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Galois group. We then calculate the Galois groups in several 
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periodic E∞-algebra of topological modular forms is trivial 
and that the Galois group of K(n)-local stable homotopy 
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We also describe the Galois group of the stable module 
category of a finite group. A fundamental idea throughout 
is the purely categorical notion of a “descendable” algebra 
object and an associated analog of faithfully flat descent in 
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1. Introduction

Let X be a connected scheme. One of the basic arithmetic invariants that one can 
extract from X is the étale fundamental group π1(X, x) relative to a “basepoint” x → X

(where x is the spectrum of a separably closed field). The fundamental group was defined 
by Grothendieck [30] in terms of the category of finite, étale covers of X. It provides an 
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analog of the usual fundamental group of a topological space (or rather, its profinite 
completion), and plays an important role in algebraic geometry and number theory, as a 
precursor to the theory of étale cohomology. From a categorical point of view, it unifies 
the classical Galois theory of fields and covering space theory via a single framework.

In this paper, we will define an analog of the étale fundamental group, and construct 
a form of the Galois correspondence, in stable homotopy theory. For example, while 
the classical theory of [30] enables one to define the fundamental (or Galois) group of 
a commutative ring, we will define the fundamental group of the homotopy-theoretic 
analog: an E∞-ring spectrum.

The idea of a type of Galois theory applicable to structured ring spectra begins with 
Rognes’s work in [71], where, for a finite group G, the notion of a G-Galois extension of 
E∞-ring spectra A → B was introduced (and more generally, E-local G-Galois extensions 
for a spectrum E). Rognes’s definition is an analog of the notion of a finite G-torsor of 
commutative rings in the setting of “brave new” algebra, and it includes many highly 
non-algebraic examples in stable homotopy theory. For instance, the “complexification” 
map KO → KU from real to complex K-theory is a fundamental example of a Z/2-Galois 
extension. Rognes has also explored the more general theory of Hopf–Galois extensions, 
intended as a topological version of the idea of a torsor over a group scheme in algebraic 
geometry, as has Hess in [32]. More recently, the PhD thesis of Pauwels [65] has studied 
Galois theory in tensor-triangulated categories.

In this paper, we will take the setup of an axiomatic stable homotopy theory. For us, 
this will mean:

Definition 1.1. An axiomatic stable homotopy theory is a presentable, symmetric 
monoidal stable ∞-category (C, ⊗, 1) where the tensor product commutes with all co-
limits.

An axiomatic stable homotopy theory defines, at the level of homotopy categories, 
a tensor-triangulated category. Such axiomatic stable homotopy theories arise not only 
from stable homotopy theory itself, but also from representation theory and algebra, 
and we will discuss many examples below. We will associate, to every axiomatic stable 
homotopy theory C, a profinite group (or, in general, groupoid) which we call the Galois 
group π1(C). In order to do this, we will give a definition of a finite cover generalizing 
the notion of a Galois extension, and, using heavily ideas from descent theory, show that 
these can naturally be arranged into a Galois category in the sense of Grothendieck. We 
will actually define two flavors of the fundamental group, one of which depends only on 
the structure of the dualizable objects in C and is appropriate to the study of “small” 
symmetric monoidal ∞-categories.

Our thesis is that the Galois group of a stable homotopy theory is a natural invariant 
that one can attach to it; some of the (better studied) others include the algebraic 
K-theory (of the compact objects, say), the lattice of thick subcategories, and the Picard 
group. We will discuss several examples. The classical fundamental group in algebraic 
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geometry can be recovered as the Galois group of the derived category of quasi-coherent 
sheaves. Rognes’s Galois theory (or rather, faithful Galois theory) is the case of C =
Mod(R) for R an E∞-algebra.

Given a stable homotopy theory (C, ⊗, 1), the collection of all homotopy classes of 
maps 1 → 1 is naturally a commutative ring RC. In general, there is always a surjection 
of profinite groups

π1C � πet
1 SpecRC . (1)

The étale fundamental group of SpecRC represents the “algebraic” part of the Galois 
theory of C. For example, if C = Mod(R) for R an E∞-algebra, then the “algebraic” part 
of the Galois theory of C corresponds to those E∞-algebras under R which are finite 
étale at the level of homotopy groups. It is an insight of Rognes that, in general, the 
Galois group contains a topological component as well: the map (1) is generally not an 
isomorphism. The remaining Galois extensions (which behave much differently on the 
level of homotopy groups) can be quite useful computationally.

In the rest of the paper, we will describe several computations of these Galois groups in 
various settings. Our basic tool is the following result, which is a refinement of (a natural 
generalization of) the main result of [14].

Theorem 1.2. If R is an even periodic E∞-ring with π0R regular noetherian, then the 
Galois group of R is that of the discrete ring π0R: that is, (1) is an isomorphism.

Using various techniques of descent theory, and a version of van Kampen’s theorem, we 
are able to compute Galois groups in several other examples of stable homotopy theories 
“built” from Mod(R) where R is an even periodic E∞-ring; these include in particular 
many arising from both chromatic stable homotopy theory and modular representation 
theory. In particular, we prove the following three theorems.

Theorem 1.3. The Galois group of the ∞-category LK(n) Sp of K(n)-local spectra is the 
extended Morava stabilizer group.

Theorem 1.4. The Galois group of the E∞-algebra TMF of (periodic) topological modular 
forms is trivial.

Theorem 1.5. Given a finite group G and a separably closed field k of characteristic p, 
the Galois group of the stable module ∞-category of k[G] is the profinite completion of 
the nerve of the category of G-sets of the form {G/A} where A ⊂ G is a nontrivial 
elementary abelian p-subgroup.

These results suggest a number of other settings in which the computation of Galois 
groups may be feasible, for example, in stable module ∞-categories for finite group 
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schemes. We hope that these results and ideas will, in addition, shed light on some of 
the other invariants of E∞-ring spectra and stable homotopy theories.

2. Axiomatic stable homotopy theory

As mentioned earlier, the goal of this paper is to extract a Galois group(oid) from a 
stable homotopy theory. Once again, we restate the definition.

Definition 2.1. A stable homotopy theory is a presentable, symmetric monoidal stable 
∞-category (C, ⊗, 1) where the tensor product commutes with all colimits.

In this section, intended mostly as background, we will describe several general fea-
tures of the setting of stable homotopy theories. We will discuss a number of examples, 
and then construct a basic class of commutative algebra objects in any such C (the so-
called “étale algebras”) whose associated corepresentable functors can be described very 
easily. The homotopy categories of stable homotopy theories, which acquire both a tensor 
structure and a compatible triangulated structure, have been described at length in the 
memoir [36]. In addition, their invariants have been studied in detail in the program of 
tensor triangular geometry of Balmer (cf. [4] for a survey).

2.1. Stable ∞-categories

Let C be a stable ∞-category in the sense of [50, Ch. 1]. Recall that stability is a 
condition on an ∞-category, rather than extra data, in the same manner that, in ordi-
nary category theory, being an abelian category is a property. The homotopy category 
of a stable ∞-category is canonically triangulated, so that stable ∞-categories may be 
viewed as enhancements of triangulated categories; however, as opposed to traditional 
DG-enhancements, stable ∞-categories can be used to model phenomena in stable ho-
motopy theory (such as the ∞-category of spectra, or the ∞-category of modules over a 
structured ring spectrum).

Here we will describe some general features of stable ∞-categories, and in particular 
the constructions one can perform with them. Most of this is folklore (in the setting of 
triangulated or DG-categories) or in [50].

Definition 2.2. Let Cat∞ be the ∞-category of (small) ∞-categories. Given ∞-categories 
C, D, the mapping space HomCat∞(C, D) is the maximal ∞-groupoid contained in the 
∞-category Fun(C, D) of functors C → D.

Definition 2.3. We define an ∞-category Catst∞ of (small) stable ∞-categories where:

1. The objects of Catst∞ are the stable ∞-categories which are idempotent complete.1

1 This can be removed, but will be assumed for convenience.
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2. Given C, D ∈ Catst∞, the mapping space HomCatst∞(C, D) is the union of connected 
components in HomCat∞(C, D) spanned by those functors which preserve finite limits 
(or, equivalently, colimits). Such functors are called exact.

The ∞-category Catst∞ has all limits, and the forgetful functor Catst∞ → Cat∞ com-
mutes with limits. For example, given a diagram in Catst∞

C

F

D G E

,

we can form a pullback C ×E D consisting of triples (X, Y, f) where X ∈ C, Y ∈ D, and 
f : F (X) � G(Y ) is an equivalence. This pullback is automatically stable.

Although the construction is more complicated, Catst∞ is also cocomplete. For example, 
the colimit (in Cat∞) of a filtered diagram of stable ∞-categories and exact functors is 
automatically stable, so that the inclusion Catst∞ ⊂ Cat∞ preserves filtered colimits. In 
general, one has:

Proposition 2.4. Catst∞ is a presentable ∞-category.

To understand this, it is convenient to work with the (big) ∞-category PrL.

Definition 2.5. (See [44, 5.5.3].) PrL is the ∞-category of presentable ∞-categories and 
colimit-preserving (or left adjoint) functors.

The ∞-category PrL is known to have all colimits (cf. [44, 5.5.3]). We briefly review 
this here. Given a diagram F : I → PrL, we can form the dual Iop-indexed diagram in 
the ∞-category PrR of presentable ∞-categories and right adjoints between them. Now 
we can form a limit in PrR at the level of underlying ∞-categories; by duality between 
PrL, PrR in the form PrL � (PrR)op, this can be identified with the colimit lim−−→I

F in 
PrL.

In other words, for each map f : i → i′ in I, consider the induced adjunction of 
∞-categories Lf , Rf : F (i) � F (i′). Then an object x in lim−−→I

F is the data of:

1. For each i ∈ I, an object xi ∈ F (i).
2. For each f : i → i′, an isomorphism xi � Rf (xi′).
3. Higher homotopies and coherences.

For each i, we get a natural functor in PrL, F (i) → lim−−→I
F . We have a tautological 

description of the right adjoint, which to an object x in lim F as above returns xi ∈ F (i).
−−→I
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Example 2.6. Let S∗ be the ∞-category of pointed spaces and pointed maps between 
them. We have an endofunctor Σ: S∗ → S∗ given by suspension, whose right adjoint is 
the loop functor Ω: S∗ → S∗. The filtered colimit in PrL of the diagram

S∗
Σ→ S∗

Σ→ . . . ,

can be identified, by this description, as the ∞-category of sequences of pointed spaces 
(X0, X1, X2, . . . , ) together with equivalences Xn � ΩXn+1 for n ≥ 0: in other words, 
one recovers the ∞-category of spectra.

Proposition 2.7. Suppose F : I → PrL is a diagram where, for each i ∈ I, the ∞-category 
F (i) is compactly generated; and where, for each i → i′, the left adjoint F (i) → F (i′)
preserves compact objects.2 Then each F (i) → lim−−→I

F preserves compact objects, and 
lim−−→I

F is compactly generated.

Proof. It follows from the explicit description of lim−−→I
F , in fact, that the right adjoints 

to F (i) → lim−−→I
F preserve filtered colimits; this is dual to the statement that the left 

adjoints preserve compact objects. Moreover, the images of each compact object in each 
F (i) in lim−−→I

F can be taken as compact generators, since they are seen to detect equiv-
alences. �
Definition 2.8. PrL,ω is the ∞-category of compactly generated, presentable ∞-categories 
and colimit-preserving functors which preserve compact objects.

It is fundamental that PrL,ω is equivalent to the ∞-category of idempotent complete, 
finitely cocomplete ∞-categories and finitely cocontinuous functors, under the construc-
tion C → Ind(C) starting from the latter and ending with the former (and the dual 
construction that takes an object in PrL,ω to its subcategory of compact objects). Propo-
sition 2.7 implies that colimits exist in PrL,ω and the inclusion PrL,ω → PrL preserves 
them.

Corollary 2.9. PrL,ω is a presentable ∞-category.

Proof. It suffices to show that any idempotent complete, finitely cocomplete ∞-category 
is a filtered colimit of such of bounded cardinality (when modeled via quasi-categories, 
for instance). For simplicity, we will sketch the argument for finitely cocomplete quasi-
categories. The idempotent complete case can be handled similarly by replacing filtered 
colimits with ℵ1-filtered colimits.

To see this, let C be such a quasi-category. Consider any countable simplicial subset 
D of C which is a quasi-category. We will show that D is contained in a bigger countable 

2 This is equivalent to the condition that the right adjoints preserve filtered colimits.
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simplicial subset D of C which is a finitely cocomplete quasi-category such that D → C
preserves finite colimits. This will show that C is the filtered union of such subsets D
(ordered by set-theoretic inclusion) and will thus complete the proof.

Thus, fix D ⊂ C countable. For each finite simplicial set K, and each map K → D, 
by definition there is an extension K� → C which is a colimit diagram. We can find 
a countable simplicial set D′ such that D ⊂ D′ ⊂ C such that every diagram K → D
extends over a diagram K� → D′ such that the composite K� → D′ → C is a colimit 
diagram in C. Applying the small object argument (countably many times), we can find 
a countable quasi-category D1 with D ⊂ D1 ⊂ C such that any diagram K → D1 extends 
over a diagram K� → D1 such that the composite K� → D1 → C is a colimit diagram. 
It follows thus that any countable simplicial subset D of C containing all the vertices is 
contained in such a (countable) D1. (At each stage in the small object argument, we also 
have to add in fillers to all inner horns.)

Thus, consider any countable simplicial subset D ⊂ C which is a quasi-category con-
taining all the vertices of C, and such that any diagram K → D (for K finite) extends 
over a diagram K� → D such that the composite K� → C is a colimit diagram. We 
have just shown that C is a (filtered) union of such. Of course, D may not have all the 
colimits we want. Consider the (countable) collection SD of all diagrams f : K� → D
whose composite K� f→ D → C is a colimit. We want to enlarge D so that each of these 
becomes a colimit, but not too much; we want D to remain countable.

For each f ∈ SD, consider DK/ ⊂ CK/. By construction, we have an object in DK/

which is initial in CK/. By adding a countable number of simplices to D, though, we can 
make this initial in DK/ too; that is, there exists a D′ ⊂ D with the same properties 
such that the object defined is initial in D′

K/. Iterating this process (via the small object 
argument), we can construct a countable simplicial subset D ⊂ C, containing D, which 
is a quasi-category and such that any diagram K → D extends over a diagram K� → D
which is a colimit preserved under D → C. This completes the proof. �

We can use this to describe Catst∞. We have a fully faithful functor

Catst∞ → PrL,ω,

which sends a stable ∞-category C to the compactly generated, presentable stable 
∞-category Ind(C). In fact, Catst∞ can be identified with the ∞-category of stable, 
presentable, and compactly generated ∞-categories, and colimit-preserving functors 
between them that also preserve compact objects, so that Catst∞ ⊂ PrL,ω as a full sub-
category.

Proof of Proposition 2.4. We need to show that Catst∞ has all colimits. Using the explicit 
construction of a colimit of presentable ∞-categories, however, it follows that a colimit 
of presentable, stable ∞-categories is stable. In particular, Catst∞ has colimits and they 
are computed in PrL,ω.
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Finally, we need to show that any object in Catst∞ is a filtered union of objects in 
Catst∞ of bounded cardinality. This can be argued similarly as above (we just need to 
add stability into the mix). �

Compare also the treatment of stable ∞-categories in [8], which shows (cf. [8, 
Th. 4.22]) that Catst∞ can be obtained as an accessible localization of the ∞-category 
associated to a combinatorial model category and indeed shows that Catst∞ is compactly 
generated [8, Cor. 4.25].

We will need some examples of limits and colimits in Catst∞. Compare [8, sec. 5] for a 
detailed treatment.

Definition 2.10. Let C ∈ Catst∞ and let D ⊂ C be a full, stable idempotent complete 
subcategory. We define the Verdier quotient C/D to be the pushout in Catst∞

D C

0 C/D

.

Fix E ∈ Catst∞. By definition, to give an exact functor C/D → E is equivalent to 
giving an exact functor C → E which sends every object in D to a zero object; note that 
this is a condition rather than extra data. The Verdier quotient can be described very 
explicitly. Namely, consider the inclusion Ind(D) ⊂ Ind(C) of stable ∞-categories. For 
any X ∈ Ind(C), there is a natural cofiber sequence

MDX → X → LDX,

where:

1. MDX is in the full stable subcategory of Ind(C) generated under colimits by D (i.e., 
Ind(D)).

2. For any D ∈ D, HomInd(C)(D, LDX) is contractible.

One can construct this sequence by taking MD to be the right adjoint to the inclusion 
functor Ind(D) ⊂ Ind(C).

We say that an object X ∈ Ind(C) is D⊥-local if MDX is contractible. The full 
subcategory D⊥ ⊂ Ind(C) of D⊥-local objects is a localization of Ind(C), with localization 
functor given by LD. We have an adjunction

Ind(C) � D⊥,

where the right adjoint, the inclusion D⊥ ⊂ C, is fully faithful. The inclusion D⊥ ⊂ Ind(C)
preserves filtered colimits since D ⊂ Ind(C) consists of compact objects, so that the 
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localization LD preserves compact objects. Now, the Verdier quotient can be described 
as the subcategory of D⊥ spanned by compact objects (in D⊥); it is generated under 
finite colimits and retracts by the image of objects in C. Moreover, Ind(C/D) is precisely 
D⊥ ⊂ Ind(C).

Remark 2.11. The pushout diagram defining the Verdier quotient is also a pullback.

Remark 2.12. A version of this construction makes sense in the world of presentable, 
stable ∞-categories (which need not be compactly generated).

These Verdier quotients have been considered, for example, in [56] under the name 
finite localizations.

2.2. Stable homotopy theories and 2-rings

In this paper, our goal is to describe an invariant of symmetric monoidal stable 
∞-categories. For our purposes, we can think of them as commutative algebra objects
with respect to a certain tensor product on Catst∞. We begin by reviewing this and some 
basic properties of stable homotopy theories, which are the “big” versions of these.

Definition 2.13. (See [50, 4.8], [17].) Given C, D ∈ Catst∞, we define the tensor product
C �D ∈ Catst∞ via the universal property

HomCatst∞(C �D, E) � Fun′(C × D, E), (2)

where Fun′(C ×D, E) consists of those functors C ×D → E which preserve finite colimits 
in each variable separately.

It is known (see [50, 4.8]) that this defines a symmetric monoidal structure on 
Catst∞. The commutative algebra objects are precisely the symmetric monoidal, stable 
∞-categories (C, ⊗, 1) such that the tensor product preserves finite colimits in each vari-
able.

Definition 2.14. We let 2-Ring = CAlg(Catst∞) be the ∞-category of commutative algebra 
objects in Catst∞. We will also write CAlg(PrLst) for the ∞-category of stable homotopy 
theories (i.e., presentable stable symmetric monoidal ∞-categories with bicocontinuous 
tensor product); this is the “big” version of 2-Ring.

The tensor product � : Catst∞ × Catst∞ → Catst∞ preserves filtered colimits in each 
variable; this follows from (2). In particular, since Catst∞ is a presentable ∞-category, it 
follows that 2-Ring is a presentable ∞-category.

In this paper, we will define a functor

π≤1 : 2-Ring → Pro(Gpdfin)op,
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where we will specify what the latter means below, called the Galois groupoid. The 
Galois groupoid will parametrize certain very special commutative algebra objects in a 
given 2-ring. Given a stable homotopy theory (C, ⊗, 1) (in the sense of Definition 2.1), 
the invariant we will define will depend only on the small subcategory Cdual of dualizable
objects in C.

We will also define a slightly larger version of the Galois groupoid that will see more 
of the “infinitary” structure of the stable homotopy theory, which will make a difference 
in settings where the unit is not compact (such as K(n)-local stable homotopy theory). 
In this case, it will not be sufficient to work with 2-Ring. However, the interplay between 
2-Ring and the theory of (large) stable homotopy theories will be crucial in the following.

Definition 2.15. (Cf. [50, 4.6.1].) In a symmetric monoidal ∞-category (C, ⊗, 1), an object 
X is dualizable if there exist an object Y and maps

1 coev−−−→ Y ⊗X, X ⊗ Y
ev−→ 1,

such that the composites

X � X⊗1 1X⊗coev−−−−−−→ X⊗Y ⊗X
ev⊗1X−−−−→ X, Y � 1⊗Y

coev⊗1Y−−−−−−→ Y ⊗X⊗Y
1Y ⊗ev−−−−→ Y

are homotopic to the respective identities. In other words, X is dualizable if and only if it 
is dualizable in the homotopy category with its induced symmetric monoidal structure.

These definitions force natural homotopy equivalences

HomC(Z,Z ′ ⊗X) � HomC(Z ⊗ Y,Z ′), Z, Z ′ ∈ C. (3)

Now let (C, ⊗, 1) be a stable homotopy theory. The collection of all dualizable objects in C
(cf. also [36, sec. 2.1]) is a stable and idempotent complete subcategory, which is closed 
under the monoidal product. Moreover, suppose that 1 is κ-compact for some regular 
cardinal κ. Then (3) with Z = 1 forces any dualizable object Y to be κ-compact as well. 
In particular, it follows that the subcategory of C spanned by the dualizable objects is 
(essentially) small and belongs to 2-Ring. (By contrast, no amount of compactness is 
sufficient to imply dualizability.)

We thus have the two constructions:

1. Given a stable homotopy theory, take the symmetric monoidal, stable ∞-category 
of dualizable objects, which is a 2-ring.

2. Given an object C ∈ 2-Ring, Ind(C) is a stable homotopy theory.

These two constructions are generally not inverse to one another. However, the “finitary” 
version of the Galois group we will define will be unable to see the difference.
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Next, we will describe some basic constructions in 2-Ring. The ∞-category 2-Ring has 
all limits, and these may be computed at the level of the underlying ∞-categories. As 
such, these homotopy limit constructions can be used to build new examples of 2-rings 
from old ones. These constructions will also apply to stable homotopy theories. To start 
with, we discuss Verdier quotients.

Definition 2.16. Let (C, ⊗, 1) ∈ 2-Ring and let I ⊂ C be a full stable, idempotent complete 
subcategory. We say that I is an ideal or ⊗-ideal if whenever X ∈ C, Y ∈ I, the tensor 
product X ⊗ Y ∈ C actually belongs to I.

If I ⊂ C is an ideal, then the Verdier quotient C/I naturally inherits the structure of 
an object in 2-Ring. This follows naturally from [50, Proposition 2.2.1.9] and the explicit 
construction of the Verdier quotient. By definition, Ind(C/I) consists of the objects 
X ∈ Ind(C) which have the property that HomInd(C)(I, X) is contractible when I ∈ I. 
We can describe this as the localization of Ind(C) at the collection of maps f : X → Y

whose cofiber belongs to Ind(I). These maps, however, form an ideal since I is an ideal. 
As before, given D ∈ 2-Ring, we have a natural fully faithful inclusion

Hom2-Ring(C/I,D) ⊂ Hom2-Ring(C,D),

where the image of the map consists of all symmetric monoidal functors C → D which 
take every object in I to a zero object.

Finally, we describe some free constructions. Let Sp be the ∞-category of spectra, and 
let C be a small symmetric monoidal ∞-category. Then the ∞-category Fun(Cop, Sp) is 
a stable homotopy theory under the Day convolution product [50, 4.8.1]. Consider the 
collection of compact objects in here, which we will write as the “monoid algebra” Spω[C]. 
One has the universal property

Hom2-Ring(Spω[C],D) � Fun⊗(C,D),

i.e., an equivalence between functors of 2-rings Sp[C] → D and symmetric monoidal 
functors C → D. We can also define the free stable homotopy theory on C as the 
Ind-completion of this 2-ring, or equivalently as Fun(Cop, Sp).

Example 2.17. The free symmetric monoidal ∞-category on a single object is the disjoint 
union 
n≥0 BΣn, or the groupoid of finite sets and isomorphisms between them, with 

 as the symmetric monoidal product. Using this, we can describe the “free stable ho-
motopy theory” on a single object. As above, an object in this stable homotopy theory 
consists of giving a spectrum Xn with a Σn-action for each n; the tensor structure comes 
from a convolution product. If we consider the compact objects in here, we obtain the 
free 2-ring on a given object.
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Finally, we will need to discuss a bit of algebra internal to C.

Definition 2.18. There is a natural ∞-category of commutative algebra objects in C (cf. 
[50, Ch. 2]) which we will denote by CAlg(C). When C = Sp is the ∞-category, we will 
just write CAlg for the ∞-category of E∞-ring spectra.

Recall that a commutative algebra object in C consists of an object X ∈ C together 
with a multiplication map m : X ⊗ X → X and a unit map 1 → X, which satisfy the 
classical axioms of a commutative algebra object up to coherent homotopy; for instance, 
when C = Sp, one obtains the classical notion of an E∞-ring. The amount of homotopy 
coherence is sufficient to produce the following:

Definition 2.19. (See [50, Sec. 4.5].) Let C be a stable homotopy theory. Given A ∈
CAlg(C), there is a natural ∞-category ModC(A) of A-module objects internal to C. 
The ∞-category ModC(A) acquires the structure of a stable homotopy theory with the 
relative A-linear tensor product.

The relative A-linear tensor product requires the formation of geometric realizations, 
so we need infinite colimits to exist in C for the above construction to make sense in 
general.

2.3. Examples

Stable homotopy theories and 2-rings occur widely in “nature,” and in this section, 
we describe a few basic classes of such widely occurring examples. We begin with two of 
the most fundamental ones.

Example 2.20 (Derived categories). The derived ∞-category D(R) of a commutative ring 
R (cf. [50, Sec. 1.3]) with the derived tensor product is a stable homotopy theory.

Example 2.21 (Modules over an E∞-ring). As a more general example, the ∞-category 
Mod(R) of modules over an E∞-ring spectrum R with the relative smash product is 
a stable homotopy theory. For instance, taking R = S0, we get the ∞-category Sp of 
spectra. This is the primary example (together with E-localized versions) considered 
in [71].

Example 2.22 (Quasi-coherent sheaves). Let X be a scheme (or algebraic stack, or 
even prestack). To X, one can associate a stable homotopy theory QCoh(X) of quasi-
coherent complexes on X. By definition, QCoh(X) is the homotopy limit of the derived 
∞-categories D(R) where SpecR → X ranges over all maps from affine schemes to X. 
For more discussion, see [17].
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Example 2.23. Consider a cartesian diagram of E∞-rings

A×A′′ A′ A

A′ A′′

.

We obtain a diagram of stable homotopy theories

Mod(A×A′′ A′) Mod(A)

Mod(A′) Mod(A′′)

,

and in particular a symmetric monoidal functor

Mod(A×A′′ A′) → Mod(A) ×Mod(A′′) Mod(A′).

This functor is generally not an equivalence in 2-Ring.
This functor is always fully faithful. However, if A, A′, A′′ are connective and A → A′′, 

A′ → A′′ induce surjections on π0, then it is proved in [45, Theorem 7.2] that the functor 
induces an equivalence on the connective objects or, more generally, on the k-connective 
objects for any k ∈ Z. In particular, if we let Modω denote perfect modules, we have an 
equivalence of 2-rings

Modω(A×A′′ A′) � Modω(A) ×Modω(A′′) Modω(A′),

since an A ×A′′ A′-module is perfect if and only if its base-changes to A, A′ are. However, 
the Ind-construction generally does not commute even with finite limits.

Example 2.24 (Functor categories). As another example of a (weak) 2-limit, we consider 
any ∞-category K and a stable homotopy theory C; then Fun(K, C) is naturally a stable 
homotopy theory under the “pointwise” tensor product. If K = BG for a group G, then 
this example endows the ∞-category of objects in C with a G-action with the structure 
of a stable homotopy theory.

Finally, we list several other miscellaneous examples of stable homotopy theories.

Example 2.25 (Hopf algebras). Let A be a finite-dimensional cocommutative Hopf algebra 
over the field k. In this case, the (ordinary) category A of discrete A-modules has a 
natural symmetric monoidal structure via the k-linear tensor product. In particular, 
its derived ∞-category D(A) is naturally symmetric monoidal, and is thus a stable 
homotopy theory. Stated more algebro-geometrically, SpecA∨ is a group scheme G over 
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the field k, and D(A) is the ∞-category of quasi-coherent sheaves of complexes on the 
classifying stack BG.

Example 2.26 (Stable module ∞-categories). Let A be a finite-dimensional cocommuta-
tive Hopf algebra over the field k. Consider the subcategory D(A)ω ⊂ D(A) (where A
is the abelian category of A-modules, as in Example 2.25) of A-module spectra which 
are perfect as k-module spectra. Inside D(A)ω is the subcategory I of those objects 
which are perfect as A-module spectra. This subcategory is stable, and is an ideal by the 
observation (a projection formula of sorts) that the k-linear tensor product of A with 
any A-module is free as an A-module.

Definition 2.27. The stable module ∞-category StA = Ind(D(A)ω/I) is the Ind-comple-
tion of the Verdier quotient D(A)ω/I. If A = k[G] is the group algebra of a finite 
group G, we write StG(k) for Stk[G].

The stable module ∞-categories of finite-dimensional Hopf algebras (especially group 
algebras) and their various invariants (such as the Picard groups and the thick subcat-
egories) have been studied extensively in the modular representation theory literature. 
For a recent survey, see [10].

Example 2.28 (Bousfield localizations). Let C be a stable homotopy theory, and let E ∈ C. 
In this case, there is a naturally associated stable homotopy theory LEC of E-local objects. 
By definition, LEC is a full subcategory of C; an object X ∈ C belongs to LEC if and only 
if whenever Y ∈ C satisfies Y ⊗ E � 0, the spectrum HomC(Y, X) is contractible. The 
∞-category LEC is symmetric monoidal under the E-localized tensor product: since the 
tensor product of two E-local objects need not be E-local, one needs to localize further. 
For example, the unit object in LEC is LE1.

There is a natural adjunction

C � LEC,

where the (symmetric monoidal) left adjoint sends an object to its E-localization, and 
where the (lax symmetric monoidal) right adjoint is the inclusion.

2.4. Morita theory

Let (C, ⊗, 1) be a stable homotopy theory. In general, there is a very useful criterion 
for recognizing when C is equivalent (as a stable homotopy theory) to the ∞-category of 
modules over an E∞-ring.

Note first that if R is an E∞-ring, then the unit object of Mod(R) is a compact 
generator. The following result, which for stable ∞-categories (without the symmetric 
monoidal structure) is due to Schwede and Shipley [74] (preceded by ideas of Rickard 
and others on tilting theory), asserts the converse.
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Theorem 2.29. (See [50, Proposition 8.1.2.7].) Let C be a stable homotopy theory where 
1 is a compact generator. Then there is a natural symmetric monoidal equivalence

Mod(R) � C,

where R � EndC(1) is naturally an E∞-ring.

In general, given a symmetric monoidal stable ∞-category C, the endomorphism ring 
R = EndC(1) is always naturally an E∞-ring, and one has a natural adjunction

Mod(R) � C,

where the left adjoint “tensors up” an R-module with 1 ∈ C, and the right adjoint sends 
X ∈ C to the mapping spectrum HomC(1, X), which naturally acquires the structure 
of an R-module. The left adjoint is symmetric monoidal, and the right adjoint is lax
symmetric monoidal. In general, one does not expect the right adjoint to preserve filtered 
colimits: it does so if and only if 1 is compact. In this case, if 1 is compact, we get a 
fully faithful inclusion

Mod(R) ⊂ C,

which exhibits Mod(R) as a colocalization of C. If 1 is not compact, we at least get a 
fully faithful inclusion of the perfect R-modules into C.

For example, let G be a finite p-group and k be a field of characteristic p. In this case, 
every finite-dimensional G-representation on a k-vector space is unipotent: any such 
has a finite filtration whose subquotients are isomorphic to the trivial representation. 
From this, one might suspect that one has an equivalence of stable homotopy theories 
Fun(BG, Mod(k)) � Mod(khG), where khG is the E∞-ring of endomorphisms of the unit 
object k, but this fails because the unit object of Mod(k[G]) fails to be compact: taking 
G-homotopy fixed points does not commute with homotopy colimits. However, by fixing 
this reasoning, one obtains an equivalence

Fun(BG,Modω(k)) � Modω(khG), (4)

between perfect k-module spectra with a G-action and perfect khG-modules. If one works 
with stable module ∞-categories, then the unit object is compact (more or less by fiat) 
and one has:

Theorem 2.30. (See Keller [43].) Let G be a finite p-group and k a field of characteristic p. 
Then we have an equivalence of symmetric monoidal ∞-categories

Mod(ktG) � StG(k),

between the ∞-category of modules over the Tate E∞-ring ktG and the stable module 
∞-category of G-representations over k.
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The Tate construction ktG, for our purposes, can be defined as the endomorphism 
E∞-ring of the unit object in the stable module ∞-category StG(k). As a k-module 
spectrum, it can also be obtained as the cofiber of the norm map khG → khG. We also 
refer to [53, sec. 2] for further discussion on this point.

2.5. Étale algebras

Let R be an E∞-ring spectrum. Given an E∞-R-algebra R′, recall that the homotopy 
groups π∗R

′ form a graded-commutative π∗R-algebra. In general, there is no reason for 
a given graded-commutative π∗R-algebra to be realizable as the homotopy groups in this 
way, although one often has various obstruction theories (see for instance [69,68,27] for 
examples of obstruction theories in different contexts) to attack such questions. There 
is, however, always one case in which the obstruction theories degenerate completely.

Definition 2.31. An E∞-R-algebra R′ is étale if:

1. The map π0R → π0R
′ is étale (in the sense of ordinary commutative algebra).

2. The natural map π0R
′ ⊗π0R π∗R → π∗R

′ is an isomorphism.

The basic result in this setting is that the theory of étale algebras is entirely algebraic: 
the obstructions to existence and uniqueness all vanish.

Theorem 2.32. (See [50, Theorem 7.5.4.2].) Let R be an E∞-ring. Then the ∞-category 
of étale R-algebras is equivalent (under π0) to the ordinary category of étale π0R-algebras.

One can show more, in fact: given an étale R-algebra R′, then for any E∞ R-algebra R′′, 
the natural map

HomR/(R′, R′′) → Homπ0R/(π0R
′, π0R

′′)

is a homotopy equivalence. Using an adjoint functor theorem approach (and the infinites-
imal criterion for étaleness), one may even define R′ in terms of π0R

′ in this manner, 
although checking that it has the desired homotopy groups takes additional work. In par-
ticular, note that étale R-algebras are 0-cotruncated objects of the ∞-category CAlgR/: 
that is, the space of maps out of any such is always homotopy discrete. The finite covers 
that we shall consider in this paper will also have this property.

Example 2.33. This implies that one can adjoin nth roots of unity to the sphere spec-
trum S0 once n is inverted. An argument of Hopkins implies that the inversion of n is 
necessary: for p > 2, one cannot adjoin a pth root of unity to p-adic K-theory, as one sees 
by considering the θ-operator on K(1)-local E∞-rings under K-theory (cf. [35]) which 
satisfies xp = ψ(x) − pθ(x) where ψ is a homomorphism on π0. If one could adjoin ζp to 
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p-adic K-theory, then one would have −pθ(ζp) = 1 − ζap for some unit a ∈ (Z/pZ)×, but 
p does not divide 1 − ζap in Zp[ζp].

Let (C, ⊗, 1) be a stable homotopy theory. We will now attempt to do the above in C
itself. We will obtain some of the simplest classes of objects in CAlg(C). The following 
notation will be convenient.

Definition 2.34. Given a stable homotopy theory (C, ⊗, 1), we will write

π∗X � π∗ HomC(1, X). (5)

In particular, π∗1 � π∗EndC(1, 1) is a graded-commutative ring, and for any X ∈ C, 
π∗X is naturally a π∗1-module.

Remark 2.35. Of course, π∗ does not commute with infinite direct sums unless 1 is 
compact. For example, π∗ fails to commute with direct sums in LK(n) Sp (which is 
actually compactly generated, albeit not by the unit object).

Let (C, ⊗, 1) be a stable homotopy theory. As in the previous section, we have an 
adjunction of symmetric monoidal ∞-categories

(· ⊗R 1,HomC(1, ·)) : Mod(R) � C,

where R = EndC(1) is an E∞-ring. Given an étale π0R � π01-algebra R′
0, we can thus 

construct an étale R-algebra R′ and an associated object R′⊗R 1 ∈ CAlg(C). The object 
R′⊗R1 naturally acquires the structure of a commutative algebra, and, by playing again 
with adjunctions, we find that

HomCAlg(C)(R′ ⊗R 1, T ) � Homπ01(R′
0, π0T ), T ∈ CAlg(C).

Definition 2.36. The objects of CAlg(C) obtained in this manner are called classically 
étale.

The classically étale objects in CAlg(C) span a subcategory of CAlg(C). In general, 
this is not equivalent to the category of étale π0R-algebras if 1 is not compact (for 
example, Mod(R) → C need not be conservative; take C = LK(n) Sp and LK(n)S

0 ⊗Q). 
However, note that the functor

Modω(R) → C,

from the ∞-category Modω(R) of perfect R-modules into C, is always fully faithful. It 
follows that there is a full subcategory of CAlg(C) equivalent to the category of finite
étale π0R-algebras. This subcategory will give us the “algebraic” part of the Galois group 
of C.
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We now specialize to the case of idempotents. Let (C, ⊗, 1) be a stable homotopy 
theory, and A ∈ CAlg(C) a commutative algebra object, so that π0A is a commutative 
ring.

Definition 2.37. An idempotent of A is an idempotent of the commutative ring π0A. We 
will denote the set of idempotents of A by Idem(A).

The set Idem(A) acquires some additional structure; as the set of idempotents in a 
commutative ring, it is naturally a Boolean algebra under the multiplication in π0A and 
the addition that takes idempotents e, e′ and forms e + e′ − ee′. For future reference, 
recall the following:

Definition 2.38. A Boolean algebra is a commutative ring B such that x2 = x for every 
x ∈ B. The collection of all Boolean algebras forms a full subcategory Bool of the 
category of commutative rings.

Suppose given an idempotent e of A, so that 1 − e is also an idempotent. In this case, 
we can obtain a splitting

A � A[e−1] ×A[(1 − e)−1]

as a product of two objects in CAlg(C), as observed in [54]. To see this, we may reduce 
to the case when A = 1, by replacing C by ModC(A). In this case, we obtain the splitting 
from the discussion above in Definition 2.36: A[e−1] and A[(1 −e)−1] are both classically 
étale and in the thick subcategory generated by A. Conversely, given such a splitting, 
we obtain corresponding idempotents, e.g., reducing to the case of an E∞-ring.

Suppose the unit object 1 ∈ C decomposes as a product 11 × 12 ∈ CAlg(C). In this 
case, we have a decomposition at the level of stable homotopy theories

C � ModC(11) × ModC(12),

so in practice, most stable homotopy theories that in practice we will be interested in 
will have no such nontrivial idempotents. However, the theory of idempotents will be 
very important for us in this paper.

For example, using the theory of idempotents, we can describe maps out of a product 
of commutative algebras.

