Ao RING SPACES AND ALGEBRAIC K-THEORY

J.P. May

In [22], Waldhausen introduced a certain functor A(X), which he thought of as
the algebraic K-theory of spaces X, with a view towards applications to the study of
the concordance groups of PL manifolds among other things. Actually, the most
conceptual definition of A(X), from which the proofs would presumably flow most
smoothly, was not made rigorous in [22] on the grounds that the prerequisite theory
of rings up to all higher coherence homotopies was not yet available.

As Waldhausen pointed out, my theory of Eco ring spaces [i2] gave a success-
ful codification of the stronger notion of commutative ring up to all higher
coherence homotopies. We begin this paper by pointing out that all of the details
necessary for a comprehensive treatment of the weaker theory appropriate in the
absence of commutativity are already implicit in [12]. Thus we define Aoo ring
spaces in section i, define AOO ring spectra in section 2, and show how to pass
back and forth between these structures in section 3. The reader is referred to[13]
for an intuitive summary of the Eoo ring theory that the present A, ring theory
will imitate.

The general theory does not immediately imply that Waldhausen's proposed
definition of A{X) can now be made rigorous. One must first analyze the structure
present on the topological space M X of (n X n)-matrices with coefficients in
an Aoo ring space X. There is no difficulty in giving MnX a suitable additive
structure, but it is the multiplicative structure that is of interest and its analysis
requires considerable work., We prove in section 4 that MX isa multiplicative
A, 8pace and compare these AOO structures as n varies in section 6. Technically,

the freedom to use different Aoo operads is crucial to the definition of these Aoo

structures, and a curious change of operad pairs trick is needed for their



241

comparison as n varies. We study the relationship between the additive and
multiplicative structures on MnX in section 5. It turns out that MnX is definitely
not an A, ring space, although it may satisfy the requirements of an appropriate
strong homotopy generalization of this notion.

With this theoretical background in place, we find ourselves in a position
to develop a far more general theory than would be needed solely to obtain the
algebraic K-theory of spaces. Thus we construct the algebraic K-theory of Aoo
ring spaces X in section 7. The basic idea is simple enough. We take the homo-
topy groups of the plus construction KX on the telescope of the classifying spaces
of the A spaces of unit components FM X. The technical work here involves the
construction of the relevant compatible classifying spaces and of a modified tele-
scope necessary for functoriality. In section 8, we analyze the effect of restricting
this chain of functors to the sub A, spaces F X of monomial matrices, The
resulting plus construction turns out to be equivalent to the zero component of
Q(BFX.U. {0}), where FX is the A, space of unit components of X and QY
denotes colim 2°="Y. The proof involves the generalization of a standard con-
sequence of the Barratt-Quillen theorem for wreath products of monoids to wreath
products of A, spaces together with a comparison between the Aoo spaces FnX and
ZnIFX.

This completes the development of the technical machinery. Of course,
the proofs in sections 3-8 (all of which are relegated to the ends of the sections) are
necessarily addressed to those interested in a close look at the machinery. The
consumer who wishes to inspect the finished product without taking the tour through
the factory is invited to first read section 1 and skim sections 2 and 3 (up to the
statement of Proposition 3.7), then skip to section 7 and read as far as Remarks
7.4, next read section 8 as far as Remarks 8.5, and finally turn to sections 9-12,

We begin the homotopical and homological analysis of our functors in

section 9, giving general homotopy invariance properties and pointing out a
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spectral sequence converging to H*KX and some general formulas relevant to the
computation of its EZ—-t\erm.

We discuss examples and display various natural maps and diagrams in
section 10. On discrete rings, our theory reduces to Quillen's [18, 5]. For

general Aoo ring spaces X, the discretization map X = n. X is a map of Ay, ring

0
spaces. This establishes a natural map from the new algebraic K-groups of X to
Quillen's algebraic K~groups of nOX. To illustrate the force of this assertion, we
record the following trifling consequence of the diagram displayed in Theorem 10,7.

Corollary. The usual map from the qtﬁ stable homotopy group of spheres
to the qﬂ‘l' algebraic K-group of Z factors through the qth algebraic K-group of X
for any Aoo ring space X such that TI’OX = Z,

On topological rings, our theory reduces to that of Waldhausen [22,§ 1], or
rather, to the topological analog of his simplicial theory. However, it should be
pointed out that virtually all of the proofs in the earlier sections become completely
trivial in this special case. The force of the theory is the translation of the obviocus
intuition, that much that is true for rings remains true for Aoo ring spaces, into
rigorous mathernatics. The crucial question is, how much? We have already
observed that the matrix "ring" functor M,, does not preserve Ay, ring spaces, and
other examples of phenomena which do not directly generalize are discussed in
Remarks 10.3 and 12,4, What I find truly remarkable is how wery much does in fact
generalize. The point is that there are vast numbers of interesting Aoo ring spaces
which are far removed from our intuition of what a ring looks like.

Perhaps the most fascinating examples come from the fact that Eoo ring
spaces are A, ring spaces by neglect of structure. For instance, the category of
finitely generated projective modules (or free modules) over a commutative ring R
gives rise to an Eoo ring space in which the addition comes from the direct sum of

modules and the multiplication comes from the tensor product. The homotopy

groups of this space are Quillen's algebraic K-groups of R, and the present theory
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gives rise to a second order algebraic K-theory based on its A, ring structure.

I shall say a little bit more about such examples in section 10, but I should add at
once that I have not yet had time even to contemplate the problem of making actual
calculations.

We specialize to obtain the algebraic K-theory of topological spaces X in
section 11, defining A(X) to be KQ(@X il {0}), as proposed by Waldhausen. The
general theory gives an immediate calculation of the rational homotopy type of
A(X), and various other properties claimed by Waldhausen also drop out by
specialization. In particular, we discuss the algebraic K-theory of X with coeffi-
cients in a (discrete) commutative ring and give a complete account of the
stabilization of the various algebraic K-theories of X to generalized homology
theories, this being based on a general stabilization theorem given in the Appendix.

While the theory discussed above was inspired by Waldhausen's ideas, it
is logically independent of his work and should be of independent interest. The
connection with his theory is work in progress and is discussed very briefly in
section 12. The basic point to be made is that, at this writing, there exist two
algebraic K-theories of spaces, the one developed here and the one rigorously de-
fined by Waldhausen, and a key remaining problem is to prove their equivalence.

f would like to thank Mel Rothenberg for insisting that I try to make
Waldhausen's ideas rigorous and for many helpful discussions. Conversations with
Bob Thomason have also been very useful. I am profoundly indebted to Waldhausen

for envisioning the possibility of such a theory as that presented here.
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§1. AOo ring spaces

We begin by recalling the definitional framework of [12}; details are in
[12¥1§1 and §2] and a more leisurely discussion of some of the main ideas is in
lig,§1-31.

The notion of an E_, ring space is based on the notion of an operad pair
(&, H), which consists of an "additive" operad &, a "multiplicative" operad A,
and an action of ;J on (f . An operad C has associated to it 2 monad (C,u, n)
in J , the category of (nice) based spaces. There is a notion of an action of (ol
on a space X, and this is equivalent to the standard notion of an action of the monad
C on X. These notions apply equally well to M . Actions by M are thought of as
multiplicative, with basepoint 1, and a }30~space is a /ﬁ—space with a second
basgepoint 0 which behaves as zero under the action. When /3 acts on &, the
monad C restricts to a monad in }J 0[ :T 1, the category of ho-spaces. That is,
CX is a f30~space if X is a Bo-space and p;CCX - CX and m:X =+~ CX are
then maps of }jo—spaces. An action of {{, ) on a space X is an action of the
monad C in fjo[j} on X. Thatis, a {{, M)-space is both a (:—space and a

;&O—space such that the additive action CX - X is a map of Bo-spaces. The

last condition encodes distributivity homotopies in a simple conceptual way, and the
multiplicative theory is to be thought of ag obtained from the additive theory by a

change of ground categories from spaces to ljo-spaces.
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C is an Eoo operad if its jth

space ({(j) is contractible and is acted on
freely by the symmetric group Zj. An Eoo space is a space together with an action
by any Eoo operad c. Examples are the spaces CX for any space X. These are
commutative monoids up to all coherence homotopies. (L,Ah) isan Eoo operad
pair if ¢ and M are both Eoo operads. An Eoo ring space is a space together with
an action by any Eoo operad pair (¢, #). Examples are the spaces CX for any
ho-space X. These are commutative semi-rings up to all coherence homotopies
(semi-ring because additive inverses are not built in).

A theory of A__ spaces is developed in {10,§3 and 13]. Anoperad M is an
A00 operad if ™ HG) is Zj and each component of H(j) is contractible. An Aoo
space is a space together with an action by any Aoo operad H . These are monoids
up to all coherence homotopies. As explained in [10,p.134], AOO spaces are equiva~

lent to monoids, hence admit classifying spaces; there is also a direct delooping

construction independent of the use of monoids.

Definition 1.1, An operad pair ({, 4 ) is an A operad pair if { is an
EOO operad and Y is an Aoo operad. An Aoo ring space is a space together with an
action by any Aoo operad pair ({, /). Exzamples are the spaces CX for any

fig-space X.

This is the desired notion of a ring {or rather, semi-ring) up to all
coherence homotopies. There is also a notion with both § and Y Aoo operads,
but it seems unprofitable to study rings up to homotopy for which not even addition
is homotopy commutative.

Note that the product of an Eoo operad and an Aoo operad is an Aoo operad.
Thus if (£, H) is an E_, operad pair and A" is an A00 operad, then { ¥, 4'X H)
is an Aoo operad pair, the action of H'X H on { being obtained by pullback from
the action of M on & . sincea {{, M)-spaceisa (£, H X H)-space, again by

pullback, Ecn ring spaces are Aoo ring spaces.
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Some discussion of discrete operads may clarify ideas. There are
operads M ana 7 such that M G) = Ej and 7] (j) is a point. An J] -space is a
monoid and an 'ﬂ, -space is a commutative monoid. Both M anda 7 acton n .
An (7 ,M)-space is a semi-ring and an (7], ¥])-space is a commutative semi-
ring. Say that a map of operads is an equivalence if the underlying map of jth
spaces is a homotopy equivalence for each j. An E_, operad C admits an evident
equivalence C g n . An operad }j is an A, operad if and only if it admits an
equivalence H-m . Thus A operad pairs and E_, operad pairs map by

equivalences onto the respective operad pairs (J1, ) and {11.71 ).

Remark 1.2. I would like to correct an annoying misprint in the crucial definition,
1z2,v1. 1.6], of an action of K oon & . In{a') of the cited definition, the displayed

formula is misgsing some symbols, dI being written for \(g, dI)’ and should read

y()\(g;ci,...,ck); X k(g;dl))v = x(g;ei,....,e

) .
. . k
Te S(‘]i""’Jk)

§2 A__ ring spectra
© g sp

An Em space determines a spectrum and thus a cohomology theory. The
notion of E_, ring spectrum encodes the additional multiplicative structure on the
spectra derived from the underlying additive E_ spaces of Eg, ring spaces.

Aoo ring spaces also have underlying additive E, spaces, and we have an analogous
notion of A, ring spectrum. Only the multiplicative operad I appears in these
definitions. Let 2(’ denote the linear isometries E, operad of [12,1.1.2]. For good
and sufficient reasons explained in [12,IV§1 ], we assume given a map of operads

" - L . Inthe cited section, }3 was assumed fo be an Eoo operad. We may
instead assume that /j is an A  operad. For example, /J might be the product

of an A, operad and an E_, operad which maps to L . Now the assumption that #

was an E, operad played no mathematical role whatever in the definition,
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[12,1v.1.1], of 2 /tj -spectrum., This notion of an action by el only required the

map }j - &L and is thus already on hand in our A, context.

Definition 2.1, An Aoo ring spectrum is a /j—spectrum over any A

operad fj with a given morphism of operads A < .

As explained in [12,p.68-70], an Ay, ring spectrum is a (not necessarily
commutative) ring spectrum with additional structure. In particular, its zeroth
space is a /jo-space. The formal lemmas [12,IV 1,4-1.9] apply verbatim to
}1 ~spectra for any operad A which maps to &£ . We summarize the conclusions
they yield.

Recall that a {coordinate-free) spectrum E consists of a space EV for
each finite-dimensional sub inner product space V of R together with an
associative and unital system of homeomorphisms EV — QWE(V+W) for V ortho-
gonal to W; here EO = £E{0}. The stabilization functor Qoo from spaces to
spectra is defined by

QOOX = {QEVX‘VCROO}, where QX = colim QVZ}VX;

here the loop and suspension functors @ and =¥ are defined in terms of the
sphere tV, the one-point compactification of V. The inclusion n:X - QX and
colimit of loops on evaluation maps u: QOX -+ QX give a monad (Q,p,n) in T,
The

and the analogous colimit map §: QEO - E_  gives an action of Q on E

0 0’

h . . 0 0 . M
Sphere spectrum S is defined to be Qcos , and §° is a o Space for any
operad }3 . Use of these notions is vital for rigor, but the reader may prefer to
think of spectra in more classical terms, restricting attentionto V = R' for
i> 0.

Proposition 2.2. Let X be a ;jo—space and E a /j-spectrum.

(i) QOOX is a J&f-spectrum and is the free /:I -gpectrum generated by X in the

senge that a map f:X - EO of bo-spaces extends uniquely to a map f: QOOX - E

of h -spectra such that ?On = f.
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{ii) 8 isa }j—spectrum and the unit e:S ~E isa /A -map.
(iii) The monad Q in J restricts to a monad in bo[j] and £ QE, ~E isa

.}jg-map, so that E_ is a Q-algebra in }JD[J]

0
The following analog of [12,IV, 1.10] is central to the definitions proposed

by Waldhausen.

Example 2.3. Fora ﬁ-space X without zero, construct a .’Zi-space X+ with
zero by adjoining a disjoint basepoint 0 to X and extending the action in the evi-
dent way. QooX+ is thena M -spectrum and n:X+ - QX+ is a map of }jo-
spaces. If }J’ is any Aoo operad and ’% = /ﬁ' X I , then a b’-space is a
}j -space via the projection /j - /M ', while the projection /.1 - X allows A to

be used in the present theory. Therefore QOOX+ is an A ring spectrum for any

Aco space X.

