
Aoo RING SPACES AND ALGEBRAIC K - T H E O RY  

J.P. May 

In [ZZ], Waldhausen introduced a certain functor A(X), which he thought of as 

the algebraic K-theory of spaces X, with a view towards applications to the study of 

the concordance groups of PL manifolds among other things. Actually, the most 

conceptual definition of A(X), from which the proofs would presumably flow most 

smoothly, was not made rigorous in [2Z] on the grounds that the prerequisite theory 

of rings up to all higher coherence homotopies was not yet available. 

As Waldhausen pointed out, my theory of E ring spaces [i2] gave a success- 
co 

ful codification of the stronger notion of commutative ring up to all higher 

coherence homotopies. We begin this paper by pointing out that all of the details 

necessary for a comprehensive treatment of the weaker theory appropriate in the 

absence of commutativity are already implicit in [IZ]. Thus we define Aco ring 

spaces in section i, define Aco ring spectra in section 2, and show how to pass 

back and forth between these structures in section 3. The reader is referred to[13] 

for an intuitive summary of the E ring theory that the present Aoo ring theory 
0o 

will imitate. 

The general theory does not immediately imply that Waldhausen's proposed 

definition of A(X) can now be made rigorous. One must first analyze the structure 

present on the topological space M X of (n× n)-matrices with coefficients in 
n 

an A ring space X. There is no difficulty in giving MnX a suitable additive 
co 

structure, but it is the multiplicative structure that is of interest and its analysis 

requires considerable work. We prove in section 4 that MnX is a multiplicative 

Aco space and compare these A structures as n varies in section 6. Technically, 
co 

the freedom to use different A operads is crucial to the definition of these A 
co co 

structures, and a curious change of operad pairs trick is needed for their 



241 

comparison as n varies. We study the relationship between the additive and 

multiplicative structures on M X in section 5. It turns out that M X is definitely 
n n 

not an Aoo ring space, although it may satisfy the requirements of an appropriate 

strong homotopy generalization of this notion. 

With this theoretical background in place, we find ourselves in a position 

to develop a far more general theory than would be needed solely to obtain the 

algebraic K-theory of spaces. Thus we construct the algebraic K-theory of A co 

ring spaces X in section 7. The basic idea is simple enough. We take the homo- 

topy groups of the plus construction KX on the telescope of the classifying spaces 

of the Aoo spaces of unit components FMnX. The technical work here involves the 

construction of the relevant compatible classifying spaces and of a modified tele- 

scope necessary for functoriality. In section 8, we analyze the effect of restricting 

this chain of functors to the sub Aoo spaces FnX of monomial matrices. The 

resulting plus construction turns out to be equivalent to the zero component of 

Q(BFXJI{0}), where FX is the Aoo space of unit components of X and QY 

n n 
denotes colim f~ ~ Y. The proof involves the generalization of a standard con- 

sequence of the Barratt-Quillen theorem for wreath products of monoids to wreath 

products of Aao spaces together with a comparison between the Aoo spaces FnX and 

~ n I F X .  

T h i s  c o m p l e t e s  t h e  d e v e l o p m e n t  o f  t h e  t e c h n i c a l  m a c h i n e r y .  Of c o u r s e ,  

t h e  p r o o f s  in  s e c t i o n s  3 - 8  ( a l l  of  w h i c h  a r e  r e l e g a t e d  to t h e  e n d s  of  t h e  s e c t i o n s )  a r e  

n e c e s s a r i l y  a d d r e s s e d  to  t h o s e  i n t e r e s t e d  in  a c l o s e  l o o k  a t  t h e  m a c h i n e r y .  T h e  

c o n s u m e r  w h o  w i s h e s  to i n s p e c t  t h e  f i n i s h e d  p r o d u c t  w i t h o u t  t a k i n g  t h e  t o u r  t h r o u g h  

t h e  f a c t o r y  i s  i n v i t e d  to f i r s t  r e a d  s e c t i o n  1 a n d  s k i m  s e c t i o n s  Z a n d  3 (up  to  t h e  

s t a t e m e n t  o f  P r o p o s i t i o n  3 .7 ) ,  t h e n  s k i p  to s e c t i o n  7 a n d  r e a d  a s  f a r  a s  R e m a r k s  

7.4, next read section 8 as far as Remarks 8.5, and finally turn to sections 9-12. 

We begin the homotopical and homological analysis of our functors in 

section 9, giving general homotopy invariance properties and pointing out a 



242 

spectral sequence converging to H,KX and some general formulas relevant to the 

computation of its Ez-term. 

We discuss examples and display various natural maps and diagrams in 

section I0. On discrete rings, our theory reduces to Quillen's [i8, 5 ]. For 

general Aco ring spaces X, the discretization map X -~ ~0 X is a map of Aoo ring 

spaces. This establishes a natural map from the new algebraic K-groups of X to 

Quillen's algebraic K-groups of ToM. To illustrate the force of this assertion, we 

record the following trifling consequence of the diagram displayed in Theorem 10,7. 

Corollary. The usual map from the qt_hh stable homotopy group of spheres 

to the qth algebraic K-group of Z factors through the qth algebraic K-group of X 

for any Aoo ring space X such that ~0 X = Z. 

On topological rings, our theory reduces to that of Waldhausen [ZZ,§ I], or 

rather, to the topological analog of his simplicial theory. However, it should be 

pointed out that virtually all of the proofs in the earlier sections become completely 

trivial in this special case. The force of the theory is the translation of the obvious 

intuition, that much that is true for rings remains true for Aco ring spaces, into 

rigorous mathematics. The crucial question is, how much? We have already 

observed that the matrix "ring" functor M n does not preserve Aoo ring spaces, and 

other examples of phenomena which do not directly generalize are discussed in 

Remarks i0.3 and IZ.4. What I, find truly remarkable is how very much does in fact 

generalize. The point is that there are vast numbers of interesting A ring spaces 
co 

which are far removed from our intuition of ~vhat a ring looks like. 

Perhaps the most fascinating examples come from the fact that Eco ring 

spaces are AGO ring spaces by neglect of structure. For instance, the category of 

finitely generated projective modules (or free modules) over a commutative ring R 

gives rise to an Eoo ring space in which the addition comes from the direct sum of 

modules and the multiplication comes from the tensor product. The homotopy 

groups of this space are Quillen's algebraic K-groups of R, and the present theory 
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gives rise to a second order algebraic K-theory based on its Aoo ring structure. 

I shall say a little bit more about such examples in section i0, but I should add at 

once that I have not yet had time even to contemplate the problem of making actual 

c alc ulations. 

We specialize to obtain the algebraic K-theory of topological spaces X in 

section ii, defining A(X) to be KQ(I]xJ~{0}), as proposed by Waldhausen. The 

general theory gives an immediate calculation of the rational homotopy type of 

A(X), and various other properties claimed by Waldhausen also drop out by 

specialization. In particular, we discuss the algebraic K-theory of X with coeffi- 

cients in a (discrete) commutative ring and give a complete account of the 

stabilizationof the various algebraic K-theories of X to generalized homology 

theories, this being based on a general stabilization theorem given in the Appendix. 

While the theory discussed above was inspired by Waldhausen's ideas, it 

is logically independent of his work and should be of independent interest. The 

connection with his theory is work in progress and is discussed very briefly in 

section 12. The basic point to be made is that, at this writing, there exist two 

algebraic K-theories of spaces, the one developed here and the one rigorously de- 

fined by Waldhausen, and a key remaining problem is to prove their equivalence . 

would like to thank Mel Rothenberg for insisting that I try to make 

Waldhausen's ideas rigorous and for many helpful discussions. Conversations with 

Bob Thomason have also been very useful. I am profoundly indebted to Waldhausen 

for envisioning the possibility of such a theory as that presented here. 
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We begin by recalling the definitional framework of [iZ]~ details are in 

[I2,Vl § I and § Z] and a more leisurely discussion of some of the main ideas is in 

[i0,§i-3]. 

The notion of an Eoo ring space is based on the notion of an operad pair 

(~,~), which consists of an "additive" operad ~, a "multiplicative" operad ~ , 

and an action of ~ on C • An operad C has associated to it a monad (C,~, ~]) 

in J , the category of (nice) based spaces. There is a notion of an action of 

on a space X, and this is equivalent to the standard notion of a~* action of the monad 

C on X. These notions apply equally well to ~ . Actions by ~ are thought of as 

multiplicative, with basepoint I, and a ~0-space is a /~-space with a second 

basepoint 0 which behaves as zero under the action. When ~ acts on ~, the 

monad C restricts to a monad in .~0[ J ], the category of ~0-spaces. That is, 

CX is a ~0-space if X is a ~0-space and ~:CCX -~CX and ~]:X -~CX are 

then maps of ~o-Spaces. An action of (C, ~) on a space X is an action of the 

monad C in ~0[~ ] on X. That is, a (~, ~)-space is both a ~-space and a 

~o-space such that the additive action CX -~ X is a map of ~o-Spaces. The 

last condition encodes distributivity homotopies in a simple conceptual way, and the 

multiplicative theory is to be thought of as obtained from the additive theory by a 

change of ground categories from spaces to ~o-spaces. 
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is an E operad if its jth space C(j) is contractible and is acted on 
oo 

freely by the symmetric group ~.. An E space is a space together with an action 
j oo 

by any Eco operad ~ . Examples are the spaces CX for any space X. These are 

commutative monoids up to all coherence homotopies. (~ , /2 ) is an E operad 
co 

pair if ~= and ~ are both E operads. An E ring space is a space together with 
oo Co 

anactionby any E operad pair (~, ~). Examples are the spaces CX for any 
co 

~0-space X. These are commutative semi-rings up to all coherence homotopies 

(semi-ring because additive inverses are not built in). 

A theory of A spaces is developed in [i0, §3 and 13]. An operad ~ is an 
oo 

A operad if w 0 ~(j) is ~. and each component of ~ (j) is contractible. An A 
co j Co 

space is a space together with an action by any Aoo operad ~ . These are monoids 

up to all coherence homotopies. As explained in [i0, p. 134], A spaces are equiva- 
co 

lent to monoids, hence admit classifying spaces; there is also a direct delooping 

construction independent of the use of monoids. 

Definition l.l. An operad pair (¢, ~ ) is an A operad pair if ~ is an 
co 

E o p e r a d  a n d  ~ i s  an  A o p e r a d .  An A r i n g  s p a c e  i s  a s p a c e  t o g e t h e r  w i t h  a n  
(3o (DO CO 

action by any A operad pair ( ~, ~ ). Examples are the spaces CX for any 
oo 

~ 0-space X. 

This is the desired notion of a ring (or rather, semi-ring) up to all 

coherence homotopies. There is also a notion with both ~ and ~ A operads, 
Co 

but it seems unprofitable to study rings up to homotopy for which not even addition 

is homotopy commutative. 

Note that the product of an E operad and an A operad is an A operad. 
(3o co oo 

Thus if (~, ~) is an E operad pair and 5' is an A operad, then (~, ~' X ~) 
co co 

is an A operad pair, the action of ~'X /~ on ~ being obtained by pullback from 
co 

the action of ~ on C • Since a (C, ~)-space is a ( C, ~' X ~)-space, again by 

pullback, E ring spaces are A ring spaces. 
co co 
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Some discussion of discrete operads may clarify ideas. There are 

operads 7~Z and ~ such that ~ (j) = ~. and ~ (j) is a point. An ~7~ -space is a 
J 

monoid and an ~ -space is a commutative monoido Both ~ and ~ act on ~ . 

An (~ , 7)q)-space is a semi-ring and an (~, ~)-space is a commutative semi- 

ring. Say that a map of operads is an equivalence if the underlying map of jth 

spaces is a homotopy equivalence for each j. An Eoo operad ~ admits an evident 

equivalence ~ -~ ~ . An operad ~ is an Aoo operad if and only if it admits an 

equivalence ~ -~ ~7~ . Thus Aoo operad pairs and Eoo operad pairs map by 

equivalences onto the respective operad pairs (~, 7~) and (~,~)° 

Remark 1.2. I would like to correct an annoying misprint in the crucial definition, 

[IZ,VI. 1.6], of an action of ~ on ~ . In (a') of the cited definition, the displayed 

formula is missing some symbols, d I being written for k(g, di) , and should read 

~(k(g;c I ..... Ck); × k(g;di))v = k(g;e I ...... e k) 
I, S(j i ..... Jk ) 

§ Z Aoo ring spectra 

An Eoo space determines a spectrum and thus a cohomology theory. The 

notion of Eoo ring spectrum encodes the additional multiplicatlve structure on the 

spectra derived from the underlying additive Eoo spaces of Eoo ring spaces. 

Aoo ring spaces also have underlying additive Zoo spaces, and we have an analogous 

notion of Aoo ring spectrum. Only the multiplicative operad ~ appears in these 

definitions. Let ~ denote the linear isometries Eco operad of [IZ,I.I .Z ]. For good 

and sufficient reasons explained in [IZ,IV§I ], we assume given a map of operads 

-~ ~ . In the cited section, ~ was assumed to be an Eoo operad. We may 

instead assume that ~ is an Aoo operad. For example, ~ might be the product 

of an Aoo operad and an Eco operad which maps to ~. Now the assumption that 

was an Eoo operad played no mathematical role whatever in the definition, 
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[!2,1V.l.l], of a /~ -spectrum. This notion of an action by ~ only required the 

map /J -~ ~ and is thus already on hand in our ACO context. 

Definition Z.I0 An Aco ring spectrum is a /J-spectrum over any Aoo 

operad /~ with a given morphism of operads /~ -~ 

As explained in [iZ, p.68-70], an Aco ring spectrum is a (not necessarily 

commutative) ring spectrum with additional structure. In particular, its zero th 

is a n0-space. The formal lemmas [IZ, IV 1.4-1.9] apply verbatim to space 

-spectra for any operad /~ which maps to ~ . We summarize the conclusions 

they yield. 

Recall that a (coordinate-free) spectrum E consists of a space EV for 

each finite-dimensional sub inner product space V of Rco together with an 

associative and nnital system of homeornorphisms EV -- ~2WE(v + W) for V ortho- 

gonal to W; here E = E{0}. The stabilization functor Q from spaces to 
0 Co 

spectra is defined by 

QCOX : {Q~vX IV C R°°}, where QX : colim ~V~Vx; 

here the loop and suspension functors f~v and ~v are defined in terms of the 

sphere tV, the one-point compactification of V. The inclusion ~]:X -~ QX and 

colimit of loops on evaluation maps ~: QQX ~ QX give a monad ((],M,I]) in ~, 

and the analogous colimit map ~: QE 0 -~ E 0 gives an action of Q on E O. The 

sphere spectrum S is defined to be Qoo SO, and S O is a /~o-space for any 

operad ~ . Use of these notions is vital for rigor, but the reader may prefer to 

think of spectra in more classical terms, restricting attention to V = R i for 

i>0. 

Proposition 2.Z. Let X he a ~0-space and E a ~-spectrum. 

(i) Q X is a ~-spectrum and is the free ~-spectrum generated by X in the 
CO 

sense that a map f:X -~ E 0 of ~0-spaces extends uniquely to a map ~'. Qoo X -~ E 

of ~ -spectra such that f~] = f. 
%2 
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(ii) S is a ~-spectrum and the unit e:S -~ E is a ]J -map. 

(iii) The monad O in :Y restricts toamonadin ~0 [y] and ~:QE 0 ~E isa 

. ~ o - m a p ,  so t h a t  E 0 is  a Q - a l g e b r a  in  ~ 0 [ ~ ' ] .  

The following analog of [IZ,IV. 1.10] is central to the definitions proposed 

by Waldhaus en. 

Example Z.3. For a ~-spaee X without zero, construct a ~-space X + with 

z e r o  by  a d j o i n i n g  a d i s j o i n t  b a s e p o i n t  0 to X 

den t  way .  Q X + i s  t hen  a ]~ - s p e c t r u m  and  
oo 

spaces. If ~I is any A operad and ~ = 
oo 

-space via the projection ~ -~ ]~ ', while the projection 

be used in the present theory. Therefore Qoo X+ is an Aco 

A space X. 
Go 

and  e x t e n d i n g  the  a c t i o n  in the  e v i -  

~ :X  +-~  QX + is  a m a p  of ~ 0 -  

~ '  x ~ , t h e n  a ~ ' - s p a e e  i s  a 

]~-f anows ~ to 

ring spectrum for any 

Remarks 2.4. For what it is worth, we note that much of the discussion of 

orientation theory given in [IZ,IV ~3] remains valid for Aoo ring spectra. One first 

checks that commutativity of the underlying ring spectra is not essential to the 

general theory in[IZ,III]. Independently of this, one finds that the assertion of 

[IZ,IV.3.1] is valid for }J-spectra E for Aoo operads ~ as well as for Eta 

operads ~ . The cited result gives a certain commutative diagram of /J-spaces 

and ~ -maps, the middle row of which yields a fibration sequence 

G e FE T ~B(G;E) cl ~" BG Be ~ BFE 

after passage one step to the right by use of the classifying space functor on 

-spaces. Here FE is the union of those components of E 0 which are units in 

the ring w0E0, G is the infinite group or monoid corresponding to some theory of 

bundles or fibrations, such as O,U, Top, or F, and B(G;E) is the classifying 

space for E-oriented G-bundles or fibrations. The map q corresponds to neglect 

of orientation and the maps e and -r are interpreted in ~2,11I. 2.5]. The point is 
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that the notion of A ring spectrum is just strong enough to yield Be:BG ~ BFE, 
oo 

which is the universal obstruction to the E-orientability of G-bundles; compare 

[IZ,lv. 3.z]. 

§3. The recognition principle 

We first show thatthe zero th space of an Aco ring spectrum is an Aco ring 

space and then show that the spectrum determined by the additive Eco structure of 

an A ring space is anA ring spectrum. We also obtain comparisons between 
oo (2o 

the two evident composite functors and give an A ring level version of the Barratt- 
co 

Quillen theorem. All of this is in precise analogy with the corresponding develop- 

ment for Eco ring spaces and spectra in [IZ,VII], and we need only point out the 

trivial changes of definition involved. 

Let (~, ~) be an A operad pair and suppose given a map of operad 
co 

pairs (It, p): (~', ~) -~ ( J~oo' 2), where ~co is the infinite little convex bodies 

E operad. Here ~ and its action by ~ are defined in [IZ, VII§ 1 and §Z] 
(Do co 

(and we are suppressing technical problems handled there). ~co acts naturally 

th 
on the zero spaces of spectra, and there is a morphism = :K -~ Q of monads 

co co 

in [~ Similarly, Ir induces a morphism C -~ K of monads in ~ . With these 
oo 

notations, the proof of [iZ,VII. Z.4 ] applies ve=batim to prove the following result, 

in which the second part follows from the first via part (iii) of Proposition 2.2. 

Theorem 3.1. (i) The morphisms Ir:C -" Kco and ~co:Kco -~ Q of 

monads in Y restrict to morphisms of monads in ~0 [ •]. 

