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It has long been recognized that the homologies of differential algebras 
and of differential modules over differential algebras have not only products 
but also higher order operations, namely Massey products. These operations 

have largely been ignored because of the difficulty in computing them 
and because of their seeming lack of conceptual interest. We shall here 
introduce and study generalizations of these operations; the new operations 
will be defined on n-tuples of matrices rather than on n-tuples of elements. 

Of course, the generalization does nothing to simplify the computations, 
although the results on spectral sequences in this paper will have this effect. 
The larger class of operations does, however, have essential conceptual 
interest. There are a variety of situations in algebraic topology where the 
geometry naturally gives a notion of decomposability. The new operations 

arc precisely what is required to dcscribc these notions algebraically. For 
example, if G is a connected topological monoid, then the geometric notion 
of a decomposable element in the Pontryagin ring H,(G) is an element of 
the kernel of the homology suspension cr* : H,(G) + H,(BG), and in f:act 
ker cr.+ is exactly the set of all elements decomposable as matric Massey 

products. If  B is a simply connected space, the dual statement is true; if 
cr* : H”(B) -* H*(,QB) is the cohomology suspension, then ker CT* is the set 
of all elements which are decomposable as matric Massey products. Other 
such situations will be given in [lo], nhcre the statements above are proven. 
Moreover, these operations wil1 be used in [10] to compute the cohomologies 
of a wide variety of homogeneous spaces and principal bundles and to 

develop an algorithm for the computation of the mod 2 cohomology of any 
simply connected two-stage space. Statements of the results in question may 
be found in [9]. 

Our program in this paper is as follows. We shall define matric 3Iassey 
products and prove their naturality in Section 1. We shall prove certain 
linearity relations satisfied by our operations and study their indetermina.cy 
in Section 2. The main purpose of this section is to show that, at least under 
reasonable technical assumptions, matric Massey products are respectable 
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homology operations in the sense that their indeterminacies can be explicitly 
described and are groups, and the operations themselves are cosets of these 
groups. In Section 3, which overlaps in part with work of Kraines [J], we 

determine various associativity and commutativity relations satisfied by our 
operations. These relations, most of which are new even for ordinary Massey 
products, show that an algebra v\.hi& happens to hc the homology of a 

differential algebra will generally have a ver\ rich internal structure. 
The last section contains a detailed study of the behavior of our operations 

in spectral sequences. We first obtain a convergence theorem and a generalized 
Leibnitz formula. These results generalize the usual statement that the 

spectral sequence of a filtered differential algebra is a spectral sequence of 
differential algebras. Indeed, ordinary products are subsumed in our theory 
as 2-tuple Massey products. We then obtain a result which relates higher 
differentials to matric Massey products in the limit term and show how this 
result can be used to study the extension problem at the end of spectral 

sequences. The results of this section will be used in [II] to study the mod 2 
cohomology of B Spin(n) and, applied to the spectral sequence of [S], will 
be a central tool in the study of the cohomology of the Steenrod algebra in [I,?]. 
In both applications, the &-term of rhc special sequence studied has the form 
I!*;~ . (1 Ext2q(K, K), where A is a connected algebra over a field K. While 
the results here apply to a much eider class of spectral sequences, they arc 
particularly natural tools for the s:udy of spectral sequences having such an 
&-term. l’his is so because, as \YC shall show in [10], we then have that every 

clement of E&* for p ‘% 1 is built up \-ia matric fi!assey products fl-om 

elements of ~!?:a*, and the actual computation of the operations on the Q-level 
is quite straightforward. 

Analogs of the results of Section 4 have recently been proven for the Adams 
spectral sequence, with matric ‘Tuda brackets replacing matric hIassey 
products in the limit term, hy I,awrence [6], g encralizing a special case due 
to Moss [/3]. It is to be expected that the precise analogs of the remaining 
results of this paper are also valid for matric Toda brackets in stable homotopy. 

1. THE DEFINITION 01‘ A\TA.I-RIC MASSEY PRODUCTS 

We must first fix notations. Throughout this paper, we shall work with the 
following data. WC suppose given a commutative ring /l and a collection 
(R,, ~ 0 < i < j < n) of differential Z-graded /l-modules. We denote 
gradings by superscripts and we assume that the differentials, always denoted 
by d, have degree + 1. We write i”: for I;! :.., , and we suppose given morphisms 
of differential cl-modules 
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such that the following diagrams commute: 

We shall denote the pairings p by juxtaposition of elements. 
The collection of systems R = (Rij , pijk} form a category 6&. If  

S = {Sij , qjk} is another such system, then a morphism f  : R -+ S is a 
collection of morphisms of differential graded /l-modules f = fij : Rij ---f Sii 

such that the following diagrams commute: 

Rij @ Rj, A Rik 

1 
fBf 

1 f  

S,j @ Sj, a Sij 

Before defining our operations, we cite some of the most important 

situations in which they will make sense. In fact, we have the following 
categories and functors to the category fZ,, : 

(1) The category of DGA-algebras: if U is a DGA-algebra, define Rij =: 1J 
and let pLiJk = p be the product on U. 

(2) The category of triples (M, c’, N), where U is a DGA-algebra and 
M is a right, N a left, differential graded C-module: if (M, U, N) is such a 

triple, define 

M i = 0, j<n 

Rij z u O<i<j<n 
iv 0 < i, j=n 
112 0” iv i :L 0, j=n 

The pairings U@ U-t C:, M@ U+l%l, U@N+N, and M@N-+ 
M oU N are, respectively, the product in U, the module product in M and 
in N, and the natural epimorphism that defines M 0” N. 

(3) The category of topological spaces X: given X, let U = C*(X; (1) and 

apply the functor of (1). 

(4) The category of topological monoids G: given G, let U = C,(G; A) 
(regraded by nonpositive superscripts) and apply the functor of (1). 



(5) The category of fibred products 

1:’ ., 1 

let (A/, 5, X) = (C*(X), C”(B), C>(;-j) and apply the functor of (2). 

(6) The category of associated bundles .Y x c I’: let 

(M, I>-, X) = (C,(Sj, C,(G), C,(Y)) 

and apply the functor of (2). 

(7) The category of spaces A? and subspaces i-1, , 1 < i .< n, such that 
(A, , A,) is an excisive couple in .I-: let A,j -~ Uj,~~irl A, and define 

Rij -. C*(X, Aij ; A); the ~~~~~~ are given by the cup product. 

(8) The category of coalgcbras c‘: given C, let L: bc the cobar construction 
F(C) and apply the functor of (I). 

(9) The category of triples (/Y, C, 1’) where C is a coalgebra, X a right and 
1. a left C-comodule: a functor to the category described in (2) can be 

constructed by use of the twosidcd cobar ccinstruction defined in [lo]. 
Let R E cl’%,, Matric _\Iasse!- products \vi!l be defined on certain Tz-tuples 

of matrices (I,-, ,..., I .,,), where I ‘, has wtrics in the homology H(R,-,.,), and 
n-ill ta!;c values in the set of matrices with entries in N(R,,,). The most 
important situation occurs n-hen I -1 is a row matrix and V,, is a column 
nlatrix; then the vaiues will bc I 1 matrices and will be regarded as 
elements of II(Ro,). These operations csscntiaiiy determine those elements 
of FZ(R,,.) which are decomposed 1)~. the s!-stem R. 

In order to make our definition precise, we shall need some preliminary 
technical notations. These ari‘ dcsigncd to keep track of gradings and to 

avoid di%culties with signs. Once these notations are fixed, both gradings 
and signs will generally take cart of thcrnselvcs in the sequel. 

:Vofotiom 1. I. (a) Matvices of integers. Consider matrices D m= (drl) and 

D’ :. (nij) with entries in %. Let I1 bc a p x q-matrix and D’ a p’ :~: q’- 
matrix. \Ve say that (D, D’) is a compatible pair if q p’ and if the sum 

d i i” 1. d/I,, is independent of Ii for each i and j. M’e then define the p s q’- 
matrix I3 * D’ = (eTj) by ei, = (fj,. + c$L Let D, ,..., I>,, be matrices with 
entries in Z. We say that (Dl ,..., D,,) is a compatible system if each (Di , Di+J 
is a compatible pair. I f  D = (djj) and if m E Z, then we define D” == (dij i- m). 

1,et (D, ,..., D,) be a compatible system. We then define matrices Di, , 

0 < i xc. j ,( n, by the formula 

D,,j = (Di+l * -.. * D,)-(l-i-l), O<i<j<n. (1) 
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Inductively, each (Dzk , D,,), i < k < j, is a compatible pair, and 

Dij=Dik”Dkj foreachksuchthat O,<i<k<j<n. (2) 

(b) Matrices of degrees. Let E be a Z-graded cl-module. Let ME denote 

the set of matrices with entries in E. If  X = (.zij) E ME, we define 
D(X) = (deg xii). Let Y E MF for some %-graded /l-module F. We say that 
(X, Y) is a multipliable pair if (D(X), D(Y)) 1s a compatible pair. I f  (X, I/) is 
a multipliable pair and if E @F + G is a morphism of /l-modules, then we 
can multiply X and Y by the usual product of matrices to obtain a matrix XY 
with entries in G. Clearly D(XY) L= D(X) ‘S D(Y). Let Xr ,..., S, be 
matrices with entries in Z-graded fl-modules. We say that (X1 ,..., X,) is a 

multipliable system if (D(X,) ,..., D(XJ) . IS a compatible system, and we then 
define 

D(X, ,..., X,) = D(&) w ... i; D(X,,). (3) 

Were it possible to multiply the Xi , we would obtain a matrix X1 ... X, 
such that D(X, *a. X,) = D(X, ,..., X,,). 