Remarks 2.4. For what it is worth, we note that much of the discussion of
orientation theory given in [12,IV §3] remains valid for A, ring spectra. One first
checks that commutativity of the underlying ring spectra is not essential to the
general theory in[12,1I1]. Independently of this, one finds that the assertion of
f12,1v.3.4] is valid for H -spectra E for A, operads H as well as for Ey
operads M. The cited result gives a certain commutative diagram of M -spaces
and A -maps, the middle row of which yields a fibration sequence

q Be

G —> FE ——» B(G; E) - BG BFE

after passage one step to the right by use of the classifying space functor on

bt -spaces. Here FE is the union of those components of EO which are units in

the ring ’WOEO, G is the infinite group or monoid corresponding to some theory of
bundles or fibrations, such as O, U, Top,or ¥, and B(G; E) is the classifying

space for E~oriented G~bundles or fibrations. The map q corresponds to neglect

of orientation and the maps e and 7 are interpreted in [12,II1, 2.5]. The point is
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that the notion of A00 ring spectrum is just strong enough to yield Be:BG - BFE,
which is the universal obstruction to the E-orientability of G-bundles; compare

f12,1v.3.2].

§3. The recognition principle

We first show that the zeroth space of an A ring spectrum is an Aoo ring
space and then show that the spectrum determined by the additive Eoo structure of
an Aoo ring space is an Aoo ring spectrum. We also obtain comparisons between
the two evident composite functors and give an Aco ring level version of the Barratt-
Quillen theorem. All of this is in precise analogy with the corresponding develop-
ment for Eoo ring spaces and spectra in [12,VII], and we need only point out the
trivial changes of definition involved.

Let ({, H) bean Aoo operad pair and suppose given a map of operad
pairs (w,p): ({, H) ~( ‘Koo’ L), where 1(00 is the infinite little convex bodies
EOO operad. Here Koo and its action by L are defined in [12, VII§1 and §2]
(and we are suppressing technical problems handled there). 7{00 acts naturally
on the zeroth spaces of spectra, and there is a morphism aoo:Koo - Q of monads
in :T Similarly, = induces a morphism C — Koo of monadsin J . With these
notations, the proof of [12,VIl. 2,4 ] applies verbatim to prove the following result,

in which the second part follows fromthe first via part (iii) of Proposition 2.2,

Theorem 3.1. (i) The morphisms w:C + K, and oK —+Q of

monads in :T restrict to morphisms of monads in /JO[ T]

th

(ii) ¥ E isa b-spectrum, then its zero'® space E. isa (L , M )-space by

0

pullback of its Q-action §£: QEO - E_ along a -

0
An Eoo space X determines a spectrum BX. Thanks to recent work by
Thomason and myself [16], we now know that all infinite loop space machines yield

equivalent spectra when applied to X, but it is essential to the present
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multiplicatively enriched theory that we use the construction presented in [12,VII §3].
We assume now that the A_ operad pair (C.h) is (£ x 7(00, A'x J) andthat
{w,p} is given by the projections, where (L', H') is an operad pair such that each
C‘(j) is contractible (but not necessarily Ej—free) and M’ isan A, operad. For
definiteness, one might think of the example (', ') = (,MM). The proofs of

[12, VII.4.1 and 4. 2] apply verbatim to yield the following results,

Theorem 3.2. If X is a ([, H)-space, then BX (formed with respect to

the C -space structure) is a ;1 -gpectrum.

The relationship between X and the zeroth space BOX is summarized by

a nataural diagram
& A
X «—— B(C,C,X) — B{Q,C, X) —wte BOX'
! A
E)
b o e e o o o e e . -~ — = =~ o~ A A . $
The first and third solid arrows are equivalences, and . is obtained by use of a

canonical homotopy inverse to the first arrow. The middle solid arrow, and there-

fore also ., is a group completion (see [12,p.168] or, for a full discussion,

[11,§1]).

Theorem 3.3. The solid arrows in this diagram are maps of ({, A)-

spaces. The dotted arrow . is a rmap of bo—spaces.

The canonical homotopy inverse, and + , are not G -maps, but this is
of little significance. The basic idea is that we have group completed the additive
structure of X while carrying along the multiplicative structure.

We have the following consistency statements in special cases, the proofs
being identical to those in [12,p.191-192). For a spectrum E, there is a natural
map of spectra : BEO - E, and & is an equivalence if E is connective (that is,

ifwiE= 0 for i< 0),
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Proposition 3, 4. If E isa H -spectrum, then ?J:EEO -+ E is a map
of }J-spectra.

For a }Jo-space Y, CYisa (G, H)-space by Definition 1.1 and QY is
a2 (&, B )-space by Proposition 2.2(i) and Theorem 3.1(ii). Moreover,

a m:iCY ~ QY is a map of (&, B)-spaces by Theorem 3.1(i).
Proposition 3,5. For a H o~ space Y, the composite map of ﬁ-spectra

E(afm-rr) ~
_}E_&_CY > _BLQ Y > QOOY

is a strong deformation retraction. Its inverse inclusion v: QooY -+ BCY is
induced by the freeness of QooY from the fjo-map v e CY BOCY and

is thus a map of A -gpectra.

When Y = Cso, cy = AL C,’(j)/zj = _L[_K(Ej,l). Here the last result
is a2 multiplicatively enriched form of the Barratt-Quillen theorem, the strongest
form of which appears on the Eco ring level. Interesting Am ring level applica-
tions come from A00 spaces, such as monoids, via Example 2.3,

The previous result can be related to the Hurewicz homomorphism. The
monad N associated to n assigns to a space Y its infinite symmetric product,
or free commutative topological monoid, and any operad A acts on | . There-
fore N restricts to a monad in ;jo[ T1. 15 €: ¢ -~ N is the augmentation,
then (£,1): (L, )~ (1, H) is a map of operad pairs, These observations

imply the following result.

Lemma 3.6, Fora /jo-space Y, €:CY +NY isamapof (£,H)-

spaces, hence EE :BCY - BNY is a map of h-spectra.

Now forget all about the multiplicative structure on Y. By an oversight,

the following result was omitted from my earlier works in this area.
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Proposition 3.7. For a based space Y, w, BNY is naturally isomorphic
to ,I:'I*Y and h=Bg€o v QooY —- BNY induces the stable Hurewicz homomorphism
on passage to homotopy groups. In particular, h is a rational equivalence.

Proof. The zerotll map h: QY - BONY is obtained by passage to direct

limits from the top composite in the commutative diagram

n
n_n n_n Q
Pty —2Z N, gty HEL 2"z"B NY ——2>9"8 NY
n n n
7 -
Y ——> NY ———— BNY ——— BNY

where T is the iterated structure map of the spectrum BNY {(and 7 is written
for the unit of both monads N and ann). Therefore h will induce the stable
Hurewicz homomorphism on homotopy groups if vn:Y - BONY induces the ordi-
nary Hurewicz homomorphism. If Y is connected, then ¢ is a natural
equivalence while w NY = g*Y and 7 induces the Hurewicz homomorphism on @
by results of Dold and Thom [3]. Thus the problem is to account for non-connected
spaces. Let ﬁY denote the free commutative topological group generated by Y
and let #:Y NY and MNINY -+ NY denote the natural inclusions, so that

An=7. Dold and Thom give that w*fl\\iY = ﬁ*Y and 7 induces the Hurewicz homo-

morphism on T One could prove that )\ is a group completion by direct homo-

*°

logical calculation and then deduce an equivalence Ny = B NY, but we shall

0

reverse this idea. Consider the following diagram.
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Ny —2 > ofzy «—2 _ onzy —28 L opny —¥ & B NY
A
2n [4 g
Q%
s

> orY NY

n 4
n A
e

Results of Dold and Thom imply that X is a weak equivalence (since ZY is con-
nected) and that there is a natural weak equivalence ¢ such that ¢o¥ & Q¥Fem.
By a result of Milgram [17, p. 245] (see also [9,8.7 and 8.11]), there is a homeo-
morphism £:NZY - BNY such that Q¢ restricts on Y to {7, where { is the
standard map [9,8.7]. Finally, since the product on NY is a map of monoids
and thus of N-spaces, [12,3,4] together with the proof of [ 11, 3.7 (p. 75)] give a
natural weak equivalence ¢ suchthat ${ =~  (modulo the use of weak equiva-
lences with arrows going the wrong way), Since ;g'* on the left is the Hurewicz
homomorphism, so is (n,n)* on the right. It is a standard consequence of the
finiteness of the stable homotopy groups of spheres that, upon tensoring with the
rationals, the stable Hurewicz homomorphism becomes an isomorphism of
homology theories,

We record the following corollary of the proof and an elaboration of the

diagram above which shows that ¢\ is homotopic to Q()\bg—l)g :NY - oN=zv.

Corollary 3.8. For any space Y, M NY -~ NY is a group completion,
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§4. Matrices with entries in A, ring spaces

Let X bea (L, H)-space, where (L, M) is any operad pair, and con-
sider the set MnX of nXn matrices with entries in X. Clearly M, X is a
g-space, namely the nz—fold Cartesion product of the ( -space X with itself.
We wish to show that if (¥, #) is an A_ operad pair, then, while M X is not
an A, ring space, it is at least a {multiplicative) A, space. Even this much is
non-trivial, since MnX is not actually a H -space.

Since M X is certainly not commutative, it is convenient to first elim ~
inate the extraneous actions by symmetric groups on the spaces H (j); these serve
only to handle commutativity homotopies in the general theory of operads. Thus
assume now that A is a non-T operad, inthe sense of [10,3,12]. By [10,3.13],

a typical A operad has the form A x M (with jth space H(5) %X Zj) for some
non-X operad ¥ with each H (j) contractible. An action of M on the operad ¢
is given by maps

N AR X E )X x G0 = Ty
with the properties specified in [12,V1.1, 6] (see Remark 1.2), except that its ex-
traneous equivariance condition (¢) must be deleted. A slight elaboration of
{10,3.13 ] shows that the non-Z operad Y acts on £ if and only if the operad
H x M acts on E. A(( .Y )-space is defined to be a ¢ -space and
?j o Space X such that the additive action CX — X is a map of :&O—spaces, and
the notions of ([ ,Xj )-space and (C,} x M)-space are then equivalent. There-
fore the theory of A | ring spaces may as well be developed in terms of (&, H)-
spaces for an E';10 operad £ and a non-T operad ;J with each ,21(3) contractible.
However, the work in the vest of this section requires only that £ bvean operad
acted upon by a non-Z operad }j and that X be a (C, H )-space. Let

ej:(l?(j)xxj -~ X  and £ B xxd - x

denote the actions of C and of }1 on X,
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We want to use matrix multiplication to define an AOO space structure on
MnX' Obviously this entails use of both the multiplication and the addition on X.
We are quite happy to use arbitrary j-fold products, that is, the products given by
arbitrary elements of M (3}, We are less happy to use arbitrary 2 go1d
additions, but, since a canonical addition is present only in the trivial case of

actual commutativity, with C = n , we have no choice. Thus define

. j-1 B

H G = Cl ) x H3).

Let T{j} denote the set of all sequences U = (uo, ey uj,} with 1< u, <n and
order T{j) lexicographically. Let T(r,s,j) denote the subset of those U such
that u, =T and uj = 8, Define

. ; i

¥yt H () X (M _X) M X
- th :

by the following formula, where x{(r,s) denotes the (r,s) entry of a matrix x.

J
. (e X E(g; X x (u ,,u))).
D g eT(r,,9) % q=1 TaTat

1 e, g%, .00, x )r,8) =0

(1) ylemx BIENS
All we have done is to write down ordinary iterated matrix multiplication,

allowing for parametrized families of both multiplications and additions on the

underlying "ring?., The rest of this section will be devoted to the proof of the

following result.

Theorem 4.1. The M n()) are the jth spaces of a non-Z operad N n?
and the maps qu specify an action of ﬁn on MnX.

Proof. By convention, %n(o) = {*} and Y, is the inclusion of the
identity matrix I in M _X. Let 1=(1,1)e &(1) X Hay = ¥ _(1). Clearly

q)l(l) is the identity map of M X. We must specify maps

ve H )X H G )Xo X H () = H () G=ig+. +ips

with respect to which H isan operad and which make the following diagram com-

mute, where pu is the evident shuffle homeomorphism:
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. R
H 00X H (50 %X M) x (v x) e X () > v x)) —b mx
(%) iXp e

IXd, Xao X,
by X Xy

§

H_ ()X H_(3,) % (M_X) fx H_(3,) % (M X) K LN }in(k)x{Mnx)k
(Compare [10,1.5].) We first chase the diagram to see how vy must be defined
and then verify that, with this definition, ;Un is an operad. In principle, the
details are perfectly straightforward: one does what one has to do and it works.
However, since I omitted all such routine verifications from [12] and since this one
is much less intuitively obvious than most, I will try to give some idea of the com-
binatorics involved,

We first calculate the composite around the bottom of the diagram (%),

By (1), we have

(2) LPk(lele Xooa X4, NAX W)(e, giC s @y res €y i%Xysens .xj)(r, s)

1 k
k
=8 (C; X g (g; X z (u s U )))»
k-1 -1

n UeT{r,s,k} k™ q=1 2 4 4
where, with eq =y +e.. +Jq,
(3) z_ = ¢, (¢ ,g i x ,% beeenX_ ).

+1 " 7e +2 e

4 Jg 7% %qa q-1 q

1f j =0, then z_=1. Since X isa H -space,
q a 0

= 0 if j =0 and u u for an .
) ig 174y y 49

k
4 s X z (u ,u
(49 & (2 o) a1

Let {q1,...,qm} , m £k, denote those q, in order, such that jq> 0 and set

(5} i=j ,d=e ,b=c ,f =g ,andy =z for 1< p £ m.
q
P qp p qp P qP P qp P o
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. . _ th .
Let S(Ji,...,Jk) € }1(81) X... X 71(€k), g, = 0or 4, have g coordinate

1¢ B (1) if jq>0 and qth coordinate * ¢ H(0) if jqr 0. Set

(6) i= Y(g;s(jl’.'.’jk)) € ﬂ(m},

If Ue T(k) satisfies u =ua, whenever jq= 0, define V = (vo....,vm)e T{m)

q-1

by deletion of the duplicated entries uq. Then, since | ¢ X is the basepoint for

q_i,uq) =1 =0,

Bgptg) =l Xy vl

the M -action and zq(u

k
€. (g
(7) e B (

z
={ 4
Note that each V ¢ T(m) arises uniquely from sucha U e T(k) and let

. . ) th .
t(]i,...,_]k) € C(Ei) Xooo X C(gnm_i), £.= 0or 1, have r  coordinate

h th
1e (1) if jq= 0 implies uq—i = uq for the r " element U e T(k) and r

coordinate * ¢ { (0) otherwise. Set

(8  b=yleithy,....i)e T,

Since 0 ¢ X is the basepoint for the € -action, (4)-(8) imply

k
8 c3 X 3 Xz {u ,u
© "k’i( UeT(r,s,k) gk(g g=1 q< q-1 q)))
b f r)r(‘x y (v v )
i en _1( ’VETZ(r,s,Hl)g (,P=1 P( p-1"'p )

Evaluating Yp by {1), (3), and (5) and then using the definition, [12,VI. 1.8 and
V1. 1.10], of a ({ , M )-space, we find

m

m
10 £3 X s = f: X 8 b ; X W
{10) &m( ’p=1yp("p-1 "p)) &m( oW nlp_1( W Tl vt )Y( p))}
P p-1"'p''p
S MG ()

m ) .

