
BRAVE NEW WORLDS IN STABLE HOMOTOPY THEORY

J. P. MAY

I will give a broad survey of the general area of structured ring spectra in modern
constructions of the stable homotopy category. I will give some background and
history, but my main focus will be a description of work in progress of Mike Mandell,
Stefan Schwede, Brooke Shipley, and myself [24, 25]. By “modern” I mean that
there must be a smash product that gives a point-set level symmetric monoidal
structure on a closed model category. The associated homotopy category that is
obtained by inverting the weak equivalences must be equivalent to the classical
stable homotopy category, or at least to a reasonably large full subcategory.

We define a strict ring spectrum or strict commutative ring spectrum to be
a monoid or commutative monoid in any such symmetric monoidal category of
spectra. In a really good category, the categories of monoids and of commutative
monoids should themselves be model categories. All model categories in sight should
be tensored and cotensored over either the category of spaces or the category of
simplicial sets. I shall work throughout with spaces for definiteness. I shall focus
on strict commutative ring spectra since their study is much deeper and more
interesting than the study of merely associative strict ring spectra.

I will start with a little history. Spectra were first introduced by Lima [21], a stu-
dent of Spanier at Chicago, in 1958. There was quite a bit of work by many people,
including Adams and Puppe, trying to construct a good stable homotopy category
before the problem was solved by Mike Boardman in his 1964 PhD thesis at Warwick
[4], which is still unpublished. A popularized, and in some respects bowdlerized,
version of Boardman’s category was explained and written up by Adams in lectures
given at Chicago in 1971 [1]. A parallel development of a category of simplicial
spectra was begun by Kan in 1963 [16] although the crucial point, the definition of
smash products, was only addressed later, in work of Kan and Whitehead [17] that
was completed by Burghelea and Deleanu [7].

In the work that I have described so far, and in many later alternative construc-
tions, the smash product only became associative, commutative, and unital after
passage to the stable homotopy category. For that reason, ring and module spectra
have traditionally been flabby homotopy theoretic objects, very useful for many
applications, but hopelessly inadequate for others. In such a context, the cofiber of
a map of module spectra is not in general again a module spectrum, hence one can-
not do serious homotopy theory in categories of modules over ring spectra. There
are many other such defects.

I began looking for a way of constructing the stable homotopy category that
would have good point-set level properties almost 30 years ago. In particular, I
advertised the idea that a spectrum should be a sequence of spaces Ei together
with homeomorphisms Ei

∼= ΩEi+1 at a conference in 1968 [26]. In 1972, Frank
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Quinn, Nigel Ray and I introduced E∞-ring spectra [27], and we showed that Thom
spectra gave naturally occurring examples.

The work with Quinn and Ray led me to develop a multiplicative elaboration of
infinite loop space theory [27, 29] that allowed passage back and forth between E∞-
ring spaces and E∞-ring spectra. This allowed the construction of E∞-ring spectra
from bipermutative categories, such as categories of modules over commutative
rings with their direct sums and tensor products. This gave a plentiful supply
of E∞-ring spectra, such as the Eilenberg-MacLane spectra of commutative rings,
the algebraic K-theory spectra of commutative rings and the connective topological
K-theory spectra.

The passage back and forth between E∞-ring spaces and E∞-ring spectra was
vital to calculations made in the 1970’s, for example the calculation of character-
istic classes for topological bundles and the calculation of the cobordism groups of
topological manifolds. One point is that the operad actions in terms of which these
structures were defined gave rise to computable homology operations. Another is
that the point set level structures allowed the construction and descriptive analy-
sis of new infinite loop spaces with computable invariants. For example, work of
Sullivan [37] and many others led to a proof that, at an odd prime p, BSTop is
equivalent as an infinite loop space to the classifying space of kO-oriented spherical
fibrations. Work of Quillen [32] and others led to a discrete model description of
kO as an algebraic K-theory type spectrum associated to finite fields. These ideas
allowed me to reduce the calculation of characteristic classes for topological bundles
at odd primes to calculations in the cohomology of finite groups [8, 28].

Paul Goerss and Mike Hopkins [12] have recently developed another, obstruction
theoretic, way of constructing E∞-ring spectra. Here again, the operad actions that
go into the description of E∞-ring spectra are critical to both the theory and the
calculations that make the constructions work.

During the work with Quinn and Ray, it became apparent that spectra should be
defined in a coordinate-free fashion, with spaces EV indexed on finite dimensional
inner product spaces V contained in a given universe U isomorphic to R∞. There
should be homeomorphisms EV ∼= ΩW−V EW whenever V ⊂ W , where W − V is
the orthogonal complement of V in W .

Thinking equivariantly, tom Dieck [10] had realized the advantages of such index-
ing even earlier, the V ’s being representations contained in a G-universe U for some
compact Lie group G. Lewis and I [20] worked out details of the coordinate-free
approach to the stable homotopy category in the early 1980’s. Our focus was on
the equivariant stable homotopy category, and our work gave the first and, so far,
only treatment of the equivariant foundations of stable homotopy theory. A more
readable account appears in “Equivariant homotopy and cohomology theory”[30].

