so defined as to yield the Yoneda multiplication at theE2-term.

For the reader who has little interest in the geometric origins of the Adams
spectral sequence, but interest in the computations, we suggest you skip on
to §9.5 where the homological algebra of§9.2, the Steenrod algebra and the
spectral sequence are used to compute some of the stable homotopy groups of
spheres.
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The construction: Adams resolutions

Let X be a space (of the homotopy type of a CW-complex) that is of
finite type overFp and supposeX is (n− 1)-connected. The basic goal of an
Adams resolution is the geometric realization of a freeAp-module resolution
of H∗(X;Fp) through dimensionsn ≤ t < 2n (the stable range). The first
step is to choose a graded vector space0V0 such that

0V0
∼=2n−1 H̃

∗(X;Fp)/I(Ap) · H̃∗(X;Fp).

By the representability of the modp cohomology functor we can choose a map-
ping 0F0 : X → K(0V0) such that(0F0)∗ : H∗(K(0V0);Fp) → H∗(X;Fp)
is an epimorphism in degrees less than2n realizing the isomorphism when
composed with the quotient.

Having chosen the mapping0F0, form the pullback of the path-loop fibra-
tion over it:

0X1 w

u

PK(0V0)

u

X w
0F0 K(0V0).

Consider the long exact sequence on cohomology (Example 5.D), fort < 2n−1,
where we writeH∗( ) for the cohomologyH∗( ;Fp):

w Ht−1(X) w Ht−1(0X1) w Ht−1(ΩK(0V0)) w Ht(X) w

Ht(K(0V0))


�

onto

The epimorphism,0F0 : Ht(K(0V0)) → Ht(X), is the transgression asso-
ciated to the fibration0X1 → X. Thus, fort < 2n − 1, Ht(0X1) maps
isomorphically onto the kernel of(0F0)∗. Observe, also, that0X1 is at least
(n− 1)-connected, and the mapHt(X)→ Ht(0X1) is null for t < 2n− 1.

Iterate this procedure for0X1; that is, choose0V1 isomorphic in degrees
less than2n − 1 to H̃∗(0X1)/I(Ap) · H̃∗(0X1) and a mapping0F1 : 0X1 →
K(0V1) realizing an epimorphism on modp cohomology. Pullback the path-
loop fibration overK(0V1) with respect to0F1 to get a fibration0X2 → 0X1.

Continuing, we get a tower of fibrations,· · · → 0Xi+q → 0Xi → · · · →
0X1 → X, with each0Xi at least(n − 1)-connected, and the mappings
Ht(0Xi)→ Ht(0Xi+1) null in degreest < 2n− 1;
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...

u

0Xi+1 w
0Fi+1

u

K(0Vi+1)

0Xi w
0Fi

u

K(0Vi)

...

u

0X1 w
0F1

u

K(0V1)

X w
0F0 K(0V0)

The mappingsΩK(0Vi)
i
−→ 0Xi+1

0Fi+1

−−−→ K(0Vi+1) have additional
properties. On cohomology we have

H∗(K(0Vi+1))
(0Fi+1)∗

−−−−−→ H∗(0Xi+1)
i∗

−→ H∗(ΩK(0Vi))

where the first map is onto in degrees less than2n and the second map can be
taken to be a degree 1 map that is one-one, onto the kernel ofHs+1(K(0Vi))→
Hs+1(0Xi) in degrees less than2n − 1. If we compose and desuspend, the
homomorphismsH∗(K(0Vi+1))→ s−1H∗(K(0Vi)) can be assembled into a
complex:

0←− H∗(X)←− H∗(K(0V0))←− s−1H∗(K(0V1))←− s−2H∗(K(0V2))←−,

which, in degrees less than2n, is a freeAp-module resolution ofH∗(X).
The next step in this process is to repeat the previous construction based

on X for SX, the suspension ofX. Recall thatH∗(SX) ∼= sH∗(X) as
modules overAp. SinceSX isn-connected, the stable range extends to degree
2n+ 1. We can relate the data from the Adams resolution ofX to that ofSX
by choosing the graded vector spaces1Vi to bes(0Vi) ⊕Wi, whereWi is the
additional term needed to obtain an epimorphism up to degree2n+ 1.

With these details of construction, the long exact sequences of cohomology
vector spaces can be examined to show that1Xi andS(0Xi) have the same
modp cohomology in degrees less than2n− i.

This establishes the inductive step. We continue by building Adams reso-
lutions overS2X, S3X, and so on. OverSmX, we have a tower of principal
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fibrations:
...

u

mXi w
mFi

u

K(mVi)

...

u

mX1 w
mF1

u

K(mV1)

SmX w
mF0 K(mV0).

The properties of the construction can be summarized:

(1) eachmXi+1 → mXi is a fibration with fibreΩK(mVi),
(2) eachmXi is at least(n+m)-connected,
(3) H∗(mXi;Fp) ∼= H∗(S(m−1Xi);Fp) in degrees less thann+m− i,
(4) H∗(mXi;Fp)→H∗(mXi+1;Fp) is null in degrees less than2(n+m).

Finally, desuspending the appropriate number of times leads to the com-
plex, a freeAp-module resolution in degrees less than2(n+m):

0← s−mH∗(SmX)←− s−mH∗(K(mV0))←− s−m−1H∗(K(mV1))← · · · .

We next prove an important property holds for Adams resolutions that is
analogous to the universal property enjoyed by projective resolution.

Lemma 9.14.Suppose{W1 → Y, Wi+1 →Wi, i ≥ 1 } is a tower of principal
fibrations and there is an integerN ≥ 0 so that, ifΩK(Mi) is the fibre of
Wi+1 →Wi, thenMi is a graded vector space, trivial in degrees greater than
N . If X is (n − 1)-connected,2n − 1 > N , andf : X → Y is a continuous
mapping, then there is a sequence of mappings,0Xi → Wi, for eachi, such
that the following diagram commutes,

· · · w 0Xi w

u

· · · w 0X1 w

u

X

u
f

· · · w Wi w · · · w W1 w Y

Proof: We construct the mapping from0X1 to W1 and leave the inductive
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step (essentially the same argument) to the reader. Consider the diagram

0X1 w

u

B
BBC

PK(M0)

u

W1

[
[[]

u

X w
f

Y wε K(M0)

SinceHt(X) → Ht(0X1) is null in degrees less than2n − 1, the composite
0X1 → K(M0) is null-homotopic and so there is a lift of the composite to
PK(M0). By the universal property of the pullback,W1 → Y , we get a
mapping0X1 →W1, making the diagram commute. ut

Corollary 9.15. Given two Adams resolutions of a spaceX, there are maps
between them covering the identity.

We finally derive the spectral sequence. First, form all of the Adams
resolutions overX, SX, S2X, . . . . From the observation that each tower
yields a certain part of anAp-free resolution ofH∗(X), let

0←− H∗(X;Fp)
ε
←− P0 ←− P1 ←− P2 ←− · · ·

denote the limit of these approximations, which can be realized as

Pi = lim
m→∞

s−m−iH∗(K(mVi)).

For a givenm, the Adams resolution ofSmX yields the system of fibrations:

...
u

...
u

w Ω2K(mV1) w Ω(mX2) w

u

ΩK(mV2) w mX3 w

u

K(mV3)

w Ω2K(mV0) w Ω(mX1) w

u

ΩK(mV1) w mX2 w

u

K(mV2)

Ω(SmX) w ΩK(mV0) w mX1 w

u

K(mV1)

SmX w K(mV0).
To this system of spaces and maps, apply the functor[SmY,−], whereY is a
finite dimensional CW-complex. This yields an exact couple:

[Sm+pY,mXq] w
i [Sm+pY,mXq−1]

4
4
4
447

j[Sm+p−1Y,mXq]

[Sm+pY,K(mVq−1)]
AA

AA
AA

AAD
k
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i is induced byΩp(mXq) → Ωp(mXq−1), thep-fold loops on the fibration;
j is induced byΩp(mXq−1) → ΩpK(mVq−1), thep-fold loops on the clas-
sifying map of the fibration,mFq−1; andk is induced byΩpK(mVq−1) →
Ωp−1(mXq), the (p − 1)-fold loops on the inclusion of the fibre. We have
identified[T,ΩrU ] with [SrT,U ].

To fix the bigrading, let the first degree denote the level in the Adams
resolution where the map is found, and the second degree denotes the codegree
for the number of suspensions. This yields

[Sm+pY,mXq] = Dq,p+q [Sm+pY,K(mVq)] = Eq,p+q.

The bidegrees ofi, j andk are(−1,−1), (0, 0) and(1,−1), respectively. When
we display the unrolled exact couple, we get

→ Ds,t
w

i Ds−1,t−1
w

i

A
A
AD

· · · w
i D1,t−s+1

w
i

A
A
AD

D0,t−s

A
A
AD

Es−1,t−1 E1,t−s+1 E0,t−s

Let X be (n − 1)-connected,Y of dimensionN and suppose thatN + m +
p < 2(n + m). By the Freudenthal suspension theorem,[Sm+pY, SmX] ∼=
{Y,X}p. Furthermore,[Sm+p+rY,mXi] ∼= [Sm+p+r+1Y,m+1Xi], if i < r.
So, we may write the groups,Ds,t andEs,t as independent ofmwhen we chose
m large enough for a givens andt. In particular, whenm is large enough,

D0,t−s = [Sm+t−sY, SmX] = {Y,X}t−s .

We really have a spectral sequence for eachm, but we think of the spectral
sequences approaching a limiting value asm grows larger.

We next apply the properties of Adams resolutions to identify theE2-term
that arises from this construction. In the system of fibrations, the mappings
j andk arise from the inclusion of the fibre and the classifying map for the
fibrationΩtK(mVs) ↪→ Ωt−1(mXs+1) −→ Ωt−1K(mVs+1). If we apply the
functor,[SmY,−], then the first differential is given by

k◦j = d1 : Es,t+s=[Sm+tY,K(mVs)]→ [Sm+t−1Y,K(mVs+1)]=Es+1,t+s.

However, form large enough,

[Sm+tY,K(mVs)] = Hom0
Ap(H∗(K(mVs)), H∗(Sm+tY ))

= Homt
Ap(H∗(K(mVs)), H∗(SmY ))

= Homt
Ap(smPs, smH∗(Y ))

= Homt
Ap(Ps, H∗(Y )).
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Also, the mappingd1 is simply

Hom0
Ap(H∗(K(mVs)), sm+tH∗(Y ))

Hom(∂,1)
−−−−−−→ Hom0

Ap(sH∗(K(mVs+1)), sm+tH∗(Y ))

where∂ is induced byΩK(mVs) → mXs+1 → K(mVs+1), which in turn
induces∂ : Ps+1 −→ Ps. Thus the following diagram commutes (up to the sign
introduced by the suspensions):

Es,t+s w
d1

Es+1,t+s

Homt
Ap(Ps, H∗(Y ))

u

∼=

w
Hom(∂,1)

Homt
Ap(Ps+1, H

∗(Y ))

u

∼=

.

This provesEs,t2
∼= Exts,tAp(H∗(X), H∗(Y )) in the spectral sequence resulting

from the exact couple and the first part of Theorem 9.1.

Convergence

The exact couple that gives rise to the spectral sequence has the “rightmost
column” of groups, obtained by applying[SmY,−] to the system of fibrations,
given byD0,t−s = {Y,X}t−s. Unrolling the exact couple, we have a sequence
of maps:

i
−→ Ds,t

i
−→ Ds−1,t+1

i
−→ · · ·

i
−→ D0,t−s = {Y,X}t−s .

We now apply the methods of Chapter 3 to determine the convergence of the
associated spectral sequence.

Lemma 9.16.dr : Es,tr −→ Es+r,t+r−1
r .

Proof: We can factordr by

dr : Es,tr
k(r)

−−→ Ds+1,t
r = i(r)Ds+r,t+r−1

j(r)

−−→ Es+r,t+r−1
r . ut

Filter {Y,X}∗ by F s{Y,X}q = im is : Ds,q+s −→ D0,q = {Y,X}q.
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Lemma 9.17.The filtration of{Y,X}∗ arising from a system of Adams resolu-
tions does not depend on the choice of Adams resolutions.

Proof: Apply Corollary 9.15 to cover the identity mapSmX → SmX
between Adams resolutions. This system of mappings shows that each filtration
is contained in the other. ut

We can relate this filtration to the spectral sequence by using Corollary 2.10,
which yields a short exact sequence, for eachr,

0 −→ Ds,∗
/ker(ir : Ds,∗ → Ds−r,∗) + iDs+1,∗

̄
−→ Es,∗r+1

k̄
−→ im(ir : Ds+r+1,∗ → Ds+1,∗) ∩ ker(i : Ds+1,∗ → Ds,∗) −→ 0.

Letr go to infinity and observe that the left hand term of the short exact sequence
stabilizes whenr = s, sinceis : Ds,∗ → D0,∗.

Lemma 9.18.There are monomorphisms

0 −→ F s{Y,X}q/F s+1{Y,X}q −→ Es,q+s∞ .

Proof: It suffices to show that

F s{Y,X}q/F s+1{Y,X}q ∼=
Ds,∗/

ker(is : Ds,∗ → D0,∗) + iDs+1,∗ .

NoticeF s{Y,X}q = isDs,q+s andF s+1{Y,X}q = i(isDs+1,q+s+1). There
are short exact sequences

0 w ker is + iDs+1,∗
w

u
is

Ds,∗
w

u
is

Ds,∗/
ker is + iDs+1,∗ w

u
ı̄s

0

0 w is+1Ds+1,∗
w isDs,∗

w F s/F s+1
w 0

These maps are onto by the Five-lemma. We show thatı̄s is also a monomor-
phism. Let[a], [b] lie inDs,∗/ ker is+iDs+1,∗. If ı̄s[a] = ı̄s[b], then̄ıs[a−b] =
[̄ıs(a − b)] = 0. This implies eitheris(a − b) = 0, and soa ≡ b (ker is), or
is(a− b) lies in is+1Ds+1,∗, which implies(a− b) lies in iDs+1,∗. In both of
these cases[a] = [b]. ut

From Lemma 9.18, we have the exact sequence;

0 −→ F s{Y,X}∗/F s+1{Y,X}∗ −→ Es,∗∞

−→
⋂

r
im(ir : Ds+r+1,∗ → Ds+1,∗) ∩ ker(i : Ds+1,∗ → Ds,∗) −→ 0.

To complete our proof of Theorem 9.1, we must show that the right term of this
short exact sequence is trivial. We first develop some properties of the filtration.
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Lemma 9.19. If α is in {Y,X}q and α is divisible bypn, then α is in
Fn{Y,X}q.

Proof: The term ‘divisible bypn’ makes sense in an abelian group, that is,
there is aβ in {Y,X}q so thatα = pnβ. We proceed by induction onn for all
spaces. The result forn = 0 is trivial.

The case ofn = 1 follows by observing that iff : Sm+qY → SmX is
such thatpf ' ∗, then the compositeSm+qY −→ SmX −→ K(mV0) is null-
homotopic since it represents classes in modp cohomology. Thereforef lifts
tomX1 and is inF 1{Y,X}q.

Assume the result forn−1. Sinceα = pnβ = pn−1(pβ), we have thatpβ
lies inF 1{Y,X}q, that is,pβ = iuwherei : mX1 → SmX andu : Sm+qY →
mX1. However,α = pn−1(pβ) = pn−1(iu) = i(pn−1u), and sopn−1u lies
in Fn−1{SmY,mX1}q. Thus there is a map,w : Sm+qY → mXn such that
in−1w = pn−1u. Thusα = i(in−1w) = inw andα lies inFn{Y,X}q. ut

Lemma 9.20.If α is in {Y,X}q andα is not divisible bypn, thenα is not in
F s{Y,X}q, for somes.

Proof: We introduce an auxiliary space constructed as follows: In{X,X}0
consider the element given bypn times the identity. Leth : SmX → SmX
represent this map. Pullback the path-loop fibration overS(h) to obtain the
spaceU :

ΩSm+1X
z

u

ΩSm+1X
z

u

U w

u

PSm+1X

u

Sm+1X w
S(h)

Sm+1X

By construction, ifX is n-connected, thenU is (n+m+ 1)-connected. IfW
is a CW-complex of dimension less than2(n+m+ 1), then by the Freudenthal
suspension theorem (Theorem 4.10)[W,ΩSm+1X] ∼= [W,SmX]. We also
have the exact sequence

[W,SmX]
pn

−→ [W,SmX] −→ [W,U ] −→ [W,Sm+1X]
pn

−→ [W,Sm+1X],

which follows from the long exact sequence for the fibration. This traps[W,U ]
between thecoker pn andker pn in the short exact sequence:

0 −→ coker pn −→ [W,U ] −→ ker pn −→ 0.

Sincepn annihilates both ends of this extension,[W,U ] is aZ/p2nZ-module.
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Let j be the first nonzero dimension withπj(U) 6= {0} (j ≥ n+m+ 1).
If j < 2(n+m+ 1), thenπj(U) is aZ/p2nZ-module by the argument above.
Consider the quotient map,πj(U)→ πj(U)/pπj(U) = πj(U)⊗Z/pZ. Since
πj(U) ⊗ Z/pZ is a vector space overFp, we can realize this quotient map by
U → K(πj(U)⊗Z/pZ, j). LetU1 be the total space of the principal fibration
induced by this map:

U1

u

w PK(πj(U)⊗ Z/pZ, j)

u

U w K(πj(U)⊗ Z/pZ, j).

The short exact sequence,0 → πj(U1) → πj(U) → πj(U) ⊗ Z/pZ → 0,
implies thatπj(U1) is pπj(U). But πj(U) is a Z/p2nZ-module, so if we
repeat this procedure enough times, we getUi1 with πj(Ui1) = {0}. Starting
onπj+1(Ui1), we can iterate the procedure until we eventually get toU ′ with
πk(U ′) = {0} for 0 ≤ k < 2(n+m+1). The tower of fibrations{Ui → Ui−1},
satisfies the conditions of Lemma 9.14 and so we have a mapping over the
inclusionSmX ↪→ ΩSm+1X ↪→ U :

mXr w

u

U ′

u
...

u

...

u

mX1 w

u

U1

u

Sm+qY wα SmX w
inc

U.

Recallα is not divisible bypn and supposeα ∈ F s{Y,X}q for all s ≤ r.
Thenα = irv for v : Sm+qY → mXr. This factors through[Sm+qY, U ′] =
{0} forSm+qY in the stable range and soα is inker(inc) = pn[Sm+qY, SmX].
But thenα = pnβ, contradicting our assumption. Therefore,α 6∈ F s{Y,X}q
for somes ≤ r. ut

Corollary 9.21. F∞{Y,X}q =
⋂
n F

n{Y,X}q = {elements of finite order
prime top in {Y,X}q}.

Notice that the assumptions thatX is of finite type andY of finite dimension
play a role in the corollary. By Proposition 5.17 and induction over skeleta,
we know that{Y,X}q is finitely generated and so there are no elements in the
group of infinite divisibility byp.
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Corollary 9.21 points out, however, that our filtration of{Y,X}q is not
Hausdorff (§3.1) and so the spectral sequence cannot be expected to have
{Y,X}∗ as its target—after all, all our constructions were done modp. We
determine the actual target as follows: For an abelian groupG let (p)G be the
p-componentof G, that is, the quotient ofG by the subgroup of elements of
finite order prime top. Then(p){Y,X}∗ = {Y,X}∗/F∞{Y,X}∗. We induce
a filtration on thep-component,(p){Y,X}∗ by

· · · ⊂ F s{Y,X}∗/F∞{Y,X}∗ ⊂ · · · ⊂ F 2{Y,X}∗/F∞{Y,X}∗
⊂ F 1{Y,X}∗/F∞{Y,X}∗ ⊂ (p){Y,X}∗.

This filtration is exhaustive and convergent (Hausdorff), that is,⋃
s
F s/F∞ = (p){Y,X}∗,

⋂
n
F s/F∞ = {0}.

Furthermore we still have monomorphisms

0 −→ F s/F∞
/
F s+1/F∞ −→ Es,∗∞ .

To complete our discussion of convergence, we prove the following lemma.

Lemma 9.22.Es,∗∞ ∼= F s(p){Y,X}∗
/
F s+1

(p){Y,X}∗.

Proof: It suffices to show that[⋂
r

(im ir : Ds+r+1,∗ → Ds+1,∗)
]
∩
[
ker(i : Ds+1,∗ → Ds,∗)

]
= {0}.

Consider the relevant piece of one of the towers;

ΩK(mVs)
z

u

w mXs+n+1 w · · · w mXs+1 w mXs

in

u

For a finite complexZ we have the exact sequence

−→ [Z,ΩK(mVs)] −→ [Z,mXs+1] −→
i

[Z,mXs] −→ [Z,K(mVs)] −→

for which ker i = im[Z,ΩK(mVs)] andp annihilatesmVs. Therefore,ker i is
p-torsion.

Apply [Z,−] again to the tower, and we can filter[Z,mXs+1] by the images
of the in. But

⋂
n im in = F∞[Z,mXs+1] and the argument of Lemma 9.20

carries over to show that
⋂
n im in contains only elements of finite order prime

top. Therefore,
⋂
n im in ∩ ker i = {0} since an element in a finitely generated

abelian group cannot bep-torsion and have finite order prime top unless it is
zero. ut
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Corollary 9.23. There is a spectral sequence, converging to(p)π
S
∗ , the p-

components of the stable homotopy groups of spheres, withE2-term given by
Es,t2

∼= Hs,t(Ap) = Exts,tAp(Fp,Fp).

In §9.5 we explore the consequences of Corollary 9.23 and compute some
of the groups(p)πS∗ for p = 2 andp = 3.

Multiplicative structure on the spectral sequence

The multiplicative structure on a spectral sequence is often pivotal in
the computations. We next introduce the composition pairing,◦ : {Y, Z}s ⊗
{X,Y }t −→ {X,Z}s+t, that is reflected in a pairing of the spectral sequences
converging to these groups. We sketch how the pairing at each level arises.
Complete proofs of the existence and properties of the pairing are given in detail
by [Douady58] or [Moss68] where different tools are to hand. We identify this
pairing at theE2-term as the Yoneda composition pairing. WhenX = Y = Z,
the pairing becomes a product and so we have a product structure on the relevant
spectral sequence.

Definition 9.24. Supposeα ∈ {X,Y }s and β ∈ {Y, Z}t and suppose that
f : Sm+sX → SmY andg : Sn+tY → SnZ representα andβ, respectively.
Define thecomposition productofα andβ, β ◦α to be the class in{X,Z}s+t
given by

Sn+m+s+tX
Sn+tf
−−−−→ Sm+n+tY

Smg
−−−→ Sn+mZ.

Proposition 9.25.The composition product is bilinear, associative and functo-
rial. The composition product induces the structure of a ring on{X,X}∗ and
furthermore,{Y,X}∗ is a left{X,X}∗-module and a right{Y, Y }∗-module.
In fact,{Y,X}∗ has the structure of a{X,X}∗–{Y, Y }∗-bimodule.

Proof: These properties follow directly from the analogous properties of the
unstable composition product,◦ : [V,W ] × [U, V ]−→[U,W ]. In particular, the
pairings

[V,W ]× [SU, V ]
◦
−→[SU,W ]

[SV,W ]× [U, V ] −→ [SV,W ]× [SU, SV ]
◦
−→[SU,W ]

are additive in the second and first factors, respectively. (For the reader who is
unfamiliar with these properties, we suggest Chapter 3 of the classic book of
[Whitehead, GW78].) ut

In the particular case ofX = S0, the ring structure on{S0, S0}∗ = πS∗
has better properties—πS∗ is graded commutative. This follows by comparing
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the composition product with the smash product:

Sp+k ∧ Sq+l w
(−1)(q+l)kEq+lα

u
Ep+kβ

��������

α∧β
Sp ∧ Sq+l

u
Epβ

Sp+k ∧ Sq w
(−1)qkEqα

Sp ∧ Sq.

We have(−1)qkEp+kβ◦Eqα = (−1)(q+l)kEq+lα◦Eqβ. This result was first
proved by [Barratt-Hilton53]. The relationship between this smash product and
theE2-term,Ext, is through the external tensor product on Ext as defined by
[Cartan-Eilenberg56]. We refer the reader to the blue book of [Adams74] for a
thorough treatment of products.

LetX be a space and construct a system of Adams resolutions forX. We
construct ‘pairings’ onD∗,∗ andE∗,∗ of the resultant exact couple, that agree
with the composition pairing on{X,X}∗. Suppose[f ] is a class in

Ds,t = [Sm+t−s+t′−s′X,m+t′−s′Xs]

and[g] is a class inDs′,t′ = [Sm+t′−s′X,mXs′ ]. By Lemma 9.14 we can lift
g through the Adams resolution:

Sm+t−s+t′−s′X w
f

m+t′−s′Xs w
gs

u

mXs′+s

u

m+t′−s′Xs−1 w
gs−1

u

mXs′+s−1

u
...

u

...

u

m+t′−s′X1 w
g1

u

mXs′+1

u

Sm+t′−s′X w
g

mXs′

We define[g] ◦ [f ] = {[gs ◦ f ] for all choices ofgs} ⊂ Ds+s′,t+t′ . Notice that
if s = s′ = 0, then this is the composition product on{X,X}∗.

Similarly we define such a ‘pairing’ onE∗,∗; let

[f ] ∈ Es,t = [Sm+t−s+t′−s′X,K(m+t′−s′Vs)]

and[g] ∈ Es′,t′ = [Sm+t′−s′X,K(mVs′)].

Because theK(V )’s are generalized Eilenberg-Mac Lane spaces and because
Sm+t′−s′X → K(m+t′−s′V0) induces an epimorphism on modp cohomology,
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we can define a mappingk0 : K(m+t′−s′V0)→ K(mVs′) so that the following
diagram commutes:

m+t′−s′X1 w
g1

u

mXs′+1

u

Sm+t′−s′X w
g

u

mXs′

u

K(m+t′−s′V0) w
k0 K(mVs′).

The mappingg1 exists since the composite

m+t′−s′X1 −→ Sm+t′−s′X −→ K(m+t′−s′V0)
k0−→ K(mVs′)

is null homotopic.
Inductively, ifgi+1 andki exist, then we can findgi+2 andki+1 by choosing

ki+1 so that the following diagram commutes

(9.26)

ΩK(m+t′−s′Vi) w
Ωki

u

ΩK(mVs′+i)

u

m+t′−s′Xi+1 w
gi+1

u

mXs′+i+1

u

K(m+t′−s′Vi+1) w
ki+1

K(mVs′+i+1)

and choosing an appropriate lifting ofgi+1. We can define the composition of
[g] and[f ] as[g] ◦ [f ] = {[ks ◦ f ] | all choices ofks} ⊂ Es+s

′,t+t′ . We make
some observations.

I. The choices made in all of the constructions differ by elements in the groups,
[SqX,F ], of homotopy classes of mappings to the fibres of the fibrations in the
towers. If[f ] and[g] are inEs,t andEs

′,t′ and they are cycles underd1, then
their product[g]◦ [f ] is also made up of cycles inEs+s

′,t+t′ and the differences

vanish as an element inEs+s
′,t+t′

2 . Thus the defined ‘pairing’ is an actual
pairing onE∗,∗2 .

II. When we apply modp cohomology to the diagrams(9.26), and compute the
effect of the mapsk∗i , then the construction is seen to be a geometric realiza-
tion of the Yoneda composition product and, in the isomorphism ofE∗,∗2 with
Ext∗,∗Ap(H∗(X), H∗(Y )), the products go over isomorphically.
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III. The composition product is filtration-preserving on{X,X}∗. To see this,
examine the commutative diagram:

SN+t+t′X

u

f

h
h
h
h
h
h
h
hhj

fp

SN+t′X

u

gq

��������������

g

N+t′X1u

u

gq+1

· · ·u N+t′Xp

u

gp+q

SNX NX1u · · ·u NXqu NXq+1u · · ·u NXp+q

This shows that◦ : F p{X,X}t′ ⊗ F q{X,X}t → F p+q{X,X}t+t′ .
IV. With some change in notation, we could have defined the ‘pairings’ for
◦ : {Y, Z}∗ ⊗ {X,Y }∗ → {X,Z}∗ just as easily.

We now state the full theorem on products in the Adams spectral sequence, due
to [Adams58] and [Moss68].

Theorem 9.27. There exist associative, bilinear pairings, functorial in the
spacesX, Y , Z, all finite dimensional CW-complexes, and, forr ≥ 2,

Es,tr (Y, Z)⊗ Es′,t′r (X,Y ) −→ Es+s
′,t+t′

r (X,Z)

such that

(1) for r = 2, the pairing agrees with the Yoneda composition pairing

Exts,tAp(H∗(Z), H∗(Y ))⊗ Exts
′,t′

Ap (H∗(Y ), H∗(X))

→ Exts+s
′,t+t′

Ap (H∗(Z), H∗(X)).

(2) The differentials,dr are derivations with respect to these pairings, that
is, in E∗,∗r (X,Z), dr(uv) = (dru)v + (−1)t−su(drv), if bideg u =
(s, t).

(3) The pairings commute with the isomorphismsEr+1
∼= H(Er, dr).

(4) The pairings converge to the composition pairing

◦ : {Y, Z}∗ ⊗ {X,Y }∗ −→ {X,Z}∗,

that is, this pairing is filtration-preserving and the induced pairing on
the associated bigraded modules is isomorphic to the pairing on the
E∞-terms of the spectral sequences.
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Of course, these pairings not only allow us to compute more easily but
they also allow us to define Massey products in the spectral sequence. We take
up this notion in§9.5.

The simplest computation reveals the role of the composition pairing. For
any prime,p, the beginning of a minimal resolution ofFp overAp may be
presented as in the diagram:

P 1

βı1

β ı1u

0 Z/pZu Z/pZu

0 Z/pZu Apu P1u

We identify an elementa0 in Ext1,1
Ap(Fp,Fp) generated by the dual of the Bock-

stein, and occurring in this resolution as the elementı1. Because the Bockstein
has degree 1, we show that it detects the mappingp : Sn → Sn, the degree
p map. Consider the complexSn ∪p en+1, the modp Moore space, and the
sequence

Sn ↪→ Sn ∪p en+1
pinch
−−−→ Sn+1.

On cohomology, we have the extension

0→ H̃∗(Sn+1) −→ H̃∗(Sn ∪p en+1) −→ H̃∗(Sn)→ 0.

Since H̃∗(Sn ∪p en+1) = Fp{xn, βxn} is a nontrivial module overAp,
this sequence identifies the only possible extension that can representa0 in
Ext1,1

Ap(Fp,Fp).
Supposel ∈ Exts,tAp(Fp,Fp) is a nonzero permanent cycle in the Adams

spectral sequence, that is,l lives toE∞. Also supposea0l is nonzero. Ifl
representsλ in (p)π

S
t−s, then, by Theorem 9.27,a0l represents the composition

of l with the element that detects the degreep mapping. We conclude that
pλ 6= 0 in (p)π

S
t−s.

Much more is known about the product structure onπS∗ . In a classic paper
[Nishida73] studied the global properties of the composition product. Using
the extended power construction on a space and work of [Kahn-Priddy78], he
proved a conjecture of Barratt that any element inπSi for i > 0 is nilpotent.

9.4 Other geometric applications

The workhorse pulling the Adams spectral sequence along is the notion
of an Adams resolutions together with convergence of the associated spectral
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sequence. The construction is applied to a sequence of spacesX, SX, S2X,
. . . . The resolution forSmX is obtained through a range of dimensions depen-
dent on the connectivity ofX. Taking these ideas as basic, we can enlarge the
compass of application of the Adams spectral sequence to sequences of spaces
with similar properties for which we can carry out the construction of an Adams
resolution and identify theE2-term of the associated spectral sequence.

Definition 9.28.A sequence of spacesX = {X1, X2, . . . , Xn, . . . } constitutes
a spectrum if, for all n, there is a mappingfn : SXn → Xn+1. A spectrum
X = {Xn} is called astable object([Adams64]) if, for eachn,Xn is (n− 1)-
connected and the mappingfn : SXn → Xn+1 is a (2n− 1)-equivalence.

Spectra were introduced by [Lima59] and [Whitehead, GW62] to study
Spanier-Whitehead duality and generalized homology theories. For our pur-
poses, a full discussion of spectra and stable homotopy theory is not needed.
The student of homotopy theory needs some exposure to these ideas. The books
of [Adams74], [Switzer75], and [Ravenel86, 92] are excellent introductions.

If X = {Xn} is a spectrum, then the cohomology and homotopy ofX are
defined as the limits:

Hq(X; k) = lim
←r

Hq+r(Xr; k), and πq(X) = lim
→r

πq+r(Xr).

When the spectrum is a stable object, these limits are achieved at some finite
stage (dependent onq). Furthermore,πq(X) is theqth stable homotopy group of
XN , for someN = N(q) andHq(X; k) = s−rHq+r(Xr; k) for somer À q.
The construction of Adams resolutions may be applied without change in the
case of a stable object.

Proposition 9.29.Let X be a stable object. Then there is a spectral sequence
with Es,t2

∼= Exts,tAp(H∗(X;Fp),Fp) converging strongly to(p)πt−s(X) under
mild conditions.

Though this appears to be a machine in search of a problem, in fact, these
remarks apply broadly to the computation of cobordism groups as found im-
plicitly in the work of [Thom54] and explicitly in the work of [Milnor60], [Li-
ulevicius62], and others. Recall that two compact differentiablen-dimensional
manifoldsM1, M2 are (unoriented)cobordant if there is a compact differen-
tiable(n+1)-dimensional manifoldW with ∂W = M1qM2 (disjoint union).
Being cobordant is an equivalence relation and the set of equivalence classes
of n-manifolds is denoted byNn. Disjoint union providesNn with the struc-
ture of an abelian group. The cartesian product provides the direct sum of the
cobordism groupsN∗ with a ring structure.
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Lemma 9.30.N∗ is a vector space overF2.

Proof: Given ann-dimensional manifoldM , consider the(n+1)-dimensional
manifold with boundaryM × I. Since the boundary ofM × I isM qM , we
have that twice the cobordism class ofM is zero inNn. ut

Cobordism was introduced in 1895 by [Poincar´e1895]. The homotopy-
theoretic study of cobordism was begun by [Pontrjagin55] who showed that the
study of cobordism classes of framed manifolds is related to the study ofπS∗ .
By a theorem of [Whitney36] ann-dimensional manifold can be embedded
in R

n+k for k large enough, and so a manifold is equipped with a normal
bundle to the embedding. A manifoldMn ⊂ Rn+k is said to beframed if the
normal bundle to the embedding is trivial. If we restrict our attention to framed
manifolds only, then cobordism remains an equivalence relation and we denote
the framed cobordism ring byΩfr

∗ .
A sufficiently small tubular neighborhood ofM in Rn+k is homeomor-

phic toM × Rk. Projection off the second factor gives a mapping toRk.
Taking the one-point compactifications ofRn+k andRk, we construct a map-
pingfM : Sn+k → Sk by sending the complement of the tubular neighborhood
ofM inSn+k to∞ and going by the composite of the homeomorphism and sec-
ond projection on the tubular neighborhood. This construction is well-defined
up to homotopy and determines a class inπn+k(Sk). When we embed the
manifold intoRn+k+1 via the canonical inclusionM ⊂ R

n+k ⊂ R
n+k+1,

the construction yieldsΣfM . Continuing in this way, we determine a class in
πSn . [Pontrjagin55] proved that all the choices made in this construction re-
main within the homotopy class and so the mappingΩfr

∗ → πS∗ is well-defined.
Furthermore, it is easy to see that it is a homomorphism.

An inverse mapping may be constructed by using some facts of differential
topology. If g : Sn+k → Sk represents a class inπSn , then we can chooseg
to be smooth. Letp ∈ Sk be a regular value ofg, that is, the differential
dgx : TSn+k

x → TSkp is of maximal rank for allx ∈ g−1({p}). Regular points
exist in abundance by the theorem of [Sard42]. The Implicit Function theorem
implies thatM(g) = g−1(p) is an n-dimensional manifold whose normal
bundle is trivial by comparing it withTSkp , a single vector space. To show
thatΩfr

∗ ∼= πS∗ it remains to show that the construction from framed manifold
to homotopy class provides the same element inπSn , that is,fM(g) ' g. For
complete details, see the classic book of [Stong68].

This construction was significantly generalized by [Thom54] in his thesis.
The normal bundleνM over ann-dimensional manifoldM embedded inRn+k

is classified by a homotopy class of a mappingF : M → BO(k). From the
embedding, we can talk of a unit disk subbundleD≤1(νM ) of the normal bundle,
as well as its boundary, the unit sphere bundleS(νM ) in νM . The key to the
generalization is theThom spaceassociated to the normal bundle,

Th(νM ) = D≤1(νM )/S(νM ).
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WhenM is compact,Th(νM ) is homeomorphic to the one-point compactifi-
cation ofνM and so this construction may be carried out for any vector bundle
over a compact space. When a vector bundleη is given by a Whitney sum,
η = ξ1 ⊕ ξ2, thenTh(η) ∼= Th(ξ1) ∧ Th(ξ2).

By taking a limit over Grassman manifolds, there is a universal Thom space,
MO(k) = Th(γk), associated to the universal dimensionk vector bundleγk
overBO(k). The Thom space construction is functorial and so the classifying
map provides a mappingTh(F ) : Th(νM ) → MO(k). The canonical inclu-
sion O(k) ⊂ O(k+ 1) corresponds to the addition of a trivial bundle toγk and
this provides a mappingfk : ΣMO(k) = Th(γk ⊕ R) → MO(k + 1). Thus
the sequence

MO = {MO(1),MO(2),MO(3), . . . }

constitutes a spectrum called theThom spectrum. ([Rudyak98] has written an
excellent book on the properties of such spectra.)

The passage from cobordism groupsNn to the homotopy groups of the
spectrumMO is made by taking a sufficiently small tubular neighborhood ofM
inRn+k that we denote byN . This space is homeomorphic to the open unit disk
bundleD<1(νM ) with boundaryS(νM ). SupposeN ⊂ Rn+k ⊂ Rn+k∪∞ =
Sn+k; we define a mappingfM : Sn+k → Th(νM ) as follows: SendN to
D<1(νM ) via the homeomorphismN ∼= D<1(νM ). Send the complement of
N in Sn+k to the basepoint ofTh(νM ) = D≤1(νM )/S(νM ). Composition
with Th(F ) determines a mappingtM : Sn+k →MO(k). When we embedM
intoRn+k+1 by the canonical inclusionM ⊂ Rn+k ⊂ Rn+k+1, the inclusion
adds a trivial bundle to the normal bundle and the construction results in the
suspensionΣtM . Thus we can pass from an embeddedn-manifoldM to a
homotopy class inπn(MO).

[Thom54] proved that this procedure is well-defined and defines a ho-
momorphism,Θ: Nn → πn(MO). The differential topology developed by
[Thom54] leads to a description of the inverse homomorphism: Consider the
zero section of the universal bundle as an inclusionBO(k) ↪→ MO(k). If
f : Sn+k →MO(k) represents a class inπn(MO) as a smooth mapping, then
the inverse image of the zero section generically gives ann-dimensional man-
ifold in Sn+k and varying the representative remains in the cobordism class.
The Whitney sum operation, as the mapping

Wh: BO(r)×BO(s) −→ BO(r + s),

provides a mapping of Thom spacesMO(r)∧MO(s)→MO(r+s) that gives
rise to a product onπ∗(MO). Since the Whitney sum of normal bundles rep-
resents the normal bundle to the product embedding, this product on homotopy
groups corresponds to the product on cobordism groups.

Theorem 9.31 ([Thom54]). As rings,N∗ ∼= π∗(MO).
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It follows from Lemma 9.30 that(2)π∗(MO) = π∗(MO) and so we can
apply the mod 2 Adams spectral sequence and hope to compute directly the
cobordism ringN∗. We turn next to the input to the spectral sequence.

Homology and cohomology of Thom spaces

In order to study the mod 2 cohomology of the spectrumMO as an alge-
bra over the Steenrod algebra, we work on the individual Thom spaces in the
spectrum. One of the main results of [Thom54] is the following computational
toehold.

Theorem 9.32 (the Thom isomorphism theorem).If ξ → B is an oriented
k-dimensional vector bundle over a spaceB of the homotopy type of a finite
complex, then, for any ringR, Hn+k(Th(ξ);R) is isomorphic toHn(B;R)
for n ≥ 0. Furthermore, there is a classUk ∈ Hk(Th(ξ);R), corresponding
in the isomorphism to1 ∈ H0(B;R), such that, for alln,Hn+k(Th(ξ);R) ∼=
Hn(B;R) ^ Uk.

Sketch of a proof: Recall thatTh(ξ) = D≤1(ξ)/S(ξ). WhenB has the
homotopy type of a finite complex, we can write

H̃∗(Th(ξ);R) = H∗(D≤1(ξ), S(ξ);R).