(c) S@zs. If  x E E, we define F _= ( -l)r+mdegr x. I f  S = (.vii) E ME., we 
define X = (Zig). I f  E is a differential fl-molule, we define dX = (dx,). Let 

E @F + G be a morphism of differential /l-modules and let (X, Y) be a 
multipliable pair, X E ME and Y E &ZF. Then we have the relations 

dZ = -dX; XY=-xk’; d(XY) = d(S) l7 ~- Ay d( Y). (4) 

At this point, we are ready to define the operations. Let R E (I,, . Suppose 
that (VI ,..., V,) is a multipliable system, where Fi E MH(Rf+l,i). Matric 
Massey products are designed to formalize the notion that relations between 
relations should result in the definition of higher operations. Thus for the 

matric Massey product (V, ,..., I’,) to be defined, it will be necessary that 

0 E (r/i )...) Vj) C MH(Ri-,,j), j - i < n. Roughly, the operations are built 
up inductively as follows. Let A,-r,? E L%ZR,~~,~ be a matrix of representative 

cycles for I’, , abbreviated (/l-r,,} = Vi . Suppose that c’il’im-l = 0. Here 
the product is of course induced from the pairing p and the homology product 
N(R,_,,,) @ H(R,,,+l) + H(R,-,,,,,). Then there exist iziP1,211 E MR,-l,i +l 
such that dAi-l,i+l = &,,iAi,i+l . But then xiP1,i24i,j+, + ~4i-l,il~lAiLl,i+2 
is a matrix of cycles, in :VTRi-1,i,.2 , and we say that its homology class belongs 
to (Vi , T’i+l , Vi+&. We can ask whether these classes are zero or not. 
Inductively, it makes sense to seek matrices Ai, E MRij for 0 < i < j < n 
and (;,j) f  (0, n) such that 
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(5) 

Condition (5) is compatible with the grading since D(Aij) = Dij and 
D(dAij) = Di, * Dkj , where the Dij are the matrices of integers defined in (1) 

in terms of the matrices Di = D(VJ. Condition (5) is compatible with the 
formula d2 = 0 in view of (4). I f  we are given such matrices Aij , then 

(6) 

We shall say that {Aa,) t <Vi ,..., IQ C MH(R,,). Observe that D(&J = D&, 
by (2), and we therefore have, by (3), 

D( r/, )...) V,,,) = D( VI ,..., VJ-. (7) 

From now on, we shall not mention grading or signs unless absolutely 
necessary, and we proceed to the formal definition. 

DEFINITION 1.2. Let (Vr ,..., VV) be a multipliable system of matrices, 

Vi E MH(R,&. We say that the matric Massey product (I’, ,..., V,} is 
defined if there exist matrices Aij E MRij , 0 < i < j < n and (i, j) f  (0, n), 