Proposition 2.39. Let A, B ∈ CAlg(C). Then if C ∈ CAlg(C), then we have a homotopy 
equivalence

HomCAlg(C)(A×B,C) � 

C�C1×C2

HomCAlg(C)(A,C1) × HomCAlg(C)(B,C2),

where the disjoint union is taken over all decompositions C � C1 ×C2 in CAlg(C) (i.e., 
over idempotents in C).
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Proof. Starting with a map A × B → C, we get a decomposition of C into two fac-
tors coming from the two natural idempotents in A × B, whose images in C give two 
orthogonal idempotents summing to 1. Conversely, starting with something in the right-
hand-side, given via maps A → C1 and B → C2 and an equivalence C � C1 × C2, we 
can take the product of the two maps to get A ×B → C. The equivalence follows from 
the universal property of localization. �

For example, consider the case of A, B = 1. In this case, we find that, if C ∈ CAlg(C), 
then

HomCAlg(C)(1 × 1, C)

is homotopy discrete, and consists of the set of idempotents in C. We could have obtained 
this from the theory of “classically étale” objects earlier. Using this description as a 
corepresentable functor, we find:

Corollary 2.40. The functor A �→ Idem(A), CAlg(C) → Bool, commutes with limits.

Remark 2.41. Corollary 2.40 can also be proved directly. Since π∗ commutes with arbi-
trary products in C, it follows that A �→ Idem(A) commutes with arbitrary products. It 
thus suffices to show that if we have a pullback diagram

A B

C D

,

in CAlg(C), then the induced diagram of Boolean algebras

Idem(A) Idem(B)

Idem(C) Idem(D)

is also cartesian. In fact, we have a surjective map of commutative rings π0(A) →
π0(B) ×π0(D)π0(C) whose kernel is the image of the connecting homomorphism π1(D) →
π0(A). It thus suffices to show that the product of two elements in the image of this con-
necting homomorphism vanishes, since square-zero ideals do not affect idempotents.

Equivalently, we claim that if x, y ∈ π0(A) map to zero in π0(B) and π0(C), then 
xy = 0. In fact, x and y define maps A → A and, in fact, endomorphisms of the exact 
triangle

A → B ⊕ C → D,
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and each is nullhomotopic on B ⊕ C and on D. A diagram chase with exact triangles 
now shows that xy defines the zero map A → A, as desired.

3. Descent theory

Let A → B be a faithfully flat map of discrete commutative rings. Grothendieck’s 
theory of faithfully flat descent (cf. [30, Exp. VIII]) can be used to describe the cate-
gory Moddisc(A) of (discrete, or classical) A-modules in terms of the three categories 
Moddisc(B), Moddisc(B ⊗A B), Moddisc(B ⊗A B ⊗A B). Namely, it identifies the cate-
gory Moddisc(A) with the category of B-modules with descent data, or states that the 
diagram

Moddisc(A) → Moddisc(B) ⇒ Moddisc(B ⊗A B)→→→ Moddisc(B ⊗A B ⊗A B),

is a limit diagram in the 2-category of categories. This diagram of categories comes from 
the cobar construction on A → B, which is the augmented cosimplicial commutative 
ring

A → B ⇒ B ⊗A B
→→→ · · · .

Grothendieck’s theorem can be proved via the Barr–Beck theorem, by showing that 
if A → B is faithfully flat, the natural tensor-forgetful adjunction Moddisc(A) �
Moddisc(B) is comonadic. Such results are extremely useful in practice, for instance 
because the category of B-modules may be much easier to study. From another point 
of view, these results imply that any A-module M can be expressed as an equalizer of 
B-modules (and maps of A-modules), via

M → M ⊗A B ⇒ M ⊗A B ⊗A B,

where the two maps are m ⊗ b �→ m ⊗ b ⊗ 1 and m ⊗ b �→ m ⊗ 1 ⊗ b.
In the setting of “brave new” algebra, descent theory for maps of E∞ (or weaker) 

algebras has been extensively considered in the papers [48,46]. In this setting, one has 
a map of E∞-rings A → B, and one wishes to describe the stable ∞-category Mod(A)
in terms of the stable ∞-categories Mod(B), Mod(B ⊗A B), . . . . A sample result would 
run along the following lines.

Theorem 3.1. (See [46, Theorem 6.1].) Let A → B be a map of E∞-rings such that 
π0(A) → π0(B) is faithfully flat and the map π∗(A) ⊗π0(A) π0(B) → π∗(B) is an iso-
morphism. Then the adjunction Mod(A) � Mod(B) is comonadic, so that Mod(A) can 
be recovered as the totalization of the cosimplicial ∞-category

Mod(B) ⇒ Mod(B ⊗A B)→→→ · · · .



424 A. Mathew / Advances in Mathematics 291 (2016) 403–541
In practice, the condition of faithful flatness on π∗(A) → π∗(B) can be weakened sig-
nificantly; there are numerous examples of morphisms of E∞-rings which do not behave 
well on the level of π0 but under which one does have a good theory of descent (e.g., the 
conclusion of Theorem 3.1 holds). For instance, there is a good theory of descent along 
KO → KU , and this can be used to describe features of the ∞-category Mod(KO) in 
terms of the ∞-category Mod(KU ). One advantage of considering descent in this more 
general setting is that KU is much simpler algebraically: its homotopy groups are given 
by π∗(KU ) � Z[β±], which is a regular ring, even one-dimensional (if one pays attention 
to the grading), while π∗(KO) is of infinite homological dimension. There are many ad-
ditional tricks one has when working with modules over a more tractable E∞-ring such 
as KU ; we shall see a couple of them below in the proof of Theorem 6.29.

Remark 3.2. For some applications of these ideas to computations, see the paper [52]
(for descriptions of thick subcategories) and [28,62,34] (for calculations of certain Picard 
groups).

In this section, we will describe a class of maps of E∞-rings A → B that have an 
especially good theory of descent. We will actually work in more generality, and fix a 
stable homotopy theory (C, ⊗, 1), and isolate a class of commutative algebra objects for 
which the analogous theory of descent (internal to C) works especially well (so well, 
in fact, that it will be tautologically preserved by any morphism of stable homotopy 
theories). Namely, we will define A ∈ CAlg(C) to be descendable if the thick ⊗-ideal 
that A generates contains the unit object 1 ∈ C. This definition, which is motivated by 
the nilpotence technology of Devinatz, Hopkins, Smith, and Ravenel [39,22] (one part of 
which states that the map LnS

0 → En from the En-local sphere to Morava E-theory 
En satisfies this property), is enough to imply that the conclusion of Theorem 3.1 holds, 
and has the virtue of being purely diagrammatic. The definition has also been recently 
and independently considered by Balmer [3] (under the name “nil-faithfulness”) in the 
setting of tensor-triangulated categories.

In the rest of the section, we will give several examples of descendable morphisms, and 
describe in Section 3.7 an application to descent for 2-modules (or linear ∞-categories), 
which has applications to the study of the Brauer group. This provides a slight strength-
ening of the descent results in [47,48].

3.1. Comonads and descent

The language of ∞-categories gives very powerful tools for proving descent theorems 
such as Theorem 3.1 as well as its generalizations; specifically, the Barr–Beck–Lurie 
theorem of [50] gives a criterion to check when an adjunction is comonadic (in the 
∞-categorical sense), although the result is usually stated in its equivalent form for 
monadic adjunctions. This result has recently been reproved from the point of view of 
weighted (co)limits by Riehl and Verity [73].
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Theorem 3.3. (See Barr, Beck and Lurie [50, Section 4.7].) Let F, G : C � D be an 
adjunction between ∞-categories. Then the adjunction is comonadic if and only if:

1. F is conservative.
2. Given a cosimplicial object X• in C such that F (X•) admits a splitting, then Tot(X•)

exists in C and the map F (Tot(X•)) → TotF (X•) is an equivalence.

In practice, we will be working with presentable ∞-categories, so the existence of 
totalizations will be assured. The conditions of the Barr–Beck–Lurie theorem are thus 
automatically satisfied if F preserves all totalizations (as sometimes happens) and is 
conservative.

Example 3.4. Let A → B be a morphism of E∞-rings. The forgetful functor Mod(B) →
Mod(A) is conservative and preserves all limits and colimits. By the adjoint functor 
theorem, it is a left adjoint. (The right adjoint to this functor sends an A-module M
to the B-module HomA(B, M).) By the Barr–Beck–Lurie theorem, this adjunction is 
comonadic.

However, we will need to consider the more general case. Given a comonadic adjunc-
tion as above, one can recover any object C ∈ C as the homotopy limit of the cobar 
construction

C →
(
TC ⇒ T 2C

→→→ · · ·
)
, (6)

where T = GF is the induced comonad on C. The cobar construction is a cosimplicial 
diagram in C consisting of objects which are in the image of G.

Here a fundamental distinction between ∞-category theory and 1-category theory 
appears. In 1-category theory, the limit of a cosimplicial diagram can be computed as a 
(reflexive) equalizer ; only the first zeroth and first stage of the cosimplicial diagram are 
relevant. In n-category theory (i.e., (n, 1)-category theory), one only needs to work with 
the n-truncation of a cosimplicial object. But in an ∞-category C, given a cosimplicial 
diagram X• : Δ → C, one obtains a tower of partial totalizations

· · · → Totn(X•) → Totn−1(X•) → · · · → Tot1(X•) → Tot0(X•),

whose homotopy inverse limit is the totalization or inverse limit Tot(X•). By definition, 
Totn(X•) is the inverse limit of the n-truncation of X•.

In an n-category, the above tower stabilizes at a finite stage: that is, the successive 
maps Totm(X•) → Totm−1(X•) become equivalences for m large (in fact, m > n). In 
∞-category theory, this is almost never expected. For example, it will never hold for 
the cobar constructions that we obtain from descent along maps of E∞-rings except in 
trivial cases. In particular, (6) is an infinite homotopy limit rather than a finite one.
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Nonetheless, there are certain types of towers that exhibit a weaker form of stabiliza-
tion, and behave close to finite homotopy limits if one is willing to include retracts. Even 
with ∞-categories, there are several instances where this weaker form of stabilization 
occurs, and it is the purpose of this section to discuss that.

3.2. Pro-objects

Consider the following two towers of abelian groups:

...

Z

2

Z

2

Z

...

Z

0

Z

0

Z

Both of these have inverse limit zero. However, there is an essential difference between 
the two. The second inverse system has inverse limit zero for essentially “diagrammatic” 
reasons. In particular, the inverse limit would remain zero if we applied any additive 
functor whatsoever. The first inverse system has inverse limit zero for a more “accidental” 
reason: that there are no integers infinitely divisible by two. If we tensored this inverse 
system with Z[1/2], the inverse limit would be Z[1/2].

The essential difference can be described efficiently using the theory of pro-objects: the 
second inverse system is actually pro-zero, while the first inverse system is a more com-
plicated pro-object. The theory of pro-objects (and, in particular, constant pro-objects) 
in ∞-categories will be integral to our discussion of descent, so we spend the present 
subsection reviewing it.

We begin by describing the construction that associates to a given ∞-category 
an ∞-category of pro-objects. Although we have already used freely the (dual) 
Ind-construction, we review it formally for convenience.

Definition 3.5. (See [44, Section 5.3].) Let C be an ∞-category with finite limits. Then 
the ∞-category Pro(C) is an ∞-category with all limits, receiving a map C → Pro(C)
with the following properties:

1. C → Pro(C) respects finite limits.
2. Given an ∞-category D with all limits, restriction induces an equivalence of 

∞-categories

FunR(Pro(C),D) � Funω(C,D)
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between the ∞-category FunR(Pro(C), D) of limit-preserving functors Pro(C) → D
and the ∞-category Funω(C, D) of functors C → D which preserve finite limits.

There are several situations in which the ∞-categories of pro-objects can be explicitly 
described. We refer to [9, Sec. 3.2] for a detailed discussion.

Example 3.6. (Cf. [44, 7.1.6].) The ∞-category Pro(S) (where S, as usual, is the 
∞-category of spaces) can be described via

Pro(S) � Funω−ct
acc (S,S)op;

that is, Pro(S) is anti-equivalent to the ∞-category of accessible3 functors S → S which 
respect finite limits. This association sends a given space X to the functor Hom(X, ·)
and sends formal cofiltered limits to filtered colimits of functors.

Example 3.7. Similarly, one can describe the ∞-category Pro(Sp) of pro-spectra as the 
opposite to the ∞-category of accessible, exact functors Sp → Sp (a spectrum X is sent 
to HomSp(X, ·) via the co-Yoneda embedding).

By construction, any object in Pro(C) can be written as a “formal” filtered inverse limit 
of objects in C: that is, C generates Pro(C) under cofiltered limits. Moreover, C ⊂ Pro(C)
as a full subcategory. If C is idempotent complete, then C ⊂ Pro(C) consists of the 
cocompact objects.

Remark 3.8. If C is an ordinary category, then Pro(C) is a discrete category (the usual 
pro-category) too.

We now discuss the inclusion C ⊂ Pro(C), where C is an ∞-category with finite limits.

Definition 3.9. An object in Pro(C) is constant if it is equivalent to an object in the image 
of C → Pro(C).

Proposition 3.10. Let C have finite limits. A cofiltered diagram F : I → C defines a 
constant pro-object if and only if the following two conditions are satisfied:

1. F admits a limit in C.
2. Given any functor G : C → D preserving finite limits, the inverse limit of F is pre-

served under G.

In other words, the inverse limit of F is required to exist for essentially “diagrammatic 
reasons.”

3 In other words, commuting with sufficiently filtered colimits.
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Proof. One direction of this is easy to see (take D = Pro(C)). Conversely, if F defines a 
constant pro-object, then given C → D, we consider the commutative diagram

C G D

Pro(C) G̃ Pro(D)

.

The functor F : I → C → Pro(C) has an inverse limit, which actually lands inside the 
full subcategory C ⊂ Pro(C). Since G̃ : Pro(C) → Pro(D) preserves all limits, it follows 
formally that G̃ ◦ F has an inverse limit lying inside D ⊂ Pro(D) and that G preserves 
the inverse limit. �
Example 3.11 (Split cosimplicial objects). Let C be an ∞-category with finite limits. Let 
X• be a cosimplicial object of C. Suppose X• extends to a split, augmented cosimplicial 
object. In this case, the pro-object associated to the Tot tower of X• (i.e., the tower 
{TotnX•}) is constant.

In fact, let D be any ∞-category, and let F : C → D be a functor. Let X : Δ+ → C
be the augmented cosimplicial object extending X• that can be split. Then, by [50, 
Section 4.7.3], the composite diagram

Δ+
X→ C F→ D,

is a limit diagram: that is, F (X−1) � TotF (X•), and in particular TotF (X•) exists.
Suppose D admits finite limits and F preserves finite limits. Then F (TotnX•) �

TotnF (X•), since F preserves finite limits, so that

F (X−1) � holimn TotnF (X•) � holimn F (TotnX•),

in D. In particular, the tower F (TotnX•) converges to F (X−1). By Proposition 3.10, 
this proves constancy as desired.

Example 3.12 (Idempotent towers). Let X ∈ C and let e : X → X be an idempotent
self-map; this means not only that e2 � e, but a choice of coherent homotopies, which 
can be expressed by the condition that one has an action of the monoid {1, x} with two 
elements (where x2 = x) on X. In this case, the tower

· · · → X
e→ X

e→ X,

is pro-constant if it admits a homotopy limit (e.g., if C is idempotent complete). This 
holds for the same reasons: the image of an idempotent is always a universal limit (see 
[44, Section 4.4.5]).
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Conversely, the fact that a pro-object indexed by a cofiltered diagram F : I → C is 
constant has many useful implications coming from the fact that the inverse limit of F
is “universal.”

Example 3.13. Let (C, ⊗, 1) be a stable homotopy theory. Given a cofiltered diagram 
F : I → C, it follows that if the induced pro-object is constant, then for any X ∈ C, the 
natural map

(lim←−−
I

F (i)) ⊗X → lim←−−
I

(F (i) ⊗X),

is an equivalence. See Lemma 3.39 below for a partial converse.

Next, we show that in a finite diagram of ∞-categories, a pro-object is constant if and 
only if it is constant at each stage.

Let K be a finite simplicial set, and let F : K → Cat∞ be a functor into the ∞-category 
Cat∞ of ∞-categories. Suppose that each F (k) has finite limits and each edge in K is 
taken to a functor which respects finite limits. In this case, we obtain a natural functor

Pro
(

lim←−−
K

F (k)
)

→ lim←−−
K

Pro(F (k)), (7)

which respects all limits.

Proposition 3.14. The functor Pro
(
lim←−−K

F (k)
)
→ lim←−−K

Pro(F (k)) is fully faithful.

Proof. In fact, the functors F (k) → Pro(F (k)) are fully faithful for each k ∈ K, so that

lim←−−
K

F (k) → lim←−−
K

Pro(F (k))

is fully faithful and respects finite limits. In order for the right Kan extension (7) to be 
fully faithful, it follows by [44, Section 5.3] that it suffices for the embedding lim←−−K

F (k) →
lim←−−K

Pro(F (k)) to land in the cocompact objects. However, over a finite diagram of 
∞-categories, an object is cocompact if and only if it is cocompact pointwise, because 
finite limits commute with filtered colimits in spaces. �
Corollary 3.15. Let K be a finite simplicial set and let F : K → Cat∞ be a functor 
as above. Then a pro-object in lim←−−K

F (k) is constant if and only if its evaluation in 
Pro(F (k)) is constant for each vertex k ∈ K.
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Proof. We have a commutative diagram

lim←−−K
F (k) � lim←−−K

F (k)

Pro(lim←−−K
F (k)) lim←−−K

Pro(F (k))

,

where the bottom arrow is fully faithful. Given an object in Pro(lim←−−K
F (k)), it is constant 

if and only if the image in lim←−−K
Pro(F (k)) belongs to lim←−−K

F (k). Since each F (k) →
Pro(F (k)) is fully faithful, this can be checked pointwise. �
Remark 3.16. The functor (7) is usually not essentially surjective; consider (with 
Ind-objects) for instance the failure of essential surjectivity in Example 2.23.

3.3. Descendable algebra objects

Let (C, ⊗, 1) be a 2-ring or a stable homotopy theory. In this subsection, we will 
describe a definition of a commutative algebra object in C which “admits descent” in a 
very strong sense, and prove some basic properties.

We start by recalling a basic definition.

Definition 3.17. If E is a stable ∞-category, we will say that a full subcategory D ⊂ E is
thick if D is closed under finite limits and colimits and under retracts. In particular, D is 
stable. Further, if E is given a symmetric monoidal structure, then D is a thick ⊗-ideal
if in addition it is a ⊗-ideal.

Given a collection of objects in E , the thick subcategory (resp. thick ⊗-ideal) that they
generate is defined to be the smallest thick subcategory (resp. thick ⊗-ideal) containing 
that collection.

The theory of thick subcategories, introduced in [22,39], has played an important 
role in making “descent” arguments in proving the basic structural results of chromatic 
homotopy theory. Thus, it is not too surprising that the following definition might be 
useful. This notion has been independently studied under the name nil-faithfulness by 
Balmer [3].

Definition 3.18. Given A ∈ CAlg(C), we will say that A admits descent or is descendable
if the thick ⊗-ideal generated by A is all of C.

More generally, in a stable homotopy theory (C, ⊗, 1), we will say that a morphism 
A → B in CAlg(C) admits descent if B, considered as a commutative algebra object in 
ModC(A), admits descent in the above sense.
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We now prove a few basic properties of the property of “admitting descent,” for 
instance the (evidently desirable) claim that an analog of Theorem 3.1 goes through. 
Here is the first observation.

Proposition 3.19. If A ∈ CAlg(C) admits descent, then A is faithful: if M ∈ C, and 
M ⊗A � 0, then M is contractible.

Proof. Consider the collection of all objects N ∈ C such that M ⊗N � 0. This is clearly 
a thick ⊗-ideal. Since it contains A, it must contain 1, so that M is contractible. �

Given A ∈ CAlg(C), one can form the cobar resolution

A ⇒ A⊗A
→→→ · · · ,

which is a cosimplicial object in CAlg(C), receiving an augmentation from 1. Call this 
cosimplicial object CB•(A) and the augmented version CB•

aug(A).

Proposition 3.20. Given A ∈ CAlg(C), A admits descent if and only if the cosimplicial 
diagram CB•(A) defines a constant pro-object on the level of towers {TotnCB•(A)}n≥0
which converges to 1 (i.e., CB•

aug(A) is a limit diagram).

Proof. Suppose A admits descent. Consider the collection Cgood of M ∈ C such that the 
augmented cosimplicial diagram CB•

aug(A) ⊗ M is a limit diagram, and such that the 
induced Tot tower converging to M defines a constant pro-object. Our goal is to show 
that 1 ∈ Cgood.

Note first that A ∈ Cgood: in fact, the augmented cosimplicial diagram CB•
aug(A) ⊗A

is split and so is a limit diagram and defines a constant pro-object (Example 3.11). 
Moreover, Cgood is a thick ⊗-ideal. The collection of pro-objects which are constant is 
thick, and the tensor product of a constant pro-object with any object of C is constant 
(and the limit commutes with the tensor product). Since A ∈ Cgood, it follows that 
1 ∈ Cgood, which completes the proof in one direction.

Conversely, if CB•
aug(A) is a limit diagram, and CB•(A) defines a constant pro-object, 

it follows that 1 is a retract of TotnCB•(A), for n � 0. However, TotnCB•(A) clearly 
lives in the thick ⊗-ideal generated by A, which shows that A admits descent. �

In other words, thanks to Proposition 3.20, A admits descent if and only if the unit 
object 1 can be obtained as a retract of a finite colimit of a diagram in C consisting of 
objects, each of which admits the structure of a module over A.

One advantage of the purely categorical (and finitistic) definition of admitting descent 
is that it is preserved under base change. The next result follows from Proposition 3.20.

Corollary 3.21. Let F : C → C′ be a symmetric monoidal functor between symmetric 
monoidal, stable ∞-categories. Given A ∈ CAlg(C), if A admits descent, then F (A) does 
as well.
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Proposition 3.22. Let C be a stable homotopy theory. Let A ∈ CAlg(C) admit descent. 
Then the adjunction

C � ModC(A),

given by tensoring with A and forgetting, is comonadic. In particular, the natural functor 
from C to the totalization

C → Tot
(
ModC(A) ⇒ ModC(A⊗A)→→→ · · ·

)
is an equivalence.

Proof. We need to check that the hypotheses of the Barr–Beck–Lurie theorem go 
through. We refer to [50, Th. 4.7.6.2] for the connection between comonadicity and the 
totalization of ∞-categories considered above, which is an ∞-categorical generalization 
of the classical Beck–Bénabou–Roubaud theorem [12].

By Proposition 3.19, tensoring with A is conservative. Now, fix a cosimplicial object 
X• : Δ → C such that A ⊗X• is split. We need to show that the map

A⊗ Tot(X•) → Tot(A⊗X•)

is an equivalence. This will follow if the pro-object defined by X• (i.e., by the Tot tower) 
is constant. To see that, consider the collection of objects M ∈ C such that M⊗X• defines 
a constant pro-object. By assumption (and Example 3.11), this collection contains A, 
and it is a thick ⊗-ideal. It follows that X• itself defines a constant pro-object, so we are 
done. �
Remark 3.23. We have used the fact that we have a symmetric monoidal functor C →
Pro(C), which embeds C as a full subcategory of Pro(C): in particular, the tensor product 
of two constant pro-objects in Pro(C) is constant.

Finally, we prove a few basic permanence properties for admitting descent.

Proposition 3.24. Suppose C is a stable homotopy theory. Let A → B → C be maps in 
CAlg(C).

1. If A → B and B → C admit descent, so does A → C.
2. If A → C admits descent, so does A → B.

Proof. Consider the first claim. Suppose A → B and B → C admit descent. Then, via 
the cobar construction, we find that B belongs to the thick subcategory of ModC(B) gen-
erated by the C-modules. It follows that B belongs to the thick subcategory of ModC(A)
generated by the C-modules, and therefore every B-module belongs to the thick ⊗-ideal 
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in ModC(A) generated by C. Since A → B admits descent, we find that the thick ⊗-ideal 
that C generates in ModC(A) contains A.

For the second claim, we note simply that a C-module is in particular a B-module: 
the thick ⊗-ideal that B generates contains any B-module, for instance C. �
Proposition 3.25. Let K be a finite simplicial set and let p : K → CAlg(PrLst) be a diagram. 
Then a commutative algebra object A ∈ CAlg(lim←−−K

p) admits descent if and only if its 
“evaluations” in CAlg(p(k)) admit descent for each k ∈ K.

Proof. Admitting descent is preserved under symmetric monoidal, exact functors, so one 
direction is evident. For the other, if A ∈ CAlg(lim←−−K

p) has the property that its image in 
each CAlg(p(k)) admits descent, then consider the cobar construction CB•(A). It defines 
a constant pro-object after evaluating at each k ∈ K, and therefore, by Corollary 3.15, 
it defines a constant pro-object in lim←−−K

p too. The inverse limit is necessarily the unit 
(since this is true at each vertex), so A admits descent. �
3.4. Nilpotence

In this subsection, we present a slightly different formulation of the definition of 
admitting descent, which makes clear the connection with nilpotence.

Let (C, ⊗, 1) be a stable homotopy theory and let A ∈ C be any object. Given a map 

f : X → Y in C, we say that f is A-zero if A ⊗X
1A⊗f−−−−→ A ⊗ Y is nullhomotopic (as a 

morphism in C).
The collection of all A-zero maps forms what is classically called a tensor ideal in the 

triangulated category Ho(C). The main result of this subsection is that a commutative 
algebra object A admits descent if and only if this ideal is nilpotent, in a natural sense.

Definition 3.26. A collection I of maps in Ho(C) is a tensor ideal if the following hold:

1. For each X, Y , the collection of homotopy classes of maps X → Y that belong to I
is a subgroup.

2. Given f : X → Y, g : Y → Z, h : Z → W , then if g ∈ I, we have h ◦ g ◦ f ∈ I.
3. Given g : Y → Z in I and any other object T ∈ C, the tensor product g⊗1T : Y ⊗T →

Z ⊗ T belongs to I.

For any A ∈ C, the collection of A-zero maps is clearly a tensor ideal IA. Given 
two tensor ideals I, J , we will define the product IJ to be the smallest tensor ideal 
containing all composites g ◦ f where f ∈ J and g ∈ I.

Proposition 3.27. Let A ∈ CAlg(C) be a commutative algebra object. Then the following 
are equivalent:
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1. There exists s ∈ N such that the composite of s consecutive A-zero maps is zero.
2. Is

A = 0 for some s ∈ Z≥0.
3. A admits descent.

This result is essentially [3, Proposition 3.15].

Proof. Suppose first A admits descent. We want to show that Is
A = 0 for some s � 0. 

Now, I1 = 0, so our strategy is to use a thick subcategory argument.
We make the following three claims:

1. If M, N ∈ C, then IM ⊂ IM⊗N .
2. If N is a retract of M , then IM ⊂ IN .
3. Given a cofiber sequence

M ′ → M → M ′′

in C, we have

IM ′IM ′′ ⊂ IM .

Of these, the first and second are obvious. For the third, it suffices to show that the 
composite of an M ′-null map and an M ′′-null map is M -null. Suppose f : X → Y is 
M ′′-null and g : Y → Z is M ′-null. We want to show that g ◦ f is M -null. We have a 
diagram

X ⊗M ′ Y ⊗M ′ Z ⊗M ′

X ⊗M Y ⊗M Z ⊗M

X ⊗M ′′ Y ⊗M ′′ Z ⊗M ′′

.

Here the vertical arrows are cofiber sequences. Chasing through this diagram, we find 
that X ⊗ M → Y ⊗ M factors through X ⊗ M → Y ⊗ M ′, so that the composite 
X ⊗M → Z ⊗M factors through X ⊗M → Y ⊗M ′ 0→ Z ⊗M ′ → Z ⊗M and is thus 
nullhomotopic.

It thus follows (from the above three items) that if M ∈ C is arbitrary, then for any 
M ∈ C belonging to the thick ⊗-ideal generated by M , we have

Is
M ⊂ IM ,

for some integer s � 0. If 1 ∈ C belongs to this thick ⊗-ideal, that forces IM to be 
nilpotent.
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Conversely, suppose there exists s ∈ Z≥0 such that the composite of s consecutive 
A-zero maps is zero. We will show that A admits descent. Given an object M ∈ C, we 
want to show that M belongs to the thick ⊗-ideal generated by A. For this, consider the 
functor

F1(X) = fib(X → X ⊗A);

we have a natural map F1(X) → X, which is A-zero, and whose cofiber belongs to the 
thick ⊗-ideal generated by A. Iteratively define Fn(X) = F1(Fn−1(X)) for n > 0. We 
get a tower

· · · → Fn(M) → Fn−1(M) → · · · → F1(M) → M,

where all the successive cofibers of Fi(M) → Fi−1(M) belong to the thick ⊗-ideal gener-
ated by A. By chasing cofiber sequences, this means that the cofiber of each Fi(M) → M

belongs to the thick ⊗-ideal generated by A.
Moreover, each of the maps in this tower is A-zero. It follows that Fs(M) → M is zero. 

Thus the cofiber of Fs(M) → M is M ⊕ ΣFs(M), which belongs to the thick ⊗-ideal 
generated by A. Therefore, M belongs to this thick ⊗-ideal, and we are done. �
3.5. Local properties of modules

In classical algebra, many properties of modules are local for the étale (or flat) topol-
ogy. These statements can be generalized to the setting of E∞-ring spectra, where one 
considers morphisms R → R′ of E∞-rings that are étale (or flat, etc.) on the level of π0
and such that the natural map π0R

′ ⊗π0R π∗R → π∗R
′ is an isomorphism.

Our next goal is to prove a couple of basic results in our setting for descendable 
morphisms.

Proposition 3.28. Let A → B be a descendable morphism of E∞-rings. Let M be an 
A-module such that B ⊗A M is a perfect B-module. Then M is a perfect A-module.

Proof. Consider a filtered category I and a functor ι : I → Mod(A). We then need to 
show that

lim−−→HomA(M,Mι) → HomA(M, lim−−→Mι),

is an equivalence. Consider the collection U of A-modules N such that

lim−−→HomA(M,Mι ⊗A N) → HomA(M, lim−−→Mι ⊗A N),

is a weak equivalence; we would like to show that it contains A itself. The collection U
clearly forms a thick subcategory. Observe that it contains N = B using the adjunction 
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relation

HomA(P, P ′ ⊗A B) � HomB(P ⊗A B,P ′ ⊗A B),

valid for P, P ′ ∈ Mod(A), and the assumption that M⊗AB is compact in Mod(B). More 
generally, this implies that every tensor product B ⊗A · · · ⊗A B belongs to U . Since A
is a retract of a finite limit of copies of such A-modules, via the cobar construction, it 
follows that A ∈ C and that M is compact or perfect in Mod(A). �
Remark 3.29. More generally, the argument of Proposition 3.28 shows that if C is an 
A-linear ∞-category, and M ∈ C is an object that becomes compact after tensoring 
with B (as an object of ModC(B)), then M was compact to begin with. Proposi-
tion 3.28 itself could have also been proved by observing that Mod(A) is a totalization 
Tot

(
Mod(B) ⇒ Mod(B ⊗A B)→→→

)
by Proposition 3.22 and an A-module is thus dualiz-

able (equivalently, compact) if and only if its base-change to Mod(B) is, as dualizability 
in an inverse limit of symmetric monoidal ∞-categories can be checked vertexwise (cf. 
[50, Prop. 4.6.1.11]).

Proposition 3.30. Let A → B be a descendable morphism of E∞-rings. Let M be an 
A-module. Then M is invertible if and only if M ⊗A B is invertible.

Proof. Observe first that M⊗AB is perfect (since it is invertible), so M is also perfect via 
Proposition 3.28. The evaluation map M ⊗A M∨ → A has the property that it becomes 
an equivalence after tensoring up to B, since the formation of M �→ M∨ commutes with 
base extension for M perfect. It follows that M ⊗A M∨ → A is itself an equivalence, so 
that M is invertible. �

Let M be an A-module. If A → B is a descendable morphism of E∞-rings such that 
M ⊗A B is a finite direct sum of copies of B, the A-module M itself need not look 
anything like a free module. (The finite covers explored in this paper are examples.) 
However, such “locally free” A-modules seem to have interesting and quite restricted 
properties.

3.6. First examples

In the following section, we will discuss more difficult examples of the phenomenon of 
admitting descent, and try to give a better feel for it. Here, we describe some relatively 
“formal” examples of maps which admit descent.

We start by considering the evident faithfully flat case. In general, we do not know if a 
faithfully flat map A → B of E∞-ring spectra (i.e., such that π0(A) → π0(B) is faithfully 
flat and such that π∗(A) ⊗π0(A) π0(B) → π∗(B) is an isomorphism) necessarily admits 
descent, even in the case of discrete E∞-rings. This would have some implications. For 
example, if A and B are discrete commutative rings, it would imply that if M is an 
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A-module and γ ∈ ExtnA(M, M) is a class whose image in ExtnB(M ⊗A B, M ⊗A B)
vanishes, then γ is nilpotent. Nonetheless, one has:

Proposition 3.31. Suppose A → B is a faithfully flat map of E∞-rings such that π∗(A)
is countable. Then A → B admits descent.

Proof. We can use the criterion of Proposition 3.27. We claim that we can take s = 2. 
That is, given composable maps M → M ′ → M ′′ of A-modules each of which becomes 
nullhomotopic after tensoring up to B, the composite is nullhomotopic.

To see this, we observe that any B-zero map in Mod(A) is phantom. In other words, 
if M → M ′ is B-zero, then any composite

P → M → M ′,

where P is a perfect A-module, is already nullhomotopic. To see this, note that P → M ′

is B-zero, but to show that it is already nullhomotopic, we can dualize and consider

π∗(DP ⊗A M ′) → π∗(DP ⊗A M ′ ⊗A B),

which is injective since B is faithfully flat over A on the level of homotopy groups. The 
injectivity of this map forces any B-zero map P → M ′ to be automatically zero to begin 
with.

Finally, we can conclude if we know that the composite of two phantom maps in 
Mod(A) is zero. This claim is [36, Theorem 4.1.8]; we need countability of π∗(A)
to conclude that homology theories on A-modules are representable (by [36, Theo-
rem 4.1.5]). �

Without the countability hypothesis, the result about phantom maps is known to 
be false. It is, however, possible to strengthen Proposition 3.31 using more recent tech-
niques of transfinite Adams representability [61]. We are grateful to Oriol Raventós for 
explaining the following to us.

Proposition 3.32. Let A → B be a faithfully flat morphism of E∞-rings such that π∗(A)
has cardinality at most ℵk for some k ∈ N. Then A → B admits descent.

Proof. As above, it suffices to show that the composite of k + 2 phantom maps of 
A-modules is necessarily nullhomotopic. Consider the class C = Perf(A) of perfect 
A-modules, which at most ℵκ isomorphism classes of objects.

Consider the category Mod(C) of functors Cop → Ab which preserve finite coproducts. 
Given any object X ∈ Mod(A), the Yoneda lemma gives an object hX ∈ Mod(C). Note 
that hX is a filtered colimit of functors representable by objects in C. Taking α = ℵ0, we 
apply [61, Prop. 2.13], we find that hX for any X ∈ C has projective dimension ≤ k + 1. 
By [61, Cor. 6.3.5], we find that X is (k + 2) − C-cellular in the sense of [61, Def. 6.1.5]. 
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Since X was arbitrary, we find by [61, Prop. 6.1.6] that the composite of (k+2) phantom 
maps is zero. �

Since descendability is preserved under base change, we obtain:

Corollary 3.33. Let A → B be a faithfully flat map of E∞-rings such that π0(B) has a 
presentation π0(A)-algebra with at most ℵk generators and relations for some k ∈ N. 
Then A → B admits descent.

For example, a finitely presented faithfully flat map of discrete rings is descendable. 
For a finitely presented map A → B of noetherian rings, Bhatt and Scholze have shown 
[16, Th. 5.26] that A → B is admits descent if and only if Spec(B) → Spec(A) is an 
h-cover, which is significantly weaker.

In addition to faithfully flat maps which are not too large, there are examples of 
descendable maps of E∞-rings which look more like (relatively mild) quotients.

Proposition 3.34. Suppose A is an E∞-ring which is connective and such that πiA = 0
for i � 0. Then the map A → π0A admits descent.

Proof. Given an A-module M such that π∗(M) is concentrated in one degree, it admits 
the structure of a π0A-module (canonically) and thus belongs to the thick ⊗-ideal gen-
erated by π0A. However, A admits a finite resolution by such A-modules, since one has 
a finite Postnikov decomposition of A in Mod(A) whose successive cofibers have a single 
homotopy group, and therefore belongs to the thick ⊗-ideal generated by π0A. �
Proposition 3.35. Let R be a discrete commutative ring. Let I ⊂ R be a nilpotent ideal. 
Then the map R → R/I of discrete commutative rings, considered as a map of E∞-rings, 
admits descent.

Proof. For k � 0, we have a finite filtration of R in the world of discrete R-modules

0 = Ik ⊂ Ik−1 ⊂ · · · ⊂ I ⊂ R,

whose successive quotients are R/I-modules. This implies that R/I generates all of 
Mod(R) as a thick ⊗-ideal. �

There are also examples of descendable morphisms where the condition on the thick 
⊗-ideals follows from a defining limit diagram.

Proposition 3.36. Let R be an E∞-ring and let X be a finite connected CW complex. 
Then the map C∗(X; R) → R given by evaluating at a basepoint ∗ ∈ X admits descent.

Proof. In fact, the E∞-ring C∗(X; R) is a finite limit (indexed by X) of copies of R by 
definition. That is, C∗(X; R) � lim←−−X

R. �
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Proposition 3.37. Let R be an E∞-ring and let x ∈ π0R. Then the map R → R[x−1] ×R̂x

(where R̂x is the x-adic completion) admits descent.

Proof. This follows from the arithmetic square

R R[x−1]

R̂x R̂x[x−1]

.

All three of the terms in the fiber product here are R[x−1] × R̂x-modules, so R belongs 
to the thick subcategory generated by the R[x−1] × R̂x-modules and we are done. �

Next we include a deeper result, which will imply (for example) that the faithful 
Galois extensions considered by [71] admit descent; this will be very important in the 
rest of the paper. The theory of nilpotence with respect to a dualizable algebra object 
has been treated in more detail in [59].

Theorem 3.38. Let C be a stable homotopy theory. Suppose 1 ∈ C is compact, and suppose 
A ∈ CAlg(C) is dualizable and faithful (i.e., tensoring with A is conservative). Then A
admits descent.

Proof. Consider the cobar construction CB•(A) on A. The first claim is that it converges 
to 1: that is, the augmented cosimplicial construction CB•

aug(A) is a limit diagram. To 
see this, we can apply the Barr–Beck–Lurie theorem to A. Since A is dualizable, we have 
for X, Y ∈ C,

HomC(Y,A⊗X) � HomC(DA⊗ Y,X),

and in particular tensoring with A commutes with all limits in C. Since tensoring with 
A is conservative, we find that the hypotheses of the Barr–Beck–Lurie theorem go into 
effect (cf. also [6, 2.6]). In particular, CB•(A) converges to 1 and, moreover, for any 
M ∈ C, CB•(A) ⊗M converges to M . We need to show that the induced pro-object is 
constant, though. This will follow from the next lemma. �
Lemma 3.39. Let (C, ⊗, 1) be a stable homotopy theory where 1 is compact. Let I be a 
cofiltered category, and let F : I → C be a functor. Suppose that for each i ∈ I, F (i) ∈ C
is dualizable. Then F defines a constant pro-object (or is pro-constant) if and only if the 
following are satisfied.