HeSn beeasnl

where if sz (Wp,O"”’W i e T(ip), then

Plp

. X
p’ =1 *a +t

(11) y(w) = & (
p p-1

b Wy, t12¥p, )
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i -1
andif H=(h,,...,h_ ) with 1<h <nP , then
i m - p

m th . th .
€ coordi o
(12) YH(V) X has p rdinate the hp coordinate
of X w).
W eT(v ,v,i)Y( P)
pp-Upp

By (10) and the definition of a |o-space [10,1.3 or 12,VL. 1.3],

m
(13) 6 (s X & (£: % y (v v )
nm-i VeT(r,s,m) m ,P=1 pop-"'p
nm—i
=0 (sl ) ); X . x £ (G y, (V).
n: VeT{r,s,m) i, -1 i -1
1 m
HeS(n~ ,...,n )

Here )\(f;bi,...,b
m-1

m) € C(nJ_m), since i, +... +i = j, hence application of

v(b;-) toitsn st power yields an element of @(njﬁi). Further, by (11),(12),

and the definition of a .?3 -space,

(1) € Gy V) =BG, ) X

u ),
m qst Xq(uq-l’ )]

q
where UH(V) = (uo,., - ,uj) e T(j) is the sequence

w cees W, L, see s Wy L s eas 3 W s WL
( 1,0° ? 1,11 2,1 P72, m,1’ ! m,lm)
s o th
obtained by splicing together the hp-— elements Wp of the ordered sets

T(vp_i,v ,ip) for 1< p<m. As V runsthrough T(r,s,m) and H runs

P
ii—i im-i
through S(n sees,n ). UH(V) runs through T(r,s,j). Let { ¢ Z j-1 be
b}
that permutation which changes the given lexicographic ordering of T{r,s,j} to the
ordering specified by UH(V) < UH'(V‘) if V<V' orif V=V' and H< H'
(in the lexicographic ordering; see [12,VI.1.4]). Substituting (14) into (13},

(13) into {9), and (9) into (2) and using the evident equivariance identification

(to rearrange "addends"), we arrive at the formula
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{15} ¢k(1x4;jix. 4 \pj )(1X;.L)(c,g;ci, Bpore s O B Ky o nn ,xj}(r,s)

k
6 . (y(bsn( e E (L e ) % x ( M
= . sxi{i;b b : X H . ¢+ X x {u u
_i Y ? ? vy Ed 'Y £ 3esey s M _1 *
ol t m UeT(r,s,j) ) t m’ g g a9t g

Comparing (1) and (15), we see that the diagram (*) will commute pro-

vided that we define

m-1

n
(16) Y(C, gicis g13'° "Ck’ gk) = (\'(bs}\-{&bls-- B abm) )gs Y(fsf.l’ see »fm)) -

Here, when jq =0, (cq,gq) = * and we may think of g4 as * e H(0); (5),(6),

and the definition of an operad then imply

(17) Y(Efs et ) = vlgsgs. g
No such reinterpretation of the first factor of {16} is possible (as we would have to
interpret Cq as an element of C(n-i) to make the numbers work out).

We must show that, with this definition, ,}:Jn is a non-X operad.
Certainly vy(l5c,g) = {(c,g) and vy(c,g; 1k) = (c,g) for (c,g)e .’b/n (k), by
[12,VI.1.6(b) and (b")]. It remains to check the associativity formula [12,VI, 1.2(a)]
for iteration of the maps vy, and the reader who has followed the combinatorics so
far should not have too much trouble carrying out the requisite verification for
himself, The details involve use of the corresponding associativity formulas for
E and M, the equivariance formulas [12,V1, 1.2(c) and VI. 1. 6(c'}], the inter-
action formulas [12,VI.1,6(a) and (2')] as corrected in Remark 1.2, and a rather

horrendous check that the permutations come out right.
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§5. Strong homotopy (&, H)-spaces and matrix rings

In this rather speculative section (which will play little part in our later
work), we make an initial definition in the direction of an up to homotopy elabora-
tion of the theories of A | and E,, ring spaces and explain its likely relevance to the
matrix *rings® studied in the previous section.

Lada, in[2,V], has developed an up to homotopy generalization of the
theory of C—spaces. (See [13,§6] for a sketch.) His theory is based on use of the
associated monad C, and the essential starting point of the analogous up te homo-
topy generalization of the theory of ({, H)-spaces surely must be the fact that C
restricts to a monad in the category of Ho-spaces. The following definition should
be appropriate.

Definition 5,1, Let (,MH) be an operad pair (where H might be a
non-Z operad). A strong homotopy, or sh, (L ,# )-space X is a c-space
(X,8) with basepoint 0 and a /CIO-space (X, &) with basepoint 1 such that

9:CX - X is an sh G-map.

The notion of an sh G-map is defined and discussed in {2,V §3]. It is
required that the basic distributivity diagram

Go

GCX ——r——— GX

&1 lé

8

cX———— X

3

the commutativity of which is the defining property of a (C’, A )-space, should
homotopy commute and that this homotopy should be the first of an infinite sequence
of higher coherence homotopies.

More general notions of sh (§,H )-spaces, with X only an sh Gy—space

or only an sh H -space, surely also exist but would be much more complicated.
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Unfortunately, the most general notion would presumably be essential to a fully
homotopy invariant theory.

I would hope that if X is an sh {{,# )-space, then there is an actual
(K W H }-space UX equivalent to X in an appropriately structured way, so that the
passage from A, ring spaces to A _  ring spectra and from E | ring spaces to Eg,
ring spectra directly generalizes to sh {&, H)-spaces for suitable pairs (£, #).
This would be in analogy to Lada's one operad theory, and his cubical bar con-
struction UX = %(C,C, X} of [2,V §2] would be the obvious candidate for UX.
However, I have not attempted to pursue these ideas.

We return to consideration of M X for a (£, H )-space X, with 4 being
a non-Z operad for convenience. As formulae (4.16) and (4.17) make clear, pro-
jection on the second factor gives a morphism of non-Z operads _2>/n - M .
Therefore an acts on & by pullback of the action of ﬂ on ( . However, MnX
is not a (& ,}(n)-space because the distributivity diagram fails to commute (for this
or any other action of J&{n on 5). As explained in [12,VI §1 and 2, p.77], the dia-
gram in question results by passage to disjoint unions and then to quotients from

the following diagrams:
1x 63 XX 8,

b J J
H ) X £y X (M%) XL x B X (M X) S S 09 x (M x)
IXp
. ‘ iy UN Y
xn(k) X ?Z(jl) X .o X C(jk) X (MnX) XX (M X)
(%) AXAXE M X
&
H 007 X TG X x 6, x (a3
e,
N J
: o x )

24,00 X E()X cen X E ()X (K00 x (v 30! - £ x (M%)
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Here j= ji- . -jk , the p are shuffle homeomorphisms, A is the iterated diagonal,
2

Yy is as defined in formula {4.1), the ej give the additive action on (MnX) =xX",

and

J j .
ts:(MnX)1 X ... X (MnX)jk - ((MnX)k)‘}

is specified by

6(y1, ven ,yk) = X 1 with
165(31, “es ’jk)

V1 =(xii ”"’Xk') if y =(xqi,...,x . ).

1 i q aég

The following result shows that, as far as the relationships between any
homological and homotopical invariants of the maps Gj and lyk go, any results
valid for Aoo ring spaces are also valid for matrix rings with entries in Aoo ring
spaces. {Compare the analysis of the homology of E,, ring spaces in [2,11]; we

shall return to this point in section 9.)

Proposition 5.2. I X isa (&, h)~space, where £ is an Eoo operad and
ﬁ is any non~X operad which acts on {, then the diagram (*) is

Zj X... X Ej ~equivariantly homotopy commutative.
1 k

Proof. On the one hand, the corresponding diagram for the (C‘,ﬂ )-space
X, formula (4,1), and the diagram which expresses that X is a & -space [10,1,5]
imply
(1) ¢k(1xej X... XSj )(c,g;ci,yi,...,ck,‘;’k)
1 k
k-1

=9 nk~1(\'(c‘7\(g;c1""’ck)n oo X X £, (& y, (0,

J Ue T{r,s,k) IeS(ji,...,jk)

= .1
where YI(U) (xﬁi(uo,ui), e 'xkik(uk~1'uk))‘ On the other hand, formula (4.1)

and the fact that X isa G -space imply

(2) 00X UBA X X 8)(E X k)(er g5 €0y reees Spo )

=0 (Y egie e i)

; €, (g5 v (U)))-

X X
Ie S(ji,..., jk) UeT{r,s,k}
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No definition of A\(c, g; Cysenns Ck) will make the right sides of (1) and (2) agree,
and we take the pullback definition \{g; Cprvens ck). In view of the difference in
order of appearance of the indexing sets S(ji’ e ,jk) and T{r,s, k), the addends
in (1) and (2) differ by a permutation v ¢ zjnk'i' The maps

foge H () X CG,)% ... x £~ E6n)

specified by
nk—i
f(c,g;c1,...,ck) = y(c;x(g;ci,...,ck) )

and
J
g(c,g;cl,...,ck) = y(x(g;ci,...,ck);c v

are L, X ... X Z, -equivariant, where the action of this group on C’(jnk'i) is
1 k

determined by its tensorial embedding in Ej [10,V1.1.4], the diagonal embedding

of Zj in (Ej)n » and the block sum embedding of the latter in =
in

ket ® Since ¢

is an Ecx:) operad, the domain and codomain of f and g are Zj X,.. X Ej -free
1 k

and contractible, hence f and g are equivariantly homotopic. The conclusion
follows.

Of course, if we had chosen to work with permutations in our maultiplica-
tive operads, then the diagram (*) would be Zk XZ, X...XZ, ~equivariantly

Iq Ik

homotopy commutative.

1f the homotopies of the proposition can be chosen with suitable com-

patibility as k and the jq vary, they will together yield the first of the infinite

sequence of homotopies needed to verify the following assertion.

Conjecture 5.3, If X is a (E’, 4 )-space, where £ isan Eoo operad and

H s any non-I operad which acts on & , then M X is an sh (C’,},{n)-space.

With & an Eoo operad and each 8(;) contractible, the notion of an sh

(£, H)-space is an up to homotopy generalization of the notion of an Aoo ring space.
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The conjecture gives the appropriate sense in which it might be true that MnX is
an A  ring space if X is an A, ring space.

The proof of Proposition 5.2 is precisely analogous to that of [10,1,9(ii)],
which gives a similar result about the product ¢ ona oy -space when £ is an Eoo
operad. Lada [¢] has studied the passage from that result to the assertion that ¢
is an sh C-map, and the problems he encountered there illustrate what would be

involved in a proof of Conjecture 5.3,

§6. The comparison between M_X and M_ X
n n+l

As in section 4, let X bea (), ﬁ)nspace, where C’ is any operad and /?j
is any non-ZT operad which acts on X. We have exhibited a (T -space structure and
an }{n—space structure on MnX’ where }In(j) = £ (nj_l) x M (j), and have studied
the relationship between these actions. We here study the relationship between
MnX and Mn X. We adopt the notations of section 4, but with an identifying

+1

subscript n where necessary for clarity. Let Vn: MnX - Mn+lx denote the

natural inclusion. First consider the diagram

R 8 .
. j nj
_n
Tliyx (M_X) M X
1 X v‘] v
n n
i en+l ]
EOY x (M, %) M, X

Here Bn and Gn are determined entrywise from the action of @ on X, and this

+1

th
diagram certainly commutes on the (r,s)  matrix entries for r< n and s < n.
i . . th . se s
Similarly, both composites always give (r,s) matrix entry 0 if either but not both
of r and s is n+l. However, for c e {{j} and X, € M X, we have

Vnenj(c’xi’ cee ,xj)(n+1,n+1) =1

but

) (1 X v)c,x

j _ L qd
41, j o 1,...,xj)(n+1,n+i) = Gj(c,i ) .
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Thus v fails to be a {&-map. Indeed, as for discrete rings, 1 and 9,(0;15) lie in
J

different components in all non-trivial cases since, by [12,p.140], X is contractible

if 0 and 1 lie in the same component. For the multiplicative structures, we have

the following result. Its hypothesis &(1) = {1} will be discussed after the proof.

Theorem 6.1. Assume that ( (1) is the point 1. For each nx 1, there
is a map 7 ¢ ‘#n-i-i - fj:én of non-Z operads such that v MnX - Mn-}—iX is an

4

gl EDs where MnX is an J~/n+1-space by pullback along L

.th
Proof. Let tnj € C’(Ei) X... X C(E(n+i)j,1), € =0or1, havei

h
coordinate * ¢ & (0) if the i* element Ue T (j-2) has any uq: n+1 and have

n+4

th
i coordinate e & {1) otherwise. Observe that if elements of Tn+i(j-2) are
written in the form U = (ui, PR ’uj 1), then U ‘—*(r,ui, e ,uj_i,s) gives a

bijective correspondence between the orderedsets Tn (j-2) and Tn (r,s,j) for

+1 +1

each r and g between 1 and n+1. Define

roi A0 = Elary T x #6) ~ T x 86 = > 6)

nj
by

'rnj(c, g) = (v(c; tnj), g)-

By convention, -rno(*) =% and t  =te £ (1) so that T _, is the identity map.

i nil

Another laborious combinatorial argument, which uses formula (4.16), the
associativity and equivariance formulas for the operad ¥ [12,VI. L 2{a) and {c}},
the interaction, unit, and equivariance formulas [12,VI1.1.6(a'}, (b'}, {c')] for the
action of ¥ on § (see Remark 1.2), and a careful consideration of permutations
based on the description of { given after formula (4. 14} shows that the following

diagrams commute.

Hop g G X H G % X H ) —— > H,, 0 +een +3)

n

T . .
n,31+...+3k

H WX H GIXoon x M () ——L—— H G +.en +]y)
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Thus T is a map of non-Z operads. Now consider the following diagrams.