Building on both the work with Quinn and Ray and the work with Lewis, a
complete solution to the problem of constructing a symmetric monoidal category
of spectra was finally obtained by Elmendorf, Kriz, Mandell, and myself in “Rings,
modules, and algebras in stable homotopy theory” [11]; I will refer to that book
as EKMM. The theory works in full equivariant generality, and it ties in well with
all of the previous work in the area. We gave a variety of applications, and more
has been done since the book was written. We call our category the category of
S-modules, denoted MS , where S is the sphere spectrum. These are coordinate free
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spectra with additional structure. The additional structure allows the construction
of a symmetric monoidal smash product.

A commutative S-algebra R is a commutative monoid in MS : it has a commuta-
tive, associative, and unital product R ∧S R −→ R with unit S −→ R. R-modules
are defined similarly in terms of maps R ∧S M −→ M . The category MR of R-
modules has all of the good properties of MS . The derived homotopy category DR

is obtained by inverting the weak equivalences, which are the maps of R-modules
that are weak equivalences of spectra. For example, the derived category DHk

associated to the Eilenberg-Mac Lane S-algebra Hk is equivalent to the classical
derived category of chain complexes of k-modules, and the equivalence converts
smash products and function Hk-modules to tensor product and hom functors.
The derived categories of modules over real and complex, periodic and connective,
K-theory have been analyzed algebraically by Jerome Wolbert [39].

Working in the derived category of MU -modules, we gave quick and easy con-
structions as MU -modules of spectra (MU/I)[Y −1], including Brown-Peterson,
Johnson-Wilson, and Morava K-theory spectra. At least at odd primes, these are
all easily shown to be commutative MU -ring spectra in the homotopical sense and
therefore commutative ring spectra in the classical sense. Neil Strickland [36] has
extended the results of EKMM to the 2-local case, proving for example that BP (at
2) is a commutative MU(2)-ring spectrum. Similar arguments will apply starting
with BP once Kriz’s sketch proof [18] that BP is an E∞-ring spectrum is com-
pleted. Maria Basterra [3] has worked out a rigorous construction of André Quillen
cohomology for commutative S-algebras, which is the essential tool. In some com-
bination of authorship, I expect Basterra, Kriz, Hunter, and McClure to complete
this work.

A deep fact is that the category of commutative R-algebras is itself a model cate-
gory, with good control on the homotopical behavior of the underlying R-modules.
For any R-module E, the Bousfield localization AE of an R-algebra A is an R-
algebra. For example, KU = kuKU and KO = koKO, giving a quick proof that
KU is a ku-algebra and therefore an S-algebra, and similarly for KO.

When R = Hk, Mike Mandell [23] has proven that the derived homotopy cate-
gory of commutative Hk-algebras is equivalent to the algebraic derived category of
E∞-k-algebras. He has used this together with an unpublished theorem of Dwyer
and Hopkins to prove that the singular cochain functor with coefficients in the al-
gebraic closure of the field with p elements gives a contravariant equivalence from
the homotopy category of p-nilpotent spaces of finite type to a full subcategory of
the category of E∞-algebras over F̄p. This algebraization of p-adic homotopy the-
ory may well be the best possible p-adic analogue of Sullivan’s rational homotopy
theory.

There are many other applications arising from this brave new world of stable
homotopy theory, but that is not the subject of this report. Rather I want to talk
about brave new worlds, in the plural, and how to travel between them. Several
years ago, Jeff Smith initiated a program for an alternative development of the
modern foundations of stable homotopy theory based on “symmetric spectra”. The
full development of that theory lags a few years behind EKMM. Mark Hovey, Brooke
Shipley, and Smith [15] are nearly done with a write-up of this version of the stable
homotopy category, and they know in general how to develop the homotopy theories
of algebras and of commutative algebras in their context, but it may be quite some
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time before that work is written up. Another alternative development, this one
based on Γ-spaces, has been studied by Lydakis and Schwede [22, 33], who build
on work of Segal [34], Anderson [2], and Bousfield and Friedlander [6].

In part because EKMM got there first, it has skimmed off the main applications.
In fact, there have not yet been many new applications of any alternative approach,
and there have not yet been any calculational applications. Moreover, calculations
that are based on operad actions and space level E∞-ring structures do not naturally
live in the alternative brave new worlds. They do fit naturally into the EKMM
setting, since that is an outgrowth of the earlier work which is based on a convenient
conceptual repackaging of the relevant operad actions.

Nevertheless, given how central stable homotopy theory is to algebraic topology,
it is of real interest to have alternative approaches that involve more elementary
and less elaborate structure than is built into the S-modules of EKMM. However,
it would be willfully perverse to develop such approaches in isolation. The different
approaches should give mutually supportive brave new worlds in a single universe,
so that one can work in whatever context seems most natural to a particular set
of given data. For example, the alternative approaches seem particularly relevant
to topological Hochschild homology, which can be developed in any approach, and
to topological cyclic homology, whose existing construction naturally involves three
different brave new worlds, as I shall briefly indicate later.

Thus what I shall talk about is work in progress of Mike Mandell, Stefan Schwede,
Brooke Shipley, and myself [24, 25] that shows how to travel between the various
brave new worlds of stable homotopy theory. One important feature of our work
is its emphasis on the coordinate-free analogue of Smith’s coordinatized brave new
world. The idea is obvious enough from a comparison of Smith’s approach with
the concepts introduced by Quinn, Ray, and myself, but it has not previously been
taken seriously. This approach may well lead to a pleasant alternative construction
of equivariant stable homotopy categories for compact Lie groups. Examples of
the kind of equivariant object I have in mind play key roles in the construction of
topological cyclic homology of Lars Hesselholt and Ib Madsen [14] and in the proof
by John Greenlees and myself [13] of an analogue of the Atiyah-Segal completion
theorem that applies to all modules over MU .