(ii) If E is a ~-spectrum, then its zero th space E 0 is a ( C , /~ )-space by 

pullback of its Q-action 6: QE 0 -~ E 0 along C~coW. 

An Eoo space X determines a spectrum _BX. Thanks to recent work by 

Thomason and myself [16], we now know that all infinite loop space machines yield 

equ iva l en t  s p e c t r a  when  app l i ed  to X , b u t  it is  e s s e n t i a l  to the  p r e s e n t  
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m u l t i p l i c a t i v e l y  e n r i c h e d  t h e o r y  tha t  we use  the c o n s t r u c t i o n  p r e s e n t e d  in [1Z,VII §3]. 

We a s s u m e  now tha t  the  A m o p e r a d  p a i r  ( ~ , ~ )  i s  ( ~ '  X ~ c o ,  ~ '  X ~ ) and tha t  

(w, p) is given by the projections, where (~ ', ~') is an operad pair such that each 

~'(j) is contractible (but not necessarily N.-free) and ~' is an A operad. For j co 

definiteness, one might think of the example (~', ~') = (~,~). The proofs of 

[IZ, Vll.4.1 and 4. Z] apply verbatim to yield the following results. 

Theorem 3.P. If X 

the ~ -space structure) is a ~-spectrum. 

is  a ( ~ ,  ~ ) - s p a c e ,  t h e n B X  ( f o r m e d  wi th  r e s p e c t  to 

The relationship between X and the zero t~ space BoX is summarized by 

a natural diagram 

X ~ B ( C , C , X )  1. B ( Q , C , X )  ~ BoX- 
J L 

The first and third solid arrows are equivalences, and ~ is obtained by use of a 

canonicalhomotopy inverse to the first arrow. The middle solid arrow, and there- 

fore also L, is a group completion (see [12,p.168] or, for a full discussion, 

[ii,51]). 

spaces. 

T h e o r e m  3.3.  The  s o l i d  a r r o w s  in t h i s  d i a g r a m  a r e  m a p s  of ( ~ ,  ~ ) -  

The do t t ed  a r r o w  L is a m a p  of / ~ 0 - s p a c e s .  

The  c a n o n i c a l  h o m o t o p y  i n v e r s e ,  and L , a r e  not  ~ - m a p s ,  but th i s  is  

of little significance. The basic idea is that we have group completed the additive 

s t r u c t u r e  of X whi le  c a r r y i n g  a long the m u l t i p l i c a t i v e  s t r u c t u r e .  

We have  the fo l lowing  c o n s i s t e n c y  s t a t e m e n t s  in s p e c i a l  c a s e s ,  the p r o o f s  

being identical to those in [iZ,p.191-19Z]. For a spectrum I~, there is a natural 

map of spectra ~': B__E 0 ~ E, and ~'~ is an equivalence if E is connective (that is, 

ifwiE = 0 for i < 0). 
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P r o p o s i t i o n  3 . 4 .  If E is a ~ - s p e c t r u m ,  t h e n  ~ : B .  ~ 0 - - E  is a m a p  

of ~ - s p e c t r a .  

F o r  a ~ 0 - s p a c e  Y, CY is  a ( ~ ,  ~ ) - s p a c e  by D e f i n i t i o n  1.1 and  

a ( ~ ,  ~ ) - s p a c e  by  P r o p o s i t i o n  2.2(i)  a n d  T h e o r e m  3.1( i i ) .  M o r e o v e r ,  

~co~r :CY -~ QY is  a m a p  of ( ~ ,  ~ ) - s p a c e s  by T h e o r e m  3.1( i) .  

QY is 

P r o p o s i t i o n  3.5.  F o r  a ~ 0 - s p a c e  Y, the  c o m p o s i t e  m a p  of ~ - s p e c t r a  

__BCY -- >, _BBQY co ~ Qooy 

is a strong deformation retraction. Its inverse inclusion v: Q Y -~ BCY is 
O0 

induced by the freeness of QcoY from the ~o-map Y ~ CY ~ P BoCY and 

is thus a map of ]~ -spectra. 

W h e n  Y = CS 0, CY = _LL C(j)/Y,j  : i l K ( E j , 1 ) .  H e r e  the  l a s t  r e s u l t  

i s  a m u l t i p l i c a t i v e l y  e n r i c h e d  f o r m  of  the  B a r r a t t - Q u i l l e n  t h e o r e m ,  the  s t r o n g e s t  

f o r m  of w h i c h  a p p e a r s  on t h e  E r i n g  l e v e l .  I n t e r e s t i n g  A r i n g  l e v e l  a p p l i c a -  
c o  CO 

t i o n s  c o m e  f r o m A  s p a c e s ,  s u c h  as  m o n o i d s ,  v i a  E x a m p l e  2 .3 .  
OO 

The  p r e v i o u s  r e s u l t  c an  be r e l a t e d  to the  H u r e w i c z  h o m o m o r p h i s m .  The  

m o n a d  N a s s o c i a t e d  to ~ a s s i g n s  to a s p a c e  Y i t s  i n f i n i t e  s y m m e t r i c  p r o d u c t ,  

o r  f r e e  c o m m u t a t i v e  t o p o l o g i c a l  m o n o i d ,  a n d  any  o p e r a d  ~ a c t s  on ~ . T h e r e -  

f o r e  N r e s t r i c t s  to a m o n a d  in .~0 [ 7 ] -  If ~ :  ~ -~ ~ i s  the  a u g m e n t a t i o n ,  

t h e n  (~ ,  I ) : ( ~ ,  /~)  -~ ( ~ , ~ )  i s  a m a p  of operad p a i r s .  T h e s e  o b s e r v a t i o n s  

imply the following result. 

L e m m a  3.6. F o r  a / ~ 0 - s p a c e  Y, 

s p a c e s ,  h e n c e  B E  : B C Y  -~ BNY is  a m a p  of 

~ : C Y  -~NY 

- s p e c t r a .  

is  a map of ( ~ , ~ ) -  

Now forget all about the multiplicative structure on Y. By an oversight, 

the  fo l lowing  r e s u l t  w as  o m i t t e d  f r o m  m y  e a r l i e r  w o r k s  in  t h i s  a r e a .  
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Proposition 3.7. For a based space Y, Ir,__BNY is naturally isomorphic 

to H.Y and h = BE o v: Qoo Y -~ B_NY induces the stable Hurewicz homomorphism 

on passage to homotopy groups. In particular, h is a rational equivalence. 

~h 
Proof. The zero map h: QY -* BoNY is obtained by passage to direct 

limits from the top composite in the commutative diagram 

n~ ny 

Y 

n n 
~ ~nznNy 

11 

NY 

f2n~n~ .-- ~n~EnBoNY 

BoNY 

~n 0- 

n ~-n B NY 
n 

I 
BoNY 

where 0- is the iterated structure map of the spectrum B_NY (and ~ is written 
n 

i% n 
for the unit of both monads N and f~ ~ ). Therefore h will induce the stable 

Hurewicz homomorphism on homotopy groups if L~]:Y ~ BoNY induces the ordi- 

nary Hurewicz homomorphism. If Y is connected, then L is a natural 

equivalence while w,NY = H,Y and ~] induces the Hurewicz homomorphism on w. 

by results of Dold and Thorn [3]. Thus the problem is to account for non-connected 

spaces. Let NY denote the free commutative topological group generated by Y 

and let ~:Y -* NY and k :NY -~ NY denote the natural inclusions, so that 

k~  = ~ .  Do ld  and  Thorn  give  t h a t  s , N Y  = H , Y  and  "~ i n d u c e s  the  H u r e w i c z  h o m o -  

m o r p h i s m  on  ~ , .  One cou ld  p r o v e  t h a t  k i s  a g r o u p  c o m p l e t i o n  by  d i r e c t  h o m o -  

l o g i c a l  c a l c u l a t i o n  and  t h e n  deduce  an  e q u i v a l e n c e  NY --~ BONY, but  we s h a l l  

reverse this idea. Consider the following diagram. 
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n a t u r a l  w e a k  e q u i v a l e n c e  ~ such  tha t  ~ 

l e n c e s  wi th  a r r o w s  going the  w r o n g  way) .  

h o m o m o r p h i s m ,  so is  (L~). on the  r igh t .  

--~ ~ ( modulo the use of weak equiva- 

Since ~. on the left is the Hurewicz 

It is a standard consequence of the 

finiteness of the stable homotopy groups of spheres that, upon tensoring with the 

rationals, the stable Hurewicz homomorphism becomes an isomorphism of 

homology theories. 

We record the following corollary of the proof and an elaboration of the 

f~(k~ -1 diagram above which shows that ~k is  homotopic to )~ : NY -~ ~N~Y. 

Corollary 3.8. For any space Y, k:NY -~NY is a group completion. 

~NEY ~ g2BNY I" BoNY 

Y 

R e s u l t s  of Dold and Thorn i m p l y  tha t  k is  a w e a k  e q u i v a l e n c e  ( s ince  EY is  c o n -  

n e c t e d )  and tha t  t h e r e  is  a n a t u r a i  weak  e q u i v a l e n c e  ~ such  tha t  ~@~ --~ f ~ ' o r  I. 

By a r e s u l t  of M i i g r a m  [17, p. Z45] ( see  a l so  [9, 8 .7  and 8 .11]) ,  t h e r e  is  a h o m e o -  

m o r p h i s m  ~ : N E y  -*. BNY such  that  ~2 ~ r e s t r i c t s  on Y to r-,rl, w h e r e  ~ is  the 

s t a n d a r d  m a p  [9, 8 .7 ] .  F i n a l l y ,  s ince  the p r o d u c t  on NY is  a map  of m o n o i d s  

and thus  of N - s p a c e s ,  [1Z, 3.4] t o g e t h e r  wi th  the p roo f  of [11 ,3 .7 (p .  75)] give a 
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§4. M a t r i c e s  w i th  e n t r i e s  in  Aoo r i n g  s p a c e s  

L e t  X be  a ( C ,  ~ ) - s p a c e ,  w h e r e  ( ~ ,  ~ ) i s  any  o p e r a d  p a i r ,  and  c o n -  

s i d e r  the  s e t  MnX of n X n  m a t r i c e s  w i t h  e n t r i e s  in  X. C l e a r l y  MnX is  a 

~ - s p a c e ,  n a m e l y  t he  n Z - f o l d  G a r t e s i o n  p r o d u c t  of the  ~ - s p a c e  X w i t h  i t s e l f .  

We w i s h  to show t h a t  if  ( ~  , ~ )  i s  a n  A m o p e r a d  p a i r ,  t hen ,  w h i l e  MnX is  no t  

a n  A m r i n g  s p a c e ,  i t  i s  a t  l e a s t  a ( m u l t i p l i c a t i v e )  Aco s p a c e .  E v e n  t h i s  m u c h  i s  

n o n - t r i v i a l ,  s i n c e  MnX is  no t  a c t u a l l y  a ~ - s p a c e .  

S i n c e  MnX is  c e r t a i n I y  not  c o m m u t a t i v e ,  i t  is  c o n v e n i e n t  to f i r s t  e I i m -  

i n a t e  the  e x t r a n e o u s  a c t i o n s  by s y m m e t r i c  g r o u p s  on  the  s p a c e s  ~ (j); t h e s e  s e r v e  

on ly  to h a n d l e  c o m m u t a t i v i t y  h o m o t o p i e s  in  the  g e n e r a l  t h e o r y  of o p e r a d s .  T h u s  

a s s u m e  now t h a t  B i s  a n o n - E  o p e r a d ,  i n t h e  s e n s e  of [10,3.1Z].  B y [ 1 0 , 3 . 1 3 1 ,  

. th 
a t y p i c a l  Aoo o p e r a d  h a s  the  f o r m  #J X ?7/ (wi th  j s p a c e  .~(j)  X Zj )  f o r  s o m e  

non-E operad ~ with each ~ (j) contractible. 

is given b y  maps 

k : ]~(k) × ~ ( j l )  X . . .  × ~ ( j k )  

An a c t i o n  of /~ on the  o p e r a d  

- ~( j l . . . j k  ) 

with the properties specified in [IZ, VI. 1.6] (see Remark I. 2), except that its ex- 

traneous equivariance condition (c) must be deleted. A slight elaboration of 

[10,3.13 ] shows that the non-E operad ~ acts on ~ if and only if the operad 

×~ acts on C. A(¢,fl)-spaeeisdefinedtobea ~-spaceand 

0-space X such that the additive action GX -~ X is a map of /~0-spaces, and 

the notions of (~,fj)-space and (C,~ × Pl)-space are then equivalent, there- 

fore the theory of Aoo ring spaces may as well be developed in terms of (~=,~)- 

spaces for an E operad ~ and a non-Z operad ~ with each ~(j) contractible. 
0o 

However, the work in the rest of this section requires only that ~ be an operad 

acted upon by a non-E operad ~ and that X be a (~, ~)-space. Let 

O.j: ~ ( j )  X X  j -* X a n d  ~ j :  ~ ( j )  X X  j -* X 

d e n o t e  the  a c t i o n s  of ~ and  of ~ on X.  
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We w a n t  to  u s e  m a t r i x  m u l t i p l i c a t i o n  to d e f i n e  a n  Aoo s p a c e  s t r u c t u r e  on  

M X.  O b v i o u s l y  t h i s  e n t a i l s  u s e  of  b o t h  t h e  m u l t i p l i c a t i o n  a n d  t h e  a d d i t i o n  on  X.  
n 

We a r e  q u i t e  h a p p y  to u s e  a r b i t r a r y  j - f o l d  p r o d u c t s ,  t h a t  i s ,  t h e  p r o d u c t s  g i v e n  b y  

a r b i t r a r y  e l e m e n t s  of  ~ ( j ) .  We  a r e  l e s s  h a p p y  to u s e  a r b i t r a r y  n j - l - f o l d  

a d d i t i o n s ,  b u t ,  s i n c e  a c a n o n i c a l  a d d i t i o n  i s  p r e s e n t  o n l y  in  t he  t r i v i a l  c a s e  of  

a c t u a l  c o m m u t a t i v i t y ,  w i t h  ~ = ~ , we  h a v e  n o  c h o i c e .  T h u s  d e f i n e  

34n(J) -- C(n )-l) x ~(j). 

L e t  T ( j )  d e n o t e  t h e  s e t  of  a l l  s e q u e n c e s  U = (u 0 . . . .  , u j )  w i t h  1 K u . x _  < n a n d  

o r d e r  T ( j )  l e x i c o g r a p h i c a l l y .  L e t  T ( r , s , j )  d e n o t e  t h e  s u b s e t  of t h o s e  U s u c h  

t h a t  u 0 = r a n d  u. = s .  D e f i n e  
J 

, j :  ~ n( j )  × (MnX)J  -~ M n X  

b y  t h e  fo l l owh~g  f o r m u l a ,  w h e r e  x ( r , s )  d e n o t e s  t h e  ( r , s )  t h  e n t r y  of a m a t r i x  x.  

J 
(1) q J j ( c , g ; x  1 . . . . .  x j ) ( r , s )  = @ n j - l ( C ; u e T ( r , s , j ) ×  ~J(g; qX--1 X q ( U q - l ' U q ) ) )  " 

A l l  we  h a v e  d o n e  i s  to  w r i t e  d o w n  o r d i n a r y  i t e r a t e d  m a t r i x  m u l t i p l i c a t i o n ,  

allowing for parametrized families of both multiplications and additions on the 

underlying "ring". The rest of this section will be devoted to the proof of the 

f o l l o w i n g  r e s u l t .  

. th  
T h e o r e m  4 .1 .  T h e  ~ n ( j )  a r e  t h e  3 s p a c e s  o f  a n o n - 2  o p e r a d  ) 4  n ' 

a n d  t h e  m a p s  ~j  s p e c i f y  a n  a c t i o n  o f  ~ n  o n  M n X .  

P r o o f .  B y  c o n v e n t i o n ,  ~ n ( 0 )  = {*} a n d  ~0 i s  t h e  i n c l u s i o n  of  t h e  

i d e n t i t y  m a t r i x  I i n  M X.  L e t  1 = ( 1 , 1 ) t  ~ ' ( 1 )  X ~ ( 1 ) =  9 4 n ( I  ) .  C l e a r l y  
n n 

X .  We m u s t  s p e c i f y  m a p s  ~ I ( 1 )  i s  t h e  i d e n t i t y  m a p  o f  M n 

~7: ~ n  (k) × ~ n ( J l )  × . . .  × ~ n ( J  k) ~ ) 4 n ( J ) ,  J = J t  + " ' "  + Jk  ' 

with respect to which ~ is an operad and which make the following diagram com- 

mute, where ~ is the evident shuffle homeomorphism: 
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(MnX)J (MnX)J q~J ~ n ( k )  X,.%/n(jt ) X . . . ×  ~/n(Jk ) X -y X t ~ n ( j  ) X • MnX 

(*) i x i ~ 

~4n(k ) X j~n(jl  ) X (MnX) j i  X ... X ~n(Jk)  X (MnX) jk 

1 x ¢ .  x ~j ix. . .  Jk 

Ck 

*" ~/n(k) X ( M Z )  k 

(Compare  [10,1.5].) We f i r s t  chase  the d i ag ram to see  how "~ mus t  be defined 

and then verify that, with this definition, ~ is an operad. In principle, the 
n 

details are perfectly straightforward: one does what one has to do and it works. 

However, since I omitted all such routine verifications from [IZ] and since this one 

is much less intuitively obvious than most, 1 will try to give some idea of the com- 

binatorics involved. 

We first calculate the composite around the bottom of the diagram (*). 

By (1), we have 

(z) d # k ( i X ~ j t X ' ' ' X C j k ) ( t X b t ) ( c ' g ; c l ' g {  . . . . .  c k ' g k ; x t  . . . . .  x j ) ( r , s )  

k 
X ~k(g; X Uq))), 

= @nk-i(C;u,T(r,s,k) q=l Zq(Uq-i' 

where ,  with eq = -Ji + " °" + J q '  

(3) Zq = q~jq(Cq, gq; Xeq_ i+ i  ,Xeq.  t+ 2 . . . . .  x eq) . 

If jq= O, then zq= In. Since X is a u~^-space' 

k 
(4) ~k(g;qX__iZq(Uq.l, Uq) ) = 0 if jq= 0 and Uq_ I / Uq for any q. 