5L g xmx) e x
n‘] n n

Ay )% (M X))

1 X v
n
¢n+1,j - M

; J
X (M X
yn+1 ()= ( n+i )
Our claim is that these diagrams commute, and it is for this that we require c(l)

to be a point. Consider

¢n+1,j(c’g; Yi’ LI Yj)(r: 8)
J
(e X éj(g;q>=<1 Yq(uq_i,uq))) ,

[} j-1 5
n+i W™ 5
(n+1) Ue T, (r,8,5)

where c ¢ cso((n+1)‘]-1), ge H(j), and y, = vn(x,). The U™ factor on the right is
1

If r<nand s<n,

and uq is n+t for any q.

0 ¢ X if either but not both of uq_1

it follows that the right side is equal to

6 J._1(\((<*-;‘cnj);

o VeT (r,8,j)

= ¢j(Tnj(c, g);xi, - ,xj)(r, 8) .

If either but not both of r and s is n+i, then, for any Ue Tn+1(r,s,j), there
existe q such that either but not both of uq i and uq is n+1, hence

ij(c,g;yi, . ,yj)(r, s) = 0. We therefore have
(1% vr‘]l)(c,g;xi,--a:xj)(ro £) .

X 1)(C: g;xi’ ceo ,Xj)(l‘, 5) = ¢n+1,j

anpnj(Tnj

as desired, unless r = s = ntl. Here we find that the left side is 1 ¢ X

whereas the right side reduces to
] . q{c30,...,0,1) = 6, (y(c;s_.
(n+1) ! t nj
wher e i-t
; n+i -1
8 - (*9-' 5*:1)5 6(0)( ) xC(")'

nj_
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Indeed, all elements of Tn+1(n+1,n+1,j) except the last have either but not both of

-1 and uq equal to nt+l for some q, whereas the last U is (n+l,...,n+l) for

J
which yq(n+1,n+1) =1 and gj(g; S 1) = 1. The assumption (3(1) = {1} ensures
that vy{c; Snj) = 1 and therefore Qi(y(c; snj); 1) = 1,

Unfortunately, it is not in general the case that ({1} = {1}; for example,
this fails for the canonical E_, operad Koo used in section 3. We could avoid
this assumption by appealing to Lada's theory. The contractibility of ¢{1) can be

used to prove that v is an sh Hn -map. However, this solution (which I

+
worked out in detail in an earlier draft) leads to further complications in later
sections. Our preferred solution is to prove that A ring spaces can be
functorially replaced by equivalent A, ring spaces with respect to a different Ay
operad pair for which (1) is a point. This replacement process works equally
well in the E,, ring context.

We exploit the fact that the particular E_, operad Bof [11,§4] has
R (1) = {1}. Moreover, as explained in [12,Vi§2 and 4], & acts on itself and thus
(@ , Q) isan E_ operad pair. Let (.4 ) be any operad pair such that £ is an
£, operad. A might be either an A oran E_ . operad. By use of products

and projections, we then have operad pairs, and maps thereof,

(’71»“1) (“2’1)

(Cx®, A xQ)

(€, x) (R AxXY-
Therefore (¢, X )-spacesare (6 X0, A X ® )}-spaces by pullback, while both
D and C XD are monads in the category of ( M X Q)O-spaces and 'rrZ:C XD ~D
is a morphism of monads in this category.

We proceed to construct a functor W from {( , A )-spaces to
(@ s HX Q)-spaces. As explained in [12,V1.2.7(iii)], there is a functor W from

c -spaces to Q-spaces specified in terms of the two-sided bar construction of

[10,§9] by WX = B(D,C XD, X) and there is a natural diagram of (& x 0 )-spaces
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B
x<~Et B(CxD,C XD,X)~—2—->B(D.C XD,X) = WX,

Here € is a homotopy equivalence with a natural homotopy inverse and Brrz is
also an equivalence. Technically, we should assume or arrange {without loss of
structure by an elaboration of the arguments in [10,A.8 and A,11 ]) that 1 ¢ &)
and 0 ¢ X are non-degenerate basepoints, so that the simplicial spaces used in

our constructions are proper [10,11.2 and 11,A.5]. We have the following result.

Proposition 6.2, If X isa (¢, &)-space, then WX is a
, }JXQ)-space, B(CXD,CxD,X) isa (¢ x&, Ax D)-space, and € and
Bm, are maps of (Ex®, x4 )-spaces.

Proof. By formal verifications from [10,9.6 and 9. 9], the action
DWX - WX of D on WX, the actionof CX D on B(C XD,C X D,X), and & and
Bm, are all geometric realizations of maps of simplicial { A X 'Q)O-spaces and are
therefore maps of { f X X )O-spaces by [10,12.2].

Clearly, we may as well start our analysis of matrix rings of A ring
spaces by first replacing X by WX, In particular, our assumption that

G (1) = {1} results in no real loss of generality. This construction also handles a

different technical problem, one that we have heretofore ignored.

Remarks 6.3, As explained in [12,VII§1 and 2], Kw and the product operads
4
Q = X H necessary to the proof of the recognition principle in section 3
are only partial operads and their associated monads are only partial monads,
However, it is not hard to see that our replacement argument above works perfectly
well for such ¢ . Thus, by use of the functor W, we may assume without loss of
generality that all operads in sight are honest operads in the development of the

present theory since ) and all multiplicative operads (see [12,p.178]) are honest,
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Remarks 6.4, By the method of proof of Theorem 6.1, one can construct maps
Tt :
Pq xp+q 9¥p+

block sum of matrices 1M XXM X - M X specifies an -map, where
P q ptq ptq

- % and -+
p

—~ 3 of non-Z operads such that the usual
Pd q q

M X and M X are regarded as -spaces by pullback along T and 7'
P q & 94p+q P yP & P4 P4

respectively and where MPX X MqX is given the product ;gp+q—structure [10,1.7].
From this point of view, the problem with ¢{1) above simply reflects the fact that
the inclusion {1} =X = M1X is not an .Saél-map unless (1) = {1}. In order for

these sum maps to be useful, one would have to understand their stabilization, that

is, to analyze the diagrams

v _Xvy

MXXMX —2 S om XxM , X
P q +

p+! q+l

<] 2]

Votqrl ® Vp+
M ox PI9T  P¥I L g X
p+q p+qtl

If X is a ring, these composites obviously differ only by conjugation by a per-
mutation matrix. In general, the definition of such a conjugation entails an arbi-
trary choice of product and yields only a homotopy commutative diagram. A full
analysis of the situation would presumably entail application of Lada's theory of

strong homotopy maps.
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§7. The Algebraic K-theory of A, ring spaces

Let (&, H) bean A, operad pair. A (&, H)-space X will be said to

be grouplike if w X 1is a group under addition and therefore a ring rather than just

0
a semi-ring. Up to weak equivalence then, X is a grouplike A ring space if and
only if it is the zeroth space of an Aoo ring spectrum,

For a grouplike (&, /4 )-space X, define FM X to be the pullback in the

following diagram, where d denotes the discretization map.

FM X —r—— M X
o) n

|k

GL(n, wOX) ———»Mn(rrOX)
That is, FMnX is the space of unit components in MnX. The notation ig chosen in
A
analogy with that in Remarks 2. 4; Waldhausen would write GL (X) for FMnX. if
X is a discrete ring then FM X = GL(n, X); for general topological rings, FM X
is larger than GL(n,X). We reiterate that 0 and 1 must be in different components
for non~triviality, Clearly v maps FM X into FM_,.X. If each y_is a co-
n n n+l n
fibration, we let FMOOX denote the union of the FMnX; othe rwise we let FMOOX

be their telescope. It is the purpose of this section to prove that FMODX has a

functorial delooping.

Theorem 7.1, There is a functor T from grouplike ({7, ﬁ)-spaces to
connected based spaces together with a natural weak equivalence between QTX and
FM X,

oo

In particular, 7. TX = 'H'OFMOOX = GL{oo,TrOX) has a perfect commutator

1
subgroup. Replacing TX by a naturally weakly equivalent CW-complex if

necessary, we can take its plus construction in the sense of Quillen {see e. g. [21,

§1]). We have the following definition of the algebraic K-theory of A _ ring spaces.
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Definition 7.2, Let i:TX -~ KX be the plus construction of TX, so that
i induces an isomorphism on homology and KX is a simple space. KX is called
the connected algebraic K-space of X. For q >0, let qu = nq(KX). KqX is

called the qth algebraic K-group of X.

Remarks 7.3. As a space, FMnX is just the union of some of the components of
MnX = an and each of these components is equivalent to the component SFMnX
of the identity matrix. Indeed, FMnX is equivalent, although not in general as an
H-space, to SFM X X GL(n,WOX) [2,1.4.6]. Further, SFM _X is equivalent to the
component of the zero matrix, and the latter is just MDX where X  is the com-

0 0

ponent of zero in X {and M X and MnX are additive infinite loop spaces). It

0
follows that, for g> 0, TquMCOX ig the direct sum of infinitely many copies of

maps this group naturally to K X.

* q+l

-rqu; of course, i
Remarks 7.4, By restriction tothe spaces SFMnX, the proof of Theorem 7.1 will
yield a functor UT from grouplike ({, 4 )= spaces to simply connected based
spaces together with a natural weak equivalence between QUTX and

SFMCOX = Tel SFMHX and a natural map UTX - TX compatible with the weak

equivalences. Thus, homotopically, UTX will be the universal cover of TX,

The rest of this section will be devoted to the proof of Theorem 7.1. We
begin by reviewing the basic theory of classifying spaces of A_ | spaces. Let A
be an A, operad. There is a functor V from /-Zf—spaces to topological monoids
specified in terms of the two-sided bar construction of [10,§9} by VX = B(M, G, X).
Here M denotes the free monoid, or James construction, monad. The augmenta-
tion &: H - M  induces a map of monads 6:G - M, and we obtain a natural
diagram of H-maps

(1) X+t  B(G,GX) —25 s B(M,G,X) = VX .
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Here £ is a homotopy equivalence with a natural homotopy inverse. The map Bé6
is also a homotopy equivalence (by [11, A.2(ii)], in which the connectivity assump-
tion of [10,13.5] is removed). If X is itself a monoid considered as a % -space
by pullback along 6§, there is a natural composite

(2) VX = B(M, G, X) —22 5 B(M, M, X) —5—> X

which is both a map of monoids and a homotopy equivalence. If X = GY for a based
space Y, there is a natural equivalence of monoids VX = MY. Moreover, all of
this is natural with respect to maps of A, operads. See [10,13.5] for details.

We can therefore deloop A ~-spaces by applying the standard product-
preserving classifying space functor B of [17 or 9,§7-8] to VX. For our
purposes, the crucial property of B is that there is a natural map §:X » @BX
for monoids X such that [ is a weak equivalence if T(OX is a group (e.g.[9,8.7]).

Turning to the proof of Theorem 7.1, fix an A operad pair ( § , ﬂJ) and
construct A, operads Xn as in section 4 (either crossing with M to obtain
actual operads, with permutations, or rephrasing the arguments above in terms of
non-= operads). By use of the argument at the end of the previous section, replac-
ing X by WX if necessary, we may assume without loss of generality that

G(1y= {1}.
Clearly Theorems 4.1 and 6.1 imply that FMnX is a sub )f—n—space of

M_X and that v_ restricts to an M -map FM X -+ FM X, where FM X is
n n n+ n n

1 n+l

an J(nﬂ-space by pullback along Tt }/ - }fn. Write Vn for the functor V

n+l

above defined with respect to the operad Jq‘n. Consider the following maps, where

the notation on the left abbreviates that on the right.



274

V FM X === B(M,H ,FM X)
n n n n

TnI TB(I,TQ,I)
VouFMX =—==== B(MH_,FMX)
Vn_anl J B(l.l,vn)
¥ X
VnH Mn+1 B(M, Hn+1 ’ FMn-H.X)

Again, in order to ensure that all simplicial spaces involved in our con-
structions are proper [10,11.2 and 11, A. 5], we should assume or arrange that
Ine FMnX and 1le }!n(l) are nondegenerate basepoints before applying the
functors Vn and B; see [10,p.127 and 167-171]. With this precaution, we have the

following result.

L a 7.5. : F - i ival .
emm Tn Vn+1 MnX vnFMnX is a homotopy equivalence
Therefore B’rn is also a homotopy equivalence,

Proof. By [I1, A, 2(ii)], T HL, Y -~ HnY is a homotopy equivalence for

1
any ﬂn-space Y. By an argument just like the proof of [11, A, 4 (see 16, 5.5 and
5.6)], Mif:MX - MX' is a homotopy equivalence for any homotopy equivalence

f:X = X', Therefore B(l, T 1) is a homotopy equivalence by [11, A, 4(ii)], and

the conclusion for B-rn follows from the same result; see [9,p.32].

At this point, we could choose a homotopy inverse (B'rn)_l to B'rn and
let TX be the telescope of the spaces BVnFMnX. However, we would then run
into a naturality problem. Certainly (B-rn)—1 is natural up to homotopy since
B*rn is natural {by a trivial formal argument)}, but functoriality up to homotopy of
the telescope would require (BTn)-l to be natural up to natural homotopy. In fact,
tracing very carefully through the proofs cited above, one may check that (B'rn)"l
can be so chosen, but there is a much simpler and more precise solution to the

problem.
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Definition 7.6. Construct TX as follows, Let TnX be the reduced

double mapping cylinder
+
"
BV.FM. X |J (BV  FMXAL)| ] BV, .

B'rn an-l-l Vo

lFMnHX

and let TX be obtained from the disjoint union of the TnX by identifying the top,
BVFM X, of T X with the bottom, BVFM X, of T X for n>1. Clearly T
n n n-1 n n n
is then the object function of a functor from ({, M )-spaces to connected based
spaces.
Visibly, TX is homotopy equivalent to the telescope of the BVnFMnX with

-1
respect to composites (BVn+ v (B-rn) , any questions of naturality being thrown

1 n)
irrelevantly onto the choice of equivalence. The properties of T stated in

Theorem 7.1 are immediate from the definition and the general theory discussed

above.

Remarks 7.7. One would like to construct a product TX X TX -» TX {not an
H-space structure of course) by use of block sum of matrices so as to be able to
obtain an H-space structure on KX by mimicry of Wagoner's proof [21,§1] in the

case when X is a discrete ring. The main obstruction is explained in Remarks 6. 4.

