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A REDUCTION OF THE SEGAL CONJECTURE
by J. P. MAY and J. E. McCLURE

In this note, we show that the Segal conjecture holds for a
given finite group ¢ 4if it holds for all subgroups of G which
‘have prime power order. We also point out that the p-group case
reduces to a question about p—adic completions.

First we must say what we mean by the Segal conjecture.
Various forms are current, but our methods apply equally well to
any of them. Let w; denote equivariant stable cohomotopy and
recall that ﬂg(pt) is canonically iso$orphic to the Burnside
ring A(G) [7, 17]. 1In particular, ﬂG(X) is a (Z=-graded)
module over A(G). Let I{(G) denote the augmentation ideal of
A(G) and let ﬁ;(x) denote the I (G)-adic completion of w;(x).
Let EG be a free contractible G-space and let € denote the
map EG » pt. As we shall recall in section 2, E*: ﬂ;(pt) + w;(EG)
factors to give a homomorphism E*: %;(pt) - WE(EG), and the tar-
get here is isomorphic to the ordinary stable cohomotopy ﬂ*(BG).
The Segal conjecture asserts that 28¥ ig an isomorphism. As
Segal understood and we ghall explain in section 2, this is equi-
valent to a more elaborate statement involving RO{G)-graded cocho-
1 mology. _

‘ We shali prove the following results.
{ THEOREM ‘A. The Segal conjecture is true for G 1f it is true for

all subgroups of G having prime power order.
| PROPOSITION B. The Segal conjecture is true for a p-group G if

? and only if e*: ﬂ;(pt) > ﬂ*(BG) induces an isomorphism on pas-
sage to p-adic completion,

' If, AS seems not unlikely, the Segal conjecture turns out to
f be true for Abelian p—groupé but false in full generality, then

~ Theorem A will imply the Segal conjecture for groups with Abelian
‘p—Sylow subgrbups. '

‘ In fact, we shall see that these reductions apply not just to

_-equivariant cohomotopy but to the analogous completion map for
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210 J.P. MAY AND J.E. McCLURE

quite general RO(G)~graded equivariant cohomology theories. For
example, these reductions shed some light on Atiyah's original
calculation of K*(BG) [2]. We shall emphasize this generic
aspect of our workrthroughout. '

Theorem A is actually an easy consequence of the following
purely algebraic fact. It will be proven (and its undefined terms
explained) in séction 1. The applicatioﬁ to cohomoiogi theories
will be discussed in section 2.

THEOREM C. The completed Burnside ring functor é is a Green
functor which satisfies induction with respect to its set of sub=~
groups of prime power oxder.

This result sheds considerable light on the structure of
ﬁ(G) and should hawve other uses. )

We wish to acknowledge the earlier work of Laitinen [11, §1],
which gave enough information to deduce the monomorphism part of
the reduction of Theorem A, and of Madsen [1l5, §1], which led us
to the idea of deducing Theorem A from Theorem C. Quite recently,
Segal gave a different proof of Theorem A in a letter to Adams.

§1 INDUCTION FOR THE COMPLETED BURNSIDE RING

Let G be a finite group. We recall some terminology from
[7] or [9]). A Mackey functor M oconsists of a covariant and a
contravariant functor, with the same object function, from the
category of finite G-sets to the category of 2Abelian groups. TFor
a G-map f: 8 » T, we think of the contravariant map
f*: M(T) -+ M(S) as restriction and the covariant map
f,o: M(8) » M(T) as induction (or transfer). These are to be
related in a suitable way,; and the axioms imply that the entire
Mackey functor is determined by its restriction to the full sub-
category of orbits G/H. The category 6f Mackey functors admits a
tensor product, and there is a resulting notion of a ring object,
or Green functor.

