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It has long been recognized that the homologies of differential algebras
and of differential modules over differential algebras have not only products
but also higher order operations, namely Massey products. These operations
have largely been ignored because of the difficulty in computing them
and because of their seeming lack of conceptual interest. We shall here
introduce and study generalizations of these operations; the new operations
will be defined on n-tuples of matrices rather than on #z-tuples of elements.
Of course, the generalization does nothing to simplify the computations,
although the results on spectral sequences in this paper will have this effect.
The larger class of operations does, however, have essential conceptual
interest. There are a varlety of situations in algebraic topology where the
geometry naturally gives a notion of decomposability. The new operations
are precisely what is required to describe these notions algebraically. For
example, if G is a connected topological monoid, then the geometric notion
of a decomposable element in the Pontryagin ring f,(G) is an element of
the kernel of the homology suspension o, : H,(G) — H(BG), and in fact
ker o, 15 exactly the set of all elements decomposable as matric Massey
products. If B is a simply connected space, the dual statement is true; if
o* 1 H*(B) — H*(2B) is the cohomology suspension, then ker o* is the set
of all elements which are decomposable as matric Massey products. Other
such situations will be given in [/0], where the statements above are proven.
Morceover, these operations will be used in [ /0] to compute the cohomologies
of a wide variety of homogeneous spaces and principal bundles and to
develop an algorithm for the computation of the mod 2 cohomology of any
simply connected two-stage space. Statements of the results in question may
be found 1in [9].

Our program in this paper 1s as follows. We shall define matric Massey
products and prove their naturality in Section 1. We shall prove certain
linearity relations satisfied by our operations and study their indeterminacy
in Section 2. The main purpose of this section is to show that, at least under
reasonable technical assumptions, matric Massey products are respectable
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homology operations in the sense that their indeterminacies can be explicitly
described and are groups, and the operations themselves are cosets of these
groups. In Section 3, which overlaps in part with work of Kraines [5], we
determine various associativity and commutativity relations satisfied by our
operations. These relations, most of which are new even for ordinary Massey
products, show that an algebra which happens to be the homology of a
differential algebra will generally have a very rich internal structure.

The last section contains a detailed study of the behavior of our operations
in spectral sequences. We first obtain a convergence theorem and a generalized
Leibnitz formula. These results generalize the usual statement that the
spectral sequence of a filtered differential algebra is a spectral sequence of
differential algebras. Indeed, ordinary products are subsumed in our theory
as 2-tuple Massey products. We then obtain a result which relates higher
differentials to matric Massey products in the limit term and show how this
result can be used to study the extension problem at the end of spectral
sequences. The results of this section will be used in [/1] to study the mod 2
cohomology of B Spin(n) and, applied to the spectral sequence of [8], will
be a central tool in the study of the cohomology of the Steenrod algebra in [72].
In both applications, the E,-term of the special sequence studied has the form
L - ExtR (K, K), where 4 is a connected algebra over a field K. While
the results here apply to a much wider class of spectral sequences, they are
particularly natural tools for the study of spectral sequences having such an
E,-term. This is so because, as we shall show in [/0], we then have that every
clement of EI* for p =1 is built up via matric Massey products from
elements of £}'*, and the actual computation of the operations on the E,-level
is quite straightforward.

Analogs of the results of Section 4 have recently been proven for the Adams
spectral sequence, with matric Toda brackets replacing matric Massey
products in the limit term, by Lawrence [6], generalizing a special case due
to Moss [/3]. It is to be expected that the precise analogs of the remaining
results of this paper are also valid for matric Toda brackets in stable homotopy.

1. Tur DrriniTioN or MaTric Massey Propucts

We must first fix notations. Throughout this paper, we shall work with the
following data. We suppose given a commutative ring /1 and a collection
{R;10<i<j<n of differential Z-graded /-modules. We denote
gradings by superscripts and we assume that the differentials, always denoted
by d, have degree 1. We write (X for ), , and we suppose given morphisms
of differential ZI-modules

® = Pt R’i:i e Rj/; - -Ri/c H 0 § i \/\-j < k < 7,
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such that the following diagrams commute:

Ry @ Ry ® Ry 2% R; ® Ry,

e |

R, ® Ry, ——  Ry.

We shall denote the pairings = by juxtaposition of elements.

The collection of systems R = {R;, p;;} form a category ,. If
S ={S;;, vz} is another such system, then a morphism f: R— S is a
collection of morphisms of differential graded A-modules f = f;; : R;; — S;;
such that the following diagrams commute:

Rz']' ® lec — Rik

lf@f !
Y

N v >
Sy @ Sy —— Sy

Before defining our operations, we cite some of the most important
situations in which they will make sense. In fact, we have the following
categories and functors to the category (7, :

(1) The category of DGA-algebras: if U is a DGA-algebra, define R;; = U
and let p;;;, = w be the product on U.

(2) The category of triples (M, U, N), where U is a DGA-algebra and
M is a right, N a left, differential graded U-module: if (M, U, N) is such a
triple, define

M 1=0, j<n
R U 0<i<j<n
9N 0 <1, ]:n

My N  i-=0, j=

The pairinggs UQU—->U, MQU—->M, UKXN—N, and M @O N —
M &y N are, respectively, the product in U, the module product in M and
in NV, and the natural epimorphism that defines 3 &) V.

(3) The category of topological spaces X: given X, let U = C*(X; 4) and
apply the functor of (1).

(4) The category of topological monoids G: given G, let U = C(G; A)
(regraded by nonpositive superscripts) and apply the functor of (1).
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(5) The category of fibred products

P
v i
N-—>B

let (M, U, N) = (C*(X), CX(B), C*{¥)) and apply the functor of (2).

-

(6) The category of associated bundles X x5 Y let
(M, U, N) = (C.(X), C.(G), C(V)
and apply the functor of (2).

(7) The category of spaces A" and subspaces A, , 1 <{ 7 < n, such that
(4,,4;) 1s an excisive couple in A: let 4,; = (Jj;; A4, and define
R;; = CH(X, 4y ; A); the gy, are given by the cup product.

(8) The category of coalgebras C: given C, let U be the cobar construction
F(C) and apply the functor of (1).

(9) The category of triples (X, C, ¥') where C'is a coalgebra, X a right and
Y a left C-comodule: a functor to the category described in (2) can be
constructed by use of the twosided cobar construction defined in [/0].

Let Red, . Matric Massey products will be defined on certain n-tuples
of matrices (I ,..., ¥,,), where 17, has entries in the homology H(R;_; ;}, and
will take values in the set of matrices with entries in [(R,,). The most
important situation occurs when }7 is a row matrix and ¥, is a column
matrix; then the values will be | < 1 matrices and will be regarded as
elements of I/(R,,). These operations esscntially determine those clements
of H(R,,) which are decomposed by the system R.

In order to make our definition precise, we shall need some preliminary
technical notations. These are designed to keep track of gradings and to
avoid difficulties with signs. Once these notations are tixed, both gradings
and signs will generally take care of themselves in the sequel.

Notations 1.1. (a) Matrices of integers. Consider matrices D = (d;;) and
D' = (d}) with entries in Z. Let D be a p X g-matrix and D" a p’ > ¢'-
matrix. We say that (D, D’) is a compatible pair if ¢ - p" and if the sum
d,, -+ d,; is independent of % for each 7 and j. We then define the p X ¢'-
matrix D * D" = (e;;) by e;; = dy - d,;j . Let Dy ,..., D, be matrices with
entries in Z. We say that (D, ,..., D,) is a compatible system if each (D, , D)
is a compatible pair. If D = (d,;) and if m € Z, then we define D™ == (d;; +- m).
Let (Dy,..., D,) be a compatible system. We then define matrices D,
0 < 7 < j < n, by the formula

Dij = (Dysy % =% D)0, 0<Li<j< me (1)
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Inductively, each (D, Dy;), 1 << k < j, is a compatible pair, and
Dj; = Dy, + Dy; foreach ksuchthat 0 <i <k <j<<n (2

(b) Matrices of degrees. Let E be a Z-graded A-module. Let ME denote
the set of matrices with entries in E. If X = (x;;)e ME, we define
D(X) = (deg x,;). Let Y € MF for some Z-graded A-module F. We say that
(X, Y) is a multipliable pair if (D(X), D(Y)) is a compatible pair. If (X, V) is
a multipliable pair and if £ F — G is a morphism of /A-modules, then we
can multiply X and Y by the usual product of matrices to obtain a matrix X'V
with entries in G. Clearly D(XY) = D(X)x D(Y). Let X;,.., X, be
matrices with entries in Z-graded /-modules. We say that (X ,..., X)) is a
multipliable system if (D(X,),..., D(X,)) is a compatible system, and we then
define

D(X, ..., X)) == D(X7) = -+ D(X,). (3)

Were it possible to multiply the X;, we would obtain a matrix X; -+ X,
such that D(X; - X)) = D{X;,..., X,).