1. lim F (i) is a dualizable object.
←−−I
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2. For each object C ∈ C, the natural map

(lim←−−
I

F (i)) ⊗ C → lim←−−
I

(F (i) ⊗ C) (8)

is an equivalence.

Proof. Let D be the duality functor (of internal hom into 1); it induces a contravariant 
auto-equivalence on the subcategory Cdual of dualizable objects in C. To say that F
defines a constant pro-object in C (or, equivalently, Cdual) is to say that DF , which is an 
ind-object of Cdual, defines a constant ind-object. In other words, we have a commutative 
diagram of ∞-categories,

Cdual

⊂

�
D Cdual, op

⊂

Pro(Cdual)

⊂

�
D Ind(Cdual)op

Pro(C)

.

Now, since Cdual ⊂ C consists of compact objects (since 1 ∈ C is compact), we know that 
there is a fully faithful inclusion Ind(Cdual) ⊂ C, which sends an ind-object to its colimit. 
If C is generated by dualizable objects, this is even an equivalence, but we do not need 
this.

As a result, to show that DF ∈ Ind(Cdual) defines a constant ind-object, it is sufficient 
to show that its colimit in C actually belongs to Cdual. Let X = lim←−−I

F (i) ∈ C; by 
hypothesis, this is a dualizable object. We have a natural map (in C)

lim−−→
I

DF (i) → DX,

and if we can prove that this is an equivalence, we will have shown that lim−−→I
DF (i) is 

a dualizable object and thus the ind-system is constant. In other words, we must show 
that if C ∈ C is arbitrary, then the natural map of spectra

HomC(DX,C) → lim←−−
I

HomC(DF (i), C)

is an equivalence. But this map is precisely HomC(1, ·) applied to (8), so we are done. �
Remark 3.40. This result requires 1 to be compact. If C is the stable homotopy theory of 
p-adically complete chain complexes of abelian groups (i.e., the localization of D(Z) at 
Z/pZ), then Z/pZ is a dualizable, faithful commutative algebra object, but the associated 
pro-object is not constant, or the p-adic integers Zp would be torsion.
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Remark 3.41. One can prove the same results (e.g., Theorem 3.38) if A ∈ C is given an 
associative (or E1) algebra structure, rather than an E∞-algebra structure. However, 
the symmetric monoidal structure on C itself is crucial throughout.

3.7. Application: descent for linear ∞-categories

In fact, the definition of descent considered here gives a more general result than 
Proposition 3.22. Let C be an A-linear ∞-category in the sense of [46]. In other words, 
C is a presentable, stable ∞-category which is a module in the symmetric monoidal 
∞-category PrL of presentable, stable ∞-categories over Mod(A). This means that there 
is a bifunctor, which preserves colimits in each variable,

⊗A : Mod(A) × C → C, (M,C) �→ M ⊗A C

together with additional compatibility data: for instance, equivalences A ⊗AM � M for 
each M ∈ C.

Given such a C, one can study, for any A-algebra B, the ∞-category ModC(B) of 
B-modules internal to C: this is the “relative tensor product” in PrL

ModC(B) = C ⊗Mod(A) Mod(B).

Useful references for this, and for the tensor product of presentable ∞-categories, are 
[25] and [17].

Informally, ModC(B) is the target of an A-bilinear functor

⊗A : C × Mod(B) → ModC(B), (X,M) �→ X ⊗A M,

which is colimit-preserving in each variable, and it is universal for such. As in the case 
C = Mod(A), one has an adjunction

C � ModC(B),

given by “tensoring up” and forgetting the B-module structure.
One can then ask whether descent holds in C, just as we studied earlier for A-modules. 

In other words, we can ask whether C is equivalent to the ∞-category of B-modules in 
C equipped with analogous “descent data”: equivalently, whether the “tensoring up” 
functor C → ModC(B) is comonadic. Stated another way, we are asking whether, for any 
Mod(A)-module ∞-category C, we have an equivalence of A-linear ∞-categories

C � Tot
(
C ⊗Mod(A) Mod(B)⊗(•+1)

)
. (9)

In fact, the proof of Proposition 3.22 applies and we get:
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Corollary 3.42. Suppose A → B is a descendable morphism of E∞-rings. Then A → B

satisfies descent for any A-linear ∞-category C in that the functor from C to “descent 
data” is an equivalence.

Proof. By the Barr–Beck–Lurie theorem, we need to see that tensoring with B defines a 
conservative functor C → ModC(B) which respects B-split totalizations. Conservativity 
can be proved as in Proposition 3.19. Given R ∈ C, the collection of A-modules M such 
that M ⊗A R � 0 is a thick ⊗-ideal in Mod(A). If B belongs to this thick ⊗-ideal, so 
must A, and R must be zero.

Let X• : Δ → C be a cosimplicial object which becomes split after tensoring with 
B. As in Proposition 3.22, it suffices to show that the pro-object that X• defines is 
constant in C. This follows via the same thick subcategory argument: one considers the 
collection of M ∈ Mod(A) such that X•⊗AM defines a constant pro-object, and observes 
that M is a thick ⊗-ideal containing B, thus containing A. Thus X• defines a constant 
pro-object. �

We note that the argument via pro-objects yields a mild strengthening of the results 
in the DAG series. In particular, it shows that if A → B is a morphism of E∞-rings 
which is faithfully flat and presented by at most ℵk generators and relations (for some 
k ∈ N), it satisfies descent for any A-linear ∞-category. In the DAG series, this is proved 
assuming étaleness [48, Th. 5.4] or for faithfully flat morphisms assuming existence of a 
t-structure [46, Th. 6.12]. In fact, this idea of descent via thick subcategories seems to 
be the right setting for considering the above questions, in view of the following result, 
which was explained to us by Jacob Lurie:

Proposition 3.43. Let A → B be a morphism of E∞-rings such that, for any A-linear 
∞-category, descent holds, i.e., we have an equivalence (9). Then A → B admits descent.

Proof. Suppose A → B does not admit descent. We will look for a counterexample to 
(9). We will exhibit an A-linear presentable ∞-category D and an object X ∈ D such 
that the totalization of the cobar construction CB•(B) ⊗A X is not equivalent to X.

The idea is to take D = Pro(Mod(A)) and X = A. Consider the cobar construc-
tion B ⇒ B ⊗A B

→→→ · · · . The totalization of the cobar construction in Pro(Mod(A)) is 
precisely the cobar construction considered as a pro-object via the Tot tower. In partic-
ular, if A → B fails to admit descent, the cobar construction does not converge to A in 
Pro(Mod(A)).

In order to make this argument precise, we have to address the fact that Pro(Mod(A))
is not really an A-linear ∞-category: it is not, for example, presentable. Choose a reg-
ular cardinal κ such that B is κ-compact as an A-module. Choose a small subcategory 
C ⊂ Pro(Mod(A)) which contains the constant object A and is closed under κ-small 
colimits and countable limits. Then C is tensored over the ∞-category Modκ(A) of 
κ-compact A-modules, so the presentable ∞-category D = Indκ(C) is tensored over 
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Mod(A) in a compatible manner. Moreover, in this ∞-category the totalization of the 
cobar construction B ⇒ B ⊗A B

→→→ · · · does not converge to A as that does not happen 
in C. �

Finally, we note a “categorified” version of descent, which, while likely far from the 
strongest possible, is already of interest in studying the Brauer group of E∞-rings such 
as TMF. This phenomenon has been extensively studied (under the name “1-affineness”) 
in [26]. We will only consider a very simple and special case of this question.

The idea is that instead of considering descent for modules over a ring spectrum 
R (possibly internal to a linear ∞-category), we will consider descent for the linear 
∞-categories themselves, which we will call 2-modules, meaning modules over the pre-
sentable, symmetric monoidal ∞-category Mod(R).

Definition 3.44. Given an E∞-ring R, there is a symmetric monoidal ∞-category 
2-Mod(R) of R-linear ∞-categories with the R-linear tensor product. In other words, 
2-Mod(R) consists of modules (in the symmetric monoidal ∞-category of presentable, 
stable ∞-categories) over Mod(R).

For a useful reference, see [25,1]. We now record:

Proposition 3.45. Let A → B be a descendable morphism of E∞-rings. Then 2-Mod
satisfies descent along A → B.

As noted in [26] and [48], this is a formal consequence of descent in linear ∞-categories 
(that is, Corollary 3.42), but we recall the proof for convenience.

Proof. Recall that we have the adjunction

(F,G) =
(
⊗Mod(A) Mod(B), forget

)
: 2-Mod(A) � 2-Mod(B),

where G is the forgetful functor from B-linear ∞-categories to A-linear ∞-categories, 
and where F is “tensoring up.” The assertion of the proposition is that this adjunc-
tion is comonadic. By the Barr–Beck–Lurie theorem, it suffices to show now that F is 
conservative and preserves certain totalizations.

But F is conservative because any C-linear ∞-category can be recovered from its 
“descent data” after tensoring up to B (Corollary 3.42). Moreover, F commutes with all 
limits. In fact, F sends an A-linear ∞-category C to the collection of B-module objects 
in C, and this procedure is compatible with limits. �

It would be interesting to give conditions under which one could show that a 2-module 
over R admitted a compact generator if and only if it did so locally on R in some sense. 
This would yield a type of descent for the Brauer spectrum of R (see for instance [1]), 
whose π0 consists of equivalence classes of invertible 2-modules that admit a compact 
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generator. Descent for compactly generated R-linear ∞-categories is known to hold in 
the usual étale topology on E∞-rings [48, Theorem 6.1], although the proof is long 
and complex. Descent also holds for the finite covers considered in this paper which 
are faithful. It would be interesting to see if it held for LnS

0 → En, possibly in some 
K(n)-local sense.

4. Nilpotence and Quillen stratification

Let (C, ⊗, 1) be a stable homotopy theory. Let A ∈ CAlg(C) be a commutative algebra 
object in C. In general, we might hope that (for whatever reason) phenomena in ModC(A)
might be simpler to understand than phenomena in C. For example, if C = Sp, we do not 
know the homotopy groups of the sphere spectrum, but there are many E∞-rings whose 
homotopy groups we do know completely: for instance, HFp and MU . We might then 
try to use our knowledge of A and some sort of descent to understand phenomena in C. 
For instance, we might attempt to compute the homotopy groups of an object M ∈ C
by constructing the cobar resolution

M →
(
M ⊗A ⇒ M ⊗A⊗A

→→→ · · ·
)
,

and hope that it converges to M . This method is essentially the Adams spectral sequence, 
which, in case C = Sp, is one of the most important tools one has for calculating and 
understanding the stable homotopy groups of spheres.

In the previous section, we introduced a type of commutative algebra object A ∈
CAlg(C) such that, roughly, the above descent method converged very efficiently — 
much more efficiently, for instance, than the classical Adams or Adams–Novikov spectral 
sequences. One can see this at the level of descent spectral sequences in the existence of 
horizontal vanishing lines that occur at finite stages. In particular, in this situation, one 
can understand phenomena in C from phenomena in ModC(A) and ModC(A ⊗ A) “up 
to (bounded) nilpotence.” We began discussing this in Proposition 3.27. The purpose 
of this section is to continue that discussion and to describe several fundamental (and 
highly non-trivial) examples of commutative algebra objects that admit descent. These 
ideas have also been explored in [3], and we learned of the connection with Quillen 
stratification from there.

4.1. Descent spectral sequences

Let C be a stable homotopy theory. Let A ∈ CAlg(C) and let M ∈ C. As usual, we can 
try to study M via the A-module M ⊗ A and, more generally, the cobar construction 
M ⊗ CB•(A). In this subsection, we will describe the effect of descendability on the 
resulting spectral sequence.
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Definition 4.1. The Tot tower of the cobar construction M ⊗ CB•(A) is called the
Adams tower {Tn(A, M)} of M . The induced spectral sequence converging to π∗ lim←−−(M⊗
CB•(A)) is called the Adams spectral sequence for M (based on A).

The Adams tower has the property that it comes equipped with maps

...

T2(A,M)

T1(A,M)

M T0(A,M) � A⊗M

.

In other words, it is equipped with a map from the constant tower at M . We let the 
cofiber of this map of towers be {Un(A,M)}n≥0.

The tower {Un(A,M)} has the property that the cofiber of any map Un(A, M) →
Un−1(A, M) admits the structure of an A-module. Moreover, each map Un(A, M) →
Un−1(A, M) is null after tensoring with A.

Suppose now that A admits descent. In this case, the towers we are considering have 
particularly good properties.

Definition 4.2. (See [37,52].) Let Tow(C) = Fun(Zop
≥0, C) be the ∞-category of towers 

in C.
We shall say that a tower {Xn}n≥0 is nilpotent if there exists N such that Xn+N → Xn

is null for each n ∈ Z≥0. It is shown in [37] that the collection of nilpotent towers is a 
thick subcategory of Tow(C). We shall say that a tower is strongly constant if it belongs 
to the thick subcategory of Tow(C) generated by the nilpotent towers and the constant 
towers.

Observe that a nilpotent tower is pro-zero, and a strongly constant tower is pro-
constant. In general, nilpotence of a tower is much stronger than being pro-zero. For 
example, a tower {Xn} is pro-zero if there is a cofinal set of integers i for which the Xi

are contractible. This does not imply nilpotence.
We now recall the following fact about strongly constant towers:

Proposition 4.3. (See [37].) Let {Xn}n≥0 ∈ Tow(C) be a strongly constant tower. Then, 
for Y ∈ C, the spectral sequence for π∗ Hom(Y, lim←−−Xn) has a horizontal vanishing line 
at a finite stage.
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In fact, in [37], it is shown that admitting such horizontal vanishing lines is a generic
property of objects in Tow(C): that is, the collection of objects with that property is a 
thick subcategory. Moreover, this property holds for nilpotent towers and for constant 
towers.

Corollary 4.4. Let A ∈ CAlg(C) admit descent. Then the Adams tower {Tn(A,M)} is 
strongly constant. In particular, the Adams spectral sequence converges with a horizontal 
vanishing line at a finite stage (independent of M).

Proof. In fact, by Proposition 3.27, it follows that the tower {Un(A,M)} is nilpotent, 
since all the successive maps in the tower are A-zero, so the tower {Tn(A,M)} is therefore 
strongly constant. �

It follows from this that we can get a rough global description of the graded-
commutative ring π∗1 if we have a description of π∗A. This is the description that leads, 
for instance, to the description of various group cohomology rings “up to nilpotents.”

Theorem 4.5. Let A ∈ CAlg(C) admit descent. Let R∗ be the equalizer of π∗(A) ⇒
π∗(A ⊗A). There is a map π∗(1) → R∗ with the following properties:

1. The kernel of π∗(1) → R∗ is a nilpotent ideal.
2. Given an element x ∈ R∗ with Nx = 0, then xNk belongs to the image of π∗(1) → R∗

for k � 0 (which can be chosen uniformly in N).

In the examples arising in practice, one already has a complete or near-complete 
picture rationally, so the torsion information is the most interesting. For example, if 
p is nilpotent in π∗(1), then the map that one gets is classically called a uniform 
F -isomorphism.

Proof. In fact, R∗ as written is the zero-line (i.e., s = 0) of the E2-page of the A-based 
Adams spectral sequence converging to the homotopy groups of 1. The map that we have 
written down is precisely the edge homomorphism in the spectral sequence. We know 
that anything of positive filtration at E∞ must be nilpotent of bounded order because 
of the horizontal vanishing line. That implies the first claim.

For the second claim, let x ∈ E0,t
2 be N -torsion. We want to show that xNk survives 

the spectral sequence for some k (which can be chosen independently of x). In fact, xN

can support no d2 by the Leibnitz rule. Similarly, xN2 can support no d3 and survives 
until E4. Since the spectral sequence collapses at a finite stage, we conclude that some 
xNk must survive, and k depends only on the finite stage at which the spectral sequence 
collapses. �
Remark 4.6. One can obtain an analog of Theorem 4.5 for any commutative algebra 
object in C replacing 1.
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4.2. Quillen stratification for finite groups

Let G be a finite group, and let R be a (discrete) commutative ring. Consider the 
∞-category ModG(R) � Fun(BG, Mod(R)) of R-module spectra with a G-action (equiv-
alently, the ∞-category of module spectra over the group ring), which is symmetric 
monoidal under the R-linear tensor product. Given a subgroup H ⊂ G, we have a natu-
ral symmetric monoidal functor

ModG(R) → ModH(R),

given by restricting the G-action to H. As in ordinary algebra, we can identify this with 
a form of tensoring up: we can identify ModH(R) with the ∞-category of modules over 
the commutative algebra object 

∏
G/H R ∈ ModG(R), with G permuting the factors. We 

state this formally as a proposition (compare [5,7]).

Proposition 4.7. Consider the commutative algebra object 
∏

G/H R ∈ CAlg(ModG(R)), 
with G-action permuting the factors. Then the forgetful functor identifies ModH(R) with 
the symmetric monoidal ∞-category of modules in ModG(R) over 

∏
G/H R.

We can interpret this in the following algebro-geometric manner as well. The 
∞-category ModG(R) can be described as the ∞-category of quasi-coherent complexes 
on the classifying stack BG of the discrete group G, over the base ring R. Similarly, 
ModH(R) can be described as the ∞-category of quasi-coherent sheaves on BH . One 
has an affine map φ : BH → BG (in fact, a finite étale cover), so that quasi-coherent 
complexes on BH can be identified with quasi-coherent complexes on BG with a module 
action by π∗(OBH ), which corresponds to 

∏
G/H R.

In particular, we can attempt to perform “descent” along the restriction functor 
ModG(R) → ModH(R), or descent with the commutative algebra object 

∏
G/H R, or 

descent for quasi-coherent sheaves along the cover BH → BG. If R contains Q or, 
more generally, if |G|/|H| is invertible in R, there are never any problems, because the 
G-equivariant norm map

∏
G/H R → R will exhibit R as a retract of the object 

∏
G/H R, 

so that the commutative algebra object 
∏

G/H R is descendable.
The question is much more subtle in modular characteristic. For example, given a 

finite group G and a field k of characteristic p with p | |G|, the group cohomology 
H∗(G; k) is always infinite-dimensional, which prevents the commutative algebra object ∏

G k from being descendable. Nonetheless, one has the following result. Recall that a 
group is called elementary abelian if it is of the form (Z/p)n for some prime number p.

Theorem 4.8. (See Carlson [18], Balmer [3].) Let G be a finite group, and let A be 
a collection of elementary abelian subgroups of G such that every maximal elementary 
abelian subgroup of G is conjugate to an element of A. Then the commutative algebra 
object 

∏
H∈A

∏
G/H R admits descent in ModG(R).
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In other words, there is a strong theory of descent along the map 
A∈A BA →
BG of stacks. If p is invertible in R and H is an elementary abelian p-group, then ∏

G/H R ∈ ModG(R) is a retract of 
∏

G R. To translate to our terminology, we note 
that [18, Theorem 2.1] states that there is a finitely generated Z[G]-module V with the 
property that there exists a finite filtration 0 = V0 ⊂ · · · ⊂ Vk = Z ⊕ V such that the 
successive quotients are all induced Z[G]-modules from elementary abelian subgroups of 
G. Given an object of ModG(Z) which is induced from H ⊂ G, we observe that it is 
naturally a module in ModG(Z) over 

∏
G/H Z.

Note moreover that the map



A∈A

BA → BG, (10)

which we have identified as having a good theory of descent, is explicit enough that we 
can also write down the relative fiber product (
A∈A BA)×BG (
A∈A BA) via a double 
coset decomposition. Stated another way, the tensor products of commutative algebra 
objects of the form 

∏
G/H R, which appear in the cobar construction, can be described 

explicitly.
From this, and Theorem 4.5 (and the immediately following remark), one obtains 

the following corollary, which is known to modular representation theorists and is a 
generalization of the description by Quillen [66] of the cohomology ring of a finite group 
up to F -isomorphism.

Corollary 4.9. Let R be an E2-algebra in Mod(Z) with an action of the finite group G. 
Suppose p is nilpotent in R. Let A be the collection of all elementary abelian p-subgroups 
of G. Then the map

RhG →
∏
A∈A

RhA,

has nilpotent kernel in π∗. The image, up to uniform F -isomorphism, consists of all 
families which are compatible under restriction and conjugation.

A family (aA ∈ π∗R
hA)A∈A is compatible under restriction and conjugation if, when-

ever g ∈ G conjugates A into A′, then the induced map RhA � RhA′ carries aA into aA′ ; 
and, furthermore, whenever B ⊂ A, then the map RhA → RhB carries aA into aB. These 
compatible families form the E2-page of the descent spectral sequence for the cover (10). 
When R = Fp (as was considered by Quillen), the above corollary is extremely useful 
since the cohomology rings of elementary abelian groups are entirely known and easy to 
work with. Given a connected space X with π1X finite, one could also apply it to the 
π1-action on C∗(X̃; Fp) where X̃ is the universal cover.

We will use this picture extensively in the future, in particular for the stable module 
∞-categories. For now, we note a simple example of one of its consequences.
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Corollary 4.10. The inclusion Z/p ⊂ Z/pk induces a descendable map of E∞-rings

FhZ/pk

p → FhZ/p
p ,

for each k > 0.

Proof. Consider the ∞-category ModZ/pk(Fp) of Fp-module spectra with a Z/pk-action. 
Inside here we have the commutative algebra object 

∏
Z/pk−1 Fp which, by Theorem 4.8, 

admits descent.
Note that, as in (4), the subcategory Modω

Z/pk(Fp) of perfect Fp-modules with 
a Z/pk-action is symmetric monoidally equivalent to the ∞-category of perfect 
F
hZ/pk

p -modules. Thus, if we show that 
∏

Z/pk−1 Fp generates the unit Fp itself as a 
thick ⊗-ideal in Modω

Z/pk(Fp) (rather than the larger ∞-category ModZ/pk(Fp)), we will 
be done. But this extra claim comes along for free, since we can use the cobar construc-
tion. The cobar construction on 

∏
Z/pk−1 Fp is constant as a pro-object either way, and 

that means that Fp belongs to the thick ⊗-ideal generated by 
∏

Z/pk−1 Fp in the smaller 
∞-category. �

We refer to [59,58] for many further examples of these phenomena in equivariant homo-
topy theory (e.g., when R is replaced by a ring spectrum) and analogs of F -isomorphism 
and induction theorems.

4.3. Stratification for Hopf algebras

Let k be a field of characteristic p, and let A be a finite-dimensional commutative Hopf 
algebra over k. One may attempt to obtain a similar picture in the derived ∞-category 
of A-comodules. This has been considered by several authors, for example in [63,76,24]. 
The case of the previous subsection was A =

∏
G k when G is a finite group, given the 

coproduct dual to the multiplication in k[G]. In this subsection, which will not be used 
in the sequel, we describe the connection between some of this work and the notion of 
descent theory considered here. In this subsection, we assume that all Hopf algebras A
that occur are graded connected, i.e., A =

⊕
i∈Z≥0

Ai with A0 = k and the Hopf algebra 
structure respects the grading.

The Hopf algebra A defines a finite group scheme G = SpecA over k, and we are 
interested in the ∞-category of quasi-coherent complexes on the classifying stack BG

and in understanding descent in here. For every closed subgroup H ⊂ G, we obtain a 
morphism of stacks

fH : BH → BG,

which is affine, even finite: in particular, quasi-coherent sheaves on BH can be identified 
with modules in QCoh(BG) over (fH)∗(OBH ) ∈ CAlg(BG). One might hope that a 
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certain collection of (proper) subgroup schemes H ⊂ G would have the property that 
the commutative algebra objects (fH)∗(OBH ) jointly generate, as a thick ⊗-ideal, all of 
QCoh(BG).

When G is constant (although this is not covered by our present graded connected 
setup), then the Quillen stratification theory (i.e., Theorem 4.8) identifies such a col-
lection of subgroups. The key step is to show that if G is not elementary abelian, then 
the collection of (fH)∗(OBH ) as H ranges over all proper subgroups of G jointly satisfy 
descent. The picture is somewhat more complicated for finite group schemes.

Definition 4.11. (See Palmieri [63].) A group scheme G is elementary if it is commutative 
and satisfies the following condition. Let O(G)∨ be the “group algebra,” i.e., the dual to 
the ring O(G) of functions on G. Then for every x in the augmentation ideal of O(G)∨, 
we have xp = 0. Dualizing, this is equivalent to the condition that the Verschiebung
should annihilate G.

Remark 4.12. The “group algebra” O(G)∨ plays a central role here because QCoh(BG), 
if we forget the symmetric monoidal structure, is simply Mod(O(G)∨); the Hopf algebra 
structure on O(G)∨ gives rise to the symmetric monoidal structure.

In [63], Palmieri also defines a weaker notion of quasi-elementarity for finite group 
schemes G, in terms of the vanishing of certain products of Bocksteins. It is this more 
complicated condition that actually ends up intervening.

Consider first a group scheme G of rank p over k (which is necessarily commutative), 
arising as the spectrum of a graded connected Hopf algebra. Then the underlying algebra 
O(G)∨ is isomorphic to k[x]/xp. In particular, there is a basic generating class β ∈
H2(BG) � Ext2O(G)∨(k, k) called the Bockstein βG. The Bockstein, considered as a 
map 1 → Σ21 in QCoh(BG), has the property that the cofiber of β belongs to the 
thick subcategory generated by the “regular representation” O(G)∨, in view of the exact 
sequence of O(G)∨ � k[x]/xp-modules

0 → k → O(G)∨ → O(G)∨ → k → 0,

which exhibits the two-term complex O(G)∨ → O(G)∨ as the cofiber of β (up to a shift). 
Since the map O(G)∨ → O(G)∨ is nilpotent (it is given by multiplication by x), it follows 
that the thick subcategory generated by the cofiber of β is equal to that generated by 
the standard representation.

Definition 4.13. A group scheme G arising from a graded connected Hopf algebra is
quasi-elementary if the product 

∏
φ : G�G′ φ∗(βG′) for all surjections φ : G � G′ for 

G′ a group scheme of rank p (always respecting the grading), is not nilpotent in the 
cohomology of BG.
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Remark 4.14. Let G = SpecA be a nontrivial group scheme arising from a graded 
connected Hopf algebra. Then there is always a surjective map G � G′ with G′ of rank 
p (respecting the grading). To see this, we observe that there is a nontrivial primitive 
element x ∈ Ai for i > 0 and, replacing x with a suitable power, we may assume that 
xp = 0. This defines the map to a graded version of αp.

For finite groups, it is a classical theorem of Serre that quasi-elementarity is equivalent 
to being elementary abelian: if G is a finite p-group which is not elementary abelian, 
then there are nonzero classes α1, . . . , αn ∈ H1(G; Z/p) such that the product of the 
Bocksteins 

∏
β(αi) vanishes. Serre’s result is, as explained in [18,3], at the source of the 

Quillen stratification theory for finite groups, in particular Theorem 4.8.

Proposition 4.15. (Cf. [63, Th. 1.2].) Let G be a finite group scheme arising from a 
graded connected Hopf algebra over k. Then G is not quasi-elementary if and only if the 
objects (fH)∗(OBH ) ∈ CAlg(QCoh(BG)), for H ⊂ G a proper normal subgroup scheme 
(respecting the grading), generate the unit as a thick ⊗-ideal.

Proof. Suppose κ is nilpotent. For each rank p quotient φ : G � G′, we have a map 1 →
Σ21 in QCoh(BG′) whose cofiber is in the thick subcategory of QCoh(BG′) generated 
by the pushforward of the structure sheaf via ∗ → BG′. Pulling back, we get, for each 
rank p quotient φ : G � G′ with kernel Hφ, a map βφ : 1 → 1[2] in QCoh(BG) whose 
cofiber is in the thick subcategory generated by (fHφ

)∗(OBHφ
) where fHφ

: BHφ → BG
is the natural map. It follows in particular that the cofiber of each βφ belongs to the 
thick subcategory C ⊂ QCoh(BG) generated by the {(fH)∗(OBH )} for H a proper 
normal subgroup scheme of G. Therefore, using the octahedral axiom, the cofiber of 
each composite of a finite string of βφ’s (e.g., κ and its powers) belongs to C. It follows 
finally that, by nilpotence of κ, the unit object itself belongs to C.

Conversely, suppose that the {(fH)∗(OBH )} generate the unit as a thick ⊗-ideal: 
that is, descent holds. In this case, we show that the product of Bocksteins κ =∏

φ : G�G′ φ∗(βG′) in Definition 4.13 is forced to be nilpotent. In fact, we observe that 
for every proper normal subgroup H ⊂ G, there exists a morphism from G/H to a rank 
p group scheme Q. The pull-back of the Bockstein βQ to H2(BG) restricts to zero on 
H; in particular, κ restricts to zero on each normal subgroup scheme of G. By descent, 
it follows that κ is nilpotent. �

By induction, one gets:

Corollary 4.16. Let G be a group scheme over k arising from a graded connected Hopf 
algebra. Then the commutative algebra objects (fH)∗(OBH ) ∈ CAlg(QCoh(BG)), as H ⊂
G ranges over all the quasi-elementary subgroup schemes (respecting the grading), admits 
descent.
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Unfortunately, it is known that quasi-elementarity and elementarity are not equivalent 
for general finite group schemes [76]. There is, however, one important case when this is 
known.

Let p = 2. Consider the dual Steenrod algebra A � F2[ξ1, ξ2, . . .]. This is a graded, 
connected, and commutative (but not cocommutative) Hopf algebra over F2. The ob-
ject SpecA, which is now an (infinite-dimensional) group scheme, admits an elegant 
algebro-geometric interpretation as the automorphism group scheme of the formal addi-
tive group Ĝa. Let A be a finite-dimensional graded Hopf algebra quotient of the dual 
Steenrod algebra, so that G = SpecA is a finite group scheme inside the group scheme 
of automorphisms of Ĝa.

Theorem 4.17. (See Wilkerson [76].) Let A be as above, and let B range over all 
the elementary subgroup schemes H ⊂ G (respecting the grading). Then the map 


H∈B BH → BG admits descent, in the sense that the commutative algebra object ∏
H∈B(fH)∗(OBH ) ∈ CAlg(QCoh(BG)) does.

In particular, it is known that for subgroup schemes of SpecA (cut out by homo-
geneous ideals), elementarity and quasi-elementarity are equivalent. Related ideas have 
been used by Palmieri [64] to give a complete description of the cohomology of such Hopf 
algebras up to F -isomorphism at the prime 2.

4.4. Chromatic homotopy theory

Thick subcategory ideas were originally introduced in chromatic homotopy theory. 
Let En denote a Morava E-theory of height n; thus π0(En) � W (k)[[v1, . . . , vn−1]]
where W (k) denotes the Witt vectors on a perfect field k of characteristic p. Moreover, 
π∗(En) � π0(En)[t±1

2 ] and En is thus even periodic; the associated formal group is the 
Lubin–Tate universal deformation of a height n formal group over the field k. By a deep 
theorem of Goerss, Hopkins and Miller, En has the (canonical) structure of an E∞-ring.

Let Ln denote the functor of localization at En. The basic result is the following:

Theorem 4.18. (See Hopkins and Ravenel [67, Chapter 8].) The map LnS
0 → En admits 

descent.

In other words, the En-based Adams–Novikov spectral sequence degenerates with a 
horizontal vanishing line at a finite stage, for any spectrum. This degeneration does 
not happen at the E2-page (e.g., for the sphere) and usually implies that a great many 
differentials are necessary early on. Theorem 4.18, which implies that En-localization is 
smashing, is fundamental to the global structure of the stable homotopy category and 
its localizations. As in the finite group case, one of the advantages of results such as 
Theorem 4.18 is that En is much simpler algebraically than is LnS

0.
The Hopkins–Ravenel result is a basic finiteness property of the En-local stable homo-

topy category. It implies, for instance, that many homotopy limits that one takes (such 
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as the homotopy fixed points for the Z/2-action on KU ) behave much more like finite 
homotopy limits than infinite ones.

Example 4.19. Let R be an E2-ring spectrum which is Ln-local. Then it follows that the 
map from π∗(R) to the zero-line of the E2-page of the Adams–Novikov spectral sequence 
for R is an F -isomorphism. Indeed, we know that the map from π∗(R) to the zero-line 
at E2 is a rational isomorphism and, moreover, everything above the s = 0 line vanishes 
at E2. (This comes from the algebraic fact that rationally, the moduli stack of formal 
groups is a BGm and has no higher cohomology.)

Example 4.20. Let R be an Ln-local ring spectrum. Then any class in π∗(R) which maps 
to zero in (En)∗(R) is nilpotent. This is a very special case of the general (closely related) 
nilpotence theorem of [22,39]. For an E∞-ring, by playing with power operations, one 
can actually prove a stronger result [60]: any torsion class is automatically nilpotent.

5. Axiomatic Galois theory

Let (X, ∗) be a pointed, connected topological space. A basic and useful invariant of 
(X, ∗) is the fundamental group π1(X, ∗), defined as the group of homotopy classes of 
paths γ : [0, 1] → X with γ(0) = γ(1) = ∗. This definition has the disadvantage, at least 
from the point of view of an algebraist, of intrinsically using the unit interval [0, 1] and 
the topological structure of the real numbers R. However, the fundamental group also 
has another incarnation that makes no reference to the theory of real numbers, via the 
theory of covering spaces.

Definition 5.1. A map p : Y → X of topological spaces is a covering space if, for every 
x ∈ X, there exists a neighborhood Ux of x such that in the pullback

Y ×X Ux Y

Ux X

,

the map Y ×X Ux → Ux has the form 
S Ux → Ux for a set S.

The theory of covering spaces makes, at least a priori, no clear use of [0, 1]. Moreover, 
understanding the theory of covering spaces of X is essentially equivalent to under-
standing the group π1(X, ∗). If X is locally contractible, then one has the following basic 
result:

Theorem 5.2. Suppose X is path-connected and locally contractible. Let CovX be the 
category of maps Y → X which are covering spaces. Then, we have an equivalence of 
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categories CovX � Setπ1(X,∗), which sends a cover p : Y → X to the fiber p−1(∗) with 
the monodromy action of π1(X, ∗).

The fundamental group π1(X, ∗) can, in fact, be recovered from the structure of the 
category CovX . This result suggests that the theory of the fundamental group should be 
more primordial than its definition might suggest; at least, it might be expected to have 
avatars in other areas of mathematics in which the notion of a covering space makes 
sense.

Grothendieck realized, in [30], that there is a purely algebraic notion of a finite cover
for a scheme (rather than a topological space): that is, given a scheme X, one can define 
a version of CovX that corresponds to the topological notion of a finite cover. When X
is a variety over the complex numbers C, the algebraic notion turns out to be equivalent 
to the topological notion of a finite cover of the complex points X(C) with the analytic 
topology. As a result, in [30], it was possible to define a profinite group classifying these 
finite covers of schemes. Grothendieck had to prove a version of Theorem 5.2 without an 
a priori definition of the fundamental group, and did so by axiomatizing the properties 
that a category would have to satisfy in order to arise as the category of finite sets 
equipped with a continuous action of a profinite group. He could then define the group 
in terms of the category of finite covers. The main objective of this paper is to obtain 
similar categories from stable homotopy theories.

The categories that appear in this setting are called Galois categories, and the theory 
of Galois categories will be reviewed in this section. We will, in particular, describe a 
version of Grothendieck’s Galois theory that does not require a fiber functor, relying 
primarily on versions of descent theory.

5.1. The fundamental group

To motivate the definitions, we begin by quickly reviewing how the classical étale 
fundamental group of [30] arises.

Definition 5.3. Let f : Y → X be a finitely presented map of schemes. We say that 
f : Y → X is étale if f is flat and the sheaf ΩY/X of relative Kähler differentials vanishes.

Étaleness is the algebro-geometric analog of being a “local homeomorphism” in the 
complex analytic topology. Given it, one can define the analog of a (finite) covering space.

Definition 5.4. A map f : Y → X is a finite cover (or finite covering space) if f is finite 
and étale. The collection of all finite covering spaces of X forms a category CovX , a full 
subcategory of the category of schemes over X.

The basic example of a finite étale cover is the map 
S X → X. If X is connected, 
then a map Y → X is a finite cover if and only if it locally has this form with respect 
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to the flat topology. In other words, a map Y → X is a finite cover if and only if there 
exists a finitely presented, faithfully flat map X ′ → X such that the pull-back

X ′ ×X Y Y

X ′ X

,

is of the form 
S X ′ → X ′ where S is a finite set; if X is not connected, the num-
ber of sheets may vary over X. In other words, one has an analog of Definition 5.1, 
where “locally” is replaced by “locally in the flat topology.” This strongly suggests that 
the algebro-geometric definition of a finite cover is a good analog of the conventional 
topological one.

Example 5.5. Suppose X = Spec k where k is an algebraically closed field. In this case, 
there is a canonical equivalence of categories

CovX � FinSet,

where FinSet is the category of finite sets, which sends an étale cover Y → X to its set 
of connected components.

Fix a geometric point x → X, and assume that X is a connected scheme. 
Grothendieck’s idea is to extract the fundamental group π1(X, x) directly from the struc-
ture of the category CovX . In particular, as in Theorem 5.2, the category CovX will be 
equivalent to the category of representations (in finite sets) of a certain (profinite) group 
π1(X, x).

Definition 5.6. The fundamental group π1(X, x) of the pair (X, x) is given by the auto-
morphism group of the forgetful functor

CovX → FinSet,

which consists of the composite

CovX → Covx � FinSet,

where the first functor is the pull-back and the second is the equivalence of Example 5.5.

The automorphism group of such a functor naturally acquires the structure of a 
profinite group, and the forgetful functor above naturally lifts to a functor CovX →
FinSetπ1(X,x), where FinSetπ1(X,x) denotes the category of finite sets equipped with a 
continuous action of the profinite group π1(X, x).

Then, one has:
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Theorem 5.7. (See Grothendieck [30].) The above functor CovX → FinSetπ1(X,x) is an 
equivalence of categories.

Grothendieck proved Theorem 5.7 by axiomatizing the properties that a category 
would have to satisfy in order to be of the form FinSetG for G a profinite group, and 
checking that any CovX is of this form. We review the axioms here.

Recall that, in a category C, a map X → Y is a strict epimorphism if the natural 
diagram

X ×Y X ⇒ X → Y,

is a coequalizer.

Definition 5.8. (See Grothendieck [30, Exp. V, sec. 4].) A classical Galois category is a 
category C equipped with a fiber functor F : C → FinSet satisfying the following axioms:

1. C admits finite limits and F commutes with finite limits.
2. C admits finite coproducts and F commutes with finite coproducts.
3. C admits quotients by finite group actions, and F commutes with those.
4. F is conservative and preserves strict epimorphisms.
5. Every map X → Y in C admits a factorization X → Y ′ → Y where X → Y ′ is a 

strict epimorphism and where Y ′ → Y is a monomorphism, which is in addition an 
inclusion of a summand.

Let C be a classical Galois category with fiber functor F : C → FinSet. Grothendieck’s 
Galois theory shows that C can be recovered as the category of finite sets equipped with 
a continuous action of a certain profinite group.

Definition 5.9. The fundamental (or Galois) group π1(C) of a classical Galois category 
(C, F ) in the sense of Grothendieck is the automorphism group of the functor F : C →
FinSet.