In particular, there is a Green functor A whose value on
the orbit G/H is the Burnside ring A(H) of finite H-sets. A
G-map £: G/J » G/K is given by a subconijugacy relation gJ‘q“1 K,
and we use the letter i generically for inclusions J €K (or
1 for the corresponding prejection G/J » G/K of G-sets when we
prefer to emphasize that point of view). Restriction
i*: A(K}) »+ A(J) assigns to a K-set T the same set regarded as a
J=-gset. Induction i,: A(J) » A(K) assigns to a J-set S the K-
set KXJS; i* is a morphism of rings and i, 1is a morphism of
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A(J) -modules (Frobenius reciprocity).

There is a notion of a medule Mackey functor over a Green
functor, and the Green functor A acts universally.

LEMMA 1. Any Mackey functor has a natural structure of A-module
Mackey functor. _ _

Let A(H) be the completion of A(H) in the I(H)—adic
topology. The restriction maps are evidently continuous and it
will follow from Lemma 6 below that the induction maps are also
continuous. It follows easily that 3 inherits a structure of
Green functor from A. Similarly, any Mackey functor gives rise
to an ﬁ"module Mackey functor upon completion.

Choose a p-Sylow subgroup G for each prime dividing the
order of G (to be denoted |G|) Theorem C can then be restated
as follows.

THEOREM 2. The sum Yi,: Eﬁ(Gp) -+ ﬁ(G) is an epimorphism.

: P b

By a basic result in induction theory [7: 9, §6], we have the
following immediate consequence.

COROLLARY 3. Let M be an g-module Mackey functor and let

= 11 G/Gp. Then the following sequence is exact:
* X*

®
0 —— M(pt) —— M(S) =72, wisxs)

Here m: 8§ » pt and ;: S x 8 S are the evident projections.

Bny Mackey functor converts disjoint unions to direct sums,
and S Xx S can be written as a disjoint union of orbits G/H
where the H are p-groups for varying primes p. Thus, by
naturaiity and a comparison of exact sequences, the previous
corollary implies the following one.
COROLLARY 4, Let o0: M > N be a morphisim of A~module Mackey
functors, for example the completion of any morphism of Mackey
functors. If o: M{G/H) = N(G/H) is an isomorphism for all sub~
groups H of G of prime power order, then o: M{pt) -+ N(pt) .is
an isomorphism. '

Of course, this is the result we shall use to prove Theorem A,

We now turn to the proof of Theorem 2, and we need some pre-
liminary recollections and observations. Embed 2 in A(G) by
sending n > 0 +to the trivial n-pointed G-set., For -H C G, de=~
fine a ring homomorphlsm Xgp® A(G) + B _by sending a G-set 5 to
the cardinality of S Then I(G) = Ker X,» where e is the
trivial group. Let I(G) be the completion of I(G) in the
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1(¢)~adic topology. We have an obwvious induced splitting
A(G) = 2 ?(G), and the natural composite
. 7 X
A *
7 ©A(H) — A(G) — &

since the greatest common divisor of

is multiplication by
the numbers |c/G_| is one, we see that-it suffices to prove
Theorem 2 with A replaced by .

Let C(G) be the ring direct product of one copy of %,
denoted ZH' for each coniugacy class (H) of subgroups of G
and let TIC{G) be the ideal of elements with eJEE coordinate
zero. Let x: A(G) + C(G) be the ring homomofphlsm with HEE
coordinate XH' Then ¥ is a monomorphlsm with finite cokernel,

|g|-c(G) being contained in the image of x [7, §11. The
following obsexrvation is essentially well-known and will imply
proposition B; compare [7, 4.1.1] and [11, 1.127.

LEMMA 5. Let M be a Mackey functor and let ﬂ*: M(pt) -+ M(G)

be induced by the projection mw: G = pt. Then M(pt) is an A(G)-
module and ﬂ* is a morphism of A{G)-modules, where A(G) acts
"on M(G) through Xa Further, |G|+Ker w* is contalned in
I(G)*Ker ﬂ*. Iif G is a p- group, then the p-adic topology and
I(G)-adic topology on Rer ﬁ coincide.