Let {ql .... ,qm}, m <k, denote those q, in order, suchthat jq> 0 and set 

(5) ip = jqp , d = e , b = c , fp = gqp , and yp = Zq for I<_ p <m. 
p % p % p 
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th 
Let  s(j i . . . . .  jk ) ~ ]~(£t )  X . . .  X ~J(~k) , Eq= 0 o r  t ,  have  q 

th t ~ ~ (1) if j q >  0 and q coord ina te  * ~ ~(0) if j q =  O. Set 

(6) f = y (g ; s ( j  I . . . . .  jk)) c ~ ( m ) .  

coordinate 

If U c T(k) satisfies Uq_ l = Uq whenever jq: 0, define V = (v 0 ..... Vm) C T(m) 

by deletion of the duplicated entries u . Then, since I e X is the basepoint for q 

the ~-action and Zq(Uq_i,Uq) = I if jq= 0, 

k m 
(7) ~k(g;qX i Zq(Uq_t'Uq)) = ~m(f;  pX__ i yp(Vp-l 'Vp))  

Note that  each V E T(m) a r i s e s  uniquely f r o m  such a U ¢ T(k) and let 

th 
t 0 l  . . . . .  jk ) E ~ ( f f l )  X . . .  X ~ ( ~  m_l )  , 6 r  = 0 o r  1, have r coord ina te  

n 

for  the r th e lement  U ~ T(k) and r th 1 E ~(1) if j q =  0 impl ies  Uq_ 1 = Uq 

coordinate * ~ ~ (0) otherwise. Set 

(8)  b = "y(c;t(j 1 . . . . .  j k  ) ~ ~ ( n m - i ) .  

Since 0 ~ X is the basepoin t  for  the ~ -ac t ion ,  (4)-(8) imply  

k 
× ~k (g; I' Uq))) (9) 0nk_l(c ;  U : T( r , s ,k )  q><=i z q(Uq_ 

m 

: 0nm_ l(b; × Yp(Vp_ i, Vp))). V, T ( r , s , m )  ~m(f;PX i 

Evaluating yp by (I), (3), and (5) and then using the definition, [IZ,VI. 1.8 and 

VI. I. i0], of a (~ ,~)-space, we find 

m m 

410) ~m(f;pX= lYp(Vp_l,Vp) ) = ~m(f;#=l 0nip_l(bp; × . y(Wp))) 
WpE T(Vp_i,  Vp, :p) 

OnJ_m(k(f ; b I . . . . .  bin); × l) ~m(f ; YH (v))) 
H ~ S(n il "i i m- 

,o..,n ° 

where if Wp= (Wp, 0 ..... Wp,ip) c T(ip), then 

P 
(11) y(Wp) = ~i (fp;  t=X1 Xd l+t(Wp, t - l ' W p ,  t )) 

p p- 
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i -1 
a n d i f  H =  ( h l , . . . , h m )  wi th  1 < h < n p , then  

- -  p 

X m th th (lZ) YH(V) E has p c o o r d i n a t e  the h coo rd ina t e  
P 

X . y(Wp) . 
of %~ T(Vp.1, vp, Ip) 

By ( i0)  and  the de f in i t ion  of a ~ - s p a c e  [10 ,1 .3  o r  12,VI .  1.3], 

m 
X ~m(f; X yp(Vp_l,Vp))) (13) 8nm_ l(b;  V¢ T ( r , s , m )  p = l  

m-I 
@ i(~(b; k(f; ); nJ- bl .... bm)n X X ~m(f; YH(V))) .  

V~ T ( r , s , m )  i l - 1  i m - t  
HcS(n  . . . . .  n ) 

Here k(f;bl,...,bm) c C(nJ-m), since i I + ... +im : j' hence application of 

N(b;-) to its n m'l st power yields an element of ~(nJ'l). Further, by (Ii),(12), 

and the definition of a ~ -space, 

J 
(14) ~m(f;YH(V)) = ~j(N(f;f 1 . . . . .  fm) ; qX I Xq(Uq_l,Uq)) , 

whe re UH(V ) = (u 0 . . . . .  uj) , T(j) is  the sequence  

(wi ,  0, . . . . .  wz,iz . . . . . . . . . .  " ' ' ' w t ' i l  W z ' l '  W m ' l  W m ' i m )  

of the o r d e r e d  se ts  ob ta ined  by sp l i c ing  toge the r  the h t___h e l e m e n t s  W 
P P 

T(Vp_l ,Vp, ip )  for  l<__p<__m. As V runs  th rough  T ( r , s , m )  and H runs  

th rough  S(n i l - 1  i m - i  . . . . .  n ) , UH(V ) runs  th rough T(r ,  s, j) .  Let ~ ~ ~nJ_ l  be 

that  p e r m u t a t i o n  which changes  the g iven  l ex i cog raph ic  o r d e r i n g  of T( r ,  s , j )  to the 

o r d e r i n g  spec i f ied  by UH(V ) < UH,(V' ) if V <  V' o r  if V = V'  and  H <  H' 

(in the lexicographic ordering; see [IZ, VI.l.4]). Substituting (14) into (13), 

(13) into (9), and (9) into (2) and using the evident equivariance identification 

(to rearrange "addends"), we arrive at the formula 
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4t5) ~k( t  X qJ j lX. . .  X ~ jk ) ( t  X ~)(c, g; c t, g t . . . . .  Ck, gk; x t  . . . . .  x j ) ( r ,  s) 

m - i  
= e___ l (~ (b ;h ( f ;b  I n  J . . . . .  bm)n. )~; X ~j('~(f;ft- - . . . . .  f ); JX x (u . u ))). 

U~T(r , s , j )  m q=l q q - i ,  q 

C o m p a r i n g  (1) and (15), we see that  the d i a g r a m  (*) wi l l  c o m m u t e  p r o -  

v ided  that  we def ine 

m - i  
(16) " ~ ( c , g ; c l , g  1 . . . . .  Ck' gk)=  ('Y(b;X ( f ; b l  . . . . .  bm )n )~ ' ' f ( f ; f l  . . . . .  fm ) )"  

Here, when jq = 0, (Cq, gq) = * and we may think of gq as * c fJ(0); (5), (6), 

and the definition of an operad then imply 

( l? )  "?(f; f i  . . . . .  fm ) = ~/(g; gl . . . . .  gk)" 

No such  r e i n t e r p r e t a t i o n  of the f i r s t  fac tor  of (16) i s  pos s ib l e  (as we would have to 

i n t e r p r e t  c as  an  e l e m e n t  of ~ ( n  -1) to make  the n u m b e r s  work  out).  
q 

We must show that, with this definition, ~ is a non-~, operad. 
n 

Certainly ~/(i;c,g) = (c,g) and ~/(c,g;l~ = (c,g) for (c,g) e Mn(k)' by 

[IZ,VI. 1.6(b) and (b')]. It remains to check the associativity formula [I2,VI. 1.e(a)] 

for iteration of the maps -f, and the reader who has followed the combinatorics so 

far should not have too much trouble carrying out the requisite verification for 

himself. The details involve use of the corresponding associativity formulas for 

and ~ , the equivariance formulas [iZ,Vl. 1.2(c) and VI. i.6(c')], the inter- 

action formulas [1Z,VI. 1.6(a) and (a')] as corrected in Remark i.Z, and a rather 

horrendous check that the permutations come out right. 
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§ 5. S t rong  h o m o t o p y  ( $ ' ,  ~ ) - s p a c e s  and m a t r i x  r i n g s  

In this rather speculative section (which will play little part in our later 

work), we make an initial definition in the direction of an up to homotopy elabora- 

tion of the theories of Aoo and Eoo ring spaces and explain its likely relevance to the 

matrix "rings" studied in the previous section. 

Lada, in [Z,V], has developed an up to homotopy generalization of the 

theory of ~-spaces. (See [13,~6] for a sketch.) His theory is based on use of the 

associated monad C, and the essential starting point of the analogous up to homo- 

topy generalization of the theory of (~, ~)-spaces surely must be the fact that C 

restricts to a monad in the category of 

be appropriate. 

Definition 5.1. Let (~, ~) 

non-E operad). A strong homotopy, or sh, (~ , ~ )-space X is a 

(X,@) with basepoint 0 and a ~0-space (X, 6) with basepoint i such that 

@:CX--~ X is an sh G-map. 

The notionof a.n sh G-mapis defined and discussed in [Z,V§3]. It is 

required that the basic distributivity diagram 

/ ~ o - S p a c e s .  The following definition should 

be an operad pair (where ~ might be a 

-space 

G@ 
GCX ~- GX , 

@ 
CX -~ X 

the  c o m m u t a t i v i t y  of w h i c h  is  the de f in ing  p r o p e r t y  of a ( ~ , ~ ) - s p a c e ,  shou ld  

h o m o t o p y  c o m m u t e  and tha t  th i s  h o m o t o p y  shou ld  be the  f i r s t  of an in f in i te  s e q u e n c e  

of  h i g h e r  c o h e r e n c e  h o m o t o p i e s .  

More general notions of sh (g,.~)-spaces, with X only an sh g'-space 

or only an sh ~ -space, surely also exist but would be much more complicated. 
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Unfortunately, the most general notion would presumably be essential to a fully 

homotopy  invariant t heo ry .  

I would  hope tha t  if  X is  an sh ( ~ , f l J ) - s p a c e ,  then  t he r e  is  an  ac tua l  

( ~ , / ~ ) - s p a c e  UX equ iva l en t  to X in an a p p r o p r i a t e l y  s t r u c t u r e d  way,  so that  the 

p a s s a g e  f r o m  Aoo r ing  s p a c e s  to Aoo r ing  s p e c t r a  and f r o m  Eao r ing  s p a c e s  to Eoo 

ring spectra directly generalizes to sh (~, ]J )-spaces for suitable pairs (~, •). 

This  wou ld  be in ana logy  to L a d a ' s  one o p e r a d  t heo ry ,  and his cub ica l  b a r  c o n -  

s t r u c t i o n  UX = B ( C , C , X )  of  [Z,V §Z] would  be the obvious  cand ida te  fo r  UX. 

H o w e v e r ,  I h a v e  not a t t e m p t e d  to pu r sue  t h e s e  ideas .  

We r e t u r n  to c o n s i d e r a t i o n  of MnX fo r  a ( ~ , ] J ) - s p a c e  X, wi th  ~J be ing  

a non-2~ o p e r a d  for  c o n v e n i e n c e .  As f o r m u l a e  (4.16) and (4.17) m a k e  c l e a r ,  p r o -  

j e c t i o n  on the second  f a c t o r  g ives  a m o r p h i s m  of non-~, o p e r a d s  ~/n  -* /1~ . 

T h e r e f o r e  o'~ n ac t s  on ~ by pul lback  of the ac t ion  of ~ on ~ . H o w e v e r ,  MnX 

is  not  a ( ~ , . ~ n ) - S p a c e  b e c a u s e  the d i s t r i b u t i v i t y  d i a g r a m  fa i l s  to c o m m u t e  (for th is  

o r  any o the r  ac t ion  of ~ on ~ ) .  As exp la ined  in [12,VI §i and 2, p. 77], the d ia -  
n 

g r a m  in ques t ion  r e s u l t s  by p a s s a g e  to d i s jo in t  unions and then  to quot ients  f r o m  

the following d i a g r a m s :  

H n ( k  ) X ~ ( j l  ) X (MnX) J1 X . . .  X ~'( jk) X (MnX)  j k  

1X8. X . . .X  8. 
J1 Jk 

> Mn(k) x 0 %x) k 

i x  F 

(MnX)J 1 × ... (MnX)jk X --...~(il~ X . . .  X --..~'(Jk ] X X 
Ck 

(*) 

~n(k) j+l 

A X t X 5  

X ~ ( j l  ) X . . .  X ~ ( j k  ) X ((MnX)k) j 

2Nn(k ) X ~ '(J l)X . . .  X ~( Jk )X (:~4n(k) X (MnX)k) j 
x x (¢k)j 

M X  
n 

[, 
• ,, ~'(j) x (MnX)J 
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Here  j = Ji" "" Jk ' the ~ a r e  shuffle h o m e o m o r p h i s m s ,  A is  the i t e r a t e d  d iagonal ,  

2 
~k is as  def ined  in f o r m u l a  (4 . t ) ,  the @j give the addi t ive  ac t ion  on (MnX) = X n , 

and  J t J k 
5: (MnX) X . . .  X (MnX) "*" ((MnX)k) j 

is specified by 

6(y i . . . . .  yk) = X YI ' with 
I~S(j I ..... Jk ) 

YI : (xti~ . . . . .  Xk~) if yq= (xq~ . . . . .  ~qjq). 

The following result shows that, as far as the relationships between any 

homolog ica l  and homotop ica l  i n v a r i a n t s  of the maps  O. and ~k go, any r e s u l t s  
J 

valid for Aoo ring spaces are also valid for matrix rings with entries in Aoo ring 

spaces .  (Compare  the a n a l y s i s  of the homology  of Eoo r ing  spaces  in [Z,II];  we 

shall return to this point in section 9. ) 

P r o p o s i t i o n  5.Z. If X is a (~, ~3)-space ,  whe re  C is an Eco 

is any  n o n - Z  o p e r a d  which  ac t s  on ~ ,  then  the d i a g r a m  (*) is 

ope rad  and 

~. X . . . X ~. -equivariantly homotopy commutative. 
Jl 3k 

Proof. On the one hand, the corresponding diagram for the (~,~)-space 

X, formula (4.1), and the diagram which expresses that X is a E-space [i0,i.5] 

imply 

O) ~ k ( i X @ j t X  . . .  X @jk)(c,g; c t ,  Yt . . . . .  Ck' Yk ) 

k-1 
= e jnk_i (~(c ;×(g;  c 1 . . . . .  % ~  ); X X 

UE T( r , s , k )  I~S(j i . . . . .  jk  ) 
~k(g; YI(U))), 

where yi(U) = (xlil(u0,ul) ..... Xkik(Uk_1,Uk)). On the other hand, formula (4.1) 

and the fact that X is a ~= -space imply 

(z) @j(kX ~k3)l~( A X i X 5)( t  X i~)(c, g ; c t ,  Yt . . . . .  Ck' Yk ) 

= X X ~k(g; Yl(U))). Ojnk" i(Y(k(c 'g;  c t  . . . . .  Ck); c J); Ic sO l . . . . .  jk  ) U¢ T ( r , s , k )  
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No definition of k(c, g; c i ..... Ck) will make the right sides of (I) and (Z) agree, 

and we take the pullback definition k(g; cj, .... Ck). In view of the difference in 

order of appearance of the indexing sets SOl ..... jk ) and T(r, s, k), the addends 

in (i) and (2) differ by a permutation v ,~ Ejnk_ I. The maps 

f,g: ~n(k) X ~(jl ) X ... × ~(jk ) -* ~(jn k-l) 

specified by 

a n d  

k -1  
n 

f ( c , g ; c  t . . . . .  c k) = ~ ( c ; k ( g ; c  I . . . . .  c k) ) 

g(c ,  g; c 1 . . . . .  % )  = -y(×(g; c 1 . . . . .  % ) ;  cJ)v 

are E. × ... × E. -equivariant, where the action of this group on ~(jn k-i) is 
Ji Jk 

determined by its tensorial embedding in Ej [10,VI. 1.4], the diagonal embedding 

k-i 
of ~'2 in (~j)n , and the block sum embedding of the latter in ~jnk_ I . Since 

is an E operad, the domain and codomain of f and g are ~. )< ... X ~. -free 
Co 21 Jk 

and contractible, hence f and g are equivariantly homotopic . The conclusion 

follows. 

Of course, if we had chosen to work with permutations in our multiplica- 

tire operads, then the diagram (*) would be ~k × ~n 
21 

homotopy commutative. 

)< ... X ~ .  -equivariantly 
J k 

If the homotopies of the proposition can be chosen with suitable corn- 

patibility as k and the j q  vary, they will together yield the first of the infinite 

sequence of homotopies needed to verify the following assertion. 

C on jec tu re  5,3.  If X is  a ( ~ , . ~ ) - s p a c e ,  w h e r e  ~ i s  an ECO o p e r a d  and 

is  any n o n - ~  operad  w h i c h  acts  on ¢ ,  then M X  is  an sh  ( ¢ , ~ n ) - S p a c e  

W i t h  ~ an  ECO o p e r a d  a n d  e a c h  ~ ( j )  c o n t r a c t i b l e ,  t h e  n o t i o n  o f  a n  s h  

(~o ]~)-space is an up to homotopy generalization of the notion of an A ring space. 
CO 
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The  c o n j e c t u r e  g ives  the  a p p r o p r i a t e  s e n s e  in w h i c h  i t  m i g h t  be  t r u e  t h a t  MnX is  

an  Aoo r i n g  s p a c e  if  X is an  Aoo r i ng  s p a c e .  

The  p r o o f  of P r o p o s i t i o n  5. Z i s  p r e c i s e l y  a n a l o g o u s  to t h a t  of [10, 1 .9 ( i i ) ] ,  

w h i c h  g ives  a s i m i l a r  r e s u l t  a b o u t  the  p r o d u c t  @ on  a ~= - s p a c e  w h e n  ~ is  an  E (3o 

o p e r a d .  Lada  [6] h a s  s t u d i e d  the  p a s s a g e  f r o m  t h a t  r e s u l t  to the  a s s e r t i o n  t h a t  

is  an  s h  C - m a p ,  and  the  p r o b l e m s  he  e n c o u n t e r e d  t h e r e  i l l u s t r a t e  wha t  would  be  

i n v o l v e d  in  a p roo f  of C o n j e c t u r e  5 .3 .  

§6. The  c o m p a r i s o n  b e t w e e n  M X and  n M n + l X  

As in section 4, l e t  X be a (~, ~)-space, where ~ i s  any  operad and 

is any non-E operad which acts on X. We have exhibited a ~-space structure and 

an :~n-Space structure on M X, where ~n(j) = ~ (n j-l) X ~(j), and have studied 
n 

the relationship between these actions. We here study the relationship between 

MnX and Mn+IX. We adopt the notations of section 4, but with an identifying 

subscript n where necessary for clarity. Let Vn:MnX ~ Mn+l x denote the 

natural inclusion. First consider the diagram 

@ 
~( j )  X(MnX) j nj  * MnX 

IxvJ[ I v n n 
• @n+l,,j 

~( j )  X (Mn+tX)J  " Mn+l  x 

H e r e  @n and  @n+t a r e  d e t e r m i n e d  e n t r y w i s e  f r o m  the  a c t i o n  of ~ on X, and  t h i s  

d i a g r a m  c e r t a i n l y  c o m m u t e s  on the  ( r , s )  th  m a t r i x  e n t r i e s  f o r  r <_ n and  s <_ n. 

S i m i l a r l y ,  bo th  c o m p o s i t e s  a l w a y s  give ( r ,  s) th  m a t r i x  e n t r y  0 if  e i t h e r  but  no t  bo th  

of r and s is n+J. However, for c c ~(j) and x i ~ MJ, we have 

Vn0nj (C,  x i . . . . .  xj) (n+t ,  n+t)  = t 
but  

O n + t , j ( t  X v J ) ( c , x  t . . . . .  x j ) ( n + l , n + t )  = Oj(c; t j) . 
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T h u s  v f a i l s  to be  a ~ - m a p .  I n d e e d ,  a s  fo r  d i s c r e t e  r i n g s ,  1 a n d  O . ( c l l  j)  l i e  in 
n j 

d i f f e r e n t  c o m p o n e n t s  in  a l l  n o n - t r i v i a l  c a s e s  s i n c e ,  by  [1Z,p.140] ,  X is  c o n t r a c t i b l e  

i f  0 a n d  1 l i e  in  t he  s a m e  c o m p o n e n t .  F o r  t h e  m u l t i p l i c a t i v e  s t r u c t u r e s ,  w e  h a v e  

the  f o l l o w i n g  r e s u l t .  I t s  h y p o t h e s i s  ~(1) = {1} w i l l  be d i s c u s s e d  a f t e r  t h e  p r o o f .  