The fundamental group of C is naturally a profinite group, as a (non-filtered) inverse 
limit of finite groups. Note that if C is a classical Galois category with fiber functor F , 
if π1(C) is the Galois group, then the fiber functor C → FinSet naturally lifts to

C → FinSetπ1(C),

just as before.

Proposition 5.10. (See Grothendieck [30, Exp. V, Theorem 4.1].) If (C, F ) is a classical 
Galois category, then the functor C → FinSetπ1(C) as above is an equivalence of categories.
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Given a connected scheme X with a geometric point x → X, then one can show 
that the category CovX equipped with the above fiber functor (of taking the preimage 
over x and taking connected components) is a classical Galois category. The resulting 
fundamental group is a very useful invariant of a scheme, and for varieties over an alge-
braically closed fields of characteristic zero can be computed by profinitely completing 
the topological fundamental group (i.e., that of the C-points). In particular, Theorem 5.7
is a special case of Proposition 5.10.

5.2. Definitions

In this section, we will give an exposition of Galois theory appropriate to the non-
connected setting. Namely, to a type of category which we will simply call a Galois 
category, we will attach a profinite groupoid: that is, a pro-object in the (2, 1)-category 
of groupoids with finitely many objects and finite automorphism groups. The advantage 
of this approach, which relies heavily on descent theory, is that we will not start by 
assuming the existence of a fiber functor, since we might not have one a priori.

Axiomatic Galois theory in many forms has a voluminous literature. The original 
treatment, of course, is [30], reviewed in the previous subsection. A textbook reference 
for some of these ideas is [11]. In [29], an approach to Galois theory (in the connected case) 
for almost rings is given that does not assume a priori the existence of a fiber functor. 
The use of profinite groupoids in Galois theory is well-known (e.g., [19,51]), and the 
main result below (Theorem 5.36) is presumably familiar to experts; we have included 
a detailed exposition for lack of a precise reference and because our (2, 1)-categorical 
approach may be of some interest. Certain types of infinite Galois theory have been 
developed in the work of Bhatt and Scholze [15] on the pro-étale topology; we will not 
touch on anything related to this here. Finally, we note that forthcoming work of Lurie 
will treat an embedding from the ∞-category of profinite spaces into that of ∞-topoi, 
which provides a vast generalization of these ideas.

We start by reviewing some category theory.

Definition 5.11. We say that an object ∅ in a category C is empty if any map x → ∅ is 
an isomorphism, and if ∅ is initial.

For example, the empty set is an empty object in the category of sets. In the opposite
to the category of commutative rings, the zero ring is empty.

Definition 5.12. Let C be a category admitting finite coproducts, such that the initial ob-
ject (i.e., the empty coproduct) is empty. We shall say that C admits disjoint coproducts
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if for any x, y ∈ C, the natural square

∅ x

y x 
 y

,

is cartesian.

The category of sets (or more generally, any topos) admits disjoint coproducts. The 
opposite of the category of commutative rings also admits disjoint coproducts.

Definition 5.13. Let C be a category admitting finite coproducts and finite limits. We 
will say that coproducts are distributive if for every y → x in C, the pullback functor 
C/x → C/y commutes with finite coproducts.

Similarly, the category of sets (or any topos) and the opposite to the category of 
commutative rings satisfy this property and are basic examples to keep in mind.

Suppose C admits disjoint and distributive coproducts. Then C acquires the following 
very useful feature (familiar from Proposition 2.39). Given an object x � x1 
 x2 in C, 
then we have a natural equivalence of categories,

C/x � C/x1 × C/x2 ,

which sends an object y → x of C/x to the pair (y ×x x1 → x1, y ×x x2 → x2).

Definition 5.14. Let C be a category admitting finite limits. Given a map y → x in C, we 
have an adjunction

C/y � C/x, (11)

where the left adjoint sends y′ → y to the composite y′ → y → x, and the right adjoint 
takes the pullback along y → x. We will say that y → x is an effective descent morphism
if the above adjunction is monadic.

By the Beck–Bénabou–Roubaud theorem that establishes the connection between 
monads and descent [12], we can reformulate the notion equivalently as follows. Form 
the bar construction in C,

· · · →→→ y ×x y ⇒ y,

which is a simplicial object in C augmented over x. Applying the pullback functor ev-
erywhere, we get a cosimplicial category

C/y ⇒ C/y×xy
→→ · · · ,
→
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receiving an augmentation from C/x. Then y → x is an effective descent morphism if the 
functor

C/x → Tot
(
C/y ⇒ C/y×xy

→→→ · · ·
)
,

is an equivalence of categories. If C is an ∞-category, we can make the same definition.

We note that whether or not a map y → x is an effective descent morphism can 
be checked using the Barr–Beck theorem applied to the adjunction (11). Namely, the 
pullback along y → x needs to preserve reflexive coequalizers which are split under 
pullback, and it needs to be conservative.

Finally, we are ready to define a Galois category.

Definition 5.15. A Galois category is a category C such that:

1. C admits finite limits and coproducts, and the initial object ∅ is empty.
2. Coproducts are disjoint and distributive in C.
3. Given an object x in C, there is an effective descent morphism x′ � ∗ (where ∗ is 

the terminal object) and a decomposition x′ = x′
1 
 · · · 
 x′

n such that each map 
x × x′

i → x′
i decomposes as the fold map x × x′

i � 
Si
x′
i → x′

i for a finite set Si.

The collection of all Galois categories and functors between them (which are required 
to preserve coproducts, effective descent morphisms, and finite limits) can be organized 
into a (2, 1)-category GalCat. Given C, D ∈ GalCat, we will let FunGal(C, D) denote the 
groupoid of functors C → D in GalCat.

In other words, we might say that an object x ∈ C is in elementary form if x � 
S ∗
for some finite set S. More generally, if there exists a decomposition ∗ � ∗1 
 · · · 
 ∗n, 
such that, as an object of C �

∏
i C/∗i

, each y ×∗ ∗i → ∗i is in elementary form, we say 
that y is in mixed elementary form. Then the defining feature of a Galois category is 
that, locally, every object is in mixed elementary form.

Our first goal is to develop some of the basic properties of Galois categories. First, we 
need a relative version of the previous paragraph.

Definition 5.16. Let C be a category satisfying the first two conditions of Definition 5.15
(which we note are preserved by passage to C/x for any x ∈ C). We say that a map 
f : x → y is setlike if there are finite sets S, T such that x � 
S ∗, y � 
T ∗ and the 
map x → y comes from a map of finite sets S → T . This implies that x ∈ C/y is in mixed 
elementary form.

For example, if y = ∗, then x → y is setlike if and only if x is in elementary form. 
Suppose x, y are in elementary form, so that x � 
S ∗ and y � 
T ∗. Then a map 
x → y is not necessarily setlike. However, by the disjointness of coproducts, it follows 
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that the map 
S ∗ → 
T ∗ gives, for each s ∈ S, a decomposition of the terminal 
object ∗ as a disjoint union of objects ∗(s)

t for each t ∈ T . It follows that, refining these 
decompositions, there exists a decomposition ∗ � ∗1 
 · · · 
 ∗n such that the map x → y

becomes setlike after pulling back along ∗i → ∗. In particular, x → y is locally setlike. 
The same argument works if x, y are disjoint unions of summands of the terminal object.

More generally, we have:

Proposition 5.17. Let f : x → y be any map in the Galois category C. Then there exist
an effective descent morphism t � ∗ and a decomposition t � 
n

i=1 ti such that the map 
x × ti → y× ti in C/ti is setlike. More generally, given any finite set of maps fj : xj → yj
we can find such a decomposition such that each fj × ti is setlike.

Proof. We can choose t such that (x 
 y) × t is in mixed elementary form: in particular, 
we have a decomposition t � t1 
 · · · 
 tn such that (x 
 y) × ti is a disjoint union of 
copies of ti in C/ti . It follows that x × ti → ti and y× ti → ti are objects in C/ti which are 
disjoint union of summands of copies of the terminal object ti ∈ C/ti . Using the previous 
discussion, it follows that we can refine the ti further (by splitting into summands) to 
make x → y setlike on each summand. A similar argument would work for any finite set 
of morphisms in C. �
Corollary 5.18. Let C be a Galois category and let x ∈ C. Then C/x is a Galois category.

Proof. The first two axioms are evident. For the third, fix a map y → x in C (thus defining 
an object of C/x). By Proposition 5.17, we can find an object x′ ∈ C together with an 
effective descent morphism x′ � ∗ such that y×x′ → x ×x′ becomes, after decomposing 
x′ into a disjoint union of summands, setlike in C/x′ . It follows that y× x′ → x′ × x is in 
mixed elementary form as an object of C/x×x′ . �

The notion of an effective descent morphism is a priori not so well-behaved, which 
might be a cause for worry. Our next goal is to show that this is not the case.

Proposition 5.19. A Galois category C admits finite colimits, which are distributive over 
pullbacks.

Proof. Let K be a finite category; choose a map p : K → C/x for some object x ∈ C. 
Since C/x is itself a Galois category, we can replace C/x with C and show that if y ∈ C is 
arbitrary, then the natural map

lim−−→
K

(y × p(k)) → y × lim−−→
K

p(k), (12)

is an equivalence, and in particular the colimits in question exist.
There is one case in which the above would be automatic. Since C has finite coproducts, 

we can define the product of a finite set with any object in C. Suppose there exists a 
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diagram p : K → FinSet and an object u ∈ C such that p = p× u. For example, suppose 
that for every morphism in K, the image in C is setlike; then this would happen. In this 
case, both sides of (12) are defined and are given by y×u ×lim−−→K

p, since finite coproducts 
distribute over pullbacks.

We will say that a diagram p : K → C is good if it arises from a p : K → FinSet and 
an u ∈ C; the good case is thus straightforward. If we have a finite decomposition of the 
terminal object ∗ = 
n

i=1 ∗i such that the restriction p ×∗ ∗i is good, then we say that 
p is weakly good. In this case, using C �

∏n
i=1 C/∗i

, we conclude that (12) is defined and 
holds.

We can reduce to the good (or weakly good) case via descent. There exists an effective 
descent morphism x → ∗ such that p × x : K → C/x is weakly good by Proposition 5.17. 
Using the expression C � Tot

(
C/x×···×x

)
, it follows that (12) must be true at each 

stage in the totalization, and the respective colimits are compatible with the coface and 
coboundary maps, so that it is (defined and) true in the totalization. �
Remark 5.20. In the above argument, we have tacitly used the following fact. Consider 
a category I and an I-indexed family of categories (or ∞-categories) (Ci)i∈I . Consider 
a functor p : K → lim←−−I

Ci, where K is a fixed simplicial set. Suppose each composite 

K
p→ lim←−−I

Ci → Ci1 (for each i1 ∈ I) admits a colimit and suppose these colimits are 
preserved by the various maps in I. Then p admits a colimit compatible with the colimits 
in each Ci.

Corollary 5.21. The composite of two effective descent morphisms in a Galois category C
is an effective descent morphism.4 If x → y is any map in C and y′ → y is an effective 
descent morphism, then x → y is an effective descent morphism if and only if x ×yy

′ → y′

is one.

Proof. Since (Proposition 5.19) a Galois category has finite colimits, which distribute 
over pull-backs, it follows by the Barr–Beck theorem a map x → y is an effective de-
scent morphism if and only if it is conservative. This is preserved under compositions. 
The second statement is proved similarly, since one only has to check conservativity 
locally. �
Proposition 5.22. Given a map f : x → y in the Galois category C, the following are 
equivalent:

1. f is an effective descent morphism.
2. f is a strict epimorphism.
3. For every y′ → y with y′ nonempty, the pullback x ×y y

′ is nonempty.

4 Results on this question in more general categories are contained in [75,72].
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Proof. All three conditions can be checked locally. After base-change by an effective 
descent morphism t � ∗ and a decomposition t � t1 
 · · · 
 tn, we can assume that the 
map x → y is setlike, thanks to Proposition 5.17. In this case, the result is obvious. �

We now discuss a few facts about functors between Galois categories. These will be 
useful when we analyze GalCat as a 2-category in the next section.

Proposition 5.23. Let C, D be Galois categories. A functor C → D in GalCat preserves 
finite colimits.

Proof. This is proved as in Proposition 5.19: any functor preserves colimits of good
diagrams (in the terminology of the proof of Proposition 5.19), and after making a base 
change one may reduce to this case. �

Next, we include a result that shows that GalCat (or, rather, its opposite) behaves, to 
some extent, like a Galois category itself; at least, it satisfies a version of the first axiom 
of Definition 5.15.

Definition 5.24. A Galois category C is connected if there exists no decomposition ∗ �
∗1 
 ∗2 with ∗1, ∗2 nonempty and if additionally ∅ �� ∗.

Proposition 5.25. Let C be a connected Galois category and let C1, C2 be Galois categories. 
Then C1 × C2 ∈ GalCat and we have an equivalence of groupoids

FunGal(C1 × C2, C) � FunGal(C1, C) 
 FunGal(C2, C).

The above equivalence of groupoids is as follows. Given a functor Ci → C for i ∈ {1, 2}, 
we obtain a functor C1 × C2 → C by composing with the appropriate projection.

Proof. The assertion that C1×C2 ∈ GalCat is easy to check. Consider a functor F : C1 ×
C2 → C in GalCat. Note that every object (x, y) ∈ C1 × C2 decomposes as the disjoint 
union (x, ∅) 
 (∅, y). For example, in C1 × C2, the terminal object ∗ = (∗, ∗) decomposes 
as the union ∗1 
 ∗2 where ∗1 is terminal in C1 and empty in C2, and ∗2 is terminal in 
C2 and empty in C1. It follows that F (∗1) = ∅ or F (∗2) = ∅ since C is connected. If 
F (∗1) = ∅ and therefore F (∗2) = ∗, then we have for x ∈ C1, y ∈ C2,

F ((x, y)) � F ((x, y) × ∗2) � F ((∅, y)),

so that F (canonically) factors through C2. The other case is analogous. �
More generally, let C be an arbitrary Galois category, and fix C1, C2 ∈ GalCat. We 

find, by the same reasoning,

FunGal(C1 × C2, C) � 

∗=∗1�∗2

FunGal(C1, C/∗1) × FunGal(C2, C/∗2), (13)

where the disjoint union is taken over all decompositions of the terminal object in C.
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This concludes our preliminary discussion of the basic properties of Galois categories. 
In the next subsection, we will give another description of the (2, 1)-category of Galois 
categories. For now, though, we describe a basic method of extracting Galois categories 
from other sources.

Definition 5.26. A Galois context is an ∞-category C satisfying the first two axioms of 
Definition 5.15 together with a class E ⊂ C of morphisms such that:

1. E is closed under composition and base change and contains every equivalence.
2. Every morphism in E is an effective descent morphism.
3. Given a cartesian diagram

x′ x

y′ y

,

where y′ → y ∈ E , then x → y belongs to E if and only if x′ → y′ does.
4. A map x → y � y1 
 y2 belongs to E if and only if x ×y y1 → y1 and x ×y y2 → y2

belong to E .
5. For any object x ∈ C and any finite nonempty set S, the fold map 
S x → x belongs 

to E .

Given Galois contexts (C, E) and (D, E ′), a functor of Galois contexts F : (C, E) →
(D, E ′) will mean a functor of ∞-categories C → D which respects finite limits and 
coproducts and which carries morphisms in E to morphisms in E ′.

Definition 5.27. Given a Galois context (C, E), we say that an object x ∈ C is Galoisable
(or E-Galoisable) if there exists a map y → ∗ in E such that the pullback x × y → y is in 
mixed elementary form in C/y, as in the discussion after Definition 5.15. In other words, 
we require that there is a decomposition y � y1 
 · · · 
 yn such that each x × yi → yi
decomposes as a finite coproduct 
Si

yi → yi.

Given a category satisfying the first two axioms of Definition 5.15, the following result 
enables us to extract a Galois category by considering the Galoisable objects.

Proposition 5.28. Let (C, E) be a Galois context. Then the collection of Galoisable objects 
in C (considered as a full subcategory of C) forms a Galois category.

Proof. Note first that the collection of Galoisable objects actually forms a category rather 
than an ∞-category: that is, the mapping space between any two Galoisable objects is 
(homotopy) discrete. More precisely, if x ∈ C is Galoisable and x′ ∈ C is arbitrary, 
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then we claim that HomC(x′, x) is discrete. To see this, we choose an effective descent 
morphism u1 
 · · · 
un � ∗ such that each map ui×x → x is in elementary form. Using 
the expression C � Tot(C/u1×···×un

), one reduces to the case where x is a (disjoint) finite 
coproduct of copies of the terminal object ∗. In this case, HomC(x′, 
S ∗) is the set of 
all S-labeled decompositions of x′ as direct sums of subobjects, using the expression 
C/
S ∗ �

∏
S C/∗ �

∏
S C.

Suppose y ∈ C is a Galoisable object. We need to show that there is a Galoisable 
object t′ and an E-morphism t′ � ∗ such that the pullback y × t′ → t′ is in mixed 
elementary form. By assumption, we know that we can do this with some object t ∈ C
with an E-morphism t � ∗, but we do not have any control of t. We will find a Galoisable
choice of t′ by an inductive procedure.

Define the rank of a Galoisable object y ∈ C as follows. If y is mixed elementary, with 
respect to a decomposition ∗ � 
n

i=1 ∗i (with the ∗i nonempty) and y = 
n
i=1
Si

∗i
for finite sets Si, we define the rank to be supi |Si|. In general, we make a base change 
in C along some E-morphism t → ∗ (by a not necessarily Galoisable object) to reduce to 
this case. In other words, to define the rank of y, we choose an E-morphism t � ∗ such 
that y × t → t is in mixed elementary form in C/t, and then consider the rank of that.

If the rank is zero, then y = ∅. We now use induction on the rank of y. First, we 
claim that there is a decomposition ∗ � ∗1 
 ∗2 such that y → ∗ factors through an 
E-morphism y → ∗1. (Meanwhile, y ×∗ ∗2 = ∅.) To see this decomposition and claim, 
we can work locally on C � Tot(C/t×···×t) to reduce to the case in which y is already in 
mixed elementary form, for which the assertion is evident. Thus we can reduce to the 
case where y → ∗ is an E-morphism.

Now consider the pullback y× y → y. This admits a section, so we have y× y � y 
 c

where c is another Galoisable object in C/y; to see that c exists, one works locally using 
t to reduce to the mixed elementary case. However, by working locally again, one sees 
that the rank of c is one less than the rank of y. We can reduce the rank one by one, 
splitting off pieces, to get down to the case where y = ∅. �

In fact, the above argument shows that if x ∈ C is Galoisable, there exists a Galoisable 
y ∈ C together with a morphism y � ∗ which belongs to E such that x × y → y is in 
mixed elementary form.

Corollary 5.29. Let (C, E) be a Galois context. Then a map x → y between Galoisable 
objects in C is an effective descent morphism in the category of Galoisable objects if and 
only if it belongs to E. Therefore, a functor of Galois contexts induces a functor of Galois 
categories.

Proof. Working locally (because of the local nature of belonging to E , and in view of 
the preceding remark), we may assume the map x → y is setlike, in which case it is 
evident. �
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5.3. The Galois correspondence

The Galois correspondence for groupoids gives an alternate description of the 
(2, 1)-category GalCat. To see this, we describe the building blocks in GalCat.

Example 5.30. Let G be a finite group. Then the category FinSetG of finite G-sets is a 
Galois category. Only the last axiom requires verification. In fact, given any finite G-set 
T , we have an effective descent morphism G → ∗ such that T×G, as a G-set, is a disjoint 
union of copies of G (since it is free).

This Galois category enjoys a convenient universal property, following [19].

Definition 5.31. Let C be a Galois category and let G be a finite group. A G-torsor in 
C consists of an object x ∈ C with a G-action such that there exists an effective descent 
morphism y � ∗ such that y × x ∈ C/y, as an object with a G-action, is given by

y × x �

G

y,

where G acts on the latter by permuting the summands. For instance, x could be 
G ∗. 
The collection of G-torsors forms a full subcategory TorsG(C) ⊂ Fun(BG, C).

The Galois category FinSetG has a natural example of a G-torsor: namely, G itself. 
The next result states that it is universal with respect to that property.

Proposition 5.32. If C is a Galois category, there is a natural equivalence between 
FunGal(FinSetG, C) and the category TorsG(C) of G-torsors in C.

Proof. Any functor of Galois categories preserves torsors for any finite group. In partic-
ular, given a functor F : FinSetG → C in GalCat, one gets a natural choice of G-torsor in 
C by considering F (G). Since everything in FinSetG is a colimit of copies of G, the choice 
of F (G) determines everything else. Together with the Yoneda lemma, this implies that 
the functor from FunGal(FinSetG, C) to G-torsors is fully faithful.

It remains to argue that, given a G-torsor in C, one can construct a corresponding 
functor FinSetG → C in GalCat. In other words, we want to show that the fully faithful 
functor

FunGal(FinSetG, C) → TorsG(C),

is essentially surjective. However, writing C as a totalization of C/x×···×x, one may assume 
the G-torsor is trivial, in which case the claim is evident. �

More generally, we can build Galois categories from finite groupoids. This will be very 
important from a 2-categorical point of view.
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Definition 5.33. We say that a groupoid G is finite if G has finitely many isomorphism 
classes of objects and, for each object x ∈ G , the automorphism group AutG (x) is finite. 
The collection of all finite groupoids, functors, and natural transformations is naturally 
organized into a (2, 1)-category Gpdfin.

In other words, a finite groupoid is a 1-truncated homotopy type such that π0 is finite, 
as is π1 with any choice of basepoint.

Given a finite groupoid G , the category Fun(G , FinSet) of functors from G into the 
category of finite sets forms a Galois category. This is a generalization of Example 5.30
and follows from it since the categories Fun(G , FinSet) are finite products of the Galois 
categories of finite G-sets as G varies over the automorphism groups. If we interpret G as 
a 1-truncated homotopy type, then this is precisely the category of finite covering spaces
of G , or of local systems of finite sets on G .

It follows that we get a functor of (2, 1)-categories

Gpdop
fin → GalCat,

sending a finite groupoid G to the associated functor category Fun(G , FinSet). Note 
that, for example, a natural transformation between functors of finite groupoids gives a 
natural transformation at the level of Galois categories.

In order to proceed further, we need a basic formal property of GalCat:

Proposition 5.34. The (2, 1)-category GalCat admits filtered colimits, which are computed 
at the level of the underlying categories: the colimit of a diagram of Galois categories 
and functors between them (which respect coproducts, finite limits, and effective descent 
morphisms) in the (2, 1)-category of categories is again a Galois category.

Proof. Let F : I → GalCat be a filtered diagram of Galois categories. Our claim is that 
the colimit lim−−→I

F is a Galois category and the natural functors F (j) → lim−−→I
F respect 

the relevant structure. We first observe that lim−−→I
F has all finite limits and colimits, 

and the functors F (j) → lim−−→I
F respect those. This holds for any filtered diagram of 

∞-categories and functors preserving finite limits (resp. colimits) as a formal consequence 
of the commutation of finite limits and filtered colimits in the ∞-category of spaces. For 
example, every finite diagram in lim−−→I

F factors through a finite stage. From this, the 
first two axioms of Definition 5.15 follow.

Next, we want to claim that the functors F (j) → lim−−→I
F respect effective descent 

morphisms. Once we have shown this, the last axiom of Definition 5.15 will follow, since 
we know it at each stage F (j). In fact, let x → y be an effective descent morphism in 
F (j). Then, we need to check that pull-back along x → y is conservative and respects 
finite colimits in lim−−→I

F ; however, this follows since it holds in each F (j′), since finite 
colimits and pullbacks are preserved under F (j′) → lim F .
−−→I
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Finally, it follows from the previous paragraph that since every object in each F (j) is 
locally in mixed elementary form, with respect to effective descent morphisms in F (j), 
the same is true in lim−−→I

F , since every object in the colimit comes from a finite stage. �
It follows that we get a natural functor

Pro(Gpdfin)op � Ind(Gpdop
fin) → GalCat,

i.e., a contravariant functor from the (2, 1)-category Pro(Gpdfin)op into the (2, 1)-cate-
gory of Galois categories. We give this a name.

Definition 5.35. A profinite groupoid is an object of Pro(Gpdop
fin).

We will describe some features of the (2, 1)-category of profinite groupoids in the next 
subsection. In the meantime, the main result can now be stated as follows.

Theorem 5.36 (The Galois correspondence). The functor Pro(Gpdfin)op → GalCat is an 
equivalence of 2-categories.

Proof. We first check that the functor is fully faithful. To do this, first fix finite
groupoids G , G ′. We want to compare the categories of functors Fun(G , G ′) and 
FunGal(Fun(G ′, FinSet), Fun(G , FinSet)). In particular, we want to show that

Fun(G ,G ′) → FunGal(Fun(G ′,FinSet),Fun(G ,FinSet)), (14)

is an equivalence of groupoids. We can reduce to the case where G has one isomorphism 
class of objects, since both sides of (14) send coproducts in G to products of groupoids. 
We can also reduce to the case where G ′ has a single connected component, since if G is 
connected, then both sides of (14) take coproducts in G ′ to coproducts. This is clear for 
the left-hand-side. For the right-hand-side, note that coproducts in G ′ go over to products
in GalCat for Fun(G ′, FinSet). Now use Proposition 5.25 to describe the corepresented 
functor for a product in GalCat. In order to show that (14) is an equivalence when 
G , G ′ are finite groupoids, it thus suffices to work with groups. We can do this extremely 
explicitly.

In the case of finite groups, given any two such G, G′, the groupoid of maps between 
the associated groupoids has connected components given by the conjugacy classes of 
homomorphisms G → G′. Given any f : G → G′, the automorphism group of f is the 
centralizer of the image f(G). To understand FunGal(FinSetG′ , FinSetG), we can use 
Proposition 5.32. We need to describe the category of G′-torsors in FinSetG. Any such 
gives a G′-torsor in FinSet by forgetting, so a G′-torsor in FinSetG yields in particular 
a copy of G′ with G acting G′-equivariantly (i.e., G acts by right multiplication by 
various elements of G′). It follows that any torsor arises by considering a homomorphism 
φ : G → G′ and using that to equip the G-torsor G′ ∈ FinSetG′ with the structure 
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of a G-set. A natural transformation of functors, or a morphism of torsors, is given 
by a conjugacy in G′ between two homomorphisms G → G′: an automorphism of the 
torsor comes from right multiplication by an element of G′ which centralizes the image of 
G → G′. This verifies full faithfulness for finite groupoids, i.e., that (14) is an equivalence 
if G , G ′ are finite.

Finally, we need to check that the full faithfulness holds for all profinite groupoids. 
That is a formal consequence of the fact that Fun(G , FinSet) is a compact object in 
GalCat for G a finite groupoid. If G is connected, this is a consequence of the universal 
property, Proposition 5.32, since a torsor involves a finite amount of data. In general, 
the observation follows from the connected case together with Proposition 5.25 (and the 
remarks immediately following, in particular (13)).

To complete the proof, we need to show that the functor is essentially surjective: 
that is, every Galois category arises from a profinite groupoid. For this, we need another 
lemma on the formal structure of GalCat.

Lemma 5.37. GalCat admits finite limits, which are preserved under GalCat → Cat∞.

Proof. Since GalCat has a terminal object (the terminal category), it suffices to show 
that given a diagram

C′

C′′ C

,

in GalCat, the category-theoretic fiber product is still a Galois category. Of the axioms 
in Definition 5.15, only the third needs checking. Note first that a map x → y in C′×C C′′

is an effective descent morphism if it is one in C′ and C′′. This follows from the fact that 
the formation of overcategories and totalizations are compatible with fiber products of 
categories.

Let x be an object of the fiber product. We want to show that x is locally in mixed 
elementary form. As before, we can perform induction on the rank of x (defined as the 
maximum of the ranks of the images in C′, C′′). The natural map x → ∗ has the property 
that ∗ � ∗1 
 ∗2 where x → ∗ factors through an effective descent morphism x � ∗1. 
In fact, we can construct these on C′, C′′ and they have to match up on C. So, we can 
assume that x → ∗ is an effective descent morphism. Now after base-change along x → ∗, 
we can find a section of x × x → x and thus obtain a splitting of x × x (since we can in 
C′, C′′). Using induction on the rank, we can conclude as before. �
Remark 5.38. The same logic shows that GalCat admits arbitrary limits, although they 
are no longer preserved under the forgetful functor GalCat → Cat∞; one has to take the 
subcategory of the categorical limit consisting of objects whose rank is bounded.
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Let C be any Galois category, which we want to show lies in the image of the fully 
faithful functor Pro(Gpdfin)op → GalCat. In order to do this, we will write C as a filtered 
colimit of subcategories which do belong to the image.

Let C be a Galois category. Then, if C is not the terminal category (i.e., if the map 
∅ → ∗ in C is not an isomorphism), there is a faithful functor FinSet → C which sends a 
finite set S to 
S ∗. This is a functor in GalCat and defines, for every nonempty Galois 
category C, a (non-full) Galois subcategory Ctriv. In other words, we take the objects 
which are in elementary form and the setlike maps between them. More generally, if 
∗ decomposes as ∗ = ∗1 
 · · · 
 ∗n, we can define a subcategory Cloc

triv ⊂ C by writing 
C �

∏n
i=1 C/∗i

and taking the subcategory Cloc
triv =

∏n
i=1(C/∗i

)triv.
Let y � ∗ be an effective descent morphism and let y � y1
· · ·
yn be a decomposition 

of y. We define a map f : x → x′ in C to be split with respect to y and the above 
decomposition if f × yi ∈ C/yi

is setlike for each i = 1, 2, . . . , n. Via descent theory, we 
can write this subcategory as

C′ = Tot

⎛
⎝ n∏

i=1
Ctriv
/yi

⇒
n∏

i,j=1
Ctriv
yi×yj

→→→ · · ·

⎞
⎠ .

In other words, this subcategory of C arises as an inverse limit (indexed by a cosimplicial 
diagram) of products of copies of FinSet. Any such is the category of finite covers of a 
finite CW complex (presented by 3-skeleton of the dual simplicial set5) and is thus in 
the image of Pro(Gpdfin)op. However, C is the filtered union over all such subcategories 
as we consider effective descent morphisms y1 
 · · · yn � ∗ with the {yi} varying. It 
follows that C is the filtered colimit in GalCat of objects which belong to the image of 
Pro(Gpdfin)op → GalCat, and is therefore in the image of Pro(Gpdfin)op itself. �

Theorem 5.36 enables us to make the following fundamental definition.

Definition 5.39. Given a Galois category C, we define the fundamental groupoid or Galois 
groupoid π≤1C of C as the associated profinite groupoid under the correspondence of 
Theorem 5.36.

We next use the Galois correspondence to obtain a few technical results on torsors.

Corollary 5.40. The Galois categories FinSetG jointly detect equivalences: given a functor 
in GalCat, F : C → D, if F induces an equivalence on the categories of G-torsors for 
each finite group G, then F is an equivalence. In other words, if the map

TorsG(C) → TorsG(D) (15)

is an equivalence of groupoids for each G, then F is an equivalence.

5 We recall that the 3-truncation of the above totalization is sufficient to compute the totalization.
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Proof. By (13), it follows that if (15) is always an equivalence, then the map

HomGalCat(Fun(G ,FinSet), C) → HomGalCat(Fun(G ,FinSet),D),

is an equivalence for each finite groupoid G . Dualizing, and using the Galois correspon-
dence, we find that the map π≤1D → π≤1C of profinite groupoids has the property 
that

HomPro(Gpdfin)(π≤1C,G ) → HomPro(Gpdfin)(π≤1D,G )

is always an equivalence, for every finite groupoid G . However, we know that finite 
groupoids generate Pro(Gpdfin) under cofiltered limits, so we are done. �
Corollary 5.41. Let C be a Galois category and x ∈ C be an object. Then there exists a 
G-torsor y in C for some finite group G such that x ×y → y is in mixed elementary form 
in C/y.

Proof. We can reduce to the case where C = Fun(G , FinSet) for G a finite groupoid, 
since C is a filtered colimit of such. Let G have objects x1, . . . , xn up to isomorphism 
with automorphism groups G1, . . . , Gn. Then, there is a natural G1 × · · · ×Gn-torsor y
on G � 
n

i=1 BGi (which on the ith summand is the universal cover times the trivial ∏
j �=i Gj-torsor) such that any object x in C has the property that y × x is in mixed 

elementary form. �
5.4. Profinite groupoids

Given Theorem 5.36, it behooves us to discuss the 2-category Pro(Gpdfin) of profinite 
groupoids in more detail. We begin by studying connected components.

We have a natural functor π0 : Gpdfin → FinSet sending a groupoid to its set of iso-
morphism classes of objects. Therefore, we get a functor π0 : Pro(Gpdfin) → Pro(FinSet)
which is uniquely determined by the properties that it recovers the old π0 for fi-
nite groupoids and that it commutes with cofiltered limits. Recall that the category 
Pro(FinSet) is the category of compact, Hausdorff, and totally disconnected topological 
spaces, under the realization functor which sends a profinite set to its inverse limit (in 
the category of sets) with the inverse limit topology. It follows that the collection of 
“connected components” of a profinite groupoid is one of these.

Remark 5.42. Note that π0 : Gpdfin → FinSet does not commute with finite inverse 
limits, so that its right Kan extension to Pro(Gpdfin) does not. While the reader might 
object that there should be a lim1 obstruction to the commutation of π0 and cofiltered 
limits (of towers, say), we remark that lim1-terms always vanish for towers of finite 
groups.
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In practice, we will mostly be concerned with the case where the (profinite) set π0 of 
connected components is a singleton.

Definition 5.43. We say that a profinite groupoid is connected if its π0 is a singleton. 
The collection of connected profinite groupoids spans a full subcategory Pro(Gpdfin)≥0 ⊂
Pro(Gpdfin).

In general, it will thus be helpful to have an explicit description of this profinite set. 
Recall that there is an algebraic description of Pro(FinSet) given by Stone duality. Given 
a Boolean algebra B, the spectrum SpecB of prime ideals (with its Zariski topology) 
is an example of a profinite set, i.e., it is compact, Hausdorff, and totally disconnected. 
Recall now:

Theorem 5.44 (Stone duality). The functor B �→ SpecB establishes an anti-equivalence 
Boolop � Pro(FinSet).

For a textbook reference on Stone duality, see [42]. The Galois correspondence in the 
form of Theorem 5.36 can be thought of as a mildly categorified version of Stone duality. 
In particular, we can use Stone duality to describe π0 of a profinite groupoid.

Proposition 5.45. Let C be a Galois category. Then π0(π≤1C) corresponds, under Stone 
duality, to the Boolean algebra of subobjects x ⊂ ∗.

Let C be a Galois category. Given two subobjects x, y ⊂ ∗ of the terminal object, 
we define their product to be the categorical product x × y. Their sum is the minimal 
subobject of ∗ containing both x, y: in other words, the image of x 
 y → ∗. By working 
locally, it follows that this actually defines a Boolean algebra.

Proof. In fact, if C is a Galois category corresponding to a finite groupoid, the result 
is evident. Since the construction above sends filtered colimits of Galois categories to 
filtered colimits of Boolean algebras, we can deduce it for any Galois category in view of 
Theorem 5.36. �

In practice, the Galois categories that we will be considering will be connected (in 
the sense of Definition 5.24). By Proposition 5.45, it follows that a Galois category C is 
connected if and only if π≤1C is connected as a profinite groupoid. In our setting, this 
will amount to the condition that certain commutative rings are free from idempotents. 
With this in mind, we turn our attention to the connected case. Here we will be able to 
obtain a very strong connection with the (somewhat more concrete) theory of profinite 
groups.

The 2-category Pro(Gpdfin) has a terminal object ∗, the contractible profinite 
groupoid. Under the Galois correspondence, this corresponds to the category FinSet
of finite sets.
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Definition 5.46. A pointed profinite groupoid is a profinite groupoid G together with 
a map ∗ → G in Pro(Gpdfin). The collection of pointed profinite groupoids forms a 
(2, 1)-category, the undercategory Pro(Gpdfin)∗/.

For example, let G be a profinite group, so that G is canonically a pro-object in 
finite groups. Applying the classifying space functor to this system, we obtain a pointed
profinite groupoid BG ∈ Pro(Gpdfin) as the formal inverse limit of the finite groupoids 
B(G/U) as U ⊂ G ranges over the open normal subgroups, since each B(G/U) is pointed. 
By construction, the associated Galois category is lim−−→U⊂G

FinSetG/U , or equivalently, the 
category of finite sets equipped with a continuous G-action (i.e., an action which factors 
through G/U for U an open normal subgroup). We thus obtain a functor

B : Pro(FinGp) → Pro(Gpdfin)∗/,

where FinGp is the category of finite groups and Pro(FinGp) is the category of profi-
nite groups. Observe that this functor is fully faithful, since the analogous functor 
B : FinGp → (Gpdfin)∗/ is fully faithful, and each BG for G finite defines a cocom-
pact object of Pro(Gpdfin)∗/.

There is a rough inverse to this construction, given by taking the “fundamental group.” 
In general, if C is an ∞-category with finite limits, and C ∈ C is an object, then the 
natural functor

Pro(CC/) → Pro(C)C/

is an equivalence of ∞-categories. In the case of C = Gpdfin, we know that there is a 
functor

π1 : (Gpdfin)∗/ → FinGp, (16)

to the category FinGp of finite groups, given by the usual fundamental group of a 
pointed space, or more categorically as the automorphism group of the distinguished 
point. As above, let Pro(FinGp) be the category of profinite groups and continuous 
homomorphisms.

Definition 5.47. We define a functor π1 : Pro(Gpdfin)∗/ → Pro(FinGp) from the 
2-category of pointed profinite groupoids to the category of profinite groups given by 
right Kan extension of (16), so that π1 agrees with the old π1 on pointed finite groupoids 
and commutes with filtered limits.

Given a pointed finite groupoid G , we have a natural map

Bπ1(G ) → G , (17)
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and by general formalism, we have a natural transformation of the form (17) on 
Pro(Gpdfin)∗/.

Proposition 5.48. Given an object G ∈ Pro(Gpdfin)∗/, the following are equivalent:

1. G is connected, i.e., π0G is a singleton.
2. The map Bπ1G → G is an equivalence in Pro(Gpdfin)∗/.

In particular, the functor B : Pro(FinGp) → Pro(Gpdfin)∗/ is fully faithful with image 
consisting of the pointed connected profinite groupoids.

Proof. The second statement clearly implies the first: any BG for G a profinite group 
is connected, as the inverse limit of connected profinite groupoids. We have also seen 
that the functor B is fully faithful, since it is fully faithful on finite groups. It remains 
to show that if G is a pointed, connected profinite groupoid, then the map Bπ1G → G

is an equivalence.
For this, we write G as a cofiltered limit lim←−−I

Gi, where I is a filtered partially ordered 
set indexing the Gi and each Gi is a pointed finite groupoid. We know that G is connected, 
though each Gi need not be. However, we obtain a new inverse system {Bπ1Gi} equipped 
with a map to the inverse system {Gi} and we want to show that the two inverse systems 
are pro-isomorphic. We need to produce an inverse map of pro-systems {Gi} → {Bπ1Gi}. 
For this, we need to produce for each i ∈ I an element j ≥ i and a map

Gj → Bπ1Gi.