(c) Signs. If xe E, we define ¥ == (—1)+9e¢= x If X = (x;;) € ME, we
define X = (x,). If E is a differential 4-molule, we define dX = (dx;,). Let
E ®F — G be a morphism of differential A-modules and let (X, ¥) be a
multipliable pair, X € ME and Y € MF. Then we have the relations

dX = —dX; XY = —XY; dXY)=dX)Y — XdY). 4)

At this point, we are ready to define the operations. Let R & (7, . Suppose
that (V5 ,..., V) is a multipliable system, where I, MH(R,_, ;). Matric
Massey products are designed to formalize the notion that relations between
relations should result in the definition of higher operations. Thus for the
matric Massey product (V7 ,..., > to be defined, it will be necessary that
OeV;,.,V;y CMH(R,_, ), j — ¢ < n. Roughly, the operations are built
up inductively as follows. Let 4, ; ;€ MR,_, ; be a matrix of representative
cycles for V,, abbreviated {4, ; ;} = V. Suppose that I/;}7,.; = 0. Here
the product is of course induced from the pairing x and the homology product
H(R; 1)) @ H{R; ;1) = H(R, ; ;11). Then there exist A, , ;. € MR, ;.
such that dd, 4 ;3 = A; 4 ;A0 - But then Ay A4, 00 + Aiy i
is a matrix of cycles, in MR, ; ,.,, and we say that its homology class belongs
to {Vy, Vi, Vipey. We can ask whether these classes are zero or not.
Inductively, it makes sense to seek matrices 4;;€ MR;; for 0 <i<j < n
and (7, 7) % (0, #) such that

{Airi} = Vi dd,; = 4,

ij
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where

i1
Ay = Z Ay, 1 <j—1i<n (5)

Re=itl

Condition (5) is compatible with the grading since D(A4;) = D; and
D(dAy;) = Dy x Dy, , where the D;; are the matrices of integers defined in (1)
in terms of the matrices D; == D(V;). Condition (5) is compatible with the
formula d2 = 0 in view of (4). If we are given such matrices 4;; , then

n—1
d4,, =0, where Ay, =Y Apdpn. (6)
k=1
We shall say that {4,,} € <V ..., V,,) C MH(R,,). Observe that D(4,,) = D,
by (2), and we therefore have, by (3),

D< Vl I Vn> - D(Vl 3eery Vn)2~n‘ (7)

From now on, we shall not mention grading or signs unless absolutely
necessary, and we proceed to the formal definition.

Derinttion 1.2, Let (Vy,..., V) be a multipliable system of matrices,
V,e MH(R,_, ). We say that the matric Massey product {V,,..., V> is
defined if there exist matrices A,; € MR;, 0 <i < j< nand (5, 7) £ (0, n),
which satisfy (5); such a set of matrices is said to be a defining system for
(Vy oy Vo If {45} is a defining system for (V7 ,..., V,,>, then we say that
{Ay € Vy oy Vo>, where A, is given by (6), and (Vy,..., V> is defined
to be set of all homology classes so obtainable from some defining system.
In particular, (¥, , V) is always defined and contains only the product ViV,.
We say that (V; ..., V,,> is strictly defined if each

Vi Vs, 1<j—i<n—2,

is defined, in MH(R;_, ;), and contains only the zero matrix. In particular,
every defined triple product is strictly defined.

Let {40 i<j<<n (ij)# (0,n)} be a defining system for
(Vy yeer Vi>. We may describe the system by the strictly upper triangular
block matrix 4 = (A4;;) with upper right corner deleted:

0 Ay e - Aona *
0 -‘412 t ‘41,71—1 Al,n

a= o ° o
0 Ay n
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Then dA = A4 — 4, in the sense that if 4,; = ¥i™%., 4,4, then
A4 = (4;) and this matrix differs from d4 only in the presence of the
block 4, in the upper right corner. We shall abbreviate A, to 4 and, under
the interpretation just given, we can use the simple formula 44 — dA4 = 4
to describe representative matrices for elements of (V7 ,..., V,>.

In many respects, strictly defined matric Massey products provide a more
satisfactory generalization of triple products than do arbitrary matric Massey
products. In fact, many of our results below will only be valid for strictly
defined operations. These results depend on building defining systems
A = (A;) by induction on j — ¢, and such arguments may fail without strict
definition since one could reach a nonbounding cycle A,; even though
{Vy ey Vi 1s defined. In all such cases, we shall appeal to the following
lemma.

Lemma L3, V..., V> is strictly defined if and only if each partial
defining system {A,,1q—p <k}, 1 <k <n—1, can be completed to a
defining system A for <V ,..., V,>.

Proof. 'The second condition means that if we are given matrices 4, for
g — p <Ck (and any k such that 1 <Ck << n — 1) which satisfy (5) and if
j —i =k 1, then 4, is a matrix of boundaries. Clearly this is so if and
only if each (V,,..., V;> = {0}, ] — i <<n.

It is worth remarking that matric Massey products could be defined for
infinite matrices having only finitely many nonzero entries. In this context,
if £ is a A-module, then ME is an infinitely graded /-module with one degree
for each pair (7, 7),7 > 1 and j = 1. If F is another /I-module, then the set of
all multipliable pairs (X, Y), Xe ME and Y e MF, is also an infinitely
graded A-module, with D(X, Y) = D(X) D(Y). Starting with these
observations, the tensor product ME X, MF can be constructed as usual
and can be proven to have all the standard properties. We shall use this fact
in the proof of Theorem 1.5 below.

We shall complete this section by studying the naturality of our operations.
For many applications, it is not enough to have naturality on maps in the
category (7, . Ordinary products are clearly preserved by maps of differential
/-modules that commute with the given pairings up to chain homotopy, and
we shall formulate a notion of n-homotopy multiplicativity which will
guaranteee the preservation of z#-tuple matric Massey products. The following
definition is essentially due to Clark [I] and parallels geometric work of
Stasheft [14].

Derinition 1.4. Let R and S be objects in (7, . Let f = {f,;}, where
fi5 ¢ Ry — S;;1s a morphism of differential /-modules. We say that f: R — .S
is an #-homotopy multiplicative map if for each / such that 1 <{ / < # and
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each sequence [ = (fy,...,7), 0 <, <<i <<+ <<i;<n, there exist
morphisms of /A-modules 7%, : Riofx X ® Rizqil ~—> 8,4, of degree 1 — 1/,
such that Ay = fand if u, € R, i, 1< k < [, then

4

dhy(u; @ - D wy) Z hy(ity G -+ 0ty & dig, D gy & - @ wy)

- Z hy (i 00 Uy O iy D Uppp OO - Qo)

-1
-+ Z bty &0 - R ) by (tyey 0 R uy) (7
=1

If f is a morphism in {7, , we may take A, = 0,7 > 1. The existence of 4,
says that f is homotopy multiplicative since

dhy — hy(d 08 — 1 0d) = pw(fROf) —fu: Ry @ Ry — Sy
The k, for [ = 2 are higher multiplicative homotopies.

THeOREM 1.5. Let f: R—>S be an n-homotopy multiplicative map.
Suppose that <V ,..., V., is defined in MH(R,,), where V; € MH(R; 4 ;). Then
VD)oo, [(V20)> ds defined in MH(S,,), and

TV Vi) CLFalV s, FlVa-

Moreover, if each f, : H(R;) — H(S};) is an isomorphism, then equality holds.

Proof. We shall work with infinite matrices having only finitely many
nonzero entries in this proof. Let 4, == f and let &;, 2 < { < #n, be given
homotopies satisfying (7). In view of the remarks preceding Definition 1.4, (7)
remains valid if the u, are replaced by matrices with entries in Ri,_y7,, . To
simplify the proof, we introduce the following notation. Suppose that

={Au i<k <I<j (k1) G

is a defining system for (¥, ,..., ¥;>. Then define

11]) - Z Z k?u( 42011 \X) ® Aim_lim)w

m=2

where the second sum is taken over all sequences I = (i, ,..., Z,,) such that
P =iy < <1, =j. If Ay such that d4,, = 4, is also given, define
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F(A4Y) = f(4,;) -+ H(AY), and define F(A*V¥) = f(A4;_;;). Then a
straightforward computation proves that

-1

(i) dH(AY) = Y F(A%)F(A¥) — f(4,),
k=i-+1

and given A,; , it follows (since df = fd) that

(1) dF(AY) = ]il F(A™)F(AY).

k=i+1

Now if 4 = (A,;) is a defining system for (V.. V,>, then, by f{ii),
B = (F(4,;))) is a defining system for {fy(V1),..., f(V,)>. By (i), with
(i, ) = (0, n), B is homologous to f(4), and this proves that

sV 5o VO CLLlV)sees F(Vin)

For the opposite inclusion, assume that each f, : H(R;)— H(S,;;) is an
isomorphism and let B be a given defining system for {f(V1),..., fu(V.}>.
By induction on j — i, we shall choose a defining system A = (4;;) for
(V7 ,oey V> such that f(4) is homologous to B. Let 4;_; ; be any matrix of
representative cycles for ¥;. Since f(4,;) and B, ,, both represent
f«(V;), we may choose matrices C,_, ;€ MS,; ; ; such that

dCi-'l.i - f(Ai—l.i) — Bi«l,i .

Now, for any ¢ such that i < ¢ <{ 7 — 2, assume inductively that matrices
A, € MRy, and Cy; € MS,; have been found, for each pair (%, !) such that
I < I — k < q, which satisfy

(111)
-1
ddy, = A~kl and  dCyy = F(A*) — By + Z (ékmF(Amz) + BimCint)-

m==k--1

Let j — 7 = ¢. Then an easy calculation, using (ii), shows that

9=l i-1

) d(Y Cubla) 4 BuCu) = By~ 3 FABRE)
k=141 / F=i41

Since B;; is a matrix of boundaries, s0 is Z;; 1 F(A™) F(A%). By (i), it follows

that f(4,) and therefore A,; are also matrices of boundaries. Choose

A}, e MR,; such that d4;; = A,;. Let

.. j_l p— .
By = f(Ay) + HAY) — B, 4+ Y. (CaF(A¥) + ByCyy).

k=i+1
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Then E;; € MS,; is a matrix of cycles. Choose matrices of cycles D,; € MR;;
such that f(D;;) is homologous to E,; and choose C; e MS,; such that
dC,; = E; — f(Dy). Let 4;; = A;; — D;;. Then A;; and C,; satisfy (iii),
with (k, I) replaced by (7, j). By induction, there exist such A;; and Cy; for all
pairs (i, ), 1 <j — 1 < n. Now formulas (i) and (iv), with (7, j) replaced by
(0, #), show that f(A) and B are homologous, and this completes the proof.