§8. Monomial matrices and QO(BFX Al {o})

As before, let (£, M) be an A operad pair and let X be a grouplike
{ f , M }-space. Let FX = FMIX be the space of unit components of X and let
SFX be the component of 1 ¢ X. Then FX and SFX are sub }j—spaces of X.
Let V be the functor of the previous section, defined with respect to }i , and
abbreviate BFX = BVFX and similarly for SFX., If FX is a topological monoid

regarded as a 4 ~space by pullback, then this classifying space agrees up to
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natural equivalence with the standard one. Write 2Z 1 {0} or Z+ interchange-
ably for the unjon of a space Z and a disjoint basepoint 0. (We agree never to use
the + notation for the plus construction.) Let QOY denote the component of zero
in the space QY. The purpose of this section is to construct a natural map
pQy(BFx L {0}) - KX

and thus a natural transformation from the stable homotopy groups of BFX+ to the
algebraic K-groups of X. Of course, v:(BFX+) is the direct sum of TI‘:BFX and
the stable stem 'n-: = -rr:SO. When X = QSO, such a map was asserted to exist by

Waldhausen [22,§2].

The construction is based on the use of monomial matrices.

Definition 8.1,  Let FnX denote the subspace of FMnX which consists
of the monomial matrices with entries in FX, namely those matrices with pre-
cisely one non-zero entry in each row and column and all non-zero entries in FX,
Let FooX denote the telescope of the an with respect to the restrictions of the
maps v,. Similarly, let SFnX denote the space of monomial matrices with

entries in SFX and let SFOOX = Tel SFnX.

As will become clear below, it is immediate from formula (4.1) that FnX
and SFnX are sub Q‘f'n-spaces of FMnX. The arguments of the previous section
can be carried out word for word with FMnX replaced by FnX. There results the
following analog of Theorem 7.1.

Theorem 8.2, There is a functor P from grouplike (C, A }-spaces to
connected based spaces together with a natural weak equivalence between QFX
and FOOX. Moreover, there is a natural map PX = TX the loop of which agrees

under the weak equivalences withthe inclusion FooX - FMOOX.
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In particular, . PX = 7 FOOX = colim w

F X, It will soon become
1 0 n

0
apparent that wOFnX is the wreath product Zlnf ’H'OFX. It follows easily that

11'1PX has a perfect commutator subgroup (see [7,1.2]), and this will also drop out
of our arguments below since they will give a homology isomorphism from PX to

the simple space QO(BFX_LL{O}}. This homology isomorphism will immediately

imply the following theorem.

Theorem 8.3. The plus construction on PX is naturally equivalent to
QO(BFX_U_{O}), hence the map PX - TX induces a natural {up to homotopy) map

p.ZQO(BFX_U_ {0}) - KX,

Remarks 8. 4. Replacing FnX by SFnX throughout, we obtain SPX, a natural
weak equivalence between QSPX and SFOOX, and a natural map SPX - PX com-
patible with the weak equivalences. Moreover, the plus construction on SPX is
naturally equivalent to QO(BSFX 1l {0}) and the resulting map from this space to

KX agrees with the restriction of .

Remarks 8.5. There is a natural inclusion ZFX = BFX (adjoint to
{ :FX = QBFX), hence u restricts to a natural map Q (ZFX 11{0}) = KX. Via the
basepoint of ZFX, there is a further natural restriction QSO -+ KX, Similar

remarks hold with F replaced by SF.

The rest of this section will be devoted to the proof of Theorem 8.3. We
begin with a well-known observation about the classifying spaces of wreath products
and an equally well-known consequence of the Barratt-{Quillen theorem.

Lemma 8.6. For a topological monoid X, B(anX) is naturally homeo-

morphic to EX_X _ (Bx)"
n
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Proof. Our conventions on wreath productsare in [2,p.51], B and E are
obtained as geometric realizations of certain simplicial spaces [9, p. 31}, We define

a ZJX-—equivariant homeomorphism of simplicial spaces

n
¢*:E*(znjx) ~ E,Z_ X (EX)

by the formula

4)(1[(0'1,3?1),.“,(0' ,Yq)](cq+i,y ) = ([Gi,..., g’q]ﬂ_q_-!-i’z) ,

q g+l

n n th .
where o, € zZ, v, = (x“,.. "xin) € X, and z € (EqX) has i coordinate

]

neer® o, x

[x s . is given b
1,0'2..-o'q+1(1)' Qs crq+i(1) g y

-1
Lqu ([Ui'”"vq}vqiﬂi’[xii""’Xqi]xq{—i,i""’{xin""’qul]xq+1,n)
= [(o'i'yi)x'--!(gqs yq)}(GQ'i"l’ Yq+1) ]

where v, = (x , X ). The conclusion

JEERNIS Ay L
a+1%q T4 "Tarq 1+

1!
follows gince realization commutes with products.

For a based space Y, the inclusion of Zn in 2 as the subgroup

n+1

n+i

fixing the last letter and the inclusion of v® invy as ¥ % {*} induce an

inclusion EZ X Yn - EX X Yn+1 .
n = n+l =
n n+i

Proposition 8.7. For connected spaces Y, there is a natural homology
isomorphism Tel EX_X_ ¥ - Q,(¥ L {0}).
n
+
Proof. For the E_ operad 8 of [10,§4 and 12, §2 and 4], the space DY

is precisely H ez x_ ¥" Let €=8x K_ (or N X & _ if one prefers
n I o o
n>0 n
+
to avoid partial operads) as in gection 3, and note that the projection CY+ -~ DY is
a homotopy equivalence by [11, A.2(ii})]. By Proposition 3.5, with multiplicative

structure ignored, QY+ is naturally a group completion of CY+. The conclusion

follows as in [2,1.5,10].
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We shall reduce Theorem 8.3 to an application of the previous two results.
For this purpose, we require an understanding of ZnIX when X isa M4-space

rather than a monoid.

Definition 8.8, Fora M -space X, define a H -gpace znfx as follows.
n A
As a space, ZHSX = Zn XX, The action §n of 4 on Z!JX is given by the maps
. ; ng o, n
§nj./'ﬁ(1)><(2nxx) Z XX

i . N n
specified for ge H {j), 7y € Z , and X, = (Xq,’l’ cens Xq,n) e X7 by

n J
£ {g30,,% 4000,0,%x,) ={o,c-0,, X £(g; X x .
nj = 4t 37 LR R R R . TS R C

Y-
(Technically, this formula is appropriate when f is taken as a non-Z operad;
compare section 4.) This is just the ordinary iterated wreath product, but with a
parametrized family of multiplications on X, Let v EnIX - Zn+1 X denote the
natural inclusion, and observe that Y. is a map of H -8paces.

We wish to commute the functor V past wreath products. The following
rather elaborate formal argument based on the maps displayed in (7.1) and (7. 2)
suffices.

Lemma 8.9. For et -spaces X, the horizontal arrows are homotopy

equivalences in the following commutative diagram of )&—spaces and A -maps,

where UX = B{G,G,X).

s fe = st
Ve S0 «B vz fx) Es z fx a2 » fux 2L sdvx
an an vn Vn p
n
z e = JBs
B 1
v(z_,, I%) <25 U(znﬂfx) £ anSx PR A, anjUX _—n_ﬂ_.z;nﬂfvx

Application of the functor V to this diagram gives a commutative diagram which

can be extended to the left and right by the commutative diagrams
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B
vz {x)e—EB8 VV(Z:n,SX) and  v(z_Jvx) £oBb znfvx
Vv VVv Vv v
n n 1 n
goBs £oBs
g ———— e e e
V(EnHSX) Vv(znﬂfx) v(znﬂjvx) B L I anjVX

The resulting composite diagram is a commutative diagram of maps of topological
monoids in which all horizontal arrows are homotopy equivalences.

Via the homotopy invariance properties of the classifying space functor B
[9,7.3(ii)] and the telescope, the previous result implies a chain of natural
equivalences of telescopes which, together with the first two results above, leads
to the following conclusion.

Theorem 8.10. For 8 -spaces X,there is a natural homotopy equivalence

Tel BV(z §X) ~ Tel Bz Jvx) = TelEx x_ (BVX)".
n n n =

n

Therefore there is a natural homology isomorphism

Tel BV(ZnSX) =~ Q,(BVX 1 {o})

We can now prove Theorem 8.3. By application of the previous theorem
to the ¥ -space FX, with BFX = BVFX by notational convention, it suffices to
prove the following result. The proof again makes strong use of the assumption

L (1) = {1} justified at the end of section 6,

Theorem 8.14. For grouplike (C’ M )-spaces X, there is a natural homo-
topy equivalence PX - Tel Bv(zanx),

Proof. Define a homeomorphism an:FnX - Z}njFX by sending a monomial
matrix x to (o,x{1),...,x{n)), where o ¢ z s specified by (i) = j if
x(1,j) # 0 and where x(j) = x(i,j) for this i. Let w1 X = H be the evident
projection of operads and regard EnSFX as an Jd-n—space by pullback along L

We claim first that o, is an %—n—map or, equivalently, that the actions
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-1
o £ wmH a and ¢ coincide on F X, Recall formula (4.1). Given x, ¢F X for
n nnnn n n i n
i<ig j, there is for each r between 4 and n a unique s between 41 andn and a
unique U e Tn(r,s,j) such that Xq(uq-i'uq) £ 0, If this U is the kth element of
Tn(r, 8,j) and if

1.k

B ey x g E,

= (% d # (
S njak (%% 4,800, %) e GO
then, for c e Gg(n‘]-i) and ge H(),

j
8 58 . € (g X x
1(vless oo )iés(e 1%

q;n,j(c,g;xi,...,xj)(r,s) (uq_i,u N

q

i}

J
gy X x {u__jsul)),
%g=g T ata

the last equality holding since vy(c;s =1¢ (1) by assumption, The claim

n,j,k)

follows by comparison with Definition 8.8. Now consider the following diagram.

anan B'rrn S
FX-—22_
BV F X BVn(Eanf() BV(Z ) FX)
L 3
Br BT
n n
an+1an B“n+1
—hr 2. —_—n FX
BV F, X BV (= (FX) BV(z {FX)
B
B‘{wivn BVn-HVn an
BV o B 1
n+l n+l n+i
—— e PO ———— e X
BVnHFnHX BVn-!-l(En-HSFX) BV(Zan )

The left horizontal arrows are homeomorphisms and the right horizontal arrows
are homotopy equivalences by [11, A,2(ii) and A, 4(ii)]. The diagram commutes by

naturality and the facts that T and v «

= = . he required
n Tt nn ozn_an The requ

natural equivalence PX — Tel BV(ZnSFX) follows by passage to reduced double

mapping cylinders and then to unions as in Definition 7. 6.
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§9. Some homotopical and homological properties of KX,

Again, let (L, M) be an A, operad pair and let X be a grouplike
(C, H)-space. From the point of view of analysis of its invariants, the
sophisticated functors Vn {and W) which entered into the construction of KX are of
no significance. They simply replace a given structured space by a homotopy
equivalent space with different structure. Thus, up to homotopy, only the classi-
fying space functor, the telescope, and the plus construction are involved. These
facts and Remarks 7.3 imply that the analysis of KX is considerably less refractory
than the complicated theory necessary for its construction would suggest.

We begin with two elementary homotopy invariance properties, which will
be seen later to be simultaneous generalizations of Waldhausen's assertions [22,1.1
and 2.3] and [22, 1.3 and 2.4].

Recall that a map f:X = Y is said to be an n-equivalence if wif is an
isomorphism for i < n and an epimorphism for i=n for all choices of basepoint

in X (and analogously for maps of pairs and for n-homology equivalences).

Proposition 9.1, If f:X — Y is a map of grouplike ( £, 4 )-spaces and an
n-equivalence, then Kf:KX — KY is an (n+l)-equivalence.

Proof., By Remarks 7.3, FMOOf:FMOOX -+ FMooY i3 an n-equivalence. By
Theorem 7.1, Tf:TX - TY is thus an (ntl)-equivalence. Therefore Tf and thus
also Kf are {n+l)-homology equivalences. Since KX and KY are simple spaces,

the conclusion follows by the Whitehead theorem.

We next want the relative version of this result, and we need some pre-
liminaries in order to take account of the non-existence of an unstable relative
Whitehead theorem and to handle some technical points ubiquitously ignored in the

literature., Consider a homotopy commutative diagram of spaces
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X——> Y

1k

1
z—L > w

Definitions 9.2. The diagram (%) is said to be an (m, n)-equivalence if £
is an m-equivalence and g is an n-equivalence. It is said to be g-homotopy
Cartesion if there exists a map of triads

T = (£;0,9:(Mg 2,X) ~ (MghiW,Y)
such that the map of pairs f:{Mg,X) ~ {Mg',¥) is a q-equivalence, where Mg
and Mg' denote the mapping cylinders of g and g'. If (*) commutes, with no
homotopy required, we insist that this condition be satisfied with f(x,t) = (fx,t) on
the cylinder, and it is then equivalent to require that the natural map Fg -~ Fg' of
homotopy fibres be a (qtl)-equivalence for each choice of basepoint in X (by the
standard verification that the two definitions of the relative homotopy groups of a

map agree),

Remarks 9.3. In the general case, with based spaces and maps, the map of
triads f induces a map
T:Fg = XX Pz - YX ,PW=Fg
g &
via
1
12t} if 05t SE

?(X»Q = {fx,w), where w(t) =

rf {x, 2t-1) if %—S_tSI

with r:Mg' - W being the canonical retraction. If i isa g~equivalence of pairs
then 1 is a (q+1)-equivalence. A converse construction ie not immediately obvious
to me, and the definition has been given in the form we wish to use. Clearly a

homotopy h!f'g =~ g'f induces a map of triads of the sort specified, via
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h(x, 2t) if O<t5%
fx,t) =
(fx, 2t-1) if —;—Stsl

but whether or not { is a g-equivalence of pairs really does depend on the choice
of homotopy.

Lemma 9.4, Assume that (*) iz an (m,n)-equivalence, where m >0 and
n>1l. For g< mt+n, (*} is g-homotopy Cartesian if and only if there exists a
g-equivalence ¢:M{g,f) — W such that ¢k =~ f' and g¢j = g', where M(g,f) is
the double mapping cylinder of g and f and kiZ - M(g,f) and j:Y ~ M(g,f) are
the natural inclusions. If (*) commutes, ¢ must be the natural map factoring
through the quotient map to the pushout of f and g.

Proof. The last statement will be a consequence of the conventions in
Definitions 9.2. By the homotopy excision theorem, the natural map
(Mg, X) ~ (M(g,£), Y) is an (m+n)-equivalence. (The range is misstated in [22].)
Clearly maps I Mg - Mg' as in Definitions 9.2 factor uniquely through maps

b= ) (Mg, 05 2,Y) ~ (MghiW,Y).

If r:Mg' = W is the retraction and ny = ¢, then ¢k = f' and ¢j = g. Conversely,
given ¢ as in the statement, let ¢ be the composite of ¢ and the inclusion
it W - Mg'. Since vyillz -~ Mg' is a cofibration, § is homotopic to a map of
triads ¢ as displayed, Bythe five lemma, ¢:{M(g,f},Y)~> (Mg', Y} is a
g-equivalence if and only if ¢:M(g,f) - Mg' is a g-equivalence. The conclusion
follows.