which satisfy (5); such a set of matrices is said to be a defining system for 
I’,). I f  {AtI} is a defining system for (Vi ,..., IT,), then we say that 

~~~T~;;‘<V, ,..., I’,>, where a,,, is given by (6) and (I’r ,..., Vn) is defined 

to be set of all homology classes so obtainable from some defining system. 
In particular, (Vr , Va) is always defined and contains only the product r,Va . 

We say that (I’, ,..., I’,> is strictly defined if each 

(Vi ,..., v,>, l<j--i<n-2, 

is defined, in MH(R,-l,j), and contains only the zero matrix. In particular, 
every defined triple product is strictly defined. 

Let (AiT 1 0 < i < j < n, (i, j) # (0, rz)) he a defining system for 
(I’, ,..., V,). We may describe the system by the strictly upper triangular 
block matrix A = (Aij) with upper right corner deleted: 
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Then dA = JA - $,% in the sense that if Aij = CL:,+, &Akj , then 

AA = (&) and this matrix differs from dA only in the presence of the 
block Aan in the upper right corner. We shall abbreviate &On to a and, under 
the interpretation just given, we can use the simple formula XA - dA q = L!’ 
to describe representative matrices for elements of (I’, ,..., V,). 

In many respects, strictly defined matric Massey products provide a more 
satisfactory generalization of triple products than do arbitrary matric Massey 
products. In fact, many of our results below will only be valid for strictly 
defined operations. These results depend on building defining systems 
A = (Aij) by induction onj - i, and such arguments may fail without strict 

definition since one could reach a nonbounding cycle /iLj even though 

<VI ,..., v,> is defined. In all such cases, we shall appeal to the following 

lemma. 

LEMMA 1.3. (VI ,..., v,) is strictly defined if and only if each partial 
defining system {A,, j q - p < k}, 1 < k < n - 1, can be completed to a 

defining system A for (VI ,... , V,). 

Proof. The second condition means that if we are given matrices A,,, for 

q --p < k (and any k such that 1 < k < n - 1) which satisfy (5) and if 
j - i = k -+ 1, then A,? is a matrix of boundaries. Clearly this is so if and 

only if each (Vi ,..., V,) =={O},j-i<n. 
It is worth remarking that matric Massey products could be defined for 

infinite matrices having only finitely many nonzero entries. In this context, 
if E is a A-module, then ME is an infinitely graded A-module with one degree 
for each pair (i, j), i 3 1 and j 3 1. If  F is another A-module, then the set of 
all multipliable pairs (X, Y), X E ME and YE MF, is also an infinitely 

graded A-module, with D(X, Y) = D(X) r D(Y). Starting with these 
observations, the tensor product ME &, MF can be constructed as usual 
and can be proven to have all the standard properties. We shall use this fact 
in the proof of Theorem 1.5 below. 

We shall complete this section by studying the naturality of our operations. 
For many applications, it is not enough to have naturality on maps in the 
category 6& . Ordinary products are clearly preserved by maps of differential 
A-modules that commute with the given pairings up to chain homotopy, and 
we shall formulate a notion of n-homotopy multiplicativity which will 
guaranteee the preservation of n-tuple matric Massey products. The following 
definition is essentially due to Clark [I] and parallels geometric work of 
Stash& [14]. 

DEFINITION 1.4. Let R and S be objects in G& . Let f  = {fij>, where 
fij : Rij ---f Sij is a morphism of differential A-modules. We say thatf : R -+ S 
is an n-homotopy multiplicative map if for each 1 such that 1 < I G n and 
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each sequence I = (i,, ,..., it), 0 < i,, < ii < ... < i, < n, there exist 
morphisms of A-modules h, : Rioi, 6?] ... 3 RiCsli, + Sjoi, , of degree 1 - I, 
such that h, =-= f  and if u,; E Rikmlik , 1 < k < 1, then 

l-l 

-t 1 h,(u, @5? . . . :;i; 7Q hl-li(Uk+l @ **. g) UJ. (7) 
I-1 

If  f  is a morphism in a,, , we may take h, = 0, 1 > I. The existence of h, 

says that f  is homotopy multiplicative since 

dh, - h,(d :3 1 - 1 ix) d) I- /.~(f ::/:.f) - fcL : Rij p, Rjk + S,,< . 

The h, for I ‘-. 2 are higher multiplicative homotopics. 

THEOREM 1.5. Let f  : R - S be an n-homotopy multiplicative map. 

Suppose that (VI ,..., l’,) is dejined in :WH(R,,,), where Vi E MH(R&. Then 
(f*( V,),...,f*,( V,,)j is defined in MH(S,,,,), and 

Moreover, if each f* : H(R,) ---f H(S,,) is an isomouphism, then equality holds. 

Proof. We shall work with infinite matrices having only finitely many 
nonzero entries in this proof. Let h, 7-7 f  and let h, , 2 < E < n, be given 
homotopies satisfying (7). In view of the remarks preceding Definition 1.4, (7) 

remains valid if the ufi are replaced by matrices with entries in Ri,-,i, . To 
simplify the proof, we introduce the following notation. Suppose that 

9 = {A,, / i < k < I< j, (k, 2) + (i, j)) 

is a defining system for (V,+i ,..., t’,). Then define 

j-i 
H(W = 1 C h,,,(.-lil,il (23 ... 0 4,-liJr 

n1=2 I 

where the second sum is taken over all sequences I = (i, ,..., i,,) such that 
i = i, < ... <i,, = j. I f  Aij such that dAij = Ai, is also given, define 
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F(&) = f(&) + H(Afj), and define 8’(Ak-lpk) = f(A,-r,,). Then a 

straightforward computation proves that 

j-1 

(i) dH(izij) = C FpP)Fp) -f(&.), 

li=it1 

and given Aij, it follows (since df =&) that 

j-1 
(ii) dF(A”j) = 1 F(Ai”)F(A”j). 

&ill 

i\jow if A -= (i2ij) is a defining system for (Vr ,..., V,,>, then, by (ii), 

B = ($‘(A,,)) is a defining system for (f*(Ti,),...,f*(V,)>. By (i), with 
(i, j) = (0, n), B is homologous tof(a), and this proves that 

“f*((V, 9...9 v-2) c (f*(~,;),...,f*(v,)). 

For the opposite inclusion, assume that each f* : H(R,,) * H(S,,) is an 
isomorphism and let B be a given defining system for (f*(Vr),...,f*(V,,)>. 
By induction on j - i, we shall choose a defining system A = (&) for 
< c’ 1 ,..., Ii,\ such that f(,$ is homologous to B. Let A,-l,i be any matrix of 
representative cycles for f’i . Since f(&,,J and B,_l,i both represent 

fx( Vi), we may choose matrices C,-l,i E MS,_l,i such that 

G-l,, 1 f(Ai-l,<) - B,-1.i . 

Now, for any q such that I < q < n - 2, assume inductively that matrices 
-4,., E MR,, and C,, E MS,, have been found, for each pair (k, 1) such that 

I .: 2 - R < q, which satisfy 

(iii) 
Z-l 

dL4,, = A-,, and dC,, = F(Akl) - B,, + c (~kmF(Amz) + Bk,C,,J. 
m= 7c -1-l 

Let j - i = q. Then an easy calculation, using (ii), shows that 

(iv) 

Since & is a matrix of boundaries, so is C’I: k-2+1 F(H) F(A”j). By (i), it follows 

that f(A;?) and therefore Jzj are also matrices of boundaries. Cholose 
=2:, i- MRij such that dAAlj = zqij. Let 

i-l 

e/Y,, =f(&J j- H(Aii) - Bii + c (CikF(A7ci) + B,,C,,). 
7C=i+1 
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Then Eij E MSij is a matrix of cycles. Choose matrices of cycles Dij E MRij 
such that f (Dij) is homologous to Eij and choose Cij E MSij such that 
dCfj = Eij -f(D,,). Let Aj, m: Aij - Dij . Then Aij and Cij satisfy (iii), 

with (k, 1) replaced by (i,jj. By induction, there exist such Aii and Cij for all 
pairs (i, j), I < j - 1 < n. Now formulas (i) and (iv), with (i,j) replaced by 
(0, n), show that f(i?j and B are homologous, and this completes the proof. 

The full generality of the theorem above will be used elsewhere to obtain 
a generalized Cartan formula relating Steenrod operations to matric Massey 

products. It will also be needed in [10] to study matric Massey products in 
the Eilenberg-Moore spectral sequence. 

2. INDETERMINACY AND LINEARITY RELATIONS 

In this section, we shall study the indeterminacy of matric Massey products 
and shall establish certain linearity relations satisfied by these operations. 
We require the following terminology. 

DEFINITION 2.1. By the sum (l/-i ,..., l?,) j- (IV, ,..., W,) of two matric 
Massey products, we shall mean the set 

{X + y  ! x E (Vi ,..., Vni,? and y  E (lV, ,..., FIX,)}. 

The use of this notation will imply the extra hypothesis D(V, ,..., V,,) =-- 

D(Wl ,..., IV,) needed for the stated sums to be compatible with the grading. 
If  X E A, we define A( V1 ,..., V,) to be the set {Ax / x E (Vi ,..., IT?,‘)}. With 
these notations, we can define the indeterminacy In(V, ,..., V,J by the 
formula 

In( V1 ,..., r:,) = (VI ,..., V,) - (V, ,..., V,;) 

=G -YIX,Y~(E/1,..., Jf,,>). 

The following lemma will be needed in the study of the indeterminacy of 
our operations. It shows that the set (l/r ,..., V,) is independent of the 
choice of representative cycles for the Vi 

LEMRIA 2.2. If  ( vl ,..., V,,) is defined, then the entire set (VI ,..., r/,) can 
be obtained from defining systems A which start with any fixed chosen set of 

matrices .l,-l,i of representative cycles for the Vi. 

Proof. Let B be any defining system for (V, ,..., V,) and choose matrices 
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Ci-l,i such that dCi_l,i = Ai-l,i - B,-l,i. Define Aij for 1 <j - i, by 
induction on j - i, via the formula 

Then A is a defining system for (V, ,..., V,) such that 

d(CJ,, + Bc,.n--1L.n) = fi - A. 

Using the lemma, we can show that any element of the indeterminacy 

of an n-tuple matric Massey product is an element of an appropriate (n - I)- 
tuple matric Massey product. Actually, as the form of the matrices W,< 
defined in the next proposition will show, we must first slightly generalize 
the notion of matric Massey product to allow symbols (V1 ,..., k’,) where the 

Vi are block matrices with blocks having entries in various H(R,,) and where 
the blocks are so arranged that the pairings pi,!,. allow the formation of the 
