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Abstract 

McCarthy, R., The cyclic homology of an exact category, Journal of Pure and Applied Algebra 93 

(1994) 251-296. 

We define Hochschild and cyclic homology groups for an exact category which generalize the usual 

definitions when one considers finitely generated projective modules. They satisfy additivity as well 

as many of the usual properties one expects from the homology groups of an algebra. The Dennis 

trace and its lift to negative homology are also (multiplicatively) generalized to this setting. We use 
the S construction of Waldhausen and a formal generalization of the usual cyclic complex from 

Hochschild homology for our definition. 

1. Introduction 

This paper arose from my desire to better understand the connections between 

algebraic K-theory and cyclic homology. I wanted a definition of Hochschild homol- 

ogy groups such that the Dennis trace map and its multiplicative properties were clear 

and that its extension (called here the Jones-Goodwillie Chern map) to negative 

homology was equally straightforward. To do this, it seemed that a definition of the 

Hochschild homology groups for an exact category with these properties would help 

to simplify the situation. The purpose of this paper is to construct such a theory and to 

re-derive the standard facts for cyclic homology groups in this generality. 

Since Hochschild homology is defined for algebras over a commutative ground ring 

k, it is natural to introduce such a ground ring into our exact categories. We will call 
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a category k-linear if its Horn sets are equipped with the structure of a k-module and 

composition is k-bi-linear. Every exact category is by definition an additive category 

and hence Z-linear. For the purpose of this introduction we will simply state the 

results for the ground ring Z. All statements hold for arbitrary ground ring k and are 

proved as such throughout the paper. 

For B an exact category, we define Hochschild, cyclic, negative and periodic 

homology groups for 6 (denoted HH,(&), HC,(B), HN,(b), and HP,(&) respect- 

ively) with the following properties: 

(1) Agreement. If 9 denotes the exact category of finitely generated projective 

modules over a (unital) algebra A, then HH,(Y) is naturally isomorphic to the usual 

Hochschild homology groups for A. Similar statements hold for cyclic, negative and 

periodic homology groups. 

(2) Exact sequence. There is a natural commuting diagram with rows long exact 

sequences 

. ..-HN.(Q)- HP,(B)-+ HC&(b)+ 

1 I II 
. ..-HH*(b)+ HC,(Q)- HC,_,(&)+... 

(3) Additivity. If 0 + F” -+ F + F’ + 0 is a short exact sequence of functors, then 

HH,(F) = HH,(F”) + HH,(F’). Again, identical statements hold for cyclic, negative 

and periodic homology groups. 

(4) Products. If F: W x 2 + 8 is a bi-exact functor, then there is a natural product 

structure HH,(%) 0 HH,(9) + HH,,, (8) induced by F. There is a similar product 

for negative and periodic homology groups. By the isomorphism of (l), one can 

recover all the products for the usual cyclic homology groups as found in [lo] in this 

manner. 

(5) Trace maps. There exists a natural transformation from the algebraic K-theory 

of an exact category to its Hochschild homology which recovers the Dennis trace map 

for rings by the isomorphism of (1). There is also an extension of this transformation to 

the negative homology which recovers the Jones-Goodwillie Chern map. These 

natural transformations are suitably multiplicative with respect to (4). 

The construction 

The construction for these groups arises by “twisting together” the Hochschild 

complex with the S construction of a category with cofibrations from [28]. This 

method was suggested to us by the idea of Tom Goodwillie in [S] which Jean-Louis 

Loday had provided to help with our investigations. These ideas were further 

encouraged by Daniel Grayson who showed us the importance of proving “additiv- 

ity” ((3) above) for our model and by Christian Kassel who indicated how 

these techniques could be applied to bivariant cyclic cohomology (to appear 

elsewhere). 
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In order to “twist” these theories together, we define the additive cyclic nerve of 

a (small) linear category 97, denoted CN(%‘), to be the cyclic module defined by 

CN,(V = @H om&Cl, G) %Hom~(% C,) OZ... &Homq(G, C,), 

where the direct sum runs over all (C,, C,, . . , C,) E Obj (%‘yfl (the operators are like 

those for ordinary Hochschild homology). We discovered later that this complex is the 

same as one defined by Mitchell in [23]. If & is an exact category, (thought of as 

a category with cofibrations in the usual manner) then S.b is a simplicial additive 

category (see Section 3 for more details). Thus we can form the simplicial cyclic 

abelian group CN.S.b and we define the Hochschild homology of d by 

HH,(Q) = H,+,(Tot(CN.S.b)). 

The shift of one corresponds to the shift from looping the realization of S.b to obtain 

a model for algebraic K-theory. Applying the usual functors from cyclic modules to 

bi-complexes degree-wise to CN.S.& we obtain tri-complexes which we use to define 

the cyclic, negative and periodic homology groups for d. 

The proof that these groups do agree with the usual ones in the case of finitely 

generated projectives is deduced from the following two facts. The first is “Morita 

invariance” for Hochschild homology and the second is modeled after Proposition 

1.55 of [28] after one notes that for the category of projectives CN is suitably 

“additive.” 

We can consider any (unital) algebra A as a linear category having only one object 

* and morphisms the elements of A. 

Proposition 2.4.3. The natural inclusion from A into Y* which sends the object * to the 

object A induces a homotopy equivalence CN(A) --f CN(9,). 

Theorem 3.3.3. The sequence (where PS. denotes the simplicial path space of S.) 

CN.9’ + CN.PS.9 + CN.S.9 

is a quasi-jibration (induces a long exact sequence of homotopy groups) and the center 

term is contractible. 

One recovers the Dennis trace map in the following manner: There is a natural 

inclusion from S.& into CN,S.b given by taking the identity endomorphism of an 

object. In Section 4 it is shown that the composite 

S.9 2 CN,,S.S -+ CN.S.9’ 

recovers the Dennis trace map after looping and using the natural isomorphism 

arising from the two facts above. We note that this construction has the property of 

landing in the S ‘-fixed point set of CN.S.9 and hence it is easy to construct a lift to 

negative homology. This fact also makes it easy to show that the lifting is suitably 

multiplicative. 
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So far we have been rather vague about the S’-actions arising in all of this. We 

define a notion of “special homotopy” which is a sufficient condition for two maps to 

induce the same maps of Hochschild and its associated cyclic homology groups. 

Furthermore, a special homotopy has the property that it produces a discrete 

homotopy-a homotopy for the induced maps of fixed point sets for each finite 

subgroup of S1 (though not necessarily on the S ‘-fixed point sets). We will show 

throughout that all the necessary homotopies are discrete homotopies (or occa- 

sionally S’-homotopies). Though our definition lands in the S’-fixed point set of 

CN.S.9, the equivalence of this target with CN.A is only a discrete homotopy 

equivalence. Thus we recover (in a special case) the fact observed by Marcel Bokstedt 

that the Dennis trace lands in the homotopy inverse limit (given by divisibility) of the 

fixed point sets of the finite subgroups of S’. 

Organization 

The paper is organized as follows. Section 2 introduces the additive cyclic nerve and 

the notion of a “special homotopy.” We then derive several applications which we use 

later. Section 3 consists of the basic definition and the proof that this agrees with the 

usual case when considering the category of projectives. In Section 3.5 we prove 

additivity. The usual proofs of additivity for algebraic K-theory were not suitable for 

our setting and so we needed to devise another. Our proof, in a somewhat streamlined 

form, appears also in [22]. From additivity we derive the “delooping theorem” of [28] 

following the techniques found there. 

We construct products for these groups in the fourth section. This is taken almost 

directly from [lo] using the “cyclic Eilenberg-Zilber theorem.” Our construction 

simply twists the description of products in algebraic K-theory as found in [28] using 

the delooping theorem with the constructions of [ lo]. We then define the Dennis trace 

map and its lifting to negative homology and prove that these maps are suitably 

multiplicative. Lastly we show that these maps recover the usual ones defined for 

a ring. 

Notation and conventions 

It seems traditional here to give one’s own account of cyclic modules and cyclic 

homology. Since several very good ones already exist in the literature (see for example 

[7] or [lS]), we will resist temptation and simply state which conventions we will be 

using and noting those which may be less familiar. There are a few non-standard 

things to first point out. First is that we use the notation HN,(X) and HP,(X) to 

denote the negative and periodic homology groups of a cyclic module X. These are 

usually written HC; (X) and HCr’(X). We denote the cyclic category of Connes by 

AC and not A as in [3]. We will let k be a fixed commutative ring and unlabeled tensor 

products are formed over k. By a k-linear category we mean a category whose Horn 

sets have the structure of a (unital) k-module and composition is k-bi-linear. We will 
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need to use maps of cyclic modules which do not necessarily preserve degeneracies. We 

call such maps semi-cyclic maps and we refer the reader to the Appendix for facts about 

such maps which we use. Lastly, we will not differentiate in the notation between 

a simplicial (cyclic) k-module and the chain complex (mixed complex) naturally asso- 

ciated to it. Recall from [ 131 that a mixed complex is a chain complex with a differential 

operator of degree + 1 which anti-commutes with the boundary operator. 

Following the usual conventions, if X is a cyclic module, we let B(X), B-(X) and 

Eper(X) denote the bi-complexes for cyclic, negative and periodic homology groups 

using the operator B. If Y is a cyclic x multi-simplicial module, then we consider its 

realization as an S’-space by realizing the simplicial directions first and then giving 

the realization of the resulting cyclic space its usual circle action. Similarly, we define 

the Hochschild, cyclic, negative and periodic homology groups of Y as the homology 

of the multi-dimensional complexes obtained by applying the functors Identity, B, B - 

or Bper to the cyclic module direction. We will always mean the total complex 

obtained by taking products when we want the homology of a multi-dimensional 

complex. Because of this, the result of [l l] that a map of cyclic objects which produces 

an isomorphism of Hochschild homology groups does so on the related cyclic 

homology groups remains true for our convention about cyclic x multi-simplicial 

modules. 

We will often be dealing with simplicial homotopies. A simplicial homotopy h can 

be described in terms of maps which raise the simplicial degree by one and satisfies 

certain relations with the face (and degeneracy) operators (see the Appendix (Section 

A.2) for more details). We will be using this combinatorial description since it is very 

convenient when dealing with semi-simplicial maps (not necessarily preserving degen- 

eracies). We will give the definition of the homotopy but leave the straightforward 

details of checking the relations to the interested reader. In no case is this checking 

difficult but it can become technically tedious. 

2. The additive cyclic nerve 

Introduction 

In this section we define the additive cyclic nerve of a (small) k-linear category and 

give a few examples. We use the additive cyclic nerve to define a notion of split 

homology groups of a k-linear category. We call these “split” to differentiate them 

from the homology groups of an exact category we will define in Section 3. We note 

that the split Hochschild homology we define is the same as that of Mitchell [23], 

a fact which we discovered later. We were encouraged to consider the additive cyclic 

nerve by Chase as a means of improving our proof of Morita invariance of cyclic 

homology as found in [21]. 

In Section 2.3, we define the notion of “special homotopy”, which is a sufficient 

condition for two k-linear functors to induce the same map of the split Hochschild, 
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cyclic, negative and periodic homology groups. Chase was the first to suggest to us 

that such a criterion might exist and the notion we define is a natural generalization of 

an argument of Karoubi [12, Theorem 2.123. It has been pointed out to us by 

Biikstedt that our notion of special homotopy is related to work of his and we make 

some notes to this effect in the Appendix. We establish a criterion for two functors to 

be special homotopic and give several applications. These applications will be used 

later. 

Recall that k is always assumed to be a commutative ring. 

2.1. DeJinition of the additive cyclic nerve 

Definition 2.1.1. Let G!? be a small k-linear category. We define the additive cyclic nerve 

of %‘, denoted CN(%‘), to be the following cyclic k-module: 

CN,(V = @H omw(C,, Co) Ok HowdG, Cl) Ok ... Ok HomdG, CA 

where the direct sum runs over all (C,, Cl,. . . , C,) E Obj(%‘)“+‘. The maps are defined 

by 

di(fo @ ..’ @fn) = i 

(foOfiO~~~O~~~+~O~~~Of,) if Oliln-1, 

(fn OfO Ofi @ . @fn) if i = n, 

((h Oh 0 ... Of; 0 &,+ 1 Of,+ 1 0 ... 0.6,) 

&(fo 0 “’ Ofn) = 

i 

ifO<i<n-1, 

(fo 0.6 0 ... Ofn 0 i&J 

if i = n, 

t(fo 0 ... @_a = (fn of0 0 ... 0.L1). 

We note that the additive cyclic nerve is a covariant functor from the category of 

small k-linear categories to the category of cyclic k-modules. 