I will begin by describing a method of constructing symmetric monoidal func-
tor categories wholesale. The basic construction has been well-known to category
theorists since the late 1960’s (see Day [9]), but Jeff Smith is the first to have seen
the relevance of the construction to stable homotopy theory. I will specialize it to
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describe the bottom four categories in the following “Main Diagram”:
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Here ΣS is Smith’s category of symmetric spectra, or Σ-spectra; I S is the cate-
gory of orthogonal spectra, or I -spectra, which is the coordinate-free analogue of
Smith’s category; FS is the category of Γ-spaces, or F -spectra, whose symmetric
monoidal structure was introduced by Lydakis and whose ring objects were studied
by Schwede.

I have written D for all functors defined on I S since they are all defined in the
same way. We write DΣ, DI , DW , and DMS

when we wish the notation to record
the target category. Similarly, the two functors F are defined in the same way, and
we write FΣ and FI when we wish the notation to record the target category.

Roughly speaking, the conclusion of our work is that all approaches are essen-
tially equivalent, so that results proven in one of these categories can be translated
into conclusions applicable in another. That is, all composite endofunctors are
weakly equivalent to identity functors under appropriate technical hypotheses.

The same conclusions apply to the diagram that is obtained by restricting to
monoids in each of these symmetric monoidal categories. That is not quite true
of the diagram that is obtained by restricting to commutative monoids. However,
there is a notion of an E∞-monoid in each of these categories, and the same con-
clusions do apply to the diagram that is obtained by restricting to E∞-monoids. In
the category of S-modules, and in most of the rest of these categories, E∞-monoids
are equivalent to commutative monoids.

The general construction of symmetric monoidal functor categories is not lim-
ited to applications in stable homotopy theory. For example, as pointed out by
Voevodsky, the construction I’m about to give has potential applications to alge-
braic geometry, where it may shed light on the recent importation of language from
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homotopy theory [31, 38]. In fact, this may well be the area in which the idea finds
its most significant applications.

I will restrict attention to functors that take values in the category of based
spaces, but everything can be adapted without difficulty to functors that take values
in the category of based simplicial sets. In fact, the basic constructions apply
verbatim to functors that take values in any symmetric monoidal category that is
tensored and cotensored over the category of based spaces or the category of based
simplicial sets.

1. Symmetric monoidal categories

We need to fix some language. A monoidal category D is a category together
with a product ¤ = ¤D : D × D −→ D and a unit object u = uD such that
¤ is associative and unital up to coherent natural isomorphism; D is symmetric
monoidal if ¤ is also commutative up to coherent natural isomorphism.

A functor F : A −→ B between monoidal categories is lax monoidal if there is
a map λ : uB −→ F (uA ) and a natural map

φ : F (A)¤BF (B) −→ F (A¤A B)

such that all coherence diagrams relating the associativity and unit isomorphisms
of A and B to the maps λ and φ commute. If A and B are symmetric monoidal,
then F is lax symmetric monoidal if all coherence diagrams relating the associativity,
unit, and commutativity isomorphisms of A and B commute. The functor F is
strict monoidal or symmetric monoidal if λ and φ are isomorphisms.

Lemma 1.1. If F : A −→ B is lax monoidal and M is a monoid in A , then
F (M) is a monoid in B. If F : A −→ B is lax symmetric monoidal and M is a
commutative monoid in A , then F (M) is a commutative monoid in B.

In the Main Diagram, all categories are symmetric monoidal, all functors except
the D are lax symmetric monoidal, and the D are lax monoidal. Thus all func-
tors preserve monoids (alias strict ring spectra) and most preserve commutative
monoids. The functors D preserve E∞-monoids, and this gets around the problem
that they do not preserve commutative monoids.

2. D-spaces and D-spectra

Let D be a symmetric monoidal topological category with unit object u and
continuous product ¤. We assume that D has an initial base object; if not, we
implicitly adjoin one. The category T of based spaces is symmetric monoidal
under the smash product with unit object S0 and base object a one-point space.

Definition 2.1. A D-space is a based continuous functor T : D −→ T . Let DT
denote the category of D-spaces. For D-spaces T and T ′, define the “external”
smash product T Z T ′ by

T Z T ′ = ∧ ◦ (T × T ′) : D ×D −→ T ;

thus, for objects d and e of D , (T Z T ′)(d, e) = T (d) ∧ T ′(e).

Now suppose given a based symmetric monoidal functor SD : D −→ T . We
write S = SD when D is understood. The theory actually works when SD is lax
symmetric monoidal, but it helps fix ideas to think in terms of the much lesser
generality of a strict symmetric monoidal SD . The letter S is meant to suggest
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spheres, since our focus will be on a particular choice of S that is related to the
sphere spectrum. However, each D can have many different choices of S.

Definition 2.2. A D-spectrum is a D-space T : D −→ T together with a con-
tinuous natural transformation σ : T Z S −→ T ◦ ¤ such that the apppropriate
transitivity diagram commutes. Let DS denote the category of D-spectra.