products ViV<+r . Since the principle should be clear and precise formulation 
is awkward, we do not give the explicit definition. For application to all 
examples, except (7), of Section 1, the generalization is in fact unnecessary. 

The following result is due to D. Kraines (unpublished). It generalizes the 
well-known fact that the indeterminacy of an ordinary triple product is the set 
of all sums 6rxz + %r~:~ -= (71i , %i)(z;) which have the same degree as 

:Cl,v2,yJ. 

PROPOSITION 2.3. Let ( bwl ,..., 7,,> be deJnedin .il/lH(R& VT E MH(Ri --]., i). 

Then NV1 ,..., VJ C (Ax, ,.._, Xn-l) (WI ,..., Wr,-l>, where 

if 2<k<n-2, 

the union is taken over all (n - I)-tuples of matrices (Xl ,..., X+,) such tAat 
-U, E MH(R,-l,I;+l) and D(X,) = D(Vlc , V,,J’. Moreover, if II = 3, then 
equality holds: 

In(Vl, Vz, r/,> = iJ (Wl, W.2 = 
cq,q 

(,u, ) PI-G + -&~-a)* 
1, 2 

Proof. Let A == (Aij) and A’ = (A;J b e any two defining systems for 
< 1; ,...) P,>. By Lemma 2.2, we may assume that A,-l,i = A;-,.i for all i. 
Define matrices Bij =-- Ai,j+l - Aj,j+, E MRi,j.F1 , 0 < i < j < n - 1, 

(i,,j) j, (0, n - 1). Each Bkpl,, is a matrix of cycles, and we define 
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ATT; _-- {Bicp& E MH(R,2_,~,c,,). I f  n = 3, then Lq ~~ 1 == &B,, + B,,A1, , 
which represents (W’r , Wz’, and it is clear that by adding matrices of cycles 
to d,, and to A,, we can obtain any element of the form VrX, -1- X,V:, as an 
element. of InJ 1 ‘r , V, , I,;>. I f  71 > 3, we define C;, , 0 < i < j < n -- I, 
(i,;) f  (0, n ~- I), by 

I. 
c, I, 

if 1 ..,i<j .,n---2 

if j=,-1 

Then it is easy to verify that C == (Ctj) is a defining system for (W, ,..., IV,,-,,, 
such that (? = A- --- A’. 

In view of the fact that (I ~I , v.$ =- v-1 I,- , an alternative way of writing 
the indeterminacy of a triple product is 

A’e shall gencralizc this formula to certain strictly dclined n-tuple matric 
klassey products. It will be most expeditious to first obtain upper and 

lower bounds for the indctcrminacy of arbitrary strictly defined operations. 

In particufar, In( VI ,..., I’,> = (0) ;f  and only ;f  each 

consists only of the zero matrix. Aloreozer, ifn = 4, then equality holds in (ii). 

Proof. (i). We proceed by induction on n, the result being obvious if 
n = 3. Assume (i) for 1 < n. Then 

iv1 , . . . ,  1/h-1 , X, , b’7r.r2 ,..., V,) C In(V, ,..., Vj) z {O) 
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for i < k < j - 1 andj - i < IZ - 1, hence (V, ,..., V,-, , Xk , T’,., ,..., IV,) 
is strictly defined. Let D be any defining system for this operation. We may 
write D in the form 

(a) 

Then the Afj form a partial defining system for (VI ,..., V,,;> which by 
Lemma 1.3, can be extended to a complete defining system Ak. Define C” by 

(b) pi _ A 7; ij if j < k or i > k; 

C;. = A;i + Bf,+, if i<k-I <j-l. 

Then I? is a defining system for (k; ,..., V,) such that Cx- - & = ZjTi, :and 

this proves statement (i). 

(ii). Let A and A’ be any two defining systems for (Vr ,..., I;,>. Bv 
Lemma 2.2, wc may assume that Al,-,,, = /l-r,,:. Let 

B;;-,,,, = 4?L,kl - Al,.-l,kfl 1 l<k<n-I; 

13;.-I,,< is a matrix of cycles which represents an element S, E MH(R,L-,,,.+,). 
Let A1 = = d. By induction on k, WC shall obtain defining systems .!lk for 

( v1 )...) 17,?> and matrices BF, for i < k - 1 < j - 1 and 1 < lz .< n -- 1 

such that 

(4 AFj = &3bj for j < k; B$. : A;,,~,~l - Af.k+l ; an d 

Ii-1 j-1 

(d) dB5 x 1 X/&BtLj + C B&Atb+,,j+, , 1 <j-i<:n-I. 
n--i ,~I ‘ri,=lc 

In fact, suppose given A’<. If  BfIL is defined by (c), then (d) is satisfied for 
j = k. The remaining Bfj , i < k - I < j - 1, are obtained by induction on 
j -- i as follows. Condition (d) is precisely what is required for formula (a) to 
give a defining system D” for (l’r ,..., X, ,..., VT&. Since the latter product 

is strictly defined and since, given Bi,r for 4 - p < j - i, the right side of (d) 
represents an element of ( P’, ,.. ., X,: ,..., VjL& = {0}, we can indeed find the 
Bi; . Given the B,: , we define C’c by formula (b) and let ALtl = CJi. Formulas 
(b) and (c) then imply that =ltjfl = Aij for j < k + 1. Moreover, we now 
have that C+r = A’. Putting these facts together, we see that 

n-1 n-1 

ff - a = e-1 - & = c (@ _ Jk) = C Dk, 

k=l k-l 
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and this proves (ii). The fact that equality holds in (ii) when n = 4 will follow 
from a more general result (Theorem 2.8 below). 

The preceding result is unsatisfactory in that it fails to show that 
In(V, ,..., V,,) is a A-module and that (V, ,..., V,) is a coset. To obtain 
maximum precision in the statement of hypotheses which guarantee these 

conclusions, among others, we require the following technical definition and 
lemma. 

DEFIKITION 2.5. Let (V, ,..., V,} be strictly defined, and consider the 
strictly defined operations (V, ,..., P’,_, , X, , VLiz ,..., V,), where 
X, E MH(R,-,,I+,) and D(X,) = L)(V, , V,,,))‘. We say that (rr ,..., V,) 
is k-rigidly defined, 1 < k < n, provided that (T/r ,..., X, ,..., V,) = (0) for 
allX,ifl~/~~~k-2ork+-l .<Z:-:?z-- landforX,=OifI-k- 1 

or I = k. This condition is certainly satisfied if In(V, ,..., V,} -~ (O}, but is 
more general. For example, since i VI , O\ : (0) = (0, Va), any defined 
triple product is 2-rigidly defined. Clearly ;I;, ,..., V,) is both k and k’ 
rigidly defined, k + 1 < k’, if and only if In( V, ,..., Y,) = (0). 

hMMA 2.6. Let (v, ,..., V,) he k-rigidly dejined, and let Aij , k < i and 
j < k, be anygivenpartial defining systemfor (V, ,..., V,?). Let x E (VI ,..., V,,\. 

The?2 there exists a dejning system A fol, ( VI ,..., V,) which extends the given 
partial de$ning system and satis$es (A} = x. 

Proof. Let A’ be a defining system for <VI ,..., li,) such that {A) == s. 
We may assume that A:-,,, A,. I.? if i --: k or i 2 k + I, and we may 
define 

(a) =l,.+,.z, = z4i-,,k ; A,P,,,C+, =~ A~-,,,+, ; A,- 2.k = &-23 . 

Let BE-,,r =-m Ai&+r - A,-l,l+, , 1 5; I < ?z - 1. Then BE-,,, is a matrix 
of cycles, and we let X, = {B:_,,,}. Clearly Xk-r = 0 and X, = 0. Sow extend 
the given Azj (including those defined in (a) to a defining system A for 

(VI ,...I VJ. The proof of (ii) of the preceding proposition, together with the 
definition of k-rigidity, immediately imply that A is homologous to 2, and 
this proves the result. 

Before completing our study of indeterminacy, we obtain a result describing 
the linearity of matric Massey products. This result will then be used to show 
that In( V, ,..., V,) is a A-module in favorable cases. 

PROPOSITION 2.7. Let ( bTI ,..., V,) be defined, and let 1 < k < n. 

(i) [f I’, is the zero matrix, then 0 t (VI ,..., V,). 

(ii) If’ h E A, then X /C; ,..., V%) C ( LTI ,..., AVIc ,..., V,,) and equality 
holds if X is i?zvertible in il. 
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(iii) I f  VI. = VL + Vi and (V, ,..., V; ,..., V,) is strictly defined, then 

(Vl )..., V,) c ( v1 ,...) v; ,...) VT’,,> + ( v1 ,..., v; ,..., Vn) 

and equality holds if (VI ,..., Vk ,..., V,> is k-rigidly defined. 

Proof. (i) follows from the case h = 0 of (ii). To prove (ii), let A be any 
defining system for (V, ,..., V,) and define Bij = Aij if k < i or j < k and 
Bij == hAii if i < k <.j. Then B is a defining system for (V, ,..., XV, ,..., V’?,) 
such that B = AA. If  X is invertible, then we have 

<Vl ,-.., AVk ,..., v,> = AA-‘(V, )...) Al/, ),.., V,) CX(V, )..., I/‘,) 

and therefore equality holds. To prove (iii), let A be any defining system for 

<Vl >-.., VT&> and choose a defining system B for (V, ,..., IL’; ,.,., V,} such 
that Bij = A,, if k <i or j < k. Let Cii = Bij if k <i or j < k and 

Cij=Aij-BB,, if i<k<j. 

Then C is a defining system for (V, ,..., V;l ,..., V,) such that B + c = A. 
T 0 prove the opposite inclusion, let C be any defining system for 

<VI ,..., Vi ,..., V,>. By the previous lemma, since (V, ,..., V; ,..., V7J is 
k-rigidly defined, any element of this product can be obtained as (B), where B 

satisfies Bij = Cjj if k < i or j < k. Given any such C and B, let Aij = Rij 
ifk<ioorj<kandAij=B,j+Cijifi<k<j.ThenAisadefining 
system for (VI ,..,, V,,) such that B = B + e. 

We can now obtain a reasonably definitive result on the indeterminacy 
of strictly defined matric Massey products. The result appears to be best 
possible in the sense that if any hypothesis is deleted, then there is a counter- 
example to the conclusion. 

THEOREM 2.8. Let ( V, ,..., V,) be strictly defined, and consider the strictly 
dejined operations (VI ,..., V,-, , X,; , Vk+z ,..., V,), where X, E ME?(R,-,,,k+l) 
satisfies D(X,) = D(Vk , V,+,)-l. 

(i) If each (V, ,..., X, ,..., V,), 2 < k < n - 2, is k-rigidly de$ned, then 

(ii) ff each (V, ,..., X;l ,..., V,J, 1 < k < n - 1, is k-rigidly defined, 
t/it??1 TI1(V1 ,..., V,> is a A-module and x + In{ VI ,..., V,,) m=: (VI ,..., VT,\ for 

each s E ( VI ,..., V,,?. 
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PYOO~. (i) We know that 

r, -1 
In( r/, ,...) r,-,> c (J c (VI ,..., A-k )..., V,) 

cx,,...,x,-,) k=l 

and we must prove the opposite inclusion. Let D” be a defining system for 
some (Fr ,..., X,. ,..., I/,,), 1 tiz k <> n - - I. We may write D” in the form 

A;. ) j <I k 

(a) l)Ii, = B! i,k-1 c:j-I i 0 --G i <j .G n --- I, 
23 ) 

Af,.l,j+l , i > k 
(i,j) = (0, n - 1). 

Suppose the given 4:; , i Q- 2, have been completed to a defining system A’ 
for ( V1 ,..., F,), and consider the following inductive definition of ilk, 
2 <, k ..: 11: 

(b) 

If  the Ai: in (a) could be so chosen as to satisfy (b), then we would have 