We next apply the Leray-Serre spectral sequence for pairs (Exercise 5.6) to the
fibration (ek, Sk−1) ↪→ (D≤1(ξ), S(ξ)) −→ B. TheE2-term is concentrated
in thekth row where we findEn,k2

∼= Hn(B;Hk(ek, Sk−1;R)) ∼= Hn(B;R).
The orientation allows us to make this isomorphism globally. The theorem
follows from convergence of the Leray-Serre spectral sequence and the cup-
product structure on the spectral sequence. (See [Milnor-Stasheff74] for a
more geometric proof.) ut

We apply this result to the universalRk-bundle,γk overBO(k). Fol-
lowing the discussion in§6.3 we know thatH∗(BO(k);F2) is isomorphic
to F2[w1, . . . , wk] where thewi are the universal Stiefel-Whitney classes and
degwi = i. Thewi may be defined from the symmetric functions on classesy1,
. . . , yk of dimension one inH∗((BO(1))×k;F2) where O(1)× · · ·×O(1) ↪→
O(k) is the inclusion of the diagonal matrices with entries±1. (O(1) ∼= Z/2Z.)

The Thom isomorphism theorem gives

H∗(MO(k);F2) ∼= H∗(BO(k);F2) ^ Uk ∼= F2[w1, . . . , wk] ^ Uk.

The zero section provides a mapBO(k) ↪→MO(k) that is compatible with the
structure maps induced by the inclusions,i : O(k) ↪→ O(k + 1). It follow that
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there is a commutative diagram:

s−(k+1)H∗(MO(k + 1);F2) w

u
(t∗)−1

s−kH∗(MO(k);F2)

u
(t∗)−1

H∗(BO(k + 1);F2) w
Bi∗

H∗(BO(k);F2)

where the vertical maps are the inverses of the Thom isomorphism and the top
horizontal map is induced by the spectrum mapΣMO(k) → MO(k + 1).
It follows that we can identifyH∗(MO ;F2) with lim←rH∗(BO(k);F2) =
H∗(BO;F2) as a vector space. There is a coproduct structure onH∗(BO;F2)
that is induced by the Whitney productWh: BO(r) × BO(s) → BO(r + s)
andH∗(BO;F2) is a Hopf algebra with this coproduct. As an algebra

H∗(BO;F2) ∼= F2[w1, w2, . . . , wk, . . . ].

The coproduct formula is given by the Whitney sum formula (Lemma 6.42).
This yields a commutative product on the dual ofH∗(BO;F2) and the Hopf
algebra in this case is self-dual, that is, as algebras,

H∗(BO;F2) ∼= F2[a1, a2, . . . , ak, . . . ].

We turn to homology in order to avoid the noncommutative product on the
Steenrod algebra. Mod 2 homology is endowed with the structure of a comodule
overAdual

2 , that is, there are homomorphisms

ψX : H∗(X;F2) −→ Adual
2 ⊗H∗(X;F2)

satisfying the dual axioms for the Steenrod algebra action. Thus the following
diagram commutes for all spacesX:

H∗(X;F2) w
ψX

u

ψX

Adual
2 ⊗H∗(X;F2)

u

1⊗ψX

Adual
2 ⊗H∗(X;F2) w

ψ⊗1
Adual

2 ⊗Adual
2 ⊗H∗(X;F2)

whereψ : Adual
2 → Adual

2 ⊗Adual
2 is the coproduct on the dual of the Steenrod

algebra.
To studyH∗(MO ;F2), we notice that the Whitney sum induces a pairing

MO(r) ∧MO(s) → MO(r + s) that commutes with the zero sections and
the Whitney sum map on the classifying spaces. With some care in identifying
generators ([Stong68, Chapter VI]), this induces a product onH∗(MO ;F2) and
gives an algebra isomorphism

H∗(MO ;F2) ∼= F2[a1, a2, . . . , ak, . . . ].
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Recall the theorem of [Milnor58] on the structure ofAdual
2 (Theorem 4.47):

At the prime 2 we have

Adual
2
∼= F2[ξ1, ξ2, . . . , ξk, . . . ],

wheredeg ξi = 2i − 1. Consider the naive splitting:

H∗(MO ;F2) ∼= F2[ai | i = 2j−1, j = 0, 1, . . . ]⊗F2[ak | k 6= 2j−1, k ≥ 2].

This decomposition suggests thatH∗(MO ;F2) may be isomorphic to an ex-
tended comodule overAdual

2 , that is,H∗(MO ;F2) ∼= Adual
2 ⊗ F2[ak | k 6=

2j − 1, k ≥ 2]. An interpretation of the results of [Thom54] by [Liulevicius62]
in the setting of Hopf algebras leads to a proof of this splitting.

Theorem 9.33.H∗(MO ;F2) ∼= Adual
2 ⊗F2[ak | k 6= 2j−1, k ≥ 2] as extended

comodules overAdual
2 .

Sketch of proof: Recall thatH∗(BO(1);F2) ∼= Γ(x1), the divided power
algebra on a generator of dimension one. The main ingredients in the proof
are: (1) The fact thatBi∗ : H∗(BO(1);F2) −→ H∗(BO;F2) is given by
γk(x1) 7→ ak. This follows from the dual representation of the universal Stiefel-
Whitney classes as symmetric polynomials in the one-dimensional classes in
H∗(BO(1)×k;F2). (2) The determination of theAdual

2 -comodule structure on
H∗(BO(1);F2) and hence, by virtue of the commutative diagram,

H∗(BO(1);F2) w
ψBO(1)

u
Bi∗

Adual
2 ⊗H∗(BO(1);F2)

u
1⊗Bi∗

H∗(BO;F2) w
ψBO Adual

2 ⊗H∗(BO;F2),

theAdual
2 -comodule structure onH∗(BO;F2) can be determined. Since the

algebra structure onH∗(BO;F2) is compatible with theAdual
2 -comodule struc-

ture, it suffices to check on generators. The comodule structure may be written
ψBO(an) =

∑n
i=0 oni ⊗ ai whereoni ∈ (Adual

2 )n−i. (4) There is another com-
mutative diagram that allows us to determine theAdual

2 -comodule structure on
H∗(MO ;F2):

H∗(BO;F2) w
ψBO

u

t∗

Adual
2 ⊗H∗(BO;F2)

u

1⊗t∗

H∗(MO ;F2) w
ψMO Adual

2 ⊗H∗(MO ;F2).
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Since the classes coming fromMO(1) are identifiable withγk(x1) ^ a1, we
get a mapH∗(BO(1);F2) → H∗(MO ;F2) given byγk(x1) 7→ ak−1. This
gives the crucial step as we can compute

ψMO(ak) =
{
ξr ⊗ 1 +

∑
l>0 ξIl ⊗ al if k = 2r − 1,

1⊗ ak + decomposables ifk 6= 2r1.

(5) Finally, we can check thatψMO(a2r−1) =
∑r
s=0 ξ

2s

r−s⊗a2s−1. This follows
from the representation of the dual classeswk as symmetric polynomials and the
pairing of the Steenrod algebra and its dual (Proposition 4 of [Liulevicius62]).
A complete exposition of all these details may be found in [Schochet71’] or
from the cohomological point of view in [Stong68]. ut

It follows from the theorem thatH∗(MO ;F2) is a free module overA2 and
soπ∗(MO) is computable immediately fromExtA2(H∗(MO ;F2),F2). But
this is the dual to the generating module for the free module.

Corollary 9.34 ([Thom54]). π∗(MO) ∼= F2[ak | k 6= 2r − 1, k ≥ 2] as
algebras.

Thom proved that there is a weak homotopy equivalence betweenMO
and a product of Eilenberg-Mac Lane spectraΣ|s(ω)|KZ/2Z with the |s(ω)|
given by the degrees of homogeneous polynomialss(ω) in F2[ak | k 6= 2r −
1, k ≥ 2]. The role of characteristic classes in distinguishing nontrivial classes
is crucial—one of the main theorems of [Thom54] is the sufficiency of the
mod 2 characteristic numbers in classifying cobordism classes of unoriented
manifolds.

Thom’s construction of the Thom spaces admits considerable generaliza-
tion. In particular, we can define theoriented cobordism ringΩSO

∗ by admitting
only oriented manifoldsM1 andM2 and requiring that a cobordismW be ori-
entable with boundaryM1 q (−M2), where−M2 is the manifoldM2 with the
opposite orientation. The normal bundles of such manifolds have a lifting of
their classifying mapfν : M → BO(n) to f̄ν : M → BSO(n). The universal
n-dimensional vector bundle overBSO(n) has Thom spaceMSO(n) and the
same argument for unoriented cobordism can be made to prove that the spaces
MSO(n) form a spectrumMSO andπ∗(MSO) ∼= ΩSO

∗ .
If one focuses on the lifting of the normal bundle to some classifying

spaceBG → BO(n), then a very general notion of cobordism is possible
([Stong68]). For almost complex manifolds, there is a lifting of the normal
bundle toBU(n)→ BO(2n) and Chern classes and numbers distinguish cobor-
dism classes. In a classic paper that introduced the application of the Adams
spectral sequence to cobordism, [Milnor60] proved thatΩSO

∗ has torsion only
at the prime 2, and thatΩU

∗ is torsion-free. Furthermore, Milnor computed
π∗(MU) by determining the structure ofH∗(MU ;Fp) for all primesp, and
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then using the Adams spectral sequence. In fact,H∗(MU ;Fp) is free over a
quotient Hopf algebra ofAp and a change-of-rings argument (Theorem 9.12)
allows the straightforward calculation of(p)π∗(MU). The homological sim-
plicity of complex cobordism led [Novikov67] in his study of a generalization
of the Adams spectral sequence founded onMU . See the book of [Ravenel86]
for more details.

Similar arguments were first carried out by [Ray72] and [Kochman80] to
obtain partial results for symplectic cobordism ([Kochman96] gave a different
approach to calculatingπ∗(MSp)).

9.5 Computations

Our point of departure is Corollary 9.23—there is a spectral sequence
with E2-term isomorphic to the cohomology of the Steenrod algebraAp, and
converging to(p)π

S
∗ . Thus the problem of computing(p)πS∗ breaks into the

problems of computingH∗,∗(Ap), and then the differentials in the Adams
spectral sequence. Finally, there is the problem of determining the extensions.

We first construct a small part of a minimal resolution forA3, the mod
3 Steenrod algebra. The computation begins easily enough and you even get
some of(3)π

S
∗ , but it quickly gets complicated. We then consider the case of

p = 2 more systematically. Following [Adams60], we are able to describe
Hs,∗(A2) in some detail fors ≤ 3. Next we put these computations to work
and find the first nontrivial differential in the spectral sequence. A corollary
is the first case of the Hopf invariant one problem. We continue the hands-on
computations with a discussion of Massey products and their relation to Toda
brackets.

Low-dimensional calculations

We begin by constructing the beginning of a minimal resolution,

0←− F3

ε
←− A3

d0←− P1

d1←− P2,

up to internal degree 9. For the most part, the discussion will be descriptive;
the reader should construct a chart of everything that is happening.

By Lemma 9.11 and Theorem 4.45,P1 hasA3-module generatorsa0 of
degree 1 andhi of degree4 · 3i = 2 · 3i · (3 − 1) for i = 0, 1, 2 . . . . These
generators correspond toβ andP 3i ; the homomorphismd0 : P1 → A3 is given
by d0(a0) = β andd0(hi) = P 3i . In the kernel ofd0 there is alreadyβa0

sinceβ2 = 0. We put a generator̄a0 in P2 with d1(ā0) = βa0. The next
phenomenon to arise in the kernel ofd0 that is not accounted for byd0(a0)
occurs in degree 9. The diligent reader making a chart will findP 2β, βP 2,
P 1βP 1 andβP 1P 1 in A3 in degree 9. The Adem relations imply that only
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two of these expressions are independent. In degree 9 inP1 there are three
independent generators,P 2a0, βP 1h0 andP 1βh0. The Adem relation

P 1βP 1 = βP 2 + P 2β

implies that the elementP 2a0−P 1βh0−βP 1h0 is in the kernel ofd0. Letg1

be inP2 in degree 9 withd1(g1) = P 2a0 − P 1βh0 − βP 1h0.
The chart should be getting a bit complicated by now. However, two simple

patterns emerge:

(1) Except for the element̄̄a0 in P3 with d2(¯̄a0) = βā0, the first generator
to appear inP3 is in degree greater than 11. This implies that we have
computedHs,t(A3) for s ≤ 2, t ≤ 11;

(2) The recurring Bockstein that arises at each stage behaves systematically
and so, if we remove the chain of generators due toβ2 = 0, the connec-
tivity of this minimal resolution implies we have computedHs,∗(A3)
for t ≤ 11 and alls.

Because the resolution is minimal,Exts,tA3
(F3,F3) = (F3 ⊗A3 Ps)

dual,
and so we have computed

Exts,tA3
(F3,F3) =


F3, (s, t) = (0, 0), (1, 1), (2, 2),

(3, 3), (1, 4), (2, 9),
{0}, elsewhere fors ≤ 3 andt ≤ 11.

SinceEs,t∞ is related to(3)π
S
t−s, we displayExts,t with t−s running horizontally

ands vertically. The differentialsdr then lowert − s degree by 1 and raises
degree byr (that is,dr goes left one space and upr spaces in the(t−s, s)-plane).
In the spectral sequence, we can display these data in the diagram:

3 ¯̄a0

2 ā0 g1

s

u

1 a0 h0

0 1

0 1 2 3 4 5 6 7 8 9

t−s w

With this chart, the connectivity of the resolution, and the evident lack of
differentials, we have computed the following stable homotopy groups.
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Proposition 9.35.

(3)π
S
n =


Z, if n = 0,

Z/3Z, if n = 3, 7,

{0}, if n = 1, 2, 4, 5, 6, 8, 9.

The reader should compare this method with the method of killing homo-
topy groups in Chapter 6 (Corollary 6.27).

If the reader has been creating a chart to keep track of the minimal resolu-
tion, it should be clear that a systematic method of computation is desirable.

We change to the prime 2 and studyH∗,∗(A2) more systematically with
the tool of choice—the change-of-rings spectral sequence (Theorem 9.12).

Theorem 9.36.LetG denote the bigraded algebra

G = F2[x0, x1, x2, . . . , ]

/
xixi+1 = 0

x2
ixi+2 + x3

i+3 = 0
xix

2
i+2 = 0

with bideg xi = (1, 2i). There are elementshi inH1,∗(A2) for i = 0, 1, 2, . . .
such thatbideg hi = (1, 2i) and a mappingα : G → H∗,∗(A2), determined on
generators byxi 7→ hi; α is a well-defined mapping of bigraded algebras and
α restricts to isomorphisms,G1,∗ → H1,∗(A2) andG2,∗ → H2,∗(A2), and
to a monomorphismG3,∗ → H3,∗(A2). All relations among products of the
generatorshi are consequences of this mapping forHs,∗(A2), s ≤ 3.

Proof ([Adams60]): To computeH∗,∗(A2), consider the supporting cochain
complex for this algebra,F∗(Adual

2 ) given by the cobar construction onAdual
2 .

Recall the coproduct forAdual
2 = F2[ξ1, ξ2, . . . ] on the generators is given

by the formula of [Milnor58]:

ϕ∗(ξi) =
∑

j+k=i
ξ2k

j ⊗ ξk (ξ0 = 1).

We proceed by a series of remarks:

I. H1,∗(A2) = F2{hi | i = 0, 1, 2, . . . , anddeg hi = 2i}. This follows from
Lemma 9.11. To determinePrim(Adual

2 ) observe thatξ1 is primitive and so,
because we are working mod 2,ξ2i

1 is also primitive fori > 0. The formula for
ϕ∗ shows that these are the only primitives. Lethi denote the class[ξ2i

1 ] in the
cobar construction.

II. If h1h0 = 0, h2
0h2 + h3

1 = 0 andh0h
2
2 = 0, then, for alli ≥ 0, hi+1hi = 0,

h2
ihi+2 + h3

i+1 = 0 andhih2
i+2 = 0.

BecauseAdual
2 is commutative, we can apply Theorem 9.10:Sq0 exists in

the Steenrod algebra that acts onH∗,∗(A2) and the Cartan formula shows that
Sq0 is multiplicative. SinceSq0hi = Sq0([ξ2i

1 ]) = [ξ2i+1

1 ] = hi+1, repeated
applications ofSq0 to the initial identities obtains the identities for alli ≥ 0.
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III. h1h0 = 0, h2
0h2 + h3

1 = 0, andh0h
2
2 = 0.

Consider the formulas in the cobar construction:

d∗([ξ2]) = [ξ2
1 | ξ1],

d∗([ξ2 | ξ2]+ [ξ2
1 | ξ1ξ2]+ [ξ2

1ξ2 | ξ1]) = [ξ4
1 | ξ1 | ξ1]+ [ξ2

1 | ξ2
1 | ξ2

1 ],
d∗([ξ3 | ξ2

1 ]+ [ξ2
2 | ξ2]+ [ξ4

1 | ξ2
1ξ2]+ [ξ2

2 | ξ3
1 ]) = [ξ4

1 | ξ4
1 | ξ1].

These formulas imply thatα : G → H∗,∗(A2) is well-defined in degreess ≤ 3.
It remains to prove thatα onG1,∗ and onG2,∗ gives isomorphisms and onG3,∗

a monomorphism.

Because we can describeAdual
2 so explicitly, we can find sub-Hopf algebras

of Adual
2 of particularly simple form. LetB′n = F2[ξ1, . . . , ξn]; thenB′n is a

sub-Hopf algebra ofAdual
2 . Furthermore, we have the short exact sequence for

eachn,
0 −→ B′n−1 −→ B′n −→ A′n −→ 0

whereA′n = B′n//B
′
n−1
∼= F2[ξn], the Hopf algebra withξn primitive. By

dualizing, we obtain the extensions of Hopf algebras

0 −→ An −→ Bn −→ Bn−1 −→ 0.

Notice that(B′n)r ∼= (Adual
2 )r for r < 2n − 1. ThusH∗,t(Bn) ∼= H∗,t(A2)

for t < 2n − 1. We will use these extensions with the change-of-rings spectral
sequence to computeH∗,∗(A2) in the desired range. To apply Theorem 9.12,
we need a further remark.

IV. An is central inBn.
Because we are not giving explicit descriptions ofAn andBn, we consider

the dual situation and ask: Does the following diagram commute?

B′n ⊗B′n w B′n ⊗A′n

u

TB′n

A
AACϕ∗

�
���

ϕ∗

B′n ⊗B′n w A′n ⊗B′n

Becauseϕ∗ is multiplicative, it suffices to check the commutativity on the
algebra generators,ξ1, ξ2, . . . , ξn. The explicit formula for the coproduct
implies that the diagram commutes.

By Theorem 9.12, for eachn, there is a spectral sequence, converging to
H∗(Bn), withEp,q2 given byHq(An)⊗Hp(Bn−1). BecauseAn is (2n − 1)-
connected,A2 = lim

←
Bn, and so we get better and better approximations to

H∗(A2) with eachH∗(Bn).
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V. H∗(An) ∼= F2[hn,i | i = 0, 1, 2, . . . ], wherehn,i denotes the class[ξ2i

n ] in
the cobar construction onA′n. This follows becauseA′n ∼= F2[ξn].

With these data, we begin an induction. Forn = 1,

H∗(B1) ∼= H∗(A1) ∼= F2[hi | i = 0, 1, 2, . . . ]

where thehi corresponds to[ξ2i

1 ] of degree2i.
Forn = 2, Ep,q2

∼= Hq(A2)⊗Hp(B1). First examined2 : E0,1
2 → E2,0

2 ;
d2([ξ2]) = [ξ2

1 | ξ1] or d2(h2,0) = h1h0. When we applySq0, we obtain
d2(h2,i) = hi+1hi. Thusd2 is monic onE0,1

2 and, sinceH1(B2) comes from
E0,1
∞ andE1,0

∞ = E1,0
2 = H1(B1), we have shownH1(B2) ∼= H1(B1) with

the isomorphism coming from the projectionB2 → B1. Notice further that we
have introduced the identitieshi+1hi = 0 intoH∗(B2).

Consider nextd2 : E1,1
2 → E3,0

2 ;E1,1
2 is isomorphic toH1(A2)⊗H1(B1)

∼= F2{h2,j ⊗ hk}. Sinced2 is a derivation,d2(h2,j ⊗ hk) = hj+1hjhk. This
differential is a monomorphism except when the dimensions conspire to give a
kernel. In particular,

d2(h2,i ⊗ hi+2 + h2,i+1 ⊗ hi) = hi+1hihi+2 + hi+2hi+1hi = 0.

Because no other differential is defined onE1,1
2 , these classes live toE1,1

∞ and
determine elements inH2(B2) that we denote by

g2,i = {h2,i ⊗ hi+2 + h2,i+1 ⊗ hi}.

These classes lie int degrees3 · 2i + 2i+2 = 7 · 2i, and so they are linearly
independent.

To finish our description ofH2(B2), we must determineE0,2
∞ . The dif-

ferentiald2 : E0,2
2 → E2,1

2 is given byd2(h2,ih2,j) = h2,j ⊗ hi+1hi + h2,i ⊗
hj+1hj , and so is nonzero except wheni = j. Thus only the classes(h2,i)2

survive toE0,2
3 .

To determined3 : E0,2
3 → E3,0

3 , we consider(h2,0)2. In the cobar con-
struction, this is the name for[ξ2 | ξ2]; by III, this element is congruent modulo
the filtration to[ξ2 | ξ2] + [ξ2

1 | ξ1ξ2] + [ξ2
1ξ2 | ξ1] which is carried byd∗ to

[ξ4
1 | ξ1 | ξ1] + [ξ2

1 | ξ2
1 | ξ2

1 ]. Thusd3((h2,0)2) = h2
0h2 + h3

1. Repeated
application ofSq0 gives

d3((h2,i)2) = h2
ihi+2 + h3

i+1.

Therefore,E0,2
∞ = {0}.

Because the spectral sequence converges toH∗(B2), we have the short
exact sequence

0 −→ E2,0
∞ −→ H2(B2) −→ E1,1

∞ −→ 0.
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We can describeE2,0
∞ asF2{hihj | j 6= i + 1} andE1,1

∞ asF2{g2,i | i =
0, 1, . . . }. Recall thet degrees of all of these elements;hihj ∈ E2,0,2i+2j

∞ and
g2,j ∈ E1,1,7·2i

∞ . We deduce thatH2(B2) is the direct sum ofE2,0
∞ andE1,1

∞ .
Finally, we determineH3(B2). In H3(B1) we have introduced the rela-

tionshi+1hihk = 0 andh2
ihi+2 + h3

i+1 = 0. We computed2 : E1,2
2 → E3,1

2 .
Again,d2 is a derivation, so on elementsh2,ih2,j ⊗ hk we have

d2(h2,ih2,j ⊗ hk) = h2,j ⊗ hi+1hihk + h2,i ⊗ hj+1hjhk.

Unlessi = j, d2 is nonzero, and soE1,2
3 = F2{h2,ih2,i⊗hk}. A subtlety enters

here: d3(h2,ih2,i ⊗ hk) = h2
ihi+2hk + h3

i+1hk follows from the derivation
property ofd3. It is possible for a relation to produce elements in the kernel of
d3 if that relation is induced byd2. Consider

d3(h2,ih2,i ⊗ hi+3 + h2,i+1h2,i+1 ⊗ hi+1)
= h2

ihi+2hi+3 + h3
i+1hi+3 + h2

i+1hi+3hi+1 + h3
i+2hi+3.

The first and last terms are 0 sincehl+1hl = 0 and the middle vanishes as a pair.
Since no other differential affectsE1,2

3 , we have determined a flock of classes
in E1,2

∞ , denoted by

f2,i = {h2,ih2,i ⊗ hi+3 + h2,i+1h2,i+1 ⊗ hi+1}
= {[ξ2i

2 | ξ2i

2 | ξ2i+3

1 ] + [ξ2i+1

2 | ξ2i+1

2 | ξ2i+1

1 ]}.

Once again, thet degrees of thef2,i show that they are linearly independent.
Next considerd2 : E0,3

2
∼= H3(A2) → H2(A2) ⊗H2(B1) ∼= E2,2

2 . The
formula

d2(h2,ih2,jh2,k) = h2,jh2,k⊗hi+1hi+h2,ih2,k⊗hj+1hj+h2,ih2,j⊗hk+1hk

is enough to show thatd2 is a monomorphism; therefore,E0,3
∞ = {0}. To

finish offH3(B2), we considerd2 : E2,1
2 → E4,0

2 . A class inE2,1
2 is a sum of

classes of the formh2,i ⊗ hjhk, andd2(h2,i ⊗ hjhk) = hi+1hihjhk. Many
relations can be obtained by manipulating subscripts; however, most of these are
generated by the image ofd2 : E0,2

2 → E2,1
2 and so are known. The exceptions

are of the form
h2,i ⊗ hi+2hk + h2,i+1 ⊗ hihk,

which is seen to beg2,ihk. These classes are missed byd2 and so give permanent
cycles. However, they are not linearly independent in the rest ofH3(B2).
VI. g2,ihi+1 = h2

i+2hi in H3(B2).
To prove this, observe that in the cobar complex,

d∗([ξ2
2 | ξ2]+[ξ4

1 | ξ2
1ξ2]+[ξ2

2 | ξ3
1 ]) = [ξ4

1 | ξ4
1 | ξ1]+[ξ4

1 | ξ2 | ξ4
1 ]+[ξ2

2 | ξ1 | ξ2
1 ],
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which representsh2
2 + g2,0h1. SinceSq0g2,i = g2,i+1, this formula proves VI.

If the reader has kept track of the new elements inH3(B2), then, because
the internal degrees of these elements all differ, we have shown thatH3(B2)
containsF2{hihjhk | i 6= j+1, j 6= k+1} moduloh2

ihi+2 = h3
i+1, as well as

F2{f2,i | i = 0, 1, . . . } andF2{g2,ihj | g2,ihi+1 = h3
i+2hi}. We next proceed

in our induction toH∗(B3).
Forn = 3, Ep,q2

∼= Hq(A3)⊗Hp(B2). First examined2 : E0,1
2 → E2,0

2 .

d2(h3,0) = {d∗([ξ3])} = {[ξ2
2 | ξ1]+[ξ4

1 | ξ2]} = {h2,1⊗h0+h2,0⊗h2} = g2,0.

When we applySq0, we obtaind2(h3,i) = g2,i. Thusd2 is monic onE0,1
2 and

therefore,E0,1
∞ = {0}. This showsH1(B3) ∼= H1(B2) ∼= H1(B1) with the

isomorphisms induced by the projectionsB3 → B2 → B1.
Consider nextd2 : E1,1

2 → E3,0
2 . By the derivation property ofd2, we

haved2(h3,i ⊗ hj) = g2,ihj . If j = i + 1, this still makes sense and we
get d2(h3,i ⊗ hi+1) = g2,ihi+1 = h2

i+2hi, which introduces a new relation
among the 3-fold products of elements inH1(B3). Looking at sums inE1,1

2

we consider classesh3,i ⊗ hi+3 + h3,i+1 ⊗ hi. Apply the differential to get

d2(h3,i ⊗ hi+3 + h3,i+1 ⊗ hi)
= g2,ihi+3 + g2,i+1hi

= {h2,i ⊗ hi+2 + h2,i+1 ⊗ hi}hi+3 + {h2,i+1 ⊗ hi+3 + h2,i+2 ⊗ hi+1}hi
= 0, sincehl+1hl = 0.

This determines classesg3,i = {h3,i ⊗ hi+3 + h3,i+1 ⊗ hi} in E1,1
∞ and so in

H2(B3). The classesg3,i lie in t degrees2i(23 − 1) + 2i+3 = 15 · 2i and so
are linearly independent.

To finish the description ofH2(B3), considerd2 : E0,2
2 → E2,1

2 :

d2(h3,ih3,j) = h3,j ⊗ g2,i + h3,i ⊗ g2,j ,

which is nonzero unlessi = j. Next considerd3 : E0,2
3 → E3,0

3 on the remain-
ing classes(h3,i)2. In the cobar construction forB3, [ξ3 | ξ3] is identified mod-
ulo the filtration with[ξ3 | ξ3]+[ξ2ξ3 | ξ1]+[ξ4

1ξ3 | ξ2]+[ξ2
2 | ξ1ξ3]+[ξ4

1 | ξ2ξ3].
The differential on this sum is[ξ8

1 | ξ2 | ξ2] + [ξ2
2 | ξ2

2 | ξ2
1 ] which repre-

sents{h2
2,0 ⊗ h3 + h2

2,1 ⊗ h1} = f2,0. By applyingSq0, we have shown
d3((h3,i)2) = f2,i.

ThusH2(B3) is the direct sum,

F2{hihj | j 6= i+ 1} ⊕ F2{g3,i | i = 0, 1, . . . } .

Next, let us considerH3(B3). Notice that inH3(B3) the relations

hi+1hihk = 0, hihk+1hk = 0, h2
ihi+2 + h3

i+1 = 0 andh2
i+2hi = 0
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hold for 3-fold products of generators ofH1(B3). In order to show that these
are the only relations, we continue the induction and we determine more of
H3(B3).

Considerd2 : E1,2
2 → E3,1

2 . The formula,

d2(h3,ih3,j ⊗ hk) = h3,j ⊗ g2,ihk ⊗ g2,jhk,

showsd2 is nonzero unlessi = j, so we haveE1,2
3 = F2{h3,ih3,i ⊗ hk}.

Furthermore,d3((h3,i)2 ⊗ hk) = f2,ihk. This produces a kernel, however,
when we consider the representative expressions for thef2,i:

d3(h3,ih3,i ⊗ hi+4 + h3,i+1h3,i+1 ⊗ hi+1)
= f2,ihi+4 + f2,i+1hi+1

= {h2,ih2,i ⊗ hi+3 + h2,i+1h2,i+1 ⊗ hi+1}hi+4

+ {h2,i+1h2,i+1 ⊗ h1+4 + h2,i+2h2,i+2 ⊗ hi+2}hi+1 = 0.

We denote the classes{h3,ih3,i⊗hi+4 +h3,i+1h3,i+1⊗hi+1} by f3,i inE1,2
∞ .

Thet degrees of thef3,i are15 · 2i+1 and so they are linearly independent.
Next, we leave it to the reader to check thatd2 andd3 mapE0,3

2 andE0,3
3

in such a way as to leaveE0,3
∞ = {0}. In E2,1

2 , we find the classesg3,ihj
left over after clearing the image ofd2 : E0,2

2 → E2,1
2 and the classes mapped

nontrivially byd2 : E2,1
2 → E4,0

2 . If we checkt degrees, however, it is possible
for more than oneg3,ihj to inhabit the same degree. The classes that require
comparison areg3,ihi−1 andg3,i−1hi+3. Writing them out, we see that

g3,ihi−1 = {h3,i ⊗ hi+3hi−1 + h3,i+1 ⊗ hihi−1} = {h3,i ⊗ hi+3hi−1},
g3,i−1hi+3 = {h3,i−1 ⊗ hi+2hi+3 + h3,i ⊗ hi−1hi+3} = {h3,i ⊗ hi−1hi+3},

and so we must introduce the relationg3,ihi−1 = g3,i−1hi+3. Some amusing
number theory can be employed to show that the other classes occur in differing
t degrees and so we find classesg3,ihj , for i 6= j + 1, all linearly independent.
ThusH3(B3) is seen to containF2{hihjhk | i 6= j + 1, j 6= k + 1} modulo
the relationshihi+2 = h3

i+1 andh2
i+2hi = 0, F2{g3,i | i = 0, 1, . . . } and

F2{g3,ihj | i 6= j + 1}.
We can now summarize the inductive step in a series of formulas that

extend the pattern above:

(1) There is a spectral sequence, converging toH∗(Bn) with

Ep,q2
∼= Hq(An)⊗Hp(Bn−1).

(2) H1(Bn−1) ∼= F2{hi | i = 0, 1, . . . }
H2(Bn−1) ∼= F2{hihj | i 6= j + 1} ⊕ F2{gn−1,i | i = 0, 1, . . . }
H3(Bn−1) containsF2{hihjhk} modulo the relationshi+1hihk = 0,
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h2
ihi+2 + h3

i+1 = 0 andh2
i+2hi = 0 plus the direct sumF2{fn−1,i |

i = 0, 1, . . . } ⊕ F2{gn,ihj | i 6= j + 1}.
(3) d2(hn,i) = gn−1,i, d3((hn,i)2) = fn−1,i.
(4) There are new classes inE1,1

∞ and so inH2(Bn) given by

gn,i = {hn,i ⊗ hi+n + hn,i+1 ⊗ hi}.

These classes are a result of the relationgn−1,i+1hi = gn−1,ihn+i. The
relationgn,i+1hi = gn,ihi+n+1 is seen to hold for the newgn,i.

(5) There are new classes inE1,2
∞ and so inH3(Bn) given by

fn,i = {hn,ihn,i ⊗ hi+n + hn,i+1hn,i+1 ⊗ hi+1}.

These classes are a result of the relationhk+1hk = 0, and the expressions
for fn−1,i.

The reader can check that thet degrees of the new classes grows to infinity
asn goes to infinity. What is left in the limit,H∗(A2), is the set of classes
{hi | i = 0, 1, . . . } and the two and three fold products, subject to the relations
we have derived. This proves Theorem 9.36. ut

The chart on the next page summarizes the data forH∗(A2) given in
Theorem 9.36 and for a small range oft − s. We follow the convention of
writing Hs,t(A2) on the lattice point(t − s, s). We also use the convention
(due to [Tangora66]) of joining two classes together by a vertical line if one is
the product of the other withh0, and by a line of slope 1 if one is the product
of the other withh1.

The diligent reader can write out the first few stages of a minimal resolution
to see that nothing occurs above filtration degree 3 for0 < t− s < 5, and the
tower ofhr0 continues to infinity (this also follows from the discussion at the
end of§9.3 and the fact that(2)π

S
0 = Z).

3 • • • • • •
2 • •�

�
• h2

2 • •'
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3 •
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u
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��
h2 h3
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h4
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Corollary 9.37.

(2)π
S
n
∼=


Z, if n = 0,

Z/2Z, if n = 1, 2,

Z/8Z, if n = 3,

{0}, if n = 4, 5.

Proof: From the diagram we must first dispense with the possibility that
dr(h1) = hr0 for somer. We use the fact thatdr is a derivation and compute

0 = dr(h1h0) = h0dr(h1) = hr+1
0 6= 0,

a contradiction. Therefore,dr(h1) = 0 for all r andh1 is a permanent cycle.
As for theZ/8Z ∼= (2)π

S
3 , the discussion at the end of§9.3 shows that the

relationsh2 6= 0, h0h2 6= 0 andh2
0h2 6= 0 describe an element in(2)π

S
3 with 4

times that element nonzero. This forces the composition series for(2)π
S
3 to be

0 ⊂ Z/2Z ⊂ Z/4Z ⊂ Z/8Z = (2)π
S
3 . ut

In order to do further calculation of(2)π
S
∗ , more ofH∗,∗(A2) is necessary

than computed in Theorem 9.36. In fact, not all ofH3,∗(A2) is given by 3-fold
products, as we see later. A more powerful technique for computingH∗,∗(A2)
is given in§9.6. In the meantime, we obtain some geometric consequences of
our computations.

The first nontrivial differentials

The problem of the existence of elements inπS∗ with Hopf invariant one
has been reduced to the study of the Steenrod operationSq2

i

and whether it acts
nontrivially on a two-cell complex. BecauseSq2

i

is dual toξ2i

1 in Adual
2 , the

Adams spectral sequence further reduces the question to the survival ofhi in

E1,2i

2 toE1,2i

∞ .
If hi survives toE1,2i

∞ , it detects a class in(2)π
S
2i−1. The stable homotopy

ringπS∗ is graded commutative and so the square of the class detected byhi has
order2 because[hi] ◦ [hi] = (−1)2i−1[hi] ◦ [hi] and so2[hi] ◦ [hi] = 0. This
implies that the classh0h

2
i that represents2[hi]◦ [hi], which is nonzero ifi ≥ 3,

cannot survive toE∞ by the identification of products withh0 in Ext with the
doubling map onπS∗ . The kind reader will forgive the following algebraicdeus
ex machina:

Fact. Exts,s+13
A2

(F2,F2) = {0} for all s.

With our present techniques, the proof of this is a good day’s work con-
structing a minimal resolution. More elegant and streamlined techniques will
be presented later. Notice that this implies(2)π

S
13 = 0.
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Proposition 9.38 ([Toda55], [Adams58]). There is no element of Hopf invariant
one inπ31(S16) = πS15 and so there is no division algebra structure onR16.

Proof: We considerh0h
2
3 in E3,17

2 . BecauseEs,s+13
2 = {0} for all s, no

differential onh0h
2
3 has a nonzero image andh0h

2
3 is an infinite cycle. Since

it cannot survive toE∞, it must be a boundary. There is only one possible
nonzero differential, that is,d2(h4) = h0h

2
3. Henceh4 does not survive toE∞.

ut
We remark on the extraordinary blend of topology and algebra in this proof.

The graded commutativity ofπS∗ and anExt computation together imply a deep
result.

The next question to consider is whether this technique propagates through
the spectral sequence to settle completely the Hopf invariant one problem? A
quick glance forward to the charts in§9.6 shows that we cannot naively proceed
even toh5 (in particular,Hs,s+29(A2) 6= {0} for somes). Something more is
needed. Our goal for the rest of this section is to outline how to prove:

Theorem 9.39.d2(hi) = h0h
2
i−1, for i ≥ 4.

In a celebrated paper, [Adams60] gave the first proof of this theorem based
on a generalization of the factorization of Steenrod operations of [Adem52].
The equationd2(h4) = h0h

2
3 is equivalent to a nontrivial factorization ofSq16

into products of primary and secondary cohomology operations. Therefore,
Sq16 cannot act nontrivially onS16 ∪α e32 for anyα in π31(S16). The fac-
torization is based on secondary operations,Φi,j that arise from the Adem

relationSq2
i

Sq2
j

=
∑

0≤s<j
bsSq2

s

(i ≤ j, i 6= j − 1). [Adams60] showed

that a decomposition,Sq2
n

=
∑

i,j
ai,jΦi,j with ai,j ∈ A2 and modulo some

indeterminacy, holds for alln ≥ 4. This settles the Hopf invariant one problem.
We note that [Bott-Milnor58] and [Kervaire58] had also settled the di-

vision algebras question shortly after Adams by using K-theory techniques.
[Maunder63, 64] developed the notion of higher order cohomology operations
and related them generally to differentials in the Adams spectral sequence. The
connections between these operations, Theorem 9.2 and the operations in§9.1
were clarified by [Maunder63, 64].

Another way to show thatd2(hi) = h0h
2
i−1 is to consider the Steenrod

algebra that acts onExt∗,∗A2
(F2,F2) and the fact that this action intertwines

with the differentials in the spectral sequence. A priori, there seems to be lit-
tle connection as this action is a formal feature of the cohomology of a Hopf
algebra. The missing geometric link was forged by [Kahn70] using the ge-
ometric construction called thequadratic construction on a pointed space,
(X,x0): First form the spaceSn ¦ (X ×X), whereU ¦ V = U × V/ ∗ ×V ,
and then take the quotientΓn(X) = Sn ¦ (X ×X)/(θ, x, x′) ∼ (−θ, x′, x).
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The inclusion ofSn ↪→ Sn+1 as equator determines a natural transformation
Γn(X) → Γn+1(X) and the quadratic construction is the direct limit of the
natural transformations:

Γ∞(X) = lim
n→∞

Γn(X).

[Kahn70] showed that this construction carries the chain homotopy that gives
rise to the Steenrod operations onH∗,∗(A2) and so these operations can be
related to the differentials.

The theorem that applies to the question at hand is given in the formula of
[Milgram72]:

d2(Sqi(α)) = h0Sqi+1(α),

which holds if α ∈ Exts,tA2
(F2,F2) and i ≡ t (mod 2). Sincehi is in

Ext1,2i

A2
(F2,F2) and2i ≡ 0 (mod 2),d2(Sq0hi) = h0Sq1(hi), that is,d2(hi+1)

= h0h
2
i , which holds fori ≥ 1 by Theorem 9.10. This technique has been em-

ployed with great success to determine many of the known differentials in the
Adams spectral sequence ([Kahn70], [Milgram72], and [Bruner84]).

In §9.6 we return to the question of differentials in the Adams spectral
sequence and discuss some other methods to determine them.

Massey products

Before we leave the computations that can be done by hand, we fill in
more of our chart by considering the analogue of Massey products for a bigraded
differential algebra. Ordinary Massey products and their higher order analogues
are discussed in§8.2.