We describe the categories D and functors SD that we are interested in. We take
Sn to be the one-point compactification of Rn. Similarly, for a finite dimensional
real inner product space V , we take SV to be the one-point compactification of V .
Note that the one-point compactification of {0} is S0.

Example 2.3. Let Σ be the (unbased) category of finite sets n = {1, . . . , n}, n ≥ 0,
and their permutations; thus there are no maps m −→ n for m 6= n, and the set
of maps n → n is the symmetric group Σn. The symmetric monoidal structure is
given by concatenation of sets and block sum of permutations, with 0 as unit. The
functor S sends n to Sn.

Example 2.4. Let I be the (unbased) category of finite dimensional real inner
product spaces and linear isometric isomorphisms; there are no maps V −→ W
unless dim V = dim W = n for some n ≥ 0, when the space of morphisms V −→ W
is homeomorphic to the orthogonal group O(n). The symmetric monoidal structure
is given by direct sums, with {0} as unit. The functor S sends V to SV . Define
a functor ι : Σ −→ I by sending n to Rn and using the standard inclusions
Σn −→ O(n).

Example 2.5. We can take D = T . More generally, we can take D to be any
based symmetric monoidal subcategory of T that contains S0. The functor SD is
then the inclusion D −→ T . In particular, we let W be the full subcategory of T
of based spaces homeomorphic to finite CW complexes. It turns out that W -spaces
and W -spectra coincide.

Example 2.6. Let F be the category of finite based sets n+ = {0, 1, . . . , n} and
based maps, where 0 is the basepoint. This is the opposite of Segal’s category
Γ. This category is based with base object 0+. Take ¤ to be the smash product
of finite based sets; to be precise, we order the non-zero elements of m+ ∧ n+

lexicographically. The unit object is 1+. The functor S sends n+ to n+ regarded as
a discrete based space. Again, it turns out that F -spaces and F -spectra coincide.

3. Functors with smash product

Retaining our assumptions on D and S = SD , we next define D-FSP’s. The term
“functor with smash product” was introduced by Bökstedt, although examples had
appeared earlier. We shall see shortly that D-FSP’s give the right notion of a strict
ring D-spectrum, or SD -algebra. In fact, we shall give the category of D-spectra a
symmetric monoidal structure whose monoids are precisely the D-FSP’s.

Definition 3.1. A D-FSP is a D-space T together with a unit map η : S −→ T
of D-spaces and a continuous natural product map µ : T Z T ′ −→ T ◦¤ such that
the appropriate unity, associativity, and centrality of unit diagrams commute. A
D-FSP is commutative if the appropriate commutativity diagram commutes.

A D-FSP is a D-spectrum with additional structure.
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Lemma 3.2. A D-FSP has an underlying D-spectrum with structure map

σ = µ ◦ (id Zη) : T Z S −→ T ◦¤.

Remark 3.3. Up to nomenclature, D-FSP’s were first introduced as follows.
(1) A W -FSP is an FSP as introduced by Bökstedt.
(2) A commutative I -FSP is an I -prefunctor as defined by May, Quinn, and

Ray. This was the first definition of this sort.
(3) A Σ-FSP is a symmetric ring spectrum as defined by Smith. Hesselholt

and Madsen call these “FSP’s defined on spheres”.
(4) An F -FSP is a Gamma-ring, as defined by Lydakis and Schwede.

These different kinds of FSP’s arise naturally in different applications. W -FSP’s
are the least general of these examples since restriction along SD : D −→ W ⊂ T
shows that a W -FSP is a D-FSP for the other D . Similarly, I -FSP’s appear to be
less general than Σ-FSP’s since restriction along ι : Σ −→ I shows that an I -FSP
is a Σ-FSP. The forgetful functor from W -spaces to F -spaces has a left adjoint
“prolongation functor” P given explicitly by the coends

PT (X) =
∫ n+∈F

T (n+) ∧Xn.

The prolongation of an F -FSP is a W -FSP, and it restricts to give a Σ-FSP. Of
course, these passages from one kind of FSP to another are functorial.

4. Symmetric monoidal categories of D-spectra

Now assume that our given symmetric monoidal category D has a small skeleton
skD . This rules out T but includes all the really interesting examples. Write
S = SD .

Theorem 4.1. The category DS of D-spectra has a smash product ∧S under which
it is symmetric monoidal with unit S. The categories of D-FSP’s and commutative
D-FSP’s are isomorphic to the categories of monoids in DS and of commutative
monoids in DS .

It is natural to introduce alternative names for D-FSP’s.

Definition 4.2. A (commutative) SD -algebra is a (commutative) monoid in DS .

The theorem asserts that these are the same as (commutative) D-FSP’s. Thus
D-FSP’s = monoids in DS = SD -algebras.

The difference in the notions is that SD -algebras are defined in terms of the “inter-
nal” smash product ∧S , whereas D-FSP’s are defined equivalently in terms of the
more elementary external smash product Z.

Some of the functors between categories of D-FSP’s that I described are induced
by symmetric monoidal functors between their underlying categories of D-spectra.

Proposition 4.3. The inclusion ι : Σ −→ I induces a forgetful functor U :
I S −→ ΣS , and U is lax symmetric monoidal.