Definition 2.1.2. For %? a small k-linear category, we define the split Hocksckild 

homology groups of%? (with coefficients in k) as HH;(%‘) = H,(CN(%‘)). We similarly 

define the split cyclic, negative and periodic homology groups of %‘. We call these 

groups “split” to differentiate them from the homology groups of an exact k-linear 

category defined in Section 3.2. We will show in Corollary 3.3.4 that for a split exact 

category (every short exact sequence has a section) these two definitions agree. The 

functor HH”, (*) is sometimes called the Hochschild or Mitchell homology after [23]. 

2.2. Some examples of the additive cyclic nerve 

Example 2.2.1. If A is a unital k-algebra, then we can think of it as a k-linear category 

with one object whose morphisms are the elements of A. The cyclic nerve of A is the 

standard bar resolution of Cartan and Eilenberg (written ZA in [7]). That is, CN(A) is 
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the usual cyclic module one uses to construct the cyclic homology of A and so 

HH;(A) is just the usual Hochschild homology for A. 

Example 2.2.2. Following Quillen [24, Proposition 31, we let f be a small category 

which is filtering and j + %‘j a functor from f to the category of small k-linear 

categories. If %? is the inductive limit of the %‘j then g is a k-linear category. Since the 

filtered inductive limit also commutes with direct sums and tensors we have a natural 

isomorphism I& CN(Vj) E CN(V). 

Example 2.2.3. Let X be a small category and let kX denote the k-linear category with 

Obj(kX) = Obj(X) and Hom,,(x,x’) the free k-module on the set Homx(x,x’). The 

functor X + kX is a faithful functor from the category of small categories to the 

category of small k-linear categories. We see that CN(kX) is the free cyclic k-module 

arising from the cyclic nerve NcY(X) of the category X. By definition, NcY(X) is the 

cyclic set which in degree II is the set of “cyclic” diagrams in X of the form 

The structure maps for NcY(X) are like those for the additive cyclic nerve. 

Example 2.2.4. Given a small category X, we can put an equivalence relation on its 

objects by declaring that x - x’ iff both Hom,(x, x’) # 8 and Hom,(x’, x) # 8. Let [x] 

denote the full subcategory generated by the equivalence class of x and let [X] be the 

set of equivalence classes, then 

CN(kX) E @ CN(k[x]). 
[XlE[Xl 

Example 2.2.5. Given two small k-linear categories %? and 9, we let %? u 9 denote the 

new k-linear category with objects the union of the objects of $? and 9 and 

1 

Homw(x, y) if x,y E Obj(%?)), 

HomqU9(x, y) = Homg(x,y) if x,yEObj(g), 

0 otherwise. 

We see that CN(%? u 9) E CN(%‘) @ CN@) and thus HH”,(%? u 9) r HH”,(%) 

0 HH”,(9). Let 0 denote the trivial linear category with one object + and mor- 

phisms the zero module. Then %?+ = ‘% u 0 is a linear category with a zero object 

whose additive cyclic nerve is isomorphic to that of $7. 

Example 2.2.6. Let %? be a small k-linear category. We define an associative k-algebra 

Arr,%? as 

Arrk9? = @ Hom& b). 
a,bsObj(W) 
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ForfEArr,%‘, we let fb,a denote the component offin Homq(a, b). Given fand g of 

Arr,q we definef g by 

(f&P = 1 fc,bO%,a. 
bsObj(%) 

One can show that ZArr,%? generates the same homology groups as the additive cyclic 

nerve of %? (see for example [23]). We prefer the additive cyclic nerve for what follows 

because a k-linear functor %’ + V’ does not always give rise to a k-algebra homomor- 

phism Arrkw --) Arrk%?’ (a functor may convert noncomposable pairs of arrows to 

ones which are composable). Thus Arr, is at best a functor from the category of small 

k-linear categories and k-linear functors which are injective on the sets of objects to 

associative k-algebras and k-algebra homomorphisms. 

Example 2.2.7. Let V be a small k-linear category and let ‘+P denote its opposite 

category. We define yn : CN,(%?) -+ CN,(WoP) to be the k-module map given by 

One can show that b 0 y = y 0 b and B 0 y = (- 1)~ 0 B. The proof is the same as Lemma 

1.1 of [17] or II.6 of [Ml. 

Example 2.2.8. For M and N cyclic k-modules, we let M Ok N denote the cyclic 

k-module (M Ok N)n = M, ok N,, (and letting the morphisms act diagonally). For 

%? and 9 small k-linear categories, we define the k-linear category V? Ok 9 by 

Obj(g OkQ) = Obj(%?) x Obj(9), 

Horn% o,y((C, D), (C’, D’)) = Horn&C, C’) Ok Homg(D, D’). 

It is easy to see that CN(%? Ok 9) s CN(V) Ok CN(9). 

2.3. Special homotopies 

Let .a be the trivial connected groupoid on two objects. That is, 9 is a category with 

two objects 0 and 1, and two non-identity morphisms 0 + 1 and 1 + 0 (necessarily 

inverse to each other). For i = 0 or 1, we let Ei:CN(k) + CN(k9) be the cyclic 

k-module map Ei(k) = k.(idi, . . . . idi). In other words, si is the map induced by the 

k-linear functor which sends the trivial category * to i. 

Lemma 2.3.1. The maps .zO and E~ induce the same maps of split Hockschild, cyclic, 

negative and periodic homology groups. 

Proof. Let rc : Y + * denote the unique functor. Naturally identifying k* with k we 

have induced a k-linear functor from k9 to k which we also denote by rr. The cyclic 
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map CN(n) is a homotopy inverse to co and Ed since 710 Ei = id for i = 0,l and 

~071 E id by 
II-~ times 

hj(t’(CIO, ...> g”))=t.(itRan(gl),gl,..., gj,Dom(gj)+i,iai). 

Thus the Ei induce isomorphisms of special homology groups with inverse induced by 

71. It follows that the induced maps are the same. 0 

We call a mapf between two cyclic modules X and Y semi-cyclic if it is a map of 

graded modules that commutes with the face maps and the cyclic operators but not 

necessarily with the degeneracy operators, Various facts about such maps are col- 

lected in the Appendix. Such a mapfnaturally produces a map of the associated cyclic, 

negative and periodic homology groups but it does not necessarily produce an 

S’-equivariant map of realizations. It does, however, give rise to natural maps of the 

associated C,-fix point spaces for eachjinite subgroup C, of S’. 

Definition 2.3.2. Given two semi-cyclic module maps f,g : X -+ Y of cyclic k-modules 

X and Y, we say they are special homotopic if there exists a semi-cyclic module map 

h from X Ok CN(k9) to Y (called a special homotopy) such that the following diagram 

commutes: 

A semi-cyclic module map f: X + Y is a special homotopy equivalence if it has a special 

homotopy inverse, that is, a semi-cyclic module map g : Y + X such thatfo g and g of 

are both special homotopic to the identity. We note that the composition of two 

special homotopy equivalences is again a special homotopy equivalence. 

Proposition 2.3.3. If Jg : X + Y are semi-cyclic maps of cyclic k-modules which are 

special homotopic, then they induce the same maps of Hochschild, cyclic, negative and 

periodic homology groups. 

Proof. Returning to the notation of Lemma 2.3.1, we see that id Ok 71 is a deformation 

retract for id Ok E by the homotopy hj = sj Ok (hj) where Sj is the jth degeneracy 

of x. 0 

We would like to note that one needs X to be a cyclic k-module and not simply 

a semi-cyclic k-module for Proposition 2.3.3 to hold in general. Also, a special 

homotopy implies the two maps are homotopic but not all homotopic maps are 

special homotopic. 
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The statement of the following theorem is somewhat technical. It was devised to 

handle several arguments with a single tool. It is helpful to first consider the excep- 

tional case when each object of %7 is a retract of an object of the full subcategory 9. 

The map E(cr, p) we obtain in this case is a deformation retract of CN(%) to CN(9) as 

semi-cyclic objects. 

Theorem 2.3.4 (Special homotopy criterion). Let 97 be a small k-linear category and 

93 a sub-k-linear category of %?. Suppose that for each CE%? there exists an nCE N, and 

for each i = 1, . . ..nc there are 

&(i)Ea, ai(C)EHomw(C,Dc(i)), Bi(C)EHomq(Dc(i), C) 

such that Cz 1 pi(C)oai(C) = idc. 

We define the semi-cyclic k-module map E(cc, /I) : CN(%?) -+ CN(%?) by 

E(cc3P)(fO0 “’ Ofn)=C(ai,(C,)ofooPi~(C1)O .” @ai,(Cn)ofnoPi~(cO))~ 

where the sum is over all (iO, . . , i,) such that 1 I ij I ncj. The semi-cyclic map E(M,~) is 

special homotopic to the identity map of CN(%‘). In particular, $9 is also assumed to be 

a fill subcategory of % then the inclusion functor is a special homotopy equivalence with 

inverse E (a, /I). 

Proof. For feHomx(C, C’), gEMor( 1 2 i I n,, and 1 <j I nc we define 

Pi,j(f; g) E Mar(z) as 

f ifg=idOandi=j=l, 

ai ‘f if g = (O+ 1) andj = 1, 

fi Bjtc) if g = (1 + 0) and i = 1, 

mi(c’) ‘fi Pjtc) if g = id1, 

0 otherwise. 

We define the semi-cyclic k-module map h : CN(%‘) Ok CN(k9) + CN(%?) by 

h((fo 0 ... Ofn)O (go 0 “’ 0 gn)) = 1 (,uio,il(fo, go) O ... O pi,,io(_L, gn)), 

where the sum is over all (iO, . . . , i,) such that 1 I ij I n,-, . We see that h is a special 

homotopy of E(cx,p) with the identity and we are done. 0 

2.4. Applications of special homotopies 

Naturally isomorphic functions 

Proposition 2.41. If F,G : +T? + 9 are naturally isomorphic k-linear functors of small 

k-linear categories then CN(F) and CN(G) are special homotopic. Thus, two equivalent 

k-linear categories have the same split Hochschild, cyclic, negative and periodic homol- 

ogy groups. 
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Proof. Let g be a natural isomorphism from F to G. We define h from 

CN(V) @ CN(kS) to CN(9) by 

where we define p(J;g) by 

F(f) if g = ido, 

oRa” ’ F(f) ifg=O+l, 

F(f) o %!!cs, if g = 1 + 0, 

G(f) = cRan(f) o F(f) o G&s, ifg=idr. El 

If we have a k-linear category 93 which is naturally equivalent to a small k-linear 

category 97, we define CN(B) = CN(S7’); which is well defined up to special 

homotopy. We now assume that all our categories are naturally equivalent to a small 

category. 

Example. It follows from the above that conjugation by an invertible element of 

a k-algebra A induces the identity map on Hochschild, cyclic, negative and periodic 

homology groups. This is done in [4] and as Theorem 2.12 of [12]. 

Cojinality 

Let 9 be a full (k-linear) sub-category of the additive k-linear category J&‘. We say 

9 is coJna1 in ~5! if for any ME Obj(&) there exists a M’ E Obj(&) such that 

M @ M’EObj(9). 

Proposition 2.4.2. Let 9 be cofinal in &, then the inclusion jiinctor F : 9 + A? induces 

a special homotopy equivalence CN.F. 

Proof. For each ME Obj(&), choose M‘E Obj(A) such that M @ M’ E Obj(9) and 

if PEObj(Y) then P’ = 0. Define a(M):M + M 0 M’ by (id,,O) and 

b(M): M 0 M’ + M by the projection. Then /I(M)oa(M) = idM and so by the special 

homotopy criterion we are done. 0 

Replacing A by PA 

Proposition 2.4.3. Zf A is a unitary k-algebra and PA is the k-linear category offinitely 

generated projective right A-modules, then the natural inclusion from A to 9’a induces 

a special homotopy equivalence from CN(A) to CN(YA). 

Proof. Let i : CN(A) -+ CN(9,) be the cyclic k-module map induced by the inclusion 

functor. For each PE Obj(P,,), choose an +E N and maps aj(P) of Hom,(P, A) and 

fij(P)ofHom,(A,P)forj= l,..., np such that C aj(P) 0 Bj(P) = id, (these maps can be 
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obtained by expressing P as a direct summand of a finitely generated free module). For 

P = A, we choose n.,, = 1 and cc,(A) = id. The image of E(cc, /?) of the special 

homotopy criterion is equal to the image of i and hence induces a cyclic module map 

from CN(YA) to CN(A) such that E(r, p) 0 i = idCNcAJ and io E(a, p) = E(a, p) which is 

special homotopic to the identity. 0 

Corollary 2.4.4. There are natural isomorphisms HH,(A) E HHz(gA)for all n 2 0 and 
similarly for split cyclic, negative and periodic homology groups. 0 

Corollary 2.4.5. Hochschild, cyclic, negative and periodic homology groups are Moritu 
invariant. 17 

We would like to note that the case for matrices was done as 1.7 of [ 181 as well as by 

others. The general case was done in [21] and also independently by Kassel in [14] as 

Corollary 2.3 and as Proposition IV.6.2. of [lS]. 

