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BROWN-COMENETZ DUALITY AND
THE ADAMS SPECTRAL SEQUENCE

By MARK MAHOWALD and CHARLES REZK

Abstract. We show that the class of p-complete connective spectra with finitely presented coho-
mology over the Steenrod algebra admits a duality theory related to Brown-Comenetz duality. This
construction also produces a full-plane version of the classical Adams spectral sequence for such
spectra, which converges to the homotopy groups of a “finite” localization.

1. Introduction. In the paper [3], Brown and Comenetz introduced a notion
of duality into stable homotopy. In [4] Hopkins and Gross showed that this notion
in certain situations is closely connected with Spanier-Whitehead duality. In this
note we wish to explore this connection and investigate it in connection with
Adams spectral sequence considerations. In particular, we study a class of spectra
which we call fp-spectra (Section 3). These are connective, p-complete spectra
whose mod p cohomology is finitely presented over the Steenrod algebra; that
is, the cohomology of such a spectrum is described by a finite set of generators
together with a finite set of relations. This class of spectra includes the Johnson-
Wilson spectra BPhni, connective K-theories, and the “higher” connective K-
theory spectrum eo2. The class of fp-spectra also includes some objects whose
Bousfield Ln-localizations are the same as Ln-localizations of finite complexes, at
least in some cases. A classical example is the connective image-of-J spectrum,
whose L1-localization is L1S0. It follows from calculations of Shimomura and
Yabe that a �1-connective cover of L2S0 at primes p � 5 is also an fp-spectrum
(Proposition 3.7).

We show that the category of fp-spectra admits a notion of duality (Theo-
rem 8.11). This duality is related to both Brown-Comenetz duality and Spanier-
Whitehead duality. The dual WX of an fp-spectrum X will be defined to be the
Brown-Comenetz dual of the fiber of the map X ! Lf

nX to the “finite localiza-
tion” of X (for n sufficiently large). The dual WX is itself an fp-spectrum. This
duality is related to Spanier-Whitehead duality through its action on cohomol-
ogy, in the following sense. If H�X � A� 
A�(n) M where A�(n) � A� is a finite
sub-Hopf algebra of the Steenrod algebra, and M is a finite A�(n) module, then
H�WX � A� 
A�(n) M̌, where M̌ � homFp (M, Fp) is the “Spanier-Whitehead
dual” of M as a finite module over A�(n).
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Because of this duality, the Lf
n-localization of the fp-spectrum is quite com-

putable. We show that there is a full-plane spectral sequence computing ��L
f
nX,

with E2-term a “Tate cohomology” of H�X as a module over the Steenrod algebra
(Proposition 6.3 and Theorem 7.1). In all cases we know of Lf

nX � LnX for an
fp-spectrum X.

1.1. Organization of the paper. In Section 2 we discuss modules and
comodules which are finitely presented over the Steenrod algebra. In Section 3
we define the notion of fp-spectra, and give examples. In Section 4 we discuss a
duality functor for finitely presented comodules over the Steenrod algebra, which
is related to the action of Brown-Comenetz duality on Eilenberg-Mac Lane spectra
discussed in Section 5. In Section 6 we note that an fp-spectrum admits a tower
associated to a spectral sequence whose E2-term is the “Tate cohomology” of the
homology of the spectrum, and in Section 7 show that such a tower realizes the
localization functor Lf

n. In Section 8 we describe the duality theory of fp-spectra.
In Section 9 we calculate some examples.

1.2. Notation. In this paper we work at one prime p at a time. We let A�

denote the mod p Steenrod algebra, and A� denote the dual mod p Steenrod
algebra.

Unless otherwise indicated, all vector spaces, modules, and comodules in this
paper are graded. If V is a graded vector space over Fp , then V̌ denotes the linear
dual hom (V , Fp). If V is a left comodule over a graded Hopf algebra B, then V̌ is
taken to be a left comodule over B, via the canonical anti-automorphism � of B.

When dealing with graded objects, we use the following sign convention: a
sign is introduced whenever two symbols of odd degree are commuted.