Proposition 9.5. If (¥) is a (strictly) commutative diagram of grouplike
(., /4 )-spaces which is a (q-1)-homotopy Cartesian (m-1,n-1)-equivalence with

m>2, n>2, and q£ m+n, then
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KX———Iif—-—>KY

o I
KZ K—f'> KW
is a g-homotopy Cartesian (m, n)-equivalence.
Proof. By Remarks 7.3, application of FMOO to (%) gives a {g-1)-
homotopy Cartesian (m-1,n-1)-equivalence. By Theorem 7.1 and a little standard

argument with homotopy fibres, the (strictly) commutative diagram

f
TX _T—> TY
Tg Tg'
Tf'

T2 —————> TW

is a g-homotopy Cartesian (m, n)-equivalence. Consider the following diagram

i Kf

Breaking the cylinder of M(Tg, Tf} into three parts, mapping the middle third

TX X[ 1/3,2/3] to KX X [0,1] via i_ and expansion, and using homotopies

i,°oTg =~ Kgei and Kfei o iya Tf on TX X [0,1/3] and TX X [2/3,1], we obtain
a map i:M(Tg, Tf) — M(Kg,Kf) such that ij = jiy and ik = kiZ on the bases. By
the van Kampen theorem and the fact that Tf, Tg, Kf, and Kg induce isomorphisms

on . since m 22andn>2, w M(Tg,Tf) =

1 ] TX, w7 M(Kg,Kf)=H

TX, and

1 1

‘rrli is Abelianization. By the Mayer-Vietoris sequence and the five lemma, i is
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a homology isomorphism. Therefore i is equivalent to the plus construction on
M(Tg, Tf). In particular, M{Kg, Kf) is a simple space, By the universal property
of the plus construction, there is a map ¢: M{Kg, Kf) - KW, unique up to homotopy,

such that ¢i = iwxp, where §:M(Tg, Tf} - TW is the natural map. Since

pil, = ply = i gy = i Te' = Keled
¢j =~ Kg' by the universal property. Similarly ¢k =~ kf', Since ¢ is a
g-equivalence (by the lemma), it is a g-homology equivalence. Therefore ¢ is a
q-homology equivalence and thus a g-equivalence by the Whitehead theorem. The
conclusion follows from the lemma.

The proofs above have the following useful consequence.

Lemma 9.6. If (*) is a commutative diagram of grouplike ( {, 4 )-spaces,
then there is a canonical homotopy class of maps g FKg — FKg' which makes
the following diagram homotopy commutative and which is functorial up to homotopy
when (%) is regarded as a morphism (f,f'):g = g' in the category of maps of
grouplike ({ , 4 )-3paces and is natural up to homotopy with respect to morphisms

of such diagrams (%),

Kg

QKZ FKg > KX KZ

QKf* T K Kf
K 1

QKW > FKg' » KY —&—> KW

Here the unlabeled arrows are the natural maps of the displayed fibration
sequences.

Proof. Of course, Barratt-Puppe sequence arguments give a map E not
uniquely determined up to homotopy. We ignore this. Construct ¢: M(Kg, Kf} = KW

as in the previous proof, deform i¢, i KW — Mg' to a map of triads

b= (b KE', 1) (M(Kg, KI); KZ,KY) —~ (Mg's KW, KY)
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as in the proof of Lemma 9.4, let  be the composite of ¢ and the natural map
MKg - M(Kg, Kf), and construct T as in Remarks 9.3. It is simple to check (by
standard cofibration arguments f>r the passage from ¢ to ) that T is a well-
defined homotopy class which makes the displayed diagram homotopy commute.
Ite functoriality and naturality are then easily verified by the same sorts of homo-
topical arguments as those above,

Turning to homology, we first record the form taken in our context by the
atandard spectral sequence for the calculation of the homology of classifying spaces
of topological monoids.

Since Vs FMnX - FMn+ X only commutes up to homotopy with the multi-

1
plications, there is a slight ambiguity in giving FMoox an H-space structure.
There is no ambiguity in its Pontryagin product, however, and the spectral
sequences of the filtered spaces BVnFMnX pass to limits to give the following
result. {See e.g. [9,13.10].)

Proposition 9.7. Take homology with coefficients in a field k. There is
then a natural spectral sequence {E'X} of differential coalgebras which converges
from EZX = TorH*Fme(k, k) to H KX,

Field coefficients serve only to yield a conceptual description of EZX.
Since i:TX -~ KX induces an isomorphism on k, for any connective homology
theory K, (by the Atiyah-Hirzebruch spectral sequence), we obtain a spectral
sequence {E'X} converging to k KX with E;qX = kq((FMOOX)p) for any such k_,
dl being induced by application of k, to the alternating sum of the standard bar
construction face maps. (See [10,11.14] for details.)

The proposition focuses attention on the problem of computing the

Pontryagin algebras H*FMnX. It is clear from previous experience what
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procedures one should adopt: one should work in all of H*MnX and exploit the
diagram of Proposition 5.2. Since MujX = an is an {additive) infinite loop space,
all of the machinery of homology operations explained in [2,1] is available.
Assuming that H*MnX is understood additively (as a Hopf algebra with product *,
coproduct i , conjugation y, augmentation €, homology operations QS and
Steenrod operations P:, with 1—"3!‘r = Sq: at the prime 2), we can study its products

by use of the following two results, the proofs of which are exactly the same as

those in [2,p.79-811].

Proposition 3.8. Take homology with coefficients in any field., Let
%Yoz € HM X, n 21, and let [0],[1], and [~1] be the classes of the zero matrix,

the identity matrix In, and any matrix in the component additively inverse to that

(i) [0]x = (€x)[0], [1lx = x, and [-1]x = yx .

(ii) (x*y)z = z(_l)deg Ydegz'xz,* yz" , where = = z 2'® z".

Proposition 9.9. Take homology with mod p coefficients, where p is

any prime. Let x,y e H*MnX, n 2 1. Then

(@°x)y = > Q*M(xPly) anq, if p>2,

1
s +i i degx s+, _i
(BQ™x)y = 807 (xByy) - 2(-1)°F TR =B, py).
i i

' Remarks 9.10. Applied to the A ring spaces QX+ of Examples 2.3, where X
is an Aoo space, the propositions above completely determine the Pontryagin
algebra H_F QX+ in terms of the additive structure of H*QX+. Compare [2,11§4],
where the analogous assertion for the E | ring space QX+ obtained from an E__

space X is explained in detail. To determine H*FMnQX+ for n > 1, one would
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require additional formulas to explain the effect on homology of translations by

more general matrices than in Proposition 9. 8(i).

§10. Examples, natural maps, and formal properties of KX

Recall from section 1 that any A operad pair (£, 4) admits an augmen-
tation (£, %)~ {(N,Mm ). An {]l.,m)-space is precisely a topological semi-ring
and a grouplike {}{ ,7 )-space is precisely a topological ring. Therefore a topo-
logical ring R is a grouplike {{ , ¥ )-space by pullback. If R is discrete, then
FMnR = GL{n, R), and the following example is immediate from the constructions

of section 7,

Example 10,1, If R is a discrete ring, then KR ig naturally equivalent to the
plus construction on BGL(co,R). Therefore KqR’ q> 0, is Quillen's qth alge-
braic K-group of R [5,18].

For general topological rings, our theory reduces to the topological

version of Waldhuasen's [22,§1].

Example 10,2 . For simplicial rings R*, Waldhausen defined a certain functor

KR It would be immediate from the definitions that his KR* is naturally

"
equivalent to our KIR*I ,» where |R_| is the geometric realization of R, were it

not that he has chosen to throw in a discrete factor Z and we have not, so that his

KR, isour K|R | X Z.

Remarks 10.3, There is one vital distinction to be made between KR for a topo-
logical ring R and KX for an arbitrary grouplike A, ring space X. As is well-
known in the discrete case [20;21;12] and will be proven in general at the end of
this section, KR is an infinite loop space. In contrast, Isee little reason to think

that KX is an infinite loop space and have not yet been able to prove that it is even

an H-space, although I believe this to be the case (compare Remarks 7. 7).
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It is immediate from the definitions that, for any ({ , H )-space X, the
discretization map d:X - 'WOX is a map of (€, 4 )~spaces. When X is grouplike,

this has the following important consequence.

Proposition 10.4. For grouplike ( &, # )-spaces X, there is a natural

augmentation Kd: KX - KnOX.

This suggests the following reduced variant of KX,
Definition 10,5. Define K'X to be the homotopy fibre of Kd. By Lemma
9.6, K' is then a functor of X such that the following diagram is homotopy com-

mutative for any map f:X = Y of grouplike (& , Y )-spaces.

Kd
QKT:GX » KX > KX > KTFOX
K'f Kf Kn’of
Kd
SZK‘rrOY - K'Y » KY "KTTOY

Of course, K'X is trivial if X is discrete.

We can mimic this construction after restriction to monomial matrices.

The resulting functor may be described, up to equivalence, as follows,

Definition 10.6. Define Q;)(BFX+), BEx' = BFX U {0}, to be the homo-
topy fibre of QO(Bd+): QO(BFX+) - QO(BFTTOX+), where FwOX is the group of

units in the ring = _X. As in the previous definition, Lemma 9,6 {or rather its

0
monomial matrix analog) implies that this is the object function of a functor of X.
Since SFnOX = {1}, the corregponding functor obtained with FX replaced by SFX
is equivalent to QOBSFX.

At the risk of belaboring the obvious, we combine the definitions above

with Theorem 8.3, Remarks 8.5, and further applications of Lemma 9,6 (and ana-~

logs thereof) in the following theorem.
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Theorem 10.7. For grouplike (€, Y )-spaces X, the following is a

homotopy commutative diagram and is natural up to homotopy.

QOZSFX\
v ' + !
Q,BSFX —~ Q) (BFX") ——— K'X
Y
QG(Z}SFX+) - QO(ZFX+)
? \
"
! QO(BSFX+) > QO(BFX+) — 7 = KX
i ‘
0 + +
Q8 || gy(ma’) Q,(Ba") Ka
i
\ ! J 3
0 . .
QOS - —————Z=x QO(BFROX ) — K(TrOX)

The dotted arrows denote the presence of evident sections, and the columns are
fibrations; p' and v are obtained as in Lemma 9.6 and the remaining horizontal
arrows are inclusions,

The diagram could be expanded further (by use of QO(ZFw X+), etc. ), but

0
we desist. In view of its importance in the applications, we call special attention
to the case X = QSO, where FX and SFX are generally denoted ¥ and SF
{or G and SG) and where nOX = Z and thus F'rrOX =2, (Up to notation, the

resulting diagram is an elaboration of one claimed by Waldhausen [22, above 2.3].)

Here the bottom composite
o s’ —q (Bz)) —t>xz
0 0 2
is induced by the inclusions Z)n - GL(n, Z) of permutation matrices and is thus the
standard map studied by Quillen [19] (see also [12,VI §5 and VIIL. 3.6]); the mono-

mial matrix map p has been studied in [12,VI. 5.9, VIL 4.6 and VIIL, 3. 6] and also

in Loday [7]. As the following remarks make clear, this example is universal:
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the diagram for QSO maps naturally to that for X for any grouplike Aoo ring

space X,

th
Remarks 10.8. By Proposition 2.2 and Theorem 3.1, the zero  map of the unit of

any AOO ring spectrum E is a map e: QS0 = E_ of grouplike Aoo ring spaces. Let

0
. th . . . :

us write I'X for the zero  space of the A03 ring spectrum obtained as in section 3

from an Aoo ring space X, If X is grouplike, we have a natural weak equivalence

of Aoo ring spaces between X and I'’X by Theorem 3.3. By a slight abuse, we may

thus regard e as a unit map QSO - X,

Proposition 2.2 and Theorem 3.1 also show that QY is a grouplike Aoo
ring space for any Aoo space with zero Y, We shall specialize this example to
obtain Waldhausen's algebraic K-theory of spaces in the next section. We note here
that the following generalized version of Waldhausen's assertion [22,2.2] is an
immediate consequence of Propositions 3.5 and 3.7 and Lemma 3.6 together with

Theorem 7.4, Remarks 7.3, and Proposition 9.7,

Proposition 10,9, For any Aoo space with zero Y, the Hurewicz map
h: QY - I'NY is a map of grouplike Aoo ring spaces and a rational equivalence.

Therefore Kh:KQY — KI'NY is also a rational equivalence.

Remarks 10.10. NS0 is precisely the additive monoid of non-negative integers,
0
hence wOI‘NSO =Z and d: ]."NS0 — Z and therefore also Kd: KI'NS ™ — KZ are

. 0
equivalences. Thus we may view the Hurewicz map of KQS~ as having target KZ,

The deepest source of examples is the theory of Eoo ring spaces and Eoo
ring spectra. By neglect of structure, these are Aoo ring spaces and Aoo ring
spectra. For example, the zeroth spaces of all of the various Thom spectra are
Aoo ring spaces [12,IV §2]. Of greater interest are the examples coming out of the

chain of functors constructed in [12, VI and VI1]:
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symmetric bimonoidal categories
blow up

. . v .
bipermutative categories

classifying space

E rinvg spaces
w

recognition principle

.V
t
Eoo ring spectra

th
zero  space

grouplike Eoo ring spaces

For instance, starting with the symmetric bimonoidal category PR of finitely
generated projective modules over a commutative topological ring R, we arrive

at an associated grouplike EOO ring space, denoted I'B PR, in which addition comes
fromthe direct sum and multiplication comes from the tensor product., We inter-

ject the following note {compare [22,§1]).

Remarks 10.11. We are here faced with a conflict of definitions and notations,
For a topological ring R (not necessarily commutative), I wrote KqR for
-rrql‘B PR in[10,VII §1]. For discrete R, this agrees with the present KqR for
q > 0. For general R, it is quite different. I suggest writing KtR for the plus
construction on BGLR and writing K;R = TTthR, thinking of this as a topological
K-theory (which it is when R is the topologized complex numbers for example). In
practice, the functors K*R and K:(R tend to be of interest for different choices
of R.