The full generality of the theorem above will be used elsewhere to obtain
a generalized Cartan formula relating Steenrod operations to matric Massey
products. It will also be needed in [/0] to study matric Massey products in
the Etlenberg—Moore spectral sequence.

2. INDETERMINACY AND LINEARITY RELATIONS

In this section, we shall study the indeterminacy of matric Massey products
and shall establish certain linearity relations satisfied by these operations.
We require the following terminology.

DeriniTioN 2.1, By the sum (V7 ..., V> + (Wy ..., W, of two matric
Massey products, we shall mean the set

{x+ylaelVy,.., Vyandye Wy ,.., W)l

The use of this notation will imply the extra hypothesis D(Vy,..., V) =
D(W, ..., W,) needed for the stated sums to be compatible with the grading.
If e A, we define AV ,..., V,,> to be the set {Ax | xe (V7 ,..., V,»}. With
these notations, we can define the indeterminacy In(l7,.., V,> by the
formula

In< l/l reres Vn> — <V1 LA Vn> - <V1 yeery Vw/
— {x =y lxye Ve Vn>}'
The following lemma will be needed in the study of the indeterminacy of

our operations. It shows that the set (¥y,.., V> is independent of the
choice of representative cycles for the V.

LemMa 2.2, If (Vi ..., V) is defined, then the entire set (V' ,..., V> can
be obtained from defining systems A which start with any fixed chosen set of
matrices A;_y ; of representative cycles for the V; .

Proof. Let B be any defining system for (¥} ,..., V,,> and choose matrices
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C;_4; such that dC;_, ; = A; 4 ; — B, ;. Define 4;; for 1 <j—1, by

induction on j — 7, via the formula
Ay = B — Ci,i+1Az'+1,J' - Bi,j—1Cj—1,a' .

Then A4 is a defining system for {V; ,..., V> such that

d(COIAIn -+ BO.n—ICn—l.n) =B — A

Using the lemma, we can show that any element of the indeterminacy
of an a-tuple matric Massey product is an element of an appropriate (n — 1)-
tuple matric Massey product. Actually, as the form of the matrices W,
defined in the next proposition will show, we must first slightly generalize
the notion of matric Massey product to allow symbols V..., V> where the
I7; are block matrices with blocks having entries in various H(R,;) and where
the blocks are so arranged that the pairings p,;;, allow the formation of the
products V;V,., . Since the principle should be clear and precise formulation
is awkward, we do not give the explicit definition. For application to all
examples, except (7), of Section 1, the generalization is in fact unnecessary.
The following result is due to D. Kraines (unpublished). It generalizes the
well-known fact that the indeterminacy of an ordinary triple product is the set
of all sums Tyx, + Fyv4 = (74, a?l)(ﬁ:) which have the same degree as
(T, Uy, Vg ‘

PROPOSITION 2.3. Let (V... V,> be defined in MH(R,,), V;= MH(R,_, ,).
Then INCVy rveey V> CUtr, o x_y W yeees Wi, aohere

7 7 V X,
W= XD, W= ()

g ) f 2<h<n-—2,
\ k+1

= (5

the union is taken over all (n — 1)-tuples of matrices (X, ,..., X,_;) such that
Xye MH(R, 4 .1y) and D(X,) = DV, , Vi)™t Moreover, if n = 3, then
equality holds:

In{Vy, Vz, V3> = U Wy, W2> = U (Vle ‘f‘Xle)-

(X, Xy) (Xy,Xy)

Proof. Let A == (A4;;) and A" = (4};) be any two defining systems for
<Fy gy V. By Lemma 2.2, we may assume that 4, , ;, = A;_, ; for all 7.
Define matrices By, == A, ;. — A; ;e MR, ;,,, 0<i<j<n—1,

(7,7) % (0, n — 1). Each B,_;, i1s a matrix of cycles, and we define
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X, = {By_y . e MH(R,_; ;.1). 1fn = 3,then 4 — A" = AyB,, + Byd;, .
which represents {I¥; , W,>, and it is clear that by adding matrices of cycles
to Ay, and to A, we can obtain any element of the form VX, + X,V as an
element of In(l7, Vy, Fyo. If # >3, we define Cy;, 0L <<j<<n— 1,

(5,7) # (0,n — 1), by

(Ao; , Byy) i 7=0
. i . ‘ if | =Si<j<n-2
Ly = ( 0 Aiyi/ !

B 7=

<./1§+1,n) if j=n—1

Then it is easy to verify that C = (C};) is a defining system for (W, ,..., W,
such that ¢ = 4 — 4".

In view of the fact that (I, ¥,> = V1V, an alternative way of writing
the indeterminacy of a triple product is

InCVy, V,, Vg = U (A, Ve + 7y, X

(X X,)

We shall generalize this formula to certain strictly defined n-tuple matric
Massey produects. It will be most expeditious to first obtain upper and
lower bounds for the indeterminacy of arbitrary strictly defined operations.

PrOPOSITION 2.4. Let (I ,..., V,> be strictly defined.

(i) IfXpe MH(R,_, ;) and D(Xy) == DV, Vi) Ll <kin— 1,
then <Vy o Viery Xpy Viensow, Vi s strictly defined and is contained in
InCly o V)

ner

n—=1

(i) In<Fy, 1,0 C U Y e Vit s Xiy Vigs vy 120

In particular, In{V ..., V> = {0} if and only if each
<Vl 3eres [/vk«—l ’ A’YI.' ’ Vk+2 yeeny I/11>

consists only of the zero matrix. Moreover, if n = 4, then equality holds in (ii).

Proof. (i). We proceed by induction on #, the result being obvious if
n = 3. Assume (1) for [ << n. Then

Yy ooy Vs, Xy Vi o Vi CIndVy s, Vi == {0}
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fori<<k<j—landj —7<n—1,hence Vo, Vi, Xip, Viig ooy Vi
is strictly defined. Let D be any defining system for this operation. We may
write D in the form

(A5 j<k
(a) Dg:?B;, i'gk~lf§jﬂl
(A iz k.

Then the 4%, form a partial defining system for {Vy,.., V,» which by
Lemma 1.3, can be extended to a complete defining system 4*. Define C* by

(b) Ch=dl, if j<k o ik
Ch=dAk+Bt,, if i<k—1<j—1

Then C* is a defining system for (¥, ,..., V,,> such that Cr — 4 = D* and
this proves statement (i).

(i)). Let A and A’ be any two defining systems for (V;,.., I>. By
Lemma 2.2, we may assume that 4,_; . = A, . Let

N Y 14 Y .
Bi g = Apapn — fll;-—l,lﬁ»l: I<hkn—1;

B¥_, , is a matrix of cycles which represents an element X € MH(R,_, ;. .1).
Let A! == 4. By induction on k, we shall obtain defining systems .4* for
(Vy e, V> and matrices B}, for i<k —1<j—1and 1 <k <n — |
such that

i i 5o be ko__ k .
(c) Ay = Aj; for j <k B = Aieyn — Airis and

k=1 i—1
(d) dBlkf - Z qu,:nBr}:u + Z Eik;nAﬁHlJ-H: 1 <] —1 <n-— I.

==k m=k

In fact, suppose given A% If B%, is defined by (c), then (d) is satisfied for
J = k. The remaining BY, ,i <.k — 1 < j — 1, are obtained by induction on
J — # as follows. Condition (d} is precisely what is required for formula (a) to
give a defining system DF for (V, ..., X ,..., V,>. Since the latter product

is strictly defined and since, given B, for ¢ — p << j — i, the right side of (d)

ey
represents an element of (I, ..., X ;[ yeers V> == {0}, we can indeed find the
B, . Given the Bf; , we define C* by formula (b) and let A*#! = C*. Formulas
(b) and (c) then imply that 4} = A4, for j < k + 1. Moreover, we now
have that C"~! = A’. Putting these facts together, we see that

A A= DS (e Dy — Y D
k=1

k=1
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and this proves (ii). The fact that equality holds in (ii) when #» = 4 will follow
from a more general result (Theorem 2.8 below).

The preceding result is unsatisfactory in that 1t fails to show that
In(V, ..., V,> is a A-module and that (V... V> is a coset. To obtain
maximum precision in the statement of hypotheses which guarantee these
conclusions, among others, we require the following technical definition and
lemma.

DerixitioN 2.5. Let <V ,..., V> be strictly defined, and consider the
strictly  defined operations <Vy,.., V1, X, Viseso., V,»,  where
X,e MH(R,_, ;+,) and D(X}) = D(V,, V,.5)"t. We say that (V;,..., V>
is k-rigidly defined, 1 <C & <C n, provided that (V7 ,..., X;,..., V) = {0} for
al X,if 1l <l<(k—20rk+1<I<in— landfor X; =0ifl ==k — |
or [ = k. This condition is certainly satisfied if In{V; ,..., V,,> = {0}, but is
more general. For example, since {V;, 0> = {0} = <0, V>, any defined
triple product is 2-rigidly defined. Clearly (17 ,..., V,> is both & and &’
rigidly defined, & + 1 << &, if and only if In{V, ,...,, V> = {0}

Levma 2.6, Let V..., V> be k-rigidly defined, and let A,; , k <1 and
J <k, be any given partial defining sysiem for (V' ,..., V> Letx € {Vy ..., V>
Then there exists a defining system A for {V, ..., V,> which extends the given

partial defining system and satisfies {4} = x.