2. Finitely presented modules and comodules over the Steenrod algebra.
A module M over the mod p Steenrod algebra A� is called finitely presented if
it fits in an exact sequence of modules

A� 
 V1 ! A� 
 V0 ! M ! 0

where Vi for i = 0, 1 are finite dimensional graded Fp-vector spaces. Likewise, a
comodule N over the dual mod p Steenrod algebra A� is called finitely presented
if it fits in an exact sequence of comodules

0! N ! A� 
 V0 ! A� 
 V1

where Vi for i = 0, 1 are finite dimensional graded Fp-vector spaces. Because all
finitely presented modules and comodules are of finite type, we can pass easily
between comodule and module language by taking vector space duals.
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The Steenrod algebra A� is a union of finite-dimensional sub-Hopf algebras.
For example, A� =

S
n A�(n), where A�(n) � A� is a finite dimensional sub-Hopf

algebra of the Steenrod algebra, generated as an algebra by fSq2i
j i � n + 1g if

p = 2 and by f�, Ppi
j i � ng if p is odd. Recall that A� is free as an A�(n)-module.

LEMMA 2.1.
(1) A module M over A� is finitely presented if and only if it is of the form

M � A� 
E N for some finite dimensional sub-Hopf algebra E � A� and some
finite dimensional E-module N.

(2) Every map f : M ! M0 of finitely presented A-modules is of the form
f � A� 
E g: A� 
E N ! A� 
E N0 for some finite dimensional sub-Hopf algebra
E � A� and some map g: N ! N0 of finite dimensional E-modules.

Proof. Any finite sub-Hopf algebra E � A� is contained in A�(n) for some
n � 0, whence part 1 is [12, Ch. 13, Prop. 2(a)]. Part 2 follows by similar
arguments.

PROPOSITION 2.2.
(1) The kernel and cokernel of a map of finitely presented A�-modules are

finitely presented.
(2) A retract of a finitely presented A�-module is finitely presented.
(3) If 0! M0 ! M ! M00 ! 0 is a short exact sequence in which M0 and M00

are finitely presented, then M is also finitely presented.

Proof. Since A� is A�(n)-free, the functor A� 
A�(n) (�) is exact, and hence
part (1) follows from (2.1).

To prove part (2), note that a retract N of M is the kernel of an idempotent
self-map e: M ! M. Hence part (2) follows from part (1).

The proof of part (3) is a standard result about finitely presented modules
over any ring.

PROPOSITION 2.3. Suppose M is an A�-module and F is a finite A�-module.
Then M is finitely presented if and only if M 
 F is.

Proof. It is immediate from Proposition 2.2 that M 
 F is finitely presented
if M is, since F admits a finite filtration whose subquotients are copies of Fp .

Suppose M 
 F is finitely presented. Since F is a finite module, we can
choose a “pinch” map �: F ! ΣdFp to a “bottom-dimensional cell” of F, and
we can write i: F̄ ! F for the kernel of �. Then there is an exact sequence

M 
 F̄ 
 F
1
i
�
���! M 
 F

1
�
���! M ! 0

which exhibits M as a cokernel of a map between finitely presented modules, and
the result follows from Proposition 2.2.
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Remark 2.4. Note that Lemma 2.1, Proposition 2.2, and Proposition 2.3 dual-
ize to similar statements about finitely presented comodules. We will not state the
dual form of these results, although we will make use of them in what follows.

2.5. Homological algebra for finitely presented comodules. Henceforth
we concentrate on finitely presented comodules. We letMfp denote the category
of finitely presented comodules over A�. By Proposition 2.2 we see that Mfp is
an abelian category.

PROPOSITION 2.6. The dual Steenrod algebra A�, viewed as an A�-comodule, is
both projective and injective inMfp, andMfp has enough projectives and injectives.

Proof. It is clear that A� is injective in the full category of A� comodules,
and hence A� is injective in Mfp and there are enough injectives in Mfp. To
prove that A� is projective, consider a surjection M ! M0 of finitely presented
comodules. By Lemma 2.1, this map is extended up from a surjection N ! N0 of
finite A�(n)-comodules. Since homA� (A�, M) � homA�(n) (A�, N) and A� is A�(n)-
free, any map A� ! M0 can be lifted to a map to M. Furthermore, we can always
produce enough maps from A� to a finitely presented comodule, and thus Mfp

has enough projectives.

Remark 2.7. It is known that the Steenrod algebra is injective as an A�-module
over itself [12, p. 201]. It would be interesting to know whether A� is projective
as a comodule over itself, without the restriction to the finitely presented category.

Given a finitely presented comodule M, one can define its Tate cohomology
as follows. By Proposition 2.6 we can choose injective and projective resolutions

0! M ! C0 ! C1 ! C2 ! � � �

and

� � � ! C�3 ! C�2 ! C�1 ! M ! 0

by finitely generated free A�-comodules. By gluing the ends together, we obtain
an unbounded complex

� � � ! C�2 ! C�1 ! C0 ! C1 ! � � � ,

which in each degree is injective in the category of comodules. For s 2 Z define

Hs
Tate(M) = Hs[ homA� (Fp , C�)].