Matrices 

Definition 2.4.6. For d a k-linear category and nE N, we define the matrix category 

M,,(d) by Obj(M,(&‘)) = Obj(&) and Hom,n(.d, ((A 1, ., A,)(B, ,..., B,)) is the set 

of all n x n “matrices” of the form (Xi,j) where ri,j E Hom,d(Aj, Bi) and composition is 

defined by 

(aoB)i,j = i Cli,k"Bk,j 
k=l 

(i.e. matrix multiplication). 

Proposition 2.4.7. Let ~2 be a k-linear category, 4 E Obj(&)), and n E N. Let I be the 
k-linear functor from d to M,(d) given by taking an object A of & to (A, c, . . , t) and 
a morphism f to Z(f) where (Z(f))i,j = f ifi =j = 1 and 0 otherwise. The induced map 

CN(Z) is a special homotopy equivalence. 

Proof. Given 2 =(A I, . . ..A.)EWi(M,W)) and lltln we define 

fiJA):(A,,t ,..., 0-2 andcc,(i):A--+(A,,4 ,..., <)by 

CBt(A)li.j = 

- I 

id:A,--+A, for i=t andj=l, 

0: At + Ai for i#t and j= 1, 

O:c+Ai otherwise, 

[z,(>)]~,~ = 0: Aj + A, 

I 

id:A,-+A, for i= 1 and j=t, 

for i = 1 and j # t, 

O:Aj~5 otherwise. 
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We see that c &(i ) 0 cc,(i) = id;i. For fe HomM,(.d, (1, g), we note that 

for i =,j = l, 
otherwtse. 

By the special homotopy criterion there is a special homotopy equivalence E(cr,fi) 

which implies the result since E(a,/I)oCN(Z) is the identity on CN(&)). 0 

Note. Proposition 2.4.7 is just a straightforward generalization of the Dennis trace 

map for Hochschild homology. See for example [S]. 

Terminology. In order to formulate the next several applications, it is convenient to 

introduce the following terminology. A k-linear semi-fun&or F between two k-linear 

categories is a k-linear “functor” which does not necessarily take identity morphisms 

to identity morphisms. By abuse of notation, we let CN(F) denote the map of 

semi-cyclic modules naturally induced by F. 

Twisted products 

Given a k-linear functor F from & to a, we define the “twisted” product category 

LzZ~B as follows. We set Obj(dFg) to be Obj(&!) x Obj(g) and 

Horn&,.&(& B),(A’, B’))= Horn&t, A’) @ Horn&B, B’) 0 Horn&F(A), B’) 

with composition defined by (J; g, h) 0 (f’, g’, h’) = (fif’, g 0 g’, h 0 F (f’) + g 0 h). 

Proposition 2.4.8. Assume d contains at least one object. Then the natural cyclic 
k-module map fvom CN(dF9J) to CN(d) @ CN(9I) E CN(SZ u g) (see Example 
2.2.5) is a special homotopy equivalence. 

Proof. We let p denote the cyclic k-module map from CN(&‘&?‘) to CN(&‘) @ CN(@) 

defined by 

((fo,h,,h,) 0 ... 0 (f,,g,,,M) --) (fo 0 ... 0.L) 0 (go 0 ... 0 s,,). 

Choose some a E Obj (&‘) and define the k-linear semi-functor F, from d u 39 to &F&9 

by sending an object A of d to (A, F(a)) and a morphismfof d to (L 0,O). Similarly 

define F, on objects and morphisms of 8 using a instead of F(a). We note that 

p 0 CN(F,) = id. Given (A, B) E Obj(d,,%Y), we define 

a1 (A, B) = (idA, O,O) E Hom_d,ti((A, B), (A, F(a))), 

PI@, B) = (idA, O,O)E Hom~dFs((A,F(a)), (A, B)), 

c&4, B) = (0, ids, 0) E Hom.d,a((A, B), (a, B)), 

P2(A, B) = (0, ids, 0) E Hom,dJ(a, B), (A, B)). 
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Since C /?,(A, B) 0 @,(A, B) 0 ai(A, B) = id,,,,, the special homotopy criterion produces 

a special homotopy equivalence E(a, /3). For any (f, g, h) E Hom&&(A, B), (A’, B’)) 

ccl(A,B)o(J;g,h)oBl(A’,B’) = (1;F(a)~F(a),F(A)~F(a)), 

%(A, B) o (f; 9, h) o Bl (A’, B’) = 0. 

Now we note that in the formula for E(a, /?), if a summand contains an element of 

the form rxl (A, B) 0 (J; g, h) 0 P2(A’, I?‘) then it must also contain an element of the form 

r2(A,B)O(f;g,h)OP1(A’,B’) and hence be zero. Thus, E(a,fi) = CN(F,)op and by the 

special homotopy criterion we are done. 0 

Finite products 

Proposition 2.49. If d and 98 each contain at least one object, then the natural map of 

cyclic modules p from CN(& x ~33) to CN(&) @ CN(G?) is a special homotopy equivu- 

lence. This is similar to I.4 of [lS]. 

Proof. We let T denote the k-linear functor from &’ to 3?+ (see Example 2.2.5) defined 

by sending every object of d to “+ “. Since &‘r(&?+) is naturally isomorphic to 

& x (B+) we see by Proposition 2.4.8 that we have a special homotopy equivalence 

CN(d x (a+)) z CN(JX!~(.B+)) 5 CN(&’ u 93). Since & x $I is naturally a full sub- 

category of ~2 x (59 + ) and every object of the latter category is a retract of an object of 

the former, we see by cofinality (Proposition 2.4.2) that the natural inclusion induces 

a special homotopy equivalence CN(& x @) 7 CN(& x (93 + )). Since the composition 

of special homotopy equivalences is again a special homotopy equivalence we are 

done. 

Upper triangular matrices 

Definition. We let T,(&) denote the k-linear sub-category of M,,(d) (see Definition 

2.4.6) which has the same objects but whose morphisms are the upper triangular 

matrices. That is, Mor(T,(&‘)) c Mor(M,(&)) is the subset of “matrices” cx with the 

property that Ui,j = 0 for j < i. 

Proposition 2.4.10. If JZ! has at least one object, then the natural cyclic module map 

p from CN(T,(&)) to CN(&) On is a special homotopy equivalence. 

Proof. First assume .G4 has a zero object “+“. Let G denote the k-linear functor from 

&’ to T, _ 1(d) defined by sending an object A to (A, +, . . . , +). The categories T,(d) 

and JZZ~ T,, 1 (a?) are naturally isomorphic and thus by Proposition 2.4.8 the natural 
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cyclic module map CN(T,,(d)) + CN(& u T,_ l(&)) is a special homotopy equiva- 

lence. Thus, if & has a zero object the result follows by induction. 

If d does not have a zero object, then we note that T,(d) can be naturally 

identified with a full sub-category of T,(&+) and every object of the latter is a retract 

of an object of the former. Thus, by cofinality (Proposition 2.4.2) the natural inclusion 

produces a composite of special homotopy equivalences 

CN(T,(d))~CN(T,(d+))~CN(&+)@’ z CN(d)@“. 0 

Alternate proof. One can show that there are natural isomorphisms of k-algebras 

Arrk(M,,(&)) z M,,(Arrk(&‘)) and Arr,(T,(d)) z T,(ArrJ&)) (see Example 2.2.6) and 

since these are k-algebras with local units, they are H-unital in the sense of Wodzicki 

and the Propositions 2.4.7 and 2.4.10 can then be obtained (essentially) from Corolla- 

ries 9.8 and 11.3 of [31]. 

Corollary 2.4.11. Let 4 be the k-linearfunctorfrom T,,(d) to ~4” defined by the identity 

on objects and sending an upper triangular matrix to its diagonal. Let +!I be the k-linear 

jiunctor from M’ to T,(d) de$ned by the identity on objects and sending a morphism to 

the corresponding diagonal matrix. Thus, the composite I,!J 0 4 is the endo-functor of 

T,(d) which is the identity on objects and sends a matrix to its diagonal. Since 

po CN($o 4) = p we conclude that CN($ 0 4) 1s a special homotopy equivalence. Since 

$J 0 $ = id,& we can conclude further that both CN($) and CN(d) are special homotopy 

equivalences. 

Note. The composite HH”,(d) z HHY+(T,(&)) + HH”,(M,,(cQZ)) z HH”,(d) ob- 

tained by Proposition 2.4.10 and the natural inclusion T;(d) + M,“(d) is simply 

addition. The same is true if we apply this composition to split cyclic, negative or 

periodic homologies. 

3. Definition and first properties 

Introduction 

In this section we give our definition for the Hochschild (cyclic, negative, periodic) 

homology of an exact category. This is done by combining the S construction of 

Waldhausen [28] with the additive cyclic nerve of Section 2. We first review the 

S construction for a category with cofibrations. After defining our homology groups, 

we list a few immediate consequences as a series of lemmas. An important theorem of 

this section is that the homology groups of a split (i.e. semi-simple) exact category 

agrees with its split homology groups as defined in Section 2 (this is false in general, 

see Example 3.3.5). Thus, we can recover the Hochschild (cyclic, negative, periodic) 
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homology groups of a unital k-algebra A by considering the homology groups of the 

exact category of finitely generated projective modules of A. 

The additivity theorem for algebraic K-theory states that if F u + F + F’ is a short 

exact sequence of exact functors, then K(F) is naturally homotopic to K(F ‘) @ K (F “). 

This was proved for exact categories by Quillen in [24, Section 31 and for categories 

with cofibrations by Waldhausen in [28, Section 1.41. Our second main goal in this 

section is to prove the analog of the additivity theorem for our Hochschild (cyclic, 

negative and periodic) homology groups (of a k-linear category with cofibrations). The 

“classical” proofs of [24] and [28] were not “additive” enough for our purposes and 

so we needed to design another (see [22]). The proof here uses a slight variant of 

Quillen’s “theorem A” (which we provide in Section 3.4) and a two-stage homotopy 

construction whose first part was suggested to us by Grayson. We then follow the 

treatment of [28, Section 1.51 to deduce several useful corollaries from the additivity 

theorem. The proofs found in Section 3.6 are essentially transliterations of the 

corresponding statements found in [28]. 

3.1. The S construction 

We recall some definitions and facts about Waldhausen’s S construction as found in 

[28]. A category with cofibrations %? is a category with a distinguished zero object 

together with a subcategory ~0% satisfying the axioms (Cof l))(Cof3) below. The 

feathered arrows “H” will be used to denote the morphisms in M%’ and will be called 

the cojibrations in %‘. 

(Cof 1) The isomorphisms in %7 are cofibrations 

(Cof 2) For every A E Obj (%‘), the arrow 0 -+ A is a cofibration 

(Cof3) Cofibrations admit cobase change. This means the following two things. If 

A HB is a cofibration, and A + C any arrow, then firstly the pushout C LIA B 

exists in %‘, and secondly the canonical arrow C + CLI, B is a cofibration again. 

If A ++B is a cofibration, then B/A will denote any representative of OLIA B and the 

arrows like “+>” are reserved to denote the quotient map BG+>B/A. A cofibration 

sequence is a sequence A ++ B + B/A where B + B/A is the quotient map associated to 

A-B. A functor between categories with cofibrations is called exact if it preserves all 

the relevant structure: it takes 0 to 0, cofibrations to cofibrations, and it preserves the 

pushout diagrams which arise from axiom Cof3. 

The examples of categories with cofibrations which we are primarily concerned 

with here are those of an exact category in the sense of Quillen [24]. Any exact 

category can be considered as a category with cofibrations by choosing a zero object, 

and declaring the admissible monomorphisms to be cofibrations. 

We will call a category 9? a k-linear category with cojibrations if it is a k-linear 

category and a category with cofibrations. It follows from Cof 3 that such a category 

has direct sums, and thus it is an additive category. Therefore, one can naturally 
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associate an exact category to it by declaring the cofibration sequences to be the short 

exact sequences. We do not insist that C&Z be a k-linear subcategory. 

Given a cofibered category %‘, we form a simplicial category with cofibrations S.99 as 

follows. Let [n] denote the ordered set (0 < 1 < ... < n) (which we think of as 

a category), let &,[n] denote the category of arrows in [n], and let (j/i) denote the 

arrow from i toj in [n], for i 5 j. We consider the functors A : da [n] + ‘8 which send 

(i/j) + Ai,j having the property that for every j, Aj,j = 0, and for every triple i I j I k, 

the map Ai,j -+ Ai,k is a cofibration, and the diagram 

Aij-Aik 

I’ I 
0 = Aj,j+ Aj,k 

is a ptishout; in other words, Ai, j H Ai, k -+> A, k is a cofibration sequence. We write S,%? 

for the category of these functors and all their natural transformations. To give an 

object AES,%? is really the same as giving a sequence of cofibrations 

o = Ao,o~AO,l~Ao,*~...HAo., 

together with a choice of subquotients Ai,j = A,,j/Ao,i. The simplicial category S.% 

defined by [n] + S,%? is naturally a simplicial category with cofibrations (see [28, 

1.31). 