Ext∗,∗Γ (k, k) = H∗,∗(Γ) is computed from a differential bigraded alge-
bra, (B∗,∗, d) = (F∗(Adual

2 ), d∗), the cobar construction, with its differen-
tial of bidegree(1, 0). In such a bigraded algebra, suppose[u] is a class in
Hs,t(B∗,∗, d), [v] in Hs′,t′(B∗,∗, d) and [w] in Hs′′,t′′(B∗,∗, d), and further-
more,[u][v] = 0 = [v][w]. Then we can define theMassey triple product

〈[u], [v], [w]〉 ⊂ Hs+s′+s′′−1,t+t′+t′′(B∗,∗, d)

by taking elementsa inBs+s
′−1,t+t′ andb inBs

′+s′′−1,t′+t′′ such thatda = uv
anddb = vw, whereu ∈ [u], v ∈ [v], andw ∈ [w]. As in §8.2,

〈[u], [v], [w]〉 = {[aw ± ub] | all possible choices ofa, b, u, v, w},

where we denote the homology class of an elementt by [t]. The indeterminacy

for 〈[u], [v], [w]〉 is given by[u]Hs′+s′′−1,t′+t′′ +Hs+s′−1,t+t′ [w]. The higher
order analogues of the Massey product can be defined as in§8.2 with the extra
index kept in tow.
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Theorem 9.36 presents many trivial products that can give rise to triple
products inH∗,∗(A2). We next record some nontrivial Massey products. In
particular, we compute in detail thatc0 = 〈h2

2, h0, h1〉 andh1c0 are nontrivial.
Other computations are left as exercises or given in the references. The iden-
tification of Massey products inExt also follows by special spectral sequence
arguments first given by [Ivanovski˘ı64] and by [May64].

We begin with an exercise for the reader. These relations were identified
by [Adams60] and follow from the formulas in the proof of Theorem 9.36:

〈hi, hi+1, hi〉 = h2
i+1, 〈hi+1, hi, hi+1〉 = hi+2hi, 〈hi+2, hi+1, hi〉 = g2,i.

These dispose of the most obvious choices for Massey products.
The next relations to try areh2

2h0 = 0 andh0h1 = 0. In the cobar
construction, these products vanish because the following formulas hold:

[ξ4
1 | ξ4

1 | ξ1] = d∗([ξ3 | ξ2
1 ] + [ξ2

2 | ξ2] + [ξ4
1 | ξ2

1ξ2] + [ξ2
2 | ξ3

1 ])
[ξ1 | ξ2

1 ] = d∗([ξ2 + ξ3
1 ]).

Thus, inH3,11(A2), 〈h2
2, h0, h1〉 contains the class

{[ξ3 | ξ2
1 | ξ2

1 ]+[ξ2
2 | ξ2 | ξ2

1 ]+[ξ4
1 | ξ2

1ξ2 | ξ2
1 ]+[ξ2

2 | ξ3
1 | ξ2

1 ]+[ξ4
1 | ξ4

1 | ξ2+ξ3
1 ]}.

In fact, this class is the unique representative for〈h2
2, h0, h1〉 since the indeter-

minacy of〈h2
2, h0, h1〉 is h2

2 Ext1,3 + Ext2,9 h1 = {0}.
To show〈h2

2, h0, h1〉 is nonzero, it suffices to show that it is nonzero in
H3(B4) since11 < 24−1. We first identify it inH3(B3). Observe that the class
can be identified with[ξ3 | ξ2

1 | ξ2
1 ] modulo the filtration in the cobar construction

for B3 and so it names the classh3,0 ⊗ h1h1 in E2,1
2 = H1(A3)⊗H2(B2) in

the spectral sequence converging toH∗(B3).

d2(h3,0 ⊗ h1h1) = g2,0h1h1 = h2
2h0h1 = 0

and soh3,0 ⊗ h1h1 gives a class inE2,1
3 that persists toE2,1

∞ . Checking the
degrees of the other nonzero classes inH3(B3), we find {h3,0 ⊗ h1h1}, of
t degree11, is not accounted for by classeshihjhk, f3,i or g3,ihj .

To see that{h3,0 ⊗ h1h1} determines a nonzero class inH3(B4), we
consider the next spectral sequence and

d2 : H1(A4)⊗H1(B3) = E1,1
2 −→ E3,0

2 = H3(B3).

SinceE1,1
2 is 15-connected in this case,〈h2

2, h0, h1〉 lives toH3(B4) and hence
to a nonzero class inH3,11(A2).

A similar dimension counting argument can be given for the class

〈h2
2, h0, h1〉h1 = {h3,0 ⊗ h1h1h1}.
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Thus we have identified two new elements inExt3,11 andExt4,13, denoted by
c0 andh1c0 by [May64].

The cobar construction is a very large complex to use for computing Massey
products. [Ivanovski˘ı64] and [May64] worked in more manageable complexes
from which to computeH∗,∗(A2). We summarize some of their computations
in low degrees. We picture only the Massey product elements.

11 •
10 •h

hh

•
9 P 2h1


P 2h2

8 •
7 • P 1c0

[
[

•
6 •h

hh

• • •N
N
N

•
5 P 1h1


P 1h2 • •h

h

•
s

u

4 • d0


e0

3 c0
h
h

2

7 8 9 10 11 12 13 14 15 16 17 18 19

t−s w

Theorem 9.40.For t− s ≤ 19, the following Massey products are nonzero and
their products withh0 andh1 are given in the chart. (The operatorsP 1 and
P 2 are periodicity operators that will be defined in§9.6.)

(1) c0 = 〈h2
2, h0, h1〉 in Ext3,11,

(2) P 1h1 = 〈h1, h
4
0, h3〉 in Ext5,14,

(3) P 1h2 = 〈h2, h
4
0, h3〉 in Ext5,16,

(4) d0 = 〈h0, h
2
2, h

2
2, h0〉 in Ext4,18,

(5) e0 = 〈h2, c0, h2, h1〉 in Ext4,21,
(6) f0 = 〈h2

0, h
2
3, h2〉 moduloh2

0h2h4 in Ext4,22,
(7) c1 = 〈h2, h1, h

2
3〉 in Ext3,22,

(8) P 1c0 = 〈c0, h4
0, h3〉 in Ext7,23,

(9) P 2h1 = 〈h1, h
8
0, h4〉 = 〈〈h3, h

4
0, h1〉, h4

0, h3〉 in Ext9,26,
(10) P 2h2 = 〈h2, h

8
0, h4〉 = 〈〈h3, h

4
0, h2〉, h4

0, h3〉 in Ext9,26.

For a more extensive and complete description of Massey products in the coho-
mology of the Steenrod algebra, the reader can consult the paper of [Tangora94].
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If the reader adds this chart to the results of Theorem 9.36, then the de-
scription ofExts,t for t − s ≤ 19 is almost complete. The missing data are
given by a theorem of [Novikov59] that adds the relations

h3
1h4 = h2

0h2h4 6= 0 andhk0hm 6= 0 for k < 2m−1.

[Novikov59] showed thath2m

0 hm+1 = 0 for m ≥ 2. [Maunder65] showed the
nontriviality of the productshl0hm+1 for l < 2m by comparing the Adams spec-
tral sequence converging to(2)π

S
∗ with the Adams spectral sequence converging

to (2)π
S
∗ (BU(2q, . . . ,∞)), the stable homotopy groups of the2q-coconnected

cover ofBU. With these facts, the description in these limited degrees is com-
plete. We discuss some of the differentials in§9.6.

Massey products are a formal consequence of the structure of a differential
graded algebra. In cohomology they capture higher order linking phenomena.
We can ask if there is a topological interpretation of the Massey products in the
Adams spectral sequence. The product structure on stable homotopy groups of
spheres is identified with the composition product that shows up as the Yoneda
product on theE2-term. We need the notion of secondary products for the
composition product, introduced by [Toda59].

Definition 9.41.Letγ ∈ [X,Y ],β ∈ [Y, Z] andα ∈ [Z,W ]. Supposeβ◦γ and
α◦β are null-homotopic in[X,W ]. Letc, b,abe mappings representingγ,β and
α, respectively. There are extensions ofb◦canda◦b toCX → Z andCY →W ,
which we denote byB andC, respectively. WriteSX = C+X ∪ C−X and
consider the mappingSX → W given onC+X as a ◦ B and onC−X as
C ◦ c. The set of all such mappings is denoted〈α, β, γ〉 ⊂ [SX,W ], called
the Toda bracket of α, β and γ. It has indeterminacy given by the subset
α#[SW, Y ] + (Sγ)#[SX,Z].

The definition, like the definition for Massey products, can be generalized
to n-fold Toda brackets and matric Toda brackets. Furthermore, if we apply
the definition to representatives of mappings inπS∗ , by careful suspension, we
can define Toda brackets of stable maps for which the Toda brackets represent
cosets inπS∗ . [Toda62] gave extensive computations ofπn+k(Sn) for k ≤ 19,
using this secondary bracket product to determine and name many elements.
[Cohen, J68] proved thatall of πS∗ can be represented by higher order Toda
brackets applied to integer multiples of the classesı ∈ πS0 , η ∈ πS1 , ν ∈ πS3 ,
σ ∈ πS7 andα1 ∈ πS2p−3 for each odd primep.

Massey products of all orders may be defined inExt ∼= E2. Their rela-
tionship to differentials can lead to a connection with Toda brackets. [Moss70]
provided a description in some cases. Broadly stated, he proved that Massey
products of permanent cycles, under certain conditions, converge to Toda brack-
ets inπS∗ (in fact, the main result of [Moss70] applies more generally to the
composition product◦ : {Y,W}∗ × {X,Y }∗ → {X,W}∗).
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Theorem 9.42 ([Moss70]). Let (Es,tr , dr) denote theEr-term of the Adams
spectral sequence converging to(p)π

S
∗ .

(1) Supposea ∈ Es,tr , b ∈ Es′t′r , andc ∈ Es′′,t′′r satisfyab = 0 andbc = 0.
Then

dr(〈a, b, c〉) ⊂
〈
dra, a ,

b 0
(−1)idrb b

,
c

(−1)i+i
′
drc

〉
,

the matric Massey product, wherei = t− s, i′ = t′ − s′.
(2) If adrb = 0 andbdrc = 0, then

dr〈a, b, c〉 ⊂ −〈dra, b, c〉 − (−1)i〈a, drb, c〉 − (−1)i+i
′〈a, b, drc〉.

(3) If a, b and c are permanent cycles representingα in πSi , β in πSi′ and
γ in πSi′′ with α ◦ β = 0 andβ ◦ γ = 0, then, under certain technical
assumptions on the filtrations ofa, b andc, the Massey product〈a, b, c〉
contains a permanent cycle that is realized by an element of the Toda
bracket〈α, β, γ〉.

The simplest example of this is given by the elementc0 in H3,11(A2).
Looking ahead to the more complete table,c0 is a permanent cycle andh2

2,h0 and
h1 satisfy the unspoken filtration conditions of the theorem. Thus〈h2

2, h0, h1〉
represents a Toda bracket that is given in Toda’s notation as〈ν2, 2ı, η〉.

9.6 Further structure

The element-by-element arguments of§9.5 led to many useful results; in
this section we take a different point of view and discuss the spectral sequence for
(p)π

S
∗ in more global terms. We begin with two deep theorems of [Adams66].

The first determines conditions ons and t for which Exts,tA2
(F2,F2) = {0}.

The second reveals portions ofExts,tA2
(F2,F2) that are isomorphic via periodic-

ity operators; this periodic phenomenon determines infinitely many nontrivial
values of theE2-term of the spectral sequence.

We then return to the computation ofH∗,∗(Ap) to exploit the fact that
the Steenrod algebra is a graded Hopf algebra. The method of computation is
called the May spectral sequence and was introduced by [May64]. Tables for
H∗,∗(A2) andH∗,∗(A3) in a range are given. We then discuss some of the
techniques to determine differentials in the Adams spectral sequence. We close
the chapter with some remarks on further developments involving the Adams
spectral sequence.

The vanishing line

The main theorem of this section gives a description of the cohomology of
the Steenrod algebra in the large. The proof is due to [Adams61, 66] forp = 2,
and to [Liulevicius63] forp, an odd prime.
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Theorem 9.43. Let U(n) denote the function on natural numbers given by
U(4s) = 12s− 1, U(4s+ 1) = 12s+ 2, U(4s+ 2) = 12s+ 4, U(4s+ 3) =
12s+ 6. ThenExts,tA2

(F2,F2) = {0}, for 0 < s < t < U(s).
For p, an odd prime,Exts,tAp(Fp,Fp) = {0}, for 0 < s < t < (2p− 1)s− 2.

The vanishing condition in terms ofn = t − s, the stem dimension, is
given by0 < t − s < U(s) − s. By definition,U(s) − s < 2s and so the
conditionn < U(s)− s is satisfied whens > n/2. In other words, above the
line of slope1/2 in the (t − s, s) plane,Exts,tA2

(F2,F2) = {0}. This line is
called thevanishing line.

Recall that theexponent of a groupG is the least natural number,m,
such that allmth powers of elements inG are zero. The vanishing line of
Theorem 9.43 puts an upper bound on the length of a composition series for the
stable homotopy groups of spheres.

Corollary 9.44.For n ≥ 1, the exponent of(2)π
S
n is less than2f(n) wheref(n)

is the minimum of{s | n < U(s)− s− 1}. The exponent of(p)πSn is less than
pg(n) whereg(n) is the minimum of{s | n < (2p− 1)s− s− 3}.

We give a proof of Theorem 9.43 in the casep = 2. We proceed by a
series of lemmas to prove a slightly weaker result that is strengthened later by
the periodicity isomorphisms.

Consider another numerical function,T (n), given by

T (4s) = 12s, T (4s+1) = 12s+2, T (4s+2) = 12s+4, T (4s+3) = 12s+7.

LetA(r) denote the subalgebra ofA2 generated by{Sq1,Sq2, . . . ,Sq2
r}.

Lemma 9.45.Exts,tA2
(A(0),F2) = {0} whens ≤ 4 and0 < s < t < T (s).

Proof: Observe first that the suspension isomorphism on graded modules
over a graded algebra satisfies the relation fort ≥ r: Homt

Γ(srM,N) =
ΓMod(srM, stN) ∼= ΓMod(M, st−rN) = Homt−r

Γ (M,N). It follows that

Exts,tΓ (srM,N) ∼= Exts,t−rΓ (M,N).

Following [Adams66], we consider the extension overA2:

0→ sF2 → A(0)→ F2 → 0.

This extension determines a class inExt1,1
A2

(sF2,F2) ∼= Ext1,0
A2

(F2,F2), which
is given byh0 and corresponds toSq1. The short exact sequence leads to a
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long exact sequence ofExt groups, here abbreviated asExts,tA2
(sF2,F2) =

Exts,t(sF2), Exts,tA2
(F2,F2) = Hs,t, andExts,tA2

(A(0),F2) = Exts,t(A(0)):

→ Exts−1,t(sF2)
∂
−→ Hs,t −→ Exts,t(A(0)) −→ Exts,t(sF2)

∂
−→ Hs+1,t → .

The reader can consult the charts in§9.5 to prove the lemma in the bide-
grees stated (there are 11 cases). Whenever the boundary homomorphism∂
is nonzero, it is given by multiplication byh0, and the result follows. ut

We next restrict our attention to a particular class ofA2-modules. An
A2-moduleL is anA(r)-module for anyr becauseA(r) is a subalgebra of
A2. Therefore we can speak ofL being a freeA(r)-module. The relation
Sq1Sq1 = 0 provides a neat criterion for a module to be free overA(0): Take
Sq1 : L → L as a differential and compute the homologyH(L,Sq1); anA2-
moduleL is free overA(0) if and only if H(L,Sq1) = {0}. This follows
becauseSq1x = 0 if and only ifx = Sq1y. (For generalizations of this idea see
the work of [Adams-Margolis71], [Margolis83], and [Palmieri92].)

Lemma 9.46.SupposeL is anA2-module, free overA(0), andL is (n − 1)-
connected (that is,Lt = {0} for t < n). ThenExts,tA2

(L,F2) = {0} for s ≤ 4
and0 < s < t < n+ T (s).

Proof: Let {b1, b2, . . . , bj , . . . } ⊂ L be anA(0) basis forL and letL(m)
be the submodule overA(0) generated by thebi of degree≥ m. Notice that
L(n) = L, thatL(m) is anA2-submodule ofL and thatL(m)/L(m+ 1) is a
freeA(0)-module on basis elements of degreem. Therefore, we can write

L(m)/L(m+ 1) ∼=
⊕

smA(0).

We proceed by induction onm. Consider the short exact sequence

0 −→ L(m)/L(m+ 1) −→ L/L(m+ 1) −→ L/L(m) −→ 0.

Lemma 9.45 applies, with a dimension shift, toL(m)/L(m + 1) and so we
have

Exts,tA2
(L(m)/L(m+ 1),F2) = {0}

for s ≤ 4, 0 < s < t < T (s) + m. If m = n, thenL/L(m) = {0} and the
lemma holds trivially. If the lemma holds for values up tom, then the long
exact sequence,

−→ Exts,tA2
(L/L(m),F2) −→ Exts,tA2

(L/L(m+ 1),F2)

−→ Exts,tA2
(L(m)/L(m+ 1),F2) −→ ,

provides the inductive step. Finally, for a givens andt one can findm large
enough thatExts,tA2

(L,F2) ∼= Exts,tA2
(L/L(m),F2). This proves the lemma.ut
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Lemma 9.47. SupposeL is an A2-module, free overA(0), and (n − 1)-
connected. Then, for0 < s < t < n+ T (s), Exts,tA2

(L,F2) = {0}.

Proof: Suppose we are given a short exact sequence ofA2-modules

0 −→ L1 −→ L2 −→ L3 −→ 0,

and suppose two of the three modules isA(0)-free. When we apply the functor
H( ,Sq1) to the short exact sequence we get a long exact sequence on homology.
It follows immediately that the third module isA(0)-free since itsSq1-homology
must vanish. We use this observation in what follows.

Lemma 9.46 gives us the lemma fors ≤ 4, that is, fork = 0 ands = 4k+i,
for i = 1, . . . , 4. Suppose the lemma holds for all modules and for values ofs
less than4k + 5. Let

0←− L
ε
←− C0

d0←− C1

d1←− C2

d2←− C3

d3←− C4

be anA2-free resolution ofL. Since theCi areA2-free, they areA(0)-free.
It follows that the modulesker di areA(0)-free, for i = 0 to 4. Let M =
ker d2 = im d3. For a minimal resolution, Lemma 9.46 implies thatM is
(n+ 11)-connected. Therefore

Exts,tA2
(M,F2) = {0},

for s ≤ 4k + 4, 0 < s < t < n+ 12 + T (s). However, becauseM = im d3,

Exts,tA2
(M,F2) = Exts+4,t

A2
(L,F2)

and so the lemma holds fors less than4(k + 1) + 5. ut

Corollary 9.48.Exts,tA2
(F2,F2) = {0} for 0 < s < t < V (s) whereV (s) is the

function given byV (4s) = 12s−3,V (4s+1) = 12s+2,V (4s+2) = 12s+4,
V (4s+ 3) = 12s+ 6.

Proof: Consider the short exact sequence

0 −→ I(A2)/I(A2) · Sq1 −→ A2/I(A2) · Sq1 −→ F2 −→ 0.

The minimal resolution forA2/I(A2) · Sq1 is particularly simple and implies
that, fors > 0, t 6= s,

Exts,tA2
(A2/I(A2) · Sq1,F2) = {0}.

It follows from the long exact sequence associated to the extension that

Exts,tA2
(F2,F2) ∼= Exts−1,t

A2
(I(A2)/I(A2) · Sq1,F2)
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for t > s > 0. The moduleI(A2)/I(A2) · Sq1 is 1-connected and free over
A(0)—this follows from the formulaSq1SqI = SqI

′
whenI = (i1, . . . , ir) 6=

(0), andi1 is even, whileSq1SqI = 0 wheni1 is odd. The corollary follows
from Lemma 9.47 and the appropriate expression forV (n). ut

Notice thatV (n) = U(n) for n 6≡ 0 (mod 4); to prove Theorem 9.43
we only need to settle one further case. We do this next. The proof for odd
primes is similar and the appropriate homological algebra was developed by
[Liulevicius62].

Periodicity

The use of subalgebras ofA2 in proving structure theorems aboutExt was
very fruitful in §9.5. We continue to study the family of subalgebrasA(n) =
〈Sq1,Sq2, . . . ,Sq2

n〉, the subalgebra ofA2 generated by the indecomposables
Sq1 toSq2

n

. The first such subalgebra,A(0) is isomorphic to an exterior algebra
on a single generator of degree one. We can pictureA(1) as in the diagram,
where 1 is the bottom element, and each circle is a basis element. The straight
line connections are given by multiplying (on the left) bySq1, and all curved
line connections are given by multiplying bySq2.

We construct a minimal resolution ofA(0) as anA(1)-module, from the
following short exact sequence:

0←− A(0)←− A(1)
d1←− A(1)a⊕A(1)b

d2←−
A(1)u⊕A(1)v

d3←− A(1)t←− s12A(0)←− 0,

whered1(a) = Sq2, d1(b) = Sq2Sq1, d3(u) = Sq2a + Sq1b, d3(v) = Sq2b,
andd4(t) = Sq2Sq1u+ Sq2v (The reader is encouraged to make a chart of this
resolution using pictures ofA(1)). We can extend this sequence to a complete
minimal resolution ofA(0) overA(1) that is periodic of order 4 and degree 12.
This implies the following result.
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Lemma 9.49. Exts,tA(1)(A(0),F2) ∼= Exts+4,t+12
A(1) (A(0),F2), for s > 0.

The quibble ats = 0 has to do with the units inA(0) andA(1). An immediate
corollary of the lemma is the isomorphism forA(1)-modules, free overA(0):

Exts,tA(1)(L,F2) ∼= Exts+4,t+12
A(1) (L,F2).

The proof follows the same lines as the proof of Lemma 9.46.
Ext groups have an interpretation in terms of equivalence classes of finite

exact sequences; the piece of a minimal resolution we constructed gives a class
in Ext4,12

A(1)(A(0), A(0)) and the isomorphism in Lemma 9.49 can be obtained by
splicing (Yoneda multiplication) with this class. There is also the composition
pairing that determines a right action:

Exts,tA(1)(L,F2)⊗Hs′,t′(A(1))→ Exts+s
′,t+t′

A(1) (L,F2).

Our first goal is to describe the isomorphism betweenExts,tA(1)(L,F2) and

Exts+4,t+12
A(1) (L,F2) as multiplication on the right with a class inH4,12(A(1)).

From this viewpoint we will see how to generalize.

Lemma 9.50. Ext4,12
A(1)(F2,F2) ∼= Ext4,12

A(1)(A(0),F2) ∼= F2. Furthermore,
right multiplication by the unique class{u} ∈ Ext4,12

A(1)(F2,F2) gives the iso-

morphismExts,tA(1)(A(0),F2) ∼= Exts+4,t+12
A(1) (A(0),F2).

Proof: Consider the short exact sequence ofA(1)-modules:

0→ sF2 −→ A(0) −→ F2 → 0.

This induces a long exact sequence ofExt groups:

→ H3,11(A(1))
∂
−→ H4,12(A(1)) −→ Ext4,12

A(1)(A(0),F2) −→ H4,11(A(1))→ .

The six-term exact sequence that starts a minimal resolution ofA(0) over
A(1) determines a class inExt4,12

A(1)(A(0),F2). By constructing a minimal

resolution ofF2 overA(1), the reader will find thatH3,11(A(1)) ∼= {0} ∼=
H4,11(A(1)), and that the isomorphism at bidegree (4,12) is induced by the
quotientη : A(0)→ F2.

If 0← F2 ← Q• is a minimal resolution ofF2 overA(1), then there is a
morphism of exact sequences:

0 A(0)u

u
η

A(1)u

u

P1u

u

P2u

u

P3u

u

s12A(0)u

u

0u

0 F2u A(1)u Q1u Q2u Q3u Q4u

u
u

· · ·u

s12F2
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Let u : Q4 → s12F2 denote the map representing the unique class{u} ∈
H4,12(A(1)). To complete the proof of the lemma, we show that right multi-
plication by the cohomology class ofu determines the isomorphism given by
left multiplication by the class of the six term short exact sequence given by the
minimal resolution ofA(0) overA(1).

A minimal resolution ofA(0) can be constructed from the six-term exact
sequence,

0←− A(0)←− A(1)←− P1 ←− P2 ←− P3 ←− s12A(1)←− s12P1 ←− · · · .
Given a class inExts,tA(1)(A(0),F2), it may be represented by a cohomology

class of a homomorphismf : Ps → stF2. Lift this mapping through the mini-
mal resolution0← F2 ← Q•, suspendedt times.

The commutativity of the diagram

Ps+4 w
vs

u
f4

s12Ps

u
s12f

stQ4 w
stu

st+12F2,

wherevs is the isomorphism that carries the periodicity of the resolution ofA(0)
overA(1), follows by the properties of the resolutions and liftings. The different
composites imply that multiplication on the right by{u} ∈ Ext4,12

A(1)(F2,F2) is
isomorphic to left multiplication by the element determined by the periodicity
of the resolution. ut

We next generalize the isomorphism of Lemma 9.49 to the other subalge-
brasA(n) of A2. Our point of departure is the observation thatH4,12(A2) =
{0} = H5,12(A2), while H4,12(A(1)) ∼= F2. More generally, we observe
that, forr ≥ 3, we havehr+1h

2r

0 = 0 in H∗,∗(A2): Consider the composite
of Steenrod operations acting onH∗,∗(A2): Sq2

r

Sq2
r−1 · · ·Sq2Sq1(h1h0). By

Theorems 9.10 and 9.36, one finds that, forr ≥ 2,

Sq2
r · · ·Sq2Sq1(h1h0) = hr+1h

2r

0 .

Sinceh3h
4
0 = 0, it follows thathr+1h

2r

0 = 0 for r ≥ 3.
These relations suggest the following construction: The dual of the inclu-

sion i : A(r) ↪→ A2, annihilatesξ2r+1

1 , the class dual toSq2
r+1

. Let cr be a
class inF∗(Adual

2 ) such that

d∗(cr) = [ξ1 | · · · | ξ1︸ ︷︷ ︸
2r times

| ξ2r+1

1 ],

which representsh2r

0 hr+1. The classi∗cr in F∗(A(r)dual) is a cycle. We
let ωr = {i∗cr} denote the cohomology class ofi∗cr in H2r,3·2r (A(r)).
[Adams66] described explicit representatives for the classesωr using thê 1-
product on the cobar construction. We need the following facts from this explicit
construction:
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Fact 1. ω2 in H4,12(A(2)) maps nontrivially to the class{u} in H4,12(A(1))
that induces the isomorphism in Lemma 9.49.

To see this, consider the short exact sequence of finite Hopf algebras,

0→ A(1) −→ A(2) −→ A(2)//A(1)→ 0 :

A(2)//A(1) is an exterior algebra that is 3-connected, and so the associated
long exact sequence provides an isomorphismH4,12(A(2)) → H4,12(A(1)).
[Adams66] gives a nonzero class forω2 and so it must go over to the unique
generator forH4,12(A(1)).
Fact 2. Under the inclusionA(r) → A(r + 1), the classωr+1 maps to(ωr)2

in cohomology,H∗(A(r + 1))→ H∗(A(r)).
This also follows from the explicit representative given by [Adams66].

The cobar classescr may be used to define Massey products; letker(h2r

0 )
denote the subset ofExts,tA2

(L,F2) of elements whose product (on the right)

with h2r

0 vanishes. In the cobar construction,Ldual⊗F∗(Adual
2 ), leta represent

a classα = {a} ∈ Exts,tA2
(L,F2) satisfyingαh2r

0 = 0; let y be such that
d∗y = a[ξ1 | · · · | ξ1]. Define the homomorphism

P r−1 : ker(h2r

0 )→
Exts+2r,t+3·2r

A2
(L,F2)

Exts+2r−1,t+2r

A2
(L,F2)hr+1

by P r−1(α) = {acr + y[ξ2r+1

1 ]}. Notice thatP r−1 is well-defined because
the choices are absorbed into the quotient. Sincecr is a specific choice of
element withd∗(cr) = [ξ1 | ξ1 | · · · | ξ2r+1

1 ], this classP r−1(α) can be
further projected toExts+2r,t+3·2r

A2
(L,F2) modulo indeterminacy where the

indeterminacy is given by

Exts,t+2r+1

A2
(L,F2)h2r

0 + Exts+2r−1,t+2r

A2
(L,F2)hr+1.

ThusP r−1(α) represents the Massey product〈α, h2r

0 , hr+1〉.
Consider the mapping

− ◦ ωr : Exts,tA(r)(L,F2) −→ Exts+2r,t+3·2r
A(r) (L,F2),

given by the composition product on the right withωr.

Lemma 9.51.The following diagram commutes:

ker(h2r

0 ) w
P r−1

u

i∗

Exts+2r,t+3·2r
A2

(L,F2)

Exts+2r−1,t+2r

A2
(L,F2)hr+1

u
i∗

Exts,tA(r)(L,F2) w−◦ωr Exts+2r,t+3·2r
A(r) (L,F2)
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Proof: i∗(acr + y[ξ2r+1

1 ]) = (i∗a)(i∗cr) = (i∗a) ◦ ωr. ut
This shows that the mapping− ◦ ωr is computable in terms of Massey

products. This identification will be sharpened as we proceed.

Theorem 9.52.If L is an(n− 1)-connected module overA(r) that is free over
A(0), then− ◦ ωr : Exts,tA(r)(L,F2) → Exts+2r,t+3·2r

A(r) (L,F2) is an isomor-
phism fors ≥ 0 andt < n+ 4s.

Proof: For s = 0, the result follows because theExt groups vanish in these
degrees. We proceed by induction ons andt − n. Consider the short exact
sequence

0 −→ K −→ A(r)⊗A(1) L −→ L −→ 0.

We make some useful observations:

Fact 3 (A change-of-rings theorem).If H is a sub-Hopf algebra of a cocom-
mutative Hopf algebraΓ over a fieldk, thenΓ is free as an algebra overH,
and furthermore, for allΓ-modulesL,

Exts,tH (L, k) ∼= Exts,tΓ (Γ⊗H L, k).

Fact 4. If L is anA(r)-module that is free overA(0), then, forr ≤ ρ ≤ ∞,
A(ρ)⊗A(r) L is free overA(0).

Fact 3 follows from a theorem of [Milnor-Moore65]. Fact 4 is proved
by [Adams66, p. 368] from an explicit choice of representatives for the dual
comodules.

SinceL is free overA(0) and, by Fact 4,A(r)⊗A(1)L is free overA(0), we
have thatK is free overA(0). Notice also thatK is(n+3)-connected. Consider
the commutative diagram, where we have writtenHs,t(M) for Exts,tA(r)(M,F2):

Hs−1,t(A(r)⊗A(1) L) w

u
ωr

Hs−1,t(K) w

u
ωr

Hs,t(L) w

u
ωr

Hs+2r−1,t+3·2r (A(r)⊗A(1) L) w Hs+2r−1,t+3·2r (K) w Hs+2r,t+3·2r (L) w

Hs,t(A(r)⊗A(1) L) w

u
ωr

Hs,t(K) w

u
ωr

Hs+2r,t+3·2r (A(r)⊗A(1) L) w Hs+2r,t+3·2r (K) w

By induction, we assume the results hold up tos − 1 and for all (N − 1)-
connected modules andt−N < 4(s− 1). The first and fourth vertical arrows
are isomorphisms by applying the change-of-rings to getHs,t(A(r)⊗A(1)L) ∼=
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Exts,tA(1)(L,F2). This isomorphism takesωr to (ω2)2r−2
, which is an isomor-

phism fort−(n+4) < 4(s−1) by Lemma 9.49. SinceK is (n+3)-connected,
the second and lastωr are isomorphisms fort − (n + 4) < 4(s − 1), that is,
t − n < 4s. The Five-lemma implies that the thirdωr is an isomorphism and
the theorem is proved. ut

In order to extend this result about subalgebras ofA2 to the entire Hopf
algebra, we need the following approximation result.

Theorem 9.53.Supposer ≤ ρ ≤ ∞andi : A(r)→ A(ρ) denotes the inclusion
of Hopf algebras. Then, ifL is anA2-module that is free overA(0) and(n−1)-
connected, then the induced homomorphism

i∗ : Exts,tA(ρ)(L,F2) −→ Exts,tA(r)(L,F2)

is an isomorphism for0 < s < t < n+ 2r−1 + T (s− 1).

Proof: We consider once more the short exact sequence ofA(ρ)-modules,
each free overA(0):

0→ K → A(ρ)⊗A(r) L→ L→ 0.

By definition,K is(n+2r+1−1)-connected. By Lemma 9.47,Exts,tA(ρ)(K,F2)
vanishes whent < n+ 2r+1 +T (s− 1) and theorem follows from the change-
of-rings isomorphism. ut

We combine theorems 9.52 and 9.53 with the results on vanishing to prove
the main result of this section.

Theorem 9.54.SupposeL is anA2-module that is free overA(0) and(n− 1)-
connected. Forr ≥ 2 ands > 0, the mappingP r−1 induces an isomorphism

P r−1 : Exts,tA2
(L,F2)→ Exts+2r,t+3·2r

A2
(L,F2)

whenevert < n+ min(4s, 2r+1 + T (s− 1)).

Proof: If t < n+ 2r+1 + T (s− 1), then

t+ 2r < n+ 2r+1 + 2r + T (s− 1)
< n+ 12 · 2r + T (s− 1)
= n+ T (s+ 2r − 1).



        

440 9. The Adams Spectral Sequence

By Lemma 9.47,Exts+2r,t+2r

A2
(L,F2) = {0} and soExts,tA2

(L,F2)h2r

0 = {0}.
Similarly Exts−2r−1,t+2r

A2
(L,F2)hr+1 = {0}. Thus we have the following

diagram from Lemma 9.51:

Exts,tA2
(L,F2) w

P r−1

u
i∗

Exts+2r,t+3·2r
A2

(L,F2)

u
i∗

Exts,tA2
(L,F2) w−◦ωr Exts+2r,t+3·2r

A2
(L,F2).

By Theorem 9.53,i∗ is an isomorphism in both cases. Sincet < n + 4s, it is
also the case that− ◦ ωr is an isomorphism. ThusP r−1 is an isomorphism.ut

Corollary 9.55.For r ≥ 2, the mappingP r−1 induces an isomorphism

P r−1 : Exts,tA2
(F2,F2) −→ Exts+2r,t+3·2r

A2
(F2,F2)

for 1 < s < t < min(4s− 2, 2 + 2r+1 + T (s− 2)).

The proof of this follows as in the proof of Corollary 9.48. Notice that the
isomorphism,

Exts,tA2
(F2,F2) ∼= Exts−1,t

A2
(I(A2)/I(A2) · Sq1,F2)

is induced by multiplication on the left by the equivalence class of the extension

0 −→ I(A2)/I(A2) · Sq1 −→ A2/I(A2) · Sq1 −→ F2 −→ 0

lying in Ext1,0
A2

(F2, I(A2)/I(A2) · Sq1).
We have showed already thatH4,12(A2) = {0}. Applying the operator

− ◦ ω2 repeatedly, we getH4k,12k(A2) = {0} for all k. This completes
the proof of Theorem 9.43. It also shows thatHs,t+2r+1

(A2)h2r

0 = {0} for
s > 0. This group appears in the indeterminacy of the Massey product of
P r−1. By carefully tracking through the isomorphisms one concludes that, for
1 < s < t < min(4s− 2, 2 + 2r+1 + T (s− 2)) andα ∈ Hs,t(A2),

P r−1(α) = 〈α, h2r

0 , hr+1〉 modulo{0}.

We leave it as an exercise in the definition of Massey products to showP r−1 ◦
P r−1 = P r.

The reader should look ahead to the tables to see how the periodicity
interacts with the vanishing line to determine that the vanishing is best possible.
We note further that the results of [Moss70] show how the periodicity operator
interacts with the differentials in the spectral sequence.
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The May spectral sequence

In spite of our understanding of some of the global features ofH∗,∗(Ap)
and our ability to compute in low dimensions, we still need an effective technique
to compute large parts of theE2-term of the Adams spectral sequence. The
Princeton thesis of [May64] provided such a method. The point of departure
for this work is the observation of [Milnor-Moore65] that Hopf algebras are
endowed with certain natural filtrations. In this space we cannot present all
of the details of May’s work. We can give the thread of the argument. For
the relevant definitions and further details, we refer the reader to the papers of
[Milnor-Moore65] and [May64, 66].

Let (Γ, φ, ψ, ε, η) denote a graded Hopf algebra over a fieldk with product
ϕ, coproductψ, augmentationε and counitη. Following [Milnor-Moore65],Γ
is filtered: LetI(Γ) denote the augmentation ideal, then we filterΓ by letting
FnΓ = Γ, if n ≥ 0, andF−nΓ = im(ϕn : I(Γ)⊗n → I(Γ)), whereϕn is the
iterated product. Denote the associated bigraded object by

(E0Γ)q,r = (FqΓ/Fq−1Γ)q+r.

Fact: E0Γ is a primitively generated Hopf algebra, that is, the natural mapping
Prim(E0Γ)→ Q(E0Γ) is an isomorphism.

We assume henceforth thatk = Fp for p, a prime, the case of interest forAp.
Let Prim(Γ) denote the space of primitives in the Hopf algebraΓ.

Fact: Prim(Γ) is a restricted Lie algebra.

A restricted Lie algebra is a graded Lie algebra overFp, sayL, together with
a map,β : Ln → Lpn, defined forn, even, ifp is an odd prime, and for alln, if
p = 2, such that, for some graded algebraA, there is a monomorphism of Lie
algebras,f : L −→ A, such that the diagram for eachn

Ln w
β

u

fn

Lpn

u

fpn

An w
ξ

Apn

commutes, whereξ is the Frobenius mapξ(x) = xp. The Lie bracket product
onPrim(Γ) is the canonical graded commutator.

To each Lie algebraL, one can associate an algebraU(L) called the
universal enveloping algebra. If L is restricted, an algebraV (L) can be
defined that has a compatible Frobenius map. BothU(L) andV (L) are Hopf
algebras.

Fact: If Γ is a primitively generated Hopf algebra overFp, thenΓ is isomorphic
to V (Prim(Γ)) as a Hopf algebra.

A corollary of this fact is thatE0Γ is isomorphic toV (Prim(E0Γ)) for any
Hopf algebraΓ overFp. With these definitions and facts, we can now state the
main theorem of [May66].
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Theorem 9.56.Given a filtered, augmented algebraΓ over a fieldk, there is a
spectral sequence, converging strongly toExt∗,∗Γ (k, k), with differentialsdr of
bidegree(r, 1− r), andE∗,∗2

∼= Ext∗,∗E0Γ(k, k).

For a graded Hopf algebraΓ overFp, E0Γ ∼= V (Prim(E0Γ)) and so we
can turn to the theory of restricted Lie algebras for tools to determine theE2-
term of this spectral sequence. In particular, the cohomology of a Lie algebra is
defined to be the cohomology of its universal enveloping algebra. In this context,
[May66] introduced small resolutions, resembling Cartan’s constructions and
Koszul resolutions, to computeH∗,∗(V (Prim(E0Γ))).

By determiningE0Ap and applying these methods, [May66] proved the
following computational result.

Theorem 9.57. For p = 2, Ext∗,∗E0A2
(F2,F2) ∼= H∗(R, d), whereR is the

bigraded polynomial algebraF2[Ri,j | i ≥ 0, j ≥ 1] on generatorsRi,j of
bidegree(1, 2i(2j − 1)) and the differentiald is given on generators by

d(Ri,j) =
∑j−1

k=1
Ri,kRi+k,j−k .

The product onExt∗,∗E0A2
(F2,F2) is induced by the polynomial product.

For p, an odd prime,Ext∗,∗E0Ap(Fp,Fp) ∼= H∗(S, d), whereS is the bi-
graded commutative algebra⊗

i≥0,j≥1
Λ(Ri,j)⊗ Fp[Si]⊗ Fp[R̃i,j ]

on generatorsRi,j , R̃i,j andSk, of bidegree(1, 2p
i

(pj−1)), (2, 2pi+1(pj−1))
and(1, 2pk − 1), respectively, and the differential is given on generators by

d(R̃i,j) = 0, d(Ri,j) =
∑j−1

k=1
Ri,kRi+k,j−k, d(Si) =

∑i−1

k=0
Ri−k,kSk.

The product onExt∗,∗E0Ap(Fp,Fp) is induced by the product on this algebra.

