
Vol. 46, No. 3 DUKE MATHEMATICAL JOURNAL (C) September 1979

RING SPECTRA WHICH ARE THOM COMPLEXES

MARK MAHOWALD

For our purposes a ring spectrum E is a spectrum with a map E/ E E
and a unit i:SE such that the following diagrams commute up to
homotopy:

The ring spectrum is abelian if

T
E / E > E / E

E

commutes up to homotopy where T is the map that exchanges factors.
Let L be a space and let be a fibration over L classified by a mapf L BF

(the classifying space of stable spherical fibrations). We can form the Thom
spectrum T(f) of f as a suspension spectrum by letting (T(f)) be the Thorn
complex of L n--YBFn where L is the n-skeleton of L. This makes
T(f)-- {(T(f))n) into a suspension spectrum.

Spectra which arise in this fashion have a unit which is the inclusion of the
fiber on the Thorn class.

Natural examples of maps f:L BF give a plethora of interesting spectra:
among them are K(Z2, 0), K(Z, 0), the Brown-Gitler spectrum, and a spectrum
for which the secondary operation of Adams j,j [1] is defined and non-zero on
the Thom class.

Frequently, the Thom spectra which we obtain in this manner are
commutative ring spectra. A useful feature of these Thom spectra is that they
admit particularly nice resolutions. Consequently, these spectra give rise to
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spectral sequences converging to r,s(s) which are quite manageable for
certain applications such as the immersion conjecture for FP 8k/7 [4].

In this paper we describe the above point of view together with a number of
related results. In outline we proceed as follows" In Section we give 2 theorems
on the properties of Thom spectra T(f). These theorems should be regarded as
technical tools which are used to identify T(f) as a ring spectrum and to
describe nice resolutions of T(f); these theorems are needed to obtain our main
results in Sections 2 and 3. In Section 2 we catalogue examples of Thom spectra
obtained from H-maps f" L oBF. In particular, we study the spectra
mentioned in the previous two paragraphs. In Section 3 we study resolutions of
T(f) where f is now assumed to be a loop map. Theorem 1.2 is used to identify
T(f)/k T(f) in our resolutions. The resolutions of Section 3 give rise to certain
spectral sequences which are described in Section 4. The techniques are applied
to the May spectral sequence, the Adams spectral sequence, and the immersion
conjecture for FIP 8k + 7.

1. General theorems on Thom spectra. The following simple theorem is basic.

THEOREM 1.1. Suppose L is an H-space with multiplication ! and f L BF
is an H-map. Then the Thom spectrum T(f) is a ring spectrum. If L is a homotopy
commutative H-space andf is a morphism of homotopy commutative H-spaces then
T(f) is a commutative ring spectrum.

Proof. The hypothesis gives a commutative diagram

fxf
L L BF BF

L BF
f

Taking Thom complexes we have T( z)’ T(f)/k T(f) T(f). The Thorn class
multiplies and so the spectrum has a unit. The commutative conclusion is also
immediate from an appropriate diagram at the space level.
The ring of operations on spectra which arise when f is a loop map is often

tractible.

THEOREM 1.2. If T(f) is a ring spectrum which is the Thorn complex of a
bundle over a loop space L classified by a loop map f L BF, then
T(f) /k T(f)= L+/k T(f). (+ denotes a disjoint basepoint.)

Proof. Let A:L L L be the map defined by (x)= (x, x-). Let
g L LL L be the composite

L L
A id (d,/)

LX L x L )Lx L
where is the multiplication in L. Then, clearly, g is a homotopy equivalence.
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Consider the bundle over L L given by

(f,f)
L x L,

g
LX L >BF.

The bundle induced by (f, f) is equivalent to the bundle induced by (f, f) g.
Consider

g (f’f)
L >LxL >LxL >BF

where L L L is the left hand inclusion, andj is the right hand inclusion.
The Thom complex of f#gi is homotopy equivalent to T(f) while T(flg/) is

trivial. Thus, as spectra L+/k T(f) T(f)/k T(f).