Of course, if we can write M � A� 
A�(n) N for some A�(n)-comodule N, and
we choose resolutions 0 ! N ! D� and D�� ! N ! 0 of N by finite free
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A�(n)-comodules, then we see that

Hs
Tate(M) � Hs[ homA�(n) (Fp , D�)].

These groups are the same as morphisms in the stable category of A�(n)-modules,
as is shown in [7, Sec. 9.6].

3. fp-spectra. In this section we define the notion of fp-spectra, and pro-
duce several examples. Recall that we work in the category of p-local spectra.

We first note the following theorem of Mitchell.

THEOREM 3.1. (Mitchell) [13] For each n there exists a nontrivial finite complex
F such that H�F is A�(n)-free.

If X is a spectrum, say that ��X is finite if �kX = 0 for all but finitely many
k 2 Z, and is a finite group otherwise.

PROPOSITION 3.2. Suppose X is a connective, p-complete spectrum. Then the
following are equivalent.

(1) H�X is finitely presented as a comodule over the Steenrod algebra.
(2) H�X � A� 
A�(n) M for some n � 0 and some finite A�(n)-comodule M.
(3) There exists a nontrivial finite complex F such that X ^ F is a finite wedge

of suspensions of mod p Eilenberg-Mac Lane spectra.
(4) There exists a nontrivial finite complex F such that ��(X ^ F) is finite.

Proof. The equivalence of (1) and (2) is just Lemma 2.1. Likewise, (4) is
immediate given (3).

To show that (2) implies (3), we let F be as in Theorem 3.1, with H�F free
over A�(n). Thus H�(X ^ F) is free over the Steenrod algebra on a finite set of
generators, whence X^F is a wedge of mod-p Eilenberg-Mac Lane spectra HFp .

To show that (4) implies (1) note that if ��Y is finite for a spectrum Y , then Y
can be built from finitely many copies of HFp , whence H�Y is finitely presented
by Proposition 2.2. Thus if ��(X ^ F) is finite, then H�(X ^ F) � H�X 
 H�F is
finitely presented, and hence H�X is finitely presented by Proposition 2.3.

We call a spectrum X an fp-spectrum if it is connective, p-complete, and
satisfies any of the four equivalent statements of Proposition 3.2. Let C denote
the class of all fp-spectra. This class includes the Eilenberg-Mac Lane spectra
HZ=pn and HZp , the p-completed Johnson-Wilson spectrum BPhni, which has
��BPhni � Zp[v1, : : : , vn], and connective Morava K-theories. Nontrivial suspen-
sion spectra, and in particular finite complexes, are not fp-spectra.

Recall that a finite complex F is of type n if K(0)�F � � � � � K(n�1)�F � 0
and K(n)�F 6� 0, where K(m) denotes the mth Morava K-theory. Define the
fp-type of an fp-spectrum X by

fptype(X) = minf(type(F)� 1) such that ��(X ^ F) is finiteg.
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By the thick subcategory theorem [6], if fptype(X) = n then ��(X ^ F) is fi-
nite for all F of type > n. Thus, fptype(HFp) = �1, fptype(HZp) = 0, and
fptype(BPhni) = n. Furthermore, if H�X � A� 
A�(n) M, then fptype(X) � n.

Let Cn denote the class of fp-spectra of type � n. Then Cn is a subcategory
of the category of spectra, and Cn � Cn+1.

PROPOSITION 3.3. The classes C and Cn for n � �1 are thick subcategories of
the homotopy category of spectra.

Proof. That C is a thick subcategory is an immediate consequence of crite-
rion (4) of Proposition 3.2. Alternately, this follows from criterion (1) of Propo-
sition 3.2 together with Proposition 2.2. The proof of Cn is similar.

For example C�1 is the class of all p-complete spectra X with ��X finite; as
a thick subcategory it is generated by HFp . Likewise, C0 is the class of all fp-
spectra which are finite Postnikov towers; as a thick subcategory it is generated
by HZp . The class C1 contains the p-completed connective K-theory spectra bo
and bu, along with their connective covers. Thus C1 contains the image of J
spectrum, since J � fib(bo ! bspin). The class C2 contains eo2, the connective
version of the “higher real K-theory” spectrum EO2 of Hopkins and Miller.

3.4. Ln-localization and fp-spectra. Let Ln denote Bousfield localization
with respect to the wedge K(0) _ � � � _ K(n) of Morava K-theories. A spectrum
W is Ln-local if LnW � W.