Proof. Let A’ be a defining system for (V, ,..., V,,> such that {4} = .
We may assume that A ;, = A, |, if i <<k or i >k -+ 1, and we may
define

g ’ . A __ ’ . — F
(@) Ayap = Ajars Ay prr = bt s A = s

Let By, = Ay a0 — Arqum, | <<I<n— 1. Then B}, is a matrix
of cycles, and we let X; = {B}_, ;}. Clearly X, ; = 0and X} = 0. Now extend
the given A,; (including those defined in (a) to a defining system A4 for
(V1 1oy V0. The proof of (ii) of the preceding proposition, together with the
definition of k-rigidity, immediately imply that .4 is homologous to 4, and
this proves the result.

Before completing our study of indeterminacy, we obtain a result describing
the linearity of matric Massey products. This result will then be used to show
that In(¥; ,..., ¥,,> is a l-module in favorable cases.

Proposition 2.7. Let V..., V,> be defined, and let 1 <k < n.

() If V. is the zero matrix, then 0 € (V1 ..., V.

(1) If Aed, then ALV, .., Vo TV, AV, Vi and equality
holds if X is invertible in A.
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(@) IfV, ="V, -+ Vi and <V yeoy Vi ooy V> is strictly defined, then

<r/1 3eery Vn> C <171 yreey I/IIL sty I/n> + <V1 LR 17/,: yreey I/n>

and equality holds if (V1 ..., Vi s, Vo> is k-rigidly defined.

Proof. (i) follows from the case A = 0 of (ii). To prove (ii), let A be any
defining system for <V, ,..., V) and define B;; = A4;; if k <<iorj < kand
B,; = M,;if i <<k <{j. Then B is a defining system for (V7 ,..., AV ..., Vo>
such that B = M4 If A is invertible, then we have

(Vg ey AWV ooy Vi = MKV oy AWy VD C XYy oy VD

and therefore equality holds. To prove (iii), let 4 be any defining system for
(V3 yory Vs> and choose a defining system B for V7 ..., V..., V> such
that By = A, if R<<i or j<<k. Let Cyy = By; if k<7 or j <k and

Cij = Ai}' — Bi:}' lf l << k <].

Then C is a defining system for <V; ,..., V' ..., V,,> such that B - C = 4.
To prove the opposite inclusion, let C be any defining system for
(V3 yes Vi sy Vo> By the previous lemma, since (V,,..., ¥V, ,..., V,> is
k-rigidly defined, any element of this product can be obtained as {5}, where B
satisfies B,; = C,; if k <{i orj < k. Given any such C and B, let 4,; = B,;
ifk<iorj<kand 4;; = B;; + C;; if t <k <j. Then 4 is a defining
system for (I, ,..., V,,> such that 4 = B + C.

We can now obtain a reasonably definitive result on the indeterminacy
of strictly defined matric Massey products. The result appears to be best
possible in the sense that if any hypothesis is deleted, then there is a counter-
example to the conclusion.

Tueorem 2.8. Let (Vy ..., V> be strictly defined, and consider the strictly
defined operations {Vy yoo, Vi oy, Xpy Viso ooy Vi, where Xy € MH(R_y 111)
satisfies (X)) = DV, , Vi) L

() Ifeach{Vy oy X rooy Vidy 2 < b < 1 — 2, is k-rigidly defined, then

n—1
Vi, Vd = U Y Vi Xieens Vi

(Xprever Xpyy) k=1

(i) If each {Vy,o, X\ o, Vi, 1 <k <n— 1, is k-rigidly defined,
then In(Vy ..., V> is @ A-module and x + In{V, ..., V.> = <V, ..., V,,> for

each x e {Vy,..., V>
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Proof. (i) We know that
n—yx

IV V0 C U Y ey Xy Vi

(Xysein X y) k=1

and we must prove the opposite inclusion. Let D* be a defining system for
some Iy, Xppiy Voo, 1 <k <Cm - |. We may write D* in the form

Ak j <k ? .
ok - 0<i<j<n—1
a Dt = (BY | i< k-1 <j—1 = ’
O L, T damea

Suppose the given A4}, , 7 2> 2, have been completed to a defining system A
for (¥Vy,.., V>, and consider the following inductive definition of A%,
2 << ksIm

(b) A5 = 4% if j<<k or [ =k

At =A%+ BY . 0f k1 <L
If the A in (a) could be so chosen as to satisfy (b), then we would have
n—1 n—1L

A A1 = 5 (A - 4 = Y D
o}

k=1

|

II

and this would imply that Z?;; {Dy e Inby ..., V,», as desired. We claim
that this can indeed be done. Observe that (b) implies the following explicit
formula:

=1
(©) Afirin = At i 12k Ay = A ~ 2 Bl if j <k

pazitl

We start with the given A}, i > 2. By Lemma 2.6, no matter how the
Ag; and Aj; are chosen, we can assume that the A%, of (a) are given by (c) for
2 <<k <in— 2 since each <V oy Xy yoory Vo» 1s k-rigidly defined. If we
could assume that the A7 of (a) were given by (c) for 2 <{{ << j=<{n —2
(with Agt and Ay arbitrary, j <Cn — 2), then we could define Aj; and
AL j<n—2,by Ay = A% — 3,7 B!, and (c) would hold in its
entirety. We could then choose any A}, _,, A7, , and A;, ; such that A*
was a defining system for (V, ,..., V/,> and could define the remaining A,
namely those fori << & < jand 2 <C k& <{ n — 1, by (b) and thus complete the
proof. It remains therefore to show that if {£,; |2 <{<j<n — 2} is any
partial defining system for <V, ,..., V,_,, X, >, then it can be completed
to a defining system E such that {£} = {D""1}. We may assume that
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E i = D7t and we define E; = DIt if j<2 or i zn—3. We
complete the resulting partial deﬁning system to a defining system L and
we let ¥V, ={E,_; ;4 — D3 ,.1). Observe that ¥, =0 and V,_, = 0. By

the proof of (ii) of Proposition 2.4, we have that
{E_[)?l 'OV.‘}v )'n""xn—1>"l‘<V1v * n370>

n—3

H D ey Vicgs Yo, Vi ey Frsgy Xo .

L

Since (V5 oy, Vilg s Yoy Vigg yone, 10

2w

Vg oo Vias Yoo Vg yoos Viay X > = {0}, 21 <n— 3.

is [-rigidly defined each

Since (Vi e, Vg, Xy, Vi is (m — 2)-rigidly defined,
Fie Vg, 00 = {0},

By the previous proposition, 0€ 70, V..., V), 5, X, ;> and it is easy to
verify that In”0, 1, ,..., ¥, _,, X, 1> = {0} by use of Proposition 2.4 and the
k-rigidity of all {Vy,.., X ..., V., 2 <k Cu—2. Thus {E} = {D1}
and the proof of (i) is complete.

(i) If xped¥y,, Xp, Vo and vy, eV ., Y, ,.., V>, then

Ape (Ve AX o, P and xp vy eV, X+ Yo, 170 by
the previous proposition. It follows from (i) that In{V/, ..., I,,> is a A-module.
Let xeVi,., V. If ye{Vy,., >, then y =« Jr (y —x)ea 4
In(Vy ..., V7, and it remains to prove that v - In(F| ..., V> C<{V7 ...
It suffices to show that x + x, e {17 ..., I'>, x, as above. Let x == {A} for
some defining system . Let x, = {D*} for the defining system D* given
in (a). By Lemma 2.6, we may assume that 4}, = A, forj < kori =k 4 I.
LetCyy = A, ifj << kori = kand Cy; = A;; +- B, yifi <<k — 1 <<j — .
Then C is a defining system for {}7 ..., V',> such that C = 4 + D* and
therefore & -1 x, € (I ..., I, as was to be shown.

We should indicate the precise content of the hypotheses of the theorem.
The hypotheses of (i) amount to the following requirements on (n — 2)-tuple
matric Massey products (X as in the theorem):

e Vi1 0, Vi 5o, Vo0 = {08, | <ksin-—2, (N

and

< I/’1 seees Viey s YI , Vi 12 s Vz%l , A, V£+2 seeny Vn) - {O}> (2)
l<k+1l<l<n and (B, )= (,n —1).
The hypotheses of (ii) add the further requirement

(X1, Vi oo Vid, Xl = {00 3)

481/12/4-7
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Conditions (1) and (2) are vacuous if # = 4, and therefore Theorem 2.8 does
complete the proof of Proposition 2.4.

There are various formulas relating sums of matric Massey products
to matric Massey products defined by larger matrices. The relevance of
larger matrices is made clear by the observation that

Sy g i . /- Y .
WV A = (0 ()

We complete this section by giving two cxamples of such formulas, the second
of which is designed for use in Section 4. (The remarks preceding
Proposition 2.3 are needed to make sense of this example.)