These should define an element of lim←−−i
lim−−→j

Hom(Gj , Bπ1Gi). In order to do this, we 
simply note that there exists j ≥ i such that the map Gj → Gi lands inside the connected 
component Bπ1Gi of Gi at the basepoint, because otherwise the pro-system would not be 
connected as a filtered inverse limit of nonempty finite sets is nonempty. One checks easily 
that the two maps of pro-systems define an isomorphism between {Gi} and {Bπ1Gi}. �

Let G ∈ Pro(Gpdfin) be a connected profinite groupoid. This means that the space 
of maps ∗ → G in Pro(Gpdfin) is connected, i.e., there is only one such map up to 
homotopy. (This is not entirely immediate, but will be a special case of Proposition 5.49
below.) Once we choose a map, we point G and then the data is essentially equivalent 
to that of a profinite group in view of Proposition 5.48. If we do not point G , then what 
we have is essentially a profinite group “up to conjugacy.”

Proposition 5.49. Let G, G′ be profinite groups. Then the space HomPro(Gpdfin)(BG, BG′)
is given as follows:

1. The connected components are in one-to-one correspondence with conjugacy classes 
of continuous homomorphisms f : G → G′.
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2. The group of automorphisms of a given continuous homomorphism f : G → G′ is 
given by the centralizer in G′ of the image of f .

In other words, if we restrict our attention to the subcategory Pro(Gpdfin)≥0 ⊂
Pro(Gpdfin) consisting of connected profinite groupoids, then it has a simple explicit 
description as a 2-category where the objects are the profinite groups, maps are contin-
uous homomorphisms, and 2-morphisms are conjugations.

Proof. This assertion is well-known when G, G′ are finite groups: maps between BG and 
BG′ in Gpdfin are as above. The general case follows by passage to cofiltered limits. 
Let G = lim←−−U

G/U, G′ = lim←−−V
G′/V where U (resp. V ) ranges over the open normal 

subgroups of G (resp. G′). In this case, we have

HomPro(Gpdfin)(BG,BG′) � lim←−−
V

lim−−→
U

HomGpdfin(B(G/U), B(G/V )),

and passing to the limit, we can conclude the result for G, G′ profinite, if we observe 
that the set of conjugacy classes of continuous homomorphisms G → G′ is the inverse 
limit of the sets of conjugacy classes of continuous homomorphisms G → G′/V as V ⊂ G

ranges over open normal subgroups. The assertion about automorphisms, or conjugacies, 
is easier.

To see this in turn, suppose given continuous homomorphisms φ1, φ2 : G → G′ such 
that, for every continuous map ψ : G′ → G′′ where G′′ is finite, the composites ψ ◦φ1, ψ ◦
φ2 are conjugate. We claim that φ1, φ2 are conjugate. The collection of all surjections 
ψ : G′ → G′′ with G′′ finite forms a filtered system, and for each ψ, we consider the 
(finite) set Fψ ⊂ G′′ of x ∈ G′′ such that ψ ◦φ2 = x(ψ ◦φ1)x−1. Since by hypothesis each 
Fψ is nonempty, it follows that the inverse limit is nonempty, so that φ1, φ2 are actually 
conjugate as homomorphisms G → G′. Conversely, suppose given for each ψ : G′ → G′′

with G′′ finite a conjugacy class of continuous maps φψ : G → G′′, and suppose these 
are compatible with one another; we want to claim that there exists a conjugacy class of 
continuous homomorphisms φ : G → G′ that lifts all the φψ. For this, we again consider 
the finite nonempty sets Gψ of all continuous homomorphisms G → G′′ in the conjugacy 
class of φψ, and observe the inverse limit of these is nonempty. Any point in the inverse 
limit gives a continuous homomorphism G → G′′ with the desired property. �
6. The Galois group and first computations

Let (C, ⊗, 1) be a stable homotopy theory. In this section, we will make the main 
definition of this paper, and describe two candidates for the Galois group (or, in general, 
groupoid) of C. Using the descent theory described in Section 3, we will define a category 
of finite covers in the ∞-category CAlg(C) of commutative algebra objects in C. Finite 
covers will be those commutative algebra objects which “locally” look like direct factors 
of products of copies of the unit. There are two possible definitions of “locally,” which 
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lead to slightly different Galois groups. We will show that these ∞-categories of finite 
covers are actually Galois categories in the sense of Definition 5.15. Applying the Galois 
correspondence, we will obtain a profinite groupoid.

The rest of this paper will be devoted to describing the Galois group in certain special 
instances. In this section, we will begin that process by showing that the Galois group 
is entirely algebraic in two particular instances: connective E∞-rings and even periodic 
E∞-rings with regular π0. In either of these cases, one has various algebraic tricks to 
study modules via their homotopy groups. The associated ∞-categories of modules turn 
out to be extremely useful building blocks for a much wider range of stable homotopy 
theories.

6.1. Two definitions of the Galois group

Let (C, ⊗, 1) be a stable homotopy theory, as before. We will describe two possible 
analogs of “finite étaleness” appropriate to the categorical setting.

Definition 6.1. An object A ∈ CAlg(C) is a finite cover if there exists an A′ ∈ CAlg(C)
such that:

1. A′ admits descent, in the sense of Definition 3.18.
2. A ⊗ A′ ∈ CAlg(ModC(A′)) is of the form 

∏n
i=1 A

′[e−1
i ], where for each i, ei is an 

idempotent in A′.

The finite covers span a subcategory CAlgcov(C) ⊂ CAlg(C).

Definition 6.2. An object A ∈ CAlg(C) is a weak finite cover if there exists an A′ ∈
CAlg(C) such that:

1. The functor ⊗A′ : C → C commutes with all homotopy limits.
2. The functor ⊗A′ is conservative.
3. A ⊗ A′ ∈ CAlg(ModC(A′)) is of the form 

∏n
i=1 A

′[e−1
i ], where for each i, ei is an 

idempotent in A′.

The weak finite covers span a subcategory CAlgw.cov(C) ⊂ CAlg(C).

Our goal is to show that both of these definitions give rise to Galois categories in the 
sense of the previous section, which we will do using the general machine of Proposi-
tion 5.28. Observe first that CAlg(C)op satisfies the first two conditions of Definition 5.15.

Lemma 6.3. Given C as above, consider the ∞-category CAlg(C)op and the collection of 
morphisms E given by the maps A → B which admit descent. Then (CAlg(C)op, E) is a 
Galois context in the sense of Definition 5.26.
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Proof. The composite of two descendable morphisms is descendable by Proposition 3.24, 
descendable morphisms are effective descent morphisms by Proposition 3.22, and the 
locality of descendability (i.e., the third condition of Definition 5.26) follows from the 
second part of Proposition 3.24. The remaining conditions are straightforward. �
Lemma 6.4. Given C as above, consider the ∞-category CAlg(C)op and the collection 
of morphisms E given by the maps A → B such that the functor ⊗AB : ModC(A) →
ModC(B) commutes with limits and is conservative. Then (CAlg(C)op, E) is a Galois 
context in the sense of Definition 5.26.

Proof. It is easy to see that E satisfies the first axiom of Definition 5.26, and we can 
apply Barr–Beck–Lurie to see comonadicity of ⊗AB (i.e., the second axiom). The fourth 
and fifth axioms are straightforward.

Finally, suppose A → B is a morphism in CAlg(C) and A → A′ belongs to E , i.e., 
tensoring ⊗AA

′ commutes with limits and is conservative. Suppose A′ → B′ def= A′⊗AB

has the same property. Then we want to claim that A → B belongs to E .
First, observe that ⊗AB is conservative. If M ∈ ModC(A) is such that M ⊗A B � 0, 

then (M ⊗A A′) ⊗A′ B′ is zero, so that M ⊗A A′ is zero as A′ → B′ belongs to E , and 
thus M = 0. Finally, we need to check the claim about ⊗AB commuting with limits. In 
other words, given {Mi} ∈ ModC(A), we need to show that the natural map

B ⊗A

∏
Mi →

∏
(Mi ⊗A B)

is an equivalence. We can do this after tensoring with A′, so we need to see that

A′ ⊗A B ⊗A

∏
Mi → A′ ⊗A

∏
(Mi ⊗A B)

is an equivalence. However, since tensoring with A′ commutes with limits, this map is

B′ ⊗A′
∏

(Mi ⊗A A′) →
∏

(Mi ⊗A A′) ⊗A′ B′,

which is an equivalence since ⊗A′B′ commutes with limits by assumption. �
The basic result of this section is the following.

Theorem 6.5. Given C, CAlgcov(C)op and CAlgw.cov(C)op are Galois categories, with 
CAlgcov(C) ⊂ CAlgw.cov(C). If 1 ∈ C is compact, then the two are the same.

Proof. This follows from Proposition 5.28 if we take CAlg(C)op as our input ∞-category. 
As we checked above, we have two candidates for E , both of which yield Galois contexts. 
The Galoisable objects yield either the finite covers or the weak finite covers.

Next, we need to note that a finite cover is actually a weak finite cover. Note first 
that either a finite cover or a weak finite cover is dualizable, since dualizability can be 
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checked locally in a limit diagram of symmetric monoidal ∞-categories. However, the 
argument of Proposition 5.28 (or the following corollary) shows that, given a finite cover 
A ∈ CAlg(C), we can choose the descendable A′ ∈ CAlg(C) such that A ⊗A′ is in mixed 
elementary form so that A′ itself is a finite cover: in particular, so that A′ is dualizable. 
Therefore, we can choose A′ so that ⊗A′ commutes with arbitrary homotopy limits.

Finally, we need to see that the two notions are equivalent in the case where 1 is 
compact. For this, we use the reasoning of the previous paragraph to argue that if A ∈
CAlgw.cov(C), then there exists an object A′ ∈ CAlgw.cov(C) such that the dual to 1 → A′

is a distinguished effective descent morphism (i.e., tensoring with A′ is conservative and 
commutes with homotopy limits) and such that A′ → A ⊗ A′ is in mixed elementary 
form. However, in this case, A′ is dualizable, as an element of CAlgw.cov(C), so it admits 
descent in view of Theorem 3.38. Therefore, A is actually a finite cover. �
Proposition 6.6. Let F : C → D be a morphism of stable homotopy theories, so that F
induces a functor CAlg(C) → CAlg(D). Then F carries CAlgcov(C) into CAlgcov(D) and 
CAlgw.cov(C) into CAlgw.cov(D).

Proof. Let A ∈ CAlgw.cov(C). Then there exists A′ ∈ CAlgw.cov(C), which is a G-torsor 
for some finite group G, such that A ⊗ A′ is a finite product of localizations of A′ at 
idempotent elements, in view of Corollary 5.41. Therefore, F (A) ⊗ F (A′) is a finite 
product of localizations of F (A′) at idempotent elements.

Now F (A′) ∈ CAlg(D) is dualizable since A′ is, so tensoring with F (A′) commutes 
with limits in D. If we can show that tensoring with F (A′) is conservative in D, then it 
will follow that F (A) satisfies the conditions of Definition 6.2. In fact, we will show that 
the smallest ideal of D closed under arbitrary colimits and containing F (A′) is all of D. 
This implies that any object Y ∈ D with Y ⊗ F (A′) � 0 must actually be contractible.

To see this, recall that A′ has a G-action. We have a norm map (cf. [49, sec. 2.1] for 
a general reference in this context)

A′
hG → A′ hG � 1,

which we claim is an equivalence (Lemma 6.7 below). After applying F , we find that 
F (A′)hG � 1, which proves the claim and thus shows that tensoring with F (A′) is 
faithful.

If A ∈ CAlgcov(C), then we could choose the torsor A′ so that it actually belonged to 
CAlgcov(C) as well. The image F (A′) thus is a descendable commutative algebra object in 
D since descendability is a “finitary” condition that does not pose any convergence issues 
with infinite limits. So, by similar (but easier) logic, we find that F (A) ∈ CAlgcov(D). �
Lemma 6.7. Let C be a stable homotopy theory and let A ∈ CAlgw.cov(C)op be a G-torsor, 
where G is a finite group. Then the norm map AhG → AhG � 1 is an equivalence.
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Proof. It suffices to prove this after tensoring with A; note that tensoring with A is 
conservative and commutes with all homotopy limits. However, after tensoring with A, 
the G-action on A becomes induced, so the norm map is an equivalence. �

Finally, we can make the main definition of this paper.

Definition 6.8. Let (C, ⊗, 1) be a stable homotopy theory. The Galois groupoid π≤1(C) of 
C is the Galois groupoid of the Galois category CAlgcov(C)op. The weak Galois groupoid
πweak
≤1 (C) is the Galois groupoid of CAlgw.cov(C)op. When 1 has no nontrivial idempotents, 

we will write π1(C), πweak
1 (C) for the Galois group (resp. weak Galois group) of C with 

the understanding that these groups are defined “up to conjugacy.”

As above, we have an inclusion CAlgw.cov(C) ⊂ CAlgcov(C) of Galois categories. In 
particular, we obtain a morphism of profinite groupoids

πweak
≤1 (C) → π≤1(C). (18)

The dual map on Galois categories is fully faithful. In particular, if C is connected, so that 
π1, πweak

1 can be represented by profinite groups, the map (18) is surjective. Moreover, 
by Theorem 6.5, if 1 is compact, (18) is an equivalence.

In the following, we will mostly be concerned with the Galois groupoid, which is more 
useful for computational applications because of the rapidity of the descent. The weak 
Galois groupoid is better behaved as a functor out of the ∞-category of stable homotopy 
theories. We will discuss some of the differences further below. The weak Galois groupoid 
seems in particular useful for potential applications in K(n)-local homotopy theory where 
1 is not compact. Note, however, that the Galois groupoid depends only on the 2-ring of 
dualizable objects in a given stable homotopy theory, because the property of admitting 
descent (for a commutative algebra object which is dualizable) is a finitary one. So, the 
Galois groupoid can be viewed as a functor 2-Ring → Pro(Gpdfin)op.

Definition 6.9. We will define the Galois group(oid) of an E∞-ring R to be that of 
Mod(R). Note that the weak Galois group(oid) and the Galois group(oid) of Mod(R)
are canonically isomorphic, by Theorem 6.5.

In any event, both the profinite groupoids of (18) map to something purely algebraic. 
Given a finite étale cover of the ordinary commutative ring R0 = π0EndC(1), we get a 
commutative algebra object in C.

Proposition 6.10. Let R′
0 be a finite étale R0-algebra. The induced classically étale object 

of CAlg(C) is a finite cover, and we have a fully faithful embedding

CovSpec R0 ⊂ CAlgcov(C)op,
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from the category CovSpec R0 of schemes finite étale over SpecR0 into the opposite to the 
category CAlgcov(C).

This was essentially first observed in [13].

Proof. We can assume that C = Mod(R) for R an E∞-ring, because if R = EndC(1), 
we always have an embedding Modω(R) ⊂ C and everything here happens inside 
Modω(R) anyway. It follows from Theorem 2.32 that we have a fully faithful embedding 
CovSpec R0 ⊂ CAlg(C)op, so it remains only to show that any classically étale algebra 
object coming from a finite étale R0-algebra R′

0 is in fact a finite cover. However, we 
know that there exists a finite étale R0-algebra R′′

0 such that:

1. R′′
0 is faithfully flat over R0.

2. R′
0 ⊗R0 R′′

0 is the localization of 
∏

S R′′
0 at an idempotent element, for some finite 

set S.

We can realize R′
0, R

′′
0 topologically by E∞-rings R′, R′′ under R. Now R′′ admits 

descent over R′, as a finite faithfully flat R-module, and R′ ⊗R R′′ is the localization of ∏
S R′′ at an idempotent element, so that R′ ∈ CAlgcov(Mod(R)). �
The classically étale algebras associated to finite étale R0-algebras give the “algebraic” 

part of the Galois group and fit into a sequence

πweak
1 (C) � π1(C) � πet

1 SpecR0. (19)

Definition 6.11. We will say that the Galois theory of C is algebraic if these maps are 
isomorphisms.

It is an insight of [71] that the second map in (19) is generally not an isomorphism: 
that is, there are examples of finite covers that are genuinely topological and do not 
appear so at the level of homotopy groups. We will review the connection between our 
definitions and Rognes’s work in the next section.

6.2. Rognes’s Galois theory

In [71], Rognes introduced the definition of a G-Galois extension of an E∞-ring R for 
G a finite group. (Rognes also considered the case of a stably dualizable group, which will 
be discussed only incidentally in this paper.) Rognes worked in the setting of E-local 
spectra for E a fixed spectrum. The same definition would work in a general stable 
homotopy theory. In this subsection, we will connect Rognes’s definition with ours.

Definition 6.12 (Rognes). Let (C, ⊗, 1) be a stable homotopy theory. An object A ∈
CAlg(C) with the action of a finite group G (in CAlg(C)) is a G-Galois extension if:



480 A. Mathew / Advances in Mathematics 291 (2016) 403–541
1. The map 1 → AhG is an equivalence.
2. The map A ⊗ A →

∏
G A (given informally by (a1, a2) �→ {a1g(a2)}g∈G) is an 

equivalence.

We will say that A is a faithful G-Galois extension if further tensoring with A is conser-
vative.

General G-Galois extensions in this sense are outside the scope of this paper. In 
general, there is no reason for a G-Galois extension to be well-behaved at all with respect 
to descent theory. By an example of Wieland (see [70]), the map C∗(BZ/p; Fp) → Fp

given by evaluating on a point is a Z/p-Galois extension, but one cannot expect to carry 
out descent along it in any manner. However, one has:

Proposition 6.13. A faithful G-Galois extension in C is equivalent to a G-torsor in the 
Galois category CAlgw.cov(C).

This in turn relies on:

Proposition 6.14. (See [71, Proposition 6.2.1].) Any G-Galois extension A of the unit is 
dualizable.

The proof in [71] is stated for the E-localization of Mod(A) for A an E∞-ring, but it 
is valid in any such setting.

Proof of Proposition 6.13. A G-torsor in CAlgw.cov(C) is, by definition, a commutative 
algebra object A with an action of G such that there exists an A′ ∈ CAlg(C) such that 
⊗A′ is conservative and commutes with limits, with A′ ⊗ A �

∏
G A′ as an A′-algebra 

and compatibly with the G-action. This together with descent along 1 → A′ implies that 
the map 1 → AhG is an equivalence. Similarly, the map A ⊗ A →

∏
G A is well-defined 

in C and becomes an equivalence after base-change to A′ (by checking for the trivial 
torsor), so that it must have been an equivalence to begin with.

Finally, if 1 → A is a faithful G-Galois extension in the sense of Definition 6.12, 
then A is dualizable by Proposition 6.14, so that ⊗A commutes with limits. Moreover, 
⊗A is faithful by assumption. Since A ⊗ A is in elementary form, it follows that A ∈
CAlgw.cov(C) and is in fact a G-torsor. �

The use of G-torsors will be very helpful in making arguments. For example, given 
a connected Galois category, any nonempty object is a quotient of a G-torsor for some 
finite group G; in fact, understanding the Galois theory is equivalent to understanding 
torsors for finite groups.

Corollary 6.15. A G-torsor in the Galois category CAlgcov(C) is equivalent to a G-Galois 
extension A ∈ CAlg(C) such that A admits descent.
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Proof. Given a G-torsor in CAlgcov(C), it follows easily that it generates all of C as 
a thick ⊗-ideal, since descendability can be checked locally and since a trivial torsor 
is descendable. Conversely, if A is a G-Galois extension with this property, then A is 
a finite cover of the unit: we can take as our descendable commutative algebra object 
(required by Definition 6.1) A itself. �
Corollary 6.16. If |G| is invertible in π0End(1), then a G-torsor in CAlgw.cov(C) actually 
belongs to CAlgcov(C). In particular, if Q ⊂ π0End(1), then the two fundamental groups 
are the same: (19) is an isomorphism.

Proof. In any stable ∞-category D where |G| is invertible (i.e., multiplication by |G| is 
an isomorphism on each object), then for any object X ∈ Fun(BG, C), XhG is a retract 
of X. In fact, the composite

XhG → X → XhG
N→ XhG,

is an equivalence, where N is the norm map.
In particular, given a G-torsor A ∈ CAlgw.cov(C), we have 1 � AhG, so that 1 is a 

retract of A: in particular, the thick ⊗-ideal A generates contains all of C, so that (by 
Corollary 6.15) it belongs to CAlgcov(C). This proves the first claim of the corollary.

Finally, if Q ⊂ π0End(1), then fix a weak finite cover B ∈ CAlgw.cov(C). There is a 
G-torsor A ∈ CAlgw.cov(C) for some finite group G such that A ⊗B is a localization of a 
product of copies of A at idempotent elements. Since the thick ⊗-ideal that A generates 
contains all of C by the above, it follows that B is actually a finite cover. �
6.3. The connective case

The rest of this paper will be devoted to computations of Galois groups. These com-
putations are usually based on descent theory together with results stating that we can 
identify the Galois theory in certain settings as entirely algebraic. Our first result along 
these lines shows in particular that we can recover the classical étale fundamental group 
of a commutative ring. More generally, we can describe the Galois group of a connective 
E∞-ring purely algebraically.

Theorem 6.17. Let A be a connective E∞-ring. Then the map π1(Mod(A)) →
πet

1 Specπ0A is an equivalence; that is, all finite covers or weak finite covers are classi-
cally étale.

Remark 6.18. This result, while not stated explicitly in [71], seems to be folklore. One 
has the following intuition: a connective E∞-ring consists of its π0 (which is a discrete 
commutative ring) together with higher homotopy groups πi, i > 0 which can be thought 
of as “fuzz,” a generalized sort of nilthickening. Since nilpotents should not affect the 
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étale site, we would expect the Galois theory to be invariant under the map A → τ≤0A

in this case.

Proof. Let A be a connective E∞-ring. The argument was explained for π0A noetherian 
in [57, Example 5.5], and the general case can be reduced to this using the commutation 
of Galois theory and filtered colimits (Theorem 6.20 below). In fact, the ∞-category of 
connective E∞-rings is compactly generated and any compact object has noetherian π0. 
Therefore, the result assuming π0A noetherian implies it in general since any connective 
E∞-ring is a filtered colimit of compact objects. �

The above argument illustrates a basic technique one has: one tries, whenever possible, 
to reduce to the case of E∞-rings which satisfy Künneth isomorphisms. In this case, one 
can attempt to study G-Galois extensions using algebra.

Example 6.19. (Cf. [71, Theorem 10.3.3].) The Galois group of Sp is trivial, since Sp
is the ∞-category of modules over the sphere S0, and the étale fundamental group of 
π0(S0) � Z is trivial by Minkowski’s theorem that the discriminant of a number field is 
always > 1 in absolute value.

6.4. Galois theory and filtered colimits

In this subsection, we will prove that Galois theory behaves well with respect to 
filtered colimits.

Theorem 6.20. The functor A �→ CAlgcov(Mod(A)), CAlg → Cat∞ commutes with fil-
tered colimits. In particular, given a filtered diagram I → CAlg, the map

π≤1 Mod(lim−−→
I

Ai) → lim←−−
I

π≤1 Mod(Ai),

is an equivalence of profinite groupoids.

Theorem 6.20 will be a consequence of some categorical technology together and is 
a form of “noetherian descent.” To prove it, we can work with G-torsors in view of 
Corollary 5.40. Given an E∞-ring A ∈ CAlg, we let GalG(A) be the category of faithful 
G-Galois extensions of A: that is, the category of G-torsors in CAlgcov(A). We need to 
show that given a filtered diagram {Ai} of E∞-rings, the functor

lim−−→GalG(Ai) → GalG(lim−−→Ai),

is an equivalence of categories: i.e., that it is fully faithful and essentially surjective. We 
start by showing that faithful Galois extensions are compact E∞-algebras.
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Lemma 6.21. Let A → B be a faithful G-Galois extension. Then B is a compact object in 
the ∞-category CAlgA/ of E∞-algebras over A. Moreover, HomCAlgA/

(B, ·) takes values 
in homotopy discrete spaces.

Proof. First, recall that if A → B is a classically étale extension, then the result is true. 
In fact, if A → B is classically étale, then for any E∞-A-algebra A′, the natural map

HomCAlgA/
(B,A′) → HomRingπ0A/

(π0B, π0A
′),

is an equivalence. Moreover, π0B, as an étale π0A-algebra, is finitely presented or equiv-
alently compact in Ringπ0A/. The result follows for an étale extension.

Now, a Galois extension need not be classically étale, but it becomes étale after an 
appropriate base change, so we can use descent theory. Recall that we have an equivalence 
of symmetric monoidal ∞-categories

Mod(A) � Tot
(
Mod(B) ⇒ Mod(B ⊗A B)→→→ · · ·

)
.

Upon taking commutative algebra objects, we get an equivalence of ∞-categories

CAlgA/ � Tot
(
CAlgB/ ⇒ CAlgB⊗AB/

→→→ · · ·
)
.

The object B ∈ CAlgA/ becomes classically étale, thus compact, after base-change along 
A → B. We may now apply the next sublemma to conclude. �
Sublemma. Let C−1 ∈ PrL be a presentable ∞-category and C• a cosimplicial object in 
PrL with an equivalence of ∞-categories

C−1 � Tot(C•).

Suppose that x ∈ C−1 is an object such that:

• The image xi of x in Ci, i ≥ 0 is compact for each i.
• There exists n such that the image xi of x in each Ci is n-cotruncated in the sense 

that

HomCi(xi, ·) : Ci → S

takes values in the subcategory τ≤nS ⊂ S of n-truncated spaces. (This follows once 
x0 is n-cotruncated.)

Then x is compact (and n-cotruncated) in C−1).

Proof. Given objects w, z ∈ C−1, the natural map

HomC(w, z) → TotHomC•(w•, z•)
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is an equivalence, where for each i ≥ 0, wi, zi are the objects in Ci that are the images 
of w, z.

Therefore, it follows that HomC−1(x, ·) : C−1 → S is the totalization of a cosimplicial 
functor C−1 → S given by HomC•(x•, ·•). Each of the terms in this cosimplicial functor, 
by assumption, commutes with filtered colimits and takes values in n-truncated spaces. 
The sublemma thus follows because the totalization functor

Tot: Fun(Δ, τ≤nS) → S,

lands in τ≤nS, and commutes with filtered colimits: a totalization of n-truncated spaces 
can be computed by a partial totalization, and finite limits and filtered colimits of spaces 
commute with one another. �

Next, we prove a couple of general categorical lemmas about compact objects in 
undercategories and filtered colimits.

Lemma 6.22. Let C be a compactly generated, presentable ∞-category and let Cω denote 
the collection of compact objects. Then, for each x ∈ C, the undercategory Cx/ is com-
pactly generated. Moreover, the subcategory (Cx/)ω is generated under finite colimits and 
retracts by the morphisms of the form x → x 
 y for y ∈ Cω.

Proof. To prove this, recall that if D is any presentable ∞-category and E ⊂ D is 
a (small) subcategory of compact objects, closed under finite colimits, then there is 
induced a map in PrL

Ind(E) → D,

which is an equivalence of ∞-categories precisely when E detects equivalences: that is, 
when a map x → y in D is an equivalence when HomD(e, x) → HomD(e, y) is a homotopy 
equivalence for all e ∈ E . Indeed, in this case, it follows that Ind(E) → D is a fully 
faithful functor, which embeds Ind(E) as a full subcategory of D closed under colimits. 
But any fully faithful left adjoint whose right adjoint is conservative is an equivalence of 
∞-categories. This argument is a very slight variant of Proposition 5.3.5.11 of [44].

Now, we apply this to Cx/. Clearly, the objects x → x 
 y in Cx/, for y ∈ Cω, are 
compact. Since

HomCx/
(x 
 y, z) = HomC(y, z),

it follows from the above paragraph if C is compactly generated, then the x → x 
y in Cx/
detect equivalences and thus generate Cx/ under colimits. More precisely, if E ⊂ Cx/ is the 
subcategory generated under finite colimits by the x → x 
 y, y ∈ Cω, then the natural 
functor Ind(E) → Cx/ is an equivalence. Since (Ind(E))ω is the idempotent completion 
of E (Lemma 5.4.2.4 of [44]), the lemma follows. �
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Let C be a compactly generated, presentable ∞-category. We observe that the asso-
ciation x ∈ C �→ (Cx/)ω is actually functorial in x. Given a morphism x → y, we get a 
functor

Cx/ → Cy/

given by pushout along x → y. Since the right adjoint (sending a map y → z to the 
composite x → y → z) commutes with filtered colimits, it follows that Cx/ → Cy/
restricts to a functor on the compact objects. We get a functor

Φ: C → Cat∞, x �→ (Cx/)ω.

Our next goal is to show that Φ commutes with filtered colimits.

Lemma 6.23. The functor Φ has the property that for any filtered diagram x : I → C, the 
natural functor

lim−−→
I

Φ(xi) → Φ(lim−−→
I

xi), (20)

is an equivalence of ∞-categories.

Proof. Full faithfulness of Φ is a formal consequence of the definition of a compact object. 
In fact, an element of lim−−→I

Φ(xi) is represented by an object i ∈ I and a map xi → yi
that belongs to (Cxi/)ω. We will denote this object by (i, yi). This object is the same as 
that represented by xj → yi 
xi

xj for any map i → j in I.
Given two such objects in lim−−→I

Φ(xi), we can represent them both by objects xi →
yi, xi → zi for some index i. Then

Homlim−−→I
((i, yi), (i, zi)) = lim−−→

j∈Ii/

HomCxj/
(yj , zj),

where yj , zj denotes the pushforwards of yi, zi along xj → zj .
Let x = lim−−→I

xi, and let y, z denote the pushforwards of yi, zi all the way along xi → x. 
Then our claim is that the map

lim−−→
j∈Ii/

HomCxj/
(yj , zj) → HomCx/

(y, z)

is an equivalence. Now, we write

HomCx/
(y, z) � HomCxi/

(yi, z)

� HomCxi/
(yi, lim−−→

j∈I

zj)

i/
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� lim−−→
j∈Ii/

HomCxi/
(yi, zj)

� lim−−→
j∈Ii/

HomCxj/
(yj , zj),

and we get the equivalence as desired.
Finally, to see that (20) establishes the right hand side as the idempotent completion of 

the first, we use the description of compact objects in Cx/. To complete the proof, note 
now that a filtered colimit of idempotent complete ∞-categories is itself idempotent 
complete [50, Lemma 7.3.5.16]. �
Corollary 6.24. Hypotheses as above, the functor Ψ : x �→ (Cx/)ω,≤0 sending x to the 
category of 0-cotruncated, compact objects in Cx/ has the property that the natural functor 
lim−−→I

Ψ(xi) → Ψ(lim−−→xi) is an equivalence.

This follows from the previous lemma, because 0-cotruncatedness of an object y is 
equivalent to the claim that the map S1 ⊗ y → y is an equivalence.

Proof of Theorem 6.20. For A an E∞-ring, let (CAlgA/)ω,≤0 be the (ordinary) category 
of 0-cotruncated, compact E∞-A-algebras; this includes any finite cover of A, for exam-
ple, since finite covers of A are locally étale. Then we have a fully faithful inclusion of 
∞-categories

GalG(A) ⊂ Fun(BG, (CAlgA/)ω,≤0).

Although BG is not compact in the ∞-category of ∞-categories, the truncation to 
n-categories for any n is: BG can be represented as a simplicial set with finitely many 
simplices in each dimension. Therefore, the right-hand-side has the property that it 
commutes with filtered colimits in A by Corollary 6.24. Thus, for any filtered diagram 
A : I → CAlg, the functor

lim−−→
i∈I

GalG(Ai) → GalG(lim−−→
i∈I

Ai),

is fully faithful.
Moreover, given a G-Galois extension B of A = lim−−→I

Ai, there exists i ∈ I and a 
compact, 0-cotruncated Ai-algebra Bi with a G-action, such that A → B is obtained by 
base change from Ai → Bi. It now suffices to show that Ai → Bi becomes G-Galois after 
some base change Ai → Aj . For any j ∈ I receiving a map from I, we let Bj = Aj⊗Ai

Bi. 
We are given that lim−−→j∈Ii/

Bj is a faithful G-Galois extension of lim−−→j∈Ii/
Aj and we want 

to claim that there exists j such that Bj is a faithful G-Galois extension of Aj .
Now, the condition for Aj → Bj to be faithfully G-Galois has two parts:

1. Bj ⊗Aj
Bj →

∏
G Bj should be an equivalence.

2. Aj → Bj should be descendable.
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The first condition is detected at a “finite stage” since both the source and target are 
compact objects of CAlgAj/.

Unfortunately, we do not know how to use this line of argument alone to argue that 
the Aj → Bj ’s are faithful G-Galois for some j, although we suspect that it is possible.

Instead, we use some obstruction theory. The map A → B exhibits B as a per-
fect A-module. For any E1-ring R, let Modω(R) be the stable ∞-category of perfect 
R-modules. Then the natural functor

lim−−→
I

Modω(Ai) → Modω(A),

is an equivalence of ∞-categories.6 It follows that we can “descend” the perfect A-module 
B to a perfect Aj-module B′

j for some j (asymptotically unique), and we can descend 
the multiplication map B ⊗A B → B (resp. the unit map A → B) to B′

j ⊗Aj
B′

j → B′
j

(resp. Aj → B′
j). We can also assume that homotopy associativity holds for j “large.” 

The G-action on B in the homotopy category of perfect A-modules descends to an action 
on B′

j in the homotopy category of perfect Aj-modules, and the equivalence B ⊗A B �∏
G B descends to an equivalence B′

j ⊗Aj
B′

j �
∏

G B′
j . Finally, the fact that the thick 

subcategory that B generates contains A can also be tested at a finite stage.
The upshot is that, for j large, we can “descend” the G-Galois extension A → B to a 

perfect Aj-module B′
j with the portion of the structure of a G-Galois extension that one 

could see solely from the homotopy category. However, using obstruction theory one can 
promote this to a genuine Galois extension. In Theorem 6.25 below, we show that B′

j

can be promoted to an E∞-algebra (in Aj-modules) for j � 0 with a G-action, which is 
a faithful G-Galois extension.

It follows that the B′
j lift B to Aj for j � 0, and even with the G-action (which is 

unique in a faithful Galois extension; see Theorem 11.1.1 of [71]). �
Theorem 6.25. Let A′ be an E∞-ring, and let B′ be a perfect A′-module such that the 
thick subcategory generated by B′ contains A′. Suppose given:

1. A homotopy commutative, associative and unital multiplication B′ ⊗A′ B′ → B′.
2. A G-action on B′ in the homotopy category, commuting with the multiplication and 

unit maps, such that the map B′ ⊗A′ B′ →
∏

G B′ is an equivalence of A-modules.

Then B′ has a unique E∞-multiplication extending the given homotopy commutative one, 
and A → B is faithful G-Galois (in particular, the G-action in the homotopy category 
extends to a strict one of E∞-maps on B).

6 One does not even need to worry about idempotent completeness here because we are in a stable setting, 
and any self-map e : A → A with e2 � e can be extended to an idempotent.
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Here we use an argument, originally due to Hopkins in a different setting, that will be 
elaborated upon further in joint work with Heuts; as such, we give a sketch of the proof.

Proof. We use the obstruction theory of [69] (see also [2, Sec. 3]) to produce a unique 
E1-structure. Since B′ ⊗A′ B′ is a finite product of copies of B′, it follows that B′

satisfies a perfect universal coefficient formula in the sense of that paper. The obstruction 
theory developed there states that the obstructions to producing an E1-structure lie in 
Extn,3−n

π∗(B′⊗A′B′)(B
′
∗, B

′
∗) for n ≥ 4, and the obstructions to uniqueness in the groups 

Extn,2−n
π∗(B′⊗A′B′)(B

′
∗, B

′
∗) for n ≥ 3. The hypotheses of the lemma imply that B′

∗ is a 
projective π∗(B′⊗A′B′)-module, though, so that all the obstructions (both to uniqueness 
and existence) vanish.

Our next goal is to promote this to an E∞-multiplication extending the given 
E1-structure. We claim that the space of E1-maps between any tensor power B′ ⊗m

and any other tensor power B′ ⊗n of B′ is homotopy discrete and equivalent to the col-
lection of maps of A-ring spectra: that is, homotopy classes of maps B′ ⊗m → B′ ⊗n

(in A-modules) that commute with the multiplication laws up to homotopy. This is a 
consequence of the analysis in [68] (in particular, Theorem 14.5 there), and the fact that 
the B′ ⊗n-homology of B′ ⊗m is étale, so that the obstructions of [68] all vanish.

It follows that if C is the smallest symmetric monoidal ∞-category of Alg(Mod(A′))
(i.e., E1-algebras in Mod(A′)) containing B′, then C is equivalent to an ordinary symmet-
ric monoidal category, which is equivalent to a full subcategory of the category of A-ring 
spectra. Since B′ is a commutative algebra object in that latter category, it follows that 
it is a commutative algebra object of Alg(Mod(A′)), and thus gives an E∞-algebra. The 
G-action, since it was by maps of A-ring spectra, also comes along. �
6.5. The even periodic and regular case

Our first calculation of a Galois group was in Theorem 6.17, where we showed that 
the Galois group of a connective E∞-ring was entirely algebraic. In this section, we will 
show (Theorem 6.29) that the analogous statement holds for an even periodic E∞-ring 
with regular (noetherian) π0. As in the proof of Theorem 6.17, the strategy is to reduce 
to considering ring spectra with Künneth isomorphisms. Unfortunately, in the noncon-
nective setting, the “residue field” ring spectra one wants can be constructed only as 
E1-algebras (rather than as E∞-algebras), so one has to work somewhat harder.

Definition 6.26. An E∞-ring A is even periodic if:

1. πiA = 0 if i is odd.
2. The multiplication map π2A ⊗π0A π−2A → π0A is an isomorphism.

In particular, π2A is an invertible π0A-module; if it is free of rank one, then π∗(A) �
π0(A)[t±1

2 ] where |t2| = 2.
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Even periodic E∞-rings (such as complex K-theory KU ) play a central role in chro-
matic homotopy theory because of the connection, beginning with Quillen, with the 
theory of formal groups. We will also encounter even periodic E∞-rings in studying sta-
ble module ∞-categories for finite groups below. The ∞-categories of modules over them 
turn out to be fundamental building blocks for many other stable homotopy theories, so 
an understanding of their Galois theory will be critical for us.

We begin with the simplest case.

Proposition 6.27. Suppose A is an even periodic E∞-ring with π0A � k[t±1] where |t| = 2
and k a field. Then the Galois theory of A is algebraic: π1 Mod(A) � Gal(ksep/k).

Proof. We want to show that any finite cover of A is étale at the level of homotopy 
groups; flat would suffice. Let B be a G-Galois extension of A. Then B ⊗A B �

∏
G B. 

Since π∗(A) is a graded field, it follows that

π∗(B) ⊗π∗(A) π∗(B) �
∏
G

π∗(B).

Moreover, since B is a perfect A-module, it follows that π∗(B) is a finite-dimensional 
π∗(A)-module.

Making a base-change t �→ 1, we can work in Z/2-graded k-vector spaces rather 
than graded k[t±1]-modules. So we get a Z/2-graded commutative (in the graded sense) 
k-algebra B′

∗ = B′
0 ⊕ B′

1 with the property that we have an equivalence of Z/2-graded 
B′

∗-algebras

B′
∗ ⊗k B′

∗ �
∏
G

B′
∗. (21)

Observe that this tensor product is the graded tensor product.
From this, we want to show that B′

1 = 0, which will automatically force B′
0 to be 

étale over k. Suppose first that the characteristic of k is not 2. By Lemma 6.28 below, 
there exists a map of graded k-algebras B′

∗ → k. We can thus compose with the map 
k → B′

∗ → k and use (21) to conclude that B′
∗ ⊗k k �

∏
G k as a graded k-algebra. This 

in particular implies that B′
1 = 0 and that B′

0 is a finite separable extension of k, which 
proves Proposition 6.27 away from the prime 2.