3.2. Homology groups of a category with cojibrations 

For this section, % and 9 denote k-linear categories with cofibrations. 

If JXZ is a small k-linear category and 2 is a small category, then any sub-category of 

the category of functors from 2 to JZZ (where the morphisms are natural transforma- 

tions) is naturally a k-linear category by defining (xo)c E ~(a,-) for a natural trans- 

formation cr, x E k and C E Obj (%). Thus, if %? is a k-linear category with cofibrations, 

then S.%? is a simplicial k-linear category. 

Definition 3.2.1. We dejine the nth Hochschild (cyclic, negative, periodic) homology of 

%? (with coefficients in k) to be the (n + 1)st “Hochschild” (cyclic, negative, periodic) 

homology of the simplicial x cyclic k-module CN.S.9. The shift of one dimension 

corresponds to the looping in algebraic K-theory. 

Lemma 3.2.2. There exists a natural diagram (with exact rows) 

. ..-HN.(%‘)- HP,(~)- HC,_2(%7)- ... 

I 1 II 
. . . - HH,(%?) - HC,(g)- HC,_2(%‘)-... 0 
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Lemma 3.2.3. For an exact k-linear functor F from % to 9, the following are equivalent: 

(a) HH,(F) is an isomorphism for all n E 27, 

(b) HC,(F) is an isomorphismfor all n EZ, 

(c) HN,(F) is an isomorphismfor all nE 77; 

and if these conditions hold, then HP,(F) IS an isomorphism for all n E Z as well. 0 

Let $J be a small category which is filtering and j + Vj a functor from f to small 

k-linear categories with cofibrations and exact k-linear functors. If %’ is the inductive 

limit of the ~j, then %? is made into a category with cofibrations by letting ~0% be 

l&coej. We see that S.%? = &S.%‘j and so the following lemma follows from 

Example 2.2.2. 

Lemma 3.2.4. There exists a natural isomorphism l& CN.S.Vj 2 CN.S.(l& Wj). 0 

Terminology. Rather than invent artificial notions for maps of cyclic x simplicial 

sets, we resort to topology. Recall (say from [lo]) that the topological group S’ acts 

on the geometric realization IX / -+ 1 YI. We shall say that an S ‘-equivariant map f is 

a discrete homotopy equivalence if the induced map of fix point sub-spaces for every 

finite subgroup C, of S’ is a homotopy equivalence. Any special homotopy equiva- 

lence (Definition 2.3.2) is a discrete homotopy equivalence; see Lemma A.5.2. Since 

a discrete homotopy equivalence is a homotopy equivalence (take C, = l), it induces 

isomorphisms on homotopy groups. Thus a discrete homotopy equivalence 

CN.S.V + CN.S.9 will induce isomorphisms HH, (%?) 1 HH, (9) and therefore 

isomorphisms on the associated cyclic, negative and periodic homology groups as 

well. 

Lemma 3.2.5. There is a natural discrete homotopy equivalence CN.S.(%? x 9) + 

CN.S.59 x CN.S.9. 

Proof. We first note that S.(% x 9) z S.V x S.9 and that by Proposition 2.4.9 the 

natural cyclic map is degree-wise a special homotopy equivalence. The result now 

follows from the realization lemma (Lemma A.6.4). 0 

Lemma 3.2.6. Naturally isomorphic exact k-linear functors induce the same maps of 

Hochschild, cyclic, negative and periodic homology groups. Thus, two equivalent k-linear 

categories with cojibrations have the same Hochschild, cyclic, negative and periodic 

homology groups. 

Proof. Let F and G be exact k-linear functors from %? to 9 and 0: F + G a natural 

isomorphism. For each n E N, the functors F,,G, : S,,%? -+ S,Q have an induced natural 

isomorphism cr,,. The proof of Proposition 2.4.1 produces special homotopies h(n) 

from CN.S,F to CN.S,G for each y1 E N which commute with the face and degeneracy 

operators of the S construction. The result now follows from Lemma A.6.2. 0 
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Lemma 3.2.1 (Cofinality). Let 9 be a k-linear exact sub-category of %? such that S,9 is 
cojinal in S,,W for each n E N, then the natural inclusion CN.S.9 -+ CN.S.Q? is a discrete 
homotopy equivalence. In particular, this holds if either 

(a) 9 is strictly cojinal in %? (that is, 9 is full and for every DE Obj(g) there exists 
CE%? such that D @ CEObj(V)), or 

(b) 9 is a cojinal exact sub-category closed under exact sequences and extensions. 

Proof. The general statement follows from Proposition 2.4.3 and Lemma A.6.4. Part 

(a) is assertion 1 from Proposition 1.5.9 of [28] and part (b) follows from the argument 

found in Theorem 6.1 of [9]. 0 

3.3. Split exact categories 

Definition 3.3.1. We will call an exact category split exact or semi-simple if all the short 

exact sequences split. 

Theorem 3.3.2. Let A be a split exact k-linear category. Let @:&A%’ -+ A” be the 
exact k-linear functor 

(0 = MO-Ml-... -+M,)--+ * (Ml>MzIM I>...,M,,IM,-I). 

The induced map CN.(@) : CN.S,A + CN.A” is a special homotopy equivalence. 

Proof. Define the exact functor Y : ~2’” + &A by 

(M,,Mz, . . ..MJ- ’ W l+M,~M,+~~~+M,@M, @a..@M,,) 

with the obvious auxiliary data. Thus @ 0 Y = id and we want to show that Y 0 @ is 

special homotopic to the identity. 

Reduction step. Let S~J&’ be the full subcategory generated by the image of Y. Then 

SAM is naturally equivalent to S,J&’ since for every element of S,& we have an 

isomorphism 

0 = Mo-MZ-M2+---+...-M,, 

1 z I = 1 z -1 z 
0 = M(j -MI-M, 0 M,/M,- ...-M1 @ ... @ M,,/M,-, 

Using Proposition 2.4.1, CN.S,_k! “special” deformation retracts to CN.SL& and so it 

suffices to show Y 0 @ is a special homotopy equivalence on Si&‘. 

We now note that S;J$’ is naturally isomorphic to T,(A) (Proposition 2.4.10) by 

sending 

(M,+M,OM,-+ . ..-M.@M,@...@M,,) to (M1,MZ,...,MJ 
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(this is well defined since we are now using the category S:J%‘). By this isomorphism, 

Y 0 @ is identified to $0 4 of Corollary 2.4.11 (i.e. the map which replaces the off- 

diagonal matrix elements with 0) and hence is special homotopic to the 

identity. 0 

Given a pointed simplicial set X, we let PX denote the simplicial path space of X. 

Therefore, PX, = X, + 1, the ith face map of PX is di+ 1 of X and the ith degeneracy 

map Of PX is Si+l of X. We note that PX is contractible to the trivial simplicial set 

[n] + X0: the contraction is constructed from the unused degeneracy sO. There is 

a simplicial map from PX to X which applies the unused face map do. There is also 

a map of the trivial simplicial set [n] + X1 to PX since PXO = X1. Thus, given 

a cofibered category %?, we obtain a sequence of simplicial maps Q? + PS.%? -+ S.V. 

Now assume that +Z is also a k-linear category, then PS.g is a simplicial k-linear 

category and since d,, is a k-linear functor, we obtain a sequence CN.% + 

CN.PS.%’ + CN.S.%? of bi-simplicial x cyclic k-modules. Since the contraction of 

PS.%’ is constructed by using so, which is a k-linear functor, we see that CN,PS.%’ is 

contractible for all m and hence HH,(CN.PS.%?) = 0 for all n E fV (similarly for cyclic, 

negative and periodic homology groups). 

Terminology. We will call a sequence of pointed (base point is fixed by the S’- 

action) S1 maps X 4 Y 3 2 a discrete quasi-fibration if g of= * and the natural 

map from the homotopy fiber to X (which is naturally an S’-map since the 

base-point is fixed by the action) is a discrete homotopy equivalence. We note that 

a sequence of simplicial x cyclic k-modules which is a discrete quasi-fibration 

naturally produces long exact sequences of Hochschild, cyclic, negative and periodic 

homology groups. 

Theorem 3.3.3. If A?' is a split exact k-linear category, then the sequence 

CN.A! 5 CN.PS.A! G - CN.S.& 

is a discrete quasi-jibration. 

Proof. (This proof is modeled after Proposition 1.5.5 of [28].) 

We will show that the sequence CN._,& 5 CN.PS,A % CN.S,Jl is a discrete 

quasi-function for all m, and this will imply the result by the fibration Lemma A.6.5. 

We record the maps F and G explicitly as 

F(M) = (OHM = M = ... = M), 

G(0 = Mo++M1++ . ..++M.,,) = (0 = M1/M1+-+MZ/M1++...-+ M,,,/M1) 

and note that G 0 F = 0. Using the map @ defined in Theorem 3.3.2 composed with the 

natural map CN.(&“) + (CN.Jz’)” of Proposition 2.4.9, we obtain the following 
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CN..,t%’ + (CN.c/tl))” + ’ \ (CN.dt’)“’ 

where F’ imbeds into the first coordinate (putting 0 in the other positions) and G’ 

forgets the first coordinate. The bottom row is an S ‘-fibration sequence, and since 

JY is split, Theorem 3.3.2 (and Proposition 2.4.9) tells us the two vertical maps @ are 

special homotopy equivalences and therefore the top row is a discrete quasi-fibra- 

tion. 0 

Corollary 3.3.4. If J2’ is a split exact k-linear category, then there exists natural 

isomorphisms HH”,(&) z HH,(&) ( similarly for cyclic, negative and periodic homol- 

ogy groups). In particular, for A a unital k-algebra, Corollary 2.4.5 implies there are 

natural isomorphisms HH,(A) z HH,(.Y,) (and similarly for cyclic, negative and peri- 

odic homology groups). 0 

Example 3.3.5. This example is to demonstrate that Corollary 3.3.4 is not necessarily 

true if one drops the hypothesis that _,@I’ is a split category. Let 1;4& be the Z-linear 

category of finitely generated Z-modules (i.e. the category of finitely generated abelian 

groups). Let 9 be the sub-category of free modules. For PE N prime, let & be the 

sub-Z-linear-category of &Jr generated by the groups killed by p. We have a Z-linear 

(but not exact) functor FP from s&r to Fp given by F,(A) = ker(A 1: A). Since the 

inclusion of & is a section to Fr, we see that HH”,(&‘&,) 2 HHi(F& 0 (something). 

The category & is isomorphic to the category of finitely generated Z/pZ-modules. 

By Corollary 2.4.5 we see that HH”,(F& E HH,(Z/pZ) which is Z/p77 in degree 0 and 

0 otherwise. We also see that HH”,(8) ? HH,(Z) which is Z in degree 0 and 

0 otherwise. 

Claim. There exists a natural isomorphism H&(9) z HZ&,(&&,) induced by the 

inclusion. 

Assuming the claim, Theorem 3.3.3 tells us that 

Z = HH;(F) g HH,(g) E HH,(&&,) rmH$(&dr) z Z,@ (something) 

and therefore Corollary 3.3.4 does not hold for the exact Z-linear category d&r. 

Proof of claim. Choose [A 5 A] E HH,(d&r). Let F’H F-+A be a resolution of 

A by free modules. We obtain an induced commutative diagram: 

F’++ F +k A 

I? 18 Ix 
F’H F -+> A 
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By standard K-theory arguments, we see that [A 4 A] = [F 4 F] - [F -1; F’] and 

that this is independent of the choice of resolution and extensions of c(. Thus we have 

a well-defined inverse map and the result follows. 

3.4. Theorem A 

In this section, we essentially redo “theorem A” of [24] but keeping track of certain 

additive conditions we will want in applying it to the additive cyclic nerve. Our 

treatment here follows the methods of [6] and we liberally adopt their notation. 

Notation. If X is a simplicial set, we let XR and XL denote the bisimplicial sets 

XR( [ml, [n]) = X([n]) and XL( [ml, [n]) = X( [ml) (with trivial simplicial maps in 

the first and second variables respectively). If X is a simplicial k-linear category, then 

the natural maps of bi-simplicial x cyclic k-modules CN.X + CN.XL (CN.XR) are 

S’-homotopy equivalences. 

Definition 3.4.1. We will call two (semi-) simplicial k-linear category maps 

F,G: X + Y k-linearly homotopic if they are (semi-) simplicially homotopic by 

a homotopy H = {Hi} such that the maps Hi: X, + Y,,+, (see Section A.2) are all 

functors of k-linear categories. If F and G are k-linearly homotopic, then CN.F and 

CN.G are S 1 homotopic by Lemma A.6.1. 