Though theE2-terms of these spectral sequences appear simple, there are many
differentials and the product structure onE0 Ext∗Ap(Fp,Fp) is not the one in-
duced by the spectral sequence. These obstacles can be overcome and [May64]
computedHs,t(Ap) for t− s ≤ 2(p− 1)(2p2 + p+ 2)− 4, whenp is an odd
prime, and fort−s ≤ 42, whenp = 2. [Tangora70] extended these techniques
to computeHs,t(A2) for t− s ≤ 70. Other filtrations of the initial datum,Ap,
are possible leading to other versions of the May spectral sequence with com-
putational aspects better suited to a given problem. For a thorough discussion
of these ideas, see Appendix A.1 of the book of [Ravenel86].
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Machine calculations ofH∗,∗(Ap) have been made since 1964 ([Liule-
vicius66]). [Bruner93] used minimal resolutions and considerable computing
expertise to push the tables of knownExt groups forHs,t(A2) to t− s ≤ 88,
with t ≤ 116 ands < 38.

We have given the tables forH∗,∗(A2) andH∗,∗(A3) for t− s ≤ 35. The
reader is referred to [May64] and [Tangora70] for the origins and naming of the
elements in the May spectral sequence and the relations between them. Other
tables ofExt have been prepared by [Shick93], [Bruner93], by [Nassau] (an
internet page that featuresh2 connections), and by [Hatcher] (another internet
page that features different axes for whichh2 connections are horizontal lines).
These charts are the raw data from which we will compute some ofπS∗ .

Extensions and differentials

Having computed a portion of theE2-term of the Adams spectral sequence
we next determine the differentials in this range. As you have come to expect,
this can be a difficult task. Furthermore, once we have determined even part of
theE∞-term, we only have a composition series for each(p)π

S
t−s. There can be

extension problems. In this section, we discuss techniques that help determine
differentials. Having done this, we settle some extension problems in order to
give the reader an idea of how one can approach them.

The most successful methods for constructing differentials are those that
arise from geometric properties. The first example of this is the graded com-
mutativity ofπS∗ (Theorem 9.38). This forced classesh0h

2
i , for i ≥ 3, to be in

the image of a differential. The difference between the ring structure on(2)π
S
∗

and the ring structure onE∗,∗0 ((2)π
S
∗ ) ∼= E∗,∗∞ induced through the spectral

sequence fromE2 must be accounted for by differentials.
Another geometric idea is the nontriviality of secondary and higher order

cohomology operations.[Maunder64] showed how higher order operations can
be related to differentials, the primary examples being the decompositions of
Sq2

n

by [Adams60] and the decomposition ofP p
n

by [Liulevicius62]. These
decompositions correspond tod2(hi+1) = h0h

2
i , for p = 2 and i > 3, and

d2(hi) = a0bi−1, for p an odd prime.

Theorem 9.58.LetX andY be CW-complexes of finite type overFp with Y
finite dimensional and let

0←− H∗(X;Fp)←− C0 ←− C1 ←− C2 ←− · · ·

be anAp-free resolution ofH∗(X;Fp). Then there is a family of higher order
cohomology operations,{Φr,s}, associated toC0 ← C1 ← C2 ← · · · such
that, in the Adams spectral sequence converging to(p){Y,X}∗, the differential
dr : Es,tr → Es+r,t+r−1

r is given byΦs+r,s acting onH∗(Y ;Fp).
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That is, ifu ∈ Es,tr , then it has a representative

ū ∈ Es,t1 = Homs,t
Ap(C∗, H∗(Y ;Fp))

on whichd1, d2, . . . , dr−1 vanish, on whichΦs+r,s is defined, andΦs+r,s(ū)
is a coset ofEs+r,t+r−1

1 identified withdr(u).
Another source of differentials are the known stable groups themselves. If

theE2-term of the Adams spectral sequence lies before us and a known group
(2)π

S
n does not agree with the initial data, a differential must be nontrivial to

correct the discrepancy. The computations of [Toda62] provide a geometric
‘priming’ for the Adams spectral sequence with explicit groups(p)π

S
n for 0 ≤

n ≤ 19. For convenience, we list these data for the prime2 (we write(Z/nZ)⊕k

for Z/nZ⊕ Z/nZ⊕ · · ·Z/nZ, k times):
TODA’S TABLES

n (2)π
S
n generators comments

0 Z ı

1 Z/2Z η {h1}
2 Z/2Z η2 {h2

1}
3 Z/8Z ν {h2}, 4ν = η3

4 {0}
5 {0}
6 Z/2Z ν2 {h2

2}
7 Z/16Z σ {h3}
8 (Z/2Z)⊕2 ν̄, ε ησ = ν̄ + ε

9 (Z/2Z)⊕3 ν3, µ, η ◦ ε {h3
2 = h2

1h3}, ην̄ = ν3

10 Z/2Z η ◦ µ
11 Z/8Z ζ {P 1h2}
12 {0}
13 {0}
14 (Z/2Z)⊕2 σ2, κ {h2

3}
15 Z/32Z⊕ Z/2Z ρ, η ◦ κ
16 (Z/2Z)⊕2 η∗, η ◦ ρ ηρ = σµ

17 (Z/2Z)⊕4 η ◦ η∗, ν ◦ κ, η2 ◦ ρ, µ̄ η2ρ = εµ

18 Z/8Z⊕ Z/2Z ν∗, η ◦ µ̄ η2η∗ = 4ν∗, ηµ̄ = µ2

19 Z/8Z⊕ Z/2Z ζ2, σ̄ P 2h2, c1
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Theorem 9.59 ([May64]). There is only one pattern of differentials consistent
with Toda’s data onEs,t2 for t− s ≤ 19. This pattern is given by

d2(h4) = h0h
2
3

d3(h0h4) = h0d0, d3(h2
0h4) = h2

0d0

d2(e0) = h2
1d0

d2(f0) = h0h2d0, d2(h0f0) = h2
0h2d0.

The reader will find proving this theorem quite straightforward and instruc-
tive. Notice that a relation in theE2-term has been made part of the statement
of the theorem, that is,h0e0 = h2d0. This can be shown using identities with
Massey products.

These differentials immediately imply later ones by virtue of the product
structure and the relations between differentials and the periodicity operators.
This allows us to compute stable stems.

Corollary 9.60. The following differentials are implied by the previous ones.
For i ≥ 0,

dr(P id0) = 0, for all r, dr(P ign) = 0, for all r,

d2(P ie0) = P ih2
1d0, d2(P ij) = P i+1h2d0, d2(P ik) = P i+1h0g.

Proof: We show the case forP ij. First of all,d2P
i = P id2 can be shown to

follow from a homotopy computation or Theorem 9.42. Among the relations
that hold inExt (see [Tangora70]), we findh0j = h2i = P 1f0. Also, from
the structure of the May spectral sequence,P 1xy = xP 1y = yP 1x, where
it applies. Thush2

0j = P 1h0f0 = P 1h1e0 = e0P
1h1 and sod2(h2

0j) =
d2(e0P

1h1) = h2
1d0P

1h1 = P 1h3
1d0 = P 1h2

0h2d0 = h2
0P

1h2d0. It follows
thatd2(j) = P 1h2d0.

The other relations that enter this proof includeh2e0 = h0g,P i+1h1h3 =
P ih2

1d0, P 1h4 = h2g, P 1g = d2
0, d0g = e2

0. We add thati = P 1h2
0h4. ut

This corollary allows one to compute(2)π
S
t−s for 20 ≤ t− s ≤ 28.

MAY’S TABLES

n (2)π
S
n generators

20 Z/8Z {g}
21 (Z/2Z)⊕2 {h3

3}, {h1g}
22 (Z/2Z)⊕2 {h2c1}, {P 1d0}
23 (Z/2Z)⊕2 ⊕ Z/8Z⊕ Z/16Z {h4c0}, {P 1h1d0}, {h2g}, {P 2h3}
24 (Z/2Z)⊕2 {h1h4c0}, {P 2c0}
25 (Z/2Z)⊕2 {P 2h1c0}, {P 3h1}
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26 (Z/2Z)⊕2 {h2
2g}, {P 3h2

1}
27 Z/8Z {P 3h2}
28 Z/2Z {P 1g}

In order to extend these computations further, we employ the naturality of
the Adams spectral sequence. [Maunder65] considered the mappingf : S2q →
F whereF is the homotopy fibre of the mappingp : BU(2q, . . . ,∞) −→
K(Z, 2q + 2m), BU(2q, . . . ,∞) is the 2q-coconnected space associated to
the classifying space of the infinite unitary groupBU (that is, the homotopy
groupsπi(BU(2q, . . . ,∞)) = {0} for i ≥ 2q) andp represents the Chern
characterchq,2m−1 . The mappingf : S2q → F is induced by the generator of
π2q(BU), which is given by theqth iterate of the Bott map. The mappingf
induces a homomorphism of spectral sequences:

Exts,tA2
(H∗(S2q;F2),F2)→ Exts,tA2

(H∗(F ;F2),F2),

and by naturality we have, for allr ≥ 2, dr(f∗(x)) = f∗(dr(x)). [Maunder65]
computedH∗(F ;F2) as a module overA2 from which he computed the relevant
parts ofExt∗,∗A2

(H∗(F ;F2),F2). The main result of this paper is that the classes
hn0hm, for n < 2m, in H∗,∗(A2) are never in the image of any differential in
the Adams spectral sequence converging to(2)π

S
∗ .

The papers of [Mahowald67], [Mahowald-Tangora67], and [Barratt-Maho-
wald-Tangora70] use stable cofibration sequences of small complexes,S0 −→
X −→ X ′ to determine differentials. Such cofibrations induce a short exact
sequence on cohomology,

0 −→ H∗(X ′;F2) −→ H∗(X;F2) −→ F2 −→ 0

and so long exact sequences ofExt groups.

w
δ Exts,tA2

(F2,F2) w Exts,tA2
(H∗(X;F2),F2) w

p∗ Exts,tA2
(H∗(X ′;F2),F2) w

If the complexes are chosen carefully, the coboundary operator in this sequence
has a nice form and computation of the stable homotopy ofX andX ′ in low
dimensions is possible.

Examples of such sequences are

S0
i
−→ S0 ∪η e2

p
−→ S2 or S0

i
−→ S0 ∪ν e4 ∪σ e8

p
−→ S4 ∨ S8.

The following proposition (Lemma 3.4.1 of [Mahowald-Tangora67]) gives a
general method for applying such sequences.
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Proposition 9.61. Consider a sequenceS0
i
−→ X

p
−→ X ′ such thatp∗i∗ = 0

on stable homotopy. Supposeα ∈ Ext for S0 is such thati∗α in Ext for X
survives and, for anȳα ∈ {i∗α}, the class represented byi∗α, p∗ᾱ is essential,
thenα is not a permanent cycle.

Proof: Let f : Sq → S0 represent{α}. Then[if ] is in {i∗α} and so[p if ] is
essential. Butp∗i∗ = 0, thereforeα cannot be a surviving cycle. Supposeα is
in the image of some differential,α = drβ. By naturality,i∗α = dri

∗β, which
is impossible sincei∗α is a surviving cycle. Therefore, some differential must
originate onα. ut

This lemma can be applied to the elemente0 with the sequence given by
S0 → S0 ∪η e2 → S2. [Mahowald-Tangora67] showed thati∗e0 survives and
p∗{i∗e0} = ηκ 6= 0. Thus a differential arises one0.

The last source of differentials to be considered here is the interaction of
differentials with the Steenrod algebra action onExt (Theorem 9.10). Devel-
oped first by [Kahn70], it has been extended by [Milgram72], [Maakinen73]
and [Bruner84] to a powerful tool in this enterprise. The reader is encouraged to
read the contributions of Bruner in [Bruner-May-McClure-Steinberger86] for
an overview of this method.

Let us now consider theE∞-term of the spectral sequence.

11 •
10 • •
9 P 2h1

N
N
N
NN

P 2h2

8 • •
7 • • P 1c0

NN

6 • • •
5 P 1h1

�
�
��

P 1h2 • • • h0e0

s

u

4 • • d0


h3

0h4 •
3 • c0

h
h

• • • c1

2 • • h2
3 h1h4

[
[
[
[
[

h2h4

1 h3




7 8 9 10 11 12 13 14 15 16 17 18 19

t−s w

We suppose that Toda’s tables are to be deduced from this table with as little
input as possible. The interpretation of multiplication byh0 settles the 7, 10,
11, 15, 16, 18 and 19 stems. Consider the 8-stem. The elementh1h3 satisfies
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h0h1h3 = 0 and furthermore,h0h1h3 is in filtration 3 wherec0 lies. Thus we
cannot havec0 as an element representing2{h1h3} because in this filtration it
would beh0h1h3. Also no further classes lie in the 8-stem in higher filtrations.
Thus(2)π

S
8
∼= Z/2Z ⊕ Z/2Z. An easier argument follows from the relations

2{h1} = 0 and{h1}{h3} = {h1h3}. However, such relations are only true up
to filtration and indeed, [Toda62] has shownην = ν̄ + ε, whereν̄ = {h1h3}
andε = {c0}. One needs to be careful.

The same argument works for{h2
1h3} and {h1P

1c0}. By filtration 4
we can see that2{h1P

1c0} = 2{h1}{P 1c0} = {h0h1}{P 1c0} = 0. Thus
(2)π

S
9
∼= (Z/2Z)⊕3. Similarly, (2)π

S
17
∼= (Z/2Z)⊕4.

We finally turn to the determination of the composition product structure
on (2)π

S
∗ from the spectral sequence. It is here that some geometric input is

needed. A ‘hidden extension’ can be found when we consider the idealη ◦ πS∗ .
Let ρ be the generator in the 15-stem of the factorZ/32Z. From the data in
E∞, η ◦ ρ appears to be zero. However, we know the following (deep) facts:
ρ generates the image of theJ-homomorphismπ15(SO) → πS15 andη im J
is nonzero (see [Switzer75, p. 488]). Becauseη ◦ ρ must appear in a higher
filtration thanh1h

3
0h4, it happens thatη ◦ ρ = {P 1c0}, the only other choice.

[Mahowald-Tangora67] and [Tangora70’] consider more difficult exten-
sion problems. The interplay between geometric and algebraic data is compli-
cated and extended by numerous identities inExt and inπS∗ . Knowledge of
(2)π

S
n can be derived, as far as anyone has tried using these methods, forn ≤ 45

(see [Bruner84]).
Other approaches to computing stable homotopy groups of spheres have

been developed that have features similar to the Adams spectral sequence. One
attractive way is via a kind of reverse Adams spectral sequence that was in-
troduced by [Cohen, J70] and applied with great success (and computer aid)
by [Kochman90]. Using these methods, information on stable stems out to
dimension 64 were obtained (and corrected in [Kochman-Mahowald95]).

Epilogue

Where do we go from here with the Adams spectral sequence?
Work on the classical Adams spectral sequence continues. The stem-by-

stem calculations have given way to the determination of regular phenomena
such as infinite families of elements inπS∗ (for example, [Mahowald81], [Co-
hen, R81], and [Lin, WH85]), global structures in Ext ([Singer81]), and the
identification of geometric phenomena like the EHP-sequence or the image of
the J-homomorphism at the level of the spectral sequence ([Mahowald82]).
Recent surveys of this work can be found in the book of [Kochman96] and the
paper of [Miller-Ravenel93].

The notion of spectrum discussed in§9.4 was introduced in order to study
Spanier-Whitehead duality and generalized (co)homology theories. All gen-
eralized theories are represented by spectra ([Brown, E62]) and among the
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most important have been the bordism theories represented by Thom spectra
([Rudyak98]). [Novikov67] carried out a program initiated by [Adams64] to
construct and compute the stable homotopy of spheres using complex cobor-
dism theory. The development of this line of ideas now forms a major part of
homotopy theory. The excellent books of [Switzer75] and [Ravenel86] offer a
basic introduction. The viewpoint of complex cobordism has led to many new
algebraic tools (for example, formal group laws [Quillen69”]) and deep global
results ([Devinatz-Hopkins-Smith88]). The book of [Ravenel92] gives a sketch
of this work and its place in the emerging global picture of homotopy theory.

As a tool the Adams spectral sequence has been applied with consider-
able success to various geometric problems. Beyond the solution to the Hopf
invariant one problem we discuss two further spectacular examples.

The Kervaire invariant of an almost framed manifold was introduced
by [Kervaire60]. It is based on the Arf invariant of a quadratic form. In a
classic paper, [Browder69] identified the Kervaire invariant with the value of
a cohomology operation defined for Poincar´e duality spacesM2q with extra
structure. That extra structure is a lifting of the classifying map of the normal
bundle to a fibration with vanishing Wu classvq+1. This gives a cobordism
theory based on the vanishing of the Wu class (for a discussion of the Wu
class see [Milnor-Stasheff74]). By analyzing orientations with respect to this
cobordism theory one can show that there is a structure onSq×Sq with vq+1 = 0
and Arf invariant one. To complete the analysis one has to know if this structure
comes from a framed manifold. The identification of framed cobordism with
πS∗ and the Adams spectral sequence allow one to ask this question at the level
of theE2-term of the spectral sequence. [Browder69] proved that the only
dimensions in which a Kervaire invariant one manifold may exist are of the
form 2i − 2 and that there is a manifold of Kervaire invariant one if and only if

the classh2
i−1 in Ext2,2i

A2
(F2,F2) represents a nontrivial element inπS2i−2. At

this time, calculations of [Barratt-Jones-Mahowald84] and [Kochman90] have
shown that there are manifolds of Kervaire invariant one of dimensions 2, 6, 14,
30, and 62. It is still open whether there are Kervaire invariant one manifolds
in dimensions2i − 2 for i ≥ 7.

A differential geometric question one can ask of a manifold is whether
it admits a Riemannian metric of positive scalar curvature. Using methods of
surgery this question can be reduced to a cobordism problem for which the
property of being a Spin manifold or not breaks the problem into two parts.
The nonSpin case for simply-connected manifolds was studied by [Gromov-
Lawson80]. There all obstructions to admitting a positive scalar metric vanish
and examples in each cobordism class are given. There are obstructions in
the Spin case studied first by [Lichnerowicz63] and extended by [Hitchin74].
[Stolz92] showed that the vanishing of Hitchin’s obstruction was sufficient for
the existence of a positive scalar metric. The argument requires the identifi-
cation of the image in the Spin cobordism ring of the Spin bordism groups of
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a classifying space of a certain group. Since the Spin bordism groups are the
stable homotopy groups of a particular spectrum, then one can compute these
groups explicitly via the Adams spectral sequence.

Exercises

9.1. If f : Sn → Y is a mapping andMf = Y ∪f en+1 is the mapping cone, show
that

Σ(Mf ) = Σ(Y ∪f en+1) ' ΣY ∪Σf e
n+2 = MΣf .

9.2. Use the Cartan-Serre theorem (Theorem 6.20) to prove

Ap ⊗ snFp ∼=2n−1 H̃
∗(K(Z/pZ, n);Fp).

9.3. For an abelian groupG, show that the set{elements of finite order prime top}
forms a subgroup ofG. This shows that(p)G is well-defined.

9.4. Carry out the construction in§9.1 to construct a secondary operation associated
to the Adem relationSq2Sq2 + Sq3Sq1 = 0. Use this to prove Adem’s theorem
thatη ◦ η 6' ∗.
9.5. Prove that the functors defined on graded leftΓ-modules satisfy:HomΓ(M,—)
is left exact, andHomΓ(—, N) is right exact whenM andN are fixedΓ-modules.

9.6. Let Γ(x) denote the divided power Hopf algebra overF2 on a single generator

x. Prove thatΓ(x)dual, as a Hopf algebra, is isomorphic toF2[y] wherey is the
dual of the generatorγ1(x). Finish the proof, begun in§9.2, that

H∗,∗(Γ(x)) ∼= F2[ li | i = 0, 1, . . . ],

where the bidegree ofli is (1, 2i deg x).

9.7. OnExtΓ(M,N).

(1) Verify that the definition ofExtΓ(M,N) given in§9.2 does not depend on
the choice of projective resolution ofM .

(2) Verify thatExt0,∗
Γ (M,N) = Hom0,∗

Γ (M,N).
(3) Verify that, if given a short exact sequence inΓMod,

0 −→ A −→ B −→ C −→ 0,

then there is a long exact sequence

→ Extn,∗Γ (M,A)→ Extn,∗Γ (M,B)→

Extn,∗Γ (M,C)
δ
−→ Extn+1,∗

Γ (M,A)→ .

(4) Verify that, for a projective module overΓ, P ,

Extn,∗Γ (P,M) = {0},
for n > 0 andM any leftΓ-module.

(5) Verify thatExtΓ(M,N) is a functor in each variable separately.
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9.8. Show that the composition product onExt is bilinear and associative. Show
further that Yoneda’s product induced by splicing agrees with the composition
product defined via resolutions.

9.9. In categories of modules, the dual of the notion of a projective module is that of
an injective module. Give the definition by formally inverting the definition of a
projective module (remember epi becomes mono). Prove that a moduleJ is injective
if and only if to each monomorphism,i : A → B, the mappingHom(B, J) →
Hom(A, J) is an isomorphism. If given a module,N , then aninjective resolution
of N is an exact sequence

0 −→ N −→ J0 −→ J1 −→ J2 −→ · · ·

with eachJ i injective. Show that any two injective resolutions of the moduleN
can be compared by a lift of the identity mapping between the resolutions. Show
that one can defineExtΓ(M,N) by constructing an injective resolution ofN and
applying the functorHom(M,−) to form a complex and then taking the homology.

9.10. Prove the assertion thatH∗,∗(Λ(x)) ∼= k[y] as algebras, whereΛ(x) denotes
an exterior algebra overk on a single generatorx andy has bidegree(1,deg x).

9.11. Prove the following facts about the suspension functor on gradedΓ-modules
and projective modules:

(1) If X is projective, thensX is projective. (Hint:s(Γ⊗ V ) ∼= Γ⊗ sV for
a graded vector spaceV .)

(2) ΓMod(sW, sX) ∼= ΓMod(W,X).
(3) If 0 ← X ← W• is a projective resolution ofX, then0 ← sX ← sW•

is a projective resolution ofsX.

9.12. Suppose thatΓ is a cocommutative Hopf algebra. Show that the cobar con-
structionF∗(Γdual) supports â 1-product defined by

[α1 | α2 | · · · | αp] ^1 [β1 | β2 | · · · | βq] =∑
1≤r≤p

[α1|α2| · · · |αr−1|α(1)
r β1|α(2)

r β2| · · · |α(q)
r βq|αr+1| · · · |αp],

where the elementsα(j)
r are determined by the iterated coproduct

ψq−1(αr) =
∑

α(1)
r ⊗ α(2)

r ⊗ · · · ⊗ α(q)
r .

Show that thiŝ 1-product satisfies a Hirsch formula:

d∗(x ^1 y) = d∗(x) ^1 y + x ^1 d
∗(y) + xy + yx.
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9.13. Prove the theorem of[Milnor-Moore65]: GivenΛ a normal sub-Hopf algebra
of a Hopf algebraΓ, thenΓ has a basis as aΛ-module consisting of 1 and certain
homogeneous elements inI(Γ) andΓ is free as a rightΛ-module on this basis.
Furthermore, this basis projects to a vector space basis forΓ//Λ.

9.14. Prove theFact from §9.5 that, for alls,

Exts,s+13
A2

(F2,F2) = {0}.

9.15. Prove the following relations in the cohomology ofA2:

〈hi, hi+1, hi〉 = h2
i+1, 〈hi+1, hi, hi+1〉 = hi+2hi c0h1 6= 0.

9.16. For the periodicity operator of§9.6, prove that

P r ◦ P r = P r+1.

9.17. Consider the following Toda bracket construction suggested by the Adem
relationSq3Sq1 + Sq2Sq2 = 0:

X
x
−→ K(Z/2Z, n)

Sq1,Sq2

−−−−−→ K(Z/2Z, n+ 1)×K(Z/2Z, n+ 2)
+◦(Sq3,Sq2)
−−−−−−−−→ K(Z/2Z, n+ 4).

Such a Toda bracket is defined whenSq1x = 0 andSq2x = 0. Show that the
elements in the Toda bracket comprise a secondary cohomology operation based on
the Adem relation. Thus Toda brackets may be used to express such operations.

9.18. ComputeExts,tA2
(A2/I(A2 · Sq1),F2).

9.19. Suppose thatL is a graded Lie algebra over a fieldk. Let (U(L), iL : L →
U(L)) denote theuniversal enveloping algebraof L, defined by the universal
property that iff : L→ A is any morphism of Lie algebras whereA is an algebra
endowed with the bracket product[a, b] = ab − (−1)deg a deg bba, then there is a
unique morphism of algebras̃f : U(L)→ A such that̃f ◦iL = f . Show thatU(L)
may be defined as the quotient of the tensor algebra onL by the ideal generated by
elements of the formx ⊗ y − (−1)deg x deg yy ⊗ x − [x, y] for x, y ∈ L. The
product of two graded Lie algebras is given by(L×L′)n = Ln×L′n. Using these
facts show thatU(L) is a graded Hopf algebra with the coproduct induced by the
diagonal mapping.

9.20. Prove Theorem 9.59.
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The Bockstein Spectral Sequence

“Unlike the previous proofs which made strong use of
the infinitesimal structure of Lie groups, the proof given
here depends only on the homological structure and can
be applied to H-spaces. . . ”

W. Browder

In the early days of combinatorial topology, a topological space of fi-
nite type (a polyhedron) had its integral homology determined by sequences
of integers—the Betti numbers and torsion coefficients. That this numerical
data ought to be interpreted algebraically is attributed to Emmy Noether (see
[Alexandroff-Hopf35]).

The torsion coefficients are determined by the the Universal Coefficient
theorem; there is a short exact sequence

0→ Hn(X)⊗ Z/rZ
ρ
−→Hn(X;Z/rZ) −→ TorZ(Hn−1(X),Z/rZ)→ 0.

To unravel the integral homology from the modr homology there is also the
Bockstein homomorphism: Consider the short exact sequence of coefficient
rings whereredr is reduction modr:

0→ Z
−×r
−−−→ Z

redr−−→ Z/rZ→ 0.

The singular chain complex of a spaceX is a complex,C∗(X), of free abelian
groups. Hence we obtain another short exact sequence of chain complexes

0→ C∗(X)
−×r
−−−→ C∗(X)

redr−−→ C∗(X)⊗ Z/rZ→ 0,

and this gives a long exact sequence of homology groups,

· · · −→ Hn(X)
−×r
−−−→ Hn(X)

redr∗−−−→ Hn(X;Z/rZ)
∂
−→ Hn−1(X) −→ · · · .

When an elementu ∈ Hn−1(X) satisfiesru = 0, then, by exactness, there is
an element̄u ∈ Hn+1(X;Z/rZ) with ∂(ū) = u. To unpack what is happening
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here, we writeū = {c ⊗ 1} ∈ Hn(X;Z/rZ). Since∂(c ⊗ 1) = 0 and
∂(c) 6= 0, we see that∂(c) = rv and the boundary homomorphism takesū to
{v} ∈ Hn−1(X). The Bockstein homomorphism is defined by

β : Hn(X;Z/rZ)→ Hn−1(X;Z/rZ), ū = {c⊗1} 7→ {v⊗1} = {1
r
∂c⊗1}.

This mapping was introduced by [Bockstein43]. The Bockstein spectral se-
quence is derived from the long exact sequence when we treat it as an exact
couple (§10.1).

One of the motivating problems for the development of the Bockstein
spectral sequence comes from the study of Lie groups. Recall that a spaceX is
torsion-free when all its torsion coefficients vanish, that is, whenHi(X) is a
free abelian group for eachi. A remarkable result due to [Bott54, 56] identifies
a particular class of torsion-free spaces.

Theorem 10.1. If (G, e, µ) denotes a connected, simply-connected, compact
Lie group, thenΩG is torsion-free.

Bott’s proof of this theorem is a tour-de-force in the use of the analytic
structure of a Lie group. The transition to topological consequences is via Morse
theory. The essential ingredient is the study of thediagram D associated to
G—a system of subspaces of the tangent space to a maximal torusT ⊂ Gwhich
may be described in terms of “root forms” onG. The fundamental chambers in
D carry indices that determine the Poincar´e series of the based loop spaceΩG.
In fact, the Poincar´e series has nonzero entries only in even degrees. From this
condition for all coefficient fields, it follows thatΩG is torsion-free.

By way of contrast, we recall a celebrated result of [Hopf41]. H-spaces
and Hopf algebras made their first appearance in this landmark paper where
results about the algebraic topology of Lie groups were shown to depend only
on the more fundamental notion of an H-space structure.

Suppose(X,x0, µ) is an H-space. The commutativity of the diagram

X ×X w

∆×∆

u
µ

X ×X ×X ×X w

1×T×1
X ×X ×X ×X

u
µ×µ

X w

∆
X ×X.

implies that the coproduct on homology,

∆∗ : H∗(X; k)→ H∗(X; k)⊗H∗(X; k),

is an algebra map with respect to the productµ∗. Thus(H∗(X; k), µ∗,∆∗)
satisfies the defining property of a Hopf algebra. This algebraic observation
implies the following structure result.
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Theorem 10.2 ([Hopf41]). If (X,x0, µ) is an H-space of the homotopy type of
a finite CW-complex andk is a field of characteristic zero, thenH∗(X; k) is an
exterior algebra on generators of odd degree.

Proof: Consider the graded vector space of indecomposable elements in
H∗(X; k):

Q(H∗(X; k)) = H+(X; k)/H+(X; k) ^ H+(X; k).

LetQ(H∗(X; k)) = k{x1, x2, . . . , xq}with the generators ordered by degree,
deg x1 ≤ deg x2 ≤ · · · ≤ deg xq. Let x = xj denote first even-dimensional
generator, of degree2m, andAx denote the sub-Hopf algebra generated by the
odd-dimensional classesx1 throughxj−1.

Recall that ifC ⊂ B is a normal sub-Hopf algebra ofC, that is,I(C)·B =
B · I(C), thenC//B = B/I(C) ·B is the quotient Hopf algebra andI(C) and
I(B) denote the kernels of the augmentation.

Consider the short exact sequence of Hopf algebras:

0→ Ax −→ H∗(X; k) −→ H∗(X; k)//Ax → 0.

SinceH∗(X; k) is commutative,Ax is normal inH∗(X; k). The classx goes
to a primitive class̄x in H∗(X; k)//Ax, that is,µ∗(x̄) = x̄⊗ 1 + 1⊗ x̄. Since
H∗(X; k)//Ax is also a Hopf algebra, we have thatµ∗ is a homomorphism of
algebras and soµ∗((x̄)n) = (µ∗(x̄))n = (1⊗ x̄+ x̄⊗ 1)n. It follows, as in the
proof of the binomial theorem, that, for alln > 0,

µ∗((x̄)n) =
∑n

i=0

(
n

i

)
(x̄)i ⊗ (x̄)n−i where(x̄)0 = 1.

SinceX has the homotopy type of a finite CW-complex, for someN ,
Hs(X; k) = {0} for s ≥ N . It follows that (x̄)i = 0 whenever2mi ≥ N .
However, for the first sucht,

µ∗((x̄)t) =
∑t

i=0

(
t

i

)
(x̄)i ⊗ (x̄)t−i 6= 0

because

(
t

i

)
6= 0 in k and (x̄)i ⊗ (x̄)t−i 6= 0 when i ≥ 1. Thus, the ap-

pearance of̄x 6= 0, a primitive of even degree inH∗(X; k)//Ax, implies that
(x̄)t 6= 0 for all t ≥ 1, andH∗(X; k)//Ax is of infinite dimension overk.
SinceH∗(X; k)//Ax is a quotient ofH∗(X; k), this contradicts the finiteness
assumption onX. It follows thatH∗(X; k) has only odd degree algebra gener-
ators. The theorem follows from Theorem 6.36—a graded commutative Hopf
algebra on odd generators is an exterior algebra on those generators.ut
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The interplay between the homotopy-theoretic properties of H-spaces and
the analytic properties of Lie groups has deepened our understanding of such
spaces considerably. At first it was believed that H-spaces with nice enough
properties need be Lie groups ([Curtis, M71] reviewed this program), but
the powerful methods of localization at a prime soon revealed a much richer
field of examples including the so-called “Hilton-Roitberg criminal” ([Hilton-
Roitberg69]), a manifold and H-space of non-Lie type. The generalization of
properties of Lie groups to H-spaces of the homotopy type of a finite complex
fueled considerable efforts that include the development of the Bockstein spec-
tral sequence ([Browder61]), the introduction ofAn-structures ([Stasheff63]),
new applications of localization ([Zabrodsky70], [Hilton-Mislin-Roitberg75]),
and the solution of the torsion conjecture ([Lin82], [Kane86]), which states
that ΩX is torsion-free forX a finite, simply-connected H-space. [Dwyer-
Wilkerson94] have applied the methods of homotopy fixed point sets developed
by [Miller84] and [Lannes92] to recover the algebraic topology of Lie groups
from a completely homotopy-theoretical viewpoint ([Dwyer98]).

In this chapter we develop the properties of the Bockstein spectral se-
quence, especially for applications to H-spaces. We introduce the remarkable
notion of∞-implications due to [Browder61] and apply it to derive certain
finiteness results. We then consider some unexpected applications of the Bock-
stein spectral sequence to differential geometry and to the Adams spectral se-
quence. The short exact sequence of coefficients that characterizes the Bock-
stein spectral sequence can also be generalized to other homology theories and
to homotopy groups with coefficients (introduced by [Peterson56]). This leads
to other Bockstein spectral sequences—for modr homotopy groups, and for
Morava K-theory—whose properties have played a key role in some of the
major developments in homotopy theory. These ideas are discussed in§10.2.

10.1 The Bockstein spectral sequence

Although it has a modest form, the Bockstein spectral sequence has led to
some remarkable insights, particularly in the study of H-spaces. We recall the
construction of the Bockstein spectral sequence here (§2.2). Fix a primep and
carry out the construction of the long exact sequence associated to the exact
sequence of coefficients,0 → Z → Z → Fp → 0. Following a suggestion
of John Moore, [Browder61] interpreted the long exact sequence as an exact
couple:

H∗(X) w

−×p
H∗(X)

�
�
��

redp∗

H∗(X;Fp)

N
N
NNQ

∂

We denote theE1-term byB1
n
∼= Hn(X;Fp). The first differential is given by

d1 = ∂ ◦ redp∗ = β, the Bockstein homomorphism. The spectral sequence is
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singly-graded and the results of Chapter 2 apply to give the following theorem.

Theorem 10.3. Let X be a connected space of finite type. Then there is
a singly-graded spectral sequence{Br∗ , dr}, natural with respect to spaces
and continuous mappings, withB1

n
∼= Hn(X;Fp), d1 = β, the Bockstein

homomorphism, and converging strongly to(H∗(X)/torsion)⊗ Fp.

Proof: SupposeG is a finitely generated abelian group. Then we can write

G ∼=
⊕

i
Z⊕

⊕
j
Z/pejZ⊕

⊕
t
Z/qrtt Z,

where theqt are primes not equal top. The timesp homomorphism is an
isomorphism on

⊕
t
Z/qrtt Z and a monomorphism on

⊕
i
Z. Recall thep-

component ofG is the quotient group

(p)G = G/{elements of torsion order prime top} ∼=
⊕

i
Z⊕

⊕
j
Z/pejZ.

An nonzero elementu in G is p-divisible if u = pv for somev in G. The ele-
ments in

⊕
t
Z/qrtt Z areinfinitelyp-divisible since−×p is an isomorphism on

this summand. No elements in the rest ofG can be infinitelyp-divisible without
violating the condition thatG is finitely generated. With these observations we
prove the convergence assertion of the theorem.

By Corollary 2.10 we have the short exact sequence

0→ Hn(X)/(pHn(X) + ker pr) −→ Br+1
n −→ prHn−1(X) ∩ ker p→ 0.

Notice thatBr+1
n = {0} impliesHn(X) = pHn(X) + ker pr. If u ∈ Hn(X)

generates a copy ofZ, the u /∈ ker pr. But if u ∈ pHn(X), thenu is p-
divisible. Writingu = pv1, it follows thatv1 is alsop-divisible. Continuing in
this manner, we conclude thatu is infinitelyp-divisible, a contradiction to finite
generation. It follows that(p)Hn(X) = ker pr and so(p)Hn(X) has exponent
less than or equal topr.

Let r go to infinity to obtain the short exact sequence

0→ Hn(X)/(pHn(X) + p-torsion) −→ B∞n −→ ∇∞,pn−1 → 0,

where∇∞,pn−1 is the subgroup ofHn−1(X) of infinitely p-divisible elements that
vanish when multiplied byp. BecauseHn−1(X) is finitely generated,∇∞,pn−1 is
trivial and so

B∞n ∼= Hn(X)/(pHn(X) + p-torsion) ∼= (Hn(X)/torsion)⊗ Fp ut
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Some immediate consequences of the existence and convergence of the
Bockstein spectral sequence are the following inequalities. Suppose thatX is
a space of finite type. Then, in each dimensioni, we have

dim Fp Hi(X;Fp) ≥ free rankHi(X)
= dimQHi(X;Q)
= dim Fp((Hi(X)/torsion)⊗ Fp).

This follows from the Universal Coefficient theorem and the fact thatHi(X) is
finitely generated. Thus the Bockstein spectral sequence forX collapses atBr

if and only if dim Fp B
r
i (X) = dimQHi(X;Q) for all i.

There is an alternate description of the differential that identifies the Bock-
stein homomorphism directly. Consider the short exact sequence of coefficients

0→ Z/pZ −→ Z/p2Z −→ Z/pZ→ 0

where we have writtenZ/pZ ∼= pZ/p2Z as the kernel. The associated long
exact sequence on homology for a spaceX is given by

· · · −→ Hn(X;Z/pZ)
−×p
−−−→ Hn(X;Z/p2Z)
−→ Hn(X;Z/pZ)

β
−→ Hn−1(X;Z/pZ) −→ · · ·

and hasd1 = β, the connecting homomorphism. This can be seen by comparing
the short exact sequences of coefficients

0 w Z w

−×p

u
redp

Z w

u
redp2

Z/pZ w 0

0 w Z/pZ w−×p Z/p2Z w Z/pZ w 0.

The associated homomorphism of long exact sequences carriesβ to redp ◦∂.
When we consider the short exact sequence of coefficients

0→ Z/prZ −→ Z/p2rZ −→ Z/prZ→ 0,

we obtain therth order Bockstein operator as connecting homomorphism.
Taking all of the short exact sequences of coefficients for allr ≥ 1, the following
more refined picture of the Bockstein spectral sequence emerges.



           

10.1. The Bockstein spectral sequence 461

Proposition 10.4.Brn can be identified with the subgroup ofHn(X;Z/prZ)

given by the image ofHn(X;Z/prZ)
−×pr−1

−−−−−→ Hn(X;Z/prZ) anddr : Brn →
Brn−1 can be identified with the connecting homomorphism, therth order Bock-
stein homomorphism.

Proof: WriteGrn = im(−× pr−1 : Hn(X;Z/prZ)→ Hn(X;Z/prZ)) and
consider the sequence of homomorphisms

pr−1Hn(X)
−×p
−−−→ pr−1Hn(X)

α
−→ Grn

ζ
−→ pr−1Hn−1(X) −→ pr−1Hn−1(X)

defined byα
({∑

i
pr−1ui

})
=
{∑

i
ui ⊗ (pr−1 + prZ)

}
∈ Grn. This

homomorphism is well-defined and hasim(−× p) as its kernel. If a homology

class
{∑

i
vi ⊗ (pr−1 + prZ)

}
∈ Hn(X;Z/prZ) is inGrn, then define

ζ
({∑

i
vi ⊗ (pr−1 + prZ)

})
=
{

1
p

∑
i
∂(vi)

}
,

where∂ is the chain boundary operator. Since∂
(∑

vi ⊗ (pr−1 + prZ)
)

= 0,

it follows that
∑

∂vi = p
(
pr−1

∑
j
xj

)
and so dividing byp determines a

class inpr−1Hn−1(X). It is easy to see thatker ζ = imαand we have exactness
atGrn. We compare this sequence with therth derived couple

w pr−1Hn(X) w

p
pr−1Hn(X) w Grn w

u

pr−1Hn−1(X) w

p
pr−1Hn−1(X) w

w pr−1Hn(X) wp p
r−1Hn(X) w Brn w pr−1Hn−1(X) wp p

r−1Hn−1(X) w.

The Five-lemma impliesBrn ∼= Grn.
To identify the differentialdr with the higher Bockstein

βr : Hn(X;Z/prZ)→ Hn−1(X;Z/prZ)

it suffices to compare the connecting homomorphism that definesβr with the
definition of the homomorphismζ. ut

This representation of the terms in the Bockstein spectral sequence can be
completed by embedding the data for allr ≥ 1 into a Cartan-Eilenberg system,
a general technique to construct a spectral sequence (also known as aspectral
systemin [Neisendorfer80] or acoherent system of coalgebra/algebras/Lie
algebrasin [Anick93]). The definition and relation between a Cartan-Eilenberg
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system and its associated spectral sequence are explored in Exercises 2.2 and
2.3. For a primep and a pair(s, t) with −∞ < s ≤ t <∞ we define

H(s, t) = H∗(X;Z/pt−sZ).