Prorostrion 2.9. Let {7 ,.., 1, and {Wy,., W, . be defined. Then
{X| yeoes X, 15 defined, where
['i 0, o . - 'I'In )

) it 1 <@ <n, X, == (W ,

X=X (e

and 'y oy V) o (W o W, C 2N X0

¥

Proof. Let A and B be defining systems for (V7 ..., I, > and (W ..., W, -
and define

Cy = (Ao s Bog) c;.j:(‘gf zgij) 0w i<j<on Chy e (;)

Then C'is a defining system for (X7 ,..., X, such that C — 4 4- B.
Prorosttion 2.10. Let Ve MH(R; ;). Fix [ such that O << 1 <n —2
and suppose given Y, e MH(R,_,,.) for 1 <Ck<n—1 such that

Vs Vi, Yoo, Viaa vy Voo i strictly defined. Then {Xy,.., X, >
is defined, where

‘\vl — ()'1, I/l)x /X'i = ( T 7 if 1 <<t <<n— 17 ‘Xn—l = (Y'r—l’ ’

and Sy AWy s Viers Yioo Frrag oens Voo 0V (X ooy Xyl # 2.
Proof. Since <Vy,.., V, ;4 , Y, > and (Y, Vi, .., Vo> are defined,

there exist matrices A, , j <-»n — [ or i > [, such that {4, , ,} = V, and

dA;, = A for j > i 4 1. Choose defining systems A* for the

<l/1 3oy [/‘,{~—1 : ; & lv’iﬂ,u{ FL o3 I/‘n/\"'
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such that A}, = A, ;,,if i > kand A}, = 4,;if j < k. Let B;; = Z,Mrl AL,
0<i<j<n—1and (/)% (0,n — 1), so that B,_; , = A ., and
define

A 0 o . .
(u (BOJ ) AOJ) Cij = ( AL ) it 0 <1 <y <<n-— ,

B; Ay
Ai+ W
Ci,n—l = (Bi,nl—l)

Then C is a defining system for <X ..., X, such that € = Z;:i A*,

3. AssocIATIVITY AND COMMUTATIVITY RELATIONS

Matric Massey products satisfy a variety of associativity and commutativity
relations, and we shall obtain some of the most useful of these here. In the
following two theorems, we assume given an object Re (7, and a fixed
multipliable system of matrices (Iy,..., V,,), V€ MH(R,_ ;).

Tueorem 3.1.  The following associativity formulas hold.

W) If Voo Voo is defined and if I, 1 <1l <mn, is given such that
Vi V> = {0} for 1 << j < I, then

% 1< V. Vn/ C _\\I 1 ¢ 'I,>) I/vl+1 rer V71>'
(i1) Ij \I 1 , Vier) is defined and if k, | <Ck <n — 1, is given such that
Vg sy, Vo f{O}fork <4 < n, then

Vs VoD Vo CAF ey Uiy Vg o VOO

(i) If <Vo,..,V,1> is defined and contains zero and if k and |,
| stk <l <<n, are given such that (V... V,> = {0} for k <<i <nand
Ve Vip = {0} for 1 <j << I, then

0 € <71 JAREE] r/vlc ’ <l;lc~+1 3ty I/n// <I 1> Vl>v l7l+1 9reey L7n>

Proof. A simple check of signs (using <V, Vy = V;V, and
(Voo Vid = <V uee, V,,>) shows that (i) and (ii) are just more precise
versions of (iii) in the specml cases k = 1 and [ = n — 1. To prove (iii),
let A,;, 1 <<i{<j<{n —1, be matrices such that {4, .} =V, and
dA;; = A;; for j>1i+4 1. These exist since 0€(V,,..., V,_;>. Choose
further matrices A,,, i >k, and A,;, j < I, such that {4, |7 >k} and
{A4,; |7 < I} are defining systems for <V, ,..., V> and for <V, ,..., V>, We
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can do this since <V, ..., > = {0}, ¢ >k and V. b == {0L 7 0 L

Now define matrices B,; ,j <~ & =+ l,and C,; .7 = — 1, by

n—1

]))/'/' = Al'j if j = k’ Bi,k S S Z ‘4715m‘4nm it 0<i k
meh bl
-1

Co=Ady i i Clyy = Y dgndy, if /e
=1

In particular, B, ;. = A, and €, - A, , and it is easy to verify
that B and C are defining systems for (Fy,.., ., {4,}> and for
AW, Fragye Vo, Ifl =k -1, then B — C - 0. If />~ k - 1, then a
straightforward calculation shows that B + C - a’(Z:’_,,—l,H Agd,,,). This
proves (ii1). To prove (i), we merely observe that we could start the above
argument using any defining system for <I’, ..., },» and that B would then
be precisely Ay Ay, . This shows that each element of I/}, ,..., I,> belongs
to — Ayl Vit yeeey Voo for some {0 € 7V, ..., ;. 'The modifications
needed to prove (i1) are equally simple.

We single out certain frequently used special cases in the following
corollary.

COROLLARY 3.2. Massey products and ordirary products are related by the
following formulas.
(i) If<Vy, V), is defined, then {ViV,, ¥y, Vo is defined and
ViV ooy V)3 C =0 Vs, Vg e, B0

() If Vs Vg s defined, then <V ..., V', ., V', V. is defined
and

2 i

Vs Vi V, COE o Vs VLV
(i) If {Vy oy Voo and <Vy o V5 are strictly defined, then
VikVa yos Vo= 70, Vol V.
Proof. (i) and (ii) follow from the cases / == 2and & — n — 2 of (1) and (11)
of the theorem where, for (ii), V; is replaced by V, if 7 < n. Part (iii) follows

from the cases [ == n — 1 of (i) and & == 1 of (ii) of the theorem, since these
are simultaneously valid under the present hypotheses.

The last part of the corollary contains the simplest special case, [ = n — 2,
of the following general system of relations between (! -}- 1)-tuple matric
Massey products and (n — I)-tuple matrix Massey products.
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TueoreMm 3.3, Let be given such that | <1l << n — 2and, if | << §(n — 1),
let k be given such that 1 < k < n — 2l Assume that {V,..., f’qj L 18 strictly
defined and consist of the single matrix Y, for each q such that | <q <<n — |
if 12> Yn — 1) or such that k < q < k -+ 1if I <L(n—1). Assume further
that V..., V. a- 1 s Yo, Viairia ooy Vi 5 strictly defined for each such q. Then
0¥, Vi Vi s ) o Vasrsr oo Vil

Proof. We first prove the more complicated case / <Z }(n — 1) and then
indicate the modifications necessary in the case /= l(n — 1). We have
OV, Vigpand 0e<{V,pq o0y V> since

Vs Vs Yo, Vietin e Vo
is strictly defined for ¢ =k <! and ¢ = k. Choose matrices 4,
j<k-+1—1ori>=k+1 such that {4, ,,} = V', and dd,;, = 4, for
j =1 -+ 1. Since <Vq yeees Vg 18 strictly defined, & < g <0 & *l we can
choose further matrices
Ay h—1<i<bk+1<j<<k-+-21 and j—i7]
such that {4,., 1.4} = Viey and dA;; = A,; for j > i 4 1. Since each
{Vyses Vigop has  zero indeterminacy, we necessarily have that
{A, 1410 = Y, .Byinduction on g, we can obtain defining systems 47 for the
T s Vet ) a3 Varia veers Vi which satisfy

I if j <g A=A i P2

max (i+1,k+1-1) k-ri—1
2 g a 5 qr
(b) Aiq — Z AimAm,q—'l - Z A'iq
m=q r=max(k,i+1)
it i <qg<k+1
i+l fal-1
Jk+l T ar o < o
(© A=Y dpdps— Y AL it i< k1
m=k4-1 r=max(’i,i-+1)

Here A2, , = A,1.411, 2and a quite tedious calculation demonstrates that
(b) and (c) are consistent with dA47 == AN” . The A% for i < ¢ < j and
g <k +1 are chosen arbltrarlly so that d4 = A% . Another tedious
calculation shows that Z A‘I =0, and thls proves the result for
I << 4(n — 1). Suppose that l/ Hn — 1) Since {V,,..., Vs is strictly
defined with zero indeterminacy for 1 " g < n — I, we can choose matrices
A7 — 1</ such that {4, | ¢ — 1< j <{ g + 1} is a defining system
for <V, ,..., Vo> and {4, 1H,} = Y By induction on ¢, we can find
defining systems A¢ for <V, ,..., V.1, Yy, Vyirig vy Vo> which satisfy (a)
above and

A /ﬁ/ \

i+ q—1

(b,) A'zlq - z gz'm‘4m.q+l - Z :—1?{1' 1< q <n— L

m=q r=i41
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The A% ,i < q < j, are arbitrary such that d4% = A% . Now if [ = }(n — 1
-

then Y01 A2 — 0, whileif [ > §(n — 1), then d(3 o AomAmn) = St
and this completes the proof.

b

The following corollary complements Corollary 3.2.

CorOLLARY 3.4. Massey products and ordinary products are related by the
Jollowing formulas.

Q) If ViV, Vs oy Voo ds defined, then <Vy | VoV, Vy oy V.5 is defined

and
ViV, Ve ooty V) C k¥, VoVy , Vi oy V).

(1) If <Vyyeery Vipgy Vey Vi is defined, then (Vy,..., Vg, Vy_oViy, Vo> is
defined and

17 7 V4 7N s v 7 ;
\]/1 yrery |2 =2 I‘n—ll n/ C ’—\l/l EELRES I/'/1—3 ’ |/ 71—2L n-17 V7L>

(1) If <V ey ViV isn sees Vi and <V ooty ViaVies veoey Vi ave strictly
defined, then

<V1 3oy I/k—l ) I/ICI/A:-H ’ l/7c+2 Ity I/n,\f\

A Vo Vi VioaVisa s Viess sy Voo 2 @

Proof. (iil) is precisely the case / = | of the theorem, with ', replaced by
V, for ¢ < k. (i) and (ii) are easily obtained sharpenings of (iii) in the cases
k=1land k =n —2.

We now turn to commutativity relations. We first define an involution of
the category (7, and then relate it to matric Massey products.

Drrinrrion 3.5, Let R == {R;, p;x} be an object in (7, . Define the
opposite object R0 = {RY | u2.% in (7, by

: 0 . 0o . Do 0 0
(1) Rij - Rn—j.n—i ) Mije — #n—k,n—j.n—ﬂ . Rii ® Rﬂc—> Ry,

where T : R, _; i ® Ry i — Ry & Ry_j s is the standard twisting
map, T(x ®y) = (—1)de€ ¢ dee 5 ) x. A simple diagram chase proves that
R°c (%, . Observe that R, ; = R, _; ,_;,; and that R}, = R, .