Let %? and 9 be k-linear categories with cofibrations, F : W + 9 an exact (k-linear) 

functor, and let S.F: S.% + S.9 denote the simplicial functor induced by F. For 

m,nE N, we let the diagram 

(*) 

denote the following information (suppressing the chosen quotients), 

(0 = &HDIH... ~D,HE~H...HE,)ES,+~+~~, 

(0 = CO~C1H~~~HC,)ES,%7, 

plus the identity in S,9, 

10 = F(C,) ++ F(C,) -...H F(C,)\ 

! II II II 
o= Do H D1 H...H D, i 

Definition 3.4.2. Following [6], we let S.F 19 denote the following 

linear category: 

(S.FIL3J)([m], [n]) = {diagrams of the type (*) above) 

bisimplicial k- 
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(where a morphism is a commuting diagram and a cofibration is a morphism 

consisting of cofibrations). 

Lemma 3.4.3. The natural projection of bisimplicial k-linear categories 71: S.F 129 + 

(S.W) L produces an S l-equivalence CN.71. 

Proof. The map x( [ml, -) is split by the simplicial k-linear category map 1 defined by 

setting ~(0 = Co H ... H C,) to be 

( 

0 = COH...HCm 

0 = (C,)H ..,++F(C,) = F(C,) = ... = F(C,) 1 

and z 0 TC( [ml,-) is k-linearly homotopic to the identity by defining hi of diagram (*) to 

be (suppressing some notation) 

. . HGl 
. ..+.D, = D,,, = . . . = D,+-+&H... 

c I 

The result now follows from Lemma A.6.1. q 

We let p denote the natural projection of bisimplicial k-linear categories 

p:S.F19 + (S.9)R defined by taking diagram (*) to (0 = E,/E,++E,/E,H...H 

EJE, ). 

Lemma 3.44. The map fi produces an S1-homotopy equivalence CN.p. 

Proof. The map p(-, [n]) is split by the simplicial k-linear functor v defined by 

v = (0 = F,,H...HF,) = 
o=rj=...=o 

0 = () = . . . = 0 = FO~...++F, 

and v 0 5(-, [n]) is k-linearly homotopic to the identity by defining hi of diagram (*) to 

be 

( 

. HD~w&, = . = E, 

. ..HD.HE, = . . . = E, = Eo++E1 . . . 

m+y;-i 
1 

The result now follows from Lemma A.6.1. 0 

The following is essentially Theorem A’ of [6] which is one possible reformulation 

of Theorem A of [24] in the setting of simplicial sets. 

Proposition 3.45 The following are equivalent: 

(a) The simplicial map SF : S.%? + S.9 induces an St-homotopy equivalence CN.S.F. 

(b) The bisimplicial map p:(S.F 19) + (S.GBR) d m uces an S ‘-homotopy equivalence 

CN.p. 
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Proof. There is a commutative diagram of bisimplicial k-linear categories: 

S.9R - S.FI9 -ff-+ S.%L 

I 
F 

I 
F 

S9R z S.idg j 9 z S.9L 

By Lemmas 3.4.3 and 3.4.4, the arrows marked 2: are S’-homotopy equivalences 

when we apply CN.(-) and we are done. 0 

For each nE fVi, we define 

sending diagram (*) to 

the simplicial map E,, from S.F I9(-, [n]) to itself by 

i 
t)=t)=...=() 

\o = fj = . . . = 0 = E,/E,HE,/E,H...HE,/E, J 

Corollary 3.4.6. If the simplicial maps E, are k-linearly homotopic to the identity for all 

n E N then CN.S.F. is an S ‘-homotopy equivalence. 

Proof. For nE N, the simplicial map p(-, [n]) from S.F IQ(-, [n]) to S.sR(-, [n]) as 

split by a simplicial map Z, defined by 

IJO = F,++,..-F,,) = 
o=()=...=o 
o = o = 

. . . = 0 = F,H...HF, 

Since I,, 0 p(-, [n]) = E,, if E, is k-linearly homotopic to the identity for all 

is an S’-homotopy equivalence by Lemma A.6.1 and we are done by 

3.4.5. 0 

3.5. The additivity theorem 

n then CN.p 

Proposition 

For %? a k-linear category with cofibrations, we let E(g) denote the category with 

objects the cofibration sequences A H C+,B in V. This is naturally a k-linear category 

with cofibrations which is equivalent to S2%? (see Proposition 1.3.2 of [28]). 

Theorem 3.5.1 (Additivity theorem). ([24, Section 31 and [28, Section 1.43) The exact 

(k-linear) finctor F: E(e) + %’ x 9 dejined by sending (A++ C+,B) to (A, B) induces 

a homotopy equivalence S.F:S.E(%?) + S.(q) x S.(V) such that CN.S.F is un S’- 

homotopy equivalence. Thus, by Lemma 3.2.5, the natural map CN.S.E(Gf) -+ (CN.S.%‘)’ 

is a discrete homotopy equivalence. 

Proof. We will show that in this situation the map E, above is k-linearly homotopic to 

the identity for all n E N. The result will then follow from Corollary 3.4.6. Define the 



The cyclic homology of an exact category 215 

simplicial map r from S.F I %T*(-, [n] ) to itself by taking an arbitrary simplex 

eES.F1’3*([m], [n]) like 

and setting T(e) to be (suppressing notation) 

Let X be the subspace of S.FI C*(, [n]) determined by elements e such that all the Ais 

are 0. Thus, r is a retraction of S.F I%?*((-, [n]) to X. The result will follow from: 

(1) r is k-linearly homotopic to the identity, 

(2) E,I, is k-linearly homotopic to the identity of X. 

The homotopy for (1) is defined by taking eE S.F I’+?*( [m], [n]), setting 

Xj = CjLI,,S,, and letting hi(e) be (suppressing notation) 

. . . H Ai H So = So 

I I I 

. . H Bi = Bi = Bi+l 

. . . H Ai H So = So 

. . . ~Bi = Bi H Bi+l 

= . . . = so 
I 

H .‘. H B, 

= . . = so 
H . . . H B, 

For i = 0, 1, . .,m the crucial row of the diagram (the Ai row) is given by 

ho: 0 = AO++SO = So = . . . 

h,: 0 = A,~A,+-+S, = . . 
. . . . 

h,: 0 = AoHA,H...HA,HSo 
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The homotopy for (2) is given by h’ defined by taking e E SF I%?‘( [ml, [n]), and letting 

h:(e) be 

r ()= 0 = 0 =...= 0 = 0 = 0 = . . . = 0 

I I III ‘I 
0 = & H Bl H ... H Bi H To = T, = ‘.. = T, 

II II IllIll I/ 
0 = &, H B1 - . . - Bi H To = To = ... = To 
O=O=O =... =O=O=O=...=O 

0= B,, H B1 H . . . wBi++To = To = ... = To 

Definition 3.5.2. Following [28], we define a cofibration sequence of exact k-linear 
functors from %“ to %? to be a sequence of natural transformations F’ -+ F + F” 
between exact k-linear functors having the following two properties: 

(a) For every A E%“, the sequence F’(A) -+ F(A) -+ F”(A) is a cofibration sequence. 

(b) For every cofibration A’++ A in %“, the square of cofibrations 

F’(A’) H F’(A) 

1 ‘I 
F(A’) H F(A) 

is admissible in the sense that the unique pushout map F(A’)LI,,,,,, 
F’(A) + F(A) is also a cofibration (in G?). 

Terminology. We say that two S’-equivariant maps are discretely homotopic if the 

induced maps of fixed subspaces for every finite sub-group of S’ are homotopic. 

Corollary 3.53. If F’ + F + F” is a cojibration sequence of exact k-linear functors from 
5~7~ to %Y, then CN.S.F and CN.S.F’@CN.S.F” = CN.S.(F’@ F“) are discretely 
homotopic. In particular, HH,(F) = HH,(F’) + HH,(F”) and similarly for cyclic, 
negative and periodic homology groups. 

Proof. This follows from a direct transliteration of Proposition 1.3.2 of [28] using 

Theorem 3.51. In fact, all four conditions found there hold but we do not need all of 

them. 0 

Example 3.5.4. This is an example to show that the additivity theorem does not hold 

in general for the split homology groups defined in Section 2. Returning to the 

notation of Example 3.3.5, let s,t,q be the exact Z-linear functors from E(d&) to &c4dr 

defined by (A-C-B) + A,B,C respectively. By Corollary 3.5.3 we see that 

HH,(t) = HH,(s 0 q) = HH,(s) 0 HH,(q). 
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We show that H;(t) and Hi(s @ 4) from Hf,(E(xZ&,)) to Hg(dd,) are not equal. As 

in Example 3.3.5, we let F, denote the Z-linear (but not exact) functor from &c4er to YP 

(the p-torsion groups of &&). We see that 

Fp” t(@ PO Z-G/pZ)) = 0, 

&) Fp”(s 0 q)(@ - Z-G7/pZ)) = z/pi?. 

Since Z/pZ is the generator of HH”,(Y& g Z/p77 it is not a boundary and we see that 

HH”,(F,)oHH’,(t) # HH:(F,)oHH”,(s 0 q). 

3.6. The de-looping theorem 

Definition 3.6.1. Let F : V + 9 be an exact k-linear functor of k-linear categories with 

cofibrations. Following [28], we define the simplicial k-linear category with cofibra- 

tions S.(F : ?Z -+ 9) as the pull-back of the following diagram: 

PS.9 

For each n E N, an arbitrary element e E S,(F : Vi? + 9) can be represented by 

0 = COHCl++...++Cn 

0 = D,,H D,~D,~~~~~D,+, 

where 

0 = F(C,) - F(C,) H ... - F(C,) 

z z z 

0 = D1/D1 - D2/D1 H ... - D,,+l/Dl 

Proposition 3.6.2. Thinking of 9 as a trivial simplicial object we obtain a simplicial 
exact k-linear inclusion 3 + S.(F : 92 + 2) and the following sequence is a discrete 
quasi-jibration 

CN.S.9 + CN.S.S.(F:W + 3) + CN.S.S.%?. 

Proof. It is clear from the definitions that the composition is trivial. By the fibration 

Lemma A.6.5 it suffices to show that for each nE N, the induced sequence 

CN.S.9 -+ CN.S.S,(F: %? + 9) + CN.S.S,% 
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is a discrete quasi-fibration. We let Y : 9 x S,%? -+ S,(F : %? + 9) be the exact (k-linear) 

functor defined by sending D x (0 = Co++ . ..-C.,) to: 

( 

o= CoH cr H...H c, 

0 = 0 H D HD @ F(C1)++...++D @ F(C,) 1 

By the commutative diagram 

s.9- S.(9 x S,V) __f s.s,%? 

II I 
SY 

II 
S.Q-S.S,(F:%? + 9’- S.&G2 

and the fact that CN.S.(9 x S,%‘) is discretely homotopy equivalent to 

CN.S.9 x CN.S.S,E (Lemma 3.25) it suffices to show S.Y is a discrete homotopy 

equivalence. Define the exact k-linear endofunctors F’ and F” of S,(F : g + 9) by 

F’(e) = 
O=O=O=...w 0 

0= D,HD~+-+D~H...HD,,+~ 

F”(e) = 
0 = co - Cl H...H c, 

0 = 0 = D1/D1 ++D2/D1 H... ++D,, l/D1 

There is a cofibration sequence of endofunctors F ‘H id+,F “, and so by the additivity 

theorem (Theorem 3.5.3) F’ @ F” is a discrete homotopy equivalence which implies 

S.Y is also. 0 

Corollary 3.6.3 (Delooping theorem). For any k-linear category with cojibrations, the 

following sequence is a discrete quasi-fibration, 

CN.S.% + CN.PS.S.V + CN.S.S.V 

and thus there exists natural isomorphisms HH,(%‘) z HH, + r (S.V) z HH, + z(S.S.%‘) 

and similarly for cyclic, negative and periodic homology groups. 

Proof. This follows from noting that S.(id : %’ + $9) = PS.V? and applying Proposition 

3.6.2. 0 

4. Products and Chern maps 

Introduction 

The first goal of this section is to construct products for our various homology 

groups of an exact category analogous to those constructed by Hood and Jones in 

[lo] and by Kassel in [13]. Our method is to combine the techniques found in [lo] 

with the description for products in algebraic K-theory as done by Waldhausen in 

[28] using bi-exact functors and the delooping theorem. We first introduce some 
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notation and recall the cyclic Eilenberg-Zilber theorem of [lo]. Next we recall the 

construction of products in algebraic K-theory using the delooping theorem and 

introduce some definitions, The third part consists of the construction of our product 

structures. 