Proposition 4.4. Prolongation induces a functor P : FS −→ W S , and P is
strict symmetric monoidal.
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To prove the theorem, we first give the category DT of D-spaces a smash product
∧ under which it is symmetric monoidal. We do this by internalizing the external
smash product T Z T ′ by taking its left Kan extension along ¤. The left Kan
extension is characterized by the universal property

DT (T ∧ T ′, T ′′) ∼= (D ×D)T (T Z T ′, T ′′ ◦¤),

and it admits two equivalent explicit descriptions.

Definition 4.5. Define the smash product T ∧ T ′ of D-spaces T and T ′ by letting
(T ∧ T ′)(d) be the space

(T ∧ T ′)(d) = colimφ:e�f→d T (e) ∧ T ′(f).

The colimit is taken over the category ¤/d of maps φ : e¤f → d. Equivalently,
when D is small, (T ∧ T ′)(d) is the coend

∫ (e,f)∈D×D

D(e¤f, d) ∧ (T (e) ∧ T ′(f)).

Proposition 4.6. Let S0 : D −→ T be the functor that sends d to the (based)
space D(u, d). Then DT is symmetric monoidal under ∧ with unit object S0.

The proof is formal. We return to our examples.

Example 4.7. Consider D = Σ. The functor S0 sends 0 to the space S0 and sends
n to a point for n > 0. For Σ-spaces T and T ′,

(T ∧ T ′)(n) ∼=
n∨

p=0

Σn+ ∧Σp×Σn−p T (p) ∧ T (n− p)

as a Σn-space.

Example 4.8. Consider D = I . The functor S0 sends {0} to S0 and sends V to a
point if dim V > 0. For an inner product space V of dimension n, choose a subspace
Vp of dimension p for each p ≤ n and let V − Vp be the orthogonal complement of
Vp in V . Then, for I -spaces T and T ′,

(T ∧ T ′)(V ) ∼=
n∨

p=0

O(V )+ ∧O(Vp)×O(V−Vp) T (Vp) ∧ T ′(V − Vp)

as an O(V )-space.

The isomorphisms S(d)∧ S(e) ∼= S(d¤e) specify a natural isomorphism of func-
tors S Z S ∼= S ◦ ¤. By the universal property, this induces a map of D-spaces
S ∧ S −→ S.

Lemma 4.9. The D-space SD is a commutative monoid in the symmetric monoidal
category DT .

There is an evident notion of a (right) module T over a monoid S in any sym-
metric monoidal category. The universal property implies the following conceptual
description of D-spectra.

Lemma 4.10. The category of D-spectra is isomorphic to the category of SD -
modules.
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Definition 4.11. For D-spectra T and T ′, thought of as right and left S-modules
respectively, define T ∧S T ′ to be the coequalizer in the category of D-spaces (con-
structed spacewise) displayed in the diagram

T ∧ S ∧ T ′
µ∧id //
id∧µ′

// T ∧ T ′ // T ∧S T ′,

where µ and µ′ are the given actions of S on T and T ′. Then T ∧S T ′ inherits a
D-spectrum structure from the D-spectrum structure on T or, equivalently, T ′.

Our theorem describing D-FSP’s follows formally from the definition and the
universal property of left Kan extensions.

Example 4.12. Consider D = F . Here S = SF is the unit S0 of ∧, and an
F -space has a unique structure of SF -module, namely that given by the unit
isomorphism T ∧ S ∼= T . Therefore F -spectra coincide with F -spaces and ∧S

coincides with ∧. The same phenomenon occurs in the case D = W .

The homotopy theory of F -spectra and F -algebras have been worked out by
Bousfield and Friedlander, Lydakis, and Schwede. As I said before, the homotopy
theory of Σ-spectra and SΣ-algebras is being worked out by Hovey, Smith, and
Shipley. The homotopy theory of I -spectra and SI -algebras has not yet been
studied. In fact, the desirability of such a study has only become fully apparent
with our work. Note that all definitions above apply with I replaced by IG, the
category of finite dimensional orthogonal representations of a compact Lie group G
and all linear isometric isometries; this is a topological G-category with G acting
by conjugation on morphism spaces.

5. The definition of E∞-D-FSP’s

Our comparison results involve the notion of an E∞-D-FSP, which is a D-FSP
that is commutative only up to coherence conditions expressed by the action of a
certain E∞-operad E .

Let C be an operad of spaces such that C (0) = ∗. There is a notion of a C -
algebra in DS : an action of C on T is given by Σn-equivariant maps of D-spectra

(5.1) θn : C (n)+ ∧ T (n) −→ T,

where T (n) is the nth ∧S-power and where the smash product of a space and a
D-spectrum is defined in the evident spacewise fashion, (X ∧ T )(d) = X ∧ T (d).
The standard associativity, unity, and equivariance diagrams in the definition of
an operad action are required to commute. We interpret T (0) to be S = SD , so
that θ0 is a unit map S −→ T . This is the more conceptual “internal” form of the
definition, but we can translate along the universal property of left Kan extensions
to give an “external” form analogous to our original definition of a D-FSP.

There is a canonical E∞-operad E whose nth space is BΣ̃n, where G̃ is the
translation category of a group G. This operad contains the operad M that defines
monoids in any symmetric monoidal category and augments to the operad N that
defines commutative monoids.