2. Some examples I. In this section all spaces should be considered as
localized at the prime 2 unless otherwise noted as in example 2.8 where odd
primes are considered. Many results are valid more generally.
Some very useful spectra are given by taking Z S for 2, 3, 5, 9 and

letting f/ be f0 where o:Sio B20 is a generator. We will use these spectra
frequently and so let X T(f.), i= 2, 3, 5, and 9. By a different procedure
Barratt described similar spectra in 1967. His approach was quite different but
he obtained some of these properties. Theorems 1.1 and 1.2 give a much more
direct path to these properties. We note several of them.

2.1. The ring spectrum X3 is abelian.

Proof. The map S 3__) B 20 is equivalent to the loop of liP oO_B 3U where
is a generator of ,7/3 and is extended by standard obstruction theory. Then the
realification of 2 is 0.

2.2. These spectra have some tractible homotopy properties. The following
result is illustrative.

Extit(H*(X2), 72) contains 72(t91, W5, 192) where t)l, W5, I)2 have filtration
(1, 2), (1, 6), (1, 7) respectively and v are related to the BP generators Of the
same name.

Sketch proof. It is not hard to calculate by hand ExtA(H*(X2), Z2) and
show that it equals Z2(a, v, ws, v2) where a has filtration (0, 8). Next one
calculates, by hand again, to show that v 1, ws, v2 all exist in ExtA(H*(X2), Z2).
The ring map and the map Ext (H*(X2), 72)---)Ext(H*(X2), 72) complete the
proof.

2.3. From 1.2 we have maps kj’XiE(i-OJxi which have degree in
dimension (i- 1)j. The evaluation of these maps in all other dimensions will be



552 MARK MAHOWALD

important later on. To do so we will describe kj more explicitly. Let gi-1 be the
homotopy inverse of the map g described in 1.2 as applied to 2S i. Then kj is the
composite

r( i
Xi
id/ S)xi/ Xi ) aSi+/Xi . ’(i-l)JXi__.) _(i-I)JX

j=0

The first three maps are the maps induced in Thom complexes by the following
space maps

id, A’
..S ,Si X ,_S X

fsi S 2S id’2Si 2S

where A’(x)= (x, x). Let aj be a class in H(i_ l)j(si). Then

Thus

at(at(R) l)--> j aj(R)a,(R) l--> j
l+k=l l+k=l

2.4. kj.(at) ()at_j
If 2, then everything is with Z2 for coefficients and this formula is less

interesting.

2.5. (Brayton Gray and M. G. Barratt). If a .(S) let M be the stable
complex SU,ej+ 1. Then X5/ Mn X and X3/ M2, X2

Neither of these will follow from H maps but note that up to homotopy
equivalence 2S2= S 2S3. Note that Xsv X9/M,,. First to see that
X2 X3/ M2,, note that S30 S 2__> B 20 gives a generator. Thus there is a map
X3X2 of degree on the Thom class. Now it is easy to verify that
M2,/ X X2 (Note that in X Sq2iU :: 0 for every i).

It is a little harder to verify M,,/X5= X3. The starting place is the
observation that there is a map M ---> X with degree on the Thom class. Using
the multiplication we have M/M X3 Using the homotopy commutativity
of X3 we see that $4M/ M,---> X is null homotopic and the cofiber of
S 4---) M/ M, is the 2-skeleton on X Now suppose we have a commutative
diagram

My/ sl ) X1+4

"’x3’’
Then we haveM,/ M, /k X;t--> X45‘+4 --)’ X3 and the composite S4/ X;’
--> M,/ M,/ X;t--> M,/ X’+4 has X’+8 as the cofiber. But as above the
composite $4--> M,/ M,--> X is zero and so M,/ X;l+4 extends to X5TM.
Hence X5 X No’;v X5/ M, X3 by again checking the Steenrod operations.
(Everything is still localized at the prime 2.)

2.6. Let L 22S and let w: $3- B30 be a generator. Let f= 22w. Then
T(f) K(Z, 0). This case has received a lot of attention in recent literature [6],
[5], [8], and [12].
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2.7. If F is the filtration of a2S (see [7]) and fn f/Fn (with f as in 2.6),
then in [6] it was shown that H*(T(fn)) M(n) A / (AxSq k > n }. (A is the
mod 2 Steenrod algebra.) Brown and Peterson have shown that a lot of the
spaces which arise in this fashion are actual Brown-Gitler spectra [2].