The second goal of this chapter is to generalize the Dennis trace map from algebraic 

K-theory to Hochschild homology and its extension to negative homology (which we 

call the Jones-Goodwillie Chern map) for unital k-algebras A to k-linear categories 

with cofibrations. As for products, one recovers the original constructions when 

considering the finitely generated projective modules of A. We construct these maps in 

Section 4 and show that they are suitably multiplicative. The last section shows in 

detail that our constructions do agree with the JonessGoodwillie construction. An 

interesting difference occurring in our treatment is that we begin with a model for 

algebraic K-theory which is not a cyclic space but which maps to the S’-fixed points 

of CN.S.w. The Jones-Goodwillie construction uses a map of cyclic spaces whose 

domain is an “epi-cyclic” space and thus produces a natural map to the homotopy 

fixed point space. We choose to use our particular model here for its ease in showing 

the Chern map is suitably multiplicative. We also point out a method to recover the 

result of Bokstedt that the Dennis trace maps into the homotopy inverse limit of the 

fixed point sets for _/mite subgroups of S 1 if & is a split category with cofibrations. 

4.1. The cyclic Eilenherg-Zilber theorem 

Notation. If X and Y are simplicial (cyclic) modules, we let XA Y denote the simplicial 

(cyclic) module with (XAY), = X, Ok Y,, and operators given by the diagonal action. 

By abuse of notation, we will let X denote both the simplicial (cyclic) k-module and 

the chain (mixed) complex associated to it. If C and D are chain complexes, we let 

C Ok D denote the bi-complex of k-modules with bi-degree (m, n) defined by C, Ok D,. 

Recall that if X and Y are simplicial k-modules, then by the EilenberggZilber 

theorem (see [19, VIII.81) there are natural chain equivalences 

Tot(X Ok Y) 51 eXAY. 
90 

We can define go by the Alexander-Whitney map andf, by the Eilenberg-Mac Lane 

shuffle map, both defined in terms of the fundamental operators (i.e. face and 

degeneracy maps). 

We now introduce some notation from [lo]. Consider the graded ring k[u], where 

u has degree -2. For K and L graded k-modules, we define the graded k-module 

K 6 L to be the product (K 6 L), = fl Ki @ L,_i. So an element of degree n of 

k[u] 6 L is given by an infinite sum of the form cui Okli where Iie Ln+Zi. Now 

suppose L is a mixed complex. We introduce the boundary operator d- in k[u] &j~ L 

by 

X(d@e) = u’@b(e) + utfl @B(e). 
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We similarly define boundary operators 8 of k[u, z.- ‘16 L and 8 of 

k[u, u-‘]/uk[u] & L. For any cyclic k-module X we see that X can be interpreted as 

a mixed complex and there exist natural isomorphisms (the functors B, B - and Bper 

are like those in [7]) 

Tot@-(X)) g k[u] @ X, 

Tot(BP”‘(X)) g k[u,u-‘1 6 X, 

Tot@(X)) 2 k[u,u-‘]/uk[u] 6 X. 

Note. By definition, B-(X) is a bi-complex of k-modules and thus Tot(B - (X)) is 

a chain complex of k-modules. By the above isomorphisms, we see that Tot(B-(X)) 

can also be considered as a chain complex of k[u]-modules which is how we will be 

working with it below. Similar remarks apply to Tot(B(X)) and Tot(BP”(X)). If 

X and Y are cyclic k-modules, we abuse notation and set 

Tot@ (X)) &+I Tot(B - (Y)) = k[u] 6 X @ Y E k[u] @ Tot(X Ok Y). 

Thus an element of degree n is an infinite sum of the form Cur@ xi @ yj with 

n = i +j - 2t. This is again a chain complex of k[u]-modules. 

If X and Y are cyclic k-modules and 

f:Tot(B-(X)) &,]Tot(B-( Y)) + Tot@-(XAY)) 

is a k[u]-module map, there is an induced mapf, : Tot(X Ok Y) + XA Y such that the 

following diagram commutes 

Tot(B- (X)) &,Tot(B-(Y))LTot(B-,(XAY)) 

I fo I 
Tot(X 8,‘ Y) ,XAY 

The vertical arrows above are induced by the natural projections of complexes, that is, 

by k[u] 6 L + k @ L z L. One calls the k[u]-module map f a coextension 

of 53. Of course there is a similar notion for k[u]-module maps 

g : Tot@ - (XA Y)) -+ Tot@ - (X)) &tul Tot@ - (Y)). 

Theorem 4.1.1 (The cyclic Eilenberg-Zilber theorem [lo, Theorem 2.31). Let X and 

Y be cyclic k-modules. Let f,:Tot(X Ok Y) ---f XAY be a natural chain equivalence 

which is the identity in degree zero. 

(a) There exists a coextension f of fO. 

(b) Any such coextension f is a chain equivalence. 

(c) Let f. and fd be natural chain equivalences from Tot(X Ok Y) to XA Y which both 

give the identity in degree zero. Let f and f’ be coextensions of fO and fd. Then 

there is a natural chain homotopy between f and f ‘. 

There are similar statements for a chain map go : XA Y -+ Tot(X Ok Y) which is the 

identity in degree zero. 0 
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Notes on the proof. The method used in [lo] to prove this theorem (which is similar to 

the technique found in [ 133) actually yields more information than is contained in its 

statement. The first step to note is that one can pass to the normalized complexes since 

the operator B is closed on the sub-module of degeneracy elements. Letting N,X 

denote the normalized complex of X one can see that the natural projection 

Tot(B- X) + k[u] 6 N,(X) is a natural chain equivalence. There is a natural isomor- 

phism of chain ccmplexes of k[u]-modules 

(k[u]&NN,X&NN,Y)rk[u]&Tot(N,X@,N,Y) 

and one shows thatf,:Tot(N,X 0 N, Y) -+ N,(XAY) can be lifted to a k[u]-module 

map k[u] a Tot(N,X Ok N* Y) + k[u] 6 N,(XA Y). This lift is constructed by find- 

ing k-linear maps 

f,:Tot(N,X Ok N, Y) + N,(XAY) t 2 0 

of degree 2t satisfying the formulas 

bof, =f,ob - Bof,_, +f,_loB (f_l = 0). 

The k-linear map Cutf:Tot(N,X Ok N, Y) + k[u] & N,(XAY) extends to a k[u]- 

linear map k[u] 6 Tot(N,X Ok N,Y) + k[u] 6 N,(XAY). 

The proof uses a variant of acyclic models, where the models are the cyclic sets 

Horn&, [n]). These are not acyclic spaces, since they have homology in degrees zero 

and one, but Hood and Jones show how to explicitly handle these low-dimensional 

cases in terms of the face, degeneracy and cyclic operators. Thus, if_& and go are given 

in terms of face and degeneracy maps, then the associated co-extensions can also be 

given in terms of the face, degeneracy and cyclic operators. In addition, given any two 

coextensions of the same map given in terms of the fundamental operators, the natural 

chain homotopy between them can be chosen in terms of the fundamental operators 

also. 

4.2. Products in algebraic K-theory 

Definition 4.2.1. Let d, 99 and $9 be categories with calibrations. A bi-exact finctor of 

categories with cofibrations F from G?’ x g to V is a functor having the following 

properties [28, p. 3421: 

(a) For all A E Obj(&) and BE Obj(B), the induced functors F (A, -) and F (-, B) are 

exact. 

(b) For every pair of cofibrations A ++ A’ and BH B’ in G! and B respectively, the 

map from F(A’, B) LI,(,,,, F(A, B’) to F(A’, B’) is a cofibration in 6%‘. 

A bi-exact functor induces a map of bisimplicial categories from S.& x S.a to S.S.W 

by sending 

(0=&H . ..H&)x(0= BO++ . ..~B.,)E&.& x S,9? 
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to the element of S,S,%? represented by 

with associated quotients (for 0 I i <j I m and 0 I k -C 1 I n) given by 

Condition (b) of the definition of a bi-exact functor ensures that this map is well 

defined. 

Taking the geometric realization, we have produced a map /S.&I A 1 S.gl + IS.S.%‘l. 

Passing to homotopy groups and using the delooping theorem (like Corollary 3.6.3), 

we obtain the K-theory product Ki(&‘) @a Kj(~) + Ki+j(%‘). This product agrees 

with that defined by Loday in [ 161 (which uses the “plus” construction). For a proof of 

this agreement, see for example [29]. 

4.3. Products of cyclic homology groups 

Recall that if .d and $8 are k-linear categories, we defined the k-linear category 

JZZ Ok.B by 

Obj(,d Okg) = Obj(&) x Obj@), 

Horn,& Ox.d((A, B), (A’, B’)) = Hom,&, A’) Ok Hom0, B’). 

Definition 4.3.1. Let w and 9 be k-linear categories with cofibrations. We define the 

bi-simplicial k-linear category S.%? Ok S.9 by 

(S.%? Ok S.9) [m, n] = S,V Ok S,9. 

We can form the cyclic x bi-simplicial k-module CN.(S.%? Ok S.9) and we define 

HH,(V @,‘G8) = H.++2(Tot(CN.(S.V 0,S.B))). 

The shift of two comes from the use of two S. in our construction. We define the cyclic, 

negative and periodic homology groups of the symbol %? Ok 9 similarly. 

Definition 4.3.2. Let &, B and V be k-linear categories with cofibrations. A bi-exact 

k-linear functor F is a bi-exact functor from &’ x g to %‘? such that: 

(a’) For all A E Obj(&) and B E Obj(g), the induced functors F(A, -) and F((, B) 

are exact k-linear functors. 
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Given a bi-exact k-linear functor F, the map of bi-simplicial categories 

S.zZ x S.99 5 S.S.V of Definition 4.2.1 induces a map of bi-simplicial k-linear catego- 

ries S.& Ok S.59 3 KS.%? and thus a map of cyclic x bi-simplicial k-modules 

CN.(S.d Ok S.99) F - CN.(S.S.W). 

By the delooping theorem (Corollary 3.6.3) we see that F naturally produces a map 

from HH,(d Ok&?) to HH,(%?), and similarly for cyclic, negative and periodic 

homology groups. 

Lemma 4.3.3. For 97 and 9 k-linear categories with cojibrations, there exist natural 

chain equivalences 

Tot[Tot(CN.S.%‘) @,Tot(CN.S.9)] ’ eTot(CN.(S.?? Ok S.9)) 
90 

which are the identity in degree zero and given in terms offace and degeneracy maps. 

There exist coextensions to natural k[u]-module chain equivalences given in terms of the 

fundamental operators 

Tot@- S.%‘) &lulTot(B-S.9)&Tot(B-(S.W 0kS.9)) 
9 

These extensionsf and g are unique up to natural chain homotopies which can be given in 

terms of the fundamental operators. 

Proof. This is essentially an exercise in homological algebra using the naturality of the 

cyclic Eilenberg-Zilber theorem. The technical but straightforward details are left to 

the interested reader. 0 

Theorem 4.3.4. (After Theorems 2.4, 2.5 and 2.6 of [IO].) Given V and 9 k-linear 

categories with cofibrations there exist well-de3ned natural external product operations 

as follows: 

(0) 

(1) 

(2) 

(3) 

(4) 

(5) 

HH,(V) Ok HH,(9) + HH,(% ak9) which is associative and graded com- 

mutative. 

HN,W) @k[ul HN,(9) + HN,(V ok 9) which is associative and graded com- 

mutative. 

HP,(q) @k[u.u- ‘1 HP,(g) + HP,(V Ok Q) which is associative and graded com- 

mutative. 

HN,(%‘) @Q#,] HC,(9) -+ HC,(V Ok 9) which is associative. 

HC,(%‘) @J+,] HC,(9) + HC, + 1 (%? Ok 9) which is associative and graded com- 

mutative. 

The natural maps relating negative, Hochschild and periodic homology groups 

preserve these product operations. 
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Proof. The product of (0) is constructed as follows: 

HH,(V) Ok HH,(9) = H,, ,(Tot(CN.S.%‘)) Ok H,, 1 (Tot(CN.S.9)) 

-+ fL+n+2 (Tot [Tot(CN.S.%) Ok Tot(CN.S.9)]) 

2 H,+,,+,(Tot(CN.S.% 0kS.9))) = HH,+,(%? @kg). 

The first map is the external homology product and the second is the chain equiva- 

lence given by Lemma 4.3.3. Associativity holds because each of the above maps are 

(the proofs of associativity can be done using homotopies which are expressed in 

terms of the fundamental operators). The product is graded commutative because the 

last map is. 

The product of (1) is constructed as follows: 

HN,(Gk) Ok HN,@) = H,,,, ,(Tot(B-S.W) OktuI H,,, ,(Tot(B-S.9)) 

+ K,+n+z (Tot@-S.%‘) &tuITot(B-S.9)) 

5 H,+.+,(Tot(B-(S.+Z @,S.9))) = HH,+,(V Bk9), 

where the first map is the external homology product and the second is the chain 

equivalence induced by Lemma 4.3.3. Associativity and graded commutativity follows 

as in the above case and similarly for the cases below. 