Definition 5.2. An E∞-D-FSP is an E -algebra in DS .

We have a precisely analogous definition in the context of the S-modules of
EKMM; I will say a little bit more about what these objects are later, but it is
convenient to define E∞-S-algebras now.
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Definition 5.3. An E∞-S-algebra R is an S-module together with an action of the
operad E given by maps θ : E (n)+∧R(n) −→ R such that the standard associativity,
unity, and equivariance diagrams commute. Here R(n) is the nth ∧S-power.

In both contexts, it is reasonable to think of E∞-objects as E∞-monoids in the
given symmetric monoidal category. E∞-S-algebras must not be confused with
E∞-ring spectra, as originally defined in [27]: an E∞-ring structure on a spectrum
E is specified in terms of maps

θ : L (n)thpE(n) −→ E,

where E(n) here is the nth external smash product of spectra and
thp is the twisted half-smash product. However, the homotopy categories of com-
mutative S-algebras, E∞-ring spectra, and E∞-S-algebras are all equivalent, so
that only the experts need to worry about the distinction.

6. The functors D and E

All of our categories are now in place, and we can begin to compare them. We
first describe functors and natural transformations that compare our categories of
D-spectra on a formal level, and we then describe how these comparison maps
behave homotopically. Thus we now concentrate on the bottom square of the Main
Diagram. We will come back to S-modules later.

However, our first construction applies to both D-spectra and S-modules. It
shows that the category of Σ-spectra plays a universal role: we can construct an
object D(T ) in any of our other categories from a Σ-spectrum T .

Theorem 6.1. Let C be any symmetric monoidal model category of spectra that is
tensored and cotensored over based spaces and has a given sphere object S. There
is a lax monoidal functor

D = DC : ΣS −→ C .

Since D is lax monoidal, it carries Σ-FSP’s to S-algebras in C ; D is not lax sym-
metric monoidal, but it carries E∞-Σ-FSP’s to E∞-S-algebras in C .

The hypotheses on C in the theorem just mean that it is the kind of modern
category of spectra that we have been considering. The construction of D is based
on ideas of Bökstedt [5].

Definition 6.2. Let I be the category of finite sets n = {1, . . . , n}, n ≥ 0, and
injective functions.

Definition 6.3. Let T be a Σ-spectrum. Define

D(T ) = hocolimI Ωn(T (n) ∧ S).

Here ∧ is the “tensor” or smash product with spaces in C , Ωn is the “cotensor” or
function object F (Sn,−) in C , and the homotopy colimit is taken in C .

The proof that D is lax monoidal uses the concatenation functor t : I × I −→ I
and formal properties of homotopy colimits, and similarly for the preservation of
E∞-structures. However, even when T is a commutative Σ-FSP, D(T ) is still only
an E∞- algebra in the target category.

Now we give a construction that allows us to compare composites of D and
forgetful functors U with identity functors. This only works when Σ is embedded
in D , so it doesn’t apply to F .
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Theorem 6.4. For any D with an embedding Σ −→ D , there is a lax monoidal
functor

E = ED : DS −→ DS

such that UED = EΣU. Since E is lax monoidal, it carries D-FSP’s to D-FSP’s;
E is not lax symmetric monoidal, but it carries E∞-D-FSP’s to E∞-D-FSP’s.
Moreover, there are monoid and E∞-monoid preserving natural maps

T
α // E(T ) DDU(T )

βoo

for T ∈ DS .

For a D-spectrum T ,

E(T ) = hocolimI Ωn(ΛnT ),

where ΛnT (d) = T (n¤d). The maps α are given by the inclusions of zeroth terms
in homotopy colimits, and the maps β are induced by the maps

Ωnσ : Ωn(T (n) ∧ S(d)) −→ Ωn(T (n¤d)).

7. Prespectra, spectra, and homotopy groups

We need some standard language to describe the homotopical behavior of α
and β. A coordinatized prespectrum is a sequence of based spaces Tn and based
maps σ : ΣTn −→ Tn+1. A Σ-spectrum determines a coordinatized prespectrum by
neglect of structure. A coordinate-free prespectrum consists of based spaces TV for
finite dimensional sub-inner product spaces of a universe U ∼= R∞, together with a
unital and transitive system of based maps σ : ΣW−V TV −→ T (W ) for V ⊂ W .
An I -spectrum determines a coordinate-free prespectrum indexed on any U by
neglect of structure. A coordinate-free prespectrum T determines a coordinatized
prespectrum with Tn = T (Rn).

A prespectrum of either sort is a spectrum if the adjoints

Tn −→ ΩTn+1 or TV −→ ΩW−V TW

of its structure maps are homeomorphisms. The unmodified term “spectrum” will
only be used in this sense. Let P and S be the categories of coordinate-free
prespectra and spectra indexed on a fixed universe U . The suspension spectrum
Σ∞X of a based space X has V th space QΣV X, where QX = ∪ΩV ΣV X. We have
an adjunction

(7.1) S (Σ∞X,E) ∼= T (X, Ω∞E),

where Ω∞ is the zeroth space functor. The forgetful functor S −→ P has a left
adjoint spectrification functor L : P −→ S .

The prespectrum determined by a non-trivial D-spectrum is never a spectrum.
Thus D-spectra are never spectra in the sense just defined.