In fact, the theory sketched above applies equally well to both generaliza-
tions of Quillen's theory from discrete rings to topological rings., To see this, let
HLR denote the permutative category of finitely generated free R-modules, as

described explicitly in [12,VI,5.2]. Define %R to be the category defined in
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precisely the same way, except that the space of morphisms n - n is the topologi-
cal monoid FMnR. Then, with structure as specified in the cited definition, ¥R
is a permutative category and is a bipermutative category if R is commutative,
Moreover, the inclusion MILR - FR preserves all structure in sight. The argu-
ment used to prove that I“OB YXLR is equivalent to the plus construction on BGLR
in [12,VIII §1] applies equally well to prove that B ZR is equivalent to the plus

construction on BFMOOR (and of course I‘OB HLR is equivalent to r,B fRrR [11,

p.85]). We have proven the following result,

Proposition 10.12. For a topological ring R, K'R and KR are the zero

components of infinite loop spaces TBA LR and I'BFR, and there is a natural
infinite loop map 1:TBYLR —~ I'BFR. If R is commutative, then I'BHLR and

I'BER are Eoo ring spaces and i is an Eoo ring map.

Here the additive infinite loop space structures associated to permutative
categories are uniquely determined by the axioms in [14]; in particular, Segal's
machine [20] and mine give equivalent spectra.

At the moment, nothing is known about the resulting "second order" alge-
braic K-theories K, I'BHNLR and K*I‘BS’R of commutative topological rings,
They do not appear to be very closely related to the "first order® theories K*R or

t
K.R. Since wOFB?J.Z'R = wOI‘Bg'R = Z, Proposition 10, 4 and naturality give maps

KIB#AR - KIBFR = KZ -~ KR - KR.
If we had followed Waldhausen and crossed everything with Z, we could

consistently write

KK'R = KI'BAXLR and KKR = KI'BFR,

hence our view of these as second order theories,
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§il. The algebraic K-theory of spaces

Finally, we specialize our theory to make rigorous the algebraic K-theory
of spaces suggested by Waldhausen [22]. In this section, X will denote a non-
degenerately based CW-space with basepoint 1, There are at least three ways that
2X can be interpreted as an Am—space.

(1) The ordinary loop space of X is a (fl—space, where Cl is the little l-cubes
A_, operad of [10, §4L

(2) The Moore loop space of X is a topological monoid, or 77-space.

(3) |GSX], the geometric realization of the Kan loop group of the total singular

complex of X is also an M-space.

We lean towards the first choice, but the theory works equally well with
any choice. As in Example 2.3, we construct from QX an Aoo space with zero
+
X" = ox 1l {0} and thus a grouplike A ring space Qexh). For any based
space Y,
. n _n A .1 -~
T QY = colim v Q2 XY = ¢colimH ZY = HY,
0 n n 0
this isomorphism being realized by h: QY - I'NY on passage to components. It
follows easily that, as a ring, vOQ(QX+) = wOFN(QX+) is the integral group ring
Z[wIX]. In reading the following definitions, it will be useful to keep in mind the

following commutative diagram of Aoo ring spaces {see Propositions 3.7,10.4, and

10,9 and Remavrks 10, 10),

QSO —1 Q(SZX+) —t QSO
hl {h lh
rns® — 1 > rnex) —&—> rns®

Pl

z — 10 5 z[w X] —& >z
For uniformity of notation, we write n for maps induced by inclusions of basepoints

of spaces or trivial subgroups of groups and write € for the corresponding
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projections, so that €nm =1, The vertical composites in the diagram are again
discretization maps d. We shall continue to write n,&,d, and h upon application
of the functor K.

Definitions 11.1, Define AX, the connected algebraic K-space of X, to
be KQ(QX+). Further, define the following reduced variants.

fibre (€ :AX - A{x}), A{¥}= KQSO

b3
>
0

fibre (d : AX ~ K2Z[n X]) = kQexh)

EX = fibre (£ A'X — AY*}), A'{*} = K'QS

>
b
i

0

For q > 0, define Aqx, the qth algebraic K-group of X, to be TI'qAX, and introduce
sirmilar notation for the reduced variants.
We have an analogous algebraic K-theory of X with coefficients in Z.
Definition 11.2. Define A(X;Z) = KI’N(QX+) and define the reduced
variants
A(X;Z) = fibre (S A(X;2Z) = A(%; Z)), A(*;Z) = K2
AYX;Z) = fibre (E:1A(X;Z) ~ KzZ[w X)) = grNex .
Here A'(*;2) = {*}, hence we set A'(X;Z)= A'(X;Z). Define
Aq{X; Z) = n‘qA(X; Z) and similarly for the reduced variants.
For a (discrete) group T and commutative ring R, write
RR[7] = fibre (€ : KR[n] — KR).
By Lemma 9.6, these are all well-defined functors of their variables such
that the various canonical maps in sight are natural. We summarize the relation~

ships between these functors in the following result.
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Theorem 11,3, The rows and columns are fibration sequences in the

following natural homotopy commutative diagram.

A T A% d %’z[nlx]
i I
A'X > AX Kz[m X]
4 4 4
e’ll n' EIIn E‘,[l n
| | 4 )
Ar{*} A{*} > KZ

The dotted arrows denocte the presence of sections. The Hurewicz map sends this
diagram naturally, via a rational equivalence, to the corresponding natural 3 X 3
diagram of fibration sequences with AX and its variants replaced by A(X;Z) and
its variants.

Proof. In view of our earlier results, only the construction of 7 and the
verification that it is equivalent to the fibre of d are needed. This would be
obvious enough if we knew that AX were an H-space. In the absence of this, a
technical argument with Barratt-Puppe sequences, which we defer to the appendix,

is required.

Of course, Theorem 10.7 applies naturally to all A | ring spaces in sight

and produces a maze of commutative diagrams. In particular, we have the maps

+
s (B0

~ Q(BRX ") ———— Q (BF QX B

Hh > ax,

+
QOX 1

where X is the component of the basepoint of X, X, ~ BOX by [9,14.3 or 15.4],

1 1

n:0X - FQ(SZX+) is the natural Aoo map of Example 2.3, and g is the monomial
matrix map of section 8. This agrees with assertions of Waldhausen [22, §2].

It is desirable to have algebraic K-theories of spaces with coefficients in
arbitrary commutative rings R, For many rings, this can be obtained topologically.

(For Z , compare Dold and Thom [3] to the material at the end of section 3.) How-

ever it is most natural to follow Waldhausen [22,§1] and do this simplicially.
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Definitions 11.4. Define A(X;R) = K|R[GSX]|, where the group ring of
a simplicial group is formed degreewise. Clearly
TrO]R[GSX]| = nOR[GSX] = R[WOGSX] = R['n'1X].
Define reduced variants and algebraic K-groups as in Definitions 11.2.
We now have two definitions of A(X; Z) in sight. With interpretation (3)

above for QX, the following result implies that these definitions agree up to natural

equivalence.

Proposition 11.5. For simplicial groups G, there is a natural weak

equivalence of grouplike Aoo ring spaces between IN|G]| * and |Z[G]].
Proof. N|G|+ is the free topological Abelian monoid generated by IGI
(the disjoint basepoint being identified to zero). The inclusion G - Z[G] induces
|G| = ]Z[G]| and thus, by freeness, N|Gl+—> |Zz[G]|]. Moreover, this map
clearly extends over the free Abelian group rﬁ| G] * generated by 'G', and it is

easy to verify from the fact that realization commutes with products that

Sy
N|G| g IZI_G]| is actually a homeomorphism. The natural map
+ ~
N:N|G| -~ N|G| = |Z[G]]
is clearly a map of semi-rings, hence of (£, M )-spaces for any Aoo operad pair

(€, ). By Corollary 3.8 (recall that T = B, ), I\ is a weak equivalence. By

Theorem 3.3 and the fact that | Z[G]| is grouplike, I'[Z[G]| is naturally weakly

equivalent as an A__ ring space to Z[G]].
In view of the unit map Z — R, all of our diagrams remain present with Z
replaced by R, and the resulting diagrams are natural in R as well as X,
The simplicial approach has the advantage of giving us infinite loop space
structures on our algebraic K-spaces, by Proposition 10.12 applied to KlR[G]I for

a simplicial group G. When G is the trivial simplicial group, |R[G]| = R. We

thus have g :K|R[G]| = KR and n:KR - K|R[G]|. Write f<'|R[G]| = fibre g
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and give it the induced infinite loop structure. The following result is immediate

by a glance at homotopy groups.

Proposition 11.6. For simplicial groups G and commutative rings R,

the composite
a4 X
K|R[G]] x kR —BZTK|R[G]| X K|R[G]| —&—~K|R[G]],
where p is the canonical map and ¢ is the product, is a natural equivalence of

infinite loop spaces.

The following is a special case.
Corollary 11.7. A({X;R) is naturally equivalent as an infinite loop space

to A(X;R) X KR,

All of these algebraic K-theories on spaces admit stabilizations to

generalized homology theories.

Theorem 11.8. There are natural homomorphisms KnX - Kn“ZX such

-~ 8

that if AqX = colim Xq+rZrX, then Ki is a reduced homology theory. There
are analogous theories g:(X; R} defined and natural on R, and there is a Hurewicz

homomorphism «1:13* :KiX - Xi{x, Z) which is a rational equivalence.

We need only construct the theories, The rest will follow from evident
naturality arguments. Of course, K*X maps naturally to KiX, and similarly
and compatibly for X*(X, R). The following consequence is immediate (see

Corollary A.3).
L s ~g, +
Corollary 11.9. For unbased spaces X, the definitions A*X = A*(X }
and Ai(X; R) = Ki(X-I.; R) specify unreduced homology theories.

Note here that Q(X+) is a point, hence K*(X‘*) = K*(SO). The corollary
was asserted by Waldhausen [22, 1.4 and 2. 8] (but with a rather misleading sketch

proof)s We shall prove a general result, Theorem A,2, on the stabilization of
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functors to homology theories. Theorem 11.8 will be an immediate special case in

view of the following two results.

Proposition 11,10, The functors AX and A(X;R) preserve

n-equivalences and g-homotopy Cartesian (m, n)-equivalences with m 2> 2, n> 2,
and g < min provided that, for the latter, the domain square is strictly com-
mutative.

Proof. We lose a dimension upon appliction of Q and gain it back upon
passage to K and quotation of Propositions 9.1 and 9.5. We need only verify that
the intervening functors Q, I'N, or R[{?] have the appropriate preservation pro-
perties, where R[C] for a simplicial set C is the free simplicial R-module
generated by C. Since 'rr*l'"N(X+) = H X and, by (8,§22], Tr*R[C] = H*(C; R}, the

. . . . + + .
conclusions are obvious in these cases. Since TT*QX = 7 (X ') is the unreduced

«
homology theory associated to stable homotopy, the conclusion here follows by use

of the Atiyah-Hirzebruch spectral sequence.

Lemma 11.11. The functors AX and A(X;R) from based CW-spaces to
the homotopy category of based CW-~spaces are homotopy preserving.

Proof. This is not obvious. Recall that a functor T from based spaces
to based spaces is said to be continuous if the function T:F(X,Y) > F{TX,TY) on
function spaces is continuous. Since a homotopy between maps X -~ Y is a map
I - F{X,Y), continuous functors are homotopy preserving. The various monads,
bar constructions, and telescopes which entered into the construction of the functor
T on {C: B }-spaces are all continuous. {In particular, this uses the fact that
geometric realization of simplicial spaces is a continuous functor [12,p.21}.) We
pass from T to K by first converting to CW-complexes by applying geometric
realization on the total singular complex, this composite being homotopy preserv-
ing although not continuous, and then applying the plus construction (which is a

homotopy functor by definition), The functors Q.,I'N, and also @ when interpreted
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as in (1) or (2) are continuous, and the functors R[GSX] are homotopy preserving
by standard facts on the relationship between simplicial and topological homotopy

theory {e.g. [8,§16 and §26]).

§12. Notes on Waldhausen's work

Since this work started with an attempt to understand Waldhausen's,

a rundown of those things in [22,§1 and 2] not considered above may not be taken
amiss.

There are two calculational results in [22,§1] concerning simplicial (or
topological) rings. Our theory adds nothing new to the foundations here except for
the infinite loop space structure on KR of Proposition10.12 and the concomitant
splittings of Proposition 11.6. Since the H-space level of these additions pro-
vides some clarification of Waldhausen's arguments, I shall run through the details

(modulo the relevant algebra; these details are included at Rothenberg's request).

Proposition 12.1 {[22,1.2]). Let f:R = R' be an (n-1)-equivalence of

topological rings, where n > 2. Let F and F' be the homotopy fibres in the
following diagram and choose F — F' which makes the top square homotopy com-

maute,
F —_— F!

|

BFM R —— KR

0
BFM fl l Kf
s3]

BFM R! ——— KR!
o)
For any Abelian group A, the diagram induces an isomorphism

Ho(GL(v R"); M_ (v ) ®A) = H BFM_R'; H (F;A)) ~ H (F'; A),

of

where L is the (n-l)gt homotopy group of the fibre of f{.

-1
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Proof. Waldhausen asserts further that the left side is clearly iso-
morphic, via the trace, to the Hochschild homology group HO(WOR';wn_l R A);
I haven't checked the algebra. By the Hurewicz theorem, Remarks 7.3, and uni-
versal coefficients, Hn{F;A) = Moo(wn-l)®A° The first isomorphism follows

from the definition of local coefficients, the fact that m, BFM_R' = GL(wGR‘), and a

1

check that the action on Hn(F; A} agrees with the natural action on Mm(wn_l)®A.
Let {ET} = {'E"} be the map of Serre spectral sequences {with coefficients in A}
induced by the diagram. The essential topological fact is that, since Kf is a map

of connected H-spaces which induces an epimorphism on fundamental groups, it has

trivial local coefficients. Our assertion is thus that EO - 'EOD is an iso-
n

morphism. Since

2 1.2
= 1. - . = f - .
E H,(BGLR'; A) ~ H (KR'; A) = 'E_ and H,(BGLR; A) H, (KR; A)
is hi d El = 'E5 = 0 for 0<q<n, E5 = EX
are isomorphisms an *q © xq or a<n E o= E and
2 [e3} : . .
lEnO = 'EnO » hence the five lemma gives that Egc;-‘* 'Eg:l is an isomorphism.
A diagram chase from the edge homomorphism gives that Eioo nd 'E:% is an iso-

morphism, and another five lemma argument (involving the transgression

ntl _2 2
: - E i ion.
En+1, o On) gives the conclusion

Proposition 12.2 ([22,1. 5]}

Q if i=0
Al{*:2)®a =
Y if i>0

Proof. Specialize the diagram of the previous result to
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L]
F —_— > F! A(S H Z) 3

]

BFM_R, — KR = A(S;2)

1

BGLZ — KZ Al{*}; 2)

H

"

where R = ]Z]:GSZHSO]I and d:R, ~ Z is the discretization. F! is {n-1)-
connected. We claim that HnF‘ = Q and HqF’ = 0 for n< q< 2n-2 {Q goefficients
understood). By the Whitehead theorem applied to a wn-isomorphism F(; -+ K(Q,n},
where F(; is the rationalization of F', it will follow that wnF'® Q=Q and

an'@ Q=0 for n< g< 2n-2, hence the conclusion, By Remarks 7.3 and

[8,8§22], for g>2andn>1 we have

TF = m BFM R L FM R = =1 SFM_ R
q q o n q-1 @ n q-1 w n

n
o vq_leRn = Moonq_an = Moqu_l(QS 1 2),

which is zero for q< 2n-2 and q# n. By the Whitehead theorem applied to a
w_-isomorphism F— K(M _ Z,n), H (F;Z2)=M Z and H (F;Z) =0 otherwise,
n oo n fee] q
0 < g < 2n-2, hence similarly with Z replaced by Q. The key algebraic fact, due to
Farrell and Hsiang [4] and based on work of Borel [1], is that H (BGLZ; McoQ} is
isomorphic to H*(BGLZ; Q); the definition of the isomorphism, via the trace, is
irrelevant to the argument here. Consider the rational homology Serre spectral
sequences. Certainly EZ is finite-dimensional in each degree < 2n-2 (say by

Borel's calculations of H*(BGLZ) [1]} and, in this range,

2 2 2 2 2
E = E*O [*] E*n (E*O = H*BGLZ, E*n =3 H*BGLZ).
. 2
By the previous result, Q = EOn - 'Egn is an isomorphism. By Corollary 11.7,

A(S™; 2) ~ A(S™;Z) X KZ and therefore

2
'E° = 'EOO=H*KZ®H*F' (‘Ey, = HKZ, 'El = HKZ)
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Since {EF} and {'ET} converge to isomorphic homologies, HqF' =0 for
n< q<2n-2 by a trivial comparison of dimensions.
The following is an immediate consequence, by Theorem 11.8.