T h e o r e m  6 . i .  A s s u m e  t h a t  ~ ( t )  i s  t h e  p o i n t  1. F o r  e a c h  n ~  t ,  t h e r e  

i s  a m a p  Tn: ~ n + t  - -  ~ n  of  n o n - ~  o p e r a d s  s u c h  t h a t  V n : M n X  - ~ M n + t  X i s  an  

~ n + t - m a p ,  w h e r e  MnX is  an  ~ n + t - s p a c e  by  p u l l b a c k  a l o n g  Vn.  

P r o o f .  L e t  tnj  e ~ ( 6 t )  X . . .  X ~ " ( ~ ( n + i ) j _ t )  , £ i  = 0 o r  t ,  h a v e  i t h  

coordinate * e ~ (0) if the i th element U ~ Tn+l(j-2) has any u = n+l and have 
q 

.th 
1 c o o r d i n a t e  I , ~ ( t )  o t h e r w i s e .  O b s e r v e  t h a t  i f  e l e m e n t s  o f  T n + t ( j - 2 )  a r e  

w r i t t e n  in  t h e  f o r m  U = (u i . . . . .  u j _ t ) ,  t h e n  U ~ - ~ ( r , u  t . . . . .  u j _ t , s  ) g i v e s  a 

b i j e c t i v e  c o r r e s p o n d e n c e  b e t w e e n  t h e  o r d e r e d s e t s  T n + t ( j - 2 )  a n d  T n + t ( r  , s , j )  f o r  

e a c h  r a n d  s b e t w e e n  t and  n + t .  D e f i n e  

b y  

. .: ~4 n+t(j)  : ~ ( ( n + 0  j -~)  X 8 ( j )  -~ C (n j - t )  X ~ (j) = ~4n(j) 
nJ 

Tnj(C, g) = ( '7(e;  tnj), g). 

B y  c o n v e n t i o n ,  Tn0(* ) = * a n d  t n l  = 1 c ~ ( t )  so  t ha t  Tnl  i s  t h e  i d e n t i t y  m a p .  

A n o t h e r  l a b o r i o u s  c o m b i n a t o r i a l  a r g u m e n t ,  w h i c h  u s e s  f o r m u l a  ( 4 . 1 6 ) ,  t h e  

a s s o c i a t i v i t y  a n d  e q u i v a r i a n c e  f o r m u l a s  f o r  t h e  o p e r a d  ~ [1Z,VI. 1. Z(a) a n d  (e)] ,  

t h e  i n t e r a c t i o n ,  u n i t ,  a n d  e q u i v a r i a n c e  f o r m u l a s  [ IZ,VI .  1 . 6 ( a ' ) ,  ( b ' ) ,  (c ' )1  f o r  t h e  

a c t i o n  of  ~ on  ~ ( s e e  R e m a r k  i . Z ) ,  a n d  a c a r e f u l  c o n s i d e r a t i o n  of  p e r m u t a t i o n s  

b a s e d  on  the  d e s c r i p t i o n  of  ~ g i v e n  a f t e r  f o r m u l a  (4. 14) s h o w s  t h a t  t h e  f o l l o w i n g  

diagrams commute. 

~l~n+l(k ) X ~14n+l(ji ) X . . .  X ,,~/n+l(Jk ) 

Tnk X T . X . . . X  T . 
n j  1 nJk 

~ n ( k )  X ~n( j i  ) X . . .  X ~n( jk  ) 

-~ ~+i(jl +... + jk ) 

n ' ~ l  +" " ° +Jk  

>' 3~n(j I +... + Jk ) 
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T h u s  "r i s  a m a p  of n o n - E  o p e r a d s .  N o w  c o n s i d e r  t he  f o l l o w i n g  d i a g r a m s .  n 

(MnX)J Tnj × i ~nj ~ n + i  (j) × ~- .2~n(j) X (MnX)J > MnX 

L 1 
• ~ n + l ,  j 

~ n + l ( j  ) X (Mn+IX)J  -~ M n + t X  

Our  c l a i m  is  t ha t  t h e s e  d i a g r a m s  c o m m u t e ,  and  i t  is  f o r  t h i s  tha t  we  r e q u i r e  ~ ( 1 )  

to be  a point•  C o n s i d e r  

L~n+l , j (c 'g;  Yl . . . . .  y j ) ( r ,  s) 

= O(n÷i)j_ 1 (c~ × 
u~ T + i ( r , s , J )  

c E ~ ' "  " " ~, t t n + t j J - i j ,  g c  ] J ( j ) ,  and  y i =  w h e r e  

0 c X if e i t h e r  but  no t  bo th  of u and  u 
q - i  q 

i t  f o l l o w s  tha t  the  r i g h t  s i d e  i s  e q u a l  to 

J 
X ~j(g! X Xq(U q_ l ,Uq) ) )  

@nJ- i (X(c; tn j ) ;  Vc T ( r , s , j )  q = l  

J 
~J(g;q×i= yq(Uq - i ' u q ) ) )  , 

Vn(Xi). The  U th  f a c t o r  on t h e  r i g h t  is  

is  n+ i  f o r  any  q. If r ~ n  and s <__n, 

= qJj(Tnj(C , g ) ; x  1 . . . . .  x j ) ( r ,  s) . 

I f  e i t h e r  bu t  not  bo th  of  r a n d  s i s  n + l ,  t hen ,  f o r  any  U ~ T + l ( r , s , j ) ,  t h e r e  

e x i s t s  q s u c h  t h a t  e i t h e r  but  not  bo th  of  Uq_ t and  Uq is  n+l, h e n c e  

•j(c,  g; Yi . . . . .  y j ) ( r ,  s) = O. We t h e r e f o r e  h a v e  

VCnj (VnjX 1)(c,  g; x i . . . . .  x j ) ( r ,  s) = ~ n + t , j ( l  × Vn j ) (c,  g; x I . . . . .  x j ) ( r ,  s) , 

a s  d e s i r e d ,  u n l e s s  r = s = n + l .  H e r e  we f ind  tha t  the  l e f t  s i d e  i s  1 ~ X 

whereas the right side reduces to 

w h e t  e 

O ( n ÷ t ) j _ l ( c ; O  . . . . .  O, 1) = Ot(y (C;Sn j  ), l)  ~ X , 

(o)(n÷l)J-I Snj= (* . . . . .  *,1)~ ~' - i X  ~'( i) .  
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Indeed, all elements of Tn+l(n+l, n+l, j) except the last have either but not both of 

Uq_ 1 and Uq equal to n+l for some q, whereas the last U is (n+l,...,n+l) for 

which yq(n+l,n+l)= l and ~j(g;q=l j i)= i. The assumption ~(i)= {i} ensures 

that ~/(C;Snj ) = I and therefore @i(-¢(c ;snj); i) = I. 

Unfortunately, it is not in general the case that ~(I) = {i}; for example, 

this fails for the canonical E operad ~ used in section 3. We could avoid 
oo (9o 

this assumption by appealing to Lada's theory. The contractibility of ~(I) can be 

used to prove that w n is an sh Hn+ l-map. However, this solution (which I 

worked out in detail in an earlier draft) leads to further complications in later 

sections. Our preferred solution is to prove that Aco ring spaces can be 

functorially replaced by equivalent Aoo ring spaces with respect to a different Aco 

operad pair for which ~(1) is a point. This replacement process works equally 

well in the Eco ring context. 

We exploit the fact that the particular Eco operad ~of [II,§4] has 

(I) = { I}. Moreover, as explained in [IZ,VI § Z and 4], ~ acts on itself and thus 

(~ , ~ ) is an E operad pair. Let (C ~) be any operad pair such that C is an 
oo 

Eoo operad. ~ might be either an Aoo or an Eoo operad. ]By use of products 

and projections, we then have operad pairs, and maps thereof, 

(Wl 'Wl ) (WZ 'I ) 
(¢,.,'.z) " ( ¢  x ~ ,  ,,2 x ~ )  ~ ( IQ. ,  ,.2 x Q_). 

Therefore (C , /~)-spaces are (~ X ~, ~ X~)-spaces by pullback, while both 

D and C X D are monads in the category of ( /~ X ~)0-spaces and ~rz:C X D -~ D 

is a morphism of monads in this category. 

We proceed to construct a functor W from ( ~ , ~ )-spaces to 

(~ , ~X ~)-spaces. As explained in [IZ,vI. 2.7(iii)], there is a functor W from 

-spaces to ~-spaces specified in terms of the two-sided bar construction of 

[i0,§9] by WX = B(D,C X D,X) and there is a natural diagram of (C X ~)-spaces 
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B= Z 
X"~ B(C X D ,  C × D , X )  ~-B(D,C × D , X )  = WX , 

Here 8 is a homotopy equivalence with a natural homotopy inverse and Bw z is 

also an equivalence. Technically, we should assume or arrange (without loss of 

structure by an elaboration of the arguments in [10,A.8 and A.II ]) that I ~ ~(I) 

and 0 e X are non-degenerate basepoints, so that the simplicial spaces used in 

our constructions are proper [10,11.2 and II,A.5]. We have the following result. 

Proposition 6.Z. If X is a (~= , ~)-space, then WX is a 

(~, /~X~)-space, B(C XD, C XD, X) is a (C X ~, ~.~X ~)-space, and ~ and 

Bw Z are maps of (¢ × {, ~× 4)-spaces. 

Proof. By formal verifications from [10,9.6 and 9.9], the action 

DWX "~ WX of D on WX, the action of C X D on B(C × D,C X D,X), and ~ and 

B~ Z are all geometric realizations of maps of simplicial (.~ X ~)0-spaces and are 

therefore maps of (~ X ~)0-spaces by [10,12.Z]o 

Clearly, we may as well start our analysis of matrix rings of Aoo ring 

spaces by first replacing X by WX. In particular, our assumption that 

~(I) = {I} results in no real loss of generality. This construction also handles a 

different technical problem, one that we have heretofore ignored. 

Remarks 6.3. As explained in [IZ,VII§I and Z], ~ and the product operads 
oo 

= ~'X ~to necessary to the proof of the recognition principle in section 3 

are only partial operads and their associated monads are only partial monads. 

However, it is not hard to see that our replacement argument above works perfectly 

well for such ~ . Thus, by use of the functor W, we may assume without loss of 

generality that all operads in sight are honest operads in the development of the 

present theory since ~ and all multiplicative operads (see [iZ,p.178]) are honest. 
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Remarks 6.4. By the method of proof of Theorem 6.1, one can construct maps 

: ~.~p+q -~ ~p and T' : ~.~p+q-~ ~ of non-~ operads such that the usual 
Pq Pq q 

block sum of matrices O: M X X M X ~ Mp+X q specifies an ~!p+q-map, where 
P q 

M X and M X are regarded as ~p+q-Spaces by pullback along T and -r' 
P q Pq Pq 

respectively and where M X X M X is given the product ~p+q-Structure [10,1.7]. 
P q 

From this point of view, the problem with ~(I) above simply reflects the fact that 

the inclusion {I} -~X = MIX is not an ~l-map unless ~=(i) = {i}. In order for 

these sum maps to be useful, one would have to understand their stabilization, that 

is, to analyze the diagrams 

M X × M X  
P q 

O 

M X 
P+q 

v × v  
P q r Mp+iX X Mq+iX 

l° Vp+q+ 1 o Vp+q ~ Mp+q ÷zX 

If X is a ring, these composites obviously differ only by conjugation by a per- 

mutation matrix. In general, the definition of such a conjugation entails an arbi- 

trary choice of product and yields only a homotopy commutative diagram. A full 

analysis of the situaNon would presumably entail application of Lada's theory of 

strong homotopy maps. 
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7. The Algebraic K-theo:ry of Aoo ring spaces 

Let (C , ~) be anAoo operad pair. A (C, #j)-space X will be saidto 

be grouplike if woe is a group under addition and therefore a ring rather than just 

a semi-ring. Up to weak equivalence then, X is a grouplike Aoo ring space if and 

th 
only if it is the zero space of an A ring spectrum. 

oo 

For a grouplike ( ~, ~ )-space X, define FM X to be the pullback in the 
n 

following diagram, where d denotes the discretization map. 

FMX >MX 
n n 

GL(n, w0X ) • Mn(=0X ) 

That is, FM X is the space of unit components in M X. The notation is chosen in 
n n 

I% 
analogy with that in Remarks Z. 4; Waldhausen would write GLn(X ) for FM X. If 

n 

X is a discrete r i n g  t h e n  F M  X = G L ( n , X ) ;  f o r  g e n e r a l  t o p o l o g i c a l  r i n g s ,  F M  X 
n n 

is larger than GL(n,X). We reiterate that 0 and i must be in different components 

for non-triviality. Clearly v n maps FMnX into FMn+IX. If each Vn is a co- 

fibration, we let FMcoX denote the union of the FMnX; otherwise we let FMoo X 

be their telescope. It is the purpose of this section to prove that FMooX has a 

functorial delooping. 

Theorem 7.1. There is a functor T from grouplike (~, ~)-spaces to 

connected based spaces together w i t h  a natural weak equivalence between ~ T X  and 

F M  X .  
(3o 

In particular, WlTX = w0FMcoX = GL(co, ~0 X) has a perfect commutator 

s u b g r o u p .  R e p l a c i n g  T X  b y  a n a t u r a l l y  w e a k l y  e q u i v a l e n t  C W - c o m p l e x  i f  

n e c e s s a r y ,  w e  c a n  t a k e  i t s  p l u s  c o n s t r u c t i o n  in  t h e  s e n s e  o f  Q u i l l e n  ( s e e  e . g .  [ Z l ,  

§ I]). We have the following definition of the algebraic K-theory of Aoo ring spaces. 
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Definition 7. Z. Let i: TX -~ KX be the plus construction of TX, so that 

i induces an isomorphism on homology and KX is a simple space. EX is called 

the connected algebraic K-space of X. For q > 0, let K X = Wq(I<X). 
q 

called the qth algebraic K-group of X. 

K X is 
q 

Remarks 7.3. As a space, FM X is just the union of some of the components of 
n 

Z 
M X = X n a n d  e a c h  o f  t h e s e  c o m p o n e n t s  i s  e q u i v a l e n t  to t h e  c o m p o n e n t  S F M  X 

n n 

o f  t h e  i d e n t i t y  m a t r i x .  I n d e e d ,  F M n X  i s  e q u i v a l e n t ,  a l t h o u g h  n o t  in  g e n e r a l  a s  a n  

H-space, to SFMnX XGL(n'w0X) [Z,I.4.6]. Further, SFMnX is equivalent to the 

c o m p o n e n t  o f  t h e  z e r o  m a t r i x ,  a n d  t h e  l a t t e r  i s  j u s t  N'InX 0 w h e r e  X 0 i s  t h e  c o m -  

p o n e n t  o f  z e r o  i n  X ( a n d  M n X  a n d  M n X  0 a r e  a d d i t i v e  i n f i n i t e  l o o p  s p a c e s ) .  I t  

follows that, for q> 0, w FM X is the direct sum of infinitely many copies of 
q oo 

~ J ;  o f  c o u r s e ,  i .  m a p s  t h i s  g r o u p  n a t u r a l l y  to K q + l X .  

Remarks 7.4. By restriction tothe spaces SFMnX , the proof of Theorem 7.1 will 

yield a functor UT from grouplike (~, /J)-spaces to simply connected based 

spaces together with a natural weak equivalence between f2UTX and 

SFMooX = Tel SFMnX and a natural map UTX -~ TX compatible with the weak 

equivalences. Thus, homotopically, UTX will be the universal cover of TX. 

The rest of this section will be devoted to the proof of Theorem 7. i. We 

begin by reviewing the basic theory of classifying spaces of Aoo spaces. Let 4 

be an Aoo operad. There is a functor V from /~-spaces to topological monoids 

specified in terms of the two-sided bar construction of [I0,§9] by VX = B(M,G,X). 

Here M denotes the free monoid, or James construction, monad. The augmenta- 

tion 6: ~ -~ ~ induces a map of monads 6: G -~ M, and we obtain a natural 

diagram of ~-maps 

(i) X , £ B(G,G,X) B6 ~ B(M,G,X) = VX . 
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Here % is a homotopy equivalence with a natural homotopy inverse. The map B6 

is also a homotopy equivalence (by [ll,A.g(ii)], in which the connectivity assump- 

tion of [I0,13.5] is removed). If X is itself a monoid considered as a ~-space 

by pullback along 6, there is a natural composite 

(2) VX = B ( M , G , X )  B8 > . B ( M , M , X )  8 ) X 

w h i c h  i s  b o t h  a m a p  of  m o n o i d s  a n d  a h o m o t o p y  e q u i v a l e n c e .  I f  X = GY f o r  a b a s e d  

space Y, there is a natural equivalence of monoids VX -~ MY. Moreover, all of 

this is natural with respect to maps of Aco operads. See [10,13.5] for details. 

We can therefore deloop 2~ -spaces by applying the standard product- 

preserving classifying space functor B of [17 or 9,§7-8] to VX. For our 

purposes, the crucial property of B is that there is a natural map ~ :X -~ f~BX 

for monoids X such that ~ is a weak equivalence if ~0 X is a group (e.g.[9,8.7]). 

Turning to the proof of Theorem 7.1, fix an Aoo operad pair ( ~ , ~) and 

construct Aco operads ~n as in section 4 (either crossing with 7~ to obtain 

actual operads, with permutations, or rephrasing the arguments above in terms of 

non-E operads). By use of the argument at the end of the previous section, replac- 

ing X by WX if necessary, we may assume without loss of generality that 

C(1)= {I}. 

Theorems 4. 1 and 6. 1 imply that FM X is a sub ~)~n-Space of Clearly 
n 

and that Wn restricts to an 5~n+ l-map FMnX -~ FMn+I X, where FMnX is MnX 

an ~)~n+l-space by pullback along -rn" ~/n+l -~ ~n" Write Vn for the functor V 

above defined with respect to the operad ~n" Consider the following maps, where 

the notation on the left abbreviates that on the right. 
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V n F M n X  B(M,  Hn, F M n X  ) 

T T T n B(1,  Tn, l )  

Vn+ 1 F M n X  B(M,  Hn+ 1 , F M n X  ) 

Vn+IVn I ] B(l'l'v n) 

Vn+IFIVin+l x B(M, Hn+ 1 , FIVIn+I X ) 

Again, in order to ensure that all simplicial spaces involved in our con- 

structions are proper [I0, ii.2 and II,A. 5], we should assume or arrange that 

X and 1 c ~{n(1) are nondegenerate basepoints before applying the In~ FM n 

functors V n and B; see [10, p. 127 and 167-171]. With this precaution, we have the 

following result. 

Lemma 7.5. "rn: Vn+IFMnX -~ VnFMnX is a homotopy equivalence. 