If (Vy,..., V,,) is a multipliable system, V; € MH(R,_, ;), and if V' denotes
the matrix transpose to V;, then clearly (¥, ,..., V') is a multipliable system
such that D(Vy,.., VY = D(V, ..., V]). It therefore makes sense to
compare (Vy ,..., V., computed in R, to <V, ,..., V1>, computed in R°, This
can always be done, but assumptions as to the degrees of the entries of the V;
must be made in order to obtain a uniform statement (if 2 3£ 0 in A). Thus
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suppose that each entry of V7, has the same parity €; (where ¢, = 0 if the
degrees are all even, ¢; = | if the degrees are all odd) and define

s@)=j—1+ Z (ex + e, + 1)

ikl
With these notations, we have the following result.

ProposiTiON 3.6. Let <{V1,..., V,> be defined in R, V;c MH(R;_,,). If
240 in A, assume that each entry of V, has the same parity e;. Then
(V) ey V> is defined in RY, and

Wy e V3 = (1Y VD

as a subset of MH(R,,).

Proof. Observe first that if X € MR,; and Y € MR;,,, and if the degrees
of the entries of X all have parity ¢ and the degrees of the entries of Y all
have parity ¢, then

(XY) = (—D"Y'X € MRy = MRy .., ,

where XY is computed in R and Y'X" is computed in R®. Now let 4 be a
defining system for {Vy,.., V,> and define B, ;, , = (—1)¢+1d 4.
Since s(z,¢) = 0, B,_s n_s2s1 = Aj_1+, which represents V. In view of our
first observation, it requires only a tedious verification of signs to see that B
is a defining system in R® for (¥, ,..., V> such that (—1)*@» B —= 4. This
proves that

(VY ooy V! C(=1P 0 VD,

and the opposite inclusion follows from symmetry.

For the remainder of this section, we shall assume given a DGA A-algebra
U, regarded as an object of {7, . Observe that U°, the opposite algebra of U,
is precisely the opposite object of U in the category (%, . Moreover, writing
elements of U° in the form #° the map f: U — U° defined by f(u) = «° is
a homology isomorphism of differential A-modules. Of course, f is a morphism
of algebras if and only if U is commutative. We shall say that U is z-homotopy
commutative if f: U— U® 1s n-homotopy multiplicative in the sense of
Definition 1.4. This is clearly a condition as to the existence of certain
homotopies Ué— U, 2 <{i <n, and is satisfied in each of the following
cases:
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(1) U = C*X; A), where X is a topological space
(2) U = C(£2X; 1), where X is an H-space with unit
(Moore loops are understood, so as to have associativity)

(3) U — B(A)*, the dual of the bar construction of a cocommutative

Hopf algebra .

Indeed, the requisite homotopies can be obtained by the method of acyclic
models in case (1), by passing to chains from geometric homotopies in case (2)
(see Clark [/]), and by use of the contracting homotopy in B(A) in case (3)
(see [10]).

We can now use our naturality result to convert Proposition 3.6 into an
internal statement about matric Massey products in H(U).

CorOLLARY 3.7. Let U be an n-homotopy commutative DGA A-algebra.
Let {Vy ..., V> be defined, V, e MH(U). If 2 7 Qin A, assume that each entry
of V; has the same parity ¢;. Then <V, ... V> is also defined, and

Wy V) = (=100 VD,

where s(1,n) <= n— 1 -3 ., (e - D(e + ).

Proof. Consider f: U/ — U° By Theorem 1.5, we have that

FslVy s Vi = LV, fl V)0

On the other hand, the previous proposition gives

JulV e, Voot e (1 (VY s F (V)

Therefore {f (V1),..o, (V)" = (=130 {fo (V) [ (V1) >, with both
sides computed in U°. Applying f.' to both sides, we obtain the desired
relation by use of Theorem 1.5.

The corollary is due to Kraines [5] in the case of ordinary Massey products.
We complete this section by giving two different generalizations to n-tuple
products of the well-known permutativity relation

Oe \/_d, b) C> ,_;- <bv ¢, a> :E <C) a, b>,

which is valid for ordinary triple products in the cohomology of spaces.
Since permutations of multipliable systems are usually not multipliable
systems, these results will only make sense for ordinary Massey products.
To simplify the statement of the first relation, let us say that U/ is n-homotopy
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permutative if there exist morphisms of /-modules hL Ul— U, of degrec
1 — [, such that A, 1s the identity map and, for 2 <{ [ <

dhy(u, & - & Z (i & == ity O duy @y & Duwy)

- Z by (i, @ o D ity @ Uty B Uy & QO 1)
=1

n

( 1)(degul+1) z (deguy+1)
=2

Py _y(fty (9 ++ Dty (9 1h80y).

(A calculation is required to show that this notion makes sense, that is, is
consistent with d? = 0.) This condition is satisfied in the first and third
examples listed above. We can now obtain the following result, which is
also due to Kraines [5]. We sketch a proof since our notations and sign
conventions differ from his.

ProrosITION 3.8. Let U be an n-homotopy permutative DGA A-algebra.
Let v; € H(U) and suppose that {v, ,..., v, is defined and that

{Upig yoeey Ty s Ty Vg ey T
ts strictly defined for | < I < n. Then

n—1
(— 1y 0nip vy C Z (1)L g, Ty e, O,

=1
where s(i, j) =7 — 1+ 3; ; (deg vy, + 1)(deg v, 4 1).

Proof. Let a = (a;) be a defining system for (v ,...,¢,>. Since the
Ty g yees Uy 5 Up 5eey Uy are strictly defined, we can choose elements a
0 < i < j < n, by induction on j — 7, such that

Jjis

n—1 ~1
daji = z jney; + Ajptly; + Z Ay »
m=j+1 =1

Then defining systems a’ for the {2,,; ,..., ¥ , ¥y ,..., ¥;> are given by

Ainil,j—n+l if n—1Ix
T Ta ] .
;== \Qiili—n+1 I e<n—10<]
Ay a1 if j<<n—1L
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Write u(k) = s(1, k) 4 s(k + 1, n),0 < k£ << n. Then a tedious verification of
signs demonstrates the formula

re—1 n—1

Y (=10 a =Y (=) dan + Y (1) a, ay.
I=1

I==1 0 hetan

Adding and subtracting (—1)*-™ & on the right, we obtain

n—1
Z (— 10 @l = (— 1) g - b, b= Z (=18 ay, , ay),
=1

O h<i<n

where #(0) = 1 + s(1, #) and a, is defined to be a,, . Let homotopies £,
give the n-homotopy permutativity of . Define

n
¢ = Z Z (—l)u(l") hfa;,, @ &oag )
=21

where the second sum is taken over all sequences I == (g, ,..., #;_4) such that
0 <idy <4y < <f_y <<n Then a tedious calculation shows that
d(c) = —b, and this proves the result.

For our final commutativity result, we require that U be homotopy
commutative via a U;-product which satisfies the Hirsch formula. This
means that we are given U, : U R U — U, of degree —1, satisfying

(i) dlxyy) =[x, 3] —d@) Uy + 5, d(y), and

(i) (xy) Uy & = (—1)tesvdess (y U, 2) y — F(y U 2).
This hypothesis is satisties if {7 = C*(.X;4) [3,10] or if U = B(A)*, 4 a
cocommutative Hopf algebra [/0]. It should be observed that the existence

of a Uj-product in U satisfying (i) is equivalent to either 2-homotopy
commutativity or permutativity: in both cases, the required homotopy A,

is given by Zy(x &) y) = —F U, y.

ProposiTioN 3.9. Let U be a DGA A-algebra equipped with a \U,-product
which satisfies the Hirsch formula. Let v, € H(U) and suppose that {vy ,..., v,>
is defined and that {vy ..., v, , U;, Vpsq sy Uy 18 strictly defined, 2 << 1 <n.
Then

n
By ey Ty C = 3 (1) 0y o, 2, Ty, Uy e, T,
2

where t(l) = (deg 7, + 1). 22::2 (deg v, + 1).
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Proof. Let a' = (a};) be a defining system for <{v;,..,v,». Define
1(i,7) = (deg vy + 1)+ X% _;(deg v, + 1),2 <1 <{j <m0 that W) = 12,1).
Since each <2, ,...,0;, ¥y, Upoq sory Uny I8 strictly defined, we can choose
defining systems for these products, by induction on /, such that

I o gl e . [ o~ ]
(@ a,=4a,,,, if j<i al, =a; if i=1 an
-1
1 a1 . T VLD gk Al 1
(b) Ay, = Qors 4, = Z ( 1) Ay T 4, Ul 2y
Terid 1 )
if 1 </l—1.

A lengthy computation, using (1) and (ii) above, shows that (b) is consistent
with the formula da!; = &), . The a};, i < I < j, are chosen arbitrarily such
that da!; = @}; . Another lengthy computation shows that

d(—1)m al v, al) = Z (—1)H0 &,

Since 4! was an arbitrary defining system for <%y ,..., v,», this completes
the proof.

4, Matric Massey PropucTs IN SPECTRAL SEQUENCES

Let R = {R;;, p;;) be an object in (7, . We say that R is filtered if eacl
R;; is a decreasingly filtered differential A-module and each p,;;, is filtration
preserving. Here the filtration on the tensor product is defined, as usual, by

FYR; ®Ry) = Y, F'R; ®FR,;.

r+8=p
We say that the filtration is complete if, for each R;;,

lim FI!R i,’i == lim Ri]'/FmRij .
pr—x e

H(R,;) is filtered by letting FPH(R;;) be the image of H(F?R,;) under the map

induced by inclusion. We say that a complete filtered object R is convergent

if, for each R;; ,

lim FPH(R,) = H(R,;) = lim H(R;)/FTH(Ry).