Corollary 12.3

s Q ifi=0
Ai{*} ®Q =
0 ifi>0

The results claimed about Postnikov systems in [22, §2] seem much more
problematical {(and are fortunately much less essential to the overall program).
Remarks 12.4. The nth term Rin) of the natural Postnikov system of a simplicial
set R* is R*/( 1), where x ~ y for g-simplices x and y if all of their iterated

faces of dimension < n are equal [8,§8]. Visibly each Rfkn) is a simplicial ring

if R, is so, and the natural maps R(n)—* R(;n) for n > m are maps of

*

simplicial rings. As Waldhausen states [22,§1], there results a spectral sequence

2
the E -term of which is given by the homotopy groups of the fibres of the maps
(n-1)

KIR(:)| ~ KR

. He asserts further [22,

| and which converges to K*|R*
2.5 and sequel] that the same conclusions hold with R* replaced by an arbitrary
ring up to homotopy, that is, in our terminology, by an arbitrary grouplike AOO ring
space X, If true, anything like this would be enormously difficult to prove.
Certainly, the coskeleta X(n) of X could at best be strong homotopy Aoo ring
spaces of some sort (with more homotopies in sight than in Definition 5.1; see the
discussion following that notion), He also asserts [22,2.6 and sequel] that the co-
skeleta of QSO give rise to a spectral sequence the Ez-term of which is given by the
homotopy groups of certain fibres and which converges to A*X for any space X.
Here he thinks of QSO as the "coefficient ring" of AX, in analogy with the role of

R in Definitions 11.4. Since this is at best only a2 metaphor, rigor seems still

0
further away. The infinite loop space splitting Q(QX+) =~ QS X XX does not seem
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relevant. Even if they do exist, there seems to be little reason to believe that such
spectral sequences would help much with explicit calculations,

Of course, it is conceivable that there is a simplicial analog of our theory
for which this difficulty disappears, but I am skeptical {and certain that other tech-
nical difficulties would appear in any such approach).

It is time to discuss the main issue. Waldhausen proposed our AX as a
nice description of what he wanted, if it were to exist, but he gave an alternative
definition in terms of which the proofs were all to proceed. We write WX for
Waldhausen's functor (or rather its connected version). If GSX is the simplicial
group of (11.3), then WX is the plus construction on the classifying space of the
colimit over n and k of certain categories (h XGSX)E with objects simplicial
GSX-sets suitably related to the wedge of X and k copies of s”. In the absence of
any indications of proof, I for one find it hard to see how analogs for WX of some of
the results above for AX are to be made rigorous from this definition. The tech-
nical details, for example of the rational equivalence required for Corollary 12.3,
must surely be considerable, It would seem preferable to compare AX and WX,
Waldhausen asserts {without proof, [22, 2. 1]) that the loop of the classifying space
of the colimit over n of the categories (h /gGSX)E is equivalent to FMkQ( I GSX | +).
While this certainly seems plausible, his further claim that the equivalence is one
of H-spaces seems much more difficult, and this in turn is nowhere near strong

enough to prove the following assertion.

Conjecture 12.5. AX and WX are naturally equivalent.

Except that the definitions of AX and WX seem farther apart, one might
view this as analogous to the equivalence between his two definitiong that was the
pivotal result in Quillen's development of algebraic K-theory [5]. The peint is that

it is AX which is most naturally connected with Quillen's algebraic K-theory, but
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it is WX and its various equivalents in [22] which Waldhausen's arguments relate

to the Whitehead groups for stable PL concordance.
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Appendix. Stabilizations of functors to homology theories

We first give the technical lemma needed to complete the proof of Theorem
11.3 and then give a very general theorem (presumably part of the folklore) on the
stabilization of homotopy functors to generalized homology theories.

We work in the category ’\/ of nondegenerately based spaces of the homo-
topy type of a CW-complex and in its homotopy category nY . The proofs below
use well-known facts about fibration sequences but, annoyingly, I know of no pub-
lished source which contains everything we need; such details will appear in [15,
I§1].

Lemma A.l. Consider the following diagram in Y, in which i and p are
written generically for the canonical maps of fibration sequences, the solid arrow
parts of the diagram homotopy commute, the bottom squares with solid vertical
arrows erased also homotopy commute, and the dotted arrows {,n, and @ are

homotopy sections (€86 =1, etc.).

QFE -----. A, 2 Fy mmmen LS $FE ~pmmme S _mFE
4 T~ AN 4
N T~ - D + 4 -
1 i T s <P
t - - L S
Qp :4’ p ‘:Fe P P
'| ' ’//ﬁ E
£
Qv 1 - Ff5 P - X > Y
A ‘ H $
qe |1qe viit 8] n elie
| i ; !
(! i V: P ' g v
Qw Fg — 7 - W

There exist maps e, , and ., unique up to homotopy, such that the top three
squares homotopy commute and there exists an equivalence «:Fy—>Fe such that
pa = .,

Proof. The homotopy commutativity of the lower three squares implies
the existence of e, and v . Here e is unique since two such maps differ by the

action of 2 map F6- QW and the action of [F§,QW] on [F§,FE] is trivial since
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i:QW — FE& is null homotopic (because of the section). Similarly n and \ are
unique. Since pew is null homotopic by the diagram, pe is null homotopic (by the
exact sequence of the right column). Thus there exists a':Fy —~ Fe such that

pe' = . The top row clearly induces a long exact sequence of homotopy groups
mapping onto a direct summand of that of the middle row, and the desired conclu-
sion that &' is an equivalence would be immediate from the five lemma if o't were
homotopic to i. However, there seems to be no reason to suppose that ' can be
so chosen. Choose a map B:Fe— Ff suchthat pi = iQlp and pp = pf. Again, o'
would be an equivalence if Bo' were homotopic to p!Fy ~ Ff., Here we have more
room for maneuver. Since £Y is an H-space, the sum of Qp and Q8 is an
equivalence QFE X QW — QY. Let :QY -~ QFE be an inverse projection.

Certainly Boa' = pp for some p:Fy Y, where pu is given by the right action

of [Fy,0Y] on [Fy,Ff] coming from FfXQY - Ff. Let a=a'¢*(—p). Then

poa = Bolay-w) = (Bea)@) b (-1) = p(u@p),d,(-) .
Since U, (1@p) b l-1)) = Y, (w) - ¥, (b)) = 0, we have
w(2p) iy (- 0) = (@9),(v)

for some v € [Fy, W] and thus Boa = p(u8),{v). It follows that Boa, and
Py EyY = -rr*}?f become equal when one passes from the long exact homotopy
sequence of the middle row to its quotient by the long exact homotopy sequence of
the bottom row. Here p, and B, are isomorphisms, and we conclude that « is
an isomorphism and thus that « is an equivalence.

The naturality of = in Theorem 11.3 follows from the argument used to
prove the uniqueness of e in the lemma.

Turning to the desired construction of homology theories, we define a
stability sequence {an} to be a strictly increasing sequence of positive integers

a, such that a,-n tends to infinity.
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Theorem A.2. Let kihy —h¥ be a functor with the following
properties.

(1) Application of k to an n-equivalence yields a bn—equivalence, where {an} is
a stability sequence.

(2) Application of k to a strictly commutative 2n-homotopy Cartesian (n, n}-
equivalence yields an an~homotopy Cartesian square, where {an} is a
stability sequence,

Let £:kX - k{*} be induced by X - {*#} and let KX be the fibre of €. Then

there exist natural maps o ‘KX -+ 9K =X such that if k X is defined to be the tele-

scope of the spaces an{Z}nX with respect to the maps anr, GtT{ZnX - SZ’EZIVHX,
and if 3'(:)( is defined to be qu(SX, then T{i is a reduced homology theory which

satisfies the wedge axiom.

The following is a standard consequence.

S ~3, _+
Corollary A.3. On unbased spaces X, define kX = k*(X ). On unbased
+
)

pairs (X, A), define k:(X,A) = Af(i((XuCA) where CA is the {unreduced) cone

on A. Then kz is a generalized homology theory in the classical sense.

Returning to based spaces, we first discuss the statement of the theorem.
It will turn out that property {1) is only needed for the wedge axiom, and then only
for maps X -» {*}, hence may be omitted in obtaining a homology theory on finite
complexes. Property (2) will also only be needed for a few simple types of dia-
grams, to be displayed in the proof. Since € is only given as a homotopy class of
maps, we must choose a representative before constructing K¥X. The first part of

the proof of Lemma A.1 gives the following result.

Lemma A.4. For {:X — Y, there is a unique homotepy class

k£: XX -~KY such that the following diagram commutes in nY .



It follows that E(l is a well-defined functor h'¥ = hY such that K~k is

natural, We also need the following analog.

A
Lemma A.5 . Let nik{*} - kX be induced by {*¥} = X and let kX be
the fibre of . For f:X — Y, there is a unique homotopy class Kf:kx -ky such

that the following diagram commutes in rV .

QkX g—kf——r QKY

| e

Gox —E gy

Proof. The map kX - Qk{*} X KX with first coordinate € and second
coordinate the canonical map is an equivalence.

It follows that ’12 is a functor and Qk - k is natural.

Lemma A.6. The composite SZ?.X —~ QkX — kX is a natural equivalence.

Proof. The map Qk{*} X (kX - QkX given by the sum of Q1 and the
canonical map is also an equivalence.

These observations suffice for the construction of ».

Lemma A.7. There is a natural map oKX - 9KkZX such that ¢ is an

(a

ke 1}-equivalence if X is n-connected.

Proof. We define ¢ to be the top composite in the diagram

TX ceom o KEX e TX

KX —E & {*}

el ln

k{*} D> ksx
Here we have the tautological strict equality ne ® ng , and the dotted arrow is
canonical; its naturality up to homotopy is easily checked by direct inspection, If

X is n-connected, then the commutative square
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X —>{*}

L

{*¥} ——=x
is a (2n+2)-homotopy Cartesian {n+l,n+l)-equivalence by the homotopy excision
theorem (compare Definition 9.2). By a mild interpretation, property (2) implies
the resuit.
The spaces *x of Theorem A.2 are now defined, Since @ commutes

with telescopes, there is an evident homotopy equivalence
%% = Tel 2°F2"x - Ter o"MEE"x - akPzx .
n>0 nz0

. S . .1
While k need not be a functor and v need not be natural, since lim terms

might well be present, they induce functors Al;:X and natural isomorphisms

TqﬁtiX - T(ZHEX on passage to homotopy groups. Alternatively, with
Al;qX = Trq’KX, we could equally well define
%X = colim ¥ ="x
q gtn

and not bother with the telescopes, the isomorphisms Tq then being evident,

For reduced homology theories, excision reduces to the suspension axiom
just verified on trivial formal grounds, without use of properties (1) and {2). The
things to be proven are exactness and the wedge axiom. The following lemma veri-

fies the appropriate exactness axiom.

Lemma A.8. If v:A =X is a cofibration, then the sequence

x5, Ko

s q E q s
k™A » k X k (X/A
q q q( )

is exact for all q, where w is the quotient map.
n
Proof. Since the functors £ commute with cofibration sequences, a

glance at the relevant colimit systems shows that it suffices to prove

R L
k A k X k A
q q q(x/ )

to be exact in a suitable range when A, X, and X/A are n-connected. By the
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homotopy excision theorem again, the square

A-—L*X

|-

{(*} ——x/A

ig a 2n-homotopy Cartesian (n,n) -equivalence. Consider the following diagram

KA <cmmmeee- + Fk =-=mevnmm-#Fkr
KA

KA L Tx

51 kT K
k{*} — 1 — >k (X/A) «<— & (X/A)

Verdier's axiom for fibration sequences applied to the triangle

KX >k (%)
\ /
k(X/A)
gives an equivalence Fkw -+ FE'IT such that the upper right square homotopy com-
mutes. Property (2) and Remarks 9.3 give an (an+ 1)-equivalence kA - Fkw
such that the upper left square homotopy commutes. By Lemma A.4, the com-
posite KA - KX in the diagram is K. The conclusion follows from the long

exact sequence of homotopy groups of the right column.
It remains only to verify the wedge axiom.
Lemma A.9. For any set of spaces {Xi}' the natural map

ok°x, - %° (VX))
i 91! I
is an isomorphism for all q.

n
Proof. Since the functors X commute with wedges, a glance at the

relevant colimit systems shows that it suffices to prove
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@R = KLV E)

to be an isomorphism in a suitable range when each Xi is n-connected. If X is
n-connected, then X — {*} is an (nt+l)-equivalence, hence €:kX - k{*} isa

b l-equiva.lence by property (1), hence kX is (bn

b 1" 1)-connected. Therefore

+
the inclusion of \/ZX1 in the weak direct product of the kXi {(all but finitely many
i

coordinates at the basepoint) is a (2b_, . -1)-equivalence, and the conclusion

n+l

follows.
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