Let W(1) be the fiber of the degree map of f2S 3___> S i. Thenf induces a map
f" W(1)-9 BSO and T(f)= K(Z, 0) at the prime 2. Snaith [9] has shown that
fnX splits stably into a certain wedge if X is path-connected. Specializing to
f2S3, Snaith gives a map

he f]2S3 ---> QDe

where QDe localized at an odd prime p is QS2p-2L)_e2e-. The first element of
order p in the stable stems, a induces a map $2e-2 ee2e- --> BF. Since BF is
an infinite loop space, we may extend this last map to QDe and consider the
composite

2S 3 ) QDe-> BF.

We multiply together the maps he, one for each odd prime, together with the
composite

W(1) f--BSO BF

to obtain the map

g" W(1) BF.

PROPOSITION 2.8. T( g) K(Z, 0).

Proof. We will outline the proof since the result is really one dealing with
primes other than 2. The proof follows closely that given in [6] for 2.6. First note
that 22S 3__)Q ,2e-2Mp is part of a commutative diagram

a2S3 ) Q Z2e-2Me .> BF

S2 ) S2p-1

(We will do one prime, they all work the same way.) By using the Cartan
formula and IIS2e-2-92S2e-IBF we see that in T(fp) eiu=/=O and
xPiU :/: 0 for all i. (X is the anti-isomorphism.)
Next we filter Ae, mode Steenrod algebra, by letting Ae vector space

generated by {XPI I (S ,1’ Sk ’f’k ,0 ), f’i O, 1, S 1, 2, 3,
and xi >/pSi+l + i for each i. In addition s

H*(K(Z, 0), Zp) and iAe D i+lAe. Clearly
/Ap(x(Atpi) [-l’> n, f. O, 1).
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Let Y.(p)= i-pn. Using the product methods of [6] it is easily shown that
H*(Y.(p)/ Y_(p)) YnAp/+ lAp as Ap modules. Combining this filtered Ap
action with the generator given by 2.9 completes the proof. (Recently we have
received a copy of the thesis of Ralph Cohen [3]. The modules Ap/+(Ap)
are discussed there in some detail.)
The referee offered the following somewhat easier proof of 2.8.

Proof. It suffices to show that the map

O: AI-I4*((g) Z/pZ)
given by O(a)= aU is an isomorphism at each prime p. Assume that p is odd.
Since A/flA and H*( T( g) Z/pZ) have the same finite rank in any fixed
degree and g is an H-map, it suffices to check that 0 is an injection on
primitives. We check this result for the Milnor Qi’s here. Let w denote the ith
Wu class in H*(BSF; Z/pZ). By [14],

Qi U U [,.J ( flWl+p+p2... +pi-, q- A)

where A is decomposable. Let x2p,,_ 2+,, e 0, 1, denote the unique primitive in
H2p,,_2+,(W(1);Z/pZ). It is well-known that (1) P2xp,,_2.Z -(x2p-,_2)p if
k > 1, (2) pi,x2p_2=O if i> I, and (3) PPP...PP’ Wl+p+...+p--"
w+p+ +p, + d where d is decomposable. We then have by the evident
Kronecker pairings,

( g*( flWl +p+ +pi- q" A), X2p,.+,_ l) ( g* flWl +p+ +pi-, x2pi+,_ l)

(g*w +e+ +p’-’ x2e,/,-)

(g*P PP PP’-w +e+ +p,-2,

(g*w +p+... +p,-2, PP,’- PP, pl*xzp’+’- 2)

Hence Qg*U O. The other primitives are checked similarly.
Let W(1)= Y. Then we have that filtration induces a filtration on Y so that

Y, i-(F2.) where i" Y2S3. Let (n)= T(f/Y,). Note that (n)A M2,
(2n + ).