and this would imply that 2::: (DA’} E In( G-r ,..., I,;, as desired. We claim 
that this can indeed be done. Observe that (b) implies the following explicit 
formula: 

j-1 
=2fj = Atj -. 1 Bf,+, if j < k. 

/:-i 11 

We start with the given AZ , i ;;: 2. By Lemma 2.6, no matter how the 

,4ij and Atj are chosen, we can assume that the AILS of (a) are given by (c) for 
2 < k < II - 2 since each (I’, ,..., X,; ,..., I/‘,> is k-rigidly defined. If  WC 
could assume that the AF3:’ of (a) were given by (c) for 2 <l i < j -z n -~ 2 
(with A$:’ and Az:i arbitrary, j ::< TZ - 2), then wc could define AAj and 
A:, , j -2; n - 2, by Aij = A:,:’ - ~~~~+, B:,j_, and (c) would hold in its 
entirety. We could then choose any A&, , A:,, , and A;,,_, such that A1 
was a defining system for (Ii, ,..., I’,(> and could define the remaining “Fj , 
namely those for i :< k -<j and 2 :, k :< 1z - 1, by (b) and thus complete the 
proof. It remains therefore to show that if {& / 2 < i < j < n - 2) is any 
partial defining system for (~I’, ,..., I& , X.&, then it can be completed 
to a defining system E such that {i?} -= {n,n-l). We may assume that 
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Ei3i,l - D;,;$ and we define E,j -= D:.;-’ if j < 2 or i > n - 3. \Yc 
complete the resulting partial defining system to a defining system L; and 

WC let I’, = {E,-,,,,I - n;t$+,,. 1 Observe that Y1 = 0 and I,_, = 0. By 

the proof of (ii) of Proposition 2.4, we have that 

(E - D-q E lo, v, ,..., ind2, s,-,) + (VI ,..., v,-, , oi 

Since /I/ \ 1 ,..., I,-, > Yl > IT,,, ,**., r-,,? is I-rigidly defined each 

, I ,b 1 ,..‘, v,_, , lil , I’,,, )...) LTr171--2 ) ~~-,~]) = (01, 2 :g 2 -< n - 3. 

Since \<I/; ,..., L,,+ , -Y+, , l,‘,,;, is (11 - 2)-rigidly defined, 

Il.1 )...( V& ) 0:. = (0). 

By the previous proposition, 0 E ,:O, 1-s ,..., I,‘,,-, , -Y& and it is easy to 
verify that In,\O, 17, ,..., E;,+, , X,-i‘,) = (01 by use of Proposition 2.4 and the 
k-rigidity of all (1~; ,..., X:, ,..., r.,,:), 2 -:;. k -; II - 2. Thus (2; = (fi,:mm’j. 

and the proof of (i) is complete. 

(ii) I f  .Y,; E s i,; ,..., A-?, ,..., I:,:\ and Y/,, t (: VI ,..., y,; ,..., r:,i, then 
Ax, E (VI ,...) Al-J,, )..., I/,, and xk -+ yi. E (J/, ,..., X,k + Yk ,..., I ,/ bv 

the previous proposition. It follows from (i) that In< Vr ,..., V,) is a A-module. 
Let .x E j C7r ,..., I-,,, . I f  y  E ,<V, ,..., J,,>, then y  : x + (y - x) E m + 
In< c’r ,..., I-,,,, and it remains to prove that s -7- In( Vr ,..., V,> C (L-r ,..., I’,, j. 
It suffices to show that .x + sk E ( I -I ,..., I ,>, xi; as above. Let x = (J] for 
some defining system =1. Let xii =-. {B “j for the defining system DA’ given 
in (a). By Lemma 2.6, we ma!- assume that .-1c = Aij forj < R or i ;> k $~ I. 
Let C,j = --Irl ifj :i k or i 3, k and C,j =y =I, -j Bf,j-, if i $2 k - 1 c.: j -- I. 

Then C is a defjning system for \ I; ,..., b’,,, such that c’ : zJ + Bk and 
therefore .x ). .T~,. E \ 1-r ,..., I ‘,, , as was to bc shown. 

We should indicate the precise content of the hypotheses of the theorem. 
The hypotheses of (i) amount to the following requirements on (n - 2)-tuple 
matric Massey products (.Yk as in the theorem): 

I, )...) I’;,-, , 0, v]L-3 )...) I/,,> = (01, I -< h :z, 12 - 2, (1) 
and 

8: i ; ,..., b-J<-1 , s, ) I -;, , :! ,...) b-l-1 ) A-, , v,,, )..., V,) = (01, (2) 

l<k+1<z<n and (k 2) # (1, n - I). 

The hypotheses of (ii) add the further requirement 

/-r-1 ) vz ,...) v,-, ) A-,,-,> = (0). (3) 

481/12/4-7 



Conditions (1) and (2) are vacuous if 72 ~: 4, and therefore Theorem 2.X does 
complete the proof of Proposition 2.4. 

There are various formulas relating sums of matric 5Iassey products 
to matric LIassey products defined by larger matrices. The rclevancc of 
larger matrices is made clear by the observation that 

FF’e complete this section by giving t\vo examples of such formulas, the second 
of which is designed for use in Section 4. (The remarks preceding 

Proposition 2.3 are needed to make sense of this example.) 

PROPOSITION 2.9. Let /<I -I ,..., I -,, ntzd (Pf; ,..., I{~;, be defined. Then 
(-1, ,..., A-,,) is dejirled, where 

Proof. Let A and B be defining s!-stems for (E; ,..., I,, and ( IV1 ,..., II/,, 

and define 

Then C is a defining system for (-~~ ,..., -VT;. such that c ~~ ‘-7 A- d. 

Proof. Since (v, ,..., C 7,-I-1 , lr,,-l,; and (Ye , V,,, ,..., V,) ate defined, 
there exist matrices Aij , j --‘I ?I - I or i ;b 1, such that (Ai~l,,~ : Vi and 
(/A;, m= Aij forj ; i + 1. Choose defining systems AL for the 
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such that A!. = A. 2+l,j+l if i > k and Ai = Aij ifj < k. Let Bij = &=i+, A:, , 

0 .< i -:j ;< n - 1 and (i,j) f  (0, ?z - Z), so that B,C-l,, = AiplSs, and 

define 

Then C is a defining system for (X-r ,..., X,) such that c = CiIi Ak. 

3. ASSOCIATIVITY AND COMMUTATIVITY RELATIONS 

iLIatric JIassey products satisfy a variety of associativity and commutativity 

relations, and we shall obtain some of the most useful of these here. In the 
following two theorems, we assume given an object R E CT,, and a fixed 
multipliable system of matrices (I’r ,..., V,,), Vi E MH(Ri-,,i). 

THEOREM 3.1. The following associativity ,formulas hold. 

(i) Y (CT2 ,..., JG> is dejined and if 1, 1 < 1 < n, is given such )that 

( V, ,. ., LTj> = (0)for 1 < j < I, then 

1;\;v2 ,..., v,,> c -((I; ,..., V,), L.,,, ,..., v,;. 

(ii) 1j. (1,; ,..., V,,-,) is dejined and if k, 1 < k < n - 1, is given such that 

(V,,ml ,..., V,,‘, = (0) for k -:I i d: II, then 

(VI ,..., F+,) L’,, c <I;, ,...) I’,. , ( I’J<~:1 )..., IT,,), 

(iii) I f  <I, ,..., V,I-l) is defined a?cd contains zero and if k and 1, 

1 c-i k < 1 C. n, are given such that (L7i~-1 ,..., b:,) = (0) for k < i < n and 

if: ,..., Vj> = (0) for 1 <j < 1, then 

Proof. AA simple check of signs (using (V, , V,) = vrV2 and 
(VI ,..., VT) = -(V, ,...) V,)) shows that (i) and (ii) are just more precise 
versions of (iii) in the special cases k = 1 and I = n - 1. To prove (iii), 
let Arj, 1 ..G i <j < n - 1, be matrices such that {Ai-l,i} = I’[ and 
dA,, = Aij for j > i + 1. These exist since 0 E (V, ,..., V,-,). Choose 
further matrices A,, , i > k, and (3,j, j < I, such that {& / i > kj and 

{Aij 1 j < I) are defining systems for (I’,: +l ,..., If,,) and for (VI ,..., Vr). We 



can do this since ( F,+l ,..., I ;, =~ {O), i : lz, and :\ I; ,..., E-, ~-= {O), j 1. 
KOLV define matrices Bi, ,j k 1 I, and C,, . i _ I 1, b! 

In particular, B,,,.~., mm-= .q,,< and C’, mL,, Lqt,, , and it is easy to verif! 
that B and C are defining systems for c.’ I~‘, ,..., I’,; ? {.ql(,,:. and for 

({&:, T.,: 1 )...) I,‘,, 1. I f  1 = k -:- I, then l? ~- (7 0. If  I : ’ A 1, then a 
straightforward calculation shows that B + f? d(C(pF’,7m, -4 ,,,, --1,,,,,). This 
proves (iii). To prove (i), we merely observe that we could start the above 
argument using any defining system for (\I72 ,..., I-,, and that 8 would then 
hc precisely Aolirln . This shows that each element of F-l < I V2 ,..., E -,,) belongs 
to ~-‘{A,;,,j, F,, ,..., I’,,‘, for some (LJ,,,j c- ’ CI, ,..., I-, . ‘I’he modifications 

needed to prove (ii) are equally simple. 
\;\*c single out certain frequentlv used special casts in the following 

corollai~\ 

C’OROLLARY 3.2. Mussey produrts uttd orditlavy products are related by the 
folhing formulas. 

(i) 1f (Vz ,..., b’,,; is defixed, theta ( 1,; E ‘.’ , L:. , . . ., I -: is de$ned and 

P-l(P-2 )...) L,, c -’ Flle2, I,‘:, )...( I’,,. 

(ii) Ij’ ( V1 ,..., V,,_, is dejined, then c If, ,..., I -,,-:! , I .,,-11,7,, is aTefined 
n?ld 

il;l ,..., I7,,-1 j V,, C ’ i yI ,..., L 7,:-2 , I m,,pl I -,I 

(iii) 1f ( V1 ,..., V,)-, ) und (I T2 ,..., I ‘,, j are strictly defined, then 

Vl( II’, ,..., I ‘rj :- ’ r, )...) 1 ‘,i--1 v,: . 

Proof. (i) and (ii) follow from the cases 1 r: 2 and k ~~ tz - 2 of(i) and (ii) 
of the theorem where, for (ii), Vi is replaced by iTi if i -; n. Part (iii) follows 
from the cases I :--. n ~ 1 of (i) and k -~: 1 of (ii) of the theorem, since these 
are simultaneously valid under the present hypotheses. 

The last part of the corollary contains the simplest special case, 1 == n - 2, 
of the following general system of relations between (I -t l)-tuple matric 
h’lassey products and (n -- I)-tuple matrix lLIassey products. 
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THEOREM 3.3. Let lbegizen such that 1 cg 1 :< n - 2 and, if1 .: i(n -- I), 
let k begiuen such that 1 < k < n - 21. Assume that (V, ,..., Vgil\ is strictly 

dejned and consist of the single matrix Y, fey each q such that 1 << q < n - 1 
if I 3 $(n - 1) OY such that k < q < k + 1 if 1 << i(n - 1). -4ssume further 

that (VI ,..., V,-, , Y, , V,,,,, ,..., VW> is strictly de$ned for each such q. Then 

0 E c, ( 1); )...) v,-, ) I’, ) v,+p1 )...) L-,,‘ . 

Proqf. \\‘e first prove the more complicated case 1 ..: JJn - 1) and then 

indicate the modifications necessary in the case I ..> A(n - I). We have 
0 t i I’, ,..., V,.+,-,) and 0 E ( VICt2+r ,..., I-,,’ since 

<I’, ,..., v,-1 , I’, , vg+,+, ,..., V?,‘ 

is strictly defined for q T k -/- 1 and q = k. Choose matrices Lli, , 
j ,i k + 1 - 1 or i > k + 1, such that {izjPI,,i} = Vi and dAij := Aij for 
j l i j 1. Since (V, ,..., V,,,, 1 is strictly defined, k :’ q c’ k + I, we can 
choose further matrices 

Here A”_ (I 1,Q = L,,,L 7 and a quite tedious calculation demonstrates that 
(b) and (c) are consistent with dAyj = Azj . The Azj for i .:; q <j and 

q < k $ 1 are chosen arbitrarily so that d64Tj =m Afj . Another tedious 
calculation shows that Cz’?, & = 0, and this proves the result for 
I < $(n - I). Suppose that 12 $(n - 1). Since (V, ,..., V,,$ is strictly 