T h e r e f o r e  B'r is  a l s o  a h o m o t o p y  e q u i v a l e n c e .  
n 

Proof. By [ll,A.Z(ii)], ~n:Hn+IY -~ HnY is a homotopy equivalence for 

any ~n-Space Y. By an argument just like the proof of [1 i, A. 4 (see 16, 5.5 and 

5.6)], l~f: NiX -~ MX' is a homotopy equivalence for any homotopy equivalence 

f:X -bX,. Therefore B(I,Tn, I) is a homotopy equivalence by [ll,A.4(ii)], and 

the conclusion for B"r follows from the same result; see [9, p.32]. 
n 

-i 
At this point, we could choose a homotopy inverse (B~rn) to BTn and 

l e t  TX be  t he  t e l e s c o p e  of the  s p a c e s  BV F M  X. H o w e v e r ,  we would  t h e n  r u n  
n n 

in to  a n a t u r a l i t y  p r o b l e m .  C e r t a i n l y  (B' rn)-1  is  n a t u r a l  up to h o m o t o p y  s i n c e  

B~r n is natural (by a trivial formal argument), but functoriality up to homotopy of 

the  t e l e s c o p e  would  r e q u i r e  ( B ' r n ) ' l  to be n a t u r a l  up to n a t u r a l h o m o t o p y .  In f a c t ,  

t r a c i n g  v e r y  c a r e f u l l y  t h r o u g h  the  p r o o f s  c i t e d  a b o v e ,  one m a y  c h e c k  t h a t  (BTn)-1 

c a n  be  so c h o s e n ,  bu t  t h e r e  i s  a m u c h  s i m p l e r  and  m o r e  p r e c i s e  s o l u t i o n  to the  

problem. 
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Construct TX as follows. Let T X be the reduced 
n 

.(BVn+IFMnX A I +)- l 1 BV FM X BVFMnX U n + l  n+ l  
BT n BV+IW n 

and let TX be obtained from the disjoint union of the T X by identifying the top, 
n 

B V F M n X  , o f  T n _ I X  w i t h  t h e  b o t t o m ,  B V F M n X ,  of  T X  f o r  n > 1. C l e a r l y  T 

i s  t h e n  t h e  o b j e c t  f u n c t i o n  o f  a f u n e t o r  f r o m  ( ~ , / ~ ) - s p a c e s  to  c o n n e c t e d  b a s e d  

s p a c e s .  

V i s i b l y ,  T X  i s  h o m o t o p y  e q u i v a l e n t  to t h e  t e l e s c o p e  o f  t h e  BV F M  X w i t h  
n n 

+i Vn) (gTn) - i respect to composites (BV n , any questions of naturality being thrown 

irrelevantly onto the choice of equivalence. The properties of T stated in 

Theorem 7. i are immediate from the definition and the general theory discussed 

above. 

Remarks 7.7. One would like to construct a product TX X TX -~ TX (not an 

H-space structure of course) by use of block sum of matrices so as to be able to 

obtain an H-space structure on I~X by mimicry of Wagoner's proof [Zl,§l] in the 

case when X is a discrete ring. The main obstruction is explained in Remarks 6.4. 

§8. Monomial matrices and Q0(BFK II {0}) 

As before, let ( ~ , ]-~ ) be an Aoo operad pair and let X be a grouplike 

( ~ , ~ ) - s p a c e .  L e t  F X  = F M 1 X  b e  t h e  s p a c e  o f  u n i t  c o m p o n e n t s  o f  X a n d  l e t  

S F X  b e  t h e  c o m p o n e n t  o f  I c X .  T h e n  F X  a n d  S F X  a r e  s u b  ~ - s p a c e s  o f  X.  

L e t  V b e  t h e  f u n c t o r  o f  t h e  p r e v i o u s  s e c t i o n ,  d e f i n e d  w i t h  r e s p e c t  to  1/ , a n d  

a b b r e v i a t e  B F X  = B V F X  a n d  s i m i l a r l y  f o r  S F X .  If F X  i s  a t o p o l o g i c a l  m o n o i d  

r e g a r d e d  a s  a .~ - s p a c e  b y  p u l l b a c k ,  t h e n  t h i s  c l a s s i f y i n g  s p a c e  a g r e e s  up  to 
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• Z + natural equivalence with the standard one Write Z II {0} or interchange- 

ably for the union of a space Z and a disjoint basepoint 0. (We agree never to use 

the + notation for the plus construction.) Let Q0 Y denote the component of zero 

in the space QYo The purpose of this section is to construct a natural map 

~:Oo(Brxll~o)) - K x  

and thus a natural transformation from the stable homotopy groups of BFX + to the 

algebraic K-groups of X. Of course, ~S(BFX÷) is the direct sum of wSBFx and 
q q 

the stable stem .s = Ss0" When X = QS 0' such a map was asserted to exist by 
q q 

Waldhausen [22, § Z]. 

The construction is based on the use of monomial matrices. 

Definition 8.1. Let F X denote the subspace of FM X which consists 
n n 

of the monomial matrices with entries in FX, namely those matrices with pre- 

cisely one non-zero entry in each row and column and all non-zero entries in FX. 

Let F X denote the telescope of the F X with respect to the restrictions of the 
oo n 

maps v n. Similarly, let SF X denote the space of monomial matrices with 
n 

entries in SFX and let SF X = Tel SF X. 
co n 

As will become clear below, it is immediate from formula (4.1) that F X 
n 

and SF X are sub ~ -spaces of FM X. The arguments of the previous section 
n n n 

can be carried out word for word with FM X replaced by F X. There results the 
n n 

following analog of Theorem 7.1. 

Theorem 8.2. There is a functor P from grouplike (~, /J )-spaces to 

connected based spaces together with a natural weak equivalence between ~PX 

and F X. Moreover, there is a natural map PX -* TX the loop of which agrees 
oo 

under the weak equivalences withthe inclusion F X -b FM X. 
co co 
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In p a r t i c u l a r ,  ~ I P X  = W o % X  = co l i rn  woFnX. It w i l l  soon  b e c o m e  

apparent that Ir0FnX is the wreath product ~nf ~r0FX. It follows easily that 

~rlPX has a perfect commutator subgroup (see [7, 1,2]), and this will also drop out 

of our arguments below since they will give a homology isomorphism from PX to 

the simple space Q0(BFX II {0}). This homology isomorphism will immediately 

imply the following theorem. 

Theorem 8.3. The plus construction on PX is naturally equivalent to 

Q0(BFXJI{0}), hence the map PX -* TX induces a natural (up to homotopy) m a p  

~:~o(B~Xli {0}) -* Kx. 

Remarks 8.4. Replacing FnX by SF X throughout, we obtain SPX, a natural 
n 

weak equivalence between ~2SPX and SF X, and a natural map SPX ~- PX com- 
oo 

patible with the weak equivalences. Moreover, the plus construction on SPX is 

naturally equivalent to Q0(BSFX ~{0}) and the resulting map from this space to 

KX agrees with the restriction of ~. 

Remarks 8.5. There is a natural inclusion 7,FX -- BFX (adjbint to 

:FX -- f~BFX), hence ~ restricts to a natural map Q0(~,FX J-I{0}) ~" KX. Via the 

basepoint of ~FX, there is a further natural restriction Q~S 0 -* KX. Similar 

remarks hold with F replaced by SF. 

The rest of this section will be devoted to the proof of Theorem 8.3, We 

begin with a well-known observation about the classifying spaces of wreath products 

and an equally well-known consequence of the Barratt-Quillen theorem. 

a topological monoid X, B(~nfX ) is naturally Lemma 8. 6. For homeo- 

morphic to E~ X (BX) n. 
n 

n 
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Proof. Our conventions on wreath productsare in [2, p.51]. B and E are 

obtained as geometric realizations of certain simplicial spaces [9, p. 31]. We define 

a EjX-equivariant homeomorphism of simplicial spaces 

¢, : E,(Gn~X ) -~ E,52 n X (E,X) n 

by the formula 

Oq[(o~, h )  . . . . .  (O-q, y~) l (¢q+~,  yq+t) : ([¢1 . . . . .  C q]°q+l '  ~) ' 

= n has " coo rdinate where cr i ~ ~n' Yi (xii ..... Xin ) , X , and z , (EX) n I th 

-I 
[xl,0.Z... ~q+i(i ) ..... Xq, trq+i(i)]Xq+i,i; 4. is given by 

~ q i ( [ ~  i . . . . .  O-q]O-q+i,  [ X i  i . . . . .  X q t  ] X q + i , i  . . . . .  [ X i n  . . . . .  X q n ] X q + i , n )  

= [(o-:, y:)  . . . . .  (o-q, yq)](:q+:,  yq+1) , 

w h e r e  Yi = ( x  - i  - i  - t  . . . . .  x - i  - t  - i  ) " 
i ,  • • • i ,  • • .  0-q+ i 0-q 0-i+i(I ) Uq+lUq 0-i+ I (n) 

follows since realization commutes with products. 

The conclusion 

For a based space Y, the inclusion of ~n in ~n+l as the subgroup 

yn 
fixing the last letter and the inclusion of yn in yn+i as X {*} induce an 

inclusion EE n XEn yn -- EEn+i ×Yn+iYn+i • 

Proposition 8.7. For connected spaces Y, there is a natural homology 

isomorphism Tel E>nnX ~ yn -~ Q0(yjj_{0}). 
n 

Proof. For the E operad ~ of [10,§4 and IZ, §Z and 4], the space mY + 
oo 

= (or ~X ~oo if one prefers is precisely il EY n X z yn. Let C ~ X ~oo 
n>0 n 

to avoid partial operads) as in section 3, and note that the projection CY +-* DY + is 

a homotopy equivalence b y  [li,A.Z(ii)]. By Proposition 3.5, with multiplicative 

structure ignored, QY+ is naturally a group completion of GY +. The conclusion 

follows as in [2, I. 5. I0]. 
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We shall reduce Theorem 8.3 to an application of the previous two results. 

For this purpose, we require an understanding of ~nfX when X is a ~-space 

rather than a monoid. 

Def in i t ion  8.8. F o r  a ~ - s p a c e  X, def ine  a ~ - s p a c e  mnYX as  fo l lows .  

As a space, Z n ; X  = Z n X X  n. The action ~n of ~J on ~JX is given by the maps 

~nj: ~(J) X(Z n x x n )  j - z n x x  n 

= (Xq, 1 ..... Xq, n) specified for g ¢ ~(j), 0-q~ Y'n' and Xq ~ X n by 

n j 
~ n j ( g ; e t ,  x I . . . . .  ¢ j , x j )  = (0-t -o.0.,3 i=1 × ~J(g;q><=i Xq, 0.q + t ' ' ' ° - j ( i )  ). 

( T e c h n i c a l l y ,  this  f o r m u l a  is  a p p r o p r i a t e  when ~/ is taken  as a n o n - ~  o p e r a d ;  

c o m p a r e  s ec t i on  4 . )  Th is  is j u s t  the o r d i n a r y  i t e r a t e d  w r e a t h  p roduc t ,  but wi th  a 

p a r a m e t r i z e d  f a m i l y  of m u l t i p l i c a t i o n s  on X. Le t  Wn: Zn~X ~ ~ ,n+ t fX  denote  the 

n a t u r a l  i nc lu s ion ,  and o b s e r v e  that  u is a map  of jt~ - s p a c e s .  
n 

We w i s h  to c o m m u t e  the func to r  V pas t  w r e a t h  p roduc t s .  The fo l lowing  

r a t h e r  e l a b o r a t e  f o r m a l  a r g u m e n t  b a s e d  on the m a p s  d i s p l a y e d  in (7. t)  and (7.2)  

su f f i ce s .  

L e m m a  8 .9 .  F o r  ~ J - s p a c e s  X, the h o r i z o n t a l  a r r o w s  a r e  homotopy  

e q u i v a l e n c e s  in the fo l lowing  c o m m u t a t i v e  d i a g r a m  of ~ - s p a c e s  and / ~  - m a p s ,  

w h e r e  UX = B ( G , G , X ) .  

v(z Sx) , B8 

VVn] 

V(~n+I/X ) . B~ 

U(ZnfX) 

Wv 
n 

Sa 
n 

fUX ~nfB6 ~ ~ SVX 
n n 

Vn IVn 

~n+l sB6 
Zn+ I ] u x  * Zn+~VX 

Application of the functor V to this diagram gives a commutative diagram which 

can be extended to the left and right by the commutative diagrams 
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V(~'n] X)* ~°B6 VV(~]JX) and V(~Zn~VX ) 

V nl 1 
V(Zn+fSX) ~ VV(Zn+IfX) V(Zn+IJVX) 

£0B6 -""~. j[VX 
n" 

%p 
n 

goB8 ~ ~n+ifV X 

The resulting composite diagram is a commutative diagram of maps of topological 

m o n o i d s  i n  w h i c h  a l l  h o r i z o n t a l  a r r o w s  a r e  h o m o t o p y  e q u i v a l e n c e s .  

Via the homotopy invariance properties of the classifying space functor B 

[9,7.3(ii)] and the telescope, the previous result implies a chain of natural 

equivalences of telescopes which, together with the first two results above, leads 

to the following conclusion. 

Theorem 8.10. For .~ -spaces X,there is a natural homotopy equivalence 

Tel BV(~nSX ) ---- Tel B()nJVX) ~ Tel E~n ×~ (BVX)n " 
n 

Therefore there is a natural homology isomorphism 

Tel BV(Zn~X) -- ~0(BVX il{0}) 

We can now prove Theorem 8.3. By application of the previous theorem 

to the ~ -space FX, with BFX = BVFX by notational convention, it suffices to 

prove the following result. The proof again makes strong use of the assumption 

~(i) = {i} justified at the end of section 6. 

Theorem 8.11. For grouplike (C,~)-spaces X, there is a natural homo- 

topy equivalence PX -~ Tel BV(SZnIFX ). 

Proof. Define a homeomorphism o~ :F X "~ ~ ]FX by sending a monomial 
n n n 

matrix x to (0-,x(1) ..... x(n)), where ~, Z is specified by o-(i)= j if 
n 

x(i,j) / 0 andwhere x(j)= x(i,j)for this i. Let ~n" ~)~n -~ ~ be the evident 

projection of operads and regard ~n~FX as an ~n-Space by pullback along ~n" 

We claim first that a n is an ~n-map or, equivalently, that the actions 
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- i ~nWnHn~n a n and ~n co inc ide  on F X. R e c a l l  f o r m u l a  (4. t ) .  Given x. cF  X fo r  n 1 n 

i ~ . i ~ j ,  t h e r e  is fo r  each  r b e t w e e n  t a n d n  a unique s be tween  t and n a n d a  

U c T ( r , s , j )  such that  Xq(Uq_t,Uq) ~ 0. If th is  U is the k TM e l e m e n t  of unique 

T ( r , s , j )  and if 

(01 nj-l - Sn, j ,k  = (* ..... *,i,* ..... *) E C(O) k-I X C(1)× k 

then,  fo r  c c ~ ( n  j - t )  and g ~ ~ ( j ) ,  

J 
C n , j ( c , g ; x  I . . . . .  x j ) ( r , s )  = Ol(~(c ; s n , j , k )  ;~ j (g ;  X Xq(Uq_i,Uq))) 

• q=l 

J 
= ~i(g; × Xq(Uq_i ,Uq) ) ,  

q = i  

the last equality holding since ~(C;Sn,j,k) = i ( ~ ( i )  by assumption. The claim 

follows by comparison with Definition 8.8. Now consider the following diagram. 

BVF X n n 

B'rn l 

BVn+IFnX 

B%+ iVn 

BVn+iFn+IX 

BV ~ Bw 
n n BVn(~nfFX ) ....... n .BV(~ni[X ) 

BT n 
BVn+ 1 a n BWn+ i 

~" BVn+I(Zn~FX ) > BV(Zn~FX ) 

IBVn+iWn ] BVUn 

BV+I °In+l~" BV+I (Zn÷l~ FX) m/rn+l -"- mv(152~n+ l ~X) 

The left horizontal arrows are homeomorphisms and the right horizontal arrows 

are homotopy equivalences by [ll,A.2(ii) and A.4(ii)]. The diagram commutes by 

n a t u r a l i t y  and the fac t s  that  w T = Vna n an+lVn n n Wn+l and = . The  r e q u i r e d  

n a t u r a l  e q u i v a l e n c e  PX ~ T e l  B V ( E n S F X  ) fo l lows  by p a s s a g e  to r educed  double 

mapping cylinders and then to unions as in Definition 7.6. 
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§ 9. Some homotopical and homolo~ical properties of KX. 

Again, let (~, /J) be an Aoo operad pair and let X be a grouplike 

( ~, ~)-space. From the point of view of analysis of its invariants, the 

sophisticated functors V n (and W) which entered into the construction of KX are of 

no significance. They simply replace a given structured space by a homotopy 

equivalent space with different structure. Thus, up to homotopy, only the classi- 

fying space functor, the telescope, and the plus construction are involved. These 

facts and Remarks 7.3 imply that the analysis of KX is considerably less refractory 

than the complicated theory necessary for its construction would suggest. 

We begin with two elementary homotopyinvariance properties, which will 

be seen later to be simultaneous generalizations of Waldhausen's assertions [2Z, i.I 

and 2.3] and [ZZ, 1.3 and Z.4]. 

Recall that a map f: X -* Y is said to be an n-equivalence if ir.f is an 
i 

isomorphism for i < n and an epimorphism for i = n for all choices of basepoint 

in X (and analogously for maps of pairs and for n-homology equivalences ). 

Proposition 9.1. If f:X ~ Y is a map of grouplike ( ~, ~ )-spaces and an 

n-equivalence, then Kf" KX -* KY is an (n+l)-equivalence. 

Proof. By Remarks 7.3, FMoof:FMooX -~ FM0oY is an n-equivalence. By 

Theorem 7.i, Tf:TX -* TY is thus an (n+l)-equivalence. Therefore Tf and thus 

also Kf are (n+l)-homology equivalences. Since KX and KY are simple spaces, 

the conclusion follows by the Whitehead theorem. 