Po>—0

We shall assume throughout this section that we are given a fixed convergent
complete filtered object Re (7, .
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By the usual procedures, we can obtaiu a spectral sequence {E,R;;} for
each R;; . By results of Eilenberg and Moore ([2] and unpublished material),
our hypotheses are sufficient to guarantece that {£,R;;} converges to H(R;;).
The pairings 1,5, induce morphisms of spectral sequences {E(R;; & R;;.)} —
{l,R,.}, and we have the standard homology products {£,R;; &) E.R;.} -~
{E(R;; &) R;.)}. By composition, therefore, we have the well-defined pairings

Lpije 2 Ry o0 ko, Ry — ELR;,

Let E.R == {E,R;;, E,p1;;}. Then £,R is an object in a category B(7,(r),
which is dchned precisely as was (7, , except that the component differential
A-modules are bigraded and have differentials of bidegree (v, | — 7). After
making the appropriate modifications in Notations 1.1, specified below, we
can define matric Massey products for objects in A(%,(r) by Definition 1.2,
and all of our preceding results go through unchanged.

We shall here investigate the convergence of matric Massev products
contained in [, R, to matric Massey products contained in H(R,,) and
shall study the relationship between the operations in F, ., R, and the higher
differentials. The statements of our results are somewhat technical, but the
essential 1deas are not ditficult. One may regard a matric Massey product
Fysen Vo CEL 4Ry, as an approximation to a matric Massey product in
H(R,,). How good the approximation is depends upon how much interference
there is from higher differentials. Under appropriate hypotheses, there is no
interference and we obtain our convergence theorem. Under other hypotheses,
the interference is forced to take the form of specific higher differentials
defined on 7T ,.., V, and we then obtain precise expressions for such
differentials.

We must first specify the necessary modifications in Notations [.1. Let
D - (dy,d)yand E = (e, e;) be p - g and p’ < ¢’ matrices with entries
in Z » Z. We say that (D, E) is a compatible pair if ¢ - p" and if both
d;. e, and d}, -+ e are independent of k for cach 7 and j. We then dcﬁnc
the p < ¢’ matrix D = E = (f;,) by fi; = (dy. + ery, diy, +ep). 16Dy ., D,
are matrices with entries in Z < Z, we say that (D;,..., D,) is a compatlbk
system if each (D,, D, ) is a compatible pair. If D — (d;;,d;;) and
(s, ) Z < Z, we define DD - (d; = s, d;, - 1). Let (Dy,...,D,) be a
compatible system. Define D;;, 0 << ¢ <j = n, by

Dy = (Dyq v o DYCTRO-DO g — g — | 0 < in (1)

[

Inductively, cach (D, , D;;) 1s a compatible pair, and

DO o Dyyow Dy, for cach ksuch that 0 <7 <k <j <n (2)

A

Now the notion of a multipliable system of matrices can be defined just as in
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Notations 1.1 (b), and the sign conventions of Notations 1.1 (c) remain in
force with total degrees understood.

We shall work throughout this section with a fixed given multipliable
system of matrices (I ,..., I})), where V,e ME, R, ; ;. We shall assume
that F7 is a row matrix and V,, is a column matrix. We let D; = D(J}), the
matrix of bidegrees of IV, , and we define D; by (1) above. If 4 == (4;;)is a
defining system for (k... > CE, ;R,,, then A4, ME,R,, satisfies
D(A4;;) == D;; . Observe that we have

D < Vi, Vo = DV, V)&, 3)
where
DVy,.. V) = Dyx =D, and (s,1) = (—r(n —2),(r — I){n —2)).

We shall find it convenient to adopt the notation (p, g) € D,; to indicate the
fact that (p, ¢) occurs as an entry of the matrix D;; = D(A4,).

As a final preliminary, we shall need some terminology to allow concise
statements about elements and matrices of elements in spectral sequences.
Let G be a filtered differential /A-module, with convergent spectral sequence.
E, .G will denote the /-submodule of £,G consisting of all permanent cycles,
and ME, ,G will denote the set of matrices with entries in £, _.G. Let
t:E, G — E,.G denote the natural epimorphism (for any r). If xc E"1G
and y e F*H(G) projects to i(x) in £,G, then we say that x converges to y.
If X = (x;)e ME_ .G and x,; converges to y,; , then we say that X converges
to ¥ = (v;). We let = denote the natural epimorphism F*G — E}-*G. If
B = (b;) € MG and if the b;; are of known filtration, then m(B) is a
well-defined element of ME,G. If, moreover, the entries of w(B) are known to
survive to I, G, then we shall indicate this fact by writing #(B) € ME,G.

With these notations, we can first prove a convergence theorem and then
a generalized Leibnitz formula for matric Massey products contained in
E. R, .

Turorem 4.1. Let (V... V,> be defined in E,  R,,. Assume that
Vie ME, | R, ; ;and that V, converges to Wy , where (W, ..., W, > is strictly
defined in H(R,,). Assume further that the following condition (*) is satisfied

(" If (p.9)eDy;, 1 <j—i<mn then EZITR;CE.q..R;;
for u>=0.

Let A be any defining system for <V, ..., V.,>. Then A is a permanent cycle
which converges to an element of (W ,..., W,>.

Proof. We shall construct a defining system B for (W ,..., W,> such that
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m(B;;) = A;; € ME,R,; . B will then represent an element of <I'y,.., W,>
to which A4 converges. We proceed by induction on j — 7. For j —i == 1,
we simply choose appropriate matrices of representative cycles for the W, ;
we can do this since I; converges to W, . Suppose the B;; have been found
for j —i <k, where 1 <<k < n. Fix { and j such that j —7 = % Let
a € EYR,; be any entry of A;;, say the (y, 2)th. Let ¢ and f denote the (y, 2)
entries of 4;; and By;, respectively. Then d,(a) = e and, by the induction
hypothesis, #( f) = e€ E.R;; . We may therefore choose ¢ € F*R;; such that
#(c) = ae EPR,; and d(c) = fmod F**™1R,; . It suffices to show that by
adding a suitable chain in F*"'R;; to ¢ we can obtain a chain & such that
d(b) = f. Indeed, we can then take b to be the (v, 2) entry of B; ; the desired
condition 7(b) == a € E}*R;; will follow since we will have that m(b) = w(c).
Suppose that no such chain can be found. Then g - f -- d(c) must not be a
boundary in F*+R;; . However, since (W7 ..., W, is strictly defined, f and
therefore g must be a boundary in R;; . Let ¢ be that integer such that g is
homologous in F71R;; to an element, say /, of F*#'R,; but not to an element of
Frit1R,. . Then t >r and w(h) is nonzero in E/+t+=tR,; . Since g and
therefore 4 is a boundary in R;;, there exists # 2> 0 such that =(k) is killed
in E,R;;. Then E}7 V"R, ¢ E, ., .R;; . Since this contradicts (*), the
;; can be constructed and the proof is complete.

The result above was previously stated by Ivanovskii [4] for ordinary
Massey products in a certain spectral sequence, with /1 == Z, . It should be
noticed that there is nothing in the statement or proof to prevent A from
being killed by higher differentials. If this occurs and if 4 € E2R,, , then
the cycle BeF?R,, found in the proof is necessarily homologous to an
element (possibly zero) of F7'R,,, .

Remarks 4.2. Suppose that all of the hypotheses of the theorem are
satisfied, except that it is not known that (V' ..., V> is defined in E, R, .
Suppose, in addition to (*), that

! If(p,)e D, 1 <j-—1i<mn then EXF"R;CE, ., R
2 J J + i .
for u > 1.

Then V..., ¥,,> is strictly defined, and the conclusion of the theorem is
therefore valid. To see this, suppose given any partial defining system
{A4,;1j — i< K}, where | < k < n. Fix 7 and j such that j — ¢ = k. Then
A;; € ME, R, since, by the proof of the theorem, A;; = =(B,;) where B
represents an element of (W, ..., W;>. Let e be the (y, 2) entry of A .
If ¢=-0, let 0 be the (3, 2) entryof A,;. Suppose e 0. Since
(Wi ,..., W;» = {0} and d,; = =(B,), e cannot survive to a non-zero element
of E4R;;, hence e must be killed in some E, ,R;;, u == 0. By (*) we must
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have # = 0. Thus there exists a € E,R;; such that d,(a) = e and the given
partial defining system can be completed to a defining system 4. By
Lemma 1.3, it follows that (V7 ,..., ¥,)> is strictly defined.

We next turn to the problem of computing d (V' ,..., V> when the d,VV;
are known. The most useful form of the result is given in Corollary 4.4.

TueoreM 4.3. Let V..., V> be defined in E, | Ry, . Let s > r be given
such that d,V, =0 for t << s and 1 <i<n and such that the following
condition (*) is satisfied.

MIf(p,9)e Dy, 1 <<j—1i < n, then, for each t such that r <t <Cs,

Pp+t,q—~1+1 . pHt,g~t+1
E? R; =0 and EXILSH —0.