defined with zero indeterminacy for 1 :<I 9 ,< n - I, we can choose matrices 
izzj , j - i C< I, such that {Aij 1 q - 1 -,; i -< j -< q f  I> is a defining system 

for <V, ,..., V,+J and {&l,q+ll = Y, . By induction on q, we can find 
defining systems An for (VI ,.,., V,-, , E’, , Jlu+ r ,..., V,,> which satisfy (a) 
above and 



The Ae , i < q < j, are arbitrary such that Up, = /!& . Now if I= i(n - l), 

then x:I: & = 0, while if I> i(n - I), then d(~~=,-, &,J&,J = ~~~~ aq, 
and this completes the proof. 

The following corollary complements Corollary 3.2. 

COROILARY 3.4. Massey products and ordinary products are related by the 
following formulas. 

(i) I f  ( I’rIVt , I,, ,..., I;;,> is defined, then (VI , rz Vz , V, ,.. ., V,!j is defined 
and 

<v,v, 7 v, ,..‘! VW> c -<VI , b 2v3 > v, ,.*., vn>. 

(ii) lf(F1,..., VnW2, Vv,-l I/‘,> is defined, then (VI ,..., VTL-3, Vn--2Vn--l, V,) is 
dejned and 

(Vl )..., 1’-,,-, , rc1 V,,) c -cc; ,...) v,,-, ) lf’7z-2v,z--l , VJ. 

(iii) If C: V, ,..., V,V,+, ,..., I/.,) and (V, ,..., V,, 1Fvk+2 ,..., V,> are strictly 
defined, then 

( v1 ,..., v,-, , VJtVk+l , b*&@ )..., c:,> 

A -(VI ,..., v, ) FJEi lk,,, , v,,, ,..., V,) f  0 . 

Proof. (iii) is precisely the case 2 = 1 of the theorem, with Vi replaced by 
Fi for i 6. k. (‘) I and (ii) are easily obtained sharpenings of (iii) in the cases 

k _- 1 and k = n - 2. 
We now turn to commutativity relations. We first define an involution of 

the category flVS and then relate it to matric Massey products. 

DEFINITION 3.5. Let R =:- {Rij, pzjlc] be an object in @,( . Define the 

opposite object RR0 =- {Ry, , p&l in G& by 

where II’ : R,,-j,,_i @ Rn-k,n--, + R,_.TC,,-j 8’ Rn-i,n-i is the standard twisting 
map, T(x@y) = (-l)deszdesy@;. A simple diagram chase proves that 

R” E a72 . Observe that Rip,,{ = Rn-i,n-i+l and that R& = R,, . 
I f  (V, ,...) VJ is a multipliable system, Vi E MH(R+J, and if Vi denotes 

the matrix transpose to Vi , then clearly (Vi ,..., Vi) is a multipliable system 

such that D(V, ,..., Vn)’ = D(VA ,..., Vi). It therefore makes sense to 
compare <VI ,..., V,,>‘, computed in R, to <Vi ,..., Vi), computed in R”. This 
can always be done, but assumptions as to the degrees of the entries of the V, 
must be made in order to obtain a uniform statement (if 2 f  0 in A). Thus 
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suppose that each entry of Vi has the same parity ei (where ei = 0 if the 
degrees are all even, Q = 1 if the degrees are all odd) and define 

s(i,j) =j - i -t c (Ek + l)(Cl + 1). 
i.<k<l<j 

With these notations, we have the following result. 

PROPOSITION 3.6. Let ( VI ,..., V,,) be dejined in R, V, E IWH(R,-,.~). If 
2 f  0 in A, assume that each entry of Vi has the same parity ci . Then 
( VA ,. .., Vi> is dejined in RO, and 

<Vl ,a**, I:,) = (- l)S(lJL)( I;; )...) v;> 

as a subset of MH(R,J. 

Proof. Observe first that if X E ISZR,~ and Y E MRjk , and if the degrees 
of the entries of X all have parity E and the degrees of the entries of Y all 
have parity 4, then 

(XI-‘)’ = (-I)“@ Y’X’ E AIR,,< = ~~JTR;-,,,-~ , 

where XY is computed in R and Y’X’ is computed in R”. Kow let A ibe a 
defining system for (VI ,..., IQ and define B,_j,,_i = (-l)‘@“,i) .4:, . 

Since s(i, i) = 0, B,-i,,-i+l = 14-,,~, which represents Vi. In view of our 

first observation, it requires only a tedious verification of signs to see that B 
is a defining system in R” for (VA ,..., Vl> such that (-l)‘o..) B = A’. This 
proves that 

<Vl ,***, V,)’ c (-l)s(l,n)(v; ,..., Vi), 

and the opposite inclusion follows from symmetry. 

For the remainder of this section, we shall assume given a DGA A-algebra 
U, regarded as an object of C& . Observe that U”, the opposite algebra of U, 
is precisely the opposite object of U in the category C!$ . Moreover, writing 
elements of U” in the form u”, the map f : U--f U” defined by f(u) = UO is 
a homology isomorphism of differential cl-modules. Of course, f is a morphism 
of algebras if and only if U is commutative. We shall say that U is n-homot.opy 
commutative if f : U+ U” is n-homotopy multiplicative in the sense of 
Definition 1.4. This is clearly a condition as to the existence of certain 
homotopies Ui + U, 2 ,( i < n, and is satisfied in each of the following 
cases : 



(1) C: : C-(X; A), where aY is a topological space 

(2) CT = (7,(&Y; A), where S is an H-space with unit 

(Moore loops are understood, so as to have associativity) 

(3) l.’ - B(A4)*, the dual of the bar construction of a cocommutative 

Hopf algebra -4. 

Indeed, the requisite homotopies can be obtained by the method of acyclic 
models in case (1), by passing to chains from geometric homotopies in case (2) 

(see Clark [I]), and by use of the contracting homotopy in B(A) in case (3) 

(see [IO]). 
We can now use our naturality result to convert Proposition 3.6 into an 

internal statement about matric Massey products in H(U). 

COROLLARY 3.7. Let c he an n-homotopy commutative DGA /f-algebra. 

Let (V, ,..., VT,,? he dejned, Vi E MYI( (f 2 # 0 in A, assume that each entry 
?f Vi has the same parity ci . Then i IT71 ,..., I$ is also dejked, and 

(V, )...) c;,)’ = (---lpq I/‘:, )..., Vi), 

Proqf. Consider f : [,‘-F [To. B!- Theorem 1.5, we have that 

.fd~; ,..., V,/‘> = ,/f*(V~),...,f*(C/I,),. 

On the other hand, the previous proposition gives 

.f.&( c; )..., l’, / ‘ ~~ (pl),(‘J,) ,.f*(C-,,)‘)..., f*(17J/. 

Therefore <f.,(LYJ,...,f,( V,,);’ em- ( ~~ l)a(1~71) (f*(F?,)‘,..., f*( VI)“>, with hoth 
sides computed in U”. Applying f;‘ to both sides, we obtain the desired 
relation by use of Theorem 1.5. 

The corollary is due to Kraines [.5] in the case of ordinary Massey products. 
We complete this section by giving two different generalizations to n-tuple 
products of the well-known permutativity relation 

0 E (a, b, c> + (6, c, a> $I (c, a, b?, 

which is valid for ordinary triple products in the cohomology of spaces. 
Since permutations of multipliable systems are usually not multipliable 
systems, these results will only make sense for ordinary Massey products. 
To simplify the statement of the first relation, let us say that ci is TL-homotopy 



XIXTRIC MASSEY PRODUCTS 551 

pcrmutative if there exist morphisms of A-modules h, : LT:’ ---f C’, of degree 
1 - 1, such that h, is the identity map and, for 2 ‘I 1 5: n, 

(A calculation is required to show that this notion makes sense, that is, is 

consistent with d2 = 0.) This condition is satisfied in the first and third 
examples listed above. 1Ve can now obtain the following result, which is 
also due to Kraines [.5]. We sketch a proof since our notations and !sign 
conventions differ from his. 

PROPOSITION 3.8. Let U be an n-honzotopy pernzutatize DGA A-algebra. 
Let vi E H(C) and suppose that (q ,..., v,,) is defined and that 

(z& ,...) v, , v1 ) v2 ,...) VI> 

is strictly defined fey I ~2~ 1 < n. Then 

n--l 
(~ l)~(lWvl )...) v,) c 1 (-l)“‘lJ’-S(l ‘l,“yvl+l )..., v, , VI ,..., VJ, 

171 

z&eve s(i,j) : j - i + Cic ,, c-z, j (deg z’? -+ l)(deg z+ + 1). 

Pvoof. Let a = (aij) be a defining system for (zll ,..., u,(\. Since the 

(V/ 11 ,...> z’,, , Vl ,‘.., vr) are strictly defined, we can choose elements aji , 
0 < i < j < n, by induction on j - i, such that 

Then defining systems a’ for the (vL +l ,..., v,, , z1 ,..., UJ are given by 

I 
% = 

I 

aik.+ 7,i-w+Z if n--l<,i 

aitZ,j-n+l if i<n--l<j 

aicz,ji z if j:<?n-1. 
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Write u(k) =- s( 1, K) + s(R f  I, n), 0 x k ( n. Then a tedious verification of 
signs demonstrates the formula 

Adding and subtracting (-1)S(1~71) d on the right, we obtain 

where u(0) =~ 1 -/- ~(1, n) and a,, is defined to be uih . Let homotopies h, 

give the n-homotopy permutativity of c’. Define 

where the second sum is taken over all sequences I ~~ (i, ,..., i,-,) such that 
0 < i” i: i, .< ... r: i,&, x: n. Then a tedious calculation shows that 

d(c) = 4, and this proves the result. 
For our final commutativity result, we require that U be homotop> 

commutative via a ul-product which satisfies the Hirsch formula. This 
means that we are given U, : I: &TN U + C, of degree - 1, satisfying 

(i) d(x U, y) = [x, y] - d(s) U, y  + .C U, d(y), and 

(ii) (xy) U, z == ( -I)degUdegz (x LJ, z) y  - “(y u, 2). 

This hypothesis is satisfies if i.- = Cr(AY; ~1) [3, lo] or if U = B(‘4)*, A a 
cocommutative Hopf algebra [IO]. It should be observed that the existence 

of a ul-product in CJ satisfying (i) is equivalent to either 2-homotop! 
commutativity or permutativity: in both cases, the required homotopy h, 
is given by h,(x @ y) = --x U, y. 

PROPOSITION 3.9, Let U be a DGA A-algebra equipped with a u,-product 
which satisjies the Hirsch formula. Let vi E H(U) and suppose that (ul ,..., v,> 
is dejned and that (v2 ,..., v2 , vl , v~+.~ ,..., v,,> is strictly dejked, 2 -5 1 < n. 
Then 

(v.1 >..a, v,) c - f :  (- l)t’~‘(a, ,..., VI , z+ ) v5‘lt1 )...) v,), 
Z-2 

where t(1) = (deg v1 + 1). ck=, (deg z‘~: + 1). 
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Proof. Let ur = (u:J be a defining system for (a, ,..., v,,). Define 

t(i,j) = (deg v1 + 1) * c’,=, (deg vk + I), 2 < i <j < n, so that t(Z) = t(2., I). 
Since each (zlr ,..., 7-)1 , vr , q+r ,..., v,) is strictly defined, we can choose 

defining systems for these products, by induction on 1, such that 

(4 ‘jj = $+l,jil 
if j < 1; a! = a.. an 11 L, if i 3 I; 

Z-l 

(b) u:-,,~ = a',, ; u:, = - c (-l)t'k+lJ' u;, $ bf~,,,, u, u;, 
L-i+ 1 

if i<Z--1. 

A lengthy computation, using (i) and (ii) above, shows that (b) is consistent 
with the formula da:, = ~5:~ . The ujj , i < 1 < j, are chosen arbitrarily such 

that da:, = (zii . Another lengthy computation shows that 