We next want the relative version of this result, and we need some pre- 

liminaries in order to take account of the non-existence of an unstable relative 

Whitehead theorem and to handle some technical points ubiquitously ignored in the 

literature. Consider a homotopy commutative diagram of spaces 
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f 
X >Y 

f, 
Z ,,, ~ W  

Definitions 9. Z. The diagram (*) is said to be an (m, n)-equivalence if f 

is an m-equivalence and g is an n-equivalence. It is said to be q-homotopy 

Cartesion if there exists a map of triads 

" f  : ( f ; f ' , f ) : ( M g ; Z , X )  -~ ( M g ' ; W , Y )  

s u c h  t h a t  t h e  m a p  o f  p a i r s  f - : ( M g ,  X) ~ ( M g ' , Y )  is  a q - e q u i v a l e n c e ,  w h e r e  Mg  

and  M g '  d e n o t e  t h e  m a p p i n g  c y l i n d e r s  of  g a n d  g ' .  If (*) c o m m u t e s ,  w i t h  no 

h o m o t o p y  r e q u i r e d ,  we  i n s i s t  t h a t  t h i s  c o n d i t i o n  be  s a t i s f i e d  w i t h  T(x,  t) = (fx,  t) on  

t h e  c y l i n d e r ,  a n d  i t  i s  t h e n  e q u i v a l e n t  to r e q u i r e  t h a t  t h e  n a t u r a l  m a p  F g  ~ F g '  of  

h o m o t o p y  f i b r e s  be  a ( q + l ) - e q u i v a t e n c e  fo r  e a c h  c h o i c e  of  b a s e p o i n t  in X (by the  

s t a n d a r d  v e r i f i c a t i o n  t h a t  t h e  two  d e f i n i t i o n s  of  t h e  r e l a t i v e  h o m o t o p y  g r o u p s  o f  a 

m a p  a g r e e ) ,  

R e m a r k s  9 . 3 .  In  t he  g e n e r a l  c a s e ,  w i t h  b a s e d  s p a c e s  a n d  m a p s ,  t h e  m a p  o f  

t r i a d s  f- i n d u c e s  a m a p  

f:Fg = X X PZ 
g 

via 

"~(x,~) = (fx,  ca), w h e r e  ~o(t) = 

f 

f'~(zt) 

-* Y Xg,PW = Fg' 

I 
i f  O K t ~  

1 
r F ( x ,  Z t -1 )  if  ~ < _ t ~ l  

with r: Mg' -~ W b e i n g  the canonical retraction. If T is a q-equivalence of pairs 

then ~ is a (q+l)-equivalence. A converse construction is not immediately obvious 

to me, and the definition has been given in the fo~rm we wish to use. Clearly a 

homotopy h:f'g --~ g'f induces a map of triads of the sort specified, via 
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I 1 
h ( x ,  Zt) i f  0<_t<7 ' 

T(~,  t) = 
1 

(fx, Zt-1) if 7 Kt<_ 1 

but whether or not f- is a q-equivalence of pairs really does depend on the choice 

of homotopy. 

Lemma 9.4. 

n >__ i. For q < m+n, 

Assume that (*) is an (m,n)-equivalence, where m > 0 and 

(*) is q-homotopy Cartesian if and only if there exists a 

q-equivalence @:M(g,f) -~ W suchthat Ck ~--f' and @j ~ g', where M(g,f) is 

the double mapping cylinder of g and f and k'Z-~M(g,f) and j:Y-~ M(g,f) are 

the natural inclusions. If (*) commutes, ¢ must be the natural map factoring 

through the quotient map to the pushout of f and g. 

Proof. The last statement will be a consequence of the conventions in 

Definitions 9.2. By the homotopy excision theorem, the natural map 

(Mg, X) -- (M(g,f) ,Y) is an (m+n)-equivalence .  (The range is misstated in [2Z].) 

Clearly maps ~:Mg -~ Mg' as in Definitions 9. Z factor uniquely through maps 

¢ = (¢; f',l ): (M(g, f); Z, Y) ~ (Mg';W,Y). 

If r:Mg' --~W is the retraction and r@ = @, then @k = f' and #j = g. Conversely, 

given @ as in the statement, let @ be the composite of @ and the inclusion 

i: W -~ Mg'. Since y If Z -~ Mg' is a cofibration, @ is homotopic to a map of 

triads ~ as displayed. Bythe five lemma, ~:(M(g,f),Y) -~ (Mg',Y) is a 

q-equivalence if and only if ~: M(g~f) -~ Mg' is a q-equivalence. The conclusion 

follows. 

Proposition 9.5. If ($) is a (strictly) commutative diagram of grouplike 

(~ ' ,  ,~ )-spaces which is a (q-l)-homotopy Cartesian (m-l,n-l)-equivalence with 

m >__ Z, n> Z, and q<m+n, then 
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Kf KX > KY 

KZ > KW 

is a q-homotopy Cartesian (m, n)-equivalence. 

Proof. By Remarks 7.3, application of FM to (*) gives a (q-l)- 
oo 

homotopy Cartesian (m-l,n-l)-equivalence. By Theorem 7.1 and a little standard 

argument with homotopy fibres, the (strictly) commutative diagram 

Tf 
TX ~ TY 

Tg i [Tg' 

Tf'  
TZ > T W  

is a q-homotopy Cartesian (m,n)-equivalence. Consider the following diagram 

TX 

TZ 

i 
x 

~ - T y ~  

Tf / i 

M(Tg, Tf) / m , i 

Tf'  

Kf 

y K 

I / Kf' "~ 
K z  ___~ KW 

/ i 
• - T W  "------- w 

Breaking the cylinder of M(Tg, Tf) into three parts, mapping the middle third 

TX X [ i/3,Z/3] to KX X [0, i] via i and expansion, and using homotopies 
x 

i oTg --~ K g . i  and Kfoi -- i ~Tf on TX X [0,1/3] and TX X [2/3,1], we obtain 
z x x y 

a map i:M(Tg, Tf) -- M(Kg, Kf) such that ij = and ik = ki on the bases. By 
jly z 

the van Kampen theorem and the fact that Tf, Tg, Kf, and Kg induce isomorphisms 

on ~r I since m > 2 and n>_ 2, ~rlM(Tg, Tf) = ~rlTX, ~rlM(Kg, Kf) = HI TX, and 

wli is Abelianization. By the Mayer-Vietoris sequence and the five lemma, i is 
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a homology isomorphism. Therefore i is equivalent to the plus construction on 

M(Tg, Tf). In particular, M(Kg, Kf) is a simple space. By the universal property 

of the plus construction, there is a map 9: M(Kg, Kf) -~ KW, unique up to homotopy, 

such that #i ~ iw~0, where <~ : M(Tg, Tf) -* TW is the natural map. Since 

~jiy = ~ij -- iw~ j = iwTg' -- Kg'oiy, 

9J ----- Kg' by the universal property. Similarly 9k ~ kf'. Since ~ is a 

q-equivalence (by the lemma), it is a q-homology equivalence. Therefore 9 is a 

q-homology equivalence and thus a q-equivalence by the Whitehead theorem. The 

conclusion follows from the lemma. 

The proofs above have the following useful consequence. 

Lemma 9.6. If (~) is a commutative diagram of grouplike (~,/J)-spaces, 

then there is a canonical homotopy class of maps ~: FKg --~ FKg' which makes 

the following diagram homotopy commutative and which is functorial up to homotopy 

when (e) is regarded as a morphism (f,f'):g -~ g' in the category of maps of 

grouplike (~ , ~)-spaces and is natural up to homotopy with respect to morphisms 

of such d iagrams  (*). 

~Kf' 

~KZ 

f2KW 

FKg ~ KX Kg KZ 

FKg' J, I<Y Kg' ~ KW 

Here the unlabeled arrows are the natural maps of the displayed fibration 

sequences. 

Proof. Of course, Barratt-Puppe sequence arguments give a map ~, not 

uniquely determined up to homotopy. We ignore this. Construct 9: M(Kg, Kf) -~ KW 

as in the previous proof, deform i9, i: KW -~ Mg' to a map of triads 

= (~ ;Kf ' ,  1):(M(Kg, Kf);KZ, KY) -" (Mg'~KW, KY) 
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as in the proof of Lemma 9.4, let f" be the composite of ~ and the natural map 

MKg -* M(Kg, Kf), and construct as in Remarks 9.3. It is simple to check (by 

standard cofibration arguments f)r the passage from ¢ to ~) that ~ is a w e l l -  

d e f i n e d  h o m o t o p y  c l a s s  w h i c h  m a k e s  the d i s p l a y e d  d i a g r a m  h o m o t o p y  c o m m u t e .  

I t s  f u n e t o r i a l i t y  a n d  n a t u r a l i t y  a r e  t h e n  e a s i l y  v e r i f i e d  by the  s a m e  s o r t s  of  h o m o -  

t o p i c a l  a r g u m e n t s  a s  t h o s e  a b o v e .  

T u r n i n g  to h o m o l o g y ,  we f i r s t  r e c o r d  the  f o r m  t a k e n  in o u r  c o n t e x t  by the  

standard spectral sequence for t h e  calculation of the homology of classifying spaces 

of topological monoids. 

Since Vn: FMnX -* FMn+IX only commutes up to homotopy with the multi- 

plications, there is a slight ambiguity in giving FMcoX an H-space structure. 

There is no ambiguity in its Pontryagin product, however, and the spectral 

sequences of the filtered spaces BV FM X pass to limits to give the following 
n n 

result. (See e.g. [9, 13. i0].) 

Proposition 9.7. Take homology with coefficients in a field k. There is 

then a natural spectral sequence 

H,F Moo X 
from EZx = Tor (k,k) 

Since 

{ERE} of differential coalgebras which converges 

to H,KX. 

Field coefficients serve only to yield a conceptual description of EZx. 

i: TX "4" EX induces an isomorphism on k, for any connective homology 

theory k. (by the Atiyah-Hirzebruch spectral sequence), we obtain a spectral 

sequence {ErX} converging to k,KX with E 1 X = kq((FMcoX)P ) for any such k,, 
Pq 

d I being induced by application of k, to the alternating sum of the standard bar 

construction face maps. (See [i0, II.14] for details.) 

The proposition focuses attention on the problem of computing the 

P0ntryagin algebras H,FMnX. It is clear from previous experience what 
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procedures one should adopt: one should work in all of H, MnX and exploit the 
Z 

diagram of Proposition 5.2. Since MnX = X n is an (additive) infinite loop space, 

all of the machinery of homology operations explained in [g,I] is available. 

Assuming that H.MnX is understood additively (as a Hopf algebra with product ** 

coproduct ~ , conjugation X, augmentation ~, homology operations QS and 

Steenrod operations pr r r ,, with P, = Sq, at the prime 2), we can study its products 

by use of the following two results, the proofs of which are exactly the same as 

those in [2, p. 79-81 ]. 

Proposition 9.8. Take homology with coefficients in any field. Let 

x,y,z , H ,  MnX, n >__ i, and let [0],[i], and [-i] be the classes of the zero matrix, 

the identity matrix In, and any matrix in the component additively inverse to that 

of I n . 

(i) [O]x = (£x)[O],  [ l ] x  = x, and [ - l ] x = × x .  

(ii) (x ~' y)z ~ (_ l )deg  y d e g  z '  yz"  = = xz'* , where %bz ~ z'• z". 

Proposition 9.9. Take homology with mod p coefficients, where p is 

any prime. Let x,y ~ H, MnX , n > i. Then 

(Qsx>y ~ s+i. i 
= Q (xP.y) and, if p > Z , 

i 
(~C~%)y = 7. s+i i x s+i- i ~Q (xP, y) - ~(-l) deg Q (xP,~y). 

i i 

R e m a r k s  9 .10 .  Appl ied  to the Aoo r ing  s p a c e s  QX + of E x a m p l e s  2.3, w h e r e  X 

is an  A space ,  the  p r o p o s i t i o n s  above c o m p l e t e l y  d e t e r m i n e  the P o n t r y a g i n  
oo 

a l g e b r a  H , F Q X  + in t e r m s  of the add i t ive  s t r u c t u r e  of H ,  QX +. C o m p a r e  [2 , I I§4 ] ,  

w h e r e  the ana logous  a s s e r t i o n  for  the Eco r ing space  QX + obta ined  f r o m  an Eoo 

space  X is exp la ined  in de ta i l .  To d e t e r m i n e  H , F M n Q X  + for  n >  1, one would  
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require additional formulas to explain the effect on homology of translations by 

more general matrices than in Proposition 9.8(i). 

§I0. E x a m p l e s ,  n a t u r a l  m a p s ,  and f o r m a l  p r o p e r t i e s  of KX 

Recall from section I that any Aoo operad pair (~ ,/J) admits an augmen- 

tation (~, ~ ) -~ (~, ~ )° An (~ ,]~ )-space is precisely a topological semi-ring 

and a grouplike (~ ,~)-space is precisely a topological ring. Therefore a topo- 

logical ring R is a grouplike (~ , ~)-space by pullback. If R is discrete, then 

FM R = GZ(n, R), and the following example is immediate from the constructions 
n 

of section 7. 

Example I0.i. If R is a discrete ring, then KR is naturally equivalent to the 

plus construction on BGL(oo, R). Therefore KqR, q> 0, is Quillen's qth alge- 

braic K-group of R [5, 18]. 

For general topological rings, our theory reduces to the topological 

v e r s i o n  of W a l d h u a s e n ' s  [22, § i ]. 

Example 10.2 . For simplicial rings R,, Waldhausen defined a certain functor 

KR,. It would be immediate from the definitions that his KR, is naturally 

equivalent to our KIR, I , where IR, I is the geometric realization of R,, were it 

not that he has chosen to throw in a discrete factor Z and we have not, so that his 

KR. is our KIR. I X Z. 

Remarks 10.3. There is one vital distinction to be made between KR for a topo- 

logical ring R and KX for an arbitrary grouplike Aoo ring space X. As is well- 

known in the discrete case [20; 21; 12] and will be proven in general at the end of 

this section, KR is an infinite loop space. In contrast, Isee little reason to think 

that KX is an infinite loop space and have not yet been able to prove that it is even 

an H-space, although I believe this to be the case (compare Ren~arks 7.7). 
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It is immediate from the definitions that, for any (~ , ~ )-space X, the 

discretization map d:X -~ ~0 X is a map of (~, .~)-spaces. When X is grouplike, 

this has the following important consequence. 

proposition 10.4. For grouplike ( ~, ~ )-spaces X, there is a natural 

augmentation Kd: KX -~ KIr0X. 

This suggests the following reduced variant of KX. 

Definition 10.5. Define l~fx to be the homotopy fibre of Kd° 

9.6, K I is then a functor of X such that the following diagram is homotopy com- 

mutative for any map f:X -~ Y of grouplike (~ , ~)-spaces. 

~KTr0X 

~KWoY 

By Lemma 

Kd 
K'X ~'KX > KTr0X 

Kd 
~' K'Y ~" KY ~-KTr0Y 

Of course, K'X is trivial if X is discrete. 

We can mimic this construction after restriction to monomial matrices. 

The resulting functor may be described, up to equivalence, as follows. 

Definition i0.6. Define Q' (BFX+), BFX + = BFX J_L {0}, to be the homo- 
0 

fibre of Q0(Bd+): Q0(BFX+) -~ Q0(BF~0X+), where Fw0X is the topy group  of 

un i t s  in the  r ing  =oX. As in  the  p r e v i o u s  de f in i t ion ,  L e m m a  9 .6  (or  r a t h e r  i t s  

monomial matrix analog) implies that this is the object function of a functor of X. 

Since SFIr0X = {I}, the corresponding functor obtained with FX replaced by SFX 

is equivalent to QoBSFX. 

At the risk of belaboring the obvious, we combine the definitions above 

with Theorem 8.3, Remarks 8.5, and further applications of Lemma 9.6 (and ana- 

logs thereof) in the following theorem. 
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Theorem 10.7. For grouplike (C, }j)-spaces X, the following is a 

homotopy commutative diagram and is natural up to homotopy. 

QoZSFX -.... 
QoBSFX 

Qo(ZSFX+) TI \ "  Q0(BSFX+) 
%(Bd ÷) 

Q0 SO ~_ ........ 

Q" (BFX + ) -  ~ K 'X b 
0 

O0(ZFX +) 

, Q0(BFX+) ~ ~- KX 

-~ Q0(BF~0 x÷) ~ ,_ K(,~0X) 

The dotted arrows denote the presence of evident sections, and the columns are 

fibrations; ~' and w are obtained as in Lemma 9.6 and the remaining horizontal 

arrows are inclusions. 

The  d i a g r a m  cou ld  be  e x p a n d e d  f u r t h e r  (by u s e  of Q0(EFw0X+),  e tc .  ), bu t  

we d e s i s t .  In  v i ew  of i t s  i m p o r t a n c e  in  t he  a p p l i c a t i o n s ,  we c a l l  s p e c i a l  a t t e n t i o n  

to the  c a s e  X = QS 0, w h e r e  F X  and  SFX a r e  g e n e r a l l y  d e n o t e d  F and  SF 

(o r  G and  SG) and  w h e r e  w0X = Z and  t h u s  F~r0X = Z 2. (Up to n o t a t i o n ,  the  

r e s u l t i n g  d i a g r a m  is  a n  e l a b o r a t i o n  of one  c l a i m e d  by  W a l d h a u s e n  [22, above  2 .3 ] .  ) 

H e r e  the  b o t t o m  c o m p o s i t e  

Q0 s° ~ Q0(BZ;) ~ ~Kz 

is induced by the inclusions ~ -~ GL(n, Z) of permutation matrices and is thus the 
n 

standard map studied by Quillen [19] (see also [12, Vl § 5 and Vlll. 3.6]); the mono- 

mial matrix map ~t has been studied in [~Z, VI. 5.9, Vll. 4. 6 and VIII. 3.6] and also 

in Loday [7]. As the following remarks make clear, this example is universal: 
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the diagram for QS 0 maps naturally to that for X for any grouplike A ring 
Co 

s p a c e  X.  

th  
R e m a r k s  i 0 . 8 .  B y  P r o p o s i t i o n  Z. Z a n d  T h e o r e m  3 .1 ,  t h e  z e r o  m a p  of  t h e  u n i t  of  

a n y  Aeo r i n g  s p e c t r u m  E i s  a m a p  e :  QS 0 ~ IE O of  g r o u p l i k e  Aco r i n g  s p a c e s .  .Let 

t h  
u s  w r i t e  F X  f o r  t h e  z e r o  s p a c e  of  t h e  A r i n g  s p e c t r u m  o b t a i n e d  a s  i n  s e c t i o n  3 

Co 

f r o m  a n  A r i n g  s p a c e  X.  I f  X i s  g r o u p l i k e ,  we  h a v e  a n a t u r a l  w e a k  e q u i v a l e n c e  
co 

of  A r i n g  s p a c e s  b e t w e e n  X a n d  FX b y  T h e o r e m  3 . 3 .  B y  a s l i g h t  a b u s e ,  w e  m a y  
co 

t h u s  r e g a r d  e a s  a u n i t  m a p  C~S 0 ~ X .  

Proposition 2. Z and Theorem 3.1 also show that QY is a grouplike A 
OD 

ring space for any A space with zero Y. We shall specialize this example to 
Co 

obtain Waldhausen's algebraic K-theory of spaces in the next section. We note here 

that the following generalized version of Waldhausen's assertion [22, 2. 2] is an 

immediate consequence of Propositions 3.5 and 3.7 and Lemma 3.6 together with 

Theorem 7.1, Remarks 7.3, and Proposition 9.7. 

Proposition I0.9. For any A space with zero Y, the Hurewicz map 
oo 

h: QY -~ FNY is a map of grouplike A ring spaces and a rational equivalence. 
oo 

Therefore Kh: KQY -~ KFNY is also a rational equivalence. 