Finally, at the prime 2, we need to show that (21) still implies that B′
1 = 0. In this 

case, B′
0 ⊕ B′

1 is a commutative k-algebra and (21) implies that it must be étale. After 
extending scalars to k, B′

0 ⊕ B′
1 must, as a commutative ring, be isomorphic to 

∏
G k. 

However, any idempotents in B′
0⊕B′

1 are clearly concentrated in degree zero. So, we can 
make the same conclusion at the prime 2. �
Lemma 6.28. Let k be an algebraically closed field with 2 �= 0, and A′

∗ a nonzero 
finite-dimensional Z/2-graded commutative k-algebra. Then there exists a map of graded 
k-algebras A′

∗ → k.
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Proof. Induction on dimA′
1. If A′

1 = 0, we can use the ordinary theory of artinian rings 
over algebraically closed fields. If there exists a nonzero x ∈ A′

1, we can form the two-sided 
ideal (x): this is equivalently the left or right ideal generated by x. In particular, anything 
in (x) has square zero. It follows that 1 /∈ (x) and we get a map of k-algebras

A′
∗ → A′

∗/(x),

where A′
∗/(x) is a nontrivial finite-dimensional Z/2-graded commutative ring of smaller 

dimension in degree one. We can thus continue the process. �
We can now prove our main result.

Theorem 6.29. Let A be an even periodic E∞-ring with π0A regular noetherian. Then 
the Galois theory of A is algebraic.

Most of this result appears in [14], where the Galois group of En is identified at an 
odd prime (as the Galois group of its π0). Our methods contain the modifications needed 
to handle the prime 2 as well.

Remark 6.30. This will also show that all Galois extensions of A in the sense of [71] are 
faithful.

Proof of Theorem 6.29. Fix a finite group G and let B be a G-Galois extension of A, so 
that

A � BhG, B ⊗A B �
∏
G

B.

By Proposition 6.14, B is a perfect A-module; in particular, the homotopy groups of B
are finitely generated π0A-modules.

Our goal is to show that B is even periodic and that π0B is étale over π0A. To do this, 
we may reduce to the case of π0A regular local, by checking at each localization. We are 
now in the following situation. The E∞-ring A is even periodic, with π0A local with its 
maximal ideal generated by a regular sequence x1, . . . , xn ∈ π0A for n = dim π0A. Let 
k be the residue field of π0A. In this case, then one can define a multiplicative homology 
theory P∗ on the category of A-modules via

P∗(M) def= π∗(M/(x1, . . . , xn)M) � π∗(M ⊗A A/(x1, . . . , xn)),

where A/(x1, . . . , xn) � A/x1 ⊗A · · · ⊗A A/xn. More precisely, it is a consequence of 
the work of Angeltveit [2, Sec. 3] that A/(x1, . . . , xn) can be made (noncanonically) an 
E1-algebra in Mod(A). In particular, A/(x1, . . . , xn) is, at the very least, a ring object in 
the homotopy category of A-modules; this weaker assertion, which is all that we need, is 
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proved directly in [23, Theorem 2.6]. The fact that each A/xi acquires the structure of a 
ring object in the homotopy category of A-modules already means that for any A-module 
M , the homotopy groups of M/xiM � M ⊗A A/xi are actually π0(A)/(xi)-modules.

In any event, M �→ P∗(M) is a multiplicative homology theory taking values in 
k[t±1]-modules. It satisfies a Künneth isomorphism,

P∗(M) ⊗k[t±1] P (N) � P∗(M ⊗A N),

by a standard argument: with N fixed, both sides define homology theories on A-modules; 
there is a natural map between the two; moreover, this map is an isomorphism for M = A. 
This implies that the natural map is an isomorphism by a five-lemma argument. Note 
that the E1-ring A/(x1, . . . , xn) is usually not homotopy commutative if p = 2.

For convenience, rather than working in the category of graded k[t±1]-modules, we will 
work in the (equivalent) category of Z/2-graded k-vector spaces, and denote the modified 
functor by Q∗ (instead of P∗). Since A → B is G-Galois, it follows from B⊗AB �

∏
G B

that there is an isomorphism of Z/2-graded k[G]-modules,

Q∗(B) ⊗k Q∗(B) �
∏
G

Q∗(B).

In particular, it follows that

dimQ0(B) + dimQ1(B) = |G|. (22)

We now use a Bockstein spectral sequence argument to bound the rank of π0B and 
π1B.

Lemma 6.31. Let M be a perfect A-module. Suppose that dimk Q0(M) = a. Then the 
rank of π0M as a π0A-module (that is, the dimension after tensoring with the fraction 
field) is at most a.

Proof. Choose a system of parameters x1, . . . , xn for the maximal ideal of π0A. If M is 
as in the statement of the lemma, then we are given that

dim π0(M/(x1, . . . , xn)M) ≤ a.

We consider the sequence of A-modules

Mi = M/(x1, . . . , xi)M = M ⊗A A/x1 ⊗A · · · ⊗A A/xi;

here π0(Mi) is a finitely generated module over the regular local ring π0(A)/(x1, . . . , xi). 
For instance, π0(Mn) is a module over the residue field k, and our assumption is that its 
rank is at most a.

We make the following inductive step.
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Inductive step. If π0(Mi+1) has rank ≤ a as a module over the regular local ring 
π0(A)/(x1, . . . , xi+1), then π0(Mi) has rank ≤ a as a module over the regular local 
ring π0(A)/(x1, . . . , xi).

To see this, consider the cofiber sequence

Mi
xi→ Mi → Mi+1,

and the induced injection in homotopy groups

0 → π0(Mi)/xiπ0Mi → π0(Mi+1).

We now apply the following sublemma. By descending induction on i, this will imply the 
desired claim.

Sublemma. Let (R, m) be a regular local ring, x ∈ m \ m2. Consider a finitely generated 
R-module N . Given an injection

0 → N/xN → N ′,

where N ′ is a finitely generated R/(x)-module, we have

rankR N ≤ rankR/(x) N
′.

Proof. When R is a discrete valuation ring (so that R/(x) is a field), this follows from 
the structure theory of finitely generated modules over a PID.

To see this in general, we may localize at the prime ideal (x) ⊂ R (and thus replace 
the pair (R, R/(x)) with R(x), R(x)/(x)R(x)), which does not affect the rank of either 
side, and which reduces us to the DVR case. �

With the sublemma, we can conclude that rankπ0(A)/(x1,...,xi) π0(Mi) ≤ a for all i by 
descending induction on i, which completes the proof of Lemma 6.31. �

By Lemma 6.31, it now follows that π0B, as a π0A-module, has rank at most a =
dimk Q0(B), where a ≤ |G|. However, when we invert everything in π0A (i.e., form the 
fraction field k(π0A)), then ordinary Galois theory goes into effect (Proposition 6.27) 
and π0B⊗π0A k(π0A) is a finite étale π0A-algebra with Galois group G. In particular, it 
follows that a = |G|.

As a result, by (22), Q1(B) = 0. It follows, again by the Bockstein spectral sequence, in 
the form of Lemma 6.32 below, that B is evenly graded and π∗B is free as an A-module. 
In particular, π0(B ⊗A B) � π0B ⊗π0A π0B, which means that we get an isomorphism

π0B ⊗π0A π0B �
∏

π0B,

G
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so that π0B is étale over π0A (more precisely, Specπ0B → Specπ0A is a G-torsor), as 
desired. This completes the proof of Theorem 6.29. �
Lemma 6.32. Let A be an even periodic E∞-ring such that π0A is regular local and 
n-dimensional, with maximal ideal m = (x1, . . . , xn). Let M be a perfect A-module such 
that the A-module M/(x1, . . . , xn)M satisfies π1(M/(x1, . . . , xn)M) = 0. Then π1(M) =
0 and π0(M) is a free π0(A)-module.

Proof. Lemma 6.32 follows from a form of the Bockstein spectral sequence: the evenness 
implies that there is no room for differentials; Proposition 2.5 of [40] treats the case of 
A = En. We can give a direct argument as follows.

Namely, we show that π1(M/(x1, . . . , xi)M) = 0 for i = 0, 1, . . . , n, by descending 
induction on i. By assumption, it holds for i = n. The inductive step is proved as in the 
proof of Lemma 6.31, except that Nakayama’s lemma is used to replace the sublemma. 
This shows that π1(M) = 0.

Now, inducting in the other direction (i.e., in ascending order in i), we find that 
x1, . . . , xn defines a regular sequence on π0(M) and the natural map

π0(M)/(x1, . . . , xi) → π0(M/(x1, . . . , xi)),

is an isomorphism. This implies that the depth of π0(M) as a π0(A)-module is equal to 
n, so that π0(M) is a free π0(A)-module. �
7. Local systems, cochain algebras, and stacks

The rest of this paper will be focused on the calculations of Galois groups in certain 
examples of stable homotopy theories, primarily those arising from chromatic homotopy 
theory and modular representation theory. The basic ingredient, throughout, is to write a 
given stable homotopy theory as an inverse limit of simpler stable homotopy theories to 
which one can apply known algebraic techniques such as Theorem 6.29 or Theorem 6.17. 
Then, one puts together the various Galois groupoids that one has via techniques from 
descent theory.

In the present section, we will introduce these techniques in slightly more elementary 
settings.

7.1. Inverse limits and Galois theory

Our approach can be thought of as an elaborate version of van Kampen’s theorem. 
To begin, let us recall the setup of this. Let X be a topological space, and let U, V ⊂ X

be open subsets which cover X. In this case, the diagram
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U ∩ V U

V X

,

is a homotopy pushout. In order to give a covering space Y → X, it suffices to give 
a covering space YU → U , a covering space YV → V , and an isomorphism YU |U∩V �
YV |U∩V of covers of U ∩ V . In other words, the diagram of categories

CovX CovU

CovV CovU∩V

(23)

is cartesian, where for a space Z, CovZ denotes the category of topological covering 
spaces of Z. It follows that the dual diagram on fundamental groupoids

π≤1(U ∩ V ) π≤1(V )

π≤1(V ) π≤1(X)

is, dually, cocartesian. In particular, van Kampen’s theorem is a formal consequence of 
descent theory for covers.

As a result, one can hope to find analogs of van Kampen’s theorem in other setting. 
For instance, if X is a scheme and U, V ⊂ X are open subschemes, then descent theory 
implies that the diagram (23) (where Cov now refers to finite étale covers) is cartesian, 
so the dual diagram on étale fundamental groupoids is cocartesian.

Our general approach comes essentially from the next result:

Proposition 7.1. Let K be a simplicial set and let p : K → CAlg(PrLst) be a functor to the 
∞-category CAlg(PrLst) of stable homotopy theories. Then we have a natural equivalence 
in GalCat,

CAlgw.cov
(

lim←−−
K

p

)
� lim←−−

k∈K

CAlgw.cov(p(k)). (24)

Proof. The statement that (24) is an equivalence equates to the statement that for 
any finite group G, to give a G-torsor in the stable homotopy theory lim←−−K

p is equiva-
lent to giving a compatible family of G-torsors in p(k), k ∈ K. (Recall, however, from 
Remark 5.38 that infinite limits in GalCat exist, but they do not commute with the 
restriction GalCat → Cat∞ in general.) We observe that we have a natural functor 
from the left-hand-side of (24) to the right-hand-side which is fully faithful (as both are 
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subcategories of the ∞-category of commutative algebra objects in lim←−−K
p), so that the 

functor

TorsG
(

CAlgw.cov
(

lim←−−
K

p

))
→ lim←−−

k∈K

TorsG(CAlgw.cov(p(k)))

is fully faithful.
We need to show that if A ∈ Fun(BG, CAlgw.cov(lim←−−K

p)) has the property that its 
image in Fun(BG, CAlgw.cov(p(k))) for each k ∈ K is a G-torsor, then it is a G-torsor to 
begin with. However, A is dualizable, since it is dualizable locally (cf. [50, Prop. 4.6.1.11]), 
and it is faithful, since it is faithful locally, i.e., at each k ∈ K. The map A ⊗A →

∏
G A

is an equivalence since it is an equivalence locally, and putting these together, A is a 
G-torsor. �

In the case where we work with finite covers, rather than weak finite covers, additional 
finiteness hypotheses are necessary.

Proposition 7.2. Let K be a simplicial set and let p : K → 2-Ring be a functor. Then we 
have a natural fully faithful inclusion

CAlgcov(lim←−−
K

p(k)) → lim←−−
K

CAlgcov(p(k)), (25)

which is an equivalence if K is finite.

Proof. Since both sides are subcategories of CAlg(lim←−−K
p(k)) = lim←−−K

CAlg(p(k)), the 
fully faithful inclusion is evident. The main content of the result is that if K is finite, 
then the inclusion is an equivalence. In other words, we want to show that given a 
commutative algebra object in lim←−−K

p(k) which becomes a finite cover upon restriction 
to each p(k), then it is a finite cover in the inverse limit. Since both sides of (25) are 
Galois categories (thanks to Lemma 5.37), it suffices to show that G-torsors on either 
side are equivalent. In other words, given a compatible diagram of G-torsors in the 
CAlgcov(p(k)), we want the induced diagram in CAlg(lim←−−K

p(k)) to be a finite cover.
So let A ∈ Fun(BG, CAlg(lim←−−K

p)) be such that its evaluation at each vertex k ∈ K

defines a G-torsor in CAlgcov(p(k)). We need to show that A ∈ CAlgcov(lim←−−K
p). For 

this, in view of Corollary 6.15, it suffices to show that A admits descent. But this follows 
in view of Proposition 3.25 and the fact that the image of A in each k ∈ K admits 
descent in the stable homotopy theory p(k). �

Using the Galois correspondence, one finds:

Corollary 7.3. In the situation of Proposition 7.2 or Proposition 7.1, we have an equiv-
alence in Pro(Gpdfin):
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lim−−→
K

πweak
≤1 p(k) � πweak

≤1 (lim←−−
K

p(k)), lim−−→
K

π≤1p(k) � π≤1(lim←−−
K

p(k)). (26)

For example, let U, V ⊂ X be open subsets of a scheme X. Then we have an equiva-
lence

QCoh(X) � QCoh(U) ×QCoh(U∩V ) QCoh(V ),

by descent theory. The resulting homotopy pushout diagram that one obtains on funda-
mental groupoids (by (26)) is the van Kampen theorem for open immersions of schemes.

Using this, one can also obtain a van Kampen theorem for gluing closed immersions 
of schemes. For simplicity, we state the result for commutative rings. Let A′, A, A′′ be 
(discrete) commutative rings and consider surjections A′ � A, A′′ � A. In this case, one 
has a pull-back square (as we recalled in Example 2.23)

Modω(A′ ×A A′′) Modω(A′)

Modω(A′′) Modω(A)

.

Note that the analog without the compactness, or more generally connectivity, hypothesis 
would fail. Using (26), and the observation that the Galois groupoid depends only on 
the dualizable objects, we obtain the following well-known corollary:

Corollary 7.4. We have a pushout of profinite groupoids

πet
≤1(Spec(A′ ×A A′′)) � πet

≤1(SpecA′) 
πet
≤1(Spec A) π

et
≤1(SpecA′′).

This result is one expression of the intuition that Spec(A′ ×A A′′) is obtained by 
“gluing together” the schemes SpecA′, SpecA′′ along the closed subscheme SpecA. This 
idea in derived algebraic geometry has been studied extensively in [45].

These ideas are often useful even in cases when one can only approximately resolve a 
stable homotopy theory as an inverse limit of simpler ones; one can then obtain upper 
bounds for Galois groups. For example, let K be a simplicial set, and consider a diagram 
f : K → CAlg. Let A = lim←−−K

f(k). In this case, one always has a functor

Mod(A) → lim←−−
K

Mod(f(k)),

which is fully faithful on the perfect A-modules since the right adjoint preserves the 
unit. If K is finite, it is fully faithful on all of Mod(A). It follows that, regardless of any 
finiteness hypotheses on K, there are fully faithful inclusions

CAlgcov(Mod(A)) ⊂ CAlgcov(lim←−−Mod(f(k))) ⊂ lim←−−CAlgcov(Mod(f(k))). (27)

K K
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We will explore the interplay between these different Galois categories in the next section. 
They can be used to give upper bounds on the Galois group of A since fully faithful 
inclusions of connected Galois categories are dual to surjections of profinite groups.

7.2. ∞-categories of local systems

In this subsection, we will introduce the first example of the general van Kampen 
approach (Proposition 7.2), for the case of a constant functor.

Let X be a connected space, which we consider as an ∞-groupoid. Let (C, ⊗, 1) be a 
stable homotopy theory, which we will assume connected for simplicity.

Definition 7.5. The functor category Fun(X, C) acquires the structure of a symmet-
ric monoidal ∞-category via the “pointwise” tensor product. We will call this the 
∞-category of C-valued local systems on X and denote it by LocX(C).

This is a special case of the van Kampen setup of the previous section, when we are 
considering a functor from X to 2-Ring or CAlg(PrLst) which is constant with value C. 
This means that, with no conditions whatsoever, we have

πweak
1 (LocX(C)) � π̂1X × πweak

1 (C),

in view of Proposition 7.1, where π̂1X denotes the profinite completion of the funda-
mental group π1X. Explicitly, given a functor f : X → FinSet, we obtain (by mapping 
into 1) a local system in CAlg(C) parametrized by X. These are always weak finite cov-
ers in LocX(C), and these come from finite covers of X or local systems of finite sets on 
X. Given weak finite covers in C itself, we can take the constant local systems at those 
objects to obtain weak finite covers in LocX(C).

If, further, X is a finite CW complex, it follows that

π1(LocX(C)) � π̂1X × π1(C),

in view of Proposition 7.2. We will use this to begin describing the Galois theory of a 
basic class of nonconnective E∞-rings, the cochain algebras on connective ones.

In particular, let C = Mod(E) for an E∞-algebra E, so that we can regard 
LocX(Mod(E)) = Fun(X, Mod(E)) as parametrizing “local systems of E-modules on X.” 
The unit object in LocX(Mod(E)) has endomorphism E∞-ring given by the cochain al-
gebra C∗(X; E). Therefore, we have an adjunction of stable homotopy theories

Mod(C∗(X;E)) � LocX(Mod(E)),

between modules over the E-valued cochain algebra C∗(X; E) and LocX(Mod(E)), where 
the right adjoint Γ takes the global sections (i.e., inverse limit) over X. The left adjoint 
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is fully faithful when restricted to the perfect C∗(X; E)-modules and in general if 1 is 
compact in LocX(Mod(E)). Therefore, we get surjections of fundamental groups

π̂1X × π1(Mod(E))

� πweak
1 (LocX(Mod(E))) � π1(LocX(Mod(E))) � π1(Mod(C∗(X;E))). (28)

In this subsection and the next, we will describe the objects and maps in (28) in some 
specific instances.

Example 7.6. If X is simply connected, then this map is an isomorphism, given the 
natural section Mod(E) → LocX(Mod(E)) which sends an E-module to the constant 
local system with that value, so E and C∗(X; E) have the same fundamental group.

Suppose X has the homotopy type of a finite CW complex, so that the functor Γ
is obtained via a finite homotopy limit and in particular commutes with all homotopy 
colimits. In this case, as we mentioned earlier, the unit object in LocX(Mod(E)) is com-
pact, so that the map πweak

1 (LocX(Mod(E))) → π1(LocX(Mod(E))) is an isomorphism. 
In this case, the entire problem boils down to understanding the image of the fully 
faithful, colimit-preserving functor Mod(C∗(X; E)) → LocX(Mod(E)).

By definition, Mod(C∗(X; E)) is generated by the unit object, so its image in 
LocX(Mod(E)) consists of the full subcategory of LocX(Mod(E)) generated by the 
unit object, which is the trivial constant local system. In particular, we should think 
of Mod(C∗(X; E)) ⊂ LocX(Mod(E)) as the “ind-unipotent” local systems of E-modules 
parametrized by X. We can see some of that algebraically.

Definition 7.7. Let A be a module over a commutative ring R and let G be a group acting 
on A by R-endomorphisms. We say that the action is unipotent if there exists a finite 
filtration of R-modules

0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An−1 ⊂ An = A,

which is preserved by the action of G, such that the G-action on each Ai/Ai−1 is trivial. 
We say that the G-action is ind-unipotent if A is a filtered union of G-stable submodules 
Aα ⊂ A such that the action of G on each Aα is unipotent.

Proposition 7.8. Let X be a connected space. Consider an object M of LocX(Mod(E)) and 
let Mx be the underlying E-module for some x ∈ X. Suppose M belongs to the localizing 
subcategory of LocX(Mod(E)) generated by the unit. Then, the action of π1(X, x) on 
each π0E-module πk(Mx) is ind-unipotent.

Conversely, suppose E is connective. Given M ∈ LocX(Mod(E)) such that the 
monodromy action of π1(X, x) on each πk(Mx) is ind-unipotent, then if M is addi-
tionally n-coconnective for some n and if X is a finite CW complex, we have M ∈
Mod(C∗(X; E)) ⊂ LocX(Mod(E)).
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Proof. Clearly the unit object of LocX(Mod(E)) has unipotent action of π1(X, x) on 
its homotopy groups: the monodromy action by π1(X, x) is trivial. The collection of 
objects of LocX(Mod(E)) with ind-unipotent action of π1(X, x) is seen to be a localizing 
subcategory using long exact sequences. The first assertion follows.

For the final assertion, since X is a finite CW complex, the functor Mod(C∗(X; E)) →
LocX(Mod(E)) is fully faithful and commutes with colimits. We can write M as a colimit 
of the local systems of E-modules

0 � τ≥nM → τ≥n−1M → τ≥n−2M → · · · ,

where each term in the local system has only finitely many homotopy groups. It suf-
fices to show that each τ≥kM belongs to Mod(C∗(X; E)) ⊂ LocX(Mod(E)). Working 
inductively, one reduces to the case where M itself has a single nonvanishing homo-
topy group (say, a π0) with ind-unipotent action of π1(X, x). Since the subcategory of 
LocX(Mod(E)) consisting of local systems M with π∗(Mx) = 0 for ∗ �= 0 is an ordi-
nary category, equivalent to the category of local systems of π0E-modules on X, our 
task is one of algebra. One reduces (from the algebraic definition of ind-unipotence) to 
showing that if M0 is a π0E-module, then the induced object in LocX(Mod(E)) with 
trivial π1(X, x)-action belongs to Mod(C∗(X; E)). However, this object comes from the 
C∗(X; E)-module C∗(X; τ≤0E) ⊗π0E M0. �
Remark 7.9. Suppose X is one-dimensional, so that X is a wedge of finitely many 
circles. Then, for any E, any M ∈ LocX(Mod(E)) such that the action of π1(X, x) is 
ind-unipotent on π∗(Mx) belongs to the image of Mod(C∗(X; E)) → LocX(Mod(E)). In 
other words, one needs no further hypotheses on E or Mx.

To see this, we need to show (by Theorem 2.29) that the inverse limit functor

Γ = lim←−−
X

: LocX(Mod(E)) → Mod(C∗(X;E)),

is conservative when restricted to those local systems with the above ind-unipotence 
property on homotopy groups. Recall that one has a spectral sequence

Es,t
2 = Hs(X;πtMx) =⇒ πt−sΓ(X,M),

for computing the homotopy groups of the inverse limit. The s = 0 line of the E2-page 
is never zero if the action is ind-unipotent unless M = 0: there are always fixed points 
for the action of π1(X, x) on π∗(Mx). If X is one-dimensional, the spectral sequence 
degenerates at E2 for dimensional reasons; this forces the inverse limit lim←−−X

M to be 
nonzero unless M = 0.

As we saw earlier in this subsection, in order to construct finite covers of the unit 
object in LocX(Mod(E)), we can consider a local system of finite sets {Yx}x∈X on X
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(i.e., a finite cover of X), and consider the local system {C∗(Yx; E)}x∈X of E∞-algebras 
under E. The induced object in LocX(Mod(E)) will generally not be unipotent in this 
sense. In fact, unless there is considerable torsion, this will almost never be the case.

For example, suppose G is a finite group, and let R be a commutative ring. Consider 
the G-action on 

∏
G R. The group action is ind-unipotent if G is a p-group (for some 

prime number p) where p is nilpotent in R.

Proof. Suppose q | |G| and q is not nilpotent in R, but the G-action on 
∏

G R is ind-
unipotent. It follows that we can invert q and, after some base extension, assume that 
R is a field with q �= 0. We can even assume ζq ∈ R. We need to show that the stan-
dard representation is not ind-unipotent when q | |G|; this follows from restricting G to 
Z/q ⊂ G, and observing that various nontrivial one-dimensional characters occur and 
these must map trivially into any unipotent representation.

Conversely, if G is a p-group and p is nilpotent in R, then by filtering R, we can assume 
p = 0 in R. Now in fact any R[G]-module is ind-unipotent, because the augmentation 
ideal of R[G] is nilpotent. �
Corollary 7.10. Suppose p is not nilpotent in the E∞-ring R. Then the surjection π̂1X ×
π1 Mod(E) � π1 Mod(C∗(X; E)) factors through π̂1Xp−1 where π̂1Xp−1 denotes the 
profinite completion away from p.

Corollary 7.11. If R is a E∞-ring such that Z ⊂ π0R, then the map π1 Mod(R) →
π1 Mod(C∗(X; R)) is an isomorphism of profinite groups.

Remark 7.12. In K(n)-local stable homotopy theory, the comparison question between 
modules over the cochain E∞-ring and local systems has been studied in [33, sec. 5.4].

Putting these various ideas together, it is not too hard to prove the following result, 
whose essential ideas are contained in [71, Proposition 5.6.3]. Here π̂1Xp denotes the 
pro-p-completion of π1X.

Theorem 7.13. Let X be a finite CW complex. Then if R is an E∞-ring with p nilpotent 
and such that πiR = 0 for i � 0 (e.g., a field of characteristic p), then the natural map

π̂1Xp × π1 Mod(R) → π1 Mod(C∗(X;R)) (29)

is an isomorphism.

Proof. By Corollary 7.10, the natural map π̂1X × π1 Mod(R) � π1 Mod(C∗(X; R))
does in fact factor through the quotient of the source where π̂1X is replaced by its 
pro-p-completion. It suffices to show that the induced map (29) is an isomorphism. 
Equivalently, we need to show that if Y → X is a finite G-torsor for G a p-group, then 
C∗(X; R) → C∗(Y ; R) is a faithful G-Galois extension. Equivalently, we need to show 
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that if {Yx}x∈X is the local system of finite sets defined by the finite cover Y → X, then 
the local system of R-modules {C∗(Yx;R)}x∈X (which gives a G-Galois cover of the unit 
in LocX(Mod(R))) actually belongs to the image of Mod(C∗(X; R)). However, this is 
a consequence of Proposition 7.8 because the monodromy action is by elements of the 
p-group G. Any G-module over a ring with p nilpotent is ind-unipotent. �
Remark 7.14. Let Y → X be a map of spaces, and let R be as above. Then there are 
two natural local systems of R-module spectra on X that one can construct:

1. The object of LocX(Mod(R)) obtained from the C∗(X; R)-module C∗(Y ; R), i.e., the 
local system C∗(Y ; R) ⊗C∗(X;R) C

∗(∗; R) which is a local system as ∗ ranges over X.
2. Consider the fibration Y → X as a local system of spaces {Yx} on X, x ∈ X, and 

apply C∗(·; R) everywhere.

In general, these local systems are not the same: they are the same only if the R-valued 
Eilenberg–Moore spectral sequence for the square

Yx Y

{x} X

,

converges, for every choice of basepoint x ∈ X. This question can be quite subtle, 
in general. Theorem 7.13 is essentially equivalent to the convergence of the R-valued 
Eilenberg–Moore spectral sequence when Y → X is a G-torsor for G a p-group. This is 
the approach taken by Rognes in [71].

Finally, we close with an example suggesting further questions.

Example 7.15. The topological part of the Galois group of C∗(S1; Fp) is precisely Ẑp. 
The Galois covers come from the maps

C∗(S1;Fp) → C∗(S1;Fp),

dual to the degree pn maps S1 → S1. This would not work over the sphere S0 replacing 
Fp, in view of Corollary 7.10. However, this does work in p-adically completed homotopy 
theory.

Let Spp be the ∞-category of p-complete (i.e., S0/p-local) spectra, and let Ŝp be the 

p-adic sphere, which is the unit of Spp. The map C∗(S1; Ŝp) → C∗(S1; Ŝp) which is dual 
to the degree p map S1 → S1 is a Z/p-weak Galois extension in Spp. In particular, it 
will follow that the weak Galois group of Spp is the product of Ẑp with that of Spp itself.

To see this, note that we have a fully faithful embedding
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LS0/p Mod(C∗(S1; Ŝp)) � ModSpp
(C∗(S1; Ŝp)) ⊂ LocS1(Spp).

In LocS1(Spp), we need to show that the local system of p-complete spectra obtained 

from the cover S1 p→ S1 actually belongs to the subcategory of LocS1(Spp) generated 
under colimits by the unit (equivalently, by the constant local systems).

In order to prove this claim, it suffices to prove the analog after quotienting by pn for 
each p, since for any p-complete spectrum X, we have

X � Σ−1LS0/p(lim−−→
n

(X ⊗ S0/pn)),

as the colimit lim−−→n
S0/pn (where the successive maps are multiplication by p) has p-adic 

completion given by the suspension of the p-adic sphere. But on the other hand, we can 
apply Remark 7.9 to the cofiber of pn on our local system, since an order p automorphism 
on a p-torsion abelian group is always ind-unipotent.

By contrast, the analogous assertion would fail if we worked in the setting of all
C∗(S1; Ŝp)-modules (not p-complete ones): the (weakly) Galois covers constructed are 
only Galois after p-completion. This follows because C∗(S1; Ŝp) has coconnective ratio-
nalization, and all the Galois covers of it are étale (as we will show in Theorem 8.17).

7.3. Stacks and finite groups

To start with, let k be a separably closed field of characteristic p and let G be a finite 
group. Consider the stable homotopy theory ModG(k) of k-module spectra equipped 
with an action of G, or equivalently the ∞-category LocBG(Mod(k)) of local systems of 
k-module spectra on BG. We will explore the Galois theory of ModG(k) and the various 
inclusions (27).

Theorem 7.16. Let k be separably closed of characteristic p. πweak
1 (ModG(k)) � G but 

π1(ModG(k)) is the quotient of G by the normal subgroup generated by the order p
elements.

Proof. The assertion of πweak
1 (ModG(k)) is immediate: the weak “Galois closure” (i.e., 

maximal connected object in the Galois category) of the unit in ModG(k) is 
∏

G k, thanks 
to Proposition 7.1. The more difficult part of the result concerns the (non-weak) Galois 
group.

Any finite cover A ∈ CAlg(ModG(k)) must be given by an action of G on an underlying 
E∞-k-algebra which must be 

∏
S k for S a finite set; S gets a natural G-action, which 

determines everything. In particular, we get that A must be a product of copies of ∏
G/H k. We need to determine which of these are actually finite covers. We can always 

reduce to the Galois case, so given a surjection G � G′, we need a criterion for when ∏
G′ k ∈ CAlg(ModG(k)) is a finite cover.
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Fix an order p element g ∈ G. We claim that if 
∏

G′ k ∈ CAlg(ModG(k)) is a finite 
cover, then g must map to the identity in G′. In fact, otherwise, we could restrict to 
Z/p ⊂ G to find (after inverting an idempotent of the restriction) that 

∏
Z/p k would be 

a finite cover in ModZ/p(k). This is impossible since (
∏

Z/p k)hZ/p � k while khZ/p has 
infinitely many homotopy groups; thus the unit cannot be in the thick ⊗-ideal generated 
by 

∏
Z/p(k). It follows from this that if 

∏
G′ k is a finite cover in ModG(k), then every 

order p element must map to the identity in G′.
Conversely, suppose G � G′ is a surjection annihilating every order p element. We 

claim that 
∏

G′ k is a finite cover in ModG(k). Since it is a G′-Galois extension of the 
unit, it suffices to show that it is descendable by Corollary 6.15. For this, by the Quillen 
stratification theory (in particular, Theorem 4.8), one can check this after restricting to 
an elementary abelian p-subgroup. But after such a restriction, our commutative algebra 
object becomes a finite product of copies of the unit. �
Corollary 7.17. Let k be a separably closed field of characteristic p > 0. The Galois group 
C∗(BG; k) � khG is given by the quotient of the pro-p-completion of G by the order p
elements in G.

By the pro-p-completion of G, we mean the maximal quotient of G which is a p-group. 
In other words, we take the smallest normal subgroup N ⊂ G such that |G|/|N | is a 
power of p, and then take the normal subgroup N ′ generated by N and the order p
elements in G. The Galois group of C∗(BG; k) is the quotient G/N ′.

Proof. Observe that the ∞-category of perfect C∗(BG; k)-modules is a full subcategory 
of the ∞-category LocBG(Mod(k)) � ModG(k) of k-module spectra equipped with a 
G-action. We just showed in Theorem 7.16 that the Galois group of the latter was the 
quotient of G by the normal subgroup generated by the order p elements. In other words, 
the descendable connected Galois extensions of the unit in ModG(k) were the products ∏

G′ k where G � G′ is a surjection of groups annihilating the order p elements.
It remains to determine which of these Galois covers actually belong to the thick 

subcategory generated by the unit 1 ∈ ModG(k). As we have seen, that implies that 
the monodromy action of π1(BG) � G on homotopy groups is ind-unipotent; this can 
only happen (for a permutation module) if G′ is a p-group. If G′ is a p-group, though, 
then the unipotence assumption holds and 

∏
G′ k does belong to the thick subcategory 

generated by the unit, so these do come from Mod(C∗(BG; k)). �
Remark 7.18. Even if we were interested only in E∞-rings and their modules, for which 
the Galois group and weak Galois group coincide, the proof of Corollary 7.17 makes 
clear the importance of the distinction (and the theory of descent via thick subcate-
gories) in general stable homotopy theories. We needed thick subcategories and Quillen 
stratification theory to run the argument.
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Example 7.19. We can thus obtain a weak invariance result for Galois groups (which 
we will use later). Let R be an E∞-ring under Fp, given trivial Z/p-action. Then the 
Galois theories of R and RhZ/p are the same, i.e., R → RhZ/p induces an equivalence 
on Galois groupoids. In fact, we know from Modω(RhZ/p) ⊂ Fun(BZ/p, Modω(R)) that 
Galois extensions of RhZ/p come either from those of R or from the Z/p-action. However, ∏

Z/p R is not a Z/p-torsor because the thick ⊗-ideal it generates in Fun(BZ/p, Modω(R))
cannot contain the unit: in fact, the Tate construction on R with Z/p acting trivially 
is nonzero, while the Tate construction on anything in the thick ⊗-ideal generated by ∏

Z/p R is trivial.

Consider now, instead of a finite group, an algebraic stack X. As discussed in Exam-
ple 2.22, one has a natural stable homotopy theory QCoh(X) of quasi-coherent complexes 
on X, obtained via

QCoh(X) = lim←−−
Spec A→X

D(Mod(A)),

where we take the inverse limit over all maps SpecA → X; we could restrict to smooth 
maps. It follows from Theorem 6.17 that a weak finite cover in QCoh(X) is the compatible 
assignment of a finite étale A-algebra for each map SpecA → X. In other words, the weak 
Galois group of QCoh(X) is the étale fundamental group of the stack X.

If the unit object in QCoh(X) is compact, the weak Galois group and the Galois 
group of QCoh(X) are the same. One can make this conclusion if X is tame, which 
roughly means that (if X is Deligne–Mumford) the orders of the stabilizers are invertible 
(cf. [38, Theorems B and C]). If this fails, then the weak Galois group and the Galois 
group need not be the same, and one gets a canonical quotient of the étale fundamental 
group of an algebraic stack, the Galois group of QCoh(X).

Example 7.20. Let G be a finite group, and let X = BG over a separably closed field 
of characteristic p. Then QCoh(X) is precisely the ∞-category ModG(k) considered in 
the previous section. The fundamental group of X is G, and the main result of the 
previous subsection (Theorem 7.16) implies that the difference between the Galois group 
of QCoh(X) and the étale fundamental group of X is precisely the order p elements in 
the latter.

Thus, we know that for any map of stacks BZ/p → X where p is not invertible on X, 
the Z/p must vanish in the fundamental group of QCoh(X) (but not necessarily in the 
fundamental group of X). When X = BG for some finite group, this is the only source 
of the difference between two groups. We do not know what the difference looks like in 
general.

Next, as an application of these ideas, we include an example that shows that the Ga-
lois group is a sensitive invariant of an E∞-ring: that is, it can vary as the E∞-structure 
varies within a fixed E1-structure.
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Example 7.21. Let k be a separably closed field of characteristic p > 0. Let αp2 be 
the usual rank p2 group scheme over k and let (αp2)∨ be its Cartier dual, which is an-
other infinitesimal commutative group scheme. Let Z/p2 be the usual constant group 
scheme. Consider the associated classifying stacks BZ/p2 and B(αp2)∨, and the associ-
ated cochain E∞-rings C∗(BZ/p2; k) and C∗(B(αp2)∨; k) defined as endomorphisms of 
the unit of quasi-coherent sheaves.

Since α∨
p2 is infinitesimal, it follows that the fundamental group of the stack B(αp2)∨

is trivial and in particular that π1 Mod(C∗(B(αp2)∨; k)) is trivial. In other words, we 
are using the geometry of the stack to bound above the possible Galois group for the 
E∞-ring of cochains with values in the structure sheaf. However, by Corollary 7.17, we 
have π1 Mod(C∗(BZ/p2; k)) � Z/p.

Finally, we note that there is a canonical equivalence of E1-rings between the two 
cochain algebras. In fact, the k-linear abelian category of (discrete) quasi-coherent 
sheaves on BZ/p2 can be identified with the category of modules over the group ring 
k[Z/p2], which is noncanonically isomorphic to the algebra k[x]/(xp2). The k-linear 
abelian category of discrete quasi-coherent sheaves on B(αp2)∨ is identified with the 
category of modules over the ring of functions on αp2, which is Fp[x]/xp2 . In particular, 
we get a k-linear equivalence between either the abelian or derived categories of sheaves 
in either case. Since the cochain E∞-rings we considered are (as E1-algebras) the endo-
morphism rings of the object k (which is the same representation either way), we find 
that they are equivalent as E1-algebras.

8. Invariance properties

Let R be a (discrete) commutative ring and let I ⊂ R be a nilpotent ideal. Then it is a 
classical result in commutative algebra, the “topological invariance of the étale site,” [30, 
Theorem 8.3, Exp. I], that the étale site of SpecR and the closed subscheme SpecR/I

are equivalent. In particular, given an étale R/I-algebra R
′, it can be lifted uniquely to 

an étale R-algebra R′ such that R′ ⊗R R/I � R
′.

In this section, we will consider analogs of this result for E∞-rings. For example, we 
will prove:

Theorem 8.1. Let R be an E∞-algebra under Z with p nilpotent in π0R. Then the map

R → R⊗Z Z/p,

induces an isomorphism on fundamental groups.