PROOF. The first statement is part of Lemma 1, multiplication by

a G-set S - being the com9031te
m,

M(pt) T, M(S) wm—% M{pt) .

*
Taking 8 = G, We =see immediately that G+*Xer m = 0, hence

. * * *

lcl*Rex © = (|G| - G)+Ker m < I(G)Rer

I ¢! .. - m * i} *
Now let |G| = p . We obviously have 1G|™KRer ™ © I(G) +Rerm .

. n+ . . . .
We claim that I(G)‘1 1c pIL(G). This will imply that
+ % *
I(G)m(n l)°K<=3:n: T & pm'Ker m

and so complete the proof of the last statement. For H & G,

H# e, and K& G, g (G/K = |e/%|) is congruent to zero mod p
since G/K - (G/K) is a disjoint union of non- —~trivial H-orbits
and thus has cardinality divisible by p. Therefore XHI(G) = Pl s
hence xI(G) € pIC(G) and '

vI (@)™ @ p? *lice) < pyr(a).
%

Of course, the last statement fails if we replace Kexr m by
M(pt). For example, 3(G) = 7 ® f(G), whereas the completion of
A(G) at p would have 2 replaced by its p-adic completion,

Al ¥ e -



A REDUCTION 'OF‘ THE SEGAL CONJECTURE 213

~ We shall need to know the prime ideal spectrum of A(G)
18; 7, 51). let q(H,0) be the kerrel of 1y, and let q(H,p)
be the kernel of the composite of Xg and reduction wmod p.
These are all of the prime ideals of A{(G), and the lattice of

prime ideals is determined by the relations

q(H.r_O) “g(H,p), )
g{k,0) if H is conjugate to K,

i

q(H,0)

and

1l

q(H,p) g(K,p) 1if P is conjugate to xP,
iwhere #¥ is the smallest normal subgroup of H such that H/Hp
!is a p~group. Note in particular that qg{e,p) = g(#,p) if and
ionly if H is a p—group; Write g(H,p) = q(ﬁ,p;G) when neces-
?sary for clarity.
P We need three lemmas. In all of them, we focus attention on
;a fixed given subgroup H of G. Via i*: A(G) - A(H), any
iA(H)—module is an A(G)-module. Via y: A(H) - C(H), any C(H)~
Tmodule is an A(H)-module.
fLEMMA 6. The following topologies on A(H) and I(H) colncide.
1(1) The I(G)-adic topology..
%(2) The I(H)-adic topology.
' (3) The subspace topology induced from the I(4)~adic topolegy on
‘} C(H). ' o
. PROQF, -The agreement of the first two topologies is due to
‘Laitinen [11, 1.14]. Since i*I(G) C I(H), it is enough to show
ithat I(H)n = i*{IG) for some n, and this holds provided that
5any prime ideal of A(H)}) which contains i"1(@) also contains
" I(H). Since (i*)"lq(K,p;H) = q(K,p;G) for K <CH and any p
i(including 0), bhecause xKi* = Xy this is a simple check of
tcases from the facts just recorded. The agreement of the last
two topologies is a standard consequence of the Artin-Rees lemma
{3, 10,11].

For any A(H)-module N and any n > 1, define

| P_(N,H) =P N = N/T () "N,

Observe that we have induced homomorphisms

i*: Pn(A(G)rG) S Pn(A(H)'G) and i*: Pn(A(H),G) - Bn(A(G),G).

By the lemma, Pn(A(H),G) is a guotient of some Pm(A(H),H). Dafine
| ™ my =y ramPem) < am)

and ' S

QN = N/J" (H)N.
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Since I(H)n is contained in g™ (1), we have a natural epimor-
phism PnN + QnN' and this is evidently the identity when
= C(H). Further, ¥ induces a mOnomorphism
QnA(H) . QnC(H) = PnC(H) = (&)P Z

where 2y is % regarded as an A(H)-module via ¥y.

(EmMa 7. (i) If K =e, then P 7, = 2z for all n.
(ii) rf K is not a p-group for any p, then PnZK = 0 for
all n.