Definition 7.2. The homotopy groups of a coordinatized prespectrum T = {Tn, σn}
are defined by

πq(T ) = colim πn+q(Tn).
A map f : T −→ T ′ is said to be a π∗-isomorphism if it induces an isomorphism
on homotopy groups. More strongly, a map f : T −→ T ′ of prespectra is a space-
wise weak equivalence if each f : Tn −→ T ′n is a weak homotopy equivalence. A
prespectrum T is said to be
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(i) an inclusion prespectrum if each Tn −→ ΩTn+1 is an inclusion.
(ii) convergent if Tn −→ ΩTn+1 is an (n + λ(n))-equivalence for some nonde-

creasing sequence {λ(n)} with infinite limit.
(iii) an Ω-spectrum if each Tn −→ ΩTn+1 is a weak homotopy equivalence.
(iv) an almost Ω-spectrum if each Tn −→ ΩTn+1 for n > 0 is a weak homotopy

equivalence.

These notions have evident reformulations for coordinate-free prespectra, which are
equivalent to the notions for the underlying coordinatized prespectrum. We apply
these definitions to Σ-spectra or I -spectra by applying them to their underlying
prespectra.

The importance of inclusion prespectra is given by the following fact.

Lemma 7.3. For an inclusion prespectrum T , the natural map ι : T −→ LT is a
π∗-isomorphism.

8. Homotopical comparisons between Σ, I , and F -spectra

Theorem 8.1. If T is convergent, then α is a π∗-isomorphism and β is a spacewise
weak equivalence and therefore a π∗-isomorphism.

By the derived category of any of our categories of D-spectra or D-FSP’s, we
understand the category that is obtained by adjoining formal inverses to the “weak
equivalences”. Provided that we restrict attention to Ω-D-spectra, a weak equiva-
lence just means a spacewise weak equivalence when D is Σ or I . I’ll come back
to what a weak equivalence means more generally later.

Corollary 8.2. The functors

DI : ΣS −→ I S and U : I S −→ ΣS

induce equivalences between the respective derived categories of Ω-spectra, Ω-FSP’s,
and Ω-E∞FSP’s.

Proof. The required natural spacewise weak equivalences are obtained by restriction
from the diagrams

IdI S
α // EI DIU

βoo

and

IdΣS
α // EΣ DΣ = UDI . ¤βoo

We conclude that the more richly structured I -FSP’s are really no less general
than the Σ-FSP’s.

The methods I have been discussing apply equally well to give a comparison be-
tween the categories of Σ-spectra and of W -spectra. We build F -spectra into the
picture by comparing them to W -spectra via homotopical analysis of the prolonga-
tion functor. Working simplicially, this analysis has been carried out by Anderson
[2], Bousfield and Friedlander [6], and Lydakis [22]. Their conclusions carry over
to the topological setting. The prespectra associated to F -spectra are always con-
nective, which gives an intrinsic limitation to this approach.
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9. The category of S-modules

Let S = Σ∞S0 be the sphere spectrum. There is a symmetric monoidal category
M = MS of S-modules, where an S-module is a spectrum with certain additional
structure. We have used the term “SD -module” in the diagram spectrum context:
from now on, S-modules mean only the kinds of spectra defined in EKMM (=[11]).
The smash product in M will be denoted ∧S . I won’t repeat the definitions here.
They are based on the idea that prespectra and spectra indexed on inner prod-
uct spaces should have functoriality in linear isometries built into their structure.
Since S-modules and I -spectra are both defined in terms of constructions involving
naturality on spaces of linear isometries, it is natural to think of the category of I -
spectra as a halfway house between the categories of Σ-spectra and of S-modules,
partaking of some of the main features of both.

10. The functor F from S-modules to D-spectra

Returning to the Main Diagram, we describe its functors F. The sphere spectrum
S is not q-cofibrant in M . This causes the appearance of almost Ω-D-spectra in
the next result.

Theorem 10.1. There are lax symmetric monoidal functors FD : M −→ DS ,
D = Σ and D = I , such that FΣ = U ◦ FI . Moreover, these functors take values
in the respective subcategories of almost Ω-Σ-spectra and almost Ω-I -spectra.

Before defining the functors, we point out a canonical misconception.

Scholium 10.2. For an S-module M and any D , one has a D-space that sends d to
Ω∞(M ∧S Σ∞S(d)). It is a standard mistake to imagine that this gives a D-FSP
when M is an S-algebra. To obtain a product, one would need that (Σ∞,Ω∞) is
an adjoint pair relating T to M , which is not the case. In fact, as observed by
Lewis [19], this cannot be the case for a category as nicely structured as M . This
is closely related to the fact that S is not q-cofibrant: if it were, we could deduce
that its zeroth space QS0 is a commutative monoid, which is clearly false.

The construction that we shall give is a variant of this mistaken idea. Let SS be
the canonical q-cofibrant approximation of S and let S

(n)
S be its n-fold ∧S-power,

with S
(0)
S = S.

Definition 10.3. Let M be an S-module. Define

FΣ(M)(n) = M (S(n)
S , M ∧ Sn).

Elements of Σn act by conjugation on the specified space of S-maps.