The product for (2) is constructed by noting that there is a natural isomorphism of 

chain complexes of k [u, u- ’ ]-modules 

Tot(BP”S.%‘) &tu,um x1 Tot(BPe’S.9) 

= k[u,u - ‘1 6 Tot(CN.S.%‘) 6 Tot(CN.S.9) 

z k[u,u-‘1 &Tot[Tot(CN.S.g)@,Tot(CN.S.9)] 

and we can extend Lemma 4.3.3 to this complex. Thus we define the product by 

HP,(V) @kHP,(9) = H,+,(Tot(BP”S.%‘)) &+u-~l H,+,(Tot(BP”S.9)) 

-+ K,+n+z (Tot(BP”S.%Y) &tu,u-~I Tot(Bp”S.9)) 

~H,+.+2(Tot(BPer(S.% @,S.9))) = HP,+,(% 0k9). 

The product in (3) is constructed by noting that there is a natural isomorphism of 

chain complexes of k [u, u - ‘1 /uk [u]-modules 

(k[u] @ Tot(CN.S.W)) &,ul(k[u, u-‘]/uk[u] @ Tot(CN.S.9)) 

1 k[u, u-‘]/uk[u] @ Tot[Tot(CN.S.W) &Tot(CN.S.9)] 
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and we can extend Lemma 4.3.3 to this complex. The product is defined by 

HN,(%?) Ok HC,@) = H,,,, ,(Tot(B -S.%‘)) @,+r H,,, i(Tot(B.S.9)) 

+ Kz+n+2 (Tot(B-S.%‘) &ul Tot(B.S.9)) 

& H,,,+.+2(Tot(B.(S.% 0,S.g))) = HC,+.(V @kg). 

The product in (4) is defined as follows: 

where the first arrow is induced by the boundary map in the long exact sequence 

relating cyclic, negative and periodic homology groups and the second is the product 

defined in (3). 0 

Example 4.3.5. We let A and B be k-algebras, PA, PB and 9.d ox 9 be the exact k-linear 

categories of finitely generated projective modules of A, B and A Ok B respectively. 

We let F:P,xP, + YA okB be the bi-exact k-linear functor which sends (P, Q) to 

P Ok Q. Combining the products of Theorem 4.3.4 with the natural map induced by 

F in Definition 4.3.2 we obtain natural products like HN,(@“,) OkHN*(PB) + 

HN,(PAokB) for all statements (O))(5) of Theorem 4.3.4. It can be checked that the 

products of [lo] and the ones we have just described are interwined by the natural 

isomorphisms produced by Corollaries 3.3.4 and 3.6.3. That is, by the natural discrete 

homotopic maps 

CN.9* - * L’CN.S.9’ A 5 Q!2CN.S.S.~A. 

4.4. The Jones-Goodwillie Chern map 

In this section V? will denote a k-linear category with cofibrations. To define the 

algebraic K-theory of V we shall always let weak equivalences be the isomorphisms in 

%‘. By [28], the simplicial set obj(S.%?) is homotopy equivalent to the bisimplicial set 

iN.S.%, so we may consider the algebraic K-theory of %F as being the space 

K(%‘) = SZI obj(S.%?)l. When V is an exact k-linear category we know by [28], that this 

space is homeomorphic to the space Sz 1 BQ% 1 giving the K-theory in the sense of 

Quillen [24]. 

Definition 4.4.1. We define the Dennis trace map (of a k-linear category with cofibra- 

tions V) to be the natural map from the algebraic K-theory of %F to the Hochschild 
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homology of % induced by the map 

obj S.%? ----+ 
id CNoS.~ incl 

- CN.S.%‘. 

The map of loop spaces will be written as D: K(V) + HH(V) where we have written 

HH(%‘) for fi 1 CN.S.%Z I. We will show in Section 4.5 that this map agrees with the usual 

definition of the Dennis trace when %? is PA for some k-algebra A. 

For X a cyclic set, the S l-fixed points of IX 1 are the vertices of x E X0 such that 

t * so(x) = s,,(x). Thus, the Dennis trace map takes I obj S.%Y I to the S’-fixed point set of 

ICN.S.%?l. Given a unital k-algebra A, the elements of the form k.idA in CN,(A) are 

contained in the S ‘-fixed points of 1CN.A I. There is a natural lift from the submodule 

of these elements to the zero cycles of B-A defined by 

We note that on the normalized complex N;(A) associated to B-A this lift is simply 

k.idAxOxOx~..EZO(N;(A)). 

By abuse of notation, and in order to make our diagrams legible, we shall write 

B- (S.%?) for the simplicial double complex B- (CN.S.%)), and ZOK (%‘) for the sim- 

plicial k-module of cycles in ToteK(S.%‘). By naturality, it is easy to see that we can 

lift the Dennis trace map to a natural map obj S.%? 5 Z,(B-S.V) (of a simplicial set to 

a simplicial k-module). 

Definition 4.42. We define the Jones-Goodwillie Chern map, denoted JJG, to be the 

natural map K(%‘) + HN(V) obtained by the composition 

obj S.V- a Z,(KS.%?) lnc’ -B-S.%‘. 

It is clear from the definitions that there is a commuting diagram 

Proposition 4.43. The Jones-Goodwillie Chern map is suitably multiplicative. That is, 

given a bi-exact k-linear jiunctor F : L& x B + %, then the induced products of algebraic 

K-theory and those of negative homology commute with the map J-G. A similar 

statement is true for the Dennis trace map D. 
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Proof. We first note the following commutative diagram: 

rUl0b.j S.&l) &rr,(Iobj S.gl) 
1”1 

.rc,+,(1objS.&‘l A lobjS.gl) 

I Q,, fI I 
H,(z,(B-(S.;%))) OkK(Z&-(S.B))) P* 

I fiO.4~ 

-HH,+.(Z,B-(S.d)OkZ,B-(S.9)) 

I 
incl Okb, 

1 
incl incl 

HN,-,(~)O,,,,HN,-,(~) 
P3 I 

~H,+.(B~(S.~c9)~)k[u,B-(S.~)) 

I 
lemma 

H,+.W(S.d OkS.9)) 

Where ,ul is the usual homotopy product, p2 and p3 are the product defined by the 

exterior homotopy product. The map “lemma” is a coextension of the Eilen- 

berg-Mac Lane shuffle map (Theorem 4.1.1) as given by the cyclic Eilenberg-Zilber 

theorem and extended by naturality as in Lemma 4.3.3. The upper square commutes 

by standard simplicial techniques (see for example [30, Section 31). 

We next consider the diagram 

rct(lobjS.&’ A (objS.gl) ’ - z,( iobj S.S.%l) 

I 
F H,(B - (i.S.lk)) 

I 
H,(B - (S.d @k S.B))- 

which commutes since the Eilenberg-Mac Lane shuffle map is the identity in dimen- 

sion zero. This proves the proposition since the two delooping theorems for algebraic 

K-theory and negative homology certainly agree via the Jones-Goodwillie Chern 

map. 0 

4.5. Agreement for PA 

We now want to show that our definitions of the Dennis trace and the 

Jones-Goodwillie Chern map agree with the usual ones via the natural isomorphisms 

established in Corollary 3.3.4. Let 9 denote the category of finitely generated projec- 

tive modules over a unital algebra A. We recall that 9 is a r category in the sense of 

[26] (using direct sums). There is a natural map from the classifying space lE&P to 

iN.S.PP which is a homotopy equivalence since B,P is equivalent to S,,P for all n E fV. 

Also, by Section 1.4 of [28], the natural map S.9 = iN,S.P + iN.S.9 is a homotopy 

equivalence. 

For %? a category, let iN.Q? denote the nerve of the sub-category of %? determined by 

its isomorphisms. We consider this as a cyclic set by setting 

Z(cX1)...) cI,)=((cl~~...~cln)-l,c(~ )...) c&l). 

For any k-linear category %, there is a natural map of cyclic sets, which we write as 

r(%?), from iN.%? to CN.% defined by 
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At this point we would like to appeal to the universal property of “group comple- 

tion” (see, for example, 4.1 of [26]) to say that the natural map IiN. + 1 CN.$!J’I so 

obtained lifts uniquely (up to homotopy) to a map from Q 1 BP I. In order to do this we 

need to note that the map in question is a monoidal map. There are several equivalent 

ways to see this. Consider the diagram 

iN.9 x iN.gp CN(p x 9); CN(,!?) @ CN(g) 

1 0 

iN.(Y)A 
15/J 

CNV) 

where 0 denotes the operation of direct sum and + denotes the operation of 

addition component-wise. The square commutes but the triangle only commutes up 

to homotopy. To see this, use the explicit homotopy inverse given by Proposition 2.4.9 

for finite products with the choice of some object given by the zero object (we have 

allowed ourselves the liberty of a strict monoidal unit here, otherwise we need to 

appeal to more homotopies). Thus the map ~(3’) takes (up to homotopy) the monoidal 

action of direct sum to the group action of addition. Applying the “plus” construction 

to t(Y) gives the usual Dennis trace map. 

Now we can appeal to the universal property of group completion and from the 

commutative diagram below we see that the resulting lift is the same (up to homotopy) 

as the Dennis trace we have defined. Thus our Dennis trace map, which is the right 

vertical map in the following diagram, agrees with the usual Dennis trace defined via 

the “plus” construction. 

IiN. - 

I 

QllEMl5 Ql&.S.t”pI 

TV’) 

ICN.Yl = 
I 

l Q/CN.S.Yl 

For X a cyclic set, we let Z[X] denote the L-module mixed complex obtained by 

taking the free cyclic object generated by X and denote the associated homologies 

simply by HH,(X) and so on. Following [lo], we note that HN,(iN.%‘) is isomorphic 

to Z [u] 6)~ H,(iN%?) since iN.‘3 is equivalent to a union of iN.G, for groups G, and 

this is true for groups. We conclude that HN,(iN.S.Y) is isomorphic to 

Z [u] &,z H, (iN.S.g). Let fl be the natural map of mixed complexes from Z [iN..Y] to 

Z [iN.S. _ 1] induced by the identity 9 = S1 9. It is now clear that we can construct the 

following commutative diagram: 

l& (iN.9) 

I 

-Z[u] &zH*(iN.Y)L HN,(iN.g) 

B I 
id 0 p 

I B 

H,(iN.S._,Y)- L [u] 6,~ H,(iN.S. _ 1 P) 5 HN,(iN.S. _ 1 9) 
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We now want to consider the following commutative diagram: 

H,(iN.g) 

I 

-HN,(iN.Y) @)‘HN;(9) 

P I B I 
H*(S._i9)---, y H,(iN.S._lY)- HN.+(iN.S._rY)= HN& 

One construction of the usual JonesGoodwillie Chern map arises from the composite 

of the top row. The vertical map on the right is the isomorphism from Corollary 3.3.4 

and thus we will be done if we show the lower composition agrees with the Jones- 

Goodwillie map we defined in Definition 4.4.1. This follows by noting that one 

can describe the map from H,(iN.S,,.Y) to HN,(iN.S,Y) (n is fixed) on generators 

by 

Q-fi(-I)'~(Q=Q=...=Q) 
t=o t! 

(see for example [lo, Section 51). 

A note aboutjxed point sets 

Marcel Bokstedt has shown that the Dennis trace maps into the homotopy inverse 

limit of the fixed point sets of each finite subset of S ‘. We would like mention how this 

phenomenon appears in our setting and would like to thank Marcel for explaining it 

to us. The Dennis trace we have defined maps into the S ’ fixed point set of 52 1 CN.S.97 ( 

for any exact category 55’. If %? is split (or semi-simple), then by the proof of Theorem 

3.3.3 and by Section A.6 we see that the natural map from CN.%? to SZlCN.S.971 is an 

S’ map and a discrete homotopy equivalence. This implies that the map produces 

a homotopy equivalence on the fixed point sets for eachjinite sub-group C, of S’ and 

hence we have a diagram: 

holim,,, 1 CN.%‘lcr --+ E holim,,,Q~CN.S.~~cr+-- filCN.S.%lS’LK(%7). 

If %? is the category of finite projective modules of the algebra A, then by Proposition 

2.4.3 the natural inclusion of the usual Hochschild homology of A is also a discrete 

homotopy equivalence so we can replace CN.% by CN.A in this case. 

Appendix. Semi-cyclic objects 

Several times throughout this paper we have used maps of cyclic objects which did 

not preserve degeneracies. Since such maps do not necessarily produce S ’ equivariant 

maps of realizations, we collect here a few basic observations about them which we 

have found useful. 
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A.I. Semi-simpliciul sets 

The observations of these next three paragraphs can be found for example in 12.51. 

We let A denote the category of finite ordered sets and order preserving set maps with 

one object [n] = (0 < ... < n} for each cardinality and we let A, denote the sub- 

category of A generated by the injective (monomorphic) maps. We call a functor from 

(A,,,) A to the category of sets a (semi-) simplicial set. We let 1 X. 1 denote the realization 

of a simplicial set X. and ) Y. Irn denote the realization of a semi-simplicial set Y.. That 

is, 

where A” is the standard n-simplex. 