PROPOSO 2.10. H*(B(n)) is isomorphic to M(2n)AoZ2
Proof. Recall that (n) is given as a Thorn complex. The right action of Sq

is obtained by looking at the classes SqZSq . Since SqU U U Xl and
Sqx 0 for all I we see that under the map (n)B(2n), i* is just the
projection M(2n) M(2n) 0Z2.

2.11. Another collection of interesting spectra results from restricting f of 2.6
to J2_1(82)2S where Jk is the James construction. The homology of
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"J2i_ l(S 2) is Z2[Xl,... xi_ 1] and T(f/J2,_ 1($2)) is a ring spectrum realizing
the part of A* which is Z2(Jl,..., Ji-1). An evident modification of the second
proof of 2.8 yields this result.

2.12. As a last example of an interesting spectrum which arises this way we
give the following. Consider Sso B3F which represents a generator. Let
f" f2S5--)BF be the double loop map. Then T(f) has the property ,jU v 0
for every j where , is the secondary operation described by Adams [1].

Sketch proof. It is easily verified that f*(w3 0 for all w; where w in
H*(BF) are defined by the Thom isomorphism and Sq on the Thorn class. Next
standard formulae in BF show that if x3 generates H3(2S 5) then
Q...QlX3 oev_le2,_ modulo decomposables where e generate H,(SO)
C H,(SF) and o is the suspension homomorphism. Formulae such as this are
proved in [13] for example. Standard arguments show that if , is defined on U
then j,j Uv0 if and only if there is a homology class x such that
f,x oe2J_ le2j_ modulo decomposables.

2.13. Finally, having constructed lots of examples of spectra, we conjecture
that BP, bo and bu cannot be gotten in this fashion.

3. Resolutions with respect to ring spectra. The ring spectra which arise from
1.1 yield particularly nice resolutions. Before describing these resolution we fix
some notation. Let 2 be a loop space and let X be the Thom spectrum of a
bundle over 2 given by a loop map. Let A 2+ X X/h X be given by the
proof of 1.2. By the geometric bar resolution with respect to a spectrum X with
unit we mean the tower of fibrations in the stable category

1/NS
> X2X

1AS

Po
)X

(3.1)

where SX is the inclusion of the unit. X is the fiber of Po. In general X. is
1/S;the fiber of X._ X. 1/ X. Associated to this resolution is the cofiber

sequence

I3X

(3.2)



556 MARK MAHOWALD

Here IX is the cofiber of the inclusion S-X, il’IX--)IX/kX is 1/ S.
Inductively we define F(X) to be the cofiber of/j_ F-Ix/J-1X/k X. (The
notation IJx is suggestive of the augmentation ideal analogue.) Note that
xixi

If we apply rr, to 3.1 or 3.2 we get a spectral sequence (Ept(S, X, rr), r)"
The E term is E’t= rrt_(X/k X). Under reasonable hypothesis this spectral
sequence converges to Eo,’a’,(S). The chain complex {E, ) is most easily
handled by the chain complex 3.2.

Associated to 3.1 or 3.2 is the sequence

Po /k S O 191/k S 0 Po/k S 0

X > IX/k X > IZx/ X -+ ) IX‘’+ 1/k X ---)’ (3.3)

Let d Pi-1/h S O. Clearly di+ d is null homotopic.
Consider the sequence

dl d2
X X/hX X/hX/hX-+... (3.4)

where X" is X/h... /h X o times and 7 Z.__.+I(_ 1)ido for d "XX+1
defined by 1/ / S/ / and So occurs in the ith place. By standard
nonsense we see that do+ do is null homotopic. The sequence 3.4 maps, in an
obvious way, to 3.3. Indeed, it seems easiest to consider the following diagram
displaying these maps

Continuing this process yields the desired maps from X+1--) I"X/h X.
For notational purposes we write it again as

X ) IX/kX ) IEx/x >... > IX/kX->

dl d
X )- X/ X > X > ) X+l --->

Next we wish to compare 3.4 with what we have using the structure maps of
1.2 in the case X is a Thorn complex over some loop space classified by a loop
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map. We have the following diagram

(3.6)

where the & are homotopy equivalences by g" A-A (1.2) where
61=+S/1, 62=/1 1/+S/l, 63=/1/kl 1//1+ 1/
1/k- S/k 1/ 1, etc., and is the map induced by the usual diagonal.