If s ≤ s′ andt ≤ t′, letH(s, t) → H(s′, t′) be the homomorphism induced
by the map of coefficients,Z/pt−sZ → Z/pt

′−s′Z, that is determined by
1 7→ pt

′−t : H∗(X;Z/pt−sZ) → H∗(X;Z/pt
′−s′Z). If r ≤ s ≤ t, then

let ∂ : H(r, s) −→ H(s, t) be the connecting homomorphism associated to the
coefficient sequence

0→ Z/pt−sZ→ Z/pt−rZ→ Z/ps−rZ→ 0,

a homomorphismH∗(X;Z/ps−rZ) → H∗−1(X;Z/pt−sZ). In this context
the limit terms of the Cartan-Eilenberg system are given byH(q) = H(q, q) =
Hq(X) andH(q,∞) = Hq(X; limr→∞ Z/prZ). The exact couple determined
by the long exact sequence

· · · → H(q − 1)→ H(q)→ H(q − 1, q)
∂
−→H(q − 1)→ H(q)→ · · ·

gives the Bockstein spectral sequence.
With this added structure the (co)multiplicative properties of the spectral

sequence may be studied. We refer the reader to the work of [Neisendorfer80]
and [Anick93] for more details.

Though we developed the Bockstein spectral sequence for homology, it is
just as easy to make the same constructions and observations for cohomology.
The Bockstein homomorphism for cohomology has degree 1,

β : Hn(X;Fp) −→ Hn+1(X;Fp),

and is identified with the stable cohomology operationβ in the Steenrod algebra
Ap, whenp is odd, andSq1 inA2, whenp = 2. This leads to a spectral sequence
of algebras sinceβ is a derivation with respect to the cup product.

WhenX is an H-space

The naturality of the Bockstein spectral sequence applies to the diagonal
mapping to give a morphism of spectral sequencesBr∗(X)→ Br∗(X ×X).
When(X,x0, µ) is an H-space, the multiplication mapping inducesBr∗(µ) :
Br∗(X × X) −→ Br∗(X). Our goal in this section is to identifyBr∗(X × X)
with Br∗(X)⊗ Br∗(X) and so obtain a spectral sequence of coalgebras for the
homology Bockstein spectral sequence. Dually, we obtain a spectral sequence
of algebras for the cohomology Bockstein spectral sequence; and for H-spaces,
a spectral sequence of Hopf algebras.
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Following [Browder61], we introduce small models of chain complexes
whose structure makes explicit the key features of the Bockstein spectral se-
quence. Supposen ands are nonnegative integers. Define the chain complex
(A(n, s), d), free overZ, where

A(n, s)m =


{0}, m 6= n, n+ 1,
Z ∼= 〈u〉, m = n,

Z ∼= 〈v〉, m = n+ 1 (= {0} if s = 0).

The differential is given on generators byd(v) = su, and soHn(A(n, s), d) ∼=
Z/sZ andHr(A(n, s), d) = {0} for r 6= n. This chain complex can be realized
cellularly by themod s Moore spacePn+1(s) = Sn ∪s en+1 wheres here
denotes the degrees map onSn. The reduced integral homology ofPn+1(s)
isH∗(A(n, s), d).

The timesp map, denoted− × p, on A(n, s) fits into the short exact
sequence

0→ (A(n, s), d)
−×p
−−−→ (A(n, s), d)

redp
−−→ (A(n, s)⊗ Fp, d̄)→ 0,

whereredp denotes reduction modp. The long exact sequence in homology
is the Bockstein exact couple. We consider the Bockstein spectral sequence
associated to this exact couple.

Proposition 10.5.If gcd(s, p) = 1, thenH∗(A(n, s)⊗ Fp, d̄) = {0}. If s = 0,
thenB1 ∼= B∞ ∼= Z/pZ in degreen. If s = apk withk > 0 andgcd(a, p) = 1,
thenB1 ∼= B2 ∼= · · · ∼= Bk andBk+1 ∼= B∞ = {0}.

Proof: The first assertion follows from the Universal Coefficient theorem
and the fact thatZ/sZ ⊗ Fp = {0}. Whens = 0, A(n, 0) ⊗ Fp is simplyFp
concentrated in degreen and the spectral sequence collapses.

By the fundamental theorem for finitely generated abelian groups, we can
splitZ/apkZ asZ/aZ⊕Z/pkZ. Since the contribution byZ/aZ vanishes, we
only need to consider the cases = pk with k > 0. SinceA(n, pk) ⊗ Fp ∼=
A(n, pk)/pA(n, pk), we have that̄d = 0 and so

Hr(A(n, pk)⊗ Fp, d̄) ∼=
{
Fp, whenr = n or n+ 1,

{0}, otherwise.

We write (u)p and(v)p for the modp reductions ofu andv. The mapping
∂ : Hn+1(A(n, pk) ⊗ Fp, d̄) → Hn(A(n, pk), d) in the exact couple is given
by ∂((v)p) = pk−1u for reasons of exactness. We can peel away powers ofp
from pk−1u until it becomes the generator ofpk−1(Z/pkZ) ∼= Z/pZ, and so
d1 = d2 = · · · = dk−1 = 0. At Bk we have

Bkn+1
∼= 〈(v)p〉

∂
−→ pk−1(Z/pkZ) −→ Bkn

∼= 〈(u)p〉
(v)p 7→ pk−1u 7→ (u)p.
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ThusBk+1 ∼= B∞ = {0}. ut
In fact, more can be deduced from the small complexes.

Lemma 10.6. If s = apk with k > 0 and gcd(a, p) = 1, then there is an
isomorphism of exact couples(q, q̄):

H(A(n, apk), d) w

−×p

u
q

H(A(n, apk), d) w

redp∗

u
q

H(A(n, apk)⊗ Fp, d̄) w

∂

u
q̄

pH(A(n, apk+1), d) w

−×p
pH(A(n, apk+1), d) w

redp∗
B2(A(n, apk+1)) w

∂′

Proof: WriteA = A(n, apk+1) with generatorsu andv andA′ = A(n, apk)
with generatorsU andV . Consider the mappingq : A′ → A and its reduction
q̄ : A′ ⊗ Fp → A⊗ Fp given by

q(U) = pu, q̄((U)p) = (u)p,
q(V ) = v, q̄((V )p) = (v)p.

By the linearity of the differentials,q is a chain map. By the definition ofq,
q∗H(A(n, apk)) = pH(A(n, apk+1)). If k > 0, thenq̄∗ is an isomorphism at
B1(A) ∼= B2(A).

It is left to show that the mapping pair(q∗, q̄∗) is a morphism of exact
couples. Sinceq is a chain map, it commutes with− × p. The class{U}
generatesHn(A′). The mappingj onH(A′) is given by{U} 7→ (U)p, the
reduction modp of {U}. Therefore,q̄∗ ◦ j({U}) = (u)p. By the definition
of a derived couple and the fact thatj({u}) = (u)p, we havej′ ◦ q∗({U}) =
j′(p{u}) = j({u}). Thusj′ ◦ q∗ = q̄∗ ◦ j.

For dimensional reasons,∂((U)p) = 0 = ∂′((u)p). Fork > 0, (V )p 6= 0
and, by exactness,∂((V )p) = {apk−1U} and ∂′((v)p) = {apku}. Since
q∗({U}) = {pu}, we have thatq∗ ◦ ∂ = ∂′ ◦ q∗ and so(q∗, q̄∗) is a morphism
of exact couples. ut

With this lemma, we prove a structure result.

Proposition 10.7.Consider the Bockstein spectral sequence forC1⊗C2 where
C1 = (A(n, apk), d) andC2 = (A(m, bpl), d), k ≥ l > 0 and gcd(a, p) =
1 = gcd(b, p). ThenB2(C1 ⊗ C2) may be taken to beB2(C1)⊗B2(C2).

Proof: By Lemma 10.6 we can takeB2(C1) = H(A(n, apk−1) ⊗ Fp, d̄)
andB2(C2) = H(A(m, bpl−1) ⊗ Fp, d̄). We writeB2(Ci) = C ′i; denote
the generators ofCi by ui, vi, and the generators ofC ′i by u′i, v

′
i for i = 1, 2.
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Assume thatk ≥ l and let

γ = lcm(a, b) = ag = bh,

δ = gcd(apk−l, b) = Napk−l +Mb,

x = g(v1 ⊗ u2)− (−1)deg u1hpk−l(u1 ⊗ v2),
y = N(v1 ⊗ u2) + (−1)deg u1M(u1 ⊗ v2).

It follows that{x, y} is a basis for(C1 ⊗ C2)n+m+1. Putting primes onx, y,
ui andvi, we get a basis{x′, y′} for (C ′1 ⊗ C ′2)n+m+1. By the definitions,
dx = 0 = dx′, dy = δpl(u1 ⊗ u2), anddy′ = δpl−1(u′1 ⊗ u′2). Define the
morphism of exact couples by lettingq : C ′1 ⊗ C ′2 → C1 ⊗ C2 be given by

q(u′1 ⊗ u′2) = p(u1 ⊗ u2), q(x′) = px,

q(y′) = y, q(v′1 ⊗ v′2) = v1 ⊗ v2.

Thenq is a chain map andq∗H(C ′1⊗C ′2) = pH(C1⊗C2). On the reductions
mod p, define the map̄qi : C ′i ⊗ Fp → Ci ⊗ Fp by q̄i((u′i)p) = (ui)p and
q̄i((v′i)p) = (vi)p. Let q̄ = q̄1 ⊗ q̄2. Then

q̄∗ : H(C ′1 ⊗ C ′2 ⊗ Fp)
∼=−→ H(C1 ⊗ C2 ⊗ Fp) ∼= B2(C1 ⊗ C2).

The morphism(q∗, q̄∗) is a morphism of exact couples and, as in the proof of
Lemma 10.6, an isomorphism. ut

We put the small models to work after we state two results of [Browder61]
that follow from the properties of free and torsion-free chain complexes. We
leave the proofs to the reader.

Proposition 10.8.Let (A, d) be a chain complex, free overZ; let (A′, d′) be
a torsion-free chain complex, andp, a prime. If(φ, φ̄) is a morphism of the
associated Bockstein exact couples,

w Hn(A) w

−×p

u
φ

Hn(A) w

redp∗

u
φ

Hn(A⊗ Fp) w

∂

u
φ̄

Hn−1(A) w

u
φ

w Hn(A′) w−×p Hn(A′) w

redp∗
Hn(A′ ⊗ Fp) w

∂′
Hn−1(A′) w.

Then there is a chain mapf : (A, d) → (A′, d′) such thatH(f) = φ and
H(f ⊗ Fp) = φ̄.
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Lemma 10.9.Let (A, d) and (A′, d′) be torsion-free chain complexes. Then,
for all r,Br(A⊕A′, d+ d′) ∼= Br(A, d)⊕Br(A′, d′).

Assume that(A′, d′) is a torsion-free chain complex whose homology
groups are finitely generated in each dimension. Using Proposition 10.8 and
Lemma 10.9 we can replace(A′, d′) with another complex(A, d) which is free

and of the form
⊕

i
(Ai, di) with each(Ai, di) of the form(A(ni, aipki), d).

By Lemma 10.9,Br(A′, d′) ∼=
⊕

i
Br(Ai, di).

SupposeX is a space of finite type. The homology Bockstein spectral
sequence forX is the Bockstein spectral sequence for(C∗(X), ∂) and this
spectral sequence is functorial inX. The diagonal mapping onX gives a
morphism of spectral sequences

Br(∆): Br(X) −→ Br(X ×X).

Replacing the chains onX with a direct sum of small models, we can apply
Proposition 10.7 to the Alexander-Whitney map to prove the following result.

Theorem 10.10. For (X,x0) a pointed space of finite type, the homology
Bockstein spectral sequence is a spectral sequence of coalgebras.

WhenX is an H-space of finite type, the same argument applied to the mul-
tiplication, along with the compatibility of the multiplication with the diagonal,
gives the following key result.

Theorem 10.11. For X, an H-space of finite type, the homology Bockstein
spectral sequence forX is a spectral sequence of Hopf algebras.

The cohomology Bockstein spectral sequence admits a dual analysis using
the small complexesHom(A(n, apk),Z). In fact,Hom(A(n, apk),Z) is sim-
ply A(n, s) with the differential upside down. Its single nontrivial homology
group isHn+1(A(n, apk), ddual). Using these complexes and carrying out the
same kinds of arguments as for the homology Bockstein spectral sequence we
obtain the theorem:

Theorem 10.12. For (X,x0) a pointed space of finite type, the cohomol-
ogy Bockstein spectral sequence is a spectral sequence of algebras. Sup-
pose(A∗, d) is a chain complex with homology of finite type. Let{B∗r =
Br∗(Hom(A∗,Z)), dr} denote the cohomology spectral sequence for the dual
of (A∗, d). ThenB∗r ∼= Hom(Br∗(A∗),Fp) and dr is the differential adjoint
to dr. If X is an H-space of finite type, then the cohomology Bockstein spec-
tral sequence forX, B∗r (X) = B∗r (C∗(X), δ), is a spectral sequence of Hopf
algebras dual to the homology Hopf algebrasBr∗(X).
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Having established these structural results, we turn to some examples.
The universal examples for cohomology are the Eilenberg-Mac Lane spaces for
which we have complete descriptions of the modp cohomology according to
the theorems of Cartan and Serre (Theorem 6.16). We reinterpret these known
data to give a complete description of the Bockstein spectral sequence in a range
of dimensions.

We note that the limit of the Bockstein spectral sequences forK(Z/pkZ, n)
hasB∞ ∼= {0}. To see this, supposẽH∗(K(Z/pkZ, n)) contained a torsion-
free summand. TheñH∗(K(Z/pkZ, n);Q) would have a nonzero lowest degree
generator. By the Hurewicz-Serre theorem overQ (Theorem 6.25), this would
imply a torsion-free summand in the homotopy ofK(Z/pkZ, n) which does
not happen. HenceB∞ ∼= {0}.

Supposep is an odd prime. The cohomology ofK(Z/pZ, n) with co-
efficients in the fieldFp is a free graded commutative algebra (exterior on
odd-dimensional classes, tensor polynomial on even-dimensional classes) gen-
erated by classesStI ın whereI = (ε0, s1, ε1, . . . , sm, εm) is an admissible
sequence (εi = 0 or 1, si ≥ psi+1 + εi, for m > i ≥ 1; Definition 6.17) of
excess less than or equal ton. Notice that the excess,e(I) = 2ps1 + 2ε0− |I|,
is such that, ifI = (1, s1, ε1, . . . , sm, εm) ande(I) ≤ n, thene(I ′) ≤ n for
I ′ = (0, s1, ε1, . . . , sm, εm). Thus, the generators pair off. Since this pairing is
given byβStI

′
ın = StI ın andd1 = β, we are looking at two sorts of differential

graded algebras:

Λ(StI
′
ın)⊗ Fp[StI ın], d1(StI

′
ın) = StI ın, deg StI

′
ın odd,

Fp[StI
′
ın]⊗ Λ(StI ın), d1(StI

′
ın) = StI ın, deg StI

′
ın even.

WhenStI
′
ın has odd degree, the complexΛ(StI

′
ın) ⊗ Fp[StI ın] has the same

form as the Koszul complex forΛ(xodd) and so its homology is trivial. When
StI
′
ın has even degree, the complex has homologyH(Fp[StI

′
ın]⊗Λ(StI ın), d1)

∼= Λ({(StI
′
ın)p−1⊗StI ın})⊗Fp[{(StI

′
ın)p}], where{U} denotes the homol-

ogy class ofU with respect to the the differentiald1. This follows becaused1

is a derivation and sod1((StI
′
ın)p) = p(StI

′
ın)p−1 = 0. Notice how the class

{(StI
′
ın)p−1⊗StI ın} encodes the transpotence element that figures in Cartan’s

constructions and Kudo’s transgression theorem (§6.2).
Supposen = 2m. Recall thatPmı2m = (ı2m)p. In dimensions less than

2mp = deg ıp2m, we find classes coming from the paired algebras:

(Fp[ı2m]⊗ Λ(βı2m))⊗ (Fp[P 1ı2m]⊗ Λ(βP 1ı2m))⊗ · · ·
⊗ (Fp[Pm−1ı2m]⊗ Λ(βPm−1ı2m)).

Computing the homology of this product as a differential graded algebra with
differential β, we are left with the first nonzero classes,{ıp−1

2m ⊗ βı2m} ∈
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B2mp−1
2 and{ıp2m} ∈ B2mp

2 . The next indecomposable class inB∗2 corresponds

to {(P 1ı2m)p} ∈ Bp(2m+2(p−1))
2 . Thus , forq < p(2m+ 2(p− 1)),

Bq2(K(Z/pZ, 2m)) ∼= ( Λ({βı2m ^ (ı2m)p−1)})⊗ Fp[{ıp2m}] )q.

The case ofK(Z/pkZ, n) for k > 1 yields to a similar analysis of admis-
sible sequences except in the lowest degrees. Here the contributing classes are
ın andβkın, the Bockstein ofkth order associated to the short exact sequence
of coefficients0 → Z/pZ −→ Z/pkZ −→ Z/pk−1Z → 0. In dimensions
q < p(n+ 2(p− 1)) we have thatBql (K(Z/pkZ, n)) ∼=

Bq1 , if l ≤ k,

{0}, if l > k andn is odd,

(Λ({βkın ^ (ın)p−1})⊗ Fp[{ıpn}])q, if l = k + 1 andn is even.

We complete the analysis for the lower dimensions of the Bockstein spec-
tral sequence whenn is even. The input is part of the computation of [Cartan54]
of the integral cohomology of the Eilenberg-Mac Lane spaces.

Proposition 10.13.If p is any prime andk ≥ 1, thenH2mp(K(Z/pkZ, 2m))
contains a subgroup isomorphic toZ/pk+1Z as summand. Furthermore, there
are no summands isomorphic toZ or Z/pk+jZ with j > 1.

Corollary 10.14. Suppose thatp is an odd prime. Letı2m denote the funda-
mental class inB2m

1 (K(Z/pkZ, 2m)). Then, for somec ∈ Fp,

dk+1({ıp2m}) = c{βkı2m ^ (ı2m)p−1} 6= 0.

The proof of Proposition 10.13 is a direct computation using the method
of constructions ([Cartan54]). This method applies integrally and so one can
compute the desired homology group by hand and discover thep-torsion height.

The corollary follows from the convergence of the Bockstein spectral se-
quence. Since there are no other classes in the degree involved, the formula for
dk+1({ıp2m}) follows without choice. [Browder62, Theorem 5.11] gave a more
general chain level computation that obtains the formula directly.

For the prime 2, a new phenomenon occurs in the Bockstein spectral se-
quence forK(Z/2Z, n). [Serre53] showed thatH∗(K(Z/2Z, n);F2) is a poly-
nomial algebra on generatorsStI ın whereI is an admissible sequence (mod 2)
of excess less than or equal ton (Theorem 6.20). However, whenx = StI ın
has odd degree2m+ 1, then

x2 = Sq2m+1x = Sq1Sq2mx = Sq1St(2m,I)ın,

that is, the squares of certain classes are the image under the Bockstein of other
generators. The pairing of classes that occurs in the case of odd primes does not



        

10.1. The Bockstein spectral sequence 469

occur here and new cycles are produced. We writeSq1ı2m = η2m+1. Because
Sq1 = β is a derivation, we have

η2
2m+1 = Sq2m+1ı2m = Sq1Sq2mη2m+1 = Sq1(ı2mη2m+1).

ThusSq2mη2m+1 + ı2m ^ η2m+1 is a cycle underd1. By the same analysis of
the low degrees ofH∗(K(Z/2Z, 2m);F2) and Cartan’s integral computation
we have the following result.

Corollary 10.15. Suppose thatp = 2. Let ı2m ∈ B2m
1 (K(Z/2Z, 2m)) and

η2m+1 = Sq1ı2m. Then

d2({ı22m}) = {Sq2mη2m+1 + ı2m ^ η2m+1}.

We leave the remaining case ofK(Z/2kZ, n) for k > 1 to the reader. In
this case, Corollary 10.14 for odd primes goes over analogously.

We next explore some of the consequences of these calculations.

Infinite implications and their consequences

The proof of Theorem 10.2 for fields of characteristic zero shows that the
presence of a primitive elementx of even degree implies the conditionxn 6= 0
for all n. For fields of characteristicp > 0, it can happen that a primitive
elementx of even degree can satisfyxp

r

= 0 for somer, and so the finiteness
of the H-space need not be violated. For example, the exceptional Lie group
F4 has mod 3 cohomology given by

H∗(F4;F3) ∼= F3[x8]/(x3
8)⊗ Λ(x3, x7, x11, x15),

wherex8 is clearly primitive ([Borel54]). The rational cohomology is given by
H∗(F4;Q) ∼= Λ(X3, X11, X15, X23). The Bockstein spectral sequence mod 3
requiresβ(x7) = x8; subsequently the classX23 is represented by the product
[x7 ^ x2

8].
TheE∞-term of the Bockstein spectral sequence of a finite H-space is fixed

by Hopf’s theorem. The appearance of even-dimensional primitive elements
in H∗(X;Fp) forces some nontrivial differentials in the Bockstein spectral
sequence in order to realize this target. The consequences of such differentials
are organized by the phenomenon of implications due to [Browder61].

Definition 10.16.LetA∗ denote a Hopf algebra of finite type over the finite field
Fp and denote its dual byA∗. An elementx ∈ Am is said to haver-implications
if there are elementsxi ∈ Ampi , for i = 0, 1, 2, . . . , r, with x0 = x, xi 6= 0
for all i, and eitherxi+1 = xpi or there exists an element̄xi ∈ Amp

i

such
that x̄i(xi) 6= 0 and x̄pi (xi+1) 6= 0. An element has∞-implications if it has
r-implications for allr.
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Lemma 10.17.If A∗ is a Hopf algebra overFp that contains an element which
has∞-implications, thenA∗ is infinite dimensional as a vector space overFp.

The Hopf algebras that we want to study are the terms of the Bockstein
spectral sequence for an H-space which are, in fact,differentialHopf algebras.
Before stating Browder’s theorem on∞-implications we collect a few basic
lemmas about Hopf algebras and differential Hopf algebras.

Lemma 10.18. Suppose(A∗, µ,∆) is a Hopf algebra andx ∈ A2m is a
primitive element. Then

∆(xn) =
∑n

i=0

(
n

i

)
xn−i ⊗ xi.

This follows like the binomial theorem for the algebraA∗ ⊗A∗ using the
fact that the comultiplication∆ is an algebra map. (We do not need to assume
associativity ofµ if we definexn inductively byx0 = 1 andxn = xn−1 · x,
and pay careful attention to parentheses.)

Lemma 10.19.SupposeA∗ is a Hopf algebra over a fieldk andA∗ is its dual.
If x ∈ A2m is a primitive element and̄x ∈ A∗, thenx̄n(xn) = n!(x̄(x))n.

Proof: We compute

x̄n(xn) = ∆∗(x̄n−1 ⊗ x̄)(xn) = (x̄n−1 ⊗ x̄)(∆(xn))

= (x̄n−1 ⊗ x̄)
(∑

i

(
n

i

)
xn−i ⊗ xi

)
= (x̄n−1 ⊗ x̄)(nxn−1 ⊗ x).

Thusx̄n(xn) = n(x̄n−1(xn−1) · x̄(x)) and so, by induction, we get̄xn(xn) =
n!(x̄(x))n. ut

Lemma 10.20.Suppose that(A∗, µ,∆, d) is a connected, differential graded
Hopf algebra over the fieldFp, x ∈ A2m is primitive, x = d(y) for some
y ∈ A2m+1, andx̄ ∈ A2m satisfies̄x(x) 6= 0. Setȳ = d∗(x̄) whered∗ is the
dual differential onA∗. Then(x̄p−1 · ȳ)(xp−1 · y) 6= 0.

Proof: First notice that̄y(y) = (d∗(x̄))(y) = x̄(d(y)) = x̄(x) 6= 0 and so
ȳ 6= 0. We next compute

(x̄p−1 · ȳ)(xp−1 · y) = ∆∗(x̄p−1⊗ ȳ)(xp−1 · y) = (x̄p−1⊗ ȳ)(∆(xp−1)∆(y))
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By Lemma 10.18, we can write

∆(xp−1)∆(y) =

=

(
p−1∑
i=0

(
p− 1
i

)
xp−1−i ⊗ xi

)y ⊗ 1 + 1⊗ y +
∑
j

y′j ⊗ y′′j


=

xp−1 ⊗ y +
∑

dim y′′
j

=1

(p− 1)xp−2y′j ⊗ xy′′j + stuff

 ,

where the “stuff” is a sum of tensor products of classesu ⊗ v wheredeg u 6=
(p− 1) deg x̄ or deg v 6= deg ȳ. Since(x̄p−1 ⊗ ȳ)(xp−1 ⊗ y) = x̄p−1(xp−1) ·
ȳ(y) 6= 0, it suffices to show that̄y(xy′′j ) = 0 for y′′j ∈ A1. Consider

ȳ(xy′′j ) = (d∗(x̄))(xy′′j ) = x̄(d(x)y′′j + xd(y′′j )).

Sincex = d(y), d(x) = 0. Thusd(xy′′j ) = xd(y′′j ). If d(y′′j ) 6= 0, then there
is an elementwj ∈ A0 with d∗(wj) 6= 0. SinceA∗ is taken to be connected,
wj = αj ·1 for someαj 6= 0 ∈ Fp. Butd∗(1) = d∗(1·1) = d∗(1)·1+1·d∗(1) =
2d∗(1) and sod∗(1) = 0. Thusd∗(wj) = d∗(αj · 1) = αjd

∗(1) = 0. This
implies thatȳ(xy′′j ) = 0 for all j. ut

Lemma 10.21. If A∗ is a differential graded Hopf algebra andx ∈ H(A∗)
satisfiesxp 6= 0, then for anyy ∈ A∗ with {y} = x, we haveyp 6= 0. If x has
r-implications inH(A∗) for somer ≤ ∞, theny hasr-implications inA∗.

Proof: Sincexp = {y}p = {yp} 6= 0, thenyp 6= 0. We can apply this
argument at each power ofp. Thus, ifx has∞-implications inH(A∗), theny
has∞-implications inA∗. ut

Lemma 10.22.Suppose thatA∗ is a differential graded Hopf algebra overFp.
Suppose further thatx ∈ A2m is primitive, thatxp = 0, and there is an element
y with d(y) = x. If {xp−1y} 6= 0 in H(A∗), then it is primitive.

Proof: By definition,H(∆)({xp−1y}) = {∆(xp−1y)}. By assumption we
haved(∆(y)) = ∆(d(y)) = ∆(x) = 1⊗x+x⊗1. This implies thatd(∆(y)−
y ⊗ 1− 1 ⊗ y) = 0. Furthermore,∆(xp−1) =

∑p−1

i=0

(
p− 1
i

)
xp−1−i ⊗ xi.

From elementary number theory we know that

(
p− 1
i

)
≡ (−1)i modp, and
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so we can write

∆(xp−1y) = ∆(xp−1)∆(y)

=
(∑p−1

i=0
(−1)ixp−1−i ⊗ xi

)
(y ⊗ 1 + 1⊗ y + (∆(y)− 1⊗ y − y ⊗ 1))

= xp−1y ⊗ 1 + 1⊗ xp−1y +
∑p−2

i=0
(−1)ixp−1−i ⊗ xiy

+
∑p−1

i=1
(−1)ixp−1−iy ⊗ xi + ∆(xp−1)(∆(y)− 1⊗ y − y ⊗ 1)

= xp−1y ⊗ 1 + 1⊗ xp−1y + d

(∑p−1

i=1
(−1)i+1(xp−1−iy ⊗ xi−1y)

)
+ d(∆(xp−2y)(∆(y)− 1⊗ y − y ⊗ 1)).

It follows that{∆(xp−1y)} = {xp−1y} ⊗ 1 + 1⊗ {xp−1y}. ut
The last lemma we need before we state and prove the main theorem of

[Browder61] is a technical fact about the mod 2 Steenrod algebra and H-spaces.
While the previous lemmas followed for purely algebraic reasons, this lemma
requires that we are working with the mod 2 cohomology of an H-space.

Lemma 10.23. If (X,x0, µ) is an H-space,x ∈ H2m(X;F2) is a primitive
element,y ∈ H2m+1(X;F2), andz̄ ∈ H2m+1(X;F2), then(Sq2mz̄)(xy) = 0.

Proof: In terms of the induced operations we can write

(Sq2mz̄)(xy) = (µ∗(Sq2mz̄))(x⊗ y) = (Sq2m(µ∗z̄))(x⊗ y).

We writeµ∗(z̄) =
∑
i z̄
′
i ⊗ z̄′′i and the Cartan formula gives

Sq2m(z̄′i ⊗ z̄′′i ) =
∑

q+r=2m
Sqq(z̄′i)⊗ Sqr(z̄′′i ).

By the unstable axiom for the action of the Steenrod algebra, ifq > dim z̄′i,
thenSqq(z̄′i) = 0, and similarly ifr > dim z̄′′i . Let c = deg z̄′i, d = deg z̄′′i .
Thenc+ d = 2m+ 1 and it follows by examining the solutions toq+ r = 2m
that

Sq2m(z̄′i ⊗ z̄′′i ) = Sqcz̄′i ⊗ Sqd−1z̄′′i + Sqc−1z̄′i ⊗ Sqdz̄′′i .

SinceSqcz̄′i = (z̄′i)
2 andx is primitive, (z̄′i)

2(x) = 0. It follows that
(Sqcz̄′i ⊗ Sqd−1z̄′′i )(x ⊗ y) = 0. Similarly, Sqdz̄′′i = (z̄′′i )2, a class of even
degree. Sincey has odd degree,(z̄′′i )2(y) = 0 and so the lemma follows from
(Sqc−1z̄′i ⊗ Sqdz̄′′i )(x⊗ y) = 0. ut
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Theorem 10.24.Suppose(X,x0, µ) is a connected, path-connected H-space
of finite type and{Br∗(X)} is its homology Bockstein spectral sequence. If
x ∈ Br2m is a nonzero primitive element and, for somey 6= 0, x = dr(y), then
x has∞-implications.

Proof: We may assume thatxp = 0, for otherwise we can takex1 = xp,
also a primitive, withdr(xp−1y) = xp. Thusx1 satisfies the hypotheses of
the theorem, and if this process never stops, we have obtained the sequence of
∞-implications ofx. Assumingxp = 0, we will producex1 ∈ Br2mp such that
x̄p(x1) 6= 0 for anyx̄ ∈ B2m

r (X) for whichx̄(x) 6= 0. Thex1 produced will be
neither primitive nor a boundary, but its homology class{x1} ∈ Br+1

2mp will be
both primitive and a boundary. By Lemma 10.21 it suffices to check that there
is the 1-implicationx1 at the next stage of the Bockstein spectral sequence and
then take a representative inBr.

In the cohomology Bockstein spectral sequence suppose thatx̄ ∈ B2m
r

satisfies̄x(x) 6= 0. Setȳ = dr(x̄). Then

ȳ(y) = (dr(x̄))(y) = x̄(dr(y)) = x̄(x) 6= 0.

It follows that ȳ 6= 0 and, by Lemma 10.20, that(x̄p−1ȳ)(xp−1y) 6= 0. Fur-
thermore, ifp 6= 2, dr(x̄p−1ȳ) = (p− 1)x̄p−2ȳ2 = 0. If p = 2 andr > 1,

ȳ2 = {Sq2m+1z} = {Sq1Sq2mz} = {d1(Sq2mz)} = 0

in B2 wherez ∈ H2m+1(X;F2) is such that{z} = ȳ. That is, squares of odd
degree classes vanish inB2. If p = 2 andr = 1, then

d1(Sq2mȳ + x̄ȳ) = ȳ2 + ȳ2 = 0

and, by Lemmas 10.20 and 10.23,(Sq2mȳ + x̄ȳ)(xy) 6= 0.
We check that the class{x̄p−1ȳ} (or{Sq2mȳ+x̄ȳ}whenr = 1 andp = 2)

is nontrivial inBr+1. Suppose that̄xp−1ȳ = dr(z̄). Then

0 6= (x̄p−1ȳ)(xp−1y) = dr(z̄)(xp−1y) = z̄(dr(xp−1y))
= z̄(xp) = z̄(0) = 0,

a contradiction. Thus̄xp−1ȳ 6= dr(z̄). Similarly, (Sq2mȳ + x̄ȳ) 6= d1(z̄).
To complete the proof we show that the class{x̄p−1ȳ} ∈ Br+1 satisfies

dr+1({x̄p}) = c{x̄p−1ȳ} 6= 0 when p 6= 2 or p = 2 and r > 1. In the
casep = 2 andr = 1, we show that the class{Sq2mȳ + x̄ȳ} ∈ B2 satisfies
d2({x̄2}) = {Sq2mȳ + x̄ȳ}. Recalldr(x̄) = ȳ. Then there is a class̄u ∈
H2m(X;Z/prZ) such that{red∗p ū} = x̄ ∈ Br whereredp : Z/prZ −→ Z/pZ
is reduction modp. Letf : X → K(Z/prZ, 2m) represent̄u, that is,f∗(ı2m) =
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ū whereı2m ∈ H2m(K(Z/prZ, 2m);Z/prZ) is the fundamental class. Let
ı̄ = red∗p(ı2m). It follows that

f∗(̄ı) = f∗(red∗p ı2m) = red∗p(f
∗(ı2m)) = red∗p(ū) = x̄.

Let f∗r : Br(K(Z/prZ, 2m)) −→ Br(X) denote the homomorphism induced
by f on the cohomology Bockstein spectral sequences. Ifη̄ = dr (̄ı), then we
have

f∗r (η̄) = f∗r (dr (̄ı)) = dr(f∗r (̄ı)) = dr(x̄) = ȳ

and sof∗r (̄ıp−1η̄) = x̄p−1ȳ. Since{x̄p−1ȳ} 6= 0 in Br+1, f∗r+1({ı̄p−1η̄}) =
{x̄p−1ȳ}. By naturality and the calculation of the cohomology Bockstein spec-
tral sequence forK(Z/prZ, 2m), f∗r+1(dr+1({ı̄p})) 6= 0 andf∗r+1({ı̄p}) =
{x̄p} 6= 0. Thus

dr+1({x̄p}) = dr+1(f∗r+1({ı̄p})) = f∗r+1(c{ı̄p−1η̄}) = c{x̄p−1ȳ}.

The analogous argument mod 2 givesd2({x̄2}) = {Sq2mȳ + x̄ȳ}.
In order to continue the argument, we show that there is an elementv ∈

Br+1
2mp that is primitive with{x̄p}(v) 6= 0 and v = dr+1(w) for somew.

Consider the elementw = {xp−1y}. We compute:

{x̄p}(dr+1({xp−1y})) = c{x̄p−1ȳ}({xp−1y}) 6= 0.

By Lemma 10.22,w is primitive. Also, v = dr+1(w) is primitive. In the
sequence of elements making up the∞-implications ofx we takex1 to be a
choice of representative ofv in Br. Then,x̄p(x1) = {x̄p}(v) 6= 0, and, since
x̄(x) 6= 0, x1 is the next element in the sequence making up the∞-implications
for x. To obtainx2, either takexp1 if nonzero, or repeat the argument using the
primitive v ∈ Br+1

2mp with v = dr+1(w). ut
Notice that ifxp = 0, then the choice of̄x with x̄(x) 6= 0 was arbitrary in

the construction. It follows from̄xp(x1) 6= 0 that, if x is a primitive inBr2m
with 0 6= dr(y) = x andxp = 0, thenx̄p 6= 0 for all x̄ ∈ B2m

r with x̄(x) 6= 0.

We turn to applications of Theorem 10.24. A spaceX is said to be a
mod p finite H-space if it is a connected, path-connected H-space of finite
type for which the modp homology ring is finite-dimensional overFp. By
Theorem 10.2, for a modp finite H-spaceX,B∞(X) is an exterior algebra on
finitely many odd-dimensional generators.

A shorthand statement of Theorem 10.24 is the expression forX, a modp
finite H-space,

Im dr ∩ Prim(Heven(X;Fp)) = {0}.

A dual formulation of Theorem 10.24 depends on a fundamental theorem due
to [Milnor-Moore65]:
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Theorem 10.25.If (A,µ,∆) is an associative, commutative, connected Hopf
algebra over the fieldFp, then there is an exact sequence

0→ Prim(ξA) −→ Prim(A) −→ Q(A)

whereξ : A −→ A is theFrobenius homomorphismξ(a) = ap.

Sketch of a proof: The reader can check that the theorem holds forA a
monogenic Hopf algebra. For a finitely generated Hopf algebraA andA′, a
normal sub-Hopf algebra, there are short exact sequences:

0 w Prim(A′) w

u

Prim(A) w

u

Prim(A//A′)

u
Q(A′) w Q(A) w Q(A//A′).

We leave it to the reader to show that, ifA′ = ξ(A), then the mapping
Prim(A//A′) → Q(A//A′) is injective. The theorem follows from the dia-
gram of short exact sequences. ut

SupposeX is a modp finite H-space,̄x ∈ B2m
r is a primitive element and

dr(x̄) = ȳ 6= 0. SinceH∗(X;Fp) is an associative, commutative connected
Hopf algebra, Theorem 10.25 implies thatȳ, a primitive of odd degree, is not a
pth power (̄y2 = 0) and hencēy is indecomposable. Thus there is an elementy
inB2m+1 with ȳ(y) 6= 0 andy primitive. Thenȳ(y) = dr(x̄)(y) = x̄(dr(y)) =
x̄(x) 6= 0, and sox ∈ B2m is a primitive in the image ofdr. SinceH∗(X;Fp)
is a finite vector space, there cannot be∞-implications, and so the assumption
that there is an̄x ∈ B2m

r with dr(x̄) 6= 0 must fail. Thus, the dual version of
Theorem 10.24 for modp finite H-spaces may be written

Im dr ∩ Prim(B2m+1
r ) = {0}, for all m.

From the structure of an exact couple, an element in the image of the
descending homomorphism is always a cycle (Proposition 2.9). In the case of
the Bockstein spectral sequence, the descending homomorphism is reduction
mod p. Thus, for a modp finite H-space, the image ofredp∗ : H∗(X) →
H∗(X;Fp) cannot contain an even-dimensional primitive element. Ifx ∈
Im redp∗ ∩Prim(Heven(X;Fp)), thendr(x) = 0 for all r and sincex cannot
persist toB∞, thenx = ds(y) for somes andy. But thenx has∞-implications
andH∗(X;Fp) has infinite dimension overFp.

A consequence of this discussion is the theorem of [Browder61] generaliz-
ing the classical result of [Cartan, E36] thatπ2(G) = {0} for simply-connected
Lie groups.
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Theorem 10.26.If X is a modp finite H-space, then the leastm > 1 for which
πm(X)⊗ Fp 6= {0} is odd.

Proof: Consider the modpHurewicz homomorphismh⊗Fp : πm(X)⊗Fp →
Hm(X) ⊗ Fp → Hm(X;Fp). This factors throughredp∗ and takes its image
in the primitive elements. It follows that this mapping is trivial whenm is even.

WhenX is simply-connected, the Hurewicz-Serre theorem for modp
coefficients (Theorem 6.25) implies that the first nonvanishing homology group
Hm(X;Fp) is isomorphic viah ⊗ Fp to the first nonvanishing homotopyFp-
moduleπm(X)⊗Fp. Since this must happen in an odd dimension, the theorem
holds.

WhenX is not simply-connected we can argue using the universal cover
X̃. [Browder59] showed that the universal cover of a modp finite H-space is
again a modp finite H-space. Sinceπm(X) ∼= πm(X̃) for m > 1, we reduce
to the simply-connected case. ut

In developments that grew out of the study of torsion in H-spaces, [Jean-
neret92] and [Lin93] have shown that the first nonvanishing homotopy group
of a mod 2 finite H-space, whose mod 2 homology ring is associative, must be
in degree 1, 3, or 7.

An H-space with the homotopy type of a finite CW-complex is called a
finite H-space. The compact Lie groups offer a large class of examples of finite
H-spaces. A guiding principle in the study of such spaces is that the topological
properties of compact Lie groups have their origin at the homotopical level of
structure. That is to say, what is true homotopically of a compact Lie group
G ought to be true becauseG is a finite H-space. Hopf’s theorem (10.2) and
Browder’s theorem (10.26) lend considerable support to this principle. That
the class of finite H-spaces is larger than the examples of compact Lie groups
is a result of the development of localization and the mixing of homotopy types
due to [Zabrodsky72]. [Hilton-Roitberg71] used mixing to exhibit examples of
finite H-spaces not of the homotopy type of any compact Lie group.