4--l) t(n) zin u, at, = i (-1)7"' 2. 

I=1 

Since u1 was an arbitrary defining system for (vr ,..., v5’,), this compktes 
the proof. 

4. MATRIC MASSEY PRODUCTS IN SPECTRAL SEQUENCES 

Let R = {Rij , ,uijk} b e an object in C&, . We say that R is filtered if each 
Rij is a decreasingly filtered differential A-module and each yij,,. is filtration 
preserving. Here the filtration on the tensor product is defined, as usual, by 

F”(Rij @ Rjk) = c FrRi, @ F”R, . 
r+s=p 

LI’e say that the filtration is complete if, for each Rij , 

lim F”Rij = Rij = lirr, Rii/FnRij . p-t--m 

H(R,,) is filtered by letting FpH(Rij) be th e image of H(FpRij) under the rnap 

induced by inclusion. We say that a complete filtered object R is convergent 
if, for each Rij , 

haFPH(Rij) = H(R,,) = ;i, H(Rij)/F*H(Rij). 

\\‘e shall assume throughout this section that we are given a fixed convergent 
complete filtered object R E CT,:, . 



By the usual procedures, we can obtain a spectral sequence {E,R,,) for 
each R,,; By results of Eilenberg and Moore ([2] and unpublished material), 
our hypotheses are sufficient to guarantee that {B,R,,) converges to H(Rjj). 
The pairings ELLS,; induce morphisms of spectral sequences {E,(R,, :% Rj,)} ----f 
(EJQ'i,jt and we have the standard homology products (E,.R,, Q3 R,Rj,J + 
{&:,(A’,, (‘,,:I Rj,,.)). By composition, therefot-e, we have the well-defined pairings 

P‘ >,+L.,~,; : l$Ri, 'y: I:',.R,, ---f E:',R,,, 

I,et E,R _: {B,R,, , I;:JJ,,~~]. Then H,R is an object in a category -S’C~Z,~(Y), 
which is defined precisely as was (;I,, , except that the component differential 
A-modules are bigraded and have differentials of bidegree (Y, 1 - Y). A4fter 

making the appropriate modifications in Kotations 1.1, specified below, we 
can define matric Massey products for objects in .?KZ!,,(,(r) by Definition 1.2, 
and all of our preceding results go through unchanged. 

\\‘e shall here investigate the convergence of matric 3Iassey products 

contained in E',._~,R,,, to matric Massev products contained in H(R,,,) and 
shall study the relationship between the operations in I?,+lRo,, and the higher 
differentials. The statements of our results are somewhat technical, but the 

essential ideas are not difficult. one ma!- regard a matric n’Iassey product 
;r; ,...I I-,, C E,.,,R,,,, as an approximation to a matric Massey product in 

M(R,,,). I-Ion- good the approximation is &pen& upon how much interference 
there is from higher differentials. Under appropriate hypotheses, there is no 

interference and we obtain our convergence theorem. Under other hypotheses, 

the interference is forced to take the form of specific higher differentials 
defined on ’ F, ,..., V,,’ and we then obtain precise expressions for such 

differentials. 
We must first specify the necessary modifications in Notations I. I. I,ct 

1) (d, , di,) and E ~- (e,, , t.ij) be p q and p’ Y 4’ matrices with entries 
in % :; Z. \\:e say that (U, E) is a compatible pair if ‘1 ~= p’ and if both 
d,,. eiLj and G!:,~ -I- eij are independent of k for each i andj. We then define 

thep x 9’ matrix D r E _ (fij) by.fi, (4k f  e,,, , cl;,- -)- eij). I f  L), )..., I),, 
arc matrices with entries in % .A %, we say that (I!, ,..., n,,) is a compatible 
system if each (Uj , />i+l) is a compatible pair. I f  11 ~ (cl,; , dij) and 
(s, t) E % ; %, we define I)(,‘,L) (d,, --~ s, a;, I- t). Let (D, ,...) D,) be a 

compatible system. Define nij , 0 :< i < j ..’ n, by 

Dfj =- (/jiil ... * n,)c~w~-w, t --j ~ i ~~ I, 0 .< i <; .: n. (1) 

Inductively, each (Il)i,C , D,.,) is a compatible pair, and 

I_)(~.l--r) 
23 -= Di, e D,t., for each k such that 0 .g i c k c j < n. (2) 

Now the notion of a multipliable system of matrices can be defined just as in 
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Notations 1 .l (b), and the sign conventions of Notations 1. I (c) remain in 
force with total degrees understood. 

We shall work throughout this section with a fixed given multiplia.ble 

system of matrices (P-r ,..., F,), where Ki E MET+lRi--l,i. We shall assume 
that F7r is a row matrix and J/,, is a column matrix. We let D, = D( C;), the 
matrix of bidegrees of lTi , and we define Dji by (I ) above. If  A --= (A ij) is a 
defining system for (E-r ,..., I,,) C E,,,R,,, , then i-Iij E ,l/IE,Ri, satisfies 

D(4ij) = Dij . Observe that we have 

where 

D < VI ,,.., I’,,> = D(Vl ,..., r’,)(8’f), (3) 

D( b-1 ,..., VT) = D, +. ... v. D,, and (s, 1) == (-T(TZ - 2), (r - l)(n - 2)). 

JF’e shall find it convenient to adopt the notation (p, 4) E Dij to indicate the 
fact that (p, 4) occurs as an entry of the matrix Dij = D(A,). 

As a final preliminary, we shall need some terminology to allow con’cise 
statements about elements and matrices of elements in spectral sequences. 

Let G be a filtered differential A-module, with convergent spectral sequence. 
E,,,G will denote the A-submodule of E,G consisting of all permanent cycles, 
and ;%IE,,,G will denote the set of matrices with entries in E,,,I.G. Let 
i : E,.,G + E,G denote the natural epimorphism (for any Y). I f  x E Ef,$G 
and y  EF”H(G) projects to i(x) in E,G, then we say that I converges to y. 

If-Y = (.zi,) E ilZE,,,G and I,~ converges toyij , then we say that Xconverges 
to Y = (yij). We let T denote the natural epimorphism FflG-+ Ei,*G. If  
B =m (bi,) E MG and if the bij are of known filtration, then Z-(B) is a 
well-defined element of ME,,G. If, moreover, the entries of T(B) are knoll-n to 

survive to E,G, then we shall indicate this fact by writing r(B) E &ZE,G. 
With these notations, we can first prove a convergence theorem and then 

a generalized Leibnitz formula for matric Massey products contained in 

E’,+A, . 

THEOREM 4.1. Let ( Crl ,..., V,,) be dejked in ET+,R,, . Assume that 
vi E ME r+l,&,,i and that Vi comerges to Wi , where (WI ,..., W,,;, is strictly 

dtlfined in H(R,,). Assume further that the following condition (*) is sati.$ed 

Let A be any de$ning system for {V, ,..., V,J. Then 2 is a permanent cycle 
which conaerges to an element of (W, ,..., W,>. 

Proof. We shall construct a defining system B for (WI ,..., W,> such that 
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x(Bij) == Aj, E ME,.Rij . Z? will then represent an element of (I, ,..., W,,> 
to which A converges. We proceed by induction on j - i. For j -- i r= 1, 
we simply choose appropriate matrices of representative cycles for the Wi ; 
we can do this since F7< converges to Wi . Suppose the Bij have been found 
for j - i < K, where 1 < k C: n. Fix i and j such that j - i = K. Let 
LI t Ef”Rij be any entry of Aij , say the (y, z)th. Let e andfdenote the (y, z) 
entries of Aij and &, , respectively. Then d,(a) =: e and, by the induction 
hypothesis, r(f) = e E E,Rij . MTe may therefore choose c EFJ’R~~ such that 
V(C) = a E EyqRij and d(c) = f mod Fp+‘lR. I, . It suffices to show that by 
adding a suitable chain in Fp,l-lRij to c we can obtain a chain b such that 
d(b) = f. Indeed, we can then take b to be the (J, z) entry of Bi, ; the desired 
condition n(b) == a E EYR, will follow since wc will have that n(b) =- n(c). 
Suppose that no such chain can be found. Then g ~~ f  -- d(c) must not be a 
boundary in Fr’+lRij . However, since (U; ,..., ;cl’,,, is strictly defined, f  and 

therefore g must be a boundary in Rij . Let 1 be that integer such that g is 
homologous in F”-e’ Rfj to an element, say h, of fi ‘1~ tRij but not to an element of 
Fyi f  tlR 1) . Then t > Y and n(/z) is nonzero in E; +tsCl--l j lR,, . Since g and 

therefore Iz is a boundary in Rij , there exists u 1,: 0 such that ~(12) is killed 
in Et+l,Rij . Then E~;$s~‘+~R~~ $ Et~+u,u,Rij . Since this contradicts (*), the 
Blj can be constructed and the proof is complete. 

The result above was previously stated by Ivanovskii [4] for ordinary 

nIassey products in a certain spectral sequence, with .I 1~ Z, . It should be 
noticed that there is nothing in the statement or proof to prevent A from 
being killed by higher differentials. I f  this occurs and if ‘4~ BFRo,, , then 
the cycle ij EF~R”, found in the proof is necessarily homologous to an 
element (possibly zero) of F”-’ ‘R,,, . 

Remarks 4.2. Suppose that all of the hypotheses of the theorem are 
satisfied, except that it is not known that ( Kl ,..., I’,,) is defined in Er,.lROn . 
Suppose, in addition to (*), that 

(*‘) If@, 4) E Dij , 1 < j i < 12, then E~~~~“‘~‘URij C E,+,,,Rij 

for u>l. 

Then I., ,..., C-J is strictly defined, and the conclusion of the theorem is 

therefore valid. To see this, suppose given any partial defining system 
(z-l,j Ij -- i < A}, where 1 < k < n. Fix i and j such that j - i = k. Then 

djj E ME,,,Rjj since, by the proof of the theorem, ,lii -:- n(B,,) where & 
represents an element of (W, ,..., W,). Let e be the (y, z) entry of A”,, . 
I f  e : 0, let 0 be the (y, z) entry of Arj. Suppose e f  0. Since 
‘; W’, ,..., W,,/ = (0) and & == 7i(B,,), e cannot survive to a non-zero element 
of E,Rij , hence e must be killed in some ErluRij , u > 0. By (*‘) we must 
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have u = 0. Thus there exists a E E,Rij such that d,(n) = e and the given 
partial defining system can be completed to a defining system A. By 
Lemma 1.3, it follows that (r/, ,..,, IQ is strictly defined. 

We next turn to the problem of computing ci,(I/, ,..., V,) when the d,Vi 
are known. The most useful form of the result is given in Corollary 4.4. 

THEOREM 4.3. Let (k; ,..., I’,> be de$ned in E,.+lROn . Let s > r be given 
such that d,V, = 0 for t -; s and 1 < i < n and such that the following 

condition (*) is satisfied. 

(*) I f  (p, 4) E D,j , I < j - i < n, then, for each t such that Y < t < s, 