Results such as Theorem 8.1 will be extremely useful for us. For example, it will be 
integral to our computation of the Galois groups of stable module ∞-categories over 
finite groups. Theorem 8.1, which is immediate in the case of R connective (thanks to 
Theorem 6.17 together with the classical topological invariance result), seems to be very 
non-formal in the general case.
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Throughout this section, we assume that our stable homotopy theories are connected.

8.1. Surjectivity properties

We begin with some generalities from [30]. We have the following easy lemma.

Lemma 8.2. Let G → H be a morphism of profinite groups. Then the following are 
equivalent:

1. G → H is surjective.
2. For every finite (continuous) H-set S, S is connected if and only if the G-set obtained 

from S by restriction is connected.

Let (C, ⊗, 1) be a (connected) stable homotopy theory. Given a commutative alge-
bra object A ∈ C, we have functors CAlgcov(C) → CAlgcov(ModC(A)), CAlgw.cov(C) →
CAlgw.cov(ModC(A)) given by tensoring with A. Using the Galois correspondence, this 
comes from the map of profinite groups π1(ModC(A)) → π1(C) by restricting continuous 
representations in finite sets. The following is a consequence of Lemma 8.2.

Proposition 8.3. Let A ∈ CAlg(C) be a commutative algebra object with the following 
property: given any A′ ∈ CAlg(C) which is a weak finite cover, the map

Idem(A′) → Idem(A⊗A′) (30)

is an isomorphism. Then the induced maps

π1(ModC(A)) → π1(C), πweak
1 (ModC(A)) → πweak

1 (C),

are surjections of profinite groups.

Thus, it will be helpful to have some criteria for when maps of the form (30) are 
isomorphisms.

Definition 8.4. Given A ∈ CAlg(C), we will say that A is universally connected if for 
every A′ ∈ CAlg(C), the map Idem(A′) → Idem(A′ ⊗A) in (30) is an isomorphism.

It follows by Proposition 8.3 that if A is universally connected, then πweak
1 (ModC(A))

→ πweak
1 (C) and π1(ModC(A)) → π1(C) are surjections; moreover, this holds after any 

base change in CAlg(C). That is, if A′ ∈ CAlg(C), then the map π1(ModC(A ⊗ A′)) →
π1(ModC(A′)) is a surjection, and similarly for the weak Galois group.

Note first that if A admits descent, then (30) is always an injection, since for any A′, 
we can recover A′ as the totalization of the cobar construction on A tensored with A′ and 
since Idem commutes with limits (Corollary 2.40). In fact, it thus follows that if A admits 
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descent, then Idem(A′) is the equalizer of the two maps Idem(A ⊗A′) ⇒ Idem(A ⊗A ⊗A′). 
More generally, one can obtain a weaker conclusion under weaker hypotheses:

Proposition 8.5. If A ∈ CAlg(C) is faithful (i.e., tensoring with A is a conservative 
functor C → C), then the map (30) is always an injection, for any A′ ∈ CAlg(C).

Proof. It suffices to show that if e ∈ Idem(A′) is an idempotent which maps to zero in 
Idem(A ⊗ A′), then e was zero to begin with. The hypothesis is that A′[e−1] becomes 
contractible after tensoring with A, and since A is faithful, it was contractible to begin 
with; that is, e is zero. �

We thus obtain the following criterion for universal connectedness.

Proposition 8.6. Let (C, ⊗, 1) be a connected stable homotopy theory. Suppose A ∈
CAlg(C) is an object with the properties:

1. A is descendable.
2. The multiplication map A ⊗A → A is faithful.

Then A is universally connected.

Proof. We will show that if B ∈ CAlg(C) is arbitrary, then the map Idem(B) →
Idem(A ⊗ B) is an isomorphism. Since A is descendable, we know that there is an 
equalizer diagram

Idem(B) → Idem(A⊗B) ⇒ Idem(A⊗A⊗B).

To prove the proposition, it suffices to show that the two maps Idem(A ⊗B) ⇒ Idem(A ⊗
A ⊗B) are equal.

However, these maps become equal after composing with the map Idem(A ⊗A ⊗B) →
Idem(A ⊗ B) induced by the multiplication A ⊗ A → A. Since A ⊗ A → A is faithful, 
the map Idem(A ⊗ A ⊗ B) → Idem(A ⊗ B) is injective by Proposition 8.5, which thus 
proves the result. �

Proposition 8.6 is thus almost a tautology, although the basic idea will be quite useful 
for us. Unfortunately, the hypotheses are rather restrictive. If A is a local artinian ring 
and k the residue field, then the map A → k admits descent. However, the multiplication 
map k⊗Ak → k need not be faithful: k⊗Ak has always infinitely many homotopy groups 
(unless A = k itself). Nonetheless, we can prove:

Proposition 8.7. Let k be a field. Let A be a connective E∞-ring with a map A → k

inducing a surjection on π0. Suppose A → k admits descent. Then A → k is universally 
connected.
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Proof. Once again, we show that for any A′ ∈ CAlgA/, the map A′ → A′ ⊗A k induces 
an isomorphism on idempotents. Since A → k is descendable, it suffices to show that the 
two maps

Idem(A′ ⊗A k) ⇒ Idem(A′ ⊗A k ⊗A k)

are the same. For this, we know that the two maps become the same after composition 
with the multiplication map A′ ⊗A (k⊗A k) → A′ ⊗A k. To show that the two maps are 
the same, it will suffice to show that they are isomorphisms. In other words, since we 
have a commutative diagram

Idem(A′ ⊗A k) ⇒ Idem(A′ ⊗A k ⊗A k) → Idem(A′ ⊗A k), (31)

where the composite arrow is the identity, it suffices to show that either one of the two 
maps Idem(A′ ⊗A k) ⇒ Idem(A′ ⊗A k ⊗A k) is an isomorphism.

More generally, we claim that for any k-algebra R, the map

R → R⊗k (k ⊗A k),

induced by the map of k-algebras k → k⊗A k, induces an isomorphism on idempotents. 
(In (31), this is the map that we get from free, without using the fact that A′ ⊗A k was 
the base-change of an A-algebra.) Since we have a Künneth isomorphism, this follows 
from the following purely algebraic lemma.

Lemma 8.8. Let R∗ be a graded-commutative k-algebra and let R′
∗ be a graded-

commutative connected k-algebra: R′
0 � k and R′

i = 0 for i < 0. Then the natural 
map from idempotents in R∗ to idempotents in the graded tensor product R∗⊗k R

′
∗ is an 

isomorphism.

Proof. We have a map

Idem(R∗) → Idem(R∗ ⊗k R′
∗),

which is injective, since the map k → R′
∗ admits a section in the category of graded-

commutative k-algebras. But the “reduction” map Idem(R∗ ⊗k R′
∗) → Idem(R∗) is also 

injective. In fact, since idempotents form a Boolean algebra, it suffices to show that an 
idempotent in R∗ ⊗k R′

∗ that maps to zero in R∗ must have been zero to begin with. 
However, such an idempotent would belong to the ideal R∗ ⊗k R′

>0, which easily forces 
it to be zero. �
Example 8.9. Proposition 8.7 applies in the setting of an artinian ring mapping to its 
residue field. However, we also know that the map A → A/m for A artinian and m a 
maximal ideal can be obtained as a finite composition of square-zero extensions, so we 
could also appeal to Corollary 8.12 below.
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8.2. Square-zero extensions

Given the classical topological invariance of the étale site, the following is not so 
surprising.

Proposition 8.10. If A is an E∞-ring and M an A-module, then the natural map A →
A ⊕M (where A ⊕M denotes the trivial “square zero” extension of A by M), induces 
an isomorphism on fundamental groups.

This will follow from the following more general statement.

Proposition 8.11. Let R be an E∞-ring with no nontrivial idempotents. Let X be a 
two-fold loop object in the ∞-category CAlgR//R of E∞-R-algebras over R. Then the 
map R → X induces an isomorphism on fundamental groups.

Note that a one-fold delooping is insufficient, because of the example of cochains on 
S1 (cf. Theorem 7.13).

Proof. In view of Corollary 2.40, we see that X has no nontrivial idempotents. Next, 
observe that we have maps R → X → R by assumption, so that, at the level of funda-
mental groups, we get a section of the map π1(Mod(X)) → π1(Mod(R)). In particular, 
the map π1(Mod(X)) → π1(Mod(R)) is surjective. We thus need to show that the map 
π1(Mod(R)) → π1(Mod(X)) (coming from X → R) is also surjective, which we can do 
via Proposition 8.3.

To see that, suppose X � Ω2Y where Y is an object in CAlgR//R. We want to show 
that the fundamental group of Mod(X) is surjected onto by that of Mod(R). Consider 
the pull-back diagram of E∞-algebras,

Ω2Y R

R ΩY

.

Using Corollary 2.40 again, we find that ΩY has no nontrivial idempotents. Therefore, 
we have maps

π1(Mod(R)) → π1(Mod(R) ×Mod(ΩY ) Mod(R))) � π1(Mod(Ω2Y )).

The second map is a surjection since it comes from a fully faithful inclusion of sta-
ble homotopy theories Mod(Ω2Y ) ⊂ Mod(R) ×Mod(ΩY ) Mod(R). Since ΩY has no 
nontrivial idempotents, π1 Mod(ΩY ) receives a map from π1 Mod(R) and we have 
π1(Mod(R) ×Mod(ΩY ) Mod(R)) � π1(Mod(R)) 
π1(Mod(ΩY )) π1(Mod(R)). This implies 
that the first map is a surjection too, as desired. �
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We can also consider the behavior of the Galois group under (not necessarily trivial) 
square-zero extensions. Recall (see [50, sec. 7.4.1]) that these are obtained as follows. 
Given an E∞-ring A and an A-module M , for every map φ : A → A ⊕M in CAlg/A, we 
can form the pull-back

A′ A

0

A
φ

A⊕M

,

where 0: A → A ⊕M is the standard map (informally, a �→ (a, 0)). The resulting map 
A′ → A is referred to as a square-zero extension of A, by ΩM .

Corollary 8.12. Notation as above, the map π1 Mod(A′) → π1 Mod(A) is a surjection. 
In fact, A′ → A is universally connected.

Proof. It suffices to show that A′ → A is universally connected. This follows from the fact 
that Idem commutes with inverse limits, since one checks that the two maps A ⇒ A ⊕M

are universally connected. �
The Galois group is not invariant under arbitrary square-zero extensions. Let A =

C[x±1] where |x| = 0 be the free E∞-algebra under C on an invertible degree zero 
generator (so that A is discrete). Consider the C-derivation A → A sending a Laurent 
polynomial f(x) to its derivative. Then, when we form the pull-back

A′ A

0

A
f �→(f,f ′)

A⊕A

,

the pull-back is given by an E∞-algebra A′ with π0A
′ � C, π−1A

′ � C, and πiA
′ = 0

otherwise. The Galois theory of this E∞-ring is algebraic because this E∞-ring is neces-
sarily the free E∞-ring on a degree −1 generator, or equivalently the trivial square-zero 
extension C ⊕ΩC. So its Galois group is trivial, by Proposition 8.10. However, the map 
C ⊕ΩC → C[x±1] does not induce an isomorphism on Galois groups: that of the former 
is trivial, while that of the latter is Ẑ.

8.3. Stronger invariance results

We will now prove the main invariance results of the present section.

Theorem 8.13. Let A be a regular local ring with residue field k and maximal ideal m ⊂ A. 
Let R be an E∞-ring under A such that m is nilpotent in π0R. Then the natural map
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R → R⊗A k,

induces an isomorphism on fundamental groups.

Proof. We start by showing that π1(Mod(R⊗Ak)) → π1(Mod(R)) is always a surjection; 
in other words, we must show that for any E∞-algebra R′ under R, the natural map

Idem(R′) → Idem(R′ ⊗R (R⊗A k)) � Idem(R′ ⊗A k) (32)

is an isomorphism.
Since k is a perfect A-module, it follows that R⊗A k is a perfect R-module. Moreover, 

R ⊗A k is faithful as an R-module because tensoring over A with k is faithful on the 
subcategory of Mod(A) consisting of A-modules whose homotopy groups are m-power 
torsion. It follows that R → R⊗A k is descendable in view of Theorem 3.38. Therefore, 
the map (32) is an injection. Since the map

k ⊗A k → k,

is descendable, as k⊗A k is connective with bounded homotopy groups and π0 given by 
k, it follows from Proposition 8.6 (by tensoring this with R) that π1(Mod(R ⊗A k)) →
π1(Mod(R)) is a surjection.

Consider the cobar construction

R → R⊗A k ⇒ R⊗A k ⊗A k
→→→ · · · , (33)

where all E∞-rings in question have no nontrivial idempotents. We will use this and 
descent theory to complete the proof.

Note that we can make the two maps π≤1(Mod(R⊗A k⊗A k)) ⇒ π≤1(Mod(R⊗A k))
into pointed maps by choosing a basepoint of π≤1 Mod(R⊗A k) and using the multipli-
cation map R ⊗A (k ⊗A k) → R ⊗A k. We conclude (by descent theory and (33)) that 
π1(Mod(R)) is the coequalizer of the two maps

π1(Mod(R⊗A k ⊗A k)) ⇒ π1(Mod(R⊗A k)),

choosing basepoints as above.
We claim here that the multiplication map R⊗A(k⊗Ak) → R⊗Ak induces a surjection

on fundamental groups. Given this, we can construct a diagram

π1(Mod(R⊗A k)) � π1(Mod(R⊗A k ⊗A k)) ⇒ π1(Mod(R⊗A k)),

where the two composites are equal. This completes the proof that π1(Mod(R)) �
π1(Mod(R⊗A k)), subject to the proof of surjectivity.

To prove surjectivity, we observe that R⊗A k⊗A k → R⊗A k induces a surjection on 
fundamental groups, in view of Proposition 8.7, since k⊗A k → k satisfies the conditions 
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of that result; since A is regular, k⊗A k is connective and has only finitely many nonzero 
homotopy groups, so k ⊗A k → k admits descent. �

It seems likely that Theorem 8.13 can be strengthened considerably, although we have 
not succeeded in doing so. For example, one would like to believe that if R is a discrete 
commutative ring and I ⊂ R is an ideal of square zero, then given an E∞-R-algebra R′, 
the map R′ → R′ ⊗R R/I would induce an isomorphism on fundamental groups. We do 
not know whether this is true in general. By Corollary 8.12, it does induce a surjection 
at least. The worry is that one does not have good control on the homotopy groups of a 
relative tensor product of E∞-ring spectra; there is a spectral sequence, but the filtration 
is in the opposite direction than what one wants.

However, in the case when the E∞-rings satisfy mild connectivity hypotheses, one can 
prove the following much stronger result.

Theorem 8.14. Suppose R is a connective E∞-ring with finitely many homotopy groups 
and I ⊂ π0R a nilpotent ideal. Let R′ be an E∞-R-algebra which is (−n)-connective for 
n � 0. Then the map R′ → R′ ⊗R π0(R)/I induces an isomorphism on fundamental 
groups.

For example, one could take I = 0, and the statement is already nontrivial. We need 
first two lemmas:

Lemma 8.15. Let A be a connective E∞-ring and let A′ be an E∞-A-algebra which is 
(−n)-connective for n � 0. Then the natural map

Idem(A′) → Idem(A′ ⊗A π0A) (34)

is an isomorphism. In particular, it follows that π1 Mod(A′ ⊗A π0A) → π1 Mod(A′) is a 
surjection.

Proof. In fact, by a connectivity argument (taking an inverse limit over Postnikov sys-
tems), the Adams spectral sequence based on the map A → π0A converges for any 
A-module which is (−n)-connective for n � 0. In other words, we have that

A′ = Tot
(
A′ ⊗A π0A ⇒ A′ ⊗A π0A⊗A π0A

→→→ · · ·
)
,

so that, since Idem commutes with limits, we find that Idem(A′) is the equalizer of the 
two maps Idem(A′ ⊗A π0A) ⇒ Idem(A′ ⊗A π0A ⊗A π0A). In particular, (34) is always 
injective. Moreover, by the same reasoning, the multiplication map π0A ⊗A π0A → π0A

(which is also a map from a connective E∞-ring to its zeroth Postnikov section) induces 
an injection

Idem(A′ ⊗A π0A⊗A π0A) ↪→ Idem(A′ ⊗A π0A),
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which equalizes the two maps Idem(A′ ⊗A π0A) ⇒ Idem(A′ ⊗A π0A ⊗A π0A). It follows 
that the two maps were equal to begin with, which proves that (34) is an isomor-
phism. �
Lemma 8.16. Let A be a discrete E∞-ring and J ⊂ A a square-zero ideal. Then, given 
any E∞-A-algebra A′, the natural map A′ → A′ ⊗A A/J induces an isomorphism on 
idempotents.

Proof. This is a consequence of Corollary 8.12. �
Proof of Theorem 8.14. Let R0 be the E∞-R-algebra given by π0(R) and consider R0/I

as well. Then we have maps R → R0 → R0/I and we want to show that, after base-
changing to R′, the Galois groups are invariant. We will do this in a couple of stages 
following the proof of Theorem 8.13.

First, suppose I = 0. Using descent along R → R0, one concludes that π1(Mod(R′))
is the coequalizer of the two maps π1(Mod(R′ ⊗R R0 ⊗R R0)) ⇒ π1(Mod(R′ ⊗R R0)). 
We wish to claim that the two maps are equal. Now the multiplication map R0 ⊗R

R0 → R0 satisfies the conditions of Lemma 8.15, so one concludes that the map 
π1(Mod(R′ ⊗R R0)) → π1(Mod(R′ ⊗R R0 ⊗R R0)) is a surjection, which coequalizes the 
two maps considered above. Therefore, the two maps are equal.

Next, we need to allow I �= 0. By composition R → τ≤0R → R0/I, we may as-
sume that R itself is discrete. We may also assume that I is square-zero. In this case, 
the map R → R0/I satisfies descent and is universally connected by Lemma 8.16. 
Therefore, we can apply the same argument as above, to write π1(Mod(R′)) as the co-
equalizer of the two maps π1(Mod(R′ ⊗R0 R0/I ⊗R0 R0/I)) ⇒ π1(Mod(R′ ⊗R0 R0/I)). 
Moreover, these two maps are the same using the surjection π1(Mod(R′ ⊗R0 R0/I)) �
π1(Mod(R′ ⊗R0 R0/I ⊗R0 R0/I)) given to us by Lemma 8.15 as above. �
8.4. Coconnective rational E∞-algebras

Let k be a field of characteristic zero, and let A be an E∞-k-algebra such that:

1. πiA = 0 for i > 0.
2. The map k → π0A is an isomorphism.

Following [47], we will call such E∞-k-algebras coconnective; these are the E∞-rings 
which enter, for instance, in rational homotopy theory. In the following, we will prove:

Theorem 8.17. If A is a coconnective E∞-k-algebra, then every finite cover of A is étale. 
In particular,

π1 Mod(A) � Gal(k/k).
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Proof. We will prove Theorem 8.17 using tools from [47]. Namely, it is a consequence of 
[47, Proposition 4.3.13] that every coconnective E∞-k-algebra A can be obtained as a 
totalization of a cosimplicial E∞-k-algebra A• where Ai, for each i ≥ 0, is in the form 
k ⊕ V [−1] where V is a vector space over k, and this is considered as a trivial “square 
zero” extension. In rational homotopy theory, this assertion is dual to the statement that 
a connected space can be built as a geometric realization of copies of wedges of S1.

Now we know from Proposition 8.10 that the Galois groupoid is invariant under trivial 
square-zero extensions, so it follows that π1 Mod(Ai) � Gal(k/k), with the finite covers 
arising only from the étale extensions (or equivalently, finite étale extensions of k itself). 
It follows easily from this that the finite covers in the ∞-category TotMod(A•) are in nat-
ural equivalence with the finite étale extensions of k, and this completes the proof, since 
the ∞-category of perfect A-modules embeds fully faithfully into this totalization. �

Note that the strategy of this proof is to give an upper bound for the Galois theory 
of the E∞-ring A by writing it as an inverse limit of square-zero E∞-rings. One might, 
conversely, hope to use Galois groups to prove that E∞-rings cannot be built as inverse 
limits of certain simpler ones. For example, in characteristic p, the example of cochain 
algebras shows that the analog of Theorem 8.17 is false; in particular, one cannot write a 
given coconnective E∞-ring in characteristic p as a totalization of square-zero extensions.

9. Stable module ∞-categories

Let G be a finite group and let k be a perfect field of characteristic p > 0, where p
divides the order of G. The theory of G-representations in k-vector spaces is significantly 
more complicated than it would be in characteristic zero because the group ring k[G]
is not semisimple: for example, the group G has k-valued cohomology. If one wishes to 
focus primarily on, for example, the cohomological information specific to characteristic 
p, then projective k[G]-modules are essentially irrelevant and, factoring them out, one 
has the theory of stable module categories reviewed earlier in Example 2.26. One obtains 
a compactly generated, symmetric monoidal stable ∞-category StG(k) obtained as the 
Ind-completion of the Verdier quotient of Fun(BG, Modω(k)) by the thick ⊗-ideal of 
perfect k[G]-module spectra.

Our goal in this section is to describe the Galois group of a stable module ∞-category 
for a finite group. Since any element in the stable module ∞-category can be viewed 
as an ordinary linear representation of G (for compact objects, finite-dimensional rep-
resentations) modulo a certain equivalence relation, these results ultimately come down 
to concrete statements about the tensor structure on linear representations of G modulo 
projectives.

Our basic result (Theorem 9.9) is that the Galois theory of a stable module category 
for an elementary abelian p-group is entirely algebraic. We will use this, together with 
the Quillen stratification theory, to obtain a formula for the Galois group of a general 
stable module ∞-category, and calculate this in special cases.
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9.1. The case of Z/p

Our first goal is to determine the Galois group of StV (k) when V is elementary abelian, 
i.e. of the form (Z/p)n. In this case, recall (Theorem 2.30) that StV (k) is symmetric 
monoidally equivalent to the ∞-category of modules over the Tate construction ktV . We 
will start by considering the case V = Z/p.

Proposition 9.1. Let k be a field of characteristic p > 0. The Galois theory of the Tate 
construction ktZ/p is algebraic.

Proof. Without loss of generality, we can assume k perfect. In the case p = 2, ktZ/2 has 
homotopy groups given by

ktZ/2 � k[t±1],

where |t| = −1. A (simpler) version of Proposition 6.27 shows that any Galois extension 
of ktZ/2 is étale, since π0 satisfies a perfect Künneth isomorphism for ktZ/2-modules and 
every module over ktZ/2 is algebraically flat. It follows that if ktZ/2 → R is G-Galois, for 
G a finite group, then π0R is a finite G-Galois extension of k.

The case of an odd prime is slightly more subtle. In this case, we have

ktZ/p � k[t±1] ⊗k E(u), |t| = −2, |u| = −1,

so that we get a tensor product of a Laurent series ring and an exterior algebra. Since 
the homotopy ring is no longer regular, we will have to show that any G-Galois extension 
of ktZ/p is flat at the level of homotopy groups. We can do this by comparing with the 
Tate construction W (k)tZ/p, where W (k) is the ring of Witt vectors on k and Z/p acts 
trivially on W (k). The E∞-ring W (k)tZ/p has homotopy groups given by

π∗W (k)tZ/p � k[t±1], |t| = 2,

and the E∞-ring that we are interested in is given by

ktZ/p � W (k)tZ/p ⊗W (k) k.

Now Proposition 6.27 tells us that the Galois theory of W (k)tZ/p is algebraic, and the 
invariance result Theorem 8.13 enables us to conclude the same for ktZ/p. �
9.2. Tate spectra for elementary abelian subgroups

Let k be a field of characteristic p. We know that ktZ/p has homotopy groups given by a 
tensor product of an exterior and Laurent series algebra on generators in degrees −1, −2, 
respectively. For an elementary abelian p-group of higher rank, the picture is somewhat 
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more complicated: the homotopy ring behaves irregularly (with entirely square-zero ma-
terial in positive homotopy groups), but the Tate construction is still built up from a 
diagram of E∞-rings whose homotopy rings come from tensor products of polynomial (or 
Laurent series) rings and exterior algebras. This diagram roughly lives over Pn−1

k where 
n is the rank of the given elementary abelian p-group, and the stable module ∞-category 
St(Z/p)n(k) can be described as quasi-coherent sheaves on a derived version of projective 
space (Theorem 9.2). In this subsection, we will review this picture, which will be useful 
when we describe the Galois groups in the next section.

We consider the case of p > 2, and leave the minor modifications for p = 2 to the 
reader. Fix an elementary abelian p-group V = (Z/p)n, and let Vk = V ⊗Fp

k. Consider 
first the homotopy fixed points khV , whose homotopy ring is given by

π∗(khV ) � E(V ∨
k ) ⊗ Sym∗(V ∨

k ),

where the exterior copy of V ∨
k is concentrated in degree −1, and the polynomial 

copy of V ∨
k is concentrated in degree −2. For each nonzero homogeneous polynomial 

f ∈ Sym∗(V ∨
k ), we can form the localization khV [f−1], whose degree zero part modulo 

nilpotents is given by the localization Sym∗(V ∨
k )(f) (i.e., the degree zero part of the 

localization Sym∗(V ∨
k )[f−1]). There is also a small nilpotent part that comes from the 

evenly graded portion of the exterior algebra. In particular, we find, using natural maps 
between localizations:

1. For every Zariski open affine subset U ⊂ P(V ∨
k ), we obtain a (canonically associated) 

E∞-ring Otop(U) by localizing khV at an appropriate homogeneous form. Precisely, 
U is given as the complement to the zero locus of a homogeneous form f ∈ Sym∗(V ∨

k ), 
and we invert f in khV : Otop(U) = khV [f−1].

2. For every inclusion U ⊂ U ′ of Zariski open affines, we obtain a map of E∞-algebras 
(under khV ) Otop(U ′) → Otop(U). These maps are canonical; Otop(U ′), Otop(U) are 
localizations of khV and Otop(U) has more elements inverted.

3. For each U ⊂ P(V ∨
k ), the E∞-ring Otop(U) has a unit in degree two. The ring 

π0(Otop(U)) is canonically an algebra over the (algebraic) ring of functions Oalg(U)
on U ⊂ P(V ∨

k ), and is a tensor product of Oalg(U) with the even components of an 
exterior algebra over k.

4. We have natural isomorphisms of sheaves of graded Oalg-modules

π∗(Otop) � E(V ∨
k ) ⊗Oalg

⊕
r∈Z

O(r),

where O(1) is the usual hyperplane bundle on P(V ∨
k ) and O(r) � O(1)⊗r is concen-

trated in degree −2r. The generators of the exterior algebra E(V ∨
k ) are in degree −1.

It follows that the homotopy groups π∗(Otop(U)) for U ⊂ P(V ∨
k ) fit together into 

quasi-coherent sheaves on the site of affine Zariski opens U ⊂ P(V ∨
k ) and inclusions 
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between them. In particular, we can view the association U �→ Otop(U) as defining a 
sheaf of E∞-ring spectra (under k, or even under khV ) over the Zariski site of P(V ∨

k ), 
whose sections over an affine open U ⊂ P(V ∨

k ) are given by Otop(U).
We will now describe our basic comparison result. Since Otop is a sheaf of E∞-algebras 

under khV , we obtain a symmetric monoidal, colimit-preserving functor

Mod(khV ) → QCoh(Otop),

into the ∞-category QCoh(Otop) of quasi-coherent Otop-modules, defined as the homo-
topy limit

QCoh(Otop) = lim←−−
U⊂P(V ∨

k )
Mod(Otop(U)),

where the homotopy limit is taken over all open affine subsets of P(V ∨
k ). Restricting to 

Modω(khV ) � Fun(BV , Modω(k)), we obtain a symmetric monoidal exact functor

Fun(BV ,Modω(k)) → QCoh(Otop).

We observe that the standard representation of V , as an object of the former, is sent 
to zero in QCoh(Otop). In fact, the standard representation of V corresponds to a 
khV -module with only one nonvanishing homotopy group, and it therefore vanishes under 
the types of periodic localization that one takes in order to form Otop(U) for U ⊂ P(V ∨

k )
an open affine. Using the universal property of the stable module ∞-category, we obtain 
a factorization

Fun(BV ,Modω(k)) → StV (k) → QCoh(Otop),

where the functor StV (k) → QCoh(Otop) is symmetric monoidal and colimit-preserving.

Theorem 9.2. The functor Mod(ktV ) � StV (k) → QCoh(Otop) is an equivalence of 
symmetric monoidal ∞-categories.

Proof. We start by observing that, by construction of the Verdier quotient (Defi-
nition 2.10), the stable module ∞-category StV (k) is obtained as a localization of 
Mod(khV ) � Ind(Fun(BV , Modω(k))), and in particular ktV is a localization of the 
E∞-ring khV .

By construction, ktV is the localization of khV at the map of khV -modules M → 0, 
where M is the khV -module corresponding to the standard representation of V . So, in 
particular, the localization functor

Mod(khV ) → Mod(ktV ),

given by tensoring up, has a fully faithful right adjoint which embeds Mod(ktV ) as the 
subcategory of all khV -modules N such that HomMod(khV )(M, N) is contractible. If we 
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write e1, . . . , en ∈ π−2(khV ) for polynomial generators of khV , then khV /(e1, . . . , en) ∈
Modω(khV ) generates the same thick subcategory as M , as we observed in the dis-
cussion immediately preceding Definition 4.13. So, the ktV -modules are precisely the 
khV -modules N such that

N/(e1, . . . , en)N � 0 ∈ Mod(khV ),

using self-duality of khV /(e1, . . . , en).
Now, we have a morphism of E∞-rings

khV → Γ(P(V ∨
k ),Otop), (35)

and our first task is to show that this morphism induces an equivalence ktV →
Γ(P(V ∨

k ), Otop). Observe first that, after inverting any of e1, . . . , en ∈ π−2(khV ), (35)
becomes an equivalence since we already know what Otop looks like on the basic open 
affines; we also know that taking global sections over P(V ∨

k ) is a finite homotopy limit 
and thus commutes with arbitrary homotopy colimits. However, we also know that 
khV /(e1, . . . , en) maps to the zero Otop-module since, on every basic open affine of 
P(V ∨

k ), one of the {ei} is always invertible. Thus we get a map ktV → Γ(P(V ∨
k ), Otop)

of khV -modules with the dual properties:

1. Both modules smash to zero with khV /(e1, . . . , en).
2. The map induces an equivalence after inverting each ei, 1 ≤ i ≤ n.

By a formal argument, it now follows that ktV → Γ(P(V ∨
k ), Otop) is an equivalence to 

begin with. In fact, we show that, for each i, the map

ktV /(e1, . . . , ei) → Γ(P(V ∨
k ),Otop)/(e1, . . . , ei) (36)

is an equivalence by descending induction on i. For i = n, both sides are con-
tractible. If we are given that (36) is an equivalence, then the map ktV /(e1, . . . , ei−1) →
Γ(P(V ∨

k ), Otop)/(e1, . . . , ei−1) has the property that it becomes an equivalence after ei-
ther inverting ei (by the second property above) or by smashing with khV /(ei) (by 
the inductive hypothesis); it thus has to be an equivalence in turn. This completes the 
inductive step and the proof that ktV � Γ(P(V ∨

k ), Otop).
All in all, we have shown that the functor

Mod(ktV ) � StV (k) → QCoh(Otop)

is fully faithful. To complete the proof of Theorem 9.2, we need to show that the global 
sections functor is conservative on QCoh(Otop). However, if F ∈ QCoh(Otop) has the 
property that Γ(P(V ∨

k ), F) is contractible, then the same holds for F [e−1
i ]. By analyzing 

the descent spectral sequence, it follows that the global sections of F [e−1
i ] are precisely 
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the sections of F over the ith basic open affine chart of P(V ∨
k ). Thus, if Γ(P(V ∨

k ), F) is 
contractible, then F has contractible sections over each of the basic open affines, and is 
thus contractible to begin with. (This argument is essentially the ampleness of O(1).) �
9.3. G-Galois extensions for topological groups

Our next goal is to calculate the Galois group for ktV for any elementary abelian 
p-group V . In the case of rank one, we had a trick for approaching the Galois group. 
Although ktV was not even periodic, there was a good integral model (namely, W (k)tV ) 
which was related to ktV by reducing mod p, so that we could use an invariance property 
to reduce to the (much easier) E∞-ring W (k)tV .

When the rank of V is greater than one, both these tricks break down. There is no 
longer a comparable integral model of an E∞-ring such as khZ/p ⊗ ktZ/p, as far as we 
know. Our strategy is based instead on a comparison with the Tate spectra for tori, 
which are much more accessible. To interpolate between the Tate spectra for tori and 
the Tate spectra for elementary abelian p-groups, we will need a bit of the theory of 
Galois extensions for topological groups, which was considered in [71]. We will describe 
the associated theory of descent in this section. We refer to [53] for further applications 
of these ideas to the Picard group and the classification of localizing subcategories of 
the stable module category (recovering older results), as well as a discussion of how this 
formulation of G-Galois extensions relates to that of Rognes [71] (who uses a definition 
similar to Definition 6.12).

Definition 9.3. Fix a topological group G which has the homotopy type of a finite CW 
complex (e.g., a compact Lie group). Let R be an E∞-ring and let R′ be an E∞-R-algebra 
with an action of G (in the ∞-category of E∞-R-algebras).

We will say that R′ is a faithful G-Galois extension of R if there exists a descendable 
E∞-R-algebra R′′ such that we have an equivalence of E∞-R′′-algebras

R′ ⊗R R′′ � C∗(G;R′′),

which is compatible with the G-action.

Note that the cochain E∞-ring C∗(G; R′′) is the “coinduced” G-action on an 
R′′-module. It follows in particular that the natural map R → R′ hG is an equivalence, 
and is so universally; for any R̃ ∈ CAlgR/, the natural map R̃ → (R′ ⊗R R̃)hG is an 
equivalence. Moreover, R′ is perfect as an R-module, since this can be checked locally 
(after base-change to R′′) and G has the homotopy type of a finite CW complex. It fol-
lows from general properties of descendable morphisms that faithful G-Galois extensions 
are preserved under base-change.

We will need the following version of classical Galois descent, which has been inde-
pendently considered in various forms by several authors, for instance [32,28,55,6].
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Theorem 9.4. Let G be a topological group of the homotopy type of a finite CW complex, 
and let R → R′ be a faithful G-Galois extension of E∞-rings. The natural functor

Mod(R) → Mod(R′)hG, (37)

is an equivalence of ∞-categories.

The “natural functor” comes from the expression R � R′ hG; the G-action on R′

induces one on the symmetric monoidal ∞-category Mod(R′). In particular, we get a 
fully faithful embedding Modω(R) → Mod(R′)hG for free.

Proof. Suppose first that R′ � C∗(G; R) with the G-action coming from the translation 
action of G on itself. Then, we have a fully faithful, colimit-preserving embedding

Mod(R′) ⊂ LocG(Mod(R)),

as we saw in Section 7.2. The G-action here on LocG(Mod(R)) comes from the translation 
action again. Taking homotopy fixed points, we get

Mod(R′)hG ⊂ LocGhG
(Mod(R)) � Loc∗(Mod(R)) � Mod(R), (38)

because the construction X �→ LocX(Mod(R)) sends homotopy colimits in X to ho-
motopy limits of stable ∞-categories. The natural functor Mod(R) → Mod(R′)hG now 
composes all the way over in (38) to the identity, so that it must have been an equivalence 
to begin with since all the maps in (38) are fully faithful.

Now suppose R → R′ is a general G-Galois extension, so that there exists a de-
scendable E∞-R-algebra T such that R → R′ becomes a trivial Galois extension after 
base-change along R → T . The functor (37) is a functor of R-linear ∞-categories so, 
to show that it is an equivalence, it suffices to show that (37) induces an equivalence 
after applying the construction ⊗Mod(R) Mod(T ): that is, after considering T -module 
objects in each ∞-category (cf. Proposition 3.45). In other words, to show that (37) is 
an equivalence, it suffices to tensor up and show that

Mod(T ) → (Mod(R′))hG ⊗Mod(R) Mod(T )

�
(
Mod(R′) ⊗Mod(R) Mod(T )

)hG � Mod(C∗(G;T ))hG,

is an equivalence of ∞-categories, which we just proved. �
It follows in particular that whenever we have a G-Galois extension in the above sense, 

for G a topological group then we can relate the fundamental groups of R and R′. In 
fact, we have, in view of Theorem 9.4,

CAlgcov(R) � CAlgcov(R′)hG.
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Using the Galois correspondence, it follows that there is a G-action on the object 
π≤1 Mod(R′) ∈ Pro(Gpdfin), and the homotopy quotient in Pro(Gpdfin) by this G-action 
is precisely the fundamental groupoid of Mod(R), i.e.,

π≤1 Mod(R) � (π≤1 Mod(R′))hG ∈ Pro(Gpdfin).

We now describe homotopy orbits in Pro(Gpdfin) in the case that will be of interest. 
Let X ∈ Pro(Gpdfin) be a connected profinite groupoid and consider an action of a 
connected topological group G on X.

Proposition 9.5. To give an action of G on X ∈ Pro(Gpdfin)≥0 is equivalent to giving 
a homomorphism of groups π1(G) → π1(X) whose image is contained in the center 
of π1(X). In other words, the 2-category Fun(BG, Pro(Gpdfin)≥0) can be described as 
follows:

1. Objects are profinite groups F together with maps φ : π1(G) → F whose image is 
contained in the center of F .

2. 1-morphisms between pairs (F, φ) and (F ′, φ′) are continuous homomorphisms 
ψ : F → F ′ such that the diagram

π1(G)

φ
φ′

F
ψ

F ′

,

commutes.
3. 2-morphisms are given by conjugacies between homomorphisms.

In particular, the forgetful functor Fun(BG, Pro(Gpdfin)≥0) → Pro(Gpdfin)≥0 induces 
fully faithful maps on the hom-spaces.

Proof. In order to give an action of X ∈ Pro(Gpdfin)≥0, we need to construct a map 
of E1-spaces G → AutPro(Gpdfin)≥0(X), where AutPro(Gpdfin)≥0(X) is the automorphism 
E1-algebra of X. Since, however, G is connected, it is equivalent to specifying a map 
of E1-algebras (or loop spaces) into τ≥1AutPro(Gpdfin)≥0(X). However, we know from 
Proposition 5.49 that τ≥1AutPro(Gpdfin)≥0(X) is precisely a K(Z(π1(X)), 1), so the space 
of E1-maps as above is simply the set of homomorphisms π1(G) → Z(π1(X)).

Finally, we need to understand the mapping spaces in Fun(BG, Pro(Gpdfin)≥0). 
Consider two connected profinite groupoids X, Y with G-actions. The space of 
maps X → Y in Fun(BG, Pro(Gpdfin)) is equivalent to the homotopy fixed points 
HomPro(Gpdfin)(X, Y )hG, where HomPro(Gpdfin)(X, Y ) is a groupoid as discussed earlier. 
In general, given any groupoid G with an action of G, the functor G hG → G is fully 
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faithful. The action of G means that every element in π1(G) determines a natural trans-
formation from the identity to itself on G , and the homotopy fixed points pick out the 
full subcategory of G spanned by elements on which that natural transformation is the 
identity (for any γ ∈ π1(G)).