(iii) If K is a p-group, then P Zp is a p-growp for all n.

PRQOF., For any prime p, the kxernel of the composite

X
L(H) = q(e,0) © A(H) ———> 2 —2, = 2/p8

is qg{k,pYna(e,0), and aq(K,p) contains gf{e,0) if and 6n1y if

K is e or a p-group. If K = e, the composite is always zero
and I(H)Z = 0. If X is not a p-group for any p, the com-
posite is always non-zero and therefore I(H)Z ZK' If K 1is
a p-group, the composite is non-zero for all prlmes other than p
and is zero for p, hence I(H)ZK = prZK for some r > 1.

LEMMA 8, The group PnI(H) is finite foxr all n > 1,

PROOF. The agreement of the last two topologies in Lemma 6
implies that PnI(H) is a quotient of Q I(H) for some m.

Sinece O I(H) injects into P IC(H) = I P 2 and the latter
m - m (K) #e K

is flnlte by the previous lemma, the conclusion follows.
Tn view of the agreement of the first two topologies in
Lemma 6, we have the following commutative diagrams:
‘ L i,
AA(E P 5 iy
L (6, ‘ (G)
n o . ' W
lim L i,
imi P 13 . S R
1%mp n(I(GP),G) 1ﬁm PnI(G}

Thus Theorem 2 will held if the bottom arrow 1s an epimoxrphism.
Since the groups P (I(G ) ,6) are finite, the usual lJ.ml exact

sequence shows that it sufflces to prove that each map

Lixt FPy (L(6;),6) » P LI

is an epimorphism.' Again by finiteness, this will hold provided
the pEE map i, 1is surjective on p-primary components. We
claim that the comp051te .
1.
P_T(G) —iL-=-> B (1(G,),6) — s P LI (6)
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becomes an isomorphism when localized at p. This composite isg
multiplication by the G-set G/Gp regarded as an element of A(G)
or of its quotient ring P A(G). By Lemma 6 again, the latter
ring is a guotient of Q A(G) for some m. Thus it suffices to
check that G/G ~is a unlt in QmA(G)(p), Since QmC{G)/QmA(G)
is finite, QmC(G)(p) is an integral extension of QmA(G)(p).

It therefore suffices to check that G/GP is a unit in
QmC(G)(p); see e.g. [3, 5,10]. Lemma 7 shows that

) T Ry < L e

where the product is resfricted to the conjugacy classes of p-
groups K < G. Since q(K,p) = g{e,p) in A(G) and since
Xe(G/Gp) = ]G/Gp[ is prime to p, we must have that XK(G/G ) is
also prime to p. Thus G/G is a unit in @ C(G)( ) Thls
completes the proof of our clalm and thus the proof of Theorem 2.

§2. APPLICATIONS TO EQUIVARTANT COHOMOLOGY THEORIES

Let k be an RO(G)-graded cohomology theory on G-spaces Y,
Thus we are given groups kGY for o € RO{G) s=uch that the
kg+nY for fixed o and varying n e g < RO(G) comprise a oz~
graded cohomology theory and there are woherent natural isomor-
phizsms
kG0 = KV asY)

for based G-spaces X (with G-fixed basepoint), where &YV de-
notes the one-point compactification of a representation V. Such
theories were introduced by Segal [17] and have been studied by

Kosniowski [10] and others. Ordinary RO(G)~graded theories were

introduced in [12], and a comprehensive treatment will appear in
(14]. 'Some of our details here will be more intuitive than pre-
cise, and we will take for granted various facts from [13] and
[14] about equivariant spectra and cohomology theories.