E~+t,q-t+lRij = 0 and E’+tf-t+l = 0 
r+s t 

Let 31 E (b; ,..., V,) C E,,,R,, . Then dt(a) = 0 for t < s and there exist 

Yk E ME+l.li such that Ylc survives to d, V, and such that (X, ,..., X,,‘> is 
dejined in E,i.lR,,, and contains an element y  which survives to -d,7(a), zvhere 

Proof. Let A be a defining system for (li ,..., IQ such that {A} == IY. 
Suppose that we have found matrices Bij t MRZj which satisfy 

(i) n(Bij) = A,, E ME,R,j and 

(ii) I f  b E F”Rfj is the (y, 2) entry of BLj and .f~ Fg,mrRij is the (I, 2) 
entry of Bij if j > i + 1, or zero if j = i + 1, then db - f mod Ffl~ $Rij ,. 

Then define Gij E ME,Rij to be the matrix whose (y, z) entry is 
+db -f) E E:(- S.*Rij (b and f as in (ii)). Let Y, = {G,-l,,} E ME,.+lRi--L,r ; 
clearly YI survives to d,?l;, . Define 

We claim that C is a defining system for (X, ,..., X,) such that -z( survives 
to dp. C will therefore represent the desired element y, To justify our claim, 
observe that d,G,, = -rrdBij if i > i + 1. By the usual trick of adding and 
subtracting the same elements, we find 
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Clearly rr applied to the right side gives XL::,1 (GJI,, -2 .4,,G,,). This shows 
that C is indeed a defining system for (-Yr ,..., .Y,!, . Applied to da,, , (a) also 
shows that c,,,,( survives to --d,?(a). (Ob serve the change in filtration between 
Bi, and Gzj ; this is what permits (a) to give a computation of n, if (;,j) # (0, ~1) 
and of cr’,< if (;,j) =: (0, z).) Now that n-e have ,justified our claim, it remains 

only to construct the matrices Bi, . Since &I-, 0 for t s, Bjel,; can 
surely be found as desired. Suppose that Bij have been found for j -- i .’ k. 
where I /z < n, and fix i and j such that j ~~- i ?z. Let a t BrR,,- and 
P t SF r,~~r~+lRii denote the (y, z) entries of =I,, and A,, , respectively. Then 

c/,(a) -~- c and, withf as in (ii), n(f) p. We may therefore choose c EF”R,, 
such that n(c) a and d(c) -1~ f  mod F*+* + lR,j It suffices to show that I,!- 
adding a suitable chain in E”‘~+‘R,, to c we can obtain a chain h such that 
d(b) f  modFn- SRi, , since 7;(b) (I will then follow from ;;(h) == n(c). 
Suppose that no such chain can be found. Let t hc that integer such that 
g ,f  ii(c) is homologous in r rllIIRi, to an element, say /I, of F”lfR,, but not 

to an element of F” “‘R J, . Then Y t C. 5 and n(lz) is nonzero 
in I;‘,: 1 I,,/- 1 i IR ,i , where u min(f, Y ~~ s - I). Hcrc n(h) survives to 

~:,,.,~_,Rijsinced(h) ~~ n(f)andd(f) tb ‘P 1 r 1 ‘R, i by the induction hypothesis, 

and n(h) does not bound before stage t I,!- the choice of 1. ‘This contradiction 
to (*) establishes the theorem. 

It should be observed that the technical hypotheses of the theorem are 

vacuous in the case s Y ! I. 

~OHOLLARY 4.4. Assume in addition to the hypotheses of the theorem that 

for 1 ’ lz n theye is just one matrix L’, E JfE,,,R,C-,,,C which sureives to 

d,. I -: By nhzrse, write I’,. d,? V,,. . and suppose that each 

( I,‘, )..., IC,.., , d,, 1 .,( ) L-,<+, ,..., E,.,, x 

is strictly dejined in E,+lR,,,, . .?sswne further that all nzatvic Massey products in 

s&4t hme zero indeterminacy. Then 

d,?(C, )..., IX) =- ,gl (t;, ,...) I,-,) d,f,, I-,.,., ,...) f ,>. 

Proof. This follows immediately from the case 1 =- 0 of Proposition 2.10. 
It is perfectly possible, and quite common in the applications, to have an 

element a t (I/ 1 ,..., v,I,,; C&A,, such that ~!~(a) f  0 for some s .:- T even 

though each lTj is a matrix of permanent cycles. For example, such behavior 
must occur in any spectral sequence {E,) such that Elq = Exty(A, A) for 
some connected A-algebra A, Ei-* -= Ei:z , and E, # E, (because, by [IO], 
all elements of Eis* for p ,b 1 are built up via matric Massey products from 
the elements of Ei-*). The following result relates such differentials to lower 
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order matric Massey products in the various MH(Rij). The most useful form 
of the result is given in Corollary 4.6. (In our general context, the remarks 

preceding Proposition 2.3 are needed to iuterpret the statement of the 
theorem.) 

THEOREM 4.5. Let ,; C; ,..., r,‘,,) be a’cfined in ErklROn . ~4mme that 
I;, E 11 IE i-1.L R l-l,/ and that I, comeyes to rt;; . Let I, 1 cZ 1 :.. II - 2, be 

&!eu such that (lVk ,..., tI’,&. !I,’ is strictly de$ned in &TH(R,Gm,,,~.,) ,foi 

I I” k 5.’ tz - 1 and such that the fo11ozGng condition (*) is satkfied. 

(*) I f  ( p, ‘I) E Dij , 1 .: j - i < I, then R;;;,;+“Rij C I!z&,~~,~R~~ 

for 21 & 0. 

Further, let s ‘:~ r be p&en such that the follozc?ng condition (“*) is satisfied. 

(**) If (A $7) ,s DC, 7 I < j ~ i < n, then, fey each t such that Y . : t . s7 

l<;+t*Y--!‘lRi, _= 0 and, if j - i ; 1 im 1, E;;,!$t+lR<j = 0.. 

Let a: E <VI ? . . . . b,> C ErMmlR,,,, . Then d,(a) = 0 for t < s and there e.rist 
Ir,? E ~V~Er,lRi~-l,k+, such that Y, comeyes to an element of (TV,: ,..., JV,, +~[;) 
and such that ;-Ti; ,..., ‘U,-,> is de$ned in F ,r+lRo, and contains an element y  
zuhich surviz~es to d,(m), where 

Proof. The hypotheses and proof both borrow elements from 
Theorems 4.1 and 4.3. Let d be a defining system for (<I/, ,..., V,,: such that 
{A$] 01. TYe claim that there exist matrices Bi, E MR,j, j - i -: n, which 
satisfy 

(i) n(Bzj) ~~ --li, t AZE,.Rij 

(ii) (Bjj i k - 1 ..‘i i -< j -< k ~.- 1, j ~ i < I} is a defining system for 
i kl;, )..., W&, , 

(iii) I f  i < j < n - 2 and if b EF”R~,,~, r is the (y, ,z) entry of B,,?, I and 
f t F”trR,,,, 1 is the (y, .a) entry of Bi,j+l , then d(b) :-;1 f modPtSRi,, -1 

To prow this, we first construct the BTj for j - i < I by the proof of 
Theorem 4.1 and then construct the Bij for j - i > 2 by the proof of 
Theorem 4.3. (Here, in (**), we do not require E$$$tflRjj = 0 for 

j ~- i = I + 1 since the 8,-r lcfl are known to be matrices of cycles.) This 

proves the claim. Now define’ Gij E IkTETR,,,-,, , j < n - I, to be the matrix 
whose (y, z) entry is n(f - db) E EP+S**Ri,3+1 (b and f as in (iii)). :Let 

481/12/4-S 
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p*k = {G-d E ME,,.IRl~-1,7~, 1 . Since Y,; = ~~~~~~~~~~ - dB,-l,,+l), I’,< 
converges to an element of iII’J: ,..., Wk+,>. Next, define 

Here d,G, = rrdl& 3+1 . 
following formula ’ 

A straightforward calculation, using (ii), yields the 

Clearly 71 applied to the right side gives CjLz:+, (Gil;ilkSi,i+l + ili,G,j). This 
shows that C is a defining system for \‘S i ,..., -y?,“,, and (a) applied in the case 

(i, j - I) = (0, n) shows that y  (Ci) sure-ives to d,<(a). (As in the proof of 

Theorem 4.3, the filtration shift bet\\-een n!,,,, and G, permit (a) to give 
a computation of dT if (i, j ~- I) = (0, n) and of u’. if (i,j + I) = (0, n).) This 
completes the proof. 

C‘OHOLLARY 4.6. Assume iti addition to the hypotheses of the theorem that 
,for I k 2~; n -- 1 there is just one matrls I’,t. E ME,.+lRI;-l,,C+l such that 
1, converges to an elemetzt qf :LV,( ,..., TI’,.7, 1 and suppose that each 

< Fl ,...) r,-, ) Y, , I’,. ,.I.L1 ,..., I,. i is strictly defined in E+lR,,7, . 3ssume 

furthei- that all matric LTlass& products in sight, except possibly the 

i H ‘, , . . . ( zv,> , ‘), haze zero indeterminacy. Then 

,i-1 
d,( I,; ,..., V,> = & ( c-, )... , v-, , 1-p , zlf;+l+l ,...) ZQ. 

Proof. This follows immediately from Proposition 2.10. 

It should be observed that hypothesis (*) of the theorem is vacuous if 
1 = 1 and hypothesis (**) is vacuous ifs = Y + I. The uniqueness hypothesis 
on 1, in the corollary can often be verified in the applications by showing 
that there is only one element of the required degree in ET+:rilRk-l,iz, C for 
each entry of Yk _ We remark that, as in Theorem 4.1, there is nothing in 
the statement or proof of the theorem to prevent Yk from being killed by 
higher differentials. 
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Applications of this theorem go in two directions. One can use it either 
to compute higher differentials from knowledge of matric Massey products 
in the H(R,,) or to compute matric XIassey products in the H(RLj) from 
knowledge of the higher differentials. The principle behind the latter 
application is as follows. Suppose, under the hypotheses of the theorem, that 
n,(a) is known and that there are unique matrices Y, for which d,y(a) can be 
written in the form (Xi ,..., S,, \. Then we are guaranteed that Yjti. converges 

to an element of (IV,. ,..., Il.?, , !‘ . -1 matric AIassey product, or ordinary 

product if I -=- 1, so detected necessarily takes values in too high a filtration 
degree to be detected by Theorem 4. I, since I-,: has higher filtration than 
does ,, I-,, ,..., I,;+I,,, to which Theorem 4.1 applies. In other words, the 
theorem gives formal precision to the commonly observed phenomenon that 

nontrivial higher differentials are related to nontrivial extensions in the limit 
terms of spectral sequences. Examp!es of applications of the theorem in both 
directions will appear in [12], where the results of this section n-ill be 
employed in studying the cohomology of the Steenrod algebra. 

Some of the material of this paper is folklore, but little of it has appeared in the 

literature. Correspondence with D. S. Kahn, RI. JIahowald and Ii. M. F. Moss about 

triple products in the Adams spectral sequence aided in the formulation of the results 

of Section 4, and B. Gray suggested some of the new relations given in Section 3. 

Parts of Sections 2 and 3 owe much to the work of D. Kraines. Considerable simplificn- 

tion of notation resulted from suggestions of S. MacLane. 
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