A major theme in the development of finite H-spaces is the application
of the guiding principle to Bott’s theorem (10.1)—ifX is a simply-connected
finite H-space, thenH∗(ΩX) has no torsion.

Under the assumption thatX is a simply-connected finite H-space and
H∗(ΩX) has no torsion [Browder63] showed thatH∗(ΩX) = Heven(ΩX),
strengthening Bott’s theorem considerably. This paper introduces a family
of spectral sequences based on the natural filtrations on a Hopf algebra that
interpolate between the terms in the Bockstein spectral sequence and enjoy a
particularly nice algebraic expression.

[Kane77] applied work of [Browder63] and [Zabrodsky71] to obtain a
necessary and sufficient condition thatH∗(ΩX) have nop-torsion whenX is a
simply-connected finite H-space. The condition is given in terms of the action
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of the Steenrod algebra on the cohomology of the finite H-space:

Q(Heven(X;Fp)) =
∑

m≥1
βPmQ(H2m+1(X;Fp)).

Notice, in the case thatp = 2, this condition holds only whenH∗(X;F2)
has no even-dimensional indecomposables. Whenp = 2, Pm = Sq2m and
βSq2m = Sq1Sq2m = Sq2m+1, which is the squaring map onH2m+1. [Lin76,
78] established thatQ(Heven) =

∑
m≥1 βP

mQ(Hodd) holds for odd primes
by extending work of [Zabrodsky71] on secondary operations.

Building on work of [Thomas63] on the action of the Steenrod algebra on
the cohomology of an H-space, [Lin82] established the absence of2-torsion
in H∗(ΩX) whenX is a mod 2 finite H-space andH∗(X;F2) is an associa-
tive Hopf algebra. [Kane86] studied the presence of2-torsion inH∗(ΩX) by
using a version of the Bockstein spectral sequence for the extraordinary coho-
mology theoryk(n)∗ introduced by [Morava85]. Putting together all of these
developments, the goal of generalizing Bott’s theorem was realized.

Theorem 10.27.If X is a simply-connected finite H-space, thenH∗(ΩX) has
no torsion.

The proof of Theorem 10.27 generated a number of powerful methods in
algebraic topology. Accounts of these developments and much more can be
found in [Kane88] and [Lin95].

Other applications of the Bockstein spectral sequence®N
Away from the study of H-spaces, the results of [Browder61] may be ap-

plied to obtain some general results aboutH∗(ΩX;Fp). In particular, using∞-
implications, [McCleary87] proved a generalization of the results of [Serre51]
(Proposition 5.16) and [Sullivan73] on the nontriviality ofH∗(ΩX; k) for k a
field.

Theorem 10.28.SupposeM is a simply-connected compact finite-dimensional
manifold anddimkQ(H̃∗(M ; k)) > 1, then the set{dimkH

i(ΩM ; k) | i =
1, 2, . . . } is unbounded.

The assumption thatdim Fp Q(H̃∗(X;Fp)) > 1 together with the results
overQ of [Sullivan73] force the existence of∞-implications on two elements.
The intertwining of the∞-implications of these elements in a Hopf algebra
gives a subspace ofH∗(ΩM ;Fp) that is isomorphic as a vector space to a
polynomial algebra on two generators. The vector spaceFp[x, y] has subspaces
Fp{xlm, x(l−1)myn, . . . , x(l−i)myin, . . . , xmy(l−1)n, yn} wherem deg x =
n deg y = lcm(deg x,deg y). This subspace has dimensionl+ 1 and so grows
unbounded withl.
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This theorem, like Proposition 5.16, implies geometric results about the
geodesics on the manifoldM . Under the assumptions of the theorem, the
number of geodesics onM joining two nonconjugate points of length less than
λ grows at least quadratically inλ.

Another place wherep-torsion makes a key appearance is in the Adams
spectral sequence. Following the discussion in§9.3, thetimesp map is de-
tected in the Adams spectral sequence by multiplication by a classa0 ∈
Ext1,1

Ap(Fp,Fp). For anAp-moduleM , [May-Milgram81] say that an element

x ∈ ExtAp(M,Fp) generates a spikeif x 6= a0x
′ andai0x 6= 0 for all i. There

is a single spike inExtA2(F2,F2) as the charts (pp. 443-444) in Chapter 9
show—the picture explains the terminology.

[Adams69] wrote of the Adams spectral sequence, “Whenever a chance
has arisen to show that a differentialdr is non-zero, the experts have fallen on it
with shouts of joy—‘Here is an interesting phenomenon! Here is a chance to do
some nice, clean research!’—and they have solved the problem in short order.”
The Bockstein spectral sequence interacts with the Adams spectral sequence to
produce differentials that form a coherent pattern. The functionT (s) used in
the statement of the following theorem refers to Lemma 9.45: Whenp is odd,
thenT (s) = (2p− 1)s− 1; whenp = 2, thenT (s) is defined byT (4s) = 12s,
T (4s+ 1) = 12s+ 2, T (4s+ 2) = 12s+ 4, andT (4s+ 3) = 12s+ 7.

Theorem 10.29.SupposeX is an(n − 1)-connected space of finite type. For
r ≥ 1, suppose thatCr is a basis forBr∗(X), the homology Bockstein spectral
sequence. Assume thatCr is chosen so thatCr = Dr ∪ βrDr ∪ Cr+1 where
Dr, βrDr, andCr+1 are disjoint, linearly independent subsets ofBr∗(X) such
that βrDr = {βrw | w ∈ Dr} andCr+1 is a set of cycles with respect toβr
that projects onto the chosen basis forBr+1

∗ (X). Then

(1) The set of spikes inEr(X), 2 ≤ r ≤ ∞, is in one-to-one correspondence
with Cr. If c ∈ Cr has degreeq and γ ∈ Es,tr (X) generates the
corresponding spike, thenT (s)− s+ n ≤ q = t− s.

(2) If d ∈ Dr andδ ∈ Es,tr (X) andε ∈ Eu,vr (X), with v − u = t− s− 1,
generate spikes corresponding tod andβrd, then

dr(ai0δ) = ai+r+s−u0 ε

providedn+ T (i+ s) ≥ t.

Proof: SinceX is taken to be of finite type,H∗(X) is a direct sum of torsion
prime top, summands of the formZ/pkZ, and summandsZ whose generators
reduce modp to the elements ofC∞. We may use this decomposition to
construct mappings

φi : X −→ K(Hi(X), i)
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that induce isomorphisms on integral homology in degreei. Let Y denote the
space

∨
i
K(Hi(X), i) andφ =

∨
i φi : X −→ Y denote the wedge product

of all of these mappings. On homology with coefficients inFp, φ∗ induces a
monomorphism fromHi(X) for all i. This gives rise to a short exact sequence

0→ H∗(X;Fp) −→ H∗(Y ;Fp) −→M∗ → 0,

whereM∗ is seen to be
⊕

q≥i+2Hq(K(Hi(X), i);Fp).
Ignoring the contribution to torsion at primes not equal top, we know from

theorems of Cartan and Serre that the dual ofM∗ is A(0)-free (§9.6), that is,
the Bockstein homomorphism onMdual

∗ , as a differential, is exact. We next
examine the long exact sequence ofExt groups associated to the short exact
sequence:

→ Exts−1,t
Ap (Mdual

∗ ,Fp) −→ Es,t2 (X)→ Es,t2 (Y )→ Exts,tAp(Mdual
∗ ,Fp)→ .

Lemma 9.47 implies thatExts,tAp(Mdual
∗ ,Fp) = {0} when0 < s < t ≤

n + T (s). It follows thatEs,t2 (X) −→ Es,t2 (Y ) is onto in this range and an
isomorphism whens ≥ 2 and0 < s < t ≤ n+ T (s− 1). By the naturality of
the Adams spectral sequence, that it suffices to examine the case of Eilenberg-
Mac Lane spaces to prove the theorem. We leave it to the reader to show that
a factor ofK(Z/pZ, i) introduces a single copy ofFp that persists toE∞; a
factor ofK(Z/pkZ, i) introduces a pair of spikes atE2 on generatorsz andy
with dk(ai0z) = ai+ky, leaving a basis of{ai0y | 0 ≤ i ≤ k} atE∞; finally, a
factor ofK(Z, i) introduces a permanent spike atE2. ut

This argument requires that spikes have the right Adams filtration to work.
Spikes inE2(X) could be generated by elements lying in lower filtration degree
than in the range of the isomorphism. Such generators might have nontrivial
differentials earlier than predicted by the theorem. Such differentials could
occur on the bottoms of spikes whose top parts survive toE∞(X).

Plugging this argument into a dual setting via Spanier-Whitehead duality,
[Meyer98] has used the resulting differentials to compute certain cohomotopy
groups and these groups force Euler classes associated to geometric bundles to
vanish. These data imply an estimate of certain numerical invariants of lens
spaces. Let

vp,2(m) = min{n | there is aZ/pZ-equivariantf : L2m−1(p) −→ S2n−1}.

Here the action ofZ/pZ on L2m−1(p) is induced by the multiplication by a
primitive root of unity of orderp2 onCm and onS2n−1 by the standard action.
The estimates of [Meyer, D98] generalize work of [Stolz89] at the prime 2.
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10.2 Other Bockstein spectral sequences

Consider the cofibration sequence

Sn−1
r
−→ Sn−1

β
−→ Pn(r)

η
−→ Sn

r
−→ Sn

wherePn(r) = Sn−1∪r en is a modr Moore space andr denotes the degreer
map onSn−1. Following [Peterson56], these spaces may be used to define the
mod r homotopy groups,

πn(X;Z/rZ) = [Pn(r), X].

The properties of cofibration sequences lead to an exact couple

π∗(X) w

r π∗(X)
'
'
'*

η

π∗(X;Z/rZ)

[
[
[̂

β

and hence a Bockstein spectral sequence, denoted byπB
r
∗(X), with πB1

∗(X) ∼=
π∗(X;Z/rZ). When r = p, a prime, the spectral sequence converges to
(π∗(X)/torsion) ⊗ Fp for X of finite type. (Some care has to be taken when
p = 2 becauseπ3(X;Z/2Z) need not be abelian.) This spectral sequence was
studied by [Araki-Toda65] for applications to generalized cohomology theories,
by [Browder78] for applications to algebraic K-theory, and by [Neisendorfer72]
for its relations to unstable homotopy theory.

Among the properties of the Moore spaces is the following result of
[Neisendorfer72]. The proof requires careful bookkeeping in low dimensions
(for details see the memoir of [Neisendorfer80]).

Proposition 10.30. If m, n ≥ 2 and r, s are positive integers for which
d = gcd(r, s) is odd, then there is a homotopy equivalence:

αm,n : Pm+n(d) ∨ Pm+n−1(d) −→ Pm(r) ∧ Pn(s).

Whenr = s = p, an odd prime, this homotopy equivalence may be used to
define pairings on modp homotopy groups. In particular, givenf : Pm(r) →
X and g : Pn(s) → Y , we can use the canonical injection,x 7→ (x, ∗),
Pm+n(d)→ Pm+n(d)∨Pm+n−1(d) to obtain a mappingPm+n(d)→ X∧Y
as the composite

Pm+n(d)→ Pm+n(d) ∨ Pm+n−1(d)
αm,n
−−−→ Pm(r) ∧ Pn(s)

f∧g
−−→X ∧ Y.
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A mappingσ : X∧Y → Z induces a pairingπm(X;Z/rZ)⊗πn(Y ;Z/sZ)→
πm+n(Z;Z/dZ) and this pairing forX = Y = Z = BGl(Λ)+ was developed
by [Browder78] to study the algebraic K-theory with coefficients of a ringΛ
via the homotopy Bockstein spectral sequence.

When(G,µ, e) is agrouplike space, that is,G is a homotopy associative
H-space with a homotopy inverse (for example, a based loop spaceΩX), then
the commutator mapping[ , ] : G×G→ G, given by(x, y) 7→ (xy)(x−1y−1),
determines a mapping[ , ] : G∧G→ G, since, up to homotopy, the commutator
mapping restricted toG ∨ G is homotopic to the constant mapping toe. This
mapping may be applied to the homotopy groups ofGwith coefficients to define
a pairing ford = gcd(r, s):

[ , ] : πm(G;Z/rZ)⊗ πn(G;Z/sZ)→ πm+n(G;Z/dZ).

The pairing is given by the composite

Pm+n(d)→ Pm+n(d)∨Pm+n−1(d)→ Pm(r)∧Pn(s)
f∧g
−−→ G ∧G

[ , ]
−−→G.

The pairing induced on homotopy groups by the commutator mapping is the
Samelson product. The properties of the generalized Samelson product for ho-
motopy groups with coefficients are extensively developed by [Neisendorfer80].
In particular, we have the following result.

Proposition 10.31. If r = s = d, gcd(r, 6) = 1, andG is a 2-connected,
grouplike space, thenπ∗(G;Z/rZ) is a graded Lie algebra.

WhenG is grouplike,H∗(G;Z/rZ) is an associative algebra and hence
enjoys a Lie algebra structure given by[z, w] = zw − (−1)|z|·|w|wz. The
Hurewicz map,h∗ : π∗(X;Z/rZ) → H∗(X;Z/rZ), is induced byh∗([f ]) =
f∗(y), wherey ∈ Hm(Pm(r);Z/rZ) is the canonical generator. This map-
ping for r = p, an odd prime, induces a mappingπB1

∗(X) → B1
∗(X),

where{Bs∗(X), ds} denotes the modp homology Bockstein spectral sequence.
[Neisendorfer72] showed that both the homotopy and homology Bockstein
spectral sequences are spectral sequences of Lie algebras forp > 3, and that the
Hurewicz homomorphism induces a Lie algebra homomorphism onBs-terms
for all s.

It is possible to develop the properties of differential Lie algebras by anal-
ogy with the development of differential Hopf algebras for the Bockstein spectral
sequence. This development makes up the first few sections of [Cohen-Moore-
Neisendorfer79], especially applied to the case of free Lie algebras. These
results may be used to study the spacesΩPn(pr) andΩFn(pr), whereFn(pr)
is the homotopy fibre of the pinch mapPn(pr)→ Sn, defined by collapsing the
bottom cell. The main results of [Cohen-Moore-Neisendorfer79] are homotopy
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equivalences between the spaceΩPn(pr) (suitably localized) and products of
countable wedges of known spaces whose structure may be read off the behav-
ior of Bockstein spectral sequence. A similar result holds forΩFn(pr). The
comparison of the homotopy and homology Bockstein spectral sequences via
the Hurewicz homomorphism allows one to obtain representative mappings that
go into the construction of the homotopy equivalences. Finally, the decomposi-
tions are used to establish the inductive argument that goes from the theorem of
[Selick78], thatp annihilates thep-component(p)πk(S3) for k 6= 3 andp > 3,
to prove the following result.

Theorem 10.32.If p > 3, andn > 0, thenpn+1 annihilates(p)πk(S2n+1), for
all k > 2n+ 1.

The final generalization of the Bockstein spectral sequence that we present
is best framed in the language of spectra and generalized cohomology theories.
If X is a spectrum andf : X → X is a selfmap of degreek, then we can form
the cofibre off in the category of spectra and obtain an exact couple:

[W,X] w

f∗ [W,X]
'
'
'*

[W, cofibre(f)]

[
[
[̂

The mappingf may be thought of as a cohomology operation and[W,X] =
X∗(W ) as the value of the associated generalized cohomology theory onW .
If X = HZ, the Eilenberg-Mac Lane spectrum for integer coefficients, andf
represents thetimespmap, then the cofibre represents the Eilenberg-Mac Lane
spectrumHFp and we obtain the usual Bockstein spectral sequence.

Let k(n)∗( ) denote the generalized cohomology functor known ascon-
nective Morava K-theory (see the work of [W¨urgler77] for the definition and
properties). This theory has certain remarkable properties:

(1) k(n)∗(point) ∼= Fp[vn] wherevn has degree−2pn + 2.
(2) k(n)∗(W ) has a direct sum decomposition into summandsFp[vn] and

Fp[vn]/(vsn).

Property (2) is analogous to the result for a finitely generated abelian group
modulo torsion away from a primep where the summands areZ andZ/psZ.
We choose the mapping of the representing spectrum for Morava K-theory that
induces thetimesvn map. The cofibre is represented byHFp and the exact
couple for a finite H-spaceX may be presented as

k(n)∗(X) w

−×vn k(n)∗(X)
'
'
'*

ρn

H∗(X;Fp)

[
[
[̂
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whereρn is modvn reduction. The Bockstein spectral sequence in this case
hasB∗1 = H∗(X;Fp) and the first differentiald1 is identifiable withQn, the
Milnor primitive inAdual

p ([Milnor58], [Kane86]). The limit term,B∞, is given
by (k∗(n)(X)/vn-torsion)⊗Fp[vn] Fp. Thevn-torsion subgroup ofk(n)∗(X)
consists of elements annihilated by some power ofvn. [Johnson, D73] identi-
fied this spectral sequence with an Atiyah-Hirzebruch spectral sequence (Theo-
rem 11.16). It follows from this observation that the spectral sequence supports
a commutative and associative multiplication. [Kane86] developed many prop-
erties of this spectral sequence for the prime 2 including a notion of infinite
implications that played a key role in a proof of Theorem 10.27. [Kane86]
conjectured that, for a mod2 finite H-space(X,µ, e), the Bockstein spectral
sequence for Morava K-theory should satisfy the following two properties:

(1) The even degree algebra generators ofH∗(X;F2) can be chosen to be
permanent cycles inBr.

(2) In degrees greater than or equal to2n+1, the even degree generators can
be chosen to be boundaries inBr.

If these conjectures were to hold, a simple proof of the absence of2-torsion in
H∗(ΩX) for a mod2 finite H-space(X,µ, e) would be possible (as outlined
by [Kane86]).

Exercises

10.1. Show that the condition,Hodd(ΩG; k) = {0} for all fieldsk, implies that
H∗(ΩG) is torsion-free.

10.2. Prove that a commutative, associative Hopf algebra over a field of characteristic
zero that is generated by odd-dimensional generators is an exterior algebra.

10.3. From the structure ofH∗(RPn;F2) as a module over the Steenrod algebra,
determine completely the mod 2 Bockstein spectral sequence forRPn.

10.4. The mod 2 cohomology of the exceptional Lie groupG2 is given by

H∗(G2;F2) ∼= F2[x3, x5]/〈x4
3, x

2
5〉.

The rational cohomology ofG2 is given byH∗(G2;Q) ∼= Λ(X3, X11). From
these data determine the mod 2 Bockstein spectral sequence forG2.

10.5. Prove Proposition 10.8 and Lemma 10.9.

10.6. Prove the analogue of Corollary 10.14 forK(Z/2kZ, n).

10.7. SupposeX is an H-space andπ : X̄ → X a covering space ofX. Then
X̄ is an H-space andπ a multiplicative mapping. Use the Cartan-Leray spectral
sequence (Theorem 8bis.9) which is a spectral sequence of Hopf algebras in this
case to prove that ifX is a modp finite H-space, then̄X is a modp finite H-space
([Browder59]).
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10.8. Show that ifA′ is a normal sub-Hopf algebra of the Hopf algebraA, then
there is a diagram of short exact sequences:

0 w Prim(A′) w

u

Prim(A) w

u

Prim(A//A′)

u
Q(A′) w Q(A) w Q(A//A′).

Use this fact to give a complete proof of Theorem 10.25.

10.9. Show that the universal examples ofK(Z/pkZ, n), for k > 0, andK(Z, n)
lead to the spikes and differentials in the Adams spectral sequence as predicted by
Theorem 10.29.

10.10. Suppose thatM is compact, closed manifold (or more generally a Poincar´e
duality space). IfM has dimension4m + 1, then prove the following result due
to [Browder62’]: either (1)H2m(M) ∼= F ⊕ T ⊕ T , whereF is a free abelian
group andT is a torsion group, or (2)H2m(M) ∼= F ⊕ T ⊕ T ⊕ Z/2Z and in
this case,Sq2m : H2m+1(M ;F2)→ H4m+1(M ;F2) is nonzero.
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11
More Spectral Sequences in Topology

“Topologists commonly refer to this apparatus as
‘machinery’.”

J. F. Adams

The examples developed in Chapters 5 through 10 by no means exhaust
the significant appearances of spectral sequences in mathematics. A recent
search on the keywordspectral sequence in the databaseMathSciNet
delivered more than 2800 reviews in which the words are mentioned. In this
chapter and the next, we present a kind of catalogue, by no means complete
or self-contained, meant to offer the reader a glimpse of the scope of the ap-
plications of spectral sequences. (Similar catalogues are found in the books
of [Griffiths-Harris78], [Benson91], [Weibel94], and the fundamental paper of
[Boardman99].) I hope that the reader will find a useful example in this collec-
tion or at least the sense in which spectral sequences can be applied in his or
her field of interest. The algebraic foundations supplied in Chapters 1, 2, and 3
are sufficient to understand the constructions found in the cited references.

In this chapter we concentrate on diverse applications of spectral sequences
in algebraic and differential topology. The examples are organized loosely
under the rubricks of spectral sequences associated to a mapping or space of
mappings (§11.1), spectral sequences derived for the computation of generalized
homology and cohomology theories (§11.2), other Adams spectral sequences
(§11.3), spectral sequences that play a role in equivariant homotopy theory
(§11.4), and finally, miscellaneous examples (§11.5).

11.1 Spectral sequences for mappings and spaces of mappings

The Leray-Serre spectral sequence is associated to a fibration,π : E → B.
Its success owes much to the right definition of fibration, due to [Serre51]. In
this section we discuss some spectral sequences also associated to particular
types of mappings or to spaces of mappings.

We first consider the dual of a fibration and present two spectral sequences
related to cofibrations. The first is due to [Quillen69] and appears in his foun-
dational paper on rational homotopy theory. The key piece of structure in the
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following theorem is the fact that the rational homotopy groupsπ∗(ΩX) ⊗ Q
form a graded Lie algebra with the product induced by the Samelson product.
The following is a kind of dual to the rational Leray-Serre spectral sequence.

Theorem 11.1.SupposeA→ X → X/A is a cofibration sequence. Then there
is a spectral sequence of graded Lie algebras with

E2
p,q
∼= (πp(ΩA)⊗Q) ∨ (πq(Ω(X/A)⊗Q),

and converging toπ∗(ΩX)⊗Q. Here`∨ `′ is the direct sum of the graded Lie
algebras̀ and`′.

[Neumann99] has given a parallel derivation of an analogous spectral sequence
for loops on a cofibre sequence by filtering the cobar construction.

The next spectral sequence is roughly dual to the homology Eilenberg-
Moore spectral sequence of§7.4. The derivation is due to [Barratt62] and the
spectral sequence generalizes the suspension phenomena that occur in theEHP
sequence of [Whitehead, GW53].

Theorem 11.2 (the Barratt spectral sequence).Given a cofibration sequence
A→ X → X/A, there is a spectral sequence with

Ep,q1
∼=


πq(X), if p = 0,

πq+2(X/A), if p = 1,

π̃2p+q(X/A ∨ SA ∨ · · · ∨ SA︸ ︷︷ ︸
p−1 times

), if p > 1,

whereπ̃∗(X/A∨SA∨· · ·∨SA) ⊂ π∗(X/A∨SA∨· · ·∨SA) is the subgroup
of cross terms. The spectral sequence converges toπ∗(A).

[Barratt62] studiedd1 and showed that theE2-term of this spectral sequence
can be expressed in terms of the cohomology of ananalyzer as defined by
[Lazard55]. Generalizations of and computations using this spectral sequence
are found in work of [Goerss93].

Just as the K¨unneth spectral sequence generalizes the K¨unneth theorem,
other classical constructions in homotopy theory admit a generalization by a
spectral sequence. A tool in deriving these generalizations is a result due to
[Quillen66].

Theorem 11.3.LetA•• denote a bisimplicial group. There is a natural first
quadrant spectral sequence of homological type withE2

p,q
∼= πhpπ

v
q (A••) and

converging toπp+q(∆A••), where∆A•• is the diagonal simplicial group with
(∆A••)n = Ann.



        

11.1. Spectral sequences for mappings and spaces of mappings 489

The vertical homotopy groupsπvq (A••) denote the homotopy groups of the
simplicial groupsAn•, and the resulting groups form another simplicial group
whose homotopy groups are the horizontal groupsπhpπ

v
q (A••).

When the bisimplicial groupA•• = (GX)• ∗ (GY )•, for spacesX and
Y ,G the loop group functor of [Kan58], and∗ the free product of groups, then
[Hirschhorn87] has analyzed the resulting spectral sequence:

Theorem 11.4.For spacesX andY , there is a natural first quadrant spectral
sequence of homological type, converging toπ∗(X ∨ Y ). WhenY is (n− 1)-
connected,E2

p,0
∼= πp+1(X) andE2

p,q
∼= Hp(ΩX;πq+1(Y )) for 1 ≤ q ≤

2n− 3. If X is (k − 1)-connected, thenE2
0,q
∼= πq+1(Y ), andE2

p,q = {0} for
1 ≤ p ≤ k − 2.

More can be said in this case by adding the subtleties that are organized
by the notion of aΠ-algebra, introduced by Kan and developed by [Stover88].
The homotopy groups of a spaceX, as a graded set, enjoy the action by the
primary homotopy operations, namely,

(1) Composition:α ∈ πr(X) 7→ α ◦ ζ ∈ πk(X) whereζ ∈ πk(Sr) and
k > r > 1.

(2) Whitehead products:[α, β] ∈ πp+q−1(X) for anyα ∈ πp(X), β ∈
πq(X); elements of the form[λ]α − α ∈ Γ2

π(πr(X)) where [λ] ∈
π = π1(X) andα ∈ πr(X) (see Chapter 8bis); and commutators
[α, β] = αβα−1β−1 ∈ π1(X), for α, β ∈ π1(X).

The free objects in the category ofΠ-algebras correspond to wedge prod-
ucts of spheres. A simplicial resolution of a spaceX, V•X may be constructed
whose homotopy groups constitute a freeΠ-algebra resolution of the homotopy
of a space. Forming the wedge productV•X ∨ V•Y , [Stover90] proved the
following generalization of the van Kampen theorem.

Theorem 11.5.There is a natural first quadrant spectral sequence of homolog-
ical type, converging strongly toπ∗(X ∨ Y ), withE2

p,∗ ∼= Dp(π∗(X), π∗(Y )),
whereD0 denotes the coproduct ofπ∗(X) andπ∗(Y ) in the category ofΠ-
algebras, andDp is thepth derived functor of the coproduct functor.

The van Kampen theorem follows from the lower left corner of the spectral
sequence whereπ1(X ∨ Y ) ∼= E∞0,1 ∼= E2

0,1
∼= π1(X) ∗ π1(Y ), as expected.

If we view the resolution of [Stover90] as a bisimplicial set, then, for a
commutative ring with unitR, the functorX 7→ RX of [Bousfield-Kan72]
may be applied toV•X to obtain a bisimplicialR-moduleRV•X. The spectral
sequence of [Quillen66] leads to the Hurewicz spectral sequence introduced by
[Blanc90]:
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Theorem 11.6. Given a pointed, connected spaceX and a ringR, there
is a spectral sequence that converges strongly toH̃∗(X;R), with E2

n,k
∼=

Ln(Qk(−)⊗R)(π∗(X)). HereLn denotes the derived functors of the functor
Qk(−)⊗R onΠ-algebras that associates to theΠ-algebraπ∗(X) the quotient
π∗(X)/P (π∗(X)) for P (π∗(X)) the subgroup generated by the image of the
primary homotopy operations.

The edge homomorphismE2
0,∗−→−→E∞0,∗ ⊂ H̃∗(X;R) is given by the

R-Hurewicz homomorphismQ(π∗(X)) ⊗ R → H̃∗(X;R). By developing
the homological algebra of the category ofΠ-algebras, [Blanc90] showed that
theE2-term has a vanishing line of slope 1/2. [Blanc94] enriched this spectral
sequence by considering operations on resolutions in abelian categories. He
computed the case ofX = K(Z/2Z, n) and was able to relate the differen-
tial d2 to Toda brackets. An interesting corollary of the new operations is a
nonrealization result: There is no spaceX with π∗(X) ∼= π∗(Sr) ⊗ Z/2Z as
Π-algebras forr ≥ 6.

The next examples of spectral sequences apply to the problem of computing
the homotopy groups of spaces of mappings. Given spacesX andY , endow
the set of continuous functions fromX to Y , denotedmap(X,Y ), with the
compact-open topology. Supposef : X → Y is a choice of mapping as a
basepoint inmap(X,Y ). The following theorem is due to [Federer56].

Theorem 11.7 (the Federer spectral sequence).SupposeX is a finite dimen-
sional CW-complex andY is a space on which the fundamental group acts
trivially on the higher homotopy groups. Then there is a spectral sequence with

Ep,q2
∼= Hp(X;πp+q(Y )),

converging toπ∗(map(X,Y ), f).

Federer applied the spectral sequence to the casesY = K(π,m) andY = Sm.
[Smith, S98] investigated the Federer spectral sequence in rational homotopy
theory where models for spaces can be taken to be algebraic objects, such as the
Quillen model given by a free Lie algebra. In this context [Smith, S98] made
some explicit computations with surprising corollaries about the inequality of
homotopy types of components of a mapping space in the general case.

WhenX andY have the homotopy type of CW-complexes, there is a
natural mapping in the category ofΠ-algebras

b : π∗(mapf (X,Y ))→ homΠ
π∗(f)(π∗(X), π∗(Y )),

which is an isomorphism whenX has the homotopy type of a wedge of spheres.
In the general case, there is a spectral sequence that relatesπ∗(mapf (X,Y ))
andhomΠ

π∗(f)(π∗(X), π∗(Y )) due to [Dwyer-Kan-Smith, J-Stover94].
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Theorem 11.8.LetX andY have the homotopy type of CW-complexes. There is
a second quadrant spectral sequence withEp,q2

∼= homΠ (p)
π∗(f)(π∗(X), π∗(Y ))q,

for q ≥ p ≥ 1, converging conditionally toπ∗(mapf (X,Y )). The edge homo-
morphism for this spectral sequence is the natural homomorphismb.

Here homΠ (0)
π∗(f)(π∗(X), π∗(Y )) = homΠ

π∗(f)(π∗(X), π∗(Y )), the hom-

set functor in the category ofΠ-algebras, and the functorhomΠ (p) is thepth

derived functor ofhomΠ(−, π∗(Y )). WhenY has only finitely many non-
trivial homotopy groups, orπ∗(X) has finite cohomological dimension as a
Π-algebra, then the authors show that the spectral sequence converges strongly
to π∗(mapf (X,Y )).

Another source of examples of spectral sequences is the problem of com-
puting the homology or cohomology of mapping spaces. The particular case
of pointed maps of spheres,ΩnX = map((Sn, ~e1), (X,x0)), was solved by
[Adams56] for the functorX 7→ ΩX with the introduction of the cobar construc-
tion and its associated spectral sequence. [Baues98] has developed the structure
of the cobar construction further so that it may be iterated (compare the work
of [Drachman67] and [Smith, Ju94]). The homology Eilenberg-Moore spectral
sequence (Chapter 7) provides a generalization of the cobar construction. Using
cosimplicial methods, [Anderson72] constructed a spectral sequence that may
be used to computeH∗(map(X,Y )):

Theorem 11.9. Given a Kan complexY and a finite CW-complexX for
which the connectivity ofY is greater than or equal to the dimension ofX,
there is a spectral sequence, converging toH∗(map(X,Y )), with E2

p,q
∼=

Hq(X;Hp(Y )).

A complete proof of this theorem and some considerable generalizations are
given by [Bendersky-Gitler91], who show how configuration spaces appear in
the computation of theE1-terms of the associated spectral sequences and relate
these results to the computation of the Gelfand-Fuks cohomology of manifolds.
[Bousfield87] greatly generalized the construction of [Anderson72] by deriving
a dual version of the Bousfield-Kan spectral sequence (Theorem 8bis.37) for
homology.

Unstable Adams spectral sequences

The existence of the Adams spectral sequence to compute the stable ho-
motopy groups of a space leads one to wonder if similar machinery can be
constructed to compute[X,Y ] orπ∗(X), the unstable sets of mappings. In this
section we present several variants of the unstable Adams spectral sequence
that converge to these unstable homotopy groups.

In the next theorem, the information that determines all of the homotopy of
a simply-connected space, its Postnikov system, is used to obtain the homology
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of the space. Introduced by [Kahn, DW66], the spectral sequence provides a
kind of dual to the Adams spectral sequence.

Theorem 11.10. Let X be a space of the homotopy type of a1-connected,
countable CW-complex. There is a spectral sequence, converging toH∗(X),
withE1-term partially given byE1

p,q
∼= Hp+q(K(πp(X), p)) for 0 ≤ q ≤ p.

Though practically incalculable, this spectral sequence enjoys many ge-
ometric features that make it a useful tool. For example, the first differential,
d1, can be interpreted in terms of thek-invariants of the space. Also the edge
homomorphism is the Hurewicz homomorphism. [Kahn, DW66] developed
this spectral sequence in order to study composition products inπS∗ and it was
used in this context by [Cohen, J68] to prove his celebrated theorem on the de-
composition of the stable homotopy groups of spheres in terms of Toda brackets
of Hopf maps.

The first spectral sequence to generalize the Adams spectral sequence
to unstable computations is due to [Massey-Peterson67]. The construction is
based upon their study of the cohomology of spaces satisfying a certain algebraic
condition. The action of the mod 2 Steenrod algebra,A2, onH∗(X;F2) satisfies
the unstable axioms; (U1) Sqnx = x2, if deg x = n, and (U2)Sqnx = 0
if n > deg x. SupposeM is a module overA2 such that (U2) holds for
M . We define an algebraU(M), satisfying the unstable axioms, by letting
U(M) be the quotient of the tensor algebra onM modulo the relations of
graded commutativity andSqnx = x2 for deg x = n. If X is a space and
H∗(X;F2) = U(M) for some unstableA2-moduleM , then we say thatX is
very nice (following [Bousfield-Curtis70]).

Theorem 11.11. SupposeY is a simply-connected, very nice space with
H∗(X;F2) = U(M). If K is a finite complex, then there is spectral sequence,
converging to(2)[SmK,Y ] for m > 1, with

Ep,q2
∼= Unextp,q(M,H∗(K;F2)),

the extension functor derived fromHom(M,−) in the category of unstable
modules over the Steenrod algebra.

For K = ∗ andY = S2n+1, this spectral sequence can be applied to
compute(2)π∗(S2n+1). However, the calculation of the unstableExt groups
remains difficult, if not intractable. This spectral sequence was developed for
odd primes by [Barcus68] and further properties, like a vanishing line, have
been proved by [Bousfield70].

For more general spaces, we turn to simplicial methods to computeπ∗(X).
If X is a simplicial set, then there is a simplicial free group,GX, that is
a model for the loop space on the realization ofX, Ω|X|. It follows that
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πi(X) ∼= πi−1(GX). For any simplicial group,W•, there is a filtration ofW•,
given by the lower central series inW•:

W• = Γ1W• ⊃ Γ2W• ⊃ Γ3W• ⊃ · · ·

whereΓ2W• = [W•,W•] andΓnW• = [Γn−1W•,W•].
[Curtis65] introduced a spectral sequence based on this filtration ofGX

and converging toπ∗(X); [Rector66] generalized this with the modp lower
central series and he obtained a spectral sequence converging to(p)π∗(X).
Finally, [Bousfield et al.66] (a group of six authors; A.K. Bousfield, E.B. Curtis,
D.M. Kan, D.G. Quillen, D.L. Rector, and J.W. Schlesinger, then at MIT)
analyzed Rector’s spectral sequence to prove the following result.

Theorem 11.12 (theΛ-algebra). Let (Λ, d) denote the associative differential
graded algebra with unit given by

(1) Λ is generated by{λi | i = 0, 1, . . . } with deg λi = i.
(2) Products are subject to the relations that follow from

λiλ2i+1+n =
∑
j≥0

(
n− j − 1

j

)
λi+n−jλ2i+1+j i ≥ 0, n ≥ 0.

(3) The differential is given by

d(λn) =
∑
j≥1

(
n− j
j

)
λn−jλj−1 n ≥ 0.

Then there is a spectral sequence with(E1, d1) ∼= (Λ, d) converging to(2)π
S
∗ .

If I = (i1, . . . , ir), thenI is said to beadmissibleif 2is ≥ is+1 for 1 ≤ s < r.
LetλI = λi1 · · ·λir ; we say thatλI is an admissible monomial ifI is admissible.
LetΛ(n) be generated by admissible monomials withi1 < n. There is a spectral
sequence with(E1(n), d1(n)) ∼= (Λ(n), d|Λ(n)) converging to(2)π∗(Sn).

The odd primary version of theΛ-algebra was also given by [Bousfield
et al.66] (and corrected by [Bousfield-Kan72]). Furthermore, by writing the
adjoint of the Steenrod algebra action as

Hn(X;F2) = Hom(Hn(X;F2),F2)
−−−−−→
(Sqi)dual

Hom(Hn−i(X;F2),F2) = Hn−i(X;F2),

there is a differential onH∗(X;F2) ⊗ Λ that gives theE1-term of a spectral
sequence converging to(2)π

S
∗ (X) (see [Bousfield et al.66]). Extensive calcu-

lations of the unstable homotopy groups of spheres using theΛ-algebra were
done by [Whitehead, GW70] and [Tangora85].)
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A special case of the Bousfield-Kan spectral sequence (Theorem 8bis.37)
for a ringR gives a general spectral sequence converging to the homotopy
groups ofR∞X, theR-completion ofX under good conditions. WhenR = Fp,
Fp∞X is the modp completion ofX whenX is modp good, andπ∗(Fp∞X) =
π∗(X)⊗ Ẑ(p), whereẐ(p) denotes thep-adic integers.

Theorem 11.13.For anFp-good spaceX, there is a spectral sequence with

E∗,∗2
∼= Unext∗,∗(Fp, H∗(X;Fp)).

and converging toπ∗(X)⊗ Ẑ(p).

TheE2-term is expressed in terms of the ‘derived’ functors of the functor
Hom in the category of unstable coalgebras overAp. Since this category is
not abelian, we must take the derived functors ofHom in the extended sense of
[André67]. The spectral sequence was derived and developed by [Bousfield-
Kan72’]. In the case of the homotopy groups of a mapping space, [Goerss90] has
made considerable progress in identifying theE2-term of this spectral sequence
using André-Quillen cohomology.

The (co)simplicial techniques of [Bousfield-Kan72] can be generalized
to derive an unstable Adams spectral sequence associated to the spectrumBP
([Bendersky-Curtis-Miller78]).

Finally, we mention a spectral sequence that relates the unstable homotopy
groups of spheres and the stable groups. [James56] identified a fibration of
spaces localized at the prime 2:

Sn → ΩSn+1 −→ ΩS2n+1,

whose long exact sequence of homotopy groups, theEHP sequence, is given
by

· · · (2)πk(Sn)
E
−→ (2)πk+1(Sn+1)

H
−→ (2)πk+1(S2n+1)

P
−→ (2)πk−1(Sn) · · · .

[Toda62] extended the EHP sequence to odd primes by introducingp primary
fibrations

S2n−1 → ΩS̃2n −→ ΩS2np−1, S̃2n → ΩS2n+1 −→ ΩS2np+1,

whereS̃2n is a modified version of the2n-sphere that hasp − 1 cells, one in
each dimension divisible by2n up to2n(p− 1).

The exact couple associated to the resulting long exact sequences of ho-
motopy groups gives the EHP spectral sequence:
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Theorem 11.14.There are spectral sequences for each primep, converging to

(p)π
S
k , indexed so thatdr : Ek,nr → Ek−1,n−r

r , and withE1-terms given by

E1
k,n
∼= (2)πn+k(S2n−1) for p = 2,

E1
k,2m+1

∼= (p)π2m+1+k(S2mp+1), E1
k,2m

∼= (p)π2m+k(S2mp−1), for p, odd.

[Toda62] was able to computeπn+k(Sn) through a range ofn andk using the
EHP sequence inductively, together with the secondary composition operations
(the Toda bracket) that he introduced. The EHP spectral sequence ties together
all of the EHP sequences and codifies the ‘birth’ and ‘death’ of elements in the
homotopy groups of spheres—an element inπSk is represented in theE1-term by
the Hopf invariant of the a maximal desuspension of the element; each differen-
tial represents a Whitehead product. The EHP sequence may be approached at
an algebraic level through theΛ-algebra (see the work of [Whitehead, GW70],
[Singer75], [Lin, WH92], and [Mahowald-Thompson95]). A thorough discus-
sion of the EHP spectral sequence may be found in [Ravenel86,§1.5].