Our reason for considering RO(G)-graded theories is that the

following result is false for general Z%-graded theories. Lét Y+

denote the union of a G-space Y and a disjoint G-fixed base-

!point.
* . .
| PROPOSITION 9. Let k. be an RO(G) -graded cohomology theory,

G

rlet o e RO(G), and let Y be a G-space. Then the correspon-

!dence G/H -+ k (G/H x Y) determines the ohject function of a

Mackey functor, and this Mackey functor structure is functorial

'in Y.
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PROOF. This is folklore; compare [5] and [10). We give a sketch
of our favorite argument. There is an equivariant stable categGry

of G-spectra, constructed by Lewis and May [13], and there is a
: *

- functor 7°  from based G-spaces to G-spectra. The theory kG is:

represented by a G-spectrum kG. More precisely, kG _ represents
an RO(G)-graded cohomology theory on G-spectra such that

k*(z‘”x) = ?c’*(x) and F(Y*S = k*(Y).

Let O be the full subcategory of the stable category whose
objects are the G-spectra I (G/H) for H € G. As we observed
in work with Lewis [l12, 14], a Mackey functor determines and is
determined by an additive contravariant functor 0 + Ab, With

this homotopical 1nterpretatlon of the algebraic notion of a

‘Mackey functor, the conclusion becomes tautologlcally obvious.

We have identifications of G—spectra

2™ (/T ®) ~ 2@/ A x s 2T e/m A TR
For any G-spectrum E, such as ZMY+, the Abelian groups
k (Z (G/H)+A E) and homoworphisms (f!\l)* for morphisms £ € 0
spec1fy an additive contravariant functor 0 -+ ab.
For H -G w1th*1nclu5lon i, a G-spectrum kG determines
an H- spectrum k = 1 kG and thus an RO (H)~graded cohomology

theory k The preciSe definition implies
*

i 0 N -

kH (Y) = kG(GxHY)
* *

for o € RO(G) and an H-space Y. We abbreviate ke = k , this

being the underlying nonequivariant cohomology theory associated

*
to kG. In practice, as for K- theoxry and stable cohomotopy, we
are given an RO(G) graded cohomology theory k for every G and
must check that k = (i k ) We shall need a bit of extra

structure; compare {10, §2]
DEFINITION 10. A cohomology theory k is said to be split if
there is a morphism of z-graded nonequlvariant cohomology theorieé

* *
rr kY > kY (where spaces Y are given trivial G-action on the
right) such that the composite

*

4 m *
k Y —_— k Y ———3 k (6 x ¥) =k ¥,

. * » i
r: G Xx¥=>%¥Y, 18 a natural isomorphism. Of course, slnce @ 18

also a morphism of cohomolegy theories; this will hold provided
that the comp051te is an isomorphism when ¥ is a point. We say '
that k ig a split ring theory 1LE k is ring-valued (from '
which 1t follows that all k for H c ¢ are ring-valued) and
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r is a morphism of ring valued cohomology theories.
REMARK 11. In terms of spectra, a GFspeétrum kG determines a
nonequivariant flxed point spectiwm. (kG)G which represents the

z-graded theory Kk Y on spaces Y with trivial G-action. There

is a natural map '(kG)G

nition requires this map to be a retraction in the stable cate~

. *
+ k which represents w , and the defi-

*
gory. If kg ig ring~valued, then, ignoring liml questions,

k. ‘is a rinq G-spectrum and induces ring structures on the k

G H

and on (kg ) such that - (kg ) € is a ring map. The last
part of the definition requlres a ring map Kk - (k ) such that
the composite k + (k ) is the. identity.

*
Let S, be the 0 -sphere G-spectrum, so that SG = M- Then

*
Se is a split ring theory, the unit & —+ (SG)G providing the

required splitting map.
One reason for introducing split theories is the following

cbhservation, whlch is due to Kosniowski [10, p. 92].