Remarks I0. i0. NS 0 is precisely the additive monoid of non-negative integers, 

hence w0FNS 0 = Z and d: FNS 0 -- Z and therefore also Kd: KFNS 0 -~ KZ are 

equivalences. Thus we may view the Hurewicz map of KQS 0 as having target KZ. 

T h e  d e e p e s t  s o u r c e  of  o x a m : p l e s  i s  t h e  t h e o r y  of  E r i n g  s p a c e s  a n d  E 
co co 

ring spectra. By neglect of structure, these are A ring spaces and A ring 
oo o3 

th 
spectra. For example, the zero spaces of all of the various Thom spectra are 

A ring spaces [12, IV §2]. Of greater interest are the examples coming out of the 
co 

chain of functors constructed in [12, VI and VII]: 
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symmetric bimonoidal categories 

~ b l o w  u p  

bipe rmutative categories 
h 

J[ classifying space 

V E nng" spaces 
oo li 

][ recognition principle 

V E rlng' spectra 
O0 

zero space 

grouplike ring spaces 
oo 

For instance, starting with the symmetric bimonoidal category ~OR of finitely 

generated projective modules over a commutative topological ring R, we arrive 

at an associated grouplike E ring space, denoted FB~0R, in which addition comes 
oo 

fromthe direct sum and multiplication comes from the tensor product. We inter- 

ject the following note (compare [ZZ, § 1 ]). 

Remarks i0. ii. We are here faced with a conflict of definitions and notations. 

For a topological ring R (not necessarily commutative), I wrote K R for 
q 

FB~°R in [10,VIII §l]. For discrete R, this agrees with the present K R for 
q q 

q > 0. For general R, it is quite different. I suggest writing KtR for the plus 

construction on BGLR and writing K t R = w KtR, thinking of this as a topological 
q q 

K-theory (which it is when R is the topologized complex numbers for example). In 

practice, the functors K.R and 14t, R tend to be of interest for different choices 

of R. 

In fact, the theory sketched above applies equally well to both generaliza- 

tions of Quillen's theory from discrete rings to topological rings. To see this, let 

~R denote the permutative category of finitely generated free R-modules, as 

described explicitly in [IZ, VI. 5. Z]. Define J~R to be the category defined in 
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precisely the same way, except that the space of morphisms n -* n is the topologi- 

cal monoid FM R. Then, with structure as specified in the cited definition, -~R 
n 

is a permutative category and is a bipermutative category if R is commutative. 

Moreover, the inclusion ~ZR -* ~R preserves all structure in sight. The argu- 

ment used to prove that FoB ~R is equivalent to the plus construction on BGLR 

in [IZ, VlIl §i] applies equally well to prove that FoBgI~ is equivalent to the plus 

construction on BFMCOR (and of course I~0B~2R is equivalent to FoB~R [II, 

p. 85]). We have proven the following result. 

Proposition 10.1Z. For a topological ring R, KtR and KR are the zero 

components of infinite loop spaces FB~R 

infinite loop map i:FB~R-~ FBg~R. If R 

FB~R are E ring spaces and i is an E 
co co 

and FB~R, and there is a natural 

is commutative, then I~B~2~R and 

ring map. 

Here the additive infinite loop space structures associated to permutative 

categories are uniquely determined by the axioms in [14]; in particular, Segal's 

machine [20] and mine give equivalent spectra. 

At the moment, nothing is known about the resulting "second order" alge- 

braic K-theories K.FB ~R and K.FB~R of commutative topological rings. 

They do not appear to be very closely related to the "first order" theories K,R or 

Kt.R. Since w0FB ~.Z'R = w0FB~R = Z, Proposition I0.4 and naturality give maps 

KFB~fR -~ KFBg~R -~ KZ -* KtR -* KR. 

If we had followed Waldhausen and crossed everything with Z, we could 

consistently write 

KKtR = KFB~R and KKR = KFB9%R, 

hence our view of these as second order theories. 
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§11. The algebraic K-theory of spaces 

Finally, we specialize our theory to make rigorous the algebraic K-theory 

of spaces suggested by Waldhausen [2Z]. In this section, X will denote a non- 

degenerately based GW-space with basepoint 1. There are at least three ways that 

f~X can be interpreted as an Aoo-space. 

(I) The ordinary loop space of X is a ~l-space' where ~i is the little l-cubes 

Aoo operad of [ i0, §4]. 

(2) The Moore loop space of X is a topological monoid, or ~2-space. 

(3) I GSXI, the geometric realization of the Kan loop group of the total singular 

complex of X is also an ")?~-space. 

We lean towards the first choice, but the theory works equally well with 

any choice. As in Example 2.3, we construct from fiX an A space with zero 
co 

f2X + = ~x_[J.{0} and thus a grouplike Aoo ring space Q(~X+). For any based 

space Y, 
~0QY = colim wn~n Gny = ¢olim~n~nY = Toy, 

this isomorphism being realized by h:QY -- FNY on passage to components. It 

follows easily that, as a ring, w0Q(~X+ ) = w0FN(~X+ ) is the integral group ring 

Z[WlX]. In reading the following definitions, it will be useful to keep in mind the 

following commutative diagram of A ring spaces (see Propositions 3.7, i0.4, and 
Go 

10.9 and Remarks I0. I0). 

Qs o n , Q ( ~ x  +) e ~, QS o 

hi [h l h  

FNS 0 9 ~ FN(f2X +) ~ y I~NS 0 

Z q ~ ZDrlX] e > Z 

For uniformity of notation, we write ~q for maps induced by inclusions of basepoints 

of spaces or trivial subgroups of groups and write £ for the corresponding 
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projections, so that gN = i. The vertical composites in the diagram are again 

disc retization maps d. We shall continue to write N,E, d, and h upon application 

of the functor K. 

Definitions 11.1. Define AX, the connected algebraic K-space of X, to 

be KQ(~X+). Further, define the following reduced variants. 

]~X = fibre (E :AX ~ A{*}), A{*} = KQS 0 

A'X = fibre (d "am -~ KZ[WlX]) : K'Q(g2X +) 

~,x : fibre (~':A'X--A'{*}), A'{*} : K'~ ° 

For q > 0, define A X, the qth algebraic K-group of X, to be ~ AX, and introduce 
q q 

similar notation for the reduced variants. 

We have an analogous algebraic K-theory of X with coefficients in Z. 

Definition II.Z. Define A(X; Z) : KFN(CiX +) and define the reduced 

variants 

"~(X;Z) = fibre (Z:A(X;Z) -~ A(*;Z)), A(*;Z) : KZ 

A'(X; Z) = fibre ( ~':A(X; Z) -~ KZ[~IX]) : K'I~N(~X+). 

Here A'(*; Z) ----- {*}, hence we set ~'(X; Z) -- A'(X;Z), Define 

Aq(X; Z) = we(X; Z) and similarly for the reduced variants. 

For a (discrete) group ~ and commutative ring R, write 

KR[=] = fibre (~ :KR[~] -" KR). 

By Lemma 9.6, these are all well-defined functors of their variables such 

that the various canonical maps in sight are natural. We summarize the relation- 

ships between these functors in the following result. 
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Theorem II.3. The rows and columns are fibration sequences in the 

following natural homotopy commutative diagram. 

~'X w 

A ' X  - -  

a ' { * }  - -  

N 

~x d 
. . . . .  KZ[WlX ] 

l 1 
d 

L A X  ......... , K Z [ w l X  ] 

11 
d 

, a{*} -~ Kz 

The dotted arrows denote the presence of sections. The Hurewicz map sends this 

diagram naturally, via a rational equivalence, to the corresponding natural 3 X 3 

diagram of fibration sequences with AX and its variants replaced by A(X;Z) and 

its variants. 

Proof. In view of our earlier results, only the construction of w and the 

verification that it is equivalent to the fibre of ~ are needed. This would be 

obvious enough if we knew that AX were an H-space. In the absence of this, a 

technical argument with Barratt-Puppe sequences, which we defer to the appendix, 

is required. 

Of course, Theorem 10.7 applies naturally to all Aoo ring spaces in sight 

and produces a maze of commutative diagrams. In particular, we have the maps 

O0 x+ --~ O0(BaX +) QO (Bn+) Qo(BFQ(~X+) ÷) F ~- AX , 

where X l is the component of the basepoint of X, X I --~ B~2X by [9,14.3 or 15.4], 

N:~X -~ FQ(~X +) is the natural A map of Example 2.3, and ~ is the monomial 
CO 

matrix map of section 8. This agrees with assertions of Waldhausen [Z2, §Z]. 

It iB desirable to have algebraic K-theories of spaces with coefficients in 

arbitrary commutative rings R. For many rings, this can he obtained topologically. 

(For Z , compare Dold and Thorn [3] to the material at the end of section 3. ) How- 
n 

ever it is most natural to follow Waldhausen [ZZ,§l] and do this simplicially. 
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Definitions 4_1.4. Define A(X;R) = KIR[GSX] I, where the group ring of 

a simplicial group is formed degreewise. Clearly 

= 0 ] R [ O S X ] l  = =oR[GSX] : R[=oC, SX ] : R [ = t X  ].  

Define reduced variants and algebraic K-groups as in Definitions ii.Z. 

We now have two definitions of A(X;Z) in sight. With interpretation (3) 

above for ~X, the following result implies that these definitions agree up to natural 

e quivalenc e. 

Proposition 11.5. For simplicial groups G, there is a natural weak 

equivalence of grouplike A ring spaces between rNIGI + and I Z[G]I. 
oo 

Proof. N]GI + is the free topological Abelian monoid generated by IGI 

(the disjoint basepoint being identified to zero). The inclusion G ~ Z[G] induces 

+ 
]GI ~ Pz[G]l and thus, by f r eeness ,  NIG I - I z [ G I I .  Moreover ,  this map 

clearly extends over the free Abelian group ~IGI + generated by IGI, and it is 

easy to verify from the fact that realization commutes with products that 

N IGJ + ~ IZtG]i is actually a homeomorphism. The natural map 

× : N ] G I  + -- N' IGI + ~ IZ [G ] I  

is clearly a map of semi-rings, hence of (~, .~ )-spaces for any A operad pair 
co 

(C, ~ ). By Corollary 3.8 (recall t~at r = B 0 ), r× is a weak equivalence. By 

Theorem 3.3 and the fact that ]Z[G]I is grouplike, F IZ[G]I is naturally weakly 

equivalent ~s an A ring space to I Z[G]I. 
oo 

In view of the unit map Z -~ R, all of our diagrams remain present with Z 

replaced by R, and the resulting diagrams are natural in R as well as X. 

The sirnplicial approach has the advantage of giving us infinite loop space 

structures on our algebraic K-spaces, by Proposition 10.1Z applied to KIR[G]] for 

a simplicial group G. When G is the trivial simplicial group, I R[G]] = R. We 

thus have £..KIR[G]I- KR and ~]:KR ~K[R[G]]. Write KIR[G]I = fibre 
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and give it the induced infinite loop structure. The following result is immediate 

by a glance at homotopy groups. 

Proposition 1 1.6. For simplicial groups G and commutative rings R, 

the composite 

~bR[G]p ×KR P× ~KIR[G]I ×KIR[G]I ~ -KIR[G]J, 

w h e r e  p is the c a n o n i c a l  map  and ~ is the p roduc t ,  is a na tu r a l  e q u i v a l e n c e  of 

inf in i te  loop s p a c e s .  

The following is a special case. 

Corollary 11.7. A(X; R) is naturally equivalent as an infinite loop space 

to ~ ( X ; R )  × KR. 

Al l  of t he se  a l g e b r a i c  K - t h e o r i e s  on spaces  admi t  s t a b i l i z a t i o n s  to 

g e n e r a l i z e d  h o m o l o g y  t h e o r i e s .  

T h e o r e m  11.8. T h e r e  a r e  na tu r a l  h o m o m o r p h i s m s  ~n  X -~ ~n+l>~X such 

us 
that if ~SXq = colim ~q+rErX. then A, is a reduced homology theory. There 

~s 
are analogous theories A,(X; R) defined and natural on R. and there is a Hurewicz 

~s ~s 
h o m o m o r p h i s m  h .  : A , X  ~ ~ (X; Z) which  is a r a t iona l  e q u i v a l e n c e .  

We need  on ly  c o n s t r u c t  the theo r i e s .  The r e s t  wi l i  fo l low f r o m  ev iden t  

us 
n a t u r a l i t y  a r g u m e n t s .  Of c o u r s e ,  A , X  m a p s  n a t u r a l l y  to A.X, and s i m i l a r l y  

and c o m p a t i b l y  fo r  A'.(X, R). The  fol lowing c o n s e q u e n c e  is i m m e d i a t e  (see  

Corollary A.3). 

Corollary 11.9. 

and a,(X; ~) : ~:(x+~ R) 

For unbased spaces X, the definitions 

specify unreduced homology theories. 

Note  h e r e  tha t  ~2(X +) is  a point ,  hence  A~,(X +) = Z . (S0 ) .  

s Ks X +. A,X = ,( ) 

The corollary 

was asserted by Waldhausen [ZZ, l.4 and Z.8] (but with a rather misleading sketch 

proof). We shall prove a general result, Theorem A.Z, on the stabilization of 
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functors to homology theories. Theorem ii.8 will be an immediate special case in 

view of the following two results. 

Proposition ii.i0. The functors AX and A(X;R) preserve 

n-equivalences and q-homotopy Cartesian (m,n)-equivalences with m >_ 2, n >_ Z, 

and q <__ m+n provided that, for the latter, the domain square is strictly com- 

mutative. 

Proof. We lose a dimension upon appliction of ~ and gain it back upon 

passage to K and quotation of Propositions 9.1 and 9.5. We need only verify that 

the intervening functors Q, FN, or R[?] have the appropriate preservation pro- 

perties, where R[C] for a simplicial set C is the free simplicial R-module 

generated by C. Since ~,FN(X +) = H,X and, by[8,§22], ~,R[C] = H,(C;R), the 

are obvious in these cases. Since w,QX + = w,(X +) is the conclusions unreduced 

homology theory associated to stable homotopy, the conclusion here follows by use 

of the Atiyah-Hirzebruch spectral sequence. 

Lemrna l l.ll. The functors AX and A(X;R) from based CW-spaces to 

the homotopy category of based CW-spaces are homotopy preserving. 

Proof. This is not obvious. Recall that a functor T from based spaces 

to based spaces is said to be continuous if the function T:F(X,Y) -* F(TX, TY) on 

function spaces is continuous. Since a homotopy between maps X -~ Y is a map 

I -* F(X, Y), continuous functors are homotopy preserving. The various monads, 

bar constructions, and telescopes which entered into the construction of the functor 

T on (~ , ~ )-spaces are all continuous. (In particular, this uses the fact that 

geometric realization of simplicial spaces is a continuous functor [12,p. 21].) We 

pass from T to K by first converting to CW-complexes by applying geometric 

realization on the total singular complex, this composite being homotopy preserv- 

ing although not continuous, and then applying the plus construction (which is a 

homotopy functor by definition). The functors Q,FN, and also ~ when interpreted 
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as  in  (1) o r  (2) a r e  c o n t i n u o u s ,  and  the  f u n c t o r s  R[GSX] a r e  h o m o t o p y  p r e s e r v i n g  

by  s t a n d a r d  f a c t s  on  the  r e l a t i o n s h i p  b e t w e e n  s i m p l i c i a l  and  t o p o l o g i c a l  h o m o t o p y  

theory (e.g. [8,§16 and §g6]). 

§12. Notes on Waldhausen's work 

Since this work started with an attempt to understand Waldhausen~s, 

a rundown of those things in [2g, § 1 and g] not considered above may not be taken 

a m i s s .  

T h e r e  a r e  two c a l c u l a t i o n a t  r e s u l t s  in [ g g , § l ]  c o n c e r n i n g  s i m p l i c i a l  (o r  

t o p o l o g i c a l )  r i n g s .  Our  t h e o r y  adds  no t h i ng  new to the  f o u n d a t i o n s  h e r e  e x c e p t  fo r  

the  i n f i n i t e  loop s p a c e  s t r u c t u r e  on  KR of P r o p o s i t i o n l 0 . 1 g  and  the  c o n c o m i t a n t  

s p l i t t i n g s  of P r o p o s i t i o n  11 .6 .  S ince  the  H - s p a c e  l e v e l  of t h e s e  a d d i t i o n s  p r o -  

v i d e s  s o m e  c l a r i f i c a t i o n  of W a l d h a u s e n ' s  a r g u m e n t s ,  I s h a l l  run  t h r o u g h  the  d e t a i l s  

(modulo  the  r e l e v a n t  a l g e b r a ;  t h e s e  d e t a i l s  a r e  i n c l u d e d  at  R o t h e n b e r g ' s  r e q u e s t ) .  

Proposition 12.1 ([22, 1.2]). Let f:R ~ R' be an (n-l)-equivalence of 

topological rings, where n > 2. Let F and F' be the homotopy fibres in the 

following diagram and choose F ~ F' which makes the top square homotopy corn- 

mute. 

F ~ F '  

1 l 
BFM R ~ KR 

oo 

BF M°° f i  I Kf 

B F M  R ~ * KR t 
(3o 

For any Abelian group A, the diagram induces an isomorphism 

H0(GL(w0R ' ) ;Mco( l rn_ l )  @ A )  ~ H 0 ( B F M c o R '  ; H n ( F  ;A))  -~ H n ( F ' ; A ) ,  

w h e r e  ~rn_ 1 is  the  ( n - l )  s t  h o m o t o p y  g r o u p  of the  f i b r e  of f. 
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Proof. Waldhausen asserts further that the left side is clearly iso- 

morphic, via the trace, to the Hochschild homology group H0(w0R';Wn_ l~A); 

I haven't checked the algebra. By the Hurewicz theorem, Remarks 7.3, and uni- 

versal coefficients, Hn(F;A ) ~ Moo(irn_l)(~A. The first isomorphism follows 

from the definition of local coefficients, the fact that ~rlBFMooR' ~ GL(~0R' ), and a 

check that the action on Hn(F; A) agrees with the natural action on Meo(Wn_l)~A. 

Let {E r} --~ {'E r} be the map of Serre spectral sequences (with coefficients in A) 

induced by the diagram. The essential topological fact is that, since Kf is a map 

of connected H-spaces which induces an epimorphism on fundamental groups, it has 

trivial local coefficients. Our assertion is thus that E Z -~ , 2 On E0n is an iso- 

morphism. Since 

E*0Z = H,(BGLR';A) -~ H,(KR';A) : ,E,0Z and H,(BGLR;A) -~ I-I,(KR;A) 

= = EZ oo r , r 0 for 0 < q< n, = are isomorphisms and E.q E.q nO En, 0 and 

= n~ oo co 'EZn0 'E , hence the five lemma gives that E0n-" 'E0n is an isomorphism. 

A diagram chase from the edge homomorphism gives that E c° -~ 'E~0 is an iso- 
*0 

morphism, and another five lemma argument (involving the transgression 

dn+l : E Z Z 
n+l,0 -~ E0n ) gives the conclusion. 