The analogue for I needs a construction. We may view n 7−→ S
(n)
S as giving

a contravariant strict symmetric monoidal functor Σ −→ M over the constant
functor at S, with each map S

(n)
S −→ S a weak equivalence.

Lemma 10.4. This functor extends to a continuous contravariant strict symmetric
monoidal functor I −→ M over the constant functor at S such that each of its
maps S

(V )
S −→ S is a weak equivalence.

Definition 10.5. Let M be an S-module. Define

FI (M)(V ) = M (S(V )
S ,M ∧ SV ).

Maps of I act by conjugation on the specified spaces of S-maps.
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In both cases, we obtain the SD -module structure required of a D-spectrum by
use of the tensor adjunction for the category M together with smash products of
maps. The proof that FD is lax symmetric monoidal is formal. It is a basic fact
from EKMM that M (SS , N) is naturally weakly equivalent to the zeroth space
Ω∞N , and this leads to the proof that the FD(M) are almost Ω-D-spectra.

11. The functor M and the composite MD

I shall say just a little about the proofs of the following results, which finally
complete the Main Diagram by describing the functor M.

Theorem 11.1. There is a lax symmetric monoidal functor M : I S −→ M . If
T is an inclusion I -spectrum, then the homotopy groups of M(T ) are naturally
isomorphic to the homotopy groups of T .

Theorem 11.2. There is a monoidal natural isomorphism ι : MDI −→ DM .
When applied to an E∞-Σ-FSP, ι is an isomorphism of E∞-S-algebras.

The functor M is the composite of three functors:

I S
P // P[L] L // S [L]

S∧L (−)// M .

The functors P and L are restrictions of the evident functors

I S
P−→ P

L−→ S .

Here P takes an I -spectrum to the underlying coordinate-free prespectrum indexed
on our given universe U ∼= R∞, and L is the spectrification functor.

The categories P[L] and S [L] are certain subcategories of the categories of
prespectra and spectra. Their objects, called L-prespectra or L-spectra, have extra
structure defined in terms of functoriality on linear isometries. The functor P takes
values in P[L], and the functor L preserves the additional structure. The details
were already quite explicit in the early work of Quinn, Ray, and myself, where it
was shown that the spectrum associated to a commutative I -FSP is an E∞-ring
spectrum. The last functor, S∧L (−), is defined and studied in EKMM; it converts
L-spectra to weakly equivalent S-modules.

The isomorphism MDI
∼= DM is very illuminating. I promised to say something

about what weak equivalences of symmetric spectra are. The definition in terms of
localization theory that is used in the formal development of the theory of Σ-spectra
[15] is technical and makes it difficult to identify concretely which maps are weak
equivalences. However, Brooke Shipley [35] has given the following curious looking
description. We shall ignore a little technicality here.

Theorem 11.3. A map f of Σ-spectra is a weak equivalence if and only if DΣf is
a π∗-isomorphism.

Obviously DΣf is a π∗-isomorphism if and only if DI f is a π∗-isomorphism. We
now see that this is true if and only if DM f is a π∗-isomorphism. In M , the weak
equivalences are the π∗-isomorphisms.

Corollary 11.4. A map f of Σ-spectra is a weak equivalence if and only if its
associated map of S-modules DM f is a π∗-isomorphism.
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Thus the definition of a weak equivalence of Σ-spectra is that dictated by consis-
tency with classical stable homotopy theory: the associated map of S-modules, or
equivalently spectra, must induce an isomorphism of homotopy groups. This also
strongly suggests that the right definition of a weak equivalence of I -spectra is just
a π∗-isomorphism, at least on inclusion I -spectra. The restriction corresponds to
the technicality ignored in the statement of Shipley’s criterion. This suggests that
the homotopy theory of I -spectra will work somewhat differently, and perhaps
more simply, than the homotopy theory of Σ-spectra.

I have now described all of the functors in the diagram, but that is only the
beginning of our work. The essential point is the comparison of such composites as
FM : I −→ I and MF : MS −→ MS with identity functors. I will say nothing
about that here.

12. Topological cyclic homology

Let T be a monoid in any of our symmetric monoidal categories. We can
mimic the standard complex for the calculation of Hochschild homology and de-
fine THH(T ) to be the geometric realization of the evident simplicial object with
p-simplices the (p + 1)st smash power T (p+1). Since this simplicial object is cyclic,
there is an action of the circle group G on the object THH(T ) so constructed. The
construction of topological cyclic homology requires a more sophisticated circle ac-
tion. Although details are work in progress, it seems that the ideas here may lead
to significant clarification of the construction.

Certainly Hesselholt and Madsen [14] begin with a Σ-FSP T and construct from it
an “orthogonal G-spectrum” (IG-spectrum). It seems to me that their construction
is equivalent to just applying DIG to the naive IG-spectrum THH(T ) constructed
in the category of Σ-spectra. This effectively adds in the more sophisticated circle
action they require. They then apply the G-equivariant version of the functor M to
construct the G-spectrum version of THH(T ) from which TC(T ) is constructed.
The proof that THH(T ) is cyclotomic is really an argument on the IG-spectrum
level. Passage to Lewis-May G-spectra or, equivalently, EKMM SG-modules, then
allows the use of the established foundations of equivariant stable homotopy theory.
It would be illuminating to have fully developed foundations already on the IG-
spectrum level. There is much work to be done.
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