LEMMA 12, If kG is a split cohomology theory, then the compo-

site
®

* r * Ui *
k {Y/G) —=— kG(Y/G) ey kG(Y),

T Y > ¥Y/G, 1s an isomorphism for all free G-CW complexes Y.
PROOF. We have assumed the result for ¢, and it follows by

suspension that the evident reduced analog holds for G+A s for

all n > 1. By induction and the five lemma, the result holds for

the skeleta of Y. BY the lim1 exact sequence, it holds for Y.
With these preliminaries, we return to the study of comple-

tions. We say that the completion conjecture holds for the theory

* *®
'k if e kg(pt) > kg(EG) induces an isomorphism on passage to

G
I(G)~adic completion for all integers n, €: EG ~* pt. There are

theories for which this is false; it ig true for real and complex
K-theory by Atiyah and Segal [47. Corollary 4 immediately implies
the following reduction, which in fact applies separately to each
grading n.

THEOREM 13. The compietion coniecture holds for the theory k;

if it holds for the theories X, for all subgroups H of prime
power order.

. Lemma 5 leads to the follow1ng further reduction.

PROPOSITION 14, If €& is a p-group and k is gsplit, then the

®
completion conjecture holds for kG if and only %
®
£ kg(pt).+ kg(EG) induceg an lsomorphism upon passage to p-

adic completion for all integers n.
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PROOF. Consider the commutative diagram
: : "

* 13
0 ——3 K =3 kG(pt)-—L‘f k' (pt) =~ 0

w® ’ * *
£ l le " .515
* 1 *

0 —> L — kG(EG)—-l—-) kK (BG) —~—> 0

where K and L denote the respective kernels. By assumption,
the top row is split exact, and there results a compatible split-
ting of the bottom row. By Lemma 5, this is a diagram of A(G)-
modules, where A(G) acts trivially on k {(pt) and k*(EG),

and the I(G)-adic and p~adic topologies on K and 6n L coin-
cide. The conclusion follows.

The interest in the completion conjecture lies in the alge-
braic computability of kg(pt) and the homotopical interest of
k (EG}). We guickly review the latter, following Atiyah and Segal
[4] We assume that k is a split ring theory. Then, by the
proof of Proposition 9, A{G) acts on k;Y by pullback of the
natural kg(pt)umodule structure along the unit

ne: ALG) = 10(8,) » To(ky) = kg(pt).

By Lemma 12, we have an 1somorphlsm of Z—-graded rings

k (EG) = k" (BG) .
Let B9G be the q—skeleton of BG. It is the union of g + 1
contractible subsets, hence all (g+l}-fold products are zero in

vk g .
X (B3G), hence the composite

k*(pt) > ky(EG) & X (BG) > x" (8%

)q+l

itd

factors through k (Pt)/I(G kg (PE) . Passing to limits, we

cbtain k {pt) —+ l&m k (BqG) If 11m k (BqG) = 0, then the

target here is k (BG), and this is complete. Thus the comple-~

tion conjecture asserts that
Ak A%
e s kg

is an 1somorphlsm. It is this forxm of the assertion that moti-~

(pt) + k’ (BG)

vated our original Z—graded formulation. HoWever, there is an
easy generalization to an RO(G)-graded formulation. Recall that
EG/H is a model for BH for any H < G.

PROPOSITION 15. Let k; be an RO(G)-graded Split ring theory
such that each kg(pt) ig a finitely generated A(G)-module.

Assume that l%mlkn(BqH) = 0 and the completion map

N
e*: R (pt) » kj(EG) = X" (BH)
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 PROOF. Rather than congider lim

%
composite extension of & :

A REDUCTION OF THE SEGAL CONJECTURE 219

is an isomorphism for all integers n and subgroups H of G,

Then, for any finite G-CW complex Y, the projection
€: ¥ x EG + Y induces an isomorphism
| 2" ﬂg(Y) + k(Y x EG)

for all o € RO(G).
terms, we observe that the

* f
following diagram commutes and define 5 to be the displaved

. .
£ > ko (Y % EG)
——————— > ¢

Re(v) = kg(v)e, o AG) =2h 10f, 18 (v) 0, o) XS (0E) 298] K2 (7)8, () kg (BG)
Here ¢ is the external product.
ensure that ﬁg(Y) is finitely A(G)=-generated and SO give the
10.13), and of course ﬁ(G) is A(G) -~
is an RO{G)-graded cohomology theory

a
kG(Y)