Propo~.!tion IZ.Z ([ZZ, i. 5]) 

Q if i=O 

0 if i>0 

Proof. Specialize the diagram of the previous result to 
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whe re  

F .',- F '  : E(sn; Z) , 

B G L Z  , ~ Z  = A ( { * } ; Z )  

R = I Z [ G S z n s O ]  I a n d  d : R  n -  Z i s  the  d i s e r e t i z a t i o n .  F '  i s  ( n - 1 ) -  
n 

connected. We claim that H F' = Q and H F' = 0 for n< q< gn-2 (Q coefficients 
n q 

understood). By the Whitehead theorem applied to a w -isomorphism F 0 -~ K(Q,n), 
n 

where F 0 is the rationalization of F', it will follow that WnF'(~Q : Q and 

F'(~ Q = 0 for n < q<__ Zn-Z, hence the conclusion. By Remarks 7.3 and 
q 

[8, § ZZ], for q >_ Z and n > i we have 

WqF = WqBFMooRn = Wq-iFMeoRn = ~q-iSFMcoRn 

Wq_iM R = M ~ R = M H (f~sn;z), 
oo n oo q-i n oo q-i 

which is zero for q< Zn-Z and q / n. By the Whitehead theorem applied to a 

Wn- iSomorph i sm F-~  K(MooZ, n), H n ( F ; Z  ) = McoZ and Hq(F;  Z) = 0 o t h e r w i s e ,  

0 < q <__ 2n-Z, hence  s i m i l a r l y  wi th  Z r e p l a c e d  by Q, The key a l g e b r a i c  fac t ,  due to 

Farrell and Hsiang [4] and based on work of Borel [i], is that H.(BGLZ;McoQ ) is 

isomorphic to H.(BGLZ; Q); the definition of the isomorphism, via the trace, is 

irrelevant to the argument here. Consider the rational homology Serre spectral 

sequences. Certainly E Z is finite-dimensional in each degree < Zn-Z (say by 

Borel's c a l c u l a t i o n s  of H,(BGLZ) [i]) and. in this range, 

E2 E2 ~ E2 g E g = *0 *n (E*0 = H . B G L Z ,  *n ~ H ,  BGLZ) .  

Z -~ ,E Z By the previous result, Q -- E0n On is an isomorphism. By Corollary 1 1.7, 

A(Sn; Z) ---~ A(sn; Z) X KZ and therefore 

, Z : 'E z ~ H, KZ). 'E z = 'E °° : H,KZ~H,F' ( E,0 H,KZ, *n 
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Since {E r} and {'E r) converge to isomorphic homologies, H F' = 0 for 
q 

n < q<__ Zn-Z by a trivial comparison of dimensions. 

The following is an immediate consequence, by Theorem ii.8. 

Corollary 1Z. 3 

A~{*) ~ Q = {~ ifi> 0 ifi= 0 

The results claimed about Postnikov systems in [ZZ, § Z] seem much more 

problematical (and are fortunately much less essential to the overall program). 

Remarks 12.4. The n th term R~ n) of the natural Postnikov system of a simplicial 

n 
set R. is R./( n ), where x ~ y for q-simplices x and y if all of their iterated 

faces of dimension < n are equal [8,§8]. Visibly each R(. n) is a simplicial ring 

i f  R .  is so, and the n a t u r a l  m a p s  R~ n ) ~  R ( f  ) fo r  n > m a r e  m a p s  of 

s i m p l i c i a l  r i ngs .  As Waldhausen  s t a t e s  [ZZ,§ l ] ,  t he r e  r e s u l t s  a s p e c t r a l  s e q u e n c e  

the E Z - t e r m  of which is g iven by the homotopy  groups  of the f i b r e s  of the m a p s  

KIR%n) I -~ K I R  (n - l )  ] and which  converges to K, IR, I. He a s s e r t s  f u r t h e r  [ZZ, 

Z. 5 and sequel] that the same conclusions hold with R, replaced by an arbitrary 

ring up to homotopy, that is, in our terminology, by an arbitrary grouplike A ring 
oo 

space X. If true, anything like this would be enormously difficult to prove. 

Certainly, the coskeleta X (n) of X could at best be strong homotopy A ring 
(DO 

spaces of some sort (with more homotopies in sight than in Defimition 5.1; see the 

discussion following that notion). He also asserts [22, Z.6 and sequel] that the co- 

skeleta of QS 0 give rise to a spectral sequence the EZ-term of which is given by the 

homotopy groups of certain fibres and which converges to A,X for any space X. 

Here he thinks of QS 0 as the "coefficient ring" of AX, in analogy with the role of 

R in Definitions 11.4. Since this is at best only a metaphor, rigor seems still 

further away. The infinite loop space splitting Q(~2X +) --~ QS 0 X QCLX does not seem 
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r e l e v a n t .  E v e n  if t h e y  do e x i s t ,  t h e r e  s e e m s  to be  l i t t l e  r e a s o n  to b e l i e v e  t h a t  s u c h  

s p e c t r a l  s e q u e n c e s  w o u l d  h e l p  m u c h  w i t h  e x p l i c i t  c a l c u l a t i o n s .  

Of course, it is conceivable that there is a simplicial analog of our theory 

for which this difficulty disappears, but I am skeptical (and certain that other tech- 

nical difficulties would appear in any such approach). 

It is time to discuss the main issue. Waldhausen proposed our AX as a 

nice description of what he wanted, if it were to exist, but he gave an alternative 

definition in terms of which the proofs were all to proceed. We write WX for 

Waldhausen's functor (or rather its connected version). If GSX is the simplicial 

group of (11.3), then WX is the plus construction on the classifying space of the 

n 

colimit over n and k of certain categories (h~GSX)k with objects simplicial 

n 
GSX-sets suitably related to the wedge of X and k copies of S . In the absence of 

any indications of proof, I for one find it hard to see how analogs for WXofsome of 

the results above for AX are to be made rigorous from this definition. The tech- 

nical details, for example of the rational equivalence required for Corollary iZ.3, 

must surely be considerable. It would seem preferable to compare AX and WX. 

Waldhausen asserts (without proof, [ZZ, Z. i]) that the loop of the classifying space 

n ~ n of the colimit over of the categories (h GSX)k is equivalent to FMkQ(IGSX I +). 

While this certainly seems plausible, his further claim fhat the equivalence is one 

of H-spaces seems much more difficult, and this in turn is nowhere near strong 

enough to prove the following assertion. 

Conjecture 12.5. AX and WX are naturally equivalent. 

Except that the definitions of AX and WX seem farther apart, one might 

view this as analogous to the equivalence between his two definitions that was the 

pivotal result in Quillen's development of algebraic K-theory [5]. The point is that 

it is AX which is most naturally connected with Quillen's algebraic K-theory~ but 
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it is WX and its various equivalents in [22] which Waldhausen's arguments relate 

to the Whitehead groups for stable PL concordance. 
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A p p e n d i x .  Stabilizations of. functors to  homology theories 

We first give the technical lemma needed to complete the proof of Theorem 

1 1.3 and  t h e n  g ive  a v e r y  g e n e r a l  t h e o r e m  ( p r e s u m a b l y  p a r t  of  the  f o l k l o r e )  on  the  

stabilization of homotopy functors to generalized homology theories. 

We work in the category ~/ of nondegenerately based spaces of the homo- 

topy type of a CW-complex and in its homotopy category h~/ . The proofs below 

use well-known facts about fibration sequences but, annoyingly, I know of no pub- 

lished source which contains everything we need; such details will appear in [15, 

z~l]. 

Lemma A.I. Consider the following diagram in ~, in which i and p are 

written generically for the canonical maps of fibration sequences, the solid arrow 

parts of the diagram homotopy commute, the bottom squares with solid vertical 

a r r o w s  e r a s e d  a l s o  h o m o t o p y  c o m m u t e ,  a n d  the  do t t ed  a r r o w s  ~,~], and  O a r e  

h o m o t o p y  s e c t i o n s  ( £ 0  ~ 1, e t c . ) .  

flF~ ..... -~ ..... ~-F~ 
,. .... 

¼, 
1 ~f~ 

D 

f ly  

flW ~ F g  

. . . . .  ~ . . . . .  ~ F 5  - . -  . . . .  e_ . . . .  ~ - F e  

* F e  Lp 
f 

~ - X  ...... > Y  

I 5 n a',0 

¼ 
g 

~ Z  ~ W 

T h e r e  e x i s t  m a p s  e,  ~-, and  u , u n i q u e  up to  h o m o t o p y ,  s u c h  t h a t  the  t op  t h r e e  

squares homotopy commute and there exists an equivalence ~:F~-* Fe such that 

pot ~ ~r, 

Proof. The homotopy commutativity of the lower three squares implies 

the existence of e, ir and L . Here e is unique since two such maps differ by the 

a c t i o n  of  a m a p  F 6 - ~  ~W a n d  the  a c t i o n  of  [ F 6 , ~ W ]  on [ F S , F ~  ] i s  t r i v i a l  s i n c e  
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i:~W ~- F£ is null homotopic (because of the section). Similarly = and ~ are 

unique. Since pew is null homotopic by the diagram, pe is null homotopie (by the 

exact sequence of the right column). Thus there exists ~1:F.f -~ Fe such that 

p~' ~ w. The top row clearly induces a long exact sequence of homotopy groups 

mapping onto a direct summand of that of the middle row, and the desired conclu- 

sion that ~' is an equivalence would be immediate from the five lemma if ~'~ were 

homotopic to i. However, there seems to be no reason to suppose that a' can be 

so chosen. Choose a map 6:Fe-- Ff such that 6i ~ii2p and pp = P6. Again, a' 

would be an equivalence if ~0~' were homotopic to p:F~/ -+ Ff. Here we have more 

room for maneuver. Since ~Y is an H-space, the sum of~p and ~@ is an 

equivalence ~2F£ X ~W -~ ~Y. Let ~:~Y -~ ~FE be an inverse projection. 

Certainly 6o~' = p~ for some g:FN -~ i~Y, where pM is given by the right action 

o f  [ F ~ , ~ Y ]  o n  [F '7 ,  F f ]  c o m i n g  f r o m  F f × ~ Y  ~ F f .  L e t  a =  a ' ¢ , ( - ~ ) .  T h e n  

[5o~ = 6o (~e '~ , ( - I - t ) )  = ( I8ooe ' ) ( fap) ,qJ , ( -b~)  : P ( b t ( f a P ) , q J , ( - - ~ ) ) .  

Since ~ , ( l a ( f a p ) , t ~ , ( - p . ) )  = ¢ , ( l a )  - ~ , ( l a )  = O. w e  h a v e  

~(~p),%(- ~) = (~e) ,(~)  

for some w ~ [F~, f~W] and thus ~o~ = p(~@),(w). It follows that 6,o ~, and 

p,:w,F-{ -* w~Ff become equal when one passes from the long exact homotopy 

sequence of the middle row to its quotient by the long exact homotopy sequence of 

the bottom row. Here p, and ~ are isomorphisms, and we conclude that ~, is 

an isomorphism and thus that ~ is an equivalence. 

The naturality of w in Theorem 1 1.3 follows from the argument used to 

prove the uniqueness of e in the lemma. 

Turning to the desired construction of homology theories, we define a 

stab~ity sequence {an) to be a strictly increasing sequence of positive integers 

a n such that a n- n tends to infinity. 
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Let k: h~/ -~ hO/ he a functor with the following 

Application of k to an n-equivalence yields a bn-equivalence, where {Zbn} is 

a stability sequence. 

(2) Application of k to a strictly commutative 2n-homotopy Cartesian (n, n)- 

equivalence yields an a -homotopy Cartesian square, where {an} is a 
n 

stability sequence. 

Let e:kX -~ k{*} be induced by X -~ {*} and let ~ be the fibre of £. Then 

there exist natural maps ~ :~Q( -~ f2~X such that if y~Sx is defined to be the tele- 

n ~ n f2~n+ 1 X, scope of the spaces ~n~nx with respect to the maps ~ ~, ~:kS X -~ 

Ms 
and if %SXq is defined to be wq%SX, then k. is a reduced homology theory which 

satisfies the wedge axiom. 

The following is a standard consequence. 

C_.oroltary A.3.  On unbased spaces X, define k~X =~(X+). On unbased 

s 
pairs (X,A), define k~(X,A) = k ((Xu)CA) +) where CA is the (unreduced) cone 

s 
on A. Then k~ is a generalized homology theory in the classical sense. 

Returning to based spaces, we first discuss the statement of the theorem. 

It will turn out that property (I) is only needed for the wedge axiom, and then only 

for maps X -~ {*}, hence may be omitted in obtaining a homology theory on finite 

complexes. Property (Z) will also only be needed for a few simple types of dia- 

grams, to be displayed in the proof. Since £ is only given as a homotopy class of 

maps, we must choose a representative before constructing ~. The first part of 

the proof of Lemma A. 1 gives the following result. 

Lemma A.4. For f:X -- Y, there is a unique homotopy class 

"kf:~X -~'kY such that the following diagram commutes in h~/ . 
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I kf 
kX ~ kY . 

It follows that ~ is a well-defined functor hq / -~ h~/ such that ~-~ k is 

natural. We also need the following analog. 

Lemma A.5 . Let N:k{*} -~kX be inducedby {*} -~X andlet ~kX be 

the fibre of ~. For f:X -- Y, there is a unique homotopy class kf:kX -~kY such 

t h a t  t he  following d i a g r a m  c o m m u t e s  in h%/ . 

Proof. The  m a p  f2kX ~ ~2k{*} 

~kf 
~kX ~ ~kY 

% x  , %Y . 

X ~X w i t h  f i r s t  c o o r d i n a t e  f~£ and  s e c o n d  

c o o r d i n a t e  t h e  c a n o n i c a l  m a p  i s  an  e q u i v a l e n c e .  

A 

I t  f o l l o w s  t h a t  k i s  a f u n c t o r  a n d  ~k  - ' ~  i s  n a t u r a l .  

L e m m a  A.6 .  T h e  c o m p o s i t e  ~kX -- ~2kX -- ~uX is  a n a t u r a l  e q u i v a l e n c e .  

P r o o f .  The  m a p  ~k{*} X ~kX -~ f~kX g i v e n  b y  the  s u m  of ~N and  the  

canonical map is also an equivalence. 

These observations suffice for the construction of o-. 

Lemma A. 7. There is a natural map ~:~X -* ~EX such that 0- is an 

(an+ l - l)-equivalence if X is n-connected. 

Proof. We define 0 ~ to be the top composite in the diagram 

.... -~ k~X ~'~X 

kX ~ )" k { * )  

k{*} n -~kZX 

Here we have the tautological strict equality ~3£ -- ~16 , and the dotted arrow is 

canonical; its naturality up to homotopy is easily checked by direct inspection. If 

X is n-connected, then the commutative square 
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x ~{*} 

L 
{*} • zx 

i s  a ( Z n + Z ) - h o m o t o p y  C a r t e s i a n  ( n + l ,  n + l ) - e q u i v a l e n c e  b y  t h e  h o m o t o p y  e x c i s i o n  

t h e o r e m  ( c o m p a r e  D e f i n i t i o n  9 .2 ) .  B y  a m i l d  i n t e r p r e t a t i o n ,  p r o p e r t y  (2) i m p l i e s  

t h e  r e s u l t .  

T h e  s p a c e s  "ksX o f  T h e o r e m  A . 2  a r e  n o w  d e f i n e d .  S i n c e  2 c o m m u t e s  

w i t h  t e l e s c o p e s ,  t h e r e  i s  a n  e v i d e n t  h o m o t o p y  e q u i v a l e n c e  

~ s  -r:k X = Tel [2n~nx -~ Tel ~n+l~n+ix = ~ks~X . 

n>__0 n~0 

While .~s need not be a functor and T need not be natural, since lira I terms 

might well be present, they induce functors ksX and natural isomorphisms 
q 

"c :~Sx _~s ..~X on passage to homotopy groups. Alternatively, with 
q q q*1 

X = zr ~X, we could equally well define 
q q 

~Sx = c o l i m g  ZnX 
q q+n 

and not bother with the telescopes, the isomorphisms T then being evident. 
q 

For reduced homology theories, excision reduces to the suspension axiom 

just verified on trivial formal grounds, without use of properties (I) and (2). The 

things to be proven are exactness and the wedge axiom. The following lemma veri- 

t i e s  t h e  a p p r o p r i a t e  e x a c t n e s s  a x i o m .  

Lemma A .  8. If ~: A ~ X is a cofibration, then the sequence 

k s ~ kSur 
k S A  q ; k s X  q ~" k S ( x / A )  

q q q 

i s  e x a c t  f o r  a l l  q, w h e r e  w i s  t h e  q u o t i e n t  m a p .  

P r o o f .  S i n c e  t h e  f u n c t o r s  n c o m m u t e  w i t h  c o f i b r a t i o n  s e q u e n c e s ,  a 

g l a n c e  a t  t h e  r e l e v a n t  c o l i m i t  s y s t e m s  s h o w s  t h a t  i t  s u f f i c e s  to p r o v e  

"k A q . g X q ...... g q ( X / A )  
q q 

to  b e  e x a c t  i n  a s u i t a b l e  r a n g e  w h e n  A , X ,  a n d  X / A  a r e  n - c o n n e c t e d .  B y  t h e  
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homotopy excision theorem again, the square 

L 
A ,~X 

{*} • x/A 

is a 2n-homotopy Cartesian (n, n) -equivalence. Consider the following diagram 

~A ......... -~ Fk~r ......... -~F~ir 

kA ~ kX ~, kX 

i F i 
k{*} ~ =k(X/A) * ~ (X/A) 

Verdier's axiom for fibration sequences applied to the triangle 

kX *k{*} 

k ( X / A )  

gives an equivalence Fklr -~ Fklr such that the upper right square homotopy com- 

mutes. Property (Z) and Remarks 9.3 give an (an+l)-equivalence ~A -~ Fklr 

such that the upper left square homotopy commutes. By Lemma A.4, the corn- 

posite ~A -~X in the diagram is "kb. The conclusion follows from the long 

exact sequence of homotopy groups of the right column. 

It remains only to verify the wedge axiom. 

Lemma A.9. For any set of spaces {Xi}, the natural map 

@ ~ S x .  ~ ~ s  (Vxi){ 
i q 1 q - 

is an isomorphism for all q. 

n 
Proof. Since the functors ~ commute with wedges, a glance at the 

relevant colimit systems shows that it suffices to prove 
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(9 kq(Xi) -~ kq( V x i) 
i i 

to be an isomorphism in a suitable range when each X. is n-connected. If X is 
i 

n-connected, then X -- {$} is an (n+l)-equivalence, hence ~:kX-~ k{*} is a 

bn+l-equivalence by property (I), hence "kX is (hn+ I- l)-connected. Therefore 

the inclusion of V~_xi in the weak direct product of the kX.i (all but finitely many 

i 
coordinates at the basepoint) is a (2bn+ I- l)-equivalence, and the conclusion 

follows. 
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