11.2 Spectral sequences and spectra

The focus of this book has been on the computation of the classical homo-
topy invariants of a space—ordinary homology, cohomology, and homotopy
groups. However, there are many other homotopy invariants associated to
a space—in particular, there are the generalized homology and cohomology
functors. These functors satisfy all but one of the Eilenberg-Steenrod axioms
for a homology or cohomology theory.

[Brown, E62] proved that the generalized cohomology functors,X 7→
E∗(X), wererepresentable, that is, for eachn, there is a space,Wn, such that
En(X) = [X,Wn]. This generalizes the fact that the ordinary cohomology
groups are represented by the Eilenberg-Mac Lane spaces. The system of
spaces,{Wi}, satisfies certain relations that had been identified by [Lima58] and
[Whitehead, GW62]. In particular, they constitute a spectrum (Definition 9.28).

Definition 11.15. Given a spectrumE = {En}, with structure mappings

{εn : SEn
'
−→ En+1}, thegeneralized cohomology theoryassociated toE

of a spaceX, is denoted byE∗(X) and defined byEn(X) = [X,En]. The
generalized homology theoryassociated toE is denotedE∗(X) and defined
by Ek(X) = limn,εn πn+k(Ek ∧ X). The coefficientsof the generalized
theories determined byE are given by the graded groupEk(∗) ∼= Ek(∗) =
limn,εn πn+k(En). The analogue of the Steenrod algebra for the cohomology
theoryE∗(−) is the algebra,E∗E, (E∗E)r = limn,εn [En+r, En].

Generalized homology and cohomology theories satisfy most of the axioms
of Eilenberg-Steenrod for homology and cohomology; the exception is the
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coefficient axiom. A further axiom, thewedge axiommay be introduced: IfX is
a (possibly infinite) wedge of spaces,X =

∨
α Yα, thenE∗(X) ∼=

∏
αE
∗(Yα)

andE∗(X) ∼=
⊕

αE∗(Yα). A generalized theory is said to beconnectiveif
there is an integerN such thatEk = {0} for all k < N .

How do we computeE∗(X) for a given spaceX? The most general
answer to this question is a spectral sequence relating the classical invariants
of the spaceX and the coefficients of the theoryE∗(−) to E∗(X). The first
published version is due to [Atiyah-Hirzebruch69], though the spectral sequence
was known to exist by G.W. Whitehead and by E.L. Lima.

11.16 (the Atiyah-Hirzebruch spectral sequence).SupposeE is a spectrum
andX is a space of the homotopy type of a CW-complex. Then there are
half-plane spectral sequences with

Ep,q2
∼= Hp(X;Eq(∗)), E2

p,q
∼= Hp(X;Eq(∗)),

converging conditionally toE∗(X) and strongly toE∗(X), respectively.

The construction is based on the cell decomposition and is similar to
the proof of Theorem 4.13. [Davis-L¨uck98] have generalized the Atiyah-
Hirzebruch spectral sequence to the framework of spectra over a category, which
allows one to use it in many contexts including equivariant homotopy theory,
and for algebraic K-theory.

The classic book of [Adams74] is a good starting place for the study of
spectra. Other good references include [Switzer75], [Margolis83], [Ravenel92],
and [Kochman96].

In the special case ofX = BG,G a finite group, andE∗ = KU∗, complex
K-theory, the computation ofKU∗(BG) is aided by the interpretation of its
input ([Atiyah61]):

Theorem 11.17.For G a finite group, there is a spectral sequence withE∗2 ∼=
H∗(G) and converging strongly toKU∗(BG).

The input of the spectral sequence is the cohomology of the groupG with
coefficients in the trivialG-moduleZ, an algebraic invariant of the group. A
filtration of the complex representation ring of the groupG leads to the same
associated graded ring forKU∗(BG) related by interpreting representations as
vector bundles. The result shows that the complex K-theory ofBG is given by
the completion of the representation ring ofG with respect to this filtration.

The Atiyah-Hirzebruch spectral sequence also plays a key role in compu-
tations of the homotopy groups of spheres. In this case the spectrumE is the
sphere spectrum and the spaceX is replaced by a spectrumX. TheE2-term
is given byH∗(X;πS∗ ) and the spectral sequence converges toπ∗(X). [Cohen,
J68] used this whenX = KZ, the integral Eilenberg-Mac Lane spectrum. Then
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πS∗ (KZ) ∼= H∗(S0) determines a sparse target for the spectral sequence and
the homology of the Eilenberg-Mac Lane spaces is well-known, so computa-
tions ofπS∗ , the coefficient ring for the sphere spectrum may be made. This
becomes cumbersome quickly, however. [Kochman90] applied this technique
for X = BP, the (mod 2) Brown-Peterson spectrum for which bothH∗(BP) and
π∗(BP) are well-known and algebraically tractable. Furthermore, it is known
that the Hurewicz homomorphismh : π∗(BP)→ H∗(BP) is a monomorphism
and soE∞n,0 ∼= h(πn(BP)) is also known. [Kochman90] pushed the calculation
of (2)π

S
n to n ≤ 66 by automating the computation. [Ray72] used this method

with X = MSU andMSp instead of the sphere spectrum. SinceMSp∗(MSU)
andH∗(MSU) are known, [Ray72] was able to computeMSpk for k ≤ 19.

Finally, we mention work of [Arlettaz92] analyzing the differentials in
the Atiyah-Hirzebruch spectral sequence. He proved that there are integers
Rr such thatRrdrs,t = 0 for all r ≥ 2, s andt for any connected spaceX.
The key ingredient of the proof is the structure of the integral homology of
Eilenberg-Mac Lane spectra.

By exploiting the analogue of the Steenrod algebra for a generalized coho-
mology theory, [Novikov67] generalized the Adams spectral sequence to other
cohomology theories. We will discuss this advance separately.

A spectrum equipped with a multiplication,µ : E ∧ E → E, (hereµ is a
map of spectra where the smash product is appropriately defined) is called aring
spectrum. If F is another spectrum and there is a mapping of spectraψ : E ∧
F → F with good properties, then we say thatF is anE-module spectrum
([Elmendorf-Kriz-Mandell-May95]). The following theorem generalizes the
Universal Coefficient theorem.

Theorem 11.18 (the Universal Coefficient spectral sequence).SupposeE is
a ring spectrum,F is anE-module spectrum, andX is a space. Under certain
conditions, there are spectral sequences with

E2 ∼= TorE
∗(∗)(E∗(X), F ∗(∗)), E2

∼= ExtE∗(∗)(E∗(X), F ∗(∗)),

converging toF ∗(X) and toF∗(X), respectively.

For appropriate conditions, the reader can consult the book of [Adams69]
or the paper of [Boardman99] where there is a derivation and applications of
this spectral sequence. The unstated technical conditions are satisfied by many
of the geometric spectra (the sphere spectrum, modp Eilenberg-Mac Lane
spectrum, the Thom spectraMO , MU , MSp, and the K-theory spectraBU and
BO) and this leads to many interesting applications.

Another approach to the computation ofE∗(X) is via the Adams spectral
sequence. We can carefully define the spectrumE∧X whose homotopy groups
are analyzed in the same manner as the stable homotopy groups of a space. This
approach figures in the classical computation ofMU∗ of [Milnor60] that has
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served as a paradigm for many computations of generalized homology (for
example, [Davis78], [Davis et al.86], [McClure-Staffeldt93]).

For a generalized homology theoryE∗(−) and a fibrationπ : Y → B with
fibre F , there is a version of the Leray-Serre spectral sequence that at once
generalizes the classical spectral sequence for singular theory and the Atiyah-
Hirzebruch spectral sequence. (One can consult the book of [Switzer75] for a
derivation.)

Theorem 11.19.Given a generalized homology theoryE∗(−) that satisfies

the wedge axiom for CW-complexes and a fibrationF ↪→ Y
π
−→ B that is

orientable with respect to the theory for whichB is connected, there is a spectral
sequence, natural with respect to maps of fibrations, converging toE∗(Y ), and
withE2

p,q
∼= Hp(B;Eq(F )).

There is also a version of the Eilenberg-Moore spectral sequence for gen-
eralized theories that was set up by [Hodgkin75] and [Smith, L70] (see§8.3).
For this spectral sequence to have an identifiableE2-term and to converge, how-
ever, many conditions must be placed on the generalized theory. In their study
of the K-theory ofp-compact homogeneous spaces, [Jeanerret-Osse99] gave a
tidy statement of a useful case of this tool:

Theorem 11.20.SupposeE∗(−) is a generalized, multiplicative, cohomology
theory such thatE∗(∗) is a graded field. SupposeB is connected and

X ×B Y w

u

X

u

p

Y w

f
B

is a pullback diagram. Then there is a spectral sequence of algebras, compatible
with the stable operations associated toE∗(−), with

Ei,∗2
∼= T̂or

−i
E∗(B)(E

∗(X), E∗(Y ))

whereT̂or
−i

denotes theith derived functor of the completed tensor product.
Whenp : X → B is a fibration andE∗(ΩB) is isomorphic to an exterior
algebra on odd degree generators, the spectral sequence converges strongly to
E∗(X ×B Y ).

The main examples considered by [Jeanneret-Osse99] arep-compact groups
andE∗(−) = H∗(−; k), KU∗(−;Z/pZ), orK(n)∗(−) for which these hy-
potheses are appropriate. [Tanabe95] has also applied a version of the Eilenberg-
Moore spectral sequence for generalized theories to compute the Morava K-
theories of Chevalley groups. [Seymour78] also studied the convergence ques-
tion for generalized theories under more general circumstances.
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We close this section with a spectral sequence that computes an invariant
of a spectrumE = {En}, its modp stable homology,

Hs
∗(E;Fp) ≡ lim

→
H∗+n(En;Fp).

SupposeE = {En} is an Omega-spectrum, that is,En ' ΩEn+1, and that
E is (−1)-connected, that isEn is (n − 1)-connected for alln ≥ 0. In this
case, the spaceE0 is aninfinite loop space; E0 ' ΩE1 ' Ω2E2 ' · · · . The
mod p homology of an infinite loop space is endowed with the action of the
Dyer-Lashof algebra,< ([Araki-Kudo56], [Dyer-Lashof62]).

LetQ(−) denote the functor that assigns the space of indecomposables to
an algebra.

Theorem 11.21 (the Miller spectral sequence).Given an Omega-spectrum
{En} that is(−1)-connected, there is a spectral sequence with

E2
s,∗ = Ls(Fp ⊗< Q)(H∗(E0;Fp)),

the left derived functors ofFp ⊗< Q(−), and converging toHs
∗(E;Fp).

[Miller78] analyzed the left derived functors in the theorem and expressed
them in terms of an unstableTor functor. The spectral sequence has been
applied by [Kraines-Lada82] and [Kuhn82].

11.3 Other Adams spectral sequences

The Adams spectral sequence begins with the algebraic information en-
coding the action of the Steenrod algebra on the cohomology of the spaces
involved. The output is geometric—the groups of stable mappings between
the spaces. The construction presented in Chapter 9 is based on the proper-
ties of modp cohomology and focuses on the Eilenberg-Mac Lane spaces for
their homological properties on cohomology. [Adams66] introduced a variant
of the Adams spectral sequence based on K-theory and posed the question of
the existence of an Adams spectral sequence for any generalized cohomology
theory. [Novikov67] introduced the appropriate generalization and applied it to
the spectrumMU representing complex cobordism.

Theorem 11.22 (the Adams-Novikov spectral sequence).SupposeE is a spec-
trum andE∗(E) is flat as a right module overE∗(∗). Suppose further thatE is
a direct limit of finite spectra that satisfy good duality properties, then there is
a spectral sequence with

Es,t2
∼= Exts,t

E∗(E)
(E∗(∗), E∗(∗)),
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and converging toπS∗ . In particular, this theorem holds for the sphere spectrum,
the Thom spectraMO , MU , MSp and the connective K-theory spectra,bu and
bo.

For the full generality of the Adams spectral sequence (which converges
to a subgroup of{Y,X}∗), one needs to introduce the localization of the stable
group{Y,X}∗ with respect to the generalized theoryE∗. The details of this
localization are due to [Bousfield75] and a complete derivation of the spectral
sequence is presented in [Ravenel86].

When we considerMU one prime at a time, then we are led to consider
the localizationMU (p) in Novikov’s variant of the Adams spectral sequence.
[Quillen69”] showed that the modp part of theMU spectrum splits into a wedge
of suspensions of another modp spectrum, constructed by [Brown-Peterson66],
now denoted byBP; in particular, there is a retractionMU (p) → BP and so
Theorem 11.22 may be localized modp:

Theorem 11.23.There is a spectral sequence with

Es,t2
∼= Exts,tBP∗(BP)(BP∗(∗),BP∗(∗)),

converging to(p)π
S
∗ .

The algebraic properties of this spectrum and the algebra of operations
associated to it are considerably more manageable than the analogous case of the
Steenrod algebra. In particular,BP∗(∗) ∼= Z(p)[V1, . . . , Vt, . . . ], a polynomial
algebra on generatorsVi ∈ BP2pi−2, andBP∗(BP) ∼= BP∗(∗)[t1, . . . , tn, . . . ]
where ti ∈ BP2pi−2(BP). The subsequent further structure that has been
developed for theE2-term of the associated Adams-Novikov spectral sequence
has led to great deal of progress in the understanding of the stable groups
(p)π

S
∗ (see, for example, the papers of [Thomas-Zahler74], [Miller-Ravenel-

Wilson77], and [Devinatz-Hopkins-Smith88]). For a good introduction to this
point of view, see the books of [Ravenel86] and [Kochman96].

Another consequence of the study of formal group laws is the possibil-
ity of constructing new cohomology theories with particular rings of coeffi-
cients asE∗(∗). The principal theorem in such constructions is the Landwe-
ber exact functor theorem ([Landweber76]). Of particular interest is the case
of elliptic homology, Ell∗(X) = Ell∗(∗) ⊗MU∗ MU∗(X) where Ell∗(∗) ∼=
Z[1/6][δ, ε,∆−1] where∆ = (1/1728)(δ3 − ε2), with δ ∈ Ell8, ε ∈ Ell12

and∆ ∈ Ell24. This ring is isomorphic to the ring of modular forms of level 1
and there is a genusMU∗(∗)→ Ell∗(∗) giving the module structure. The ring
of cooperations has been worked out by [Clarke-Johnson92] and so the input
for the Adams-Novikov spectral sequence is known. [Hopkins95], [Laures99],
and [Baker99] have used methods from number theory to identify parts of the
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E2-term of the spectral sequence converging to the stable stems. This gives in-
formation in both directions—number theory to topology, and stable homotopy
to number theory.

11.4 Spectral sequences in equivariant homotopy theory

Suppose thatG is a topological group of the homotopy type of a CW-
complex andX is a space on whichG acts. Theequivariant cohomologyof
X is defined using theBorel construction ([Borel60]):

H∗G(X;R) ∼= H∗(EG×G X;R),

that is, the ordinary cohomology with coefficients inR of the spaceEG×GX
that can be thought of as first makingX into a freeG-space by forming the
product with theG-free contractible spaceEG and then taking the quotient.
There is a fibrationEG×GX → EGG×∗ = BG, induced by theG-mapping
X → ∗, and so we can apply the Leray-Serre spectral sequence:

Theorem 11.24. There is a first quadrant spectral sequence converging to
H∗G(X;R) withEp,q2

∼= Hp(BG;Hq(X;R)).

WhenG is a discrete group, theE2-term is the cohomology of the group
Gwith coefficients in theG-moduleH∗(X;R). The coefficients of equivariant
cohomology are given byH∗G(∗;R) = H∗(BG;R). The spectral sequence has
an induced action of this ring on its terms, making it more tractable. Applications
of this spectral sequence abound in equivariant homotopy theory.

Another invariant of aG-spaceX is theBredon homology([Bredon67])
associated to a functorH : G-Mod → Ab, fromG-modules to abelian groups,
which preserves arbitrary direct sums. When we applyH to theG-module of
n-chains onX, we obtain a chain complexCGn (X;H) = H(Cn(X)). The
Bredon homology ofX with coefficients inH is defined as the homology
groupsHGn (X;H) = Hn(CG∗ (X;H),H(∂)). One can identify the category
of G-modules with the orbit category,O(G), consisting of subgroups ofG
together with inclusions. A similar definition can be given for a coefficient
functor taking values in modules over a given ring.

SupposeG is a finite group andf : X → Y is aG-fibration, that is,f
is G-equivariant and has the homotopy lifting property for allG-space. Then
there a version of the Leray-Serre spectral sequence, derived by [Moerdijk-
Svensson93] using the cohomology of categories, and by [Honkasalo98] using
the locally constant cohomology of [Spanier92]. LetH∗G(X,M) denote the
Bredon cohomologyof theG-spaceX with coefficients in aG-moduleM .
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Theorem 11.25.Given a finite groupG and aG-fibration f : X → Y , then
there is a natural, first quadrant, spectral sequence converging toH

∗
G(X,M)

withEp,q2
∼= H

p
G(Y,HqG(f,M)), whereM may be taken to be aG-coefficient

system determined by a functorM : O(G)op → Ab andH∗G(f,M) is another
G-coefficient system that is induced by the fibration.

Other spectral sequences useful in ordinary homotopy theory have equiv-
ariant versions as well. [Intermont97, 99] has extended the notion ofΠ-
algebras to the equivariant case and derived versions of the spectral sequence
of [Stover90] for computingπGW+n(X ∨ Y ) andπGW+n(X ∧ Y ) whereG is a
finite group andW is a finite dimensional representation ofG.

There is a version of the Eilenberg-Moore spectral sequence as it resem-
bles the Universal Coefficient and K¨unneth spectral sequences for Borel ho-
mology and cohomology developed by [Greenlees92]. Equivariant versions of
the Federer spectral sequence have been derived by [Møller90] and by [Fieux-
Solotar98] converging toπ∗(mapGf (X,Y )) under certain conditions. Finally,
there are Adams spectral sequences for which the target is the appropriate
completion of{X,Y }G, the group of homotopy classes ofG-equivariant stable
mappings. This method has been developed extensively by [Greenlees88’, 92’].
A nice overview of these ideas and their relation to classical homotopy theory
is found in [Greenlees88].

Homotopy limits and colimits spectral sequences

One of the most general topological situations in which a spectral sequence
arises is when a homotopy limit or colimit is constructed. Following [Bousfield-
Kan72] and [Dwyer98], we associate to a small categoryD a simplicial set,
nerve(D)•, given by

nerve(D)n = HomCat(n,D)

= {σ(0)
α1−→ σ(1)→ · · ·

αn−−→ σ(n) | σ(i) ∈ Obj(D), αi ∈ Mor(D)},
whereCat is the category of small categories with functors andn is the cat-
egory(0 → 1 → · · · → n) with a single morphism between objectsi → j
wheneveri ≤ j. Thus,nerve(D)n consists of the lengthn strings of compos-
able morphisms inD. The face maps are given by omission or composition

in D: d0(σ(0)
α1−→ · · ·

αn−−→ σ(n)) = σ(1)
α2−→ · · ·

αn−−→ σ(n), and if i > 0,

di(σ(0)
α1−→ · · ·

αn−−→ σ(n)) = σ(0) → · · · → σ(i− 1)
αi+1◦αi
−−−−−→ σ(i+ 1) →

· · · → σ(n). Degeneracies are given by inserting the identity morphism on the
objects in the sequence.

If F : D → Simp is a functor, then thesimplicial replacement ofF is
the bisimplicial set(

∐
F )• given by (

∐
F )n =

∐
σ∈nerve(D)n

F (σ(0)) (the
disjoint union) withdi determined byF (σ(0)) → F ((diσ)(0)), which is the
identity if i > 0 andF (α1) : σ(0) → σ(1) if i = 0. SinceF : D → Simp,
(
∐
F )• is a bisimplicial set.
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Definition 11.26. Given a small categoryD and a functorF : D → Simp,
the homotopy colimit of F is the diagonal simplicial set of the simplicial
replacement ofF , that is, hocolimF = ∆((

∐
F )•) with (hocolimF )n =

(
∐
F )n,n.

Given an abelian groupA as coefficients, the spectral sequence of a bisim-
plicial group (Theorem 11.3) gives theBousfield-Kan homology spectral se-
quence.

Theorem 11.27.There is a spectral sequence, converging toH∗(hocolimF ;A),
withE2

p,q
∼= colimpHq(F ;A), wherecolim AbD → Ab is the colimit functor,

colimi the ith left derived functor ofcolim, andHq(F ;A) is the composite
functorHq(−;A) ◦ F .

Dually,[Bousfield-Kan72] defined the homotopy limit of a functorF : D→
Simp. We first form thecosimplicial replacement ofF , (

∏
F )•, which con-

sists of the product(
∏
F )n =

∏
u∈nerve(Dop)n

F (u(0)) and the coface and

codegeneracy mappings given byd0 = F (α1) : F (σ(1))→ F (σ(0)), dj = id,
for j > 0; si = id, for 0 ≤ i ≤ n. The homotopy limit of F is given by
holimF = Tot((

∏
F )•). There is a natural mappinglim

←d∈D
F (d)→ holimF ,

which may not be a homotopy equivalence. This is calledthe homotopy limit
problem([Thomason83]). The Bousfield-Kan spectral sequence associated to
the tower of fibrations built fromTot (Theorem 8bis.37) implies the following
result.

Theorem 11.28.Suppose thatF : D → Simp is such thatF (d) is fibrant for
all d ∈ Obj D. There is a spectral sequence, withEp,q2

∼= lim
←

pπq(F ), for

0 ≤ p ≤ q, wherelim
←

AbDop → Ab is the inverse limit functor,lim
←

i the ith

derived functor oflim
←

, andπq(F ) is the composite functord 7→ πq(F (d)). The

spectral sequence converges to groups related toπ∗(holimF ).

[Thomason83] showed how the homotopy limit problem included certain
deep problems in homotopy theory. In particular, we can view a groupG as
a category,G, with objects the elements ofG and a unique morphismg → h
for all g, h ∈ G. The nerve of this category has the homotopy type ofEG. A
space (simplicial set) on whichG acts determines a functorX : G→ Simp for
which hocolimX = EG×G X andholimX = mapG(EG,X), the space of
equivariant mappingsEG→ X.

The Bousfield-Kan homology spectral sequence in this case can be iden-
tified with the homology version of the spectral sequence of Theorem 11.24,
which in turn may be identified as the Leray-Serre spectral sequence associated
to the fibrationX ↪→ hocolimX → hocolim ∗ = BG.
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The homotopy limit problem for this setting is the comparison oflim
←
X =

X and mapG(EG,X). If X has a trivial action of the groupG, then the
comparison leads to a comparison of fixed point sets

X = XG = mapG(∗, X)G → mapG(EG,X)G = map(BG,X).

[Sullivan70] conjectured that ifG is finite andX is a finite CW-complex, then
the based mapping spacemap∗(BG,X) = map((BG, ∗), (X,x0)) would be
weakly contractible. Through the use of group theory, the relevant cases to
check areG = Z/pZ for p, a prime. [Miller84] proved the Sullivan conjecture
with a remarkable argument: The target of the Bousfield-Kan spectral sequence
for this problem isπ∗(map(BZ/pZ, X)) for which theE2-term has been iden-
tified asExtpCA(H̃∗(ΣqBZ/pZ;Fp), H̃∗(X;Fp)), where theExt is taken over
the category of unstable coalgebras over the modp Steenrod algebraAp. The
analysis ofH∗(BZ/pZ;Fp) as an object in the categoryU of unstable comod-
ules overAp reveals thatExtU(H∗(BZ/pZ;Fp), H∗(X;Fp)) vanishes when
H∗(X;Fp) is bounded above. A version of the EHP spectral sequence for the
algebraic functorsΣ: U → U and its adjointΩ extend the vanishing ofExtU

to ExtU(H∗(ΣBZ/pZ;Fp), H∗(X;Fp)). A Grothendieck spectral sequence
for composite functors (Theorem 12.9) allows the passage from the category
U to the categoryCA. Thus the vanishing of the initial term of the spectral
sequence converging to the initial term of the Grothendieck spectral sequence
that converges to the initial term of the Bousfield-Kan spectral sequence gives
the proof of the Sullivan conjecture.

The homotopy limit problem for spectra plays a role in the descent spectral
sequence of [Thomason82] (see Chapter 12) and in the analysis of the Segal
conjecture ([Carlsson87]).

11.5 Miscellanea

We add to our catalogue a few entries that are not in the mainstream of
homotopy theory. The first focuses on manifolds and Poincar´e duality; the
second has led to considerable progress in the classification problem for knots,
and the last appears in the study of singularities of mappings.

The first example is due to [Zeeman62] from his Cambridge thesis. The
spectral sequence is derived from a double complex that is defined for a ho-
mology theory based on pairs of simplices instead of single cells. If given two
simplicial complexes,K andL, then afacing relation onK × L is a setF of
cells inK × L, such that, wheneverσ × τ ∈ F andσ′ × τ ′ ≺ σ × τ , then
σ′ × τ ′ ∈ F . LetH∗(F) denote the system of local coefficients onK induced
byF .

Given a facing relation, letLF = {σ | σ × τ ∈ F} and we say thatF is
left acyclic if all σ ∈ LF are acyclic.
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Theorem 11.29 (the dihomology spectral sequence).A left acyclic facing
relationF onK andL gives rise to a spectral sequence with

E2
p,q
∼= Hp(K;Hq(F))

and converging toH∗(L).

This spectral sequence can be used to relate various homology theories
(Čech to Vietoris, simplicial to singular, etc.) and to relate the spectral sequence
of Leray to that of Serre (̌Cech to singular). Also, if

D = {(σp, τq) for σp ∈ K andτq ≺ σp},

then the resulting dihomology spectral sequence collapses to the isomorphism
of Poincaré duality ifK is a closed, orientable, combinatorialn-manifold. Thus
the spectral sequence measures the failure of Poincar´e duality for an arbitrary
complex. Generalizations of this spectral sequence were derived by [Cain74]
and [Sklyarenko92].

[Arnol’d70] introduced a spectral sequence to study the space of entire
complex functions. [Vassiliev92] has applied the motivating idea of [Arnol’d70]
to many different settings including the complexity of algorithms, the cohomol-
ogy of braid groups, classical Lie groups, spaces of generalized Morse functions,
loop spaces, and most dramatically, spaces of knots and links. The key object
of study is a function spaceF , such as the space of monic real polynomials
of fixed degreed. This particular space contains a subspaceΣ, consisting of
polynomials with a multiple root. The subspaceΣ is called adiscriminant and
sinceF is finite-dimensional, then the spaceF\Σ consists of real polynomials
without multiple roots. The Spanier-Whitehead dual ofF\Σ is the one-point
compactificationΣ̂. Thus, the cohomology ofF\Σ is calculable from the
homology ofΣ̂. This space admits a filtration that is well-behaved when we
resolveΣ̂ geometrically by inserting simplices whenever higher multiplicities
of roots occur. The filtration leads to a spectral sequence of (Borel-Moore)
homology groups. By an index shift we get a spectral sequence converging to
the cohomology of the complementary spaceF\Σ.

In the various settings considered by [Vassiliev92], theE1-term of the as-
sociated spectral sequence may be given in terms suited to the problem. For
knots, the spaceF consists of all smooth maps ofS1 into R3 and the dis-
criminant consists of maps that have singularities or self-intersections. The
complement of this discriminant has path components that correspond to knot
types and so its topology is important for the classification problem for knots.
Thus the invariants of the space of knots appear as the groupsE−i,i∞ of the
spectral sequence. [Vassiliev92] identified a combinatorial procedure for the
determination ofE−i,i1 , giving invariants of a knot diagram. The analysis of
the rest of the spectral sequence leads to theVassiliev invariants of knots.
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There has been considerable development of these invariants, relating them
to classical and more recent knot invariants ([Birman-Lin, X.-S.93]), and giv-
ing a combinatorial description, independent of the spectral sequence origins
([Bar-Natan95]).

Another spectral sequence inspired by the work of [Arnol’d70] and used
to study singularities was introduced by [Goryunov-Mond93]. The ingredients
are a continuous, proper and finite mappingf : X → Y to which we associate
thekth multiple point space

Dk(f) = cls{(x1, . . . , xk) | f(x1) = · · · = f(xk), xi 6= xj for i 6= j}.

These spaces are equipped with natural mappingsεi,k : Dk(f) → Dk−1(f)
defined byεi,k(x1, . . . , xk) = (x1, . . . , x̂i, . . . , xk), and with an action of the
symmetric groupΣk given by permuting the entries. To any cellularΣk-spaceZ
for which theΣk-action is cellular, we associate thealternating chain complex
and homology:

Calt
n (Z) = {c ∈ Celln(Z) | σc = sign(σ)c for all σ ∈ Σk},

where sign: Σk → {±1} is the canonical sign representation. Since the action
is cellular, the differential onCelln(Z) determines a differential onCalt

n (Z)
and so we can defineHalt

∗ (Z).
We also associate thekth image multiple point spaceMk(f) = ε(Dk(f)),

whereε : Dk(f)→ Y is given byε(x1, . . . , xk) = f(x1).
The following spectral sequence appeared in this form in the paper of

[Goryunov95]. The expository paper of [Houston99] is a very nice introduction
to its applications.

Theorem 11.30 (the image computing spectral sequence).Given a continuous,
finite, and proper mappingf : X → Y for which thekth multiple point spaces
Dk(f) have theΣk-homotopy type of aΣk-cellular complex for allk > 1,
and for which eachkth image multiple point spaceMk(f) has the homotopy
type of a cell complex fork > 1, there is a spectral sequence, converging to
Hp+q+1(f(X)), with

E1
p,q
∼= Halt

q (Dp+1(f)), d1 = (ε1,p+1)∗ : Halt
q (Dp+1(f))→ Halt

q (Dp(f)).

When the spectral sequence collapses atE1 (for example, whenf is a
corank-1 map-germCn → C

n+1 with finite A-dimension; [Goryunov95]),
the rational homology of the image is the sum of alternating homologies of the
multiple point spaces, which is useful in the study of mixed Hodge structures on
the image ([Goryunov-Mond93]). [Houston97] applied the spectral sequence
to study the singularities of finite analytic mappings and to obtain relations
between the fundamental groups of the domain and image of such mappings.



       

12
Spectral Sequences in Algebra,

Geometry and Analysis

“During the last decade the methods of algebraic topol-
ogy have invaded extensively the domain of pure algebra,
and initiated a number of internal revolutions.”

From [Cartan-Eilenberg56]

Spectral sequences arise from filtered differential modules, from double
complexes, and from exact couples (Chapter 2). These basic structures may
be found in almost any situation where homological methods are used—many
examples of spectral sequences have become essential tools in fields outside of
topology.

In this chapter, we continue the catalogue begun in Chapter 11. The ex-
amples here fall into three broad classes: those of homological origin (§12.1);
those based on algebraic or differential geometric structures (§12.2), and those
whose origin is chiefly topological but whose interpretation is algebraic (§12.3).
We close the chapter with a short discussion of the notion of derived categories
(§12.4), a formalism that lurks behind the ‘unreasonable effectiveness’ of spec-
tral sequences.

The reader is expected to be acquainted with the categories of discourse for
the examples presented in this chapter—-definitions can be found in the cited
references. Furthermore, this catalogue is quite far from complete (though
some might argue that inclusion of Grothendieck’s composite functor spectral
sequence excludes very few examples). The hope remains that the reader will
find a useful example in this collection or at least the sense in which spectral
sequences can be applied in his or her field of interest. A search of the review
literature in mathematics will provide a bounty of details to the curious reader.

12.1 Spectral sequences for rings and modules

SupposeR andS are commutative rings with unit. Denote the category of
left (right) modules overR byRMod (ModR) and similarly for the ringS. If we
are given a homomorphism of rings,ϕ : R→ S, then modules overS obtain the
structure of modules overR, wherer ·m = ϕ(r) ·m. Under these conditions,
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we would like to relate the homological invariants of modules over the given
rings in terms of the homomorphismϕ. The following theorem describes these
relations in terms of spectral sequences due to [Cartan-Eilenberg56].

Theorem 12.1 (the change-of-rings spectral sequences).Supposeϕ : R→ S
is a homomorphism of commutative rings with unit, andM ∈ ModR, N ∈
SMod,M ′ ∈ ModS andN ′ ∈ RMod.

(1) There is a spectral sequence withE2
p,q
∼= TorSp (TorRq (M,S), N), and

converging toTorR∗ (M,N).
(2) There is a spectral sequence withE2

p,q
∼= TorSp (M ′,TorRq (S,N ′)), and

converging toTorR∗ (M ′, N ′).
(3) There is a spectral sequence withEp,q2

∼= ExtqS(TorRp (S,N ′), N), and
converging toExt∗R(N ′, N).

(4) There is a spectral sequence withEp,q2
∼= ExtpS(N,ExtqR(S,N ′)), and

converging toExt∗R(N,N ′).

These spectral sequences can be derived in the manner of Theorem 2.20
(the Künneth spectral sequence) by judicious choices of double complexes.
They are also special cases of the Grothendieck spectral sequence for derived
functors on abelian categories (Theorem 12.10).

The change-of-rings spectral sequence applies in the special case of an
extension of algebras over a field,0 → B −→ A −→ A//B → 0, where
A//B = A/I(A) ·B.

Theorem 12.2.SupposeA is an augmented algebra over a field,k. Suppose
B is a normal subalgebra ofA andA is projective overB. If M ∈ ModA and
N ∈ A//BMod, then there is a spectral sequence with

E2
p,q
∼= TorA//Bp (TorBq (M,k), N)

and converging toTorA∗ (M,N). Also, forM ′ ∈ AMod, there is a spectral
sequence with

Ep,q2
∼= ExtpA//B(N,ExtqB(k,M ′))

and converging toExt∗A(N,M ′).

The reader can compare this theorem with Theorem 9.12 for central extensions
of Hopf algebras.

The next three examples represent special cases of extra structures on rings
or algebras that lead to spectral sequences. The first bears a strong relation to
the Eilenberg-Moore spectral sequence. The second example treats some other
homological invariants of a ring, namely the Hochschild homology and the
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cyclic homology of a ring. The third example is quite general and focuses on
the consequences of a filtration on an algebra and a module over it; a special
case appears as Theorem 9.56.

In the study of local rings, various homological invariants have played a
key role. In particular, the Poincar´e series for a local ring,(R,m), is defined by

PR(t) =
∑∞

i=0
(dimR/m TorRi (R/m, R/m))ti.

Several spectral sequences have been useful in the study of this series (re-
viewed by [Avramov-Halperin86]). The following example was derived by
[Avramov81] to study the problem of whether a minimal free resolution can be
given the structure of an algebra.

Theorem 12.3.Given a diagram of commutative ring homomorphisms

BA
AAC

A

�
���

N
NNP

B ⊗A C w

h D

C

�
���

and a moduleM overB, thenTorA(M,C) is aTorA(B,C)-module, andD is
a TorA(B,C)-module via the homomorphismh. Furthermore, there is a spec-

tral sequence withE2
p,q
∼= TorTorA(B,C)

p,q (TorA(M,C), D), and converging to

TorB∗ (M,D).

The spectral sequence leads to an obstruction theory for the existence
of multiplicative structures on resolutions. [Avramov81] also explicated the
relationship of this spectral sequence to the Eilenberg-Moore spectral sequence.

An invariant of associative algebras over a fixed ringR was introduced
by [Hochschild45] to study the classification of extensions of algebras. One
expression for the Hochschild homology of an algebra, taken to be projective
as a module overR, is given by

HH∗(A) ∼= TorA
op⊗A
∗ (A,A),

whereAop ⊗ A acts onA by (α ⊗ β)(a) = βaα. [Hochschild45] introduced
a functorial complex, resembling the bar construction, to computeHH∗(A).
WhenA is a regular affinek-algebra over a perfect fieldk, [Hochschild-
Konstant-Rosenberg62] proved thatHH∗(A) is isomorphic to the algebraic
de Rham complexΩ∗A/k = Λ(J/J2), whereJ = kerµ : A ⊗ A → A is the
kernel of the multiplication mapping onA.
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[Connes85] introduced a variant of the Hochschild homology in order to
extend the Chern character to the algebraic K-theory of aC∗-algebra. For a field
k of arbitrary characteristic, thecyclic homologyHC∗(A) of an algebraA over
k is defined from a double complex in which each column is the Hochschild
complex, and in each row we find the homology of a cyclic group. This leads
to two spectral sequences ([Connes85]).

Theorem 12.4. Given an algebraA over a fieldk, there are two spectral
sequences converging toHC∗(A). In the first spectral sequence,E1

p,q
∼=

HHq−p(A) andd1 = B, the Connes boundary map. In the second,E1
p,q
∼=

Hp(Z/(q+1)Z, A⊗q+1), the homology of the groupZ/(q+1)Zwith coefficients
in theZ/(q + 1)Z-moduleA⊗q+1, where the generator ofZ/(q + 1)Z acts on
A⊗q+1 by the cyclic permutationa0⊗· · ·⊗aq 7→ (−1)qaq⊗a0⊗· · ·⊗aq−1.

Cyclic homology figures in the computation of the algebraic K-theory of
rings, in noncommutative differential geometry, and in mathematical physics.
For a comprehensive and comprehensible survey of these ideas, see the excellent
book of [Loday98].

Suppose we begin with a filtered augmented algebra(A,µ, F, ε) over a field
k, and a filteredA-module,M , satisfying either of the following conditions:

I :
{
FpA = A, FpM = M, if p ≥ 0,

F−1A = I(A) = ker ε and
⋂
p FpA = {0} =

⋂
p FpM.

II :
{
FpA = {0} = FpM, if p < 0,

F0A = k and
⋃
p FpA = A,

⋃
p FpM = M.

Theorem 12.5 (the May spectral sequence).For a filteredk-algebra,A, and
filtered A-module,M , satisfying I or II, there is a spectral sequence with
E2 ∼= TorE

0A(k,E0M), and converging toTorA∗ (k,M). Dually, there is

a spectral sequence withE2
∼= ExtE0A(k, (E0M)dual), and converging to

Ext∗A(k,Mdual) as anExt∗A(k, k)-module.

WhenA andM are graded, the spectral sequences are trigraded, where
the first two gradings sum to the homological degree and the last two sum to
the internal degree. Applications of this spectral sequence to the case whereA
is a Hopf algebra were pioneered by [May64, 66]. A natural generalization of
this spectral sequence is presented in Exercise 3.4.

The May spectral sequence may be applied in computations of group coho-
mology. [Bajer94] established a collapse result for the May spectral sequence
converging toExtk[G](k, k) whenA = k[G], the group algebra for a finite
p-groupG and a fieldk of characteristicp > 0.



        

12.1. Spectral sequences for rings and modules 511

Other algebraic structures

The homological algebra of other algebraic structures, such as Hopf al-
gebras, Lie algebras, and Leibniz algebras, was developed to obtain invariants
that would aid in the classification problem of such structures and, more gen-
erally, lead to a deeper understanding of the structures themselves. The notion
of an extension of Hopf algebras, Lie algebras, etc., plays the role of a fibra-
tion in topology, linking the members of the extension together. The case of a
group extension,1 → K → G → Q → 1, is paradigmatic—the homological
invariants of the constituent groups are linked together in the behavior of the
Lyndon-Hochschild-Serre spectral sequence (Theorem 8bis.12).

The analogue of the Lyndon-Hochschild-Serre spectral sequence for Lie
algebras was introduced by [Hochschild-Serre53’].

Theorem 12.6 (the Hochschild-Serre spectral sequence).Leth be a Lie ideal
in the Lie algebrag andM , a g-module. Then there is a spectral sequence,
converging toHp+q(g,M), withEp,q2

∼= Hp(g/h, Hq(h,M)).

This theorem generalized the results of [Koszul50] who worked with a relative
version of cohomology for pairs of Lie algebras and over fields of characteristic
zero, where the geometric theory of Lie groups provided motivation. Koszul
pioneered the homological algebra of Lie algebras as a tool independent of the
topology and geometry involved.

When a Lie group is present, it is possible to view it as a manifold, a group,
and its associated Lie algebra. [van Est58] introduced a spectral sequence in
which all of these structures play a role. LetG denote a Lie group andH a
compact subgroup ofG. Supposeπ : G → V is a representation ofG into V
a real vector space. Letg andh denote the Lie algebras ofG andH respec-
tively. With these assumptions there are three cohomology algebras that can
be defined;H∗deR(G/H), the de Rham cohomology of the homogeneous space
G/H, H∗alg(G,V, π), the smooth group cohomology ofG with respect to the
representationπ in V , andH∗Lie(g, h;V ), the relative Lie algebra cohomology
with coefficients inV .