Our finiteness assumptions

unlabeled isomorphism [3,
*

flat [3, 10.14]., Thus kg

on finite G-CW complexes and is represented by a G-spectrum

%.: (° x EG) is also such a theory and is represented by the
*

Gi‘
functlon G-spectrum F(EG 'k ) Since & is a morphism of

cohomology theories, it is represented by a map of G-spectra

A ' .
8: &~ F(EG+,kG)- By hypothe51s (and Lemma 6), € is an iso-

G Fal .
morphism when Y = G/H and o = n. This means that € induces

an isomorphism on equivariant homotopy groups where, for a G-
1rH(k } = kﬂn(pt). By the Whitehead theorem in the

spectrum kG’
£ is an iso-

equivariant stable category [13], it follows that
morphism in that category and so induces an isomorphism of coho-

mo logy theories.
The cited Whitehead theorem asserts that a map kG

G-spectra 1s an isomorphism in the equivariant stable category if
(k )H + (k(';)H are isomorphisms

1
+ kG of

and only if its fixed point maps
in the nonequivariant stable category, and, as one would expect,
(k (ky )
Returnlng to the situation of the proposition, the isomor-
phism kG(Eg) o k (BG) Of Lemga 12 1mE11es an isomorphism

F(EG ,kg) = F(BG ,k)

o

in the stable category. Thus the completion conjecture asserts

that A
o+
8: (k) © » rac”,x)

is. an isomofphism.in the stable category. If G is a p-group, we
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may replace I(G)~adic completion by p-adic completion provided we
also p-adically complete the canonical sphere wedge summand of
F(BG+,k), F(BG,k) already being p-complete. Since passage to
fixed point spectra commutes with p-adic completion, the comple-
tion conjecture here asserts that

| e: (k)¢ > F(BG K
becomes an isomorphism in the stable category upon completion
at p.

In the case k. = Sy, there is an equivalence of spectra

v e v et o (0%

(H) (n)
where WH = NGH/H and the wedge is taken over the conjugacy
classes of subgroups H of G; ' ‘see Segal {17], Kosniowski ({10],
and tom Dieck [6]. In a sequel, we shall verify that the compo-

site eo byt ZMBWH+ + F(BG+,S) has adjeint

I

e : roewnt ABct = ™ (BWH x BG)T ~ S,

where Tt is the transfer associated to the natural cover
E > BWH x BG with fibre G/H and 1 € m°E is the unit. This
will recover the formulation of the Segal conjecture preferred.by
those engaged in its study by Adams spectral sequence techniques.
We refer the reader to Adams [1] for a summary of work in that
direction.

Wé_close with the homology analog of Lemma 12, which will be
needed in the sequel. '
LEMMA 16. If k; is a split cohomology theory, then the compo-
site

K (1/6) —— k5(¥/6) ——> kS (¥)

is an isomorphism foxr all free G-CW complexes Y, where T is
the equivariant transfer associatéd-to T: ¥ &+ Y/G.
PROQOF. Here ¢ 1is induced by k -+ (kG)G; see Remark 1l, The .
map © is a G-fibration, in fact a (G,A) -bundle where A is the
group of automorphisms of G regarded as a discrete set. The
transfer is induéed by a map of G-spectra T3 ZW(Y/G)+ A A £
must not be confused with the obvious nonequivariant transfer s
associated to m, which is induced by the map of nonequivariant :
spectra ohtained from T by neglect of G action. 8ee [l6, 18,
13). There is a relati%e equivariant transfer dompatible'with
connecting homomorphisms [131, and, as in Lemma 12, it suffices '%
to prove the result for Y = G. Here the conclusion holds by

hypothesis since we have commutative diagrams
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kg (pE) ——  k>(a),

N

Ypt) —Fs k e)

% where § 1is an equ1var1ant Spanier-Whitehead duallty 1somorphlsm
(13, 13, 14]. ' )
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