Let X. be a simplicial set. We can consider this a semi-simplicial set by forgetting 

structure. We let qx: IX.), -+ IX. I denote the quotient map which is a homotopy 

equivalence. We define a section to qx, denoted xx, which is functorial with respect to 

simplicial maps and is “adjoint” to qx. Let x x VEX, x A”; then by the Eilen- 

berggzilber lemma x can be uniquely represented as a*(%) where 2 is a non- 

degenerate element of X, (m < n) and CE A is degenerate. We define sx of the class 

[x, t] to be [z, D* t]. 

Let G be a group and suppose that X. is a simplicial G-set. Then IX. Irn and IX. I are 

naturally G-spaces, qx and sx are G-maps and qx (hence also sx) is a G-homotopy 

equivalence (strong sense). 

A.2. Semi-simpliciul homotopies 

Let A(1) denote the simplicial set Hom,(*, Cl]). We recall that a simplicial 

homotopy h between the two simplicial maps f and g is a simplicial map 

h:X. x A(l)+ Y. such that h(xxqo) =fand h(xxqI) = y where ~iEHom~([l],[l]) 

denotes the constant map to i. Since realizations commute with products, a simplicial 

homotopy induces a homotopy of realizations. One can also describe a simplicial 

homotopy as a set of maps hi(q)EHom(X,, Y,,,) (0 4 i I q) which satisfy the 

following relations (see [20]): 

(4 doo~o =fI d,,, ok, = g, 

hj_ 1 0 di if i<j, 

(b) diokj= dj+lokj+l if i=j+ 1, 

hjodi-l if i>j+ 1, 

(C) Sio kj = 
kj+l *si if i I j, 

kjosi-1 if i < j. 
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Suppose we are now given two semi-simplicial maps. We define a semi-simplicial 
homotopy h to be a collection of maps hi(q) E Hom(X,, Y,, r ) which satisfy conditions 

(a) and (b) above. A semi-simplicial homotopy is the same as giving a semi-simplicial 

map k from X. x d(1) to Y.. Note that if X. and Y. are simplicial sets then a semi- 

simplicial homotopy produces a homotopy of realizations. 

A.3. Semi-simplicial subdivision 

The observations and notation of this paragraph come from [l, Section 11. We 

let sd, denote the functor from A to A defined by sending [n] to [n] LI ... LI [n] (r 

copies of concatenation of the ordered set [n]). Thus, sd,( [n - 11) = [rn - l] and 

sd,(f) (am + b) = an +f(b) when f: [m - l] + [n - l] and 0 < b < m. Given 

a simplicial set X., we let sd,(X.) denote the simplicial set X 0 sd,. The standard 

simplex A *n-1 is the r-fold join of A”-’ with itself and we let d,: A”- ’ -+ A’“- ’ 
denote the diagonal map d,(u) = u/r @ ... @u/r. The map D,: Isd,(X.)I + IX.1 of 

realizations defined by 1 x d,: X,,_ 1 x A”-’ -+ X,,_ 1 x A’“-’ is a homeomorphism. 

Furthermore, if Y. is a cyclic set, then Isd,( Y.)\ has a natural structure of an 

lR/rZ-space and D, is an S ‘-homeomorphism if we identify R/rZ with S1 = R/Z in 

the usual manner (t + t/r). Let C, denote the cyclic group with r elements. The 

simplicial set sd,(Y.) is naturally a C,-simplicial set and D, gives a homeomor- 

phism of the C, fixed point sets Isd,( Y.)lcr z I Y.Icr (where the action on 1 Y.1 is by 

restriction C, c S ’ ). 

Now we can consider semi-simplicial subdivision. Unfortunately, the map 

D, : I sd,(X.)], + IX. lrn is not a homeomorphism but only a homotopy equivalence. 

Given a semi-simplicial mapfof simplicial sets, we can consider the various maps of 

realizations fi = D, 0 qsdrY 0 ) sd,(f) Im 0 s,~,~ 0 0; I. That is, 

Is4W)lm~ lWY)Im 
SSd,W) T I %ddYl 

IX.1 = Isdr(X)l Id( z I Y.1 

We will call a map f of cyclic sets a semi-cyclic map if it is a semi-simplicial map 

which preserves the cyclic operators. Iffis a semi-cyclic map of cyclic spaces, then the 

maps f, are C, equivariant for all r E N and hence produce natural maps ftrl of the 

associated C, fixed point spacesft’] : IX. lcr + 1 Y. Icr. (we setft” to be the natural map 

mentioned earlier). 

Smce sx 0 qx is homotopic to the identity, we see that fr 0 g, ‘v (p g)l but these are 

not necessarily equal unless g was a map of simplicial sets. Similarly, if f is only 

a semi-cyclic map and for r Is we do not obtain either that fi is the restriction offs or 

thatft”] is the restriction offt’]. We only obtain that these commute up to homotopy, 

one reason for these failures lies in the fact that D,o s,~,.~ # sx 0 D,. Iffis a cyclic map 

then these conditions do hold. 
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A.4. The cyclic set NcY(9) 

We let 9 denote the groupoid on two objects. That is, 9 is a category with two 

objects 0 and 1 and two (necessarily inverse) non-trivial morphisms 0 + 1 and 1 + 0. 

For any (small) category %?, we let NcY(%?) denote its cyclic nerve (see Example 2.2.3). 

One can check that the non-degenerate simplices of N;:(9) are: 

yn E (1 = 1 + 0 t 1 t “’ + 0 + 1) 

and that the non-degenerate simplicies N$_ 1 (9) are simply L&,(X,) and d,(y,). We let 

NcY(f) [2n] denote the 2n-skeleton of NcY(.9) which is not only a simplicial subset but 

also a cyclic subset. It is not too difficult to see that the realization of NcY(S)[2n] is 

S’” and that the inclusion of cyclic sets NcY(.9)[2n] c NcY(4)[2n + 21 corresponds 

to the double suspension map. Thus, the realization of NcY(.P) is homeomorphic to 

the direct limit of So + S2 + ... with structure maps double suspension. What we 

have not yet indicated is the S 1 action on 1 N “‘(9) 1 we obtain since it is the realization 

of a cyclic set. 

Proposition A.4.1. Considering S 2n as the subset of R x @” determined by 

{(r, z l~~~~~Zn)llrl +Cllzil/ = l>> 

we can describe the action of ),E @* on IN”‘(S)l as 

i_*(r,z,, . . ,z~)=(Y,~~z~,/~~~~ ,..., Pz,). 

Proof. The cases of n = 0 and n = 1 are clear. We assume the proposition is true 

through case n - 1 and proceed by induction. We consider the C,-fixed point set 

which by induction must consist of elements of the form (r, 0, . ,O, z,). A straightfor- 

ward calculation shows that the simplicial map from NcY(9) [2] to (sd,NcY(9) [2n])cn 

(the sub-simplicial set which is degree-wise fixed by the C, action) defined by “concat- 

enating” a cyclic diagram y1 times with itself is an isomorphism of simplicial sets. 

Furthermore, it is also straightforward to show that (sdt,,NcY(9)[2n])C’” consists of 

exactly two non-degenerate points if t > 1. The result follows. 0 

Corollary A.4.2. Giving 1 N”‘(XJ)I the circle action it obtains as the realization of a cyclic 

set, then it is a contractible S’-space with the property that the St-jixed points are 

simply two points (corresponding to the simplicies 0 = 0 and 1 = 1) but with the C,-jixed 

point sets contractible for all nE kJ. 0 

A.5. Special homotopies 

Definition A.5.1. We will call two semi-cyclic maps f and g special homotopic if 

there exists a semi-cyclic map h : X. x NcY(9) + Y. such that the following diagram 
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commutes, 

where.ai(x)=(xxi=i=... = i). The natural simplicial embedding d (1) -+ NcY(9) 

shows “special homotopic implies semi-homotopic” but the converse is in general 

false. We say that a semi-cyclic map f is a special homotopy equivalence if it has 

a special homotopy inverse. That is, a semi-cyclic map g such that fo g and g of are 

both special homotopic to the identity. 

Lemma A.5.2. Special homotopic maps f and g have the property thatf [rl is homotopic to 

g[‘l for all r E N. 

Proof. One can see that the C, fixed sub-simplicial set of sd,(NcY(Y)) is isomorphic to 

NcY(9) by the simplicial isomorphism which sends a cyclic diagram to itself “concat- 

enated r times.” That is, NcY($) is an epi-cyclic space in the sense of [S]. The result 

follows because the semi-simplicial realization of X. x NcY(Y) is naturally homotopic 

to the product of the semi-simplicial realizations. 0 

Note. If f is a cyclic set map and g is a special homotopy inverse, then 1 f Icr (the 

induced map of C, fixed point sets) is a homotopy equivalence for all TE N. If 1 f Is’ is 
also a homotopy equivalence then f would be an S’-homotopy equivalence by the 

equivariant Whitehead theorem. The following example is to show that this is not the 

case in general. 

Example. For an algebra A, let 2.A denote the usual cyclic Z-module used to 

compute Hochschild homology (see Example 2.2.1). Then Z.(Z x Z) is special 

homotopic to the cyclic module (operators act diagonally) Z.(Z) @ Z.(Z) but the S’ 

fixed point set of the first is isomorphic to Z and for the second it is isomorphic to 

Z x Z (the natural map of cyclic sets takes the first to the second as the diagonal map). 

A.6. Cyclic x simplicial sets 

Let X.. be a cyclic x simplicial set. As a bi-simplicial set, we know that the three 

natural realizations are homeomorphic. Realizing first the simplicial direction we 

obtain a cyclic space whose realization is naturally an S ‘-space. We will give the other 

two possible realizations the S’ structure they obtain via the natural homeomor- 

phisms. 

The following two lemmas are simple and left to the reader. They follow from the 

fact that the homotopies in question can naturally be assembled to give a homotopy of 

the total realizations. 
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Lemma A.&l. Let f and g be maps of cyclic x simplicial sets. If for each n, fn,* 
is homotopic to gn,* by h(n) and for each P, 4 and a~HomdCp1, Cql), 
cr*oh(q) = h(p)occ*, then 1 f 1 is S’-homotopic to 191. 0 

Lemma A.6.2. Let f and g be maps of cyclic x simplicial sets. If for each m, f,,,, 

is special homotopic to g*,,, by h(m) and for each P, q and B~Homd(Cpl,Cql), 
b’*oh(q) = h(p)op*, then 1 f 1 is special homotopic to 191. I7 

Definition A.6.3. We will say that an S’ map f is a discrete homotopy equivalence if 

If ICr is a homotopy equivalence for all r E N. Similarly we will call a sequence of 

(pointed, * E X”) S1 maps X A Y 3 Z a discrete quasi-fibration if g of = * and the 

natural map from the homotopy fiber to X (which is naturally an S’-map since the 

base-point is fixed under the action) is a discrete homotopy equivalence. 

We note that the difference between a discrete homotopy equivalence and a special 

homotopy equivalence is that a special homotopy equivalence has the property that 

the homotopy equivalences for the various fixed point spaces can be assembled in 

a compatible fashion. 

Lemma Ah.4 (Realization lemma). Let f be a cyclic x simplicial set map from X.. to Y.. 

such that f,,n is a discrete homotopy equivalence for all nE N. Then the map of 

realizations 1 f I is a discrete homotopy equivalence. 

Proof. This is immediate from the usual realization lemma (see Lemma 5.1 of [27]) 

after one notices that subdividing the cyclic direction generates a bi-simplicial set with 

a natural C, action whose realization is naturally S’ homeomorphic to the realization 

of the original bi-simplicial set. 0 

Lemma A.6.5 (Fibration lemma). Let X.. L Y.. 3 Z.. be a sequence of (pointed) sim- 

plicial cyclic groups. Assume that g of = * and that the sub-sequences f*,no g*,n are all 

discrete quasi-jbrations. Then the sequence of total realizations is a discrete quasi- 

fibration. 

Proof. First note that if X.. is a pointed cyclic x simplicial set then the realization has 

the property that the basepoint is invariant under the induced S’-action. The se- 

quence is a quasi-fibration by Theorem B.4 of [a]. When we subdivide the cyclic 

direction, we obtain new sequences which are again fibration sequences since they are 

homeomorphic to the original sequence. Considering the subsequences of these which 

are fixed by the group actions we obtain sequences which by assumption are again 

quasi-fibration sequences degree-wise and hence (again by [2]) they produce quasi- 

fibrations of their total realizations. 0 
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Corollary A.6.6. Suppose we are in the situation of the fibration lemma above and 

suppose further that we have an S’-equivariant contraction for Y., then the natural 

homotopy equivalence X s QZ is a discrete homotopy equivalence. 

Proof. The natural map from X to SZZ in this setting is an S ’ map (we are using the 

fact that we have chosen an S’-equivariant contraction here) and the result fol- 

lows. 0 

Remark. In the situation of the corollary, we obtain the diagram 

holim,,,XCr- E holim+QZcr t- sZZS1. 
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