In the case of HomPro(Gpdfin)(X, Y ), the objects are continuous homomorphisms 
ψ : π1X → π1Y , and the morphisms between objects are conjugacies. For γ ∈ π1(G), 
we obtain elements γx ∈ π1(X) and γy ∈ π1(Y ) (in view of the G-action on X, Y ), 
and the action of γ on HomPro(Gpdfin)(X, Y ) at the homomorphism ψ is given by the 
element ψ(γx)ψ(γy)−1, which determines a self-conjugacy from ψ to itself. To say that 
this self-conjugacy is the identity for any γ, i.e., that the map is G-equivariant (which 
here is a condition instead of extra data), is precisely the second description of the 
1-morphisms. �
Remark 9.6. The above argument would have worked in any (2, 1)-category where we 
could write down the π1 of the automorphism E1-algebra easily.

In particular, if G acts trivially on Y ∈ Pro(Gpdfin)≥0, then to give a map X → Y is 
equivalent to giving a map in Pro(Gpdfin) which annihilates the image of π1(G) → π1(X). 
It follows that the homotopy quotients XhG in Pro(Gpdfin) can be described by taking 
the quotient of π1X by the closure of the image of π1(G): this is the universal profinite 
groupoid with a trivial G-action to which X maps.

Putting all of this together, we find:

Corollary 9.7. Let G be a connected topological group of the homotopy type of a finite 
CW complex, and let R → R′ be a faithful G-Galois extension. Then we have an exact 
sequence of profinite groups

π̂1G → π1 Mod(R′) → π1 Mod(R) → 1. (39)

Remark 9.8. Throughout this section, we shall be somewhat cavalier about the use of 
basepoints, since we will be working with connected profinite groupoids.

9.4. The general elementary abelian case

Let V be an elementary abelian p-group and let k be a field of characteristic p. In this 
section, we will prove our main result that the Galois theory of ktV is algebraic. In order 
to do this, we will use the presentation in Theorem 9.2 of Mod(ktV ) via quasi-coherent 
sheaves on a “derived” version of P(V ∨

k ). Any G-Galois extension of ktV clearly gives 
a G-Galois extension of Otop(U) for any U ⊂ P(V ∨

k ) by base-change. Conversely, the 
affineness result Theorem 9.2 implies that to give a G-Galois extension of ktV is equiv-
alent to giving G-Galois extensions of Otop(U) for U ⊂ P(V ∨

k ) affine together with the 
requisite compatibilities. This would be doable if Otop(U) was even periodic with reg-
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ular π0, although the exterior generators present an obstacle. Nonetheless, by a careful 
comparison with the analog for tori, we will prove:

Theorem 9.9. Let V be an elementary abelian p-group. If k is a field of characteristic p, 
all finite coverings of ktV are étale, so π1(Mod(ktV )) � Gal(ksep/k).

Proof. Since projective space is (geometrically) simply connected, it suffices to show that 
the Galois theory of

ktZ/p ⊗k kh(Z/p)n � ktZ/p ⊗k C∗(B(Z/p)n; k),

for n > 0, is algebraic, and thus given by the (algebraic) étale fundamental group of the 
corresponding affine open cell in P(V ∨

k ). These E∞-rings are the Otop(U) for U ⊂ P(V ∨
k )

the basic open affines of projective space. It will follow that a faithful Galois extension 
of ktV is locally algebraically étale over P(V ∨

k ).
For this, we will use the fibration sequence

S1 → BZ/p → BS1,

induced by the inclusion Z/p ⊂ S1 with quotient S1. This is a principal S1-bundle and 
we find in particular an S1-action on C∗(BZ/p; k) such that

C∗(BS1; k) � C∗(BZ/p; k)hS
1

(40)

In fact, the map C∗(BS1; k) → C∗(BZ/p; k) is a faithful S1-Galois extension (in the 
sense of Definition 9.3): by the Eilenberg–Moore spectral sequence, and the fiber square

BZ/p× S1 BZ/p

BZ/p BS1

,

expressing the earlier claim that BZ/p → BS1 is an S1-torsor, it follows that

C∗(BZ/p; k) ⊗C∗(BS1;k) C
∗(B(Z/p); k) � C∗(S1; k) ⊗k C∗(BZ/p; k),

with the “coinduced” S1-action on the right. Moreover, C∗(BS1; k) → C∗(BZ/p; k) is 
descendable: in fact, a look at homotopy groups shows that the latter is a wedge of the 
former and its shift.

Let Tn � (S1)n be the n-torus, which contains (Z/p)n as a subgroup. Similarly, we find 
that there is a Tn-action on C∗(B(Z/p)n; k) in the ∞-category of C∗(BTn; k)-algebras 
which exhibits C∗(B(Z/p)n; k) as a faithful Tn-Galois extension of C∗(B(Z/p)n; k). We 
can now apply a bit of descent theory. Fix any C∗(BTn; k)-algebra R, and let R′ �
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R⊗C∗(BTn;k) C
∗(B(Z/p)n; k). Since R′ is a faithful Tn-Galois extension of R, we have a 

(natural) exact sequence given by Corollary 9.7:

Ẑn → π1(Mod(R′)) → π1(Mod(R)) → 1. (41)

Finally, we may attack the problem of determining the Galois theory of ktZ/p ⊗k

kh(Z/p)n where n > 0. We have

π∗C
∗(B(Z/p)n+1; k) � k[e0, e1, . . . , en] ⊗ E(ε0, . . . , εn), |ei| = −2, |εi| = −1.

Our goal is to determine the Galois theory of the localization ktZ/p ⊗k kh(Z/p)n �
C∗(B(Z/p)n+1; k)[e−1

0 ]. Now, we also have

π∗C
∗(BTn+1; k) � k[e0, . . . , en], |ei| = −2,

and the map C∗(BTn+1; k) → C∗(B(Z/p)n+1; k) sends the {ei} to the {ei}. This map is a 
faithful Tn+1-Galois extension. As we did for C∗(B(Z/p)n+1; k), consider the localization 
C∗(BTn+1; k)[e−1

0 ], whose homotopy groups are given by

π∗C
∗(BTn+1; k)[e−1

0 ] � k[e±1
0 , f1, . . . , fn], |fi| = 0, (42)

where for i ≥ 1, fi = ei/e0. In particular, the Galois theory of C∗(BTn+1; k)[e−1
0 ] is 

algebraic thanks to Theorem 6.29, and by (41), we have an exact sequence

Ẑn+1 → π1 Mod(C∗(B(Z/p)n+1; k)[e−1
0 ]) → π1 Mod(C∗(BTn+1; k)[e−1

0 ]) → 1 (43)

Our argument will be that the first map is necessarily zero, which will show that the 
Galois theory of C∗(B(Z/p)n+1; k)[e−1

0 ] is algebraic as desired. In order to do this, we 
will use a naturality argument.

We can form the completion

A = ̂C∗(BTn+1; k)[e−1
0 ](f1,...,fn),

at the ideal (f1, . . . , fn), whose homotopy groups now become the tensor product of the 
Laurent series ring k[e±1

0 ] together with a power series ring k[[f1, . . . , fn]]. We will prove:

Lemma 9.10. The Galois theory of A′ def= A ⊗C∗(BTn+1;k) C
∗(B(Z/p)n+1; k) is entirely 

algebraic (and, in particular, that of A).

Proof. The E∞-ring A′ = A ⊗C∗(BTn+1;k) C
∗(B(Z/p)n+1; k), which by definition is the 

E∞-ring obtained from C∗(B(Z/p)n+1; k) obtained by inverting the generator e0 and 
completing with respect to the ideal (f1, . . . , fn), admits another description: it is the 
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homotopy fixed points (ktZ/p)h(Z/p)n where (Z/p)n acts trivially.7 Since we have com-
puted the Galois theory of ktZ/p and found it to be algebraic in Proposition 9.1, this, 
together with Example 7.19, implies the claim. �

Finally, consider the diagram obtained from the faithful Tn+1-Galois extensions 
C∗(BTn+1; k)[e−1

0 ] → C∗(B(Z/p)n+1; k)[e−1
0 ] and A → A′,

Ẑn+1 π1(Mod(A′)) π1(Mod(A)) 1

Ẑn+1 π1 Mod(C∗(B(Z/p)n+1; k)[e−1
0 ]) π1 Mod(C∗(BTn+1; k)[e−1

0 ]) 1

.

In the top row, in view of Lemma 9.10, the map out of Ẑn+1 must be zero. 
It follows that the same must hold in the bottom row. In other words, the Ga-
lois theory of C∗(B(Z/p)n+1; k)[e−1

0 ] is equivalent to the (algebraic) Galois theory of 
C∗(BTn+1; k)[e−1

0 ]. As we saw at the beginning, this is precisely the step we needed to 
see that the Galois theory of the Tate construction ktV is “locally” algebraic over P(V ∨

k ), 
and this completes the proof of Theorem 9.9. �
Remark 9.11. This argument leaves open a natural question: is the Galois theory of a 
general localization C∗(B(Z/p)n+1; k)[f−1] algebraic?

9.5. General finite groups

Let G be any finite group. In this section, we will put together the various pieces 
(in particular, Theorem 9.9 and Quillen stratification theory) to give a description of 
the Galois group of the stable module ∞-category StG(k) over a field k of characteristic 
p > 0.

For each subgroup H ⊂ G, recall the commutative algebra object AH =
∏

G/H k ∈
CAlg(ModG(k)). AH has the property that ModModG(k)(AH) � ModH(k), and the 
adjunction ModG(k) � ModModG(k)(AH) whose left adjoint tensors with AH can be 
identified with restriction to the subgroup H. We will need an analog of this at the 
level of stable module categories. We refer to [59, sec. 5.3] for a discussion of these types 
of equivalences and for a proof of a general result including this in the ∞-categorical 
setting.

Proposition 9.12. (See Balmer [5].) Let AH ∈ CAlg(StG(k)) be the image of AH in 
the stable module ∞-category. Then we can identify ModAH

(StG(k)) � StH(k) and we 
can identify the adjunction StG(k) � ModAH

(StG(k)) with the restriction-coinduction 
adjunction StG(k) � StH(k).

7 In general, the formation of homotopy fixed points do not commute with localization from khZ/p to 
ktZ/p: the failure is precisely measured by the need to take the completion.
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Proposition 9.12 suggests that we can perform a type of descent in stable module 
∞-categories by restricting to appropriate subgroups. In particular, we can hope to 
reduce the calculation of certain invariants in StG(k) to those of StH(k) where H ⊂ G

are certain subgroups, by performing descent along commutative algebra objects of the 
form AH . We shall carry this out for the Galois group.

Let G be any finite group, and let A be a collection of subgroups of G such that any 
elementary abelian p-subgroup of G is contained in a conjugate of an element of A. For 
each H ∈ A, we consider the object 

∏
G/H k ∈ CAlg(ModG(k)).

Proposition 9.13. The commutative algebra object

A =
∏
H∈A

⎛
⎝∏

G/H

k

⎞
⎠ ∈ CAlg(ModG(k))

admits descent.

Proof. In order to prove this, by Theorem 4.8, it suffices to prove that the above com-
mutative algebra admits descent after restriction from G to each elementary abelian 
p-subgroup. However, when we restrict from G to each elementary abelian p-subgroup, 
the above commutative algebra object contains a copy of the unit object as a direct 
factor (as commutative algebras), so that it clearly admits descent. �

In particular, it follows that the image A ∈ CAlg(StG(k)) of the above commutative 

algebra object A =
∏

H∈A

(∏
G/H k

)
∈ ModG(k) in the stable module ∞-category 

also admits descent. It follows that we have an equivalence of symmetric monoidal 
∞-categories

StG(k) � Tot
(
ModStG(k)(A ) ⇒ ModStG(k)(A ⊗ A )→→→ · · ·

)
. (44)

There is a classical cofinality argument that enables us to rewrite this inverse limit in 
a different fashion. Recall:

Definition 9.14. The orbit category O(G) is the category of all finite G-sets of the form 
G/H for H ⊂ G a subgroup.

We have a functor

O(G) → CAlg(PrLst), G/H �→ StH(k) = ModStG(k)

⎛
⎝∏

G/H

k

⎞
⎠ .

Note that given any finite G-set S, we can form a commutative algebra object in StG(k)
given by 

∏
S k = kS . This construction takes coproducts of G-sets to products.
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Suppose A is a collection of subgroups of G which is closed under finite intersections 
and conjugation by elements of G. We will use the following notation:

Definition 9.15. We let OA(G) ⊂ O(G) be the full subcategory spanned by the G-sets 
G/H for H ∈ A. We let O′

A(G) ⊂ OA(G) be the full subcategory including only the 
{G/H} for H ∈ A and H �= 1.

Using standard cofinality arguments (cf. [59, sec. 6.5]), we obtain from the descent 
statement (44):

Corollary 9.16. Let A be a collection of subgroups of G. Suppose that A is closed under 
conjugation and finite intersections. Suppose every elementary abelian p-subgroup of G
is contained in a subgroup belonging to A. Then we have a decomposition

StG(k) � lim←−−
G/H∈OA(G)op

StH(k). (45)

These types of descent statements at the level of homotopy categories have been 
developed in [5]. We also have an analogous (but easier) decomposition

ModG(k) � lim←−−
G/H∈OA(G)op

ModH(k).

Using Theorem 9.9, we get:

Theorem 9.17. Let A be the collection of elementary abelian p-subgroups of G. If k is a 
separably closed field of characteristic p, then the Galois group of StG(k) is the profinite 
completion of the fundamental group of the nerve of the category O′

A(G).

Proof. The decomposition (45) implies that there is a decomposition

π≤1(StG(k)) = lim−−→
G/H∈OA(G)

π≤1(StH(k)).

Now by Theorem 9.9, when H is nontrivial we have π≤1(StH(k)) = ∗. When H = 1, then 
StH(k) = 0 so that the Galois groupoid is empty. It follows that the functor OA(G) →
Pro(Gpdfin), G/H �→ π≤1(StH(k)) is the left Kan extension of the constant functor ∗ on 
O′

A(G) ⊂ OA(G). This implies the result. �
Unfortunately, we do not know in general an explicit description of the above funda-

mental group. We will give a couple of simple examples below.
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Theorem 9.18.

1. Let G be a finite group whose center contains an order p element (e.g., a p-group). 
Then the Galois group of StG(k) is the quotient of G by the normal subgroup gener-
ated by the order p elements: the functor ModG(k) → StG(k) induces an isomorphism 
on fundamental groups.

2. Suppose G is a finite group such that the intersection of any three p-Sylow subgroups 
of G is nontrivial. Then ModG(k) → StG(k) induces an isomorphism on fundamental 
groups.

Proof. Consider the first case. Choose an order p subgroup C contained in the center 
of G, and consider the collection A of all nontrivial elementary abelian p-subgroups of 
G which contain C. Note that A does not contain the trivial subgroup. Then we get 
decompositions StG(k) � lim←−−G/H∈OA(G)op StH(k) and similarly for ModG(k). In both 
cases, the Galois groupoid of each term in the inverse limit is a point. It follows that

π1(StG(k)) � π1(ModG(k)) � π1N(OA(G)),

and since we have already computed the Galois group of ModG(k) (Theorem 7.16), we 
are done.

For the second case, let G be a finite group such that the intersection of any three 
p-Sylows in G is nontrivial. Here we will argue slightly differently. We fix a p-Sylow 
P ⊂ G and consider the commutative algebra object B =

∏
G/P k ∈ CAlg(ModG(k))

and its image B ∈ CAlg(StG(k)). We observe that B, B ⊗B, B ⊗B ⊗B have the same 
fundamental groupoids as B, B⊗B, B⊗B⊗B, respectively: in fact, this follows from the 
previous item (that the Galois groups for ModH(k) and StH(k) where H is a nontrivial
p-group are isomorphic), since the hypotheses imply that the G-set G/P×G/P×G/P has 
no free component to it. Therefore, by descent theory, the Galois groups of ModG(k) and 
StG(k) must be isomorphic; note that the Galois group only depends on the 3-truncation 
of the descent diagram. �

On the other hand, there are cases in which there are finite covers in the stable module 
∞-category that do not come from the representation category.

Corollary 9.19. Let k be a separably closed field of characteristic p. Let G be a finite group 
such that the maximal elementary abelian p-subgroup of G has rank one (i.e., there is 
no embedding Z/p × Z/p ⊂ G) and any two such are conjugate. In this case, the Galois 
group of StG(k) is the Weyl group of a subgroup Z/p ⊂ G.

Proof. This is an immediate consequence of Theorem 9.17. �
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For example, we find that the Galois group of the stable module ∞-category of Σp is 
precisely a (Z/p)×, which is the Weyl group of Z/p ⊂ Σp. We can see this very explicitly. 
The Tate construction ktΣp has homotopy groups given by

π∗(ktΣp) � E(α2p−1) ⊗ P (β±1
2p−2),

whereas we have ktZ/p � E(α−1) ⊗ P (β±1
2 ). The extension ktΣp → ktZ/p is Galois, and 

is obtained roughly by adjoining a (p − 1)st root of the invertible element β2p−2.

10. Chromatic homotopy theory

In this section, we begin exploring the Galois group in chromatic stable homotopy 
theory; this was the original motivating example for this project. In particular, we con-
sider Galois groups over certain En-local E∞-rings such as TMF and LnS

0, and over 
the ∞-category LK(n) Sp of K(n)-local spectra.

10.1. Affineness and TMF

Consider the E∞-ring TMF of (periodic) topological modular forms. We refer to 
[20] for a detailed treatment. Our goal in this section is to describe its Galois theory. 
The homotopy groups of TMF are very far from regular; there is considerable torsion 
and nilpotence in π∗(TMF) at the primes 2 and 3, coming from the stable stems. This 
presents a significant difficulty in the computation of arithmetic invariants of TMF and 
Mod(TMF).

Nonetheless, TMF itself is built up as an inverse limit of much simpler (at least, 
simpler at the level of homotopy groups) E∞-ring spectra. Recall the construction of 
Goerss–Hopkins–Miller–Lurie, which builds TMF as the global sections of a sheaf of 
E∞-ring spectra on the étale site of the moduli stack of elliptic curves Mell . Given a 
commutative ring R, and an elliptic curve C → SpecR such that the classifying map 
SpecR → Mell is étale, the construction assigns an E∞-ring Otop(SpecR) with the basic 
properties:

1. Otop(SpecR) is even periodic.
2. We have a canonical identification π0Otop(SpecR) � R and a canonical identification 

of the formal group of Otop(SpecR) and the formal completion Ĉ.

The construction makes the assignment (SpecR → Mell) �→ Otop(SpecR) into a 
functor from the affine étale site of Mell to the ∞-category of E∞-rings, and one de-
fines

TMF = Γ(Mell ,Otop) def= lim←−− Otop(SpecR). (46)

Spec R→Mell
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The moduli stack of elliptic curves is regular : any étale map SpecR → Mell has 
the property that R is a regular, two-dimensional domain. The Galois theory of each 
Otop(SpecR) is thus purely algebraic in view of Theorem 6.29. It follows that from the 
expression (46) that we have a fully faithful embedding

Modω(TMF) ⊂ lim←−−
Spec R→Mell

Modω(Otop(SpecR)), (47)

which proves that an upper bound for the Galois group of TMF is given by the Galois 
group of the moduli stack of elliptic curves. It is a folklore result that the moduli stack 
of elliptic curves, over Z, is simply connected; see for instance [41]. Therefore, one has:

Theorem 10.1. TMF is separably closed, i.e., has trivial Galois group.

Using more sophisticated arguments, one can calculate the Galois groups not only of 
TMF, but also of various localizations (where the algebraic stack is no longer simply 
connected). This proceeds by a strengthening of (47).

Definition 10.2. The ∞-category QCoh(Otop) of quasi-coherent Otop-modules is the 
inverse limit lim←−−Spec R→Mell

Mod(Otop(SpecR)).

As usual, we have an adjunction

Mod(TMF) � QCoh(Otop),

since TMF is the E∞-ring of endomorphisms of the unit in QCoh(Otop). At least away 
from the prime 2 (this restriction is removed in [57]), it is a result of Meier, proved in [55], 
that the adjunction is an equivalence: TMF-modules are equivalent to quasi-coherent 
Otop-modules. In particular, the unit object in QCoh(Otop) is compact, which would 
not have been obvious a priori. It follows that we can make a stronger version of the 
argument in Theorem 10.1. We will do this below in more generality.

In [57], L. Meier and the author formulated a more general context for “affineness” 
results such as this. We review the results. Let MFG be the moduli stack of formal 
groups. Let X be a Deligne–Mumford stack and let X → MFG be a flat map. It follows 
that for every étale map SpecR → X, the composite SpecR → X → MFG is flat and 
there is a canonically associated even periodic, Landweber-exact multiplicative homology 
theory associated to it. An even periodic refinement of this data is a lift of the diagram 
of homology theories to E∞-rings. In other words, it is a sheaf Otop of even periodic 
E∞-rings on the affine étale site of X with formal groups given by the map X → MFG. 
This enables in particular the construction of an E∞-ring Γ(X, Otop) of global sections, 
obtained as a homotopy limit in a similar manner as (46), and a stable homotopy theory 
QCoh(Otop) of quasi-coherent modules.

Now, one has:
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Theorem 10.3. (See [57, Theorem 4.1].) Suppose X → MFG is a flat, quasi-affine map 
and let the sheaf Otop of E∞-rings on the étale site of X define an even periodic refine-
ment of X. Then the natural adjunction

Mod(Γ(X,Otop)) � QCoh(Otop),

is an equivalence of ∞-categories.

In particular, in [57, Theorem 5.6], L. Meier and the author showed that, given X →
MFG quasi-affine, then one source of Galois extensions of Γ(X, Otop) was the Galois 
theory of the algebraic stack. If X is regular, we can give the following refinement.

Theorem 10.4. Let X be a regular Deligne–Mumford stack. Let X → MFG be a flat, 
quasi-affine map and fix an even periodic sheaf Otop as above. Then we have a canonical 
identification

π1(Mod(Γ(X,Otop))) � πet
1 X.

Proof. This is now a quick corollary of the machinery developed so far. By Theorem 10.3, 
we can identify modules over Γ(X, Otop) with quasi-coherent sheaves of Otop-modules. 
In particular, we can equivalently compute the Galois group, which is necessarily the 
same as the weak Galois group, of QCoh(Otop). Using

QCoh(Otop) = lim←−−
Spec R→X

Mod(Otop(SpecR)),

where the inverse limit ranges over all étale maps SpecR → X, we find that the weak 
Galois groupoid of QCoh(Otop) is the colimit of the weak Galois groupoids of the various 
Otop(SpecR). Since we know that these are algebraic (Theorem 6.29), we conclude that 
we arrive precisely at the colimit of Galois groupoids that computes the Galois groupoid 
of X. �

In addition to the case of TMF, we find:

Corollary 10.5.

1. The Galois group of Tmf(p) (for any prime p) is equal to the étale fundamental group 
of Z(p).

2. The Galois group of KO is Z/2: the map KO → KU exhibits KU as the Galois 
closure of KO.

Here Tmf is the non-connective, non-periodic flavor of topological modular forms 
associated to the compactified moduli stack of elliptic curves.
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Proof. The first claim follows because the compactified moduli stack of elliptic curves is 
geometrically simply connected; this follows via the expression as a weighted projective 
stack P(4, 6) when 6 is inverted. The second assertion follows from Theorem 6.29, which 
shows that KU is simply connected, since SpecZ is. �
10.2. K(n)-local homotopy theory

Let K(n) be a Morava K-theory at height n. The ∞-category LK(n) Sp of K(n)-local 
spectra, which plays a central role in modern chromatic homotopy theory, has been stud-
ied extensively in the monograph [40]. LK(n) Sp is a basic example of a stable homotopy 
theory where the unit object is not compact, although LK(n) Sp is compactly generated 
(by the localization of a finite type n complex, for instance). We describe the Galois 
theory of LK(n) Sp here, following ideas of [21,14,71], and many other authors.

According to the “chromatic” picture, phenomena in stable homotopy theory are ap-
proximated by the geometry of the moduli stack MFG of formal groups. When localized 
at a prime p, there is a basic open substack M≤n

FG of MFG parametrizing formal groups 
whose height (after specialization to any field of characteristic p) is ≤ n. There is a 
closed substack Mn

FG ⊂ M≤n
FG parametrizing formal groups of height exactly n over 

Fp-algebras. The operation of K(n)-localization corresponds roughly to formally com-
pleting along this closed substack (after first restricting to the open substack M≤n

FG , which 
is En-localization). In particular, the Galois theory of LK(n) Sp should be related to that 
of this closed substack.

It turns out that Mn
FG has an extremely special geometry. The substack Mn

FG is 
essentially the “classifying stack” of a large profinite group (with a slight Galois twist) 
known as the Morava stabilizer group.

Definition 10.6. Let k = Fp and consider a height n formal group X over k. We define 
the nth Morava stabilizer group Gn to be the automorphism group of X (in the category 
of formal groups).

Any two height n formal groups over k are isomorphic, so it does not matter which 
one we use.

Definition 10.7. We define the nth extended Morava stabilizer group Gext
n to be the 

group of pairs (σ, φ) where σ ∈ Aut(Fp/Fp) and φ : X → σ∗X is an isomorphism of 
formal groups.

In fact, X can be defined over the prime field Fp itself, so that σ∗X is canonically 
identified with X, and in this case, every automorphism of X is defined over Fpn . This 
gives Gn a natural profinite structure (by looking explicitly at coefficients of power 
series), and Gext

n � Gn � Gal(Fp/Fp).
The picture is that the stack Mn

FG is the classifying stack of the group scheme of 
automorphisms of a height n formal group over Fp. This itself is a pro-étale group scheme 
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which becomes constant after extension of scalars to Fpn . This picture is justified by the 
result that any two n formal group are étale locally isomorphic, and the scheme of 
automorphisms is in fact as claimed.

This picture has been reproduced closely in chromatic homotopy theory. Some of the 
most important objects in LK(n) Sp are the Morava E-theories En. Let κ be a perfect 
field of characteristic p and let X be a formal group of height n over κ, defining a map 
Specκ → Mn

FG. The “formal completion” of MFG along this map can be described by 
Lubin–Tate theory; in other words, the universal deformation Xuniv of the formal group 
X lives over the ring W (κ)[[v1, . . . , vn−1]] for W (κ) the ring of Witt vectors on κ. The 
association (κ, X) �→ (W (κ)[[v1, . . . , vn−1]], Xuniv) defines a functor from pairs (κ, X) to 
pairs of complete local rings and formal groups over them.

The result of Goerss, Hopkins and Miller [27,68] is that the above functor can be 
lifted to topology. Each pair (W (κ)[[v1, . . . , vn−1]], Xuniv) can be realized by a homotopy 
commutative ring spectrum En = En(κ; X) in view of the Landweber exact functor 
theorem. However, in fact one can construct a functor (essentially uniquely)

(κ,X) �→ En(κ;X)

to the ∞-category of E∞-rings, lifting this diagram of formal groups: for each (κ, X), 
En(κ; X) is even periodic with formal group identified with the universal deformation 
Xuniv over W (κ)[[v1, . . . , vn−1]].

We formally now state a definition that we have used before.

Definition 10.8. Any En(κ; X) will be referred to as a Morava E-theory and will be 
sometimes simply written as En.

Since Mn
FG is the classifying stack of a pro-étale group scheme, we should expect, 

if we take κ = Fp, an appropriate action of the extended Morava stabilizer group on 
En(κ; X). An action of the group Gext

n is given to us on En(κ; X) by the Goerss–Hopkins–
Miller theorem. However, we should expect a “continuous” action of Gext

n on En(κ; X)
on Mod(En(κ; X)) whose homotopy fixed points are LK(n) Sp.

Although this does not seem to have been fully made precise, given an open subgroup 
U ⊂ Gext

n , Devinatz–Hopkins [21] construct homotopy fixed points En(κ; X)hU which 
have the desired properties (for example, if U ⊂ Gext

n , one obtains LK(n)S
0). It was 

observed in [71] that for U ⊂ Gext
n open normal, the maps

LK(n)S
0 → En(κ;X)hU

are Gext
n /U -Galois in LK(n) Sp; they become étale after base-change to En(κ; X). The 

main result of this section is that this gives precisely the Galois group of K(n)-local 
homotopy theory.
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Theorem 10.9. The Galois group of LK(n) Sp (which is also the weak Galois group) is 
the extended Morava stabilizer group Gext

n .

Away from the prime 2, this result is essentially due to Baker and Richter [14]. We 
will give a direct proof using descent theory. Let En be a Morava E-theory. Using de-
scent for linear ∞-categories along LnS

0 → En (Corollary 3.42 and Theorem 4.18), we 
find:

Proposition 10.10. En ∈ CAlg(LK(n) Sp) satisfies descent. In particular, we have an 
equivalence

LK(n) Sp � Tot
(
LK(n) Mod(En) ⇒ LK(n) Mod(LK(n)(En ⊗ En))→→→ · · ·

)
.

Proof. This follows directly from the fact that since the cobar construction LnS
0 → En

defines a constant pro-object in Sp (with limit LnS
0), it defines a constant pro-object 

(with limit LK(n)S
0) in LK(n) Sp after K(n)-localizing everywhere. �

Therefore, we need to understand the Galois groups of stable homotopy theories such 
as LK(n) Mod(En). We did most of the work in Theorem 6.29, although the extra local-
ization adds a small twist that we should check first.

Let A be an even periodic E∞-ring with π0A a complete regular local ring with 
maximal ideal m = (x1, . . . , xn), where x1, . . . , xn is a system of parameters for m. Let 
κ(A) = A/(x1, . . . , xn) be the topological “residue field” of A, as considered earlier.

Proposition 10.11. Given a κ(A)-local A-module M , the following are equivalent:

1. M is dualizable in Lκ(A) Mod(A).
2. M is a perfect A-module.

Proof. Only the claim that the first assertion implies the second needs to be shown. 
If M is dualizable in Lκ(A) Mod(A), then it follows that, since the homology theory
κ(A)∗ is a monoidal functor, κ(A)∗(M) must be dualizable in the category of graded 
κ(A)∗-modules. In particular, κ(A)0(M) and κ(A)1(M) are finite-dimensional vector 
spaces. From this, it follows that π∗(M) itself must be a finitely generated π∗(A)-module, 
since π∗(M) is (algebraically) complete. For example, given any i, we show that the 
π0(A)-module π0(M/(x1, . . . , xi)M) is finitely generated by descending induction on i; 
when i = 0 it is the assertion we want. When i = n, the finite generation follows from 
our earlier remarks. If we know finite generation at i, then we use the cofiber sequence

M/(x1, . . . , xi−1)
xi→ M/(x1, . . . , xi−1) → M/(x1, . . . , xi),

to find that
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π0(M/(x1, . . . , xi−1)) ⊗π0(A) π0(A)/(xi) ⊂ π0(M/(x1, . . . , xi)),

is therefore finitely generated. However, by the xi-adic completeness of π0(M/(x1, . . . ,
xi−1)), this implies that π0(M/(x1, . . . , xi−1)) is finitely generated.

Finally, since π∗(A) has finite global dimension, this is enough to imply that M is 
perfect as an A-module. �
Proof of Theorem 10.9. We thus get an equivalence

CAlgw.cov(LK(n) Sp)

� Tot
(
CAlgw.cov(LK(n) Mod(En)) ⇒ CAlgw.cov(LK(n) Mod(En ⊗En))→→→ · · ·

)
.

However, we have shown, as a consequence of Proposition 10.11 and Theorem 6.29, that 
CAlgw.cov(LK(n) Mod(En)) is actually equivalent to the full subcategory spanned by the 
finite étale commutative algebra objects. Since finite étale algebra objects are preserved 
under base change, we can replace the above totalization via

CAlgw.cov(LK(n) Sp)

� Tot
(
CAlgw.cov

alg (LK(n) Mod(En)) ⇒ CAlgw.cov
alg (LK(n) Mod(En ⊗En))→→→ · · ·

)
,

where the subscript alg means that we are only looking at the classical finite covers, i.e., 
the category is equivalent to the category of finite étale covers of π0. In other words, we 
obtain a cosimplicial commutative ring, and we need to take the geometric realization 
of the étale fundamental groupoids to obtain the fundamental group of LK(n) Sp.

Observe that each commutative ring π0LK(n)(E⊗m
n ) is complete with respect to the 

ideal (p, v1, . . . , vn−1), in view of the K(n)-localization. The algebraic fundamental group 
is thus invariant under quotienting by this ideal. After we do this, we obtain precisely a 
presentation for the moduli stack Mn

FG, so the Galois group of LK(n) Sp is that of this 
stack. As we observed earlier, this is precisely the extended Morava stabilizer group. �
10.3. Purity

We next describe a “purity” phenomenon in the Galois groups of E∞-rings in chro-
matic homotopy theory: they appear to depend only on their L1-localization. We con-
jecture below that this is true in general, and verify it in a few special (but important) 
cases.

We return to the setup of Section 10.1. Let R be an E∞-ring that arises as the global 
sections of the structure sheaf (“functions”) on a derived stack (X, Otop) which is a 
refinement of a flat map X → MFG. Suppose further that (X, Otop) is 0-affine, i.e., the 
natural functor Mod(Γ(X, Otop)) → QCoh(X) is an equivalence, and that X is regular.

In this case, we have:
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Theorem 10.12 (KU-purity). The map R → LKUR induces an isomorphism on Galois 
groups.

In order to prove this result, we recall the Zariski–Nagata purity theorem, for which 
a useful reference is Exposé X of [31].

Theorem 10.13 (Zariski–Nagata). Let X be a regular noetherian scheme and U ⊂ X an 
open subset such that X \ U has codimension ≥ 2 in X. Then the restriction functor 
establishes an equivalence of categories between finite étale covers of X and finite étale 
covers of U .

If X is instead a regular Deligne–Mumford stack, and U ⊂ X is an open substack 
whose complement has codimension ≥ 2 (a condition that makes sense étale locally, and 
hence for X), then it follows from the above and descent theory that finite étale covers 
of X and U are still equivalent.

Proof of Theorem 10.12. First we work localized at a prime p, so that LKU � L1. In this 
case, the result is a now a direct consequence of various results in the preceding sections 
together with Theorem 10.13.

Choose a derived stack (X, Otop) whose global sections give R; suppose X is an even 
periodic refinement of an ordinary Deligne–Mumford stack X, with a flat, affine map 
X → MFG. Then L1R can be recovered as the E∞-ring of functions on the open sub-
stack of (X, Otop) corresponding to the open substack U of X complementary to closed 
substack cut out by the ideal (p, v1). The derived version of U is also 0-affine, as observed 
in [57, Proposition 3.27].

Now, in view of Theorem 10.4, the Galois group of L1R is that of the open substack 
U , and the Galois group of R is that of X. However, the Zariski–Nagata theorem implies 
that the inclusion U ⊂ X induces an isomorphism on étale fundamental groups. Indeed, 
the complement of U ⊂ X has codimension ≥ 2 as (p, v1) is a regular sequence on X by 
flatness and thus cuts out a codimension two substack of X.

To prove this integrally, we need to piece together the different primes involved. 
Given any E∞-ring A, it follows from descent theory that there is a sheaf GalG of 
(ordinary) categories on the Zariski site of Specπ0A, such that on a basic open affine 
Uf = Specπ0A[f−1] ⊂ Specπ0A, GalG(Uf ) is the groupoid of G-Galois extensions of 
the localization A[f−1]. Thus we can prove:

Lemma 10.14. Fix a finite group G. Let R → R′ be a morphism of E∞-rings with the 
following properties:

1. R → R′ induces an equivalence of categories GalG(R(p)) → GalG(R′
(p)) for each p.

2. RQ → R′
Q induces an equivalence of categories GalG(RQ) → GalG(R′

Q).

Then the natural functor GalG(R) → GalG(R′) is an equivalence of categories.



A. Mathew / Advances in Mathematics 291 (2016) 403–541 537
Proof. By the above, there is a sheaf Gal(G; R) (resp. Gal(G; R′)) of categories on 
SpecZ, whose value over an open affine SpecZ[N−1] is the category of G-Galois ex-
tensions of R[N−1] (resp. of R′[N−1]). These are the pushforwards of the sheaves GalG
on Specπ0R, Specπ0R

′ discussed above. Now Theorem 6.20, together with the hypothe-
ses of the lemma, imply that the map of sheaves Gal(G; R) → Gal(G′; R) induces an 
equivalence of categories on each stalk over every point of SpecZ. It follows that the 
map induces an equivalence upon taking global sections, which is the conclusion we 
desired. �

This lemma let us conclude the proof of Theorem 10.12. Namely, the map R → LKR

satisfies the two hypotheses of the lemma above, since in fact RQ � (LKR)Q, and we 
have already checked the p-local case above. �

Using similar techniques, we can prove a purity result for the Galois groups of the 
En-local spheres.

Theorem 10.15. The Galois theory of LnS
0 is algebraic and is given by that of Z(p).

Proof. We can prove this using descent along the map LnS
0 → En. Since this map 

admits descent, we find that

CAlgcov(LnS
0) � Tot

(
CAlgcov(En) ⇒ CAlgcov(En ⊗ En)→→→ · · ·

)
.

Now, En⊗En does not have a regular noetherian π0. However, CAlgcov(En) is simply the 
ordinary category of finite étale covers of π0En, in view of Theorem 6.29. Therefore, we 
can replace the above totalization by the analogous totalization where we only consider 
the algebraic finite covers at each stage (since the two are the same at the first stage). 
In particular, since the cosimplicial (discrete) commutative ring

π0(En) ⇒ π0(En ⊗En)→→→ · · · ,

is a presentation for the algebraic stack M≤n
FG of formal groups (over Z(p)-algebras) of 

height ≤ n, we find that the Galois theory of LnS
0 is the Galois theory of this stack. 

The next lemma thus completes the proof. �
Lemma 10.16. For n ≥ 1, the maps of stacks M≤n

FG → MFG → SpecZ(p) induce isomor-
phisms on fundamental groups.

Proof. The moduli stack of formal groups MFG has a presentation in terms of the map 
SpecL → MFG, where L is the Lazard ring (localized at p). L is a polynomial ring on a 
countable number of generators over Z(p). Similarly, SpecL ×MFG SpecL is a polynomial 
ring on a countable number of generators over SpecZ(p). The étale fundamental group 
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of Z(p)[x1, . . . , xn] is that of Z(p),8 and by taking filtered colimits, the same follows for 
a polynomial ring over Z(p) over a countable number of variables. Thus, the étale fun-
damental group MFG is that of SpecZ(p). The last assertion follows because, again, the 
deletion of the closed subscheme cut out by (p, v1) does not affect the étale fundamental 
group in view of the Zariski–Nagata theorem (applied to the infinite-dimensional rings 
by the filtered colimit argument). �

The above results suggest the following purity conjecture.

Conjecture 10.17. Let R be any Ln-local E∞-ring. The map R → L1R induces an iso-
morphism on fundamental groups.

Conjecture 10.17 is supported by the observation that, although not every Ln-local 
E∞-ring has a regular π0 (or anywhere close), Ln-local E∞-rings seem to built from 
such at least to some extent. For example, the free K(1)-local E∞-ring on a generator 
is known to have an infinite-dimensional regular π0.

Remark 10.18. Conjecture 10.17 cannot be valid for general LnS
0-linear stable homotopy 

theories: it is specific to E∞-rings. For example, it fails for LK(n) Sp.
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