Let aclVy,.,V,>CE, Ry, . Then dfo) =0 for t <s and there exist
Y,e ME,., ;. such that Y, survives to d,V; and such that {(X,,..., X,> is
defined in E, R, and contains an element v which survives to —d (), where
N . ;0
=) X=( )
Proof. Let A be a defining system for {17, ,..., V,,> such that {4} = w.
Suppose that we have found matrices B,; € MR,; which satisfy

(i) w(By) = A, ME,R,; and

(i) If beFPR;; is the (y, 3) entry of By and fe FPR,; is the (¥, 2)
entry of B;;if j i + 1, or zero if j = ¢ 4 1, then db = f mod F*#sR,; .

if 1<i<n X, = (V)

Y,

Then define G,;e ME,R;; to be the matrix whose (y,2) entry is
a(db — fye E{*R,;; (b and f as in (ii)). Let ¥V, = {G,_; ,} e ME, 1R,

clearly Y, survives to d,l”; . Define

- A; 0y . . A
Co = (G, ) C = (G,-i J{j) i 0<i<j<m C= (G}-n, :
We claim that C is a defining system for (X ,..., X, such that —C survives
to d,x. C will therefore represent the desired element y. To justify our claim,
observe that d,G,; = —ndB,; if j > i + 1. By the usual trick of adding and
subtracting the same elements, we find

i1 k-1
(a) ——dgij = Z [( —dB;, + z Bimgmk) By
k=i+1

m=i+1

-1

+ By (dBm' - X E’"”Bm’ﬂ'

m=k+1
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Clearly 7 applied to the right side gives Y7} 1 (Gl - A,;,G);). This shows
that C is indeed a defining system for (X, ,..., X, . Applied to B,, , (a) also
shows that €', survives to —d(a). (Observe the change in filtration between
B,;and G; ; this is what permits (a) to give a computation of 4, if (¢, j) 7 (0, n)
and of d, if (z,7) = (0, n).) Now that we have justified our claim, it remains
only to construct the matrices B,;. Since 4}, = 0 for t -2 s, B, ;,; can
surely be found as desired. Suppose that B;; have been found for j — 1 < %,
where 1 <2k <, and fix 7 and j such that j — 7 == k. Let a € E¥R;; and
ec Ev:ra-mH1R, denote the (1, 2) entries of A,; and A, , respectively. Then
d(a) == e and, Wlthfab in (it), 7( f } - e. We may therefore choose c e F'R,
such that #(c) = a and d(c) = fmod F»*"1R,; . It suffices to show that by
adding 2 suitable chain in ##*'R;; to ¢ we can obtain a chain b such that
d(b) == f mod FP*R,;, since =(b) == a will then follow from =(h) = =(c).
Suppose that no such chain can be found. Let ¢ be that integer such that
g - f — d(c) is homologous in F*R;; to an element, say £, of F7"''R;; but not
to an element of Fr#IR, . Then v t<s and =(k) is nonzero
in Erite-tHR. - where u — min{t,# -- s — ). Here «(h) survives to
E,.. R;sinced(h) — d(f)andd(f)eF?'"*R,; by the induction hypothesis,
and 7(%) does not bound before stage f by the choice of ¢. This contradiction
to (*) establishes the theorem.

It should be obscrved that the technical hypotheses of the theorem are
vacuous in the case s = r» - 1.

COROLLARY 4.4.  Assume in addition to the hypotheses of the theorem that
for 1 =2k < n there is jusz‘ one matrix Y, € ME_ (R, which survives to
dJl,.. By abme write Y, = d V., and suppose that each

) Ll;«-l s d\l /3R] I//l\‘,r‘l ey l/n,'\'

is strictly defined in E, | R,,, . Assume further that all matric Massey products in
sight have zero indeterminacy. Then

ds< Vl yeey lvn> - . Z <Vl 1veny l"ka—l ’ ds V/c ’ VI\' FL sreny ”'vn>'
o<1

Proof. 'This follows immediately from the case / = 0 of Proposition 2.10.

It is perfectly p0531ble and quite common in the applications, to have an
element cce {Vy oy V> C E, 1Ry, such that d(a) = 0 for some s > 7 even
though each I, is a matrix of permanent cycles. For example, such behav1or
miust occur in any spectral sequence {E,} such that F3? = Ext4Y, 4) for
some connected /l-algebra A, Ey'* = E}*  and E, 7 E, (because, by [10],
all elements of E"* for p > | are built up via matrlc Massey products from
the elements of L‘% ). The following result relates such differentials to lower
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order matric Massey products in the various MH(R,;). The most useful form
of the resuit is given in Corollary 4.6. (In our general context, the remarks
preceding Proposition 2.3 are needed to interpret the statement of the
theorem.)

Traeorem 4.5. Let V..., V,> be defined in E, R, . Assume that
Ve ME, ., R, and that V', converges to W,. Let I, 1 <1< n— 2, be
given such that (Wi .., W, 15 strictly defined in MH(R,_,,.,) for
| <k < n — I and such that the following condition (*) is satisfied.

Y If(p,q)eD;, V<j—i<I then EFSTR,CE Ry

rru+l

for wu = Q.

Further, let s > r be given such that the following condition (**) is satisfied.

(%Y If(p, @)D, < j— 1< n, then, for each t such that v -7t <75,
EFFY R, =0 andif  j—il4 1, EXLTTHIR, =0,

Let oV, , V> CE, Ry, . Then da) =0 for t <<s and there exist
Yie ME (R, ; .., such that Y, converges to an element of (W, .., W,
and such that (X, ..., X,,_)> is defined in I, R, and contains an element y
which survives to d (o), where

0

v,

I,
Sy

n—=l

. L
Np= (), X = ()

o )if1<i<n4ﬂ Xy = |

Proof. The hypotheses and proof both borrow elements from
Theorems 4.1 and 4.3. Let A be a defining system for (I, ,..., I, such that
{A} -~ a. We claim that there exist matrices B;; € MR, 7 — 1t <Zn, which
satisfy

(1) 7(By) = A€ ME.R,;
(i) {Bylk—1<<i<j<k-1j—i<I}isa defining system for
Wy ooy Wi,

(i) Ifi <j<<{nm—landif b~eF1‘Rl-yHl is the (y, 2) entry of B; ;., and
JeFTR, ;,,is the (v, 2) entry of B, ;,,, then d(0) = fmod F?+*R, ;.

To prove this, we first construct the B,; for j ¢ <[ by the proof of
Theorem 4.1 and then construct the By for j — i > 1 by the proof of
Theorem 4.3. (Here, in (**), we do not require EIfI9'MR, =0 for
j —1i==1-+1 since the B, , ,., are known to be matrices of cycles.) This
proves the claim. Now define G;; e ME,R; ,.,, j << n — [, to be the matrix

whose (3, 2) entry is #w(f — db)e E¥*s*R, ;, (b and f as in (iii)). Let

481/12/4-8
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Yy ={Giast € ME, Ry y 5y . Since Y == ”(gkwl,kﬂ. —dBy 4 1), Y
converges to an element of (W, ..., W,,,>. Next, define

, 7 Ao 0y o
Cm = (G()j > Aﬂj)? (/u = ( Z v _/T) if 0 <14 <) <n-— l',
g

Czn [ ‘éju 7;)

Here d,G;; = ndB, ;,,. A straightforward calculation, using (ii), vields the
following formula

i I S B |
(a) dBi,J'H = Z [( Z Bl'mBm K+t + de L+l) le+l Jet
k=1+1 m=i+1
-1 N
“ By | Y BuBus — dBy |-
‘m=l- 1

Clearly 7 applied to the right side gives Y7} 1 (Gdpyr jur + A3Gyy). This
shows that C is a defining system for <.\ ,..., X, and (a) applied in the case
(i,7 = 1) == (0, n) shows that y = {C} survives to d,(«). (As in the proof of
Theorem 4.3, the filtration shift between B, ., and G,; permit (a) to give
a computation of 4, if (¢, 7 — ) == (0, ») and of d af (4,7 = 1) = (0, n).) This

completes the proof.

COROLLARY 4.6. Assume in addition to the hypotheses of the theorem that
for | =ik <n—1 there is just one matrix Y. € ME R, _; .., such that
Y, converges to an element of W, .., W,,,», and suppose that each
Vs Vi s Yo Viris veees 1 i strictly defined in E, Ry, . Assume

furtlmr flmi all matric Massey products in sight, except possibly the
W, W, have zero indeterminacy. Then

i

ds< l/l ey I/n/\/ - <p i7k-1 > y‘k ’ Irk+l+l IARES] L7ﬂ>

I

Proof. 'This follows immediately from Proposition 2.10.

It should be observed that hypothesis (*) of the theorem is vacuous if
! = 1 and hypothesis (**) is vacuous if s = » + 1. The uniqueness hypothesis
on Y, in the corollary can often be verified in the applications by showing
that there is only one element of the required degree in E,  R;_; ., for
each entry of Y, . We remark that, as in Theorem 4.1, there is nothing in
the statement or proof of the theorem to prevent Y, from being killed by
higher differentials.
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Applications of this theorem go in two directions. One can use it either
to compute higher differentials from knowledge of matric Massey products
in the H(R;;) or to compute matric Massey products in the H(R;;) from
knowledge of the higher differentials. The principle behind the latter
application is as follows. Suppose, under the hypotheses of the theorem, that
d(x) 1s known and that there are unique matrices Y, for which dy(«) can be
written in the form (X7 ,..., X, >. Then we are guaranteed that Y, converges
to an element of (W ..., IT".,,>. A matric Massey product, or ordinary
product if 7 == 1, so detected necessarily takes values in too high a filtration
degree to be detected by Theorem 4.1, since Y, has higﬁer filtration than
does <V ..o, Viyrr, to which Theorem 4.1 applies. In other words, the
theorem gives formal precision to the commonly observed phenomenon that
nontrivial higher differentials are related to nontrivial extensions in the limit
terms of spectral sequences. Examples of applications of the theorem in both
directions will appear in [/2], where the results of this section will be
emploved in studying the cohomology of the Steenrod algebra.
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