The spectral sequence is based on a double complex with elements of
bidegree(r, s) given byV -valued functions of which the firstr variables are in
g and the lasts are inG. These functions are alternating multilinear on the first
r variables and smooth on the lasts.

Theorem 12.7 (the van Est spectral sequence).WithG,H, V andπ as above,
there is a spectral sequence with

E∗,∗2
∼= H∗deR(G/H)⊗H∗alg(G,V, π)

and converging toH∗Lie(g, h;V ).
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This spectral sequence has proved useful in the study of the cohomology of
Lie algebras. [Tillman93] has related the edge homomorphism in the van Est
spectral sequence to the boundary map between Hochschild homology of a
Banach algebraA and the cyclic homology ofA.

A more general class of algebras that extends the notion of a Lie algebra
was identified by [Loday93]: ALeibniz algebra g is ak-module together with
a bilinear mapping[ , ] : g× g→ g satisfying the Leibniz relation

[x, [y, z]] = [[x, y], z]− [[x, z], y].

The definition leaves out the antisymmetric relation expected of Lie algebras
and so gives a noncommutative version of a Lie algebra. ALeibniz module (or
representation) is ak-moduleM together with a bilinear mappingM×g→M ,
written (m, g) 7→ [m, g], satisfying[m, [x, y]] = [[m,x], y]− [[m, y], x].

[Loday-Pirashvili93] defined the Leibniz cohomology,HL∗(g,M), of a
Leibniz algebrag with coefficients in a Leibniz moduleM as the homology of
the complex

R
0
−→ C1(g,M)

d
−→ C2(g,M)

d
−→ · · ·

d
−→ Ck(g,M)

d
−→ · · ·

whereCk(g,M) = HomR(g⊗k,M) and the differentiald is defined

d(α)(g1 ⊗ · · · ⊗ gk+1) =∑
1≤i<j≤k

(−1)j+1α(g1 ⊗ · · · ⊗ gi−1 ⊗ [gi, gj ]⊗ gi+1 ⊗ · · · ⊗ ĝj ⊗ · · · ⊗ gk+1)

+ [g1, α(g2⊗· · ·⊗gk+1)] +
k+1∑
i=2

(−1)i+1[gi, α(g1⊗· · ·⊗ ĝi⊗· · ·⊗gk+1)].

Wheng is a Lie algebra, the canonical mappingg⊗k → g
∧k induces a ho-

momorphismH∗Lie(g,M)→ HL∗(g,M). [Pirashvili94] and [Lodder98] have
introduced a spectral sequence that computes the relative theory defined as

H∗rel(g) = H(s2C∗(g)/Ω∗(g), d̄),

wheres is the operator that shifts degree, andΩ∗(g) is the complex that de-
fines Lie algebra cohomology. The spectral sequence measures the differ-
ence between the Lie algebra cohomology and the Leibniz cohomology when
they are applied to a Lie algebra, that is, it reveals the importance of the an-
ticommutative condition on a Lie algebra. TheE2-term of the spectral se-
quence is made up of the Leibniz cohomology of the Lie algebrag and another
term defined as follows: There is a leftg-module structure ongdual given by
gγ(h) = γ([h, g]). We can define morphismsi1 : Ωn+1(g) → Ωn(g; gdual)
andi2 : Ωn(g, gdual)→ Cn+1(g,R) by the formulas

i1(α)(g1, g2, . . . , gn)(g0) = (−1)nα(g0, g1, . . . , gn)
i2(β)(g0, g1, . . . , gn) = (−1)nβ(g1, . . . , gn)(g0).
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The complexCR∗(g) is defined by the short exact sequence

0→ Ω∗(g)→ Ω∗−1(g, gdual)→ sCR∗(g)→ 0.

The homology ofCR∗(g) is denoted byHR∗(g).

Theorem 12.8. Let g be a Lie algebra andM a g-module. Then there is
a spectral sequence withE2

p,q
∼= HLp(g,M) ⊗ HRq(g), and converging to

Hp+q
rel (g,M).

The spectral sequence was derived for Leibniz homology by [Pirashvili94] and
for cohomology by [Lodder98], who has extended the Leibniz cohomology
groups to diffeomorphism invariants of a manifold, and related them to the
Gelfand-Fuks cohomology of smooth vector fields. He has also identified the
Godbillon-Vey invariant of foliations as a Leibniz cohomology class.

The category of connected Hopf algebras over a ringR shares a great
deal with the category of groups. One of the uses of group cohomology is the
classification of extensions of groups. Suppose1 → K → G → Q → 1 is an
extension. ThenQ acts onK by conjugation, givingK aQ-module structure.
There is also a twisting function (a factor set)τ : Q × Q → K. TheQ-
module structure andτ together determine the extensionG up to a coboundary
condition. This identifiesH2(Q,K) as the group that classifies extensions
with the givenQ-module structure. [Gugenheim62] and [Singer72] carried out a
similar development of the structure of an extension of connected Hopf algebras.
The notion of aQ-module structure with a twisting function is replaced with
the notion of anabelian matched pairof Hopf algebras,(A,B). The definition
may be found in [Singer72, Definition 3.1]. This leads to cohomology groups
Hn(B,A), definable as the derived functors of an appropriate hom functor, or
via a cotriple. [Henderson97] has studied the problem of computing the groups
Hn(B,A) for which he has introduced a spectral sequence.

Theorem 12.9. If (A,B) is an abelian matched pair of graded connected
Hopf algebras over a ringR, then there is a spectral sequence for each integer
r > 0 with rE

s,t
2
∼= Exts,rB (R,Cotort,rA (R,R)), and converging toEr,s+t−r1 ,

theE1-term of a spectral sequence that converges toH∗(B,A).

The method of construction is to use cosimplicial objects and interpret the
various filtration quotients. [Henderson97] computed the spectral sequences in
the case of a truncated monogenic tensor algebra, from which he determined the
nature of certain extensions overFp that occur in the study of finite H-spaces
([Lin78]).
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Abelian categories

The structure of a spectral sequence requires a homological algebra that
includes filtrations, subquotients, and additivity of morphisms. The minimal
requirements of a category in which spectral sequences may be constructed
and studied were identified by [Grothendieck57], who introduced the notion
of an abelian category. General results about spectral sequences in abelian
categories soon followed in papers of [Dold62], [Eilenberg-Moore62], and
[Eckmann-Hilton66]. For a thorough introduction to foundations and the homo-
logical algebra of abelian categories, see the books of [Tamme94] and [Gelfand-
Manin96].

Among the most important results of [Grothendieck57] is a general spectral
sequence whose instances include many classical results. We begin with abelian
categories,AbelCat1, AbelCat2, and AbelCat3, along with functors

F : AbelCat1 −→ AbelCat2 and G : AbelCat2 −→ AbelCat3.

We relate the derived functorsF andG to the derived functors of(G ◦ F ).

Theorem 12.10 (the composite functor spectral sequence).Suppose the func-
tors F andG are covariant,G is left exact andF takes injective objects in
AbelCat1 toG-acyclic objects inAbelCat2 (G-acyclic objects have the prop-
erty that the derived functors ofG vanish on them). Then there is a spectral
sequence with

Ep,q2
∼= (RpG)(RqF (A)),

and converging toR∗(G ◦ F )(A) for A in AbelCat1.

The homological invariants we have considered are instances of the derived
functors of such functors asM ⊗Γ − or HomΓ(−, C). The interested reader
can review the spectral sequences of§12.1, §2.4, §7.1, and§9.2 and try to
derive these spectral sequences as instances of the composite functor spectral
sequence.

When the categories involved are not abelian, it is still possible to set up
a Grothendieck spectral sequence. Using simplicial methods and homotopy
theory, [Blanc-Stover92] have generalized the composite functor spectral se-
quence to categories of universal algebras (such as groups, rings, Lie algebras,
etc.) and more general functors.

An example of the Grothendieck spectral sequence is a generalization of
the change-of-rings spectral sequence. Suppose we have a family of functors,
indexed overZ,

{Tn} : AbelCat1 −→ AbelCat2

that act like the derived functors ofT0. That is, they are additive, left or right
exact, and to a short exact sequence inAbelCat1, 0 −→ A −→ B −→ C −→ 0,
there is a long exact sequence inAbelCat2

· · · −→ TnA −→ TnB −→ TnC −→ Tn±1A −→ · · ·



        

12.2. Spectral sequences in Geometry 515

(where±1 depends on the variance of theT ’s).

Theorem 12.11 (the Universal Coefficient spectral sequence).SupposeA is
an object inAbelCat1 andM ∈ AMod. Suppose

(1) projdimM <∞ or T−N = 0 for sufficiently largeN ,
(2) A is Noetherian andM is finitely generated or, forq ≤ n, Tq commutes

with arbitrary direct sums.

Then there is a spectral sequence withE2
p,q
∼= TorAp (TqA,M), and converging

to T∗M . Dually, for T ∗ = T−∗, contravariant, there is a spectral sequence
withEp,q2

∼= ExtpA(M,T qA), and converging toT ∗M .

This theorem is proved in this generality in the paper of [Dold62]. For the
abelian categories of chain and cochain complexes, the familiar Universal Co-
efficient theorem can be recovered. ForTn = Ext−nA (B,−), this gives another
spectral sequence relating the homological invariants of rings and modules.

Another application may be made to compute thehypercohomologyof a
complex,(A∗, d), of objects inAbelCat1 with respect to a left exact functor
F : AbelCat1 → AbelCat2. SupposeAbelCat1 has enough injectives. Then
thehyperderived functors ofF can be defined: Suppose(I•, ∂) is a complex
of injective objects inAbelCat1 with H(I•, ∂) ∼= H(A∗, d). The hypercoho-
mology ofA∗ is defined byHF ∗(A∗) = H(FI•, F∂). This definition can be
shown to be independent of the choice of injective object.

Theorem 12.12 (the hypercohomology spectral sequence).If {RjF} denotes
the sequence of right derived functors ofF , then there is a spectral sequence,
withEp,q2

∼= (RpF )(Hq(A∗, d)), and converging toHF ∗(A∗).

This theorem can be proved from the composite functor spectral sequence
or from the construction of a double complex of injective objects whose total
complex has homologyH(A∗, d) (in the manner of the proof of Lemma 2.19).
A direct proof for rings and modules appears in the classic books of [Cartan-
Eilenberg56] and [Mac Lane63].

12.2 Spectral sequences in Geometry

The basic objects that are studied in algebraic geometry, varieties and
schemes, carry many different structures. Similarly, the basic objects in dif-
ferential geometry, manifolds, are rich with structure. There is an underlying
topological space (sometimes with the nonHausdorff Zariski topology), possi-
ble analytic structure, and, for varieties, the underlying structure of polynomial
rings; the interaction between these structures and with the homological invari-
ants of such objects leads to many useful spectral sequences.

The first example is historically the first spectral sequence. [Leray46],
in a series ofComptes Renduesnotes, introduced the notions of a sheaf over
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a topological space, cohomology with coefficients in a sheaf, and the Leray
spectral sequence associated to a mapping (§6.4). SupposeX andY are spaces
with f : X → Y , a continuous mapping. SupposeΦ = {Uα | α ∈ J} is an
open cover ofY . Such a covering gives rise to a left exact functor from the
category of sheaves onX to the category of sheaves onY , which is constructed
from the presheaf of sections. For a sheafS onX,

ΓΦ(S) = sheaf derived from the presheafUα 7→ {Γ(f−1(Uα), S) | Uα ∈ Φ}.

The theorem of [Leray46] relates the sheavesS onX andΓΦ(S) on Y . The
category of sheaves (of abelian groups) is an abelian category and so there is a
notion of homological algebra for sheaves.

Theorem 12.13 (the Leray spectral sequence).Let R∗ΓΦ denote the right
derived functors ofΓΦ. If Ȟ∗ denotes the sheaf cohomology of a space in a
given sheaf, then there is a spectral sequence withEp,q2

∼= Ȟp(Y,RqΓΦ(S)),
and converging tǒH∗(X,S).

An application of the Leray spectral sequence is the case of a complex
variety. Algebraically, the variety has the Zariski topology. Analytically, it
carries a topological manifold structure. The sheaves of germs of functions on
the variety (analytic and algebraic) and the cohomology of the variety in these
sheaves are related by the spectral sequence in the theorem and the continuous
functionXC −→ XZar. This example also reveals a role played by spectral
sequences in algebraic geometry—patching local data into global data. Another
example of a spectral sequence focusing on patching is thelocal-to-global
spectral sequence.

Theorem 12.14.SupposeX is a topological space andS, a sheaf of rings onX.
Suppose thatM andN are sheaves of leftS-modules. Then there is a spectral
sequence withEp,q2

∼= Ȟp(X, ExtqS(M,N )), and converging toExt∗S(M,N ),
which denotes the derived functors of

HomS(M,N ) =
∏
x∈X

HomS(x)(M(x),N (x)).

We refer the reader to a classic text on sheaves and spectral sequences
by [Godement58], for a discussion of local-to-global spectral sequences and
a proof of this theorem. See the book of [Griffiths-Harris78] for applications
of the Leray spectral sequence, especially in complex algebraic geometry. A
generalization of the Leray spectral sequence has been derived by [Paranjape96]
in the context of abelian categories and filtered complexes.
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Spectral sequences and the de Rham complex

Other sources of spectral sequences in algebraic and differential geometry
are filtrations of the de Rham complex that derive from some structural feature
of the particular situation. As a first example, we mention a spectral sequence
introduced by [Grothendieck61].

If X is a nonsingular algebraic variety of dimensionn over a fieldk of
arbitrary characteristic, then define

Ω1
X/k = the sheaf of differential 1-forms onX overk.

We form the exterior algebra,ΩiX/k = Λi(Ω1
X/k). Then there is a natural

derivationd : OX → Ω1
X/k and so an exterior derivative giving a complex

OX
d
−→ Ω1

X/k

d
−→ · · ·

d
−→ Ωn−1

X/k

d
−→ ΩnX/k,

called thealgebraic de Rham complexonX. The hypercohomology of this
complex is called thealgebraic de Rham cohomologyof X, and denoted by
H∗deR(X).

Theorem 12.15 (the Hodge-de Rham spectral sequence).There is a spectral
sequence withEp,q1

∼= Ȟp(X,ΩqX/k), the cohomology ofX in the sheafΩqX/k,
and converging toH∗deR(X).

[Grothendieck61] related the algebraic de Rham cohomology of a finite
dimensional varietyX overC to its singular cohomology by using the spectral
sequence to prove

H∗deR(X,C) ∼= H∗sing(X
an;C)

whereXan, is the analytic space associated toX. The filtration onH∗deR(X)
derived from this spectral sequence is related to the system of weights due to the
Hodge structure on a compact complex variety. This relation has been studied
thoroughly by [Deligne71].

WhenX is a scheme, smooth and proper over a perfect fieldk of character-
istic p > 0, then there are other invariants that reflect thep-adic structure of the
scheme. In particular, there is the crystalline cohomology ofX,H∗cris(X/W ),
whereW denotes the ring of Witt vectors, defined by [Grothendieck68] and
[Bertholet76]. [Bloch78] studied the relations between the various cohomo-
logical invariants of a variety over a perfect field of characteristicp > 2. He
introduced a spectral sequence to computeH∗cris(X/W ) using a complexC•X
of typical curves on K-theory. The hypercohomology spectral sequence in this
case is called theslope spectral sequenceand hasEp,q1

∼= Hq(X,CpX) and
converges toH∗cris(X/W ). By analogy with the Hodge-de Rham spectral se-
quence, Deligne ([Illusie79]) introduced thede Rham-Witt complexfor a scheme
X,WΩ•X , which agrees withC•X when the latter is defined.
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Theorem 12.16 (the slope spectral sequence).Let X be a scheme, smooth
and proper over a perfect fieldk of characteristicp > 0, andWΩ•X the
associated de Rham-Witt complex. Then there is a spectral sequence with
Ep,q1

∼= Hq(X,WΩpX), and converging toH∗cris(X/W ).

[Ekedahl86] has written a booklength account of the structure theory of the slope
spectral sequence. The applications of this spectral sequence are numerous in
algebraic geometry ([Illusie79], [Ekedahl86]).

SupposeM is a finite dimensional complex manifold. The cotangent
bundleT ∗M of M admits a decomposition,T ∗M = T ∗′M ⊕ T ∗′′M , into
holomorphic forms (sums

∑
fi dzi with fi a holomorphic function onM ) and

antiholomorphic forms (sums
∑
Fi dz̄i with F̄i holomorphic). This decom-

position induces a bigrading on the de Rham complex ofC-valued differential
forms onM , Ω∗(M,C), whereΩp,q(M,C) = Λp(T ∗′M)⊗ Λq(T ∗′′M). An
n-form with n = p + q in Ωp,q(M,C) is called a(p, q)-form . The exte-
rior differential onΩ∗(M,C) takes a formω ∈ Ωp,q(M,C) to the direct sum
Ωp+1,q(M,C) ⊕ Ωp,q+1(M,C). Composing with the projections we get the
expressiond = ∂ + ∂̄ with ∂ of bidegree(1, 0) and∂̄ of bidegree(0, 1). Fur-
thermore,∂ ◦ ∂ = 0 = ∂̄ ◦ ∂̄.

It follows that the data(Ωp,q(M,C), ∂, ∂̄) determine a double complex
whose total complex is the de Rham complex. The vertical differential,∂̄, leads
to theDolbeault cohomology ofM ,

Hp,q

∂̄
(M) = Ωp,q(M,C) ∩ ker ∂̄/∂̄(Ωp,q−1(M,C)).

Theorem 12.17 (the Fr¨olicher spectral sequence).Given a complex manifold
M , there is a spectral sequence, converging strongly toH∗deR(M,C), with
E2-term given byEp,q2

∼= Hp,q

∂̄
(M).

[Frölicher55] introduced the spectral sequence to relate the geometric in-
variants of the Dolbeault complex to the topological invariants of the de Rham
cohomology. He observed that a complex manifold with a positive definite
Kähler metric hasE1

∼= E∞, and so the spectral sequence gives a necessary
condition for the existence of a K¨ahler structure. [Cordero-Fern´andez-Gray91,
93] have given examples of complex manifolds for which the spectral sequence
does not collapse atE1.

WhenX is a smooth projective complex variety, there is also a Hodge
filtration on the cohomology ofX. Because it has an underlying K¨ahler mani-
fold, the Frölicher spectral sequence collapses forX. In the more general case
of a quasi-projective complex varietyV (that is,V = X − Y for X andY
complex varieties), [Deligne68] has proved that there is a different filtration on
H∗(X;Q), called aweight filtration . Such a filtration is increasing

0 = W−1 ⊂W0 ⊂W1 ⊂ · · · ⊂W2m = Hm(X;Q)
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for which the complexified associated graded groupE0
l ⊗C = (Wl/Wl−1)⊗C

has a decomposition of Hodge typeE0
l =

⊕
p+q=l

Hp,q. Such a structure

is called amixed Hodge structure. WhenX is a quasiprojective algebraic
variety, [Deligne71] proved that there is a weight filtration onHm(X;Q) and
a decreasing Hodge filtration onHm(X;C) such that the filtration induced by
the Hodge filtration on the complexified associated graded module from the
weight filtration was a mixed Hodge structure. The existence of two filtrations
of this sort can lead to the collapse of the associated spectral sequences. For
an introduction to mixed Hodge structures, see the ‘naive guide’ of [Durfee83].
The appearance and uses of spectral sequences from mixed Hodge structures is
developed in the book of [El Zein91].

If (M, g) is an n-dimensional Riemannian manifold andπ : E → M
is a flat vector bundle, then a smooth distribution ofk-planesA ⊂ TM to-
gether with its orthogonal complementB leads to a decomposition of the metric
g = gA⊕gB . If we vary the metric bygδ = gA+δ−2gB for 0 < δ ≤ 1, then we
obtain a family of Laplacians for(M, gδ) and a corresponding exterior derivative
onΩ∗(M ;E). There is a filtration on theL2-completion ofΩp(M ;E) given by
ω ∈ F k when there is aj with dδ(ω + δω + · · ·+ δjω) ∈ δkΩp+1[δ]. A spec-
tral sequence results that has been shown to be isomorphic to the Leray spectral
sequence associated to the splittingA⊕B = TM ([Mazzeo-Melrose90], [For-
man95]). This spectral sequence is related to the behavior of the spectrum of
the Laplacians involved and is called theadiabatic spectral sequence. For a
general discussion of these ideas, see the paper of [Forman94].

The bigrading of the de Rham complex in Hodge theory has a striking rela-
tive in the calculus of variations. Here one wants to study differential equations
as sections of jet bundles associated to a smooth vector bundleπ : E →M . Let
J∞(E)→M denote the infinite order jet bundle associated toπ. Let I denote
the contact ideal, the differential ideal of the de Rham complexΩ∗(J∞(E))
of forms that pull back to zero under any extension to infinite jets of a sec-
tion s : M → E. A bigrading results onΩ∗(J∞(E)) by counting the number
of forms fromI needed to express a given form. The exterior derivative can
be decomposed into horizontal and vertical components giving a double com-
plex, known as thevariational bicomplex. The associated spectral sequence
was identified by [Vinogradov78] and a clear presentation can be found in the
monograph of [Krasil’shchik-Verbotevsky98].

Theorem 12.18 (theC-spectral sequence). Let π : E → M be a smooth
vector bundle over ann-dimensional manifoldM . Then the spectral sequence
associated to the variational bicomplex converges toH∗deR(J∞(E)) and has
E0,q

1 isomorphic to the horizontal cohomology associated toπ; Ep,n1 isomorphic
to the moduleLalt

p (π) for p > 0, whereLalt
p is the homology of the complex of

alternating differential operators associated toπ, andEr,s1
∼= {0}, otherwise.
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The differentiald1 : E0,n
1 → E1,n

1 can be identified with the operator that
associates to a Lagrangian its Euler-Lagrange equation.

In the case of a specific distribution on a subspace ofJ∞(E), the horizontal
cohomology is based on the associated Cartan submodule determined by the
equation (hence theC-spectral sequence) and theE1-term is more complicated to
describe. Applications of the variational bicomplex are presented by [Anderson-
Thompson92]; applications of theC-spectral sequence by [Krasil’shchik98].

Finally, to close this section we mention work of [Dixon91] on the compu-
tation of BRS cohomology for gauge systems ([Henneaux-Teitelboim92]). The
BRS operator determines a differential on the Fock space of integrated local
polynomial functions of a Yang-Mills field and a Fadeev-Popov ghost field.
The resulting cohomology determines invariants of a gauge system, such as
the ghost numbers, the Lorentz character, and discrete symmetries. [Dixon91]
filtered the space on which the BRS operator acts and deduced the associated
spectral sequence. The induced grading from theE∞-term of the spectral se-
quence decomposes the desired complicated cohomology in simpler pieces that
are computable.

12.3 Spectral sequences in algebraic K-theory

Algebraic K-theory assigns a sequence of invariants to a ringR and these
invariants may be constructed as the homotopy groups of a certain space (or a
certain spectrum). The tools for the study of algebraic K-theory are as varied
as the appearances of rings throughout mathematics and so there are many
structures at play, interwoven and interacting in algebraic K-theory.

To a ringR we associate the schemeSpecR with the Zariski topology.
[Brown, K-Gersten73] and [Quillen73] derived a spectral sequence, defined for
cohomology groups related to simplicial sheaves, and applicable to algebraic K-
theory: SupposeX is a Noetherian space (that is, the open sets inX satisfy the
ascending chain condition) and suppose that the irreducible closed subsets ofX
also satisfy the ACC (for example, ifX = SpecR forR a regular, commutative
ring). A simplicial sheafonX is a sheaf with values inSimpEns, the category
of simplicial sets. IfK is a simplicial sheaf onX, then we say thatK is flasque
if the mappingt : K −→ ∗ satisfies the property that, forU , V open inX,

Γ(V,K)
(Γ(V,t),restr)
−−−−−−−−→ Γ(V, ∗)⊗Γ(U,∗) Γ(U,K)

is a simplicial fibration.
Replace the functorsΓ(U,−), for U open inX, by a functorRΓ(U,−)

defined on thehomotopycategory of sheaves overX,

RΓ(U,−) : HoSimpSheavesX −→ HoSimpEns

such that, whenK is flasque, there is natural isomorphism ofRΓ(U,K) with
Γ(U,K). Define thegeneralized sheaf cohomology groups,H∗(X,K) by

Hq(X,K) = π−q(RΓ(X,K)).
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Theorem 12.19 (the Brown-Gersten-Quillen spectral sequence).SupposeX
is a Noetherian space of finite Krull dimension andK is a simplicial sheaf
with basepoint that satisfiesπ0(K) = {0} and π1(K) andH−1(X,K) are
abelian. SupposeHp(X,πn(K)) = {0} for p ≥ n. Then there is a fourth
quadrant cohomological spectral sequence withEp,q2

∼= Hp(X,π−q(K)), and
converging toH∗(X,K).

If X = SpecR forR regular and such that every coherent sheaf onX is a
quotient of a locally free sheaf, then one builds a simplicial sheafK onX from
the classifying construction for a category withπ−q(K) = K−q, the abelian
sheaf of local K-groups ofR and satisfying,H∗(X,K) = K∗(R). In this case,

Ep,q2
∼= Hp(SpecR,K−q)

and the spectral sequence converges toK∗(R). A construction and discussion
of the applications of the Brown-Gersten-Quillen spectral sequence may be
found in the book of [Srinivas96]. [Gillet81] has given an alternate derivation
of the Brown-Gersten-Quillen spectral sequence as the solution to a homotopy
limit problem (following [Thomason83]).

Another example of an invariant of a scheme (a ringed space) is its ´etale
cohomology ([Milne80], [Tamme94]). In this example, we relate the ´etale
cohomology of a scheme with coefficients in various cyclic groups, to the
localized algebraic K-theory of the scheme.

In order to introduceZ/mZcoefficients on homotopy groups of a spectrum,
one smashes the spectrum with the appropriate Moore spectrum forZ/mZ
([Browder78]). The algebraic K-theory of a scheme with coefficients inZ/mZ
can be defined analogously by taking the spectrum associated to the scheme
and smashing it with the Moore spectrum; its homotopy groups are denoted by
(K/m)∗(X).

Supposeb ∈ (K/m)∗(X) and we consider the direct limit of the system

(K/m)∗(X)
b×−
−−−→ (K/m)∗(X)

b×−
−−−→ · · ·

given by left multiplication byb. This direct limit is called thelocalization of
(K/m)∗(X) with respect tob (or by inverting the elementb), and it is denoted
by (K/m)∗(X)[b−1].

In connection with the Lichtenbaum-Quillen conjecture, [Thomason85]
introduced a descent spectral sequence associated to schemesX satisfying
certain technical conditions:

Theorem 12.20 (the descent spectral sequence).Supposel is a fixed prime and
ν, a natural number. LetX be a separated, Noetherian, regular scheme of finite
Krull dimension, with sufficiently nice residue fields of characteristic different
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from l. Supposeβ is the Bott element in(K/lν)2(X), that is, the element such
that the Bockstein ofβ is an appropriate power of anlth root of unity inK1(X).
Then there is a spectral sequence with differentials of bidegree(r, r − 1),

Ep,q2
∼=
{
Hp

et(X;Zl(i)), if q = 2i,
{0}, if q, odd,

whereZl(i) = Zl(1)⊗i is theith Tate twist of thel-adic integers. The spectral
sequence converges to(K/lν)∗(X)[β−1].

The Lichtenbaum-Quillen conjecture relates the order of the K-groups to
values of zeta functions for certain arithmetic number fields. [Thomason85]
proved it for this localized version of algebraic K-theory. The result also ap-
plies to the case ofX, a variety over an algebraically closed fieldk of char-
acteristic6= l and so allows computation of these algebraic K-groups for such
varieties. [Mitchell97] presented a proof of Thomason’s theorem in terms of
hypercohomology spectra in which he exposes many of the details and concep-
tual underpinnings of this result, as well as the applications. [Thomason82, 83]
described a context where this theorem is a case of a homotopy limit problem,
here for diagrams of spectra (see§11.4).

The next spectral sequence has played a key role in recent developments
of Voevodsky in his proof of the the Lichtenbaum-Quillen conjecture at 2 for
fields of characteristic zero ([Friedlander97]). An important tool in algebraic K-
theory is themotivic cohomologyof a field. Motivic cohomology is a functor on
schemes that plays the role of singular cohomology for spaces. For a topological
spaceX, the Atiyah-Hirzebruch spectral sequence hasEp,q2

∼= Hp(X;Kq
top)

and converges toKp+q
top (X). Beilinson conjectured that there should be a spec-

tral sequence of Atiyah-Hirzebruch type from the motivic cohomology of a
scheme with coefficients in the algebraic K-theory of a point (Spec(k)) to the
algebraic K-theory of the scheme. Furthermore, tensored with the rational
numbers, this spectral sequence would collapse determining the algebraic K-
theory groups mod torsion. [Bloch86] has proposed that motivic cohomology of
Spec(k),Hr

M(Spec(k),Z(s)), may be identified with the higher Chow groups
CHs(Spec k, 2s− r) and with this definition, there is a spectral sequence de-
rived by [Bloch-Lichtenbaum94].

Theorem 12.21 (the Bloch-Lichtenbaum spectral sequence).Letk denote a
field. There is a fourth quadrant spectral sequence with

Ep,q2
∼= Hp−q

M (Spec(k),Z(−q)),
and converging toK−p−q(Spec k).

Voevodsky used his proof of the Milnor conjecture ([Voevodsky96], [Kahn,
B97], [Morel98]), together with this spectral sequence to obtain his proof of the
Lichtenbaum-Quillen conjecture.
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Finally, we close this section with another analogue of the Atiyah-Hirze-
bruch spectral sequence, this time for a different K-theory and a different fil-
tration. If A is aC∗-algebra, then there is a K-theory ofA, defined and de-
veloped by [Brown-Douglas-Fillmore77], [Pimsner-Popa-Voiculescu79], and
[Kasparov79]. [Schochet81] introduced a spectral sequence that applies when
A is a filteredC∗-algebra, that is, there is a sequence of closed ideals,

A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · ⊂ A = cls(
⋃

n
An).

Theorem 12.22.Suppose given a filteredC∗-algebra,(A, {An}). Then there is
a spectral sequence withE1

p,q
∼= Kp+q(Ap/Ap−1), and converging toK∗(A).

The spectral sequence is natural with respect to filtration-preserving maps of
C∗-algebras.

This result and other results of Schochet bring the technical tools of algebraic
topology to bear on the study ofC∗-algebras.

12.4 Derived categories

The functors of homological algebra such asTor andExt are defined as
the homology of chain complexes that are built in a noncanonical manner. In
order to obtain homological invariants, the chain complexes must be carefully
chosen. For example, a projective resolution of a rightA-module,

· · · → P−i+1 → P−i → · · · → P−1 → P 0 →M → 0,

givesTorA∗ (M,N) by computingH(P • ⊗A N) for a leftA-moduleN . Other
choices of projective resolution can be compared with this particular choice to
give isomorphicTor groups, that is, groups that depend onA,M , andN only.
In the case of modules, flat modules have the property of exactness on tensoring
overA and so the axiomatic properties ofTor can be achieved by a choice of a
flat resolution. However, it may be difficult to compare two flat resolutions.

Grothendieck and [Verdier63/97] defined the notion of the derived category
of an abelian categoryA in an effort to establish a framework in which to
extend the duality results of [Serre54]. LetC(A) denote the category of chain
complexes of objects and degree zero maps of complexes inA. Let C+(A)
(C−(A)) denote the subcategory of chain complexes that are bounded below
(above). A morphism of complexesP • → Q• is a quasi-isomorphism if it
induces an isomorphismH(P ∗) → H(Q∗) of graded objects. Thederived
category of A, D(A), is obtained by formally inverting the class of quasi-
isomorphisms inC(A). This formal inversion can be made concrete by using a
calculus of fractions developed by [Verdier63/97] and [Gabriel-Zisman67].

If F : A → B is an additive functor between abelian categories, then we
can ask if there is an extension ofF to a functorD+(A)→ D

+(B). A minimal
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requirement is thatF , extended levelwise toC+(A)→ C
+(B), preserve quasi-

isomorphisms. This is true ifF is left exact. The right derived functors of
F determine the extension ofF to RF : D+(A) → D

+(B). This extension
is proved to exist by analyzing the mapping cylinder construction in abelian
categories, a construction formalized in the notion of atriangulated category.

When the abelian categoryA has enough injectives, then the value of
Hs(RF (K•)) is called thesth hyperderived functor of F with respect to
the complexK•. The computation ofH∗(RF (K•)) may be carried out by
replacingK• with a double complex of injective objects, from which there
is a spectral sequence withEp,q2

∼= (RpF )(Hq(K•)), converging weakly to
H∗(RF (K•)).

The point of derived categories, however, is to argue with the objects up to
equivalence and the derived functors as functors on a particular category. An
example of this principle in action is the following basic result.

Theorem 12.23.Given three abelian categoriesA, B, andC, and additive left
exact functorsF : A → B andG : B → C such thatF takes injective objects
in A to G-acyclic objects inB, then the extensions ofF , G andG ◦ F to the
derived categories are naturally isomorphic, that is,R(G◦F ) ∼= R(G)◦R(F ).

(Proofs of this theorem can be found in the book of [Weibel94, 10.8.2], or
[Gelfand-Manin96, III.7.1] or in the survey paper of [Keller96].) When the
spectral sequence is applied to compute the hyperderived functors of the prod-
uct, we recover the Grothendieck spectral sequence (Theorem 12.9). The under-
lying equivalence is more revealing than the spectral sequence and the derived
category provides the framework to make such insights.

The language of derived categories is based on the basic structures of
stable homotopy theory. [May94] has given a dictionary between algebra and
topology that illuminates the analogies. The homological algebra of rings and
modules can be carried back to stable homotopy through the foundational work
of [Elmendorf-Kriz-Mandell-May97].

Derived categories have spread throughout mathematics wherever homo-
logical algebra has developed. As derived categories provide organization,
spectral sequences will provide computations.
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Houzel, C., Les débuts de la th´eorie des faisceaux, in Sheaves on manifolds by Masaki Kashiwara,

Pierre Schapira, Berlin ; New York : Springer-Verlag, 1990. (134)

Hu, S.T., Homotopy Theory,.

Huebschmann, J., Cohomology of metacyclic groups, Trans. Amer. Math. Soc.328(1991), 1–72.

(344)

Huebschmann, J., Automorphisms of group extensions and differentials in the Lyndon-Hochschild-

Serre spectral sequence, J. Algebra72(1981), 296–334. (344)

Huebschmann, J., Kadeishvili, T., Small models for chain algebra, Math. Z.207(1991), 245–280.

(225, 297)

Hunter, T.J., OnH∗(Ωn+2Sn+1;F2), Trans. Amer. Math. Soc.314(1989), 405–420. (326)
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Vigué-Poirrier, M. , Homologie etK-théorie des alg`ebres commutatives: caract´erisation des inter-

sections compl`etes, J. Algebra173(1995), 679–695. (283)

Vinogradov, A.M., A spectral sequence associated with a nonlinear differential equation and

algebro-geometric foundations of Lagrangian field theory with constraints, Soviet Math. Dokl.

19(1978), 144–148. (519)

Viterbo, C., Some remarks on Massey products, tied cohomology classes, and the Lusternik-

Shnirelman category, Duke Math. J.86(1997), 547–564. (304)

Voevodsky, V., The Milnor conjecture, preprint, 1996, Algebraic K-theory preprint server,

http://www.math.uiuc.edu/K-theory/. (522)

Wall, C.T.C., Determination of the cobordism ring, Ann. of Math. (2)72(1960), 292–311. (368)

Wang, H.C., The homology groups of the fiber bundles over a sphere, Duke Math. J.16(1949),

33–38. (145)

Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman and Co.,

Glenview, Ill.-London, 1971. viii+270 pp. Corrected reprint of the 1971 edition. Graduate Texts

in Mathematics, 94. Springer-Verlag, New York-Berlin, 1983. (165, 276)

Weibel, C.A., An Introduction to Homological Algebra. Cambridge University Press, New York,

NY, 1994. (28, 44, 344, 487, 524)

Whitehead, G.W., The(n+2)nd homotopy group of then-sphere. Ann. of Math.52(1950), 245–

247. (180, 205)

Whitehead, G.W., Fiber spaces and the Eilenberg homology groups, Proc. Nat. Acad. Sci. U.S.A.,

38(1952), 426–430. (203)

Whitehead, G.W., On the Freudenthal theorems, Ann. of Math.57(1953), 209–228. (488)

Whitehead, G.W., On mappings into group-like spaces. Comment. Math. Helv.28(1954), 320–328.

(303, 347)

Whitehead, G.W., On the homology suspension, Ann. of Math. (2)62(1955), 254–268. (297, 301)

Whitehead, G.W., Generalized homology theories, Trans. Amer. Math. Soc.102(1962), 227–283.

(222, 408, 495)

Whitehead, G.W., Recent advances in homotopy theory, Conference Board of the Mathematical

Sciences Regional Conference Series in Mathematics, No. 5. American Mathematical Society,

Providence, R.I., 1970. iv+82 pp. (493, 495)

Whitehead, G.W., Elements of Homotopy Theory. Springer-Verlag, New York, (1978). (96, 115,

132, 139, 160, 178, 199, 340, 403)

Whitehead, G.W., Fifty years of homotopy theory, Bull. Amer. Math. Soc (2)8(1983), 1–29. (205)



      

552 Bibliography

Whitehead, J.H.C., On adding relations to homotopy groups, Ann. of Math. (2)42(1941), 409–428.

(303)

Whitehead, J.H.C., Combinatorial homotopy I, II, Bull. A.M.S.55(1949), 213–245, 453–496. (93,

95)

Whitney, H., Sphere spaces, Proc. Nat. Acad. Sci. U.S.A.21(1935), 462–468. (133, 207)

Whitney, H., Differentiable manifolds, Ann. of Math.37(1936), 645–680. (409)

Whitney, H., On products in a complex, Annals of Math.39(1938), 397–432. (133)

Wolf, J., The cohomology of homogeneous spaces, Amer. J. Math.99(1977), 312–340. (277, 294,

296)

Wu, J., On combinatorial descriptions of homotopy groups of certain spaces, to appear in Math.

Proc. Cambridge Phil. Soc. (366)

Wu, W.-T. , Classes caract´eristiques eti-carrés d’une vari´eté, C.R. Acad. Sci. Paris230(1950),
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Künneth theorem, 45

Lambda-algebra, 493

Leibniz algebra, 512

Leibniz cohomology, 512

lens space, 132, 198

Leray spectral sequence, 515

Leray-Hirsch theorem, 148

Leray-Serre spectral sequence for generalized the-

ories, 498

lifting function, 110

limit, 67

local ring, 310

local-to-global spectral sequence, 515

locally finite CW-complex, 94

locally finite module, 14

locally trivial fibration, 112

loop multiplication, 98

loop suspension homomorphism, 298

lower central series, 343, 345

Lucas’s Lemma, 263

Lusternik-Schnirelmann category, 302, 347

Lyndon-Hochshild-Serrespectral sequence, 340ff.

mapping cone, 97

mapping cylinder, 97

Massey products in Ext, 426ff.

Massey products,n-fold, 305

Massey triple product, 302

MathSciNet, 488

matching space, 358

matric Massey products, 311ff.

maximalπ-perfect submodule, 345

maximal augmentation, 356

maximal torus, 278

May spectral sequence, 441ff., 510

May’s tables, 447

method of killing homotopy groups, 203

Miller spectral sequence, 499

Milnor µ̄ invariants, 310

Milnor spectral sequence, 268

minimal resolution, 379

Mittag-Leffler condition, 79

mixed Hodge structure, 519

modp finite H-space, 474

modr homotopy groups, 480

module over a differential graded algebra, 225

module spectrum, 497

monogenic Hopf algebra, 213

Moore space, 463, 480

Moore spectral sequence, 268

Morava K-theory, 482

morphism of bundles of groups, 165

morphism of exact couples, 74

morphism of fibrations, 112

morphism of fibre bundles, 209

morphism of filtered differential graded modules,

66

morphism of simplicial objects, 104

morphism of spectral sequences, 65

Morse theory, 304

motivic cohomology, 522

nerve of a category, 502

nilpotent completion, 362

nilpotent group, 344



     

Index 559

nilpotent module, 345

nipotent space, 346

Nishida’s nilpotence theorem, 407

normed algebra, 366

Omega-spectrum, 120

operad, 297

oriented cobordism ring, 414

p-component of a group, 370

p-divisble elements in a group, 459

path-loop fibration, 112, 157

perfect field, 213

periodicity theorem, 431

perturbation theory, 297

Π-algebra, 489

π-complete space, 348

π-module, 334

π-perfect, 345
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Frölicher, 518

Grothendieck, 514

Hochschild-Serre, 511
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