PROPOSITION 3.7. Diagram 3.6 commutes.

Proof. It is sufficient to look at the space level. The first square becomes

(1, O)- (0, 1)
>x

lid l,
A-(O, 1)

Now A A=(1, 0) and A(0, 1)=(0, 1). (Recall g is the composite x
A Xl )" X ’ X 1,x/x)’ X and A’ is (1, 1).) The general case represents a
sequence of similar steps.

Also note that the sequence of maps in 3.5 which eliminate the various axes
amount to removing the basepoint in 3.6. This gives

PROPOSITION 3.8 We have the following commutative diagram

130 A SO 19o 1./ SO
X >IX/X > >IX/X >...

X > AX > > AX >

4. Some examples II. In this section we apply the ideas of 3 to a few of the
spectra described in 2.

4.1. The theory gives a particularly nice situation when applied to S and
X of 2. For each we have spectral sequences coming from the exact couple of
the resolutions whose E’t 71"t(("Si) Xi) [H,(Si/ / "iS Z) (
r,(Xi)]t. The d is induced by 8s above.
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4.2. When we apply the theory to 2S3 and K(Z2) we get the classical bar
resolution from 3.1. The resolution 3.1 looks slightly different than the bar
resolution since it appears to make each of the exterior algebra generators in
H*(2S 3) primitive in the resolution. These generators can be identified with
i2z* and i2/is not primitive. This apparent discrepancy is cleared up when one
recalls the fact that 22S 3, as a stable complex, breaks up into parts each of
which has a nontrivial Steenrod algebra action. The action is given by
X ---> j+

2k
k-iXj (R) k" When ths additional term is added to the primitive term

we have the usual bar resolution.
The May spectral sequence is obtained this way also. We look at the

resolution

Z2 --> K(Z:, 0) --) 122S/ K(Z:, 0)

--> (122S 3)2/ K(Z2, 0) ... --) (122S 3)/ K(Z2, 0) ->...

Now Homa(C, Z2) (122S3). The differential in the associated chain complex
has two parts, one is the differential in

u:s A +

1/ 1/A + 1/A/ + A/ 1/
) (2S 3)4---)

and the second part interprets the action of the Steenrod algebra in 22S 3. Using
the Koszul resolution we see that H,(C)= Z2(Ri,j) > 0,j > where Ri,j is

2 3)represented by xj and H,(f2S --Z2(xi). This is the E term of the May
spectral sequence. The d results from identifying xj

2’ with ae.A and asking how
2

Oli,j acts on x
2 2We have xj ai, kXj_k for k 1,... ,j- 1. This follows easily from the

Brown-Gitler decomposition description of A (see [6]). It probably is easily read
from the Nishida relation. Anyway, when dualized this yields dRij=
,JkllRi, kRi+k,j_k The higher differentials reflect more complicated squaring
operations. The evaluation of differentials seems to be easier in this setting. In
particular in Tangora [11], 4.9, the proposition d4(b03)2 hEb2 + h4b2 is proved.
It is apparently not easy to verify that the term hEb2 is present. From this
approach it is rather easy. It seems likely that 1.3 of [1 l] could be proved in this
manner.

4.3. An interesting description of the E2 term for the Novikov spectral
sequence results when one applied the theory of 3 to BU and MU. The resulting
chain complex is

MU-BU/ MULBU/ BU/ MU-->

where /J is the map of Thom complexes given by BU-BU BU-%BU,
/J2=A/I 1//jl, A3=A/I/I- 1/A/I + 1/1/6 and so forth.
Many standard formulae result.
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4.4. BO [8, and MO [8 yield an interesting spectral sequence
and recent work of Davis and Mahowald [4] have applied it.

4.5. The space f(J2,_l $2) where Jk is the James construction yields
interesting spectra when one uses the composite f(J2,_S 2) c f]2S3-.BO Thef
homology of fJ2,_S 2 is equal to P(Xl,..., xi_). The resulting resolution
seems to give a geometric realization of the various spectral sequence of Adams

], Chapter 2.
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