PROPOSITION 3.5. Let W be an Ln-local spectrum such that for each k 2 Z the
homotopy group �kW has the form

�kW � Fk � Z�ak
p � (Q =Z (p) )

�bk � Q �ck
p ,

where Fk is a finite p-group, ak = 0 = ck for all sufficiently small k � 0, and
bk = 0 = ck for all sufficiently large k� 0.

Then there exists a map f : X ! W such that X is an fp-spectrum of fp-type n
and LnX ! LnW � W is a weak equivalence.

Proof. Consider the connected cover Y = W(�N, : : : ,1), where N is chosen
so that ak = ck = 0 for k < �N. If F is a finite complex with bottom cell in
dimension 0 and top cell in dimension d, then the map Y ^ F ! W ^ F is an
isomorphism on �k for k > d � N, as can be seen by comparing the Atiyah-
Hirzebruch spectral sequences computing Y�F and W�F.

If F is a type (n + 1) complex, then W ^ F � �, and so Y ^ F has nontrivial
homotopy in only a finite range of dimensions ( � N, : : : , d � N), and each
homotopy group is finite. Thus we have found a connective spectrum Y which
satisfies criterion (4) of Proposition 3.2, and furthermore LnY � W, since the
fiber of Y ! W is coconnective with torsion homotopy and thus is killed by Ln.
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In order to get a p-complete spectrum, it suffices to replace any copies of
Q =Z (p) or Q p in the homotopy of Y by a finite torsion group or a copy of Zp

respectively; by hypothesis there are only finitely many such copies to worry
about. Note that [Σ�1HA, HQ =Z (p) ] is a finite torsion group if A is a finitely
generated Zp-module and i > 0; thus by induction on the Postnikov tower of Y
we can see that we can always find a map

Y !
r_

i=1

ΣniHQ =Z (p)

which is surjective on homotopy, and so that the fiber X of this map is p-complete.
Then since LnHQ =Z(p) � � we see that X is the desired spectrum.

Remark 3.6. In view of Conjecture 7.3 and of Proposition 8.9, it seems
likely that the converse of Proposition 3.5 should hold. That is, if X is an fp-
spectrum with fptype(X) = n, then we expect that �kLnX has the form given in
Proposition 3.5.

It is interesting to know when the Ln-localization of a finite complex F is
also the Ln-localization of an fp-spectrum X. One can say the following.

PROPOSITION 3.7. If F is the p-completion of a finite complex, then LnF is the
Ln-localization of an fp-spectrum X in the following cases,

(1) n = 0 or n = 1 (at any prime),

(2) n = 2 if p � 5, or

(3) for any n and any prime p if F is a type n complex.

Proof. It suffices to show in each case that the hypotheses of Proposition 3.5
are satisfied.

The cases n = 0 and n = 1 are well known. In fact, for n = 0 take X = HZp^F,
and for n = 1 take X = J ^ F, where J is the connective image-of-J spectrum.

If n is arbitrary, but F is a type n complex, then the hypotheses of Proposi-
tion 3.5 hold. This is a consequence of the fact that the cohomology of the Morava
stabilizer algebra is a finitely generated algebra (see [15, Theorem 6.2.10]), to-
gether with Hopkins and Ravenel’s demonstration of a horizontal vanishing line
at the E1-term of the Adams-Novikov spectral sequence of LnF (see [16, Sec-
tion 8.3]). These imply that �kF is finite for all k.

When n = 2 and p � 5, one can take a spectrum of the form Y ^ F, where
Y is an fp-spectrum such that L2Y � L2S0. We show that the hypotheses of
Proposition 3.5 hold for L2S0 at p � 5.

First, we note that the hypotheses of Proposition 3.5 hold for L2M(p), the
localization of the mod p Moore space. This is a consequence of Shimomura
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[18], as we explain below. There is a diagram

L2M(p) ���! L1M(p) ���! L2M(p, v11 )??y ??y ??y�
LK(2)M(p) ���! L1LK(2)M(p) ���! L2M(p, v11 )

in which the left-hand square is a pull-back square; this is because all the objects
in it are L2-local, and the square is a pull-back after smashing with K(0)_K(1)_
K(2). Since L1M(p) � L1(v�1

1 M(p)) � L2(v�1
1 M(p)), the top row is a cofiber

sequence, and thus so is the bottom row.
Shimomura computes the E2-term of the adams-Novikov spectral sequence

for L2M(p, v11 ). Using Shimomura’s calculation one may (with careful analysis)
read off that each group �kL2M(p, v11 ) must be finite; see the presentation of the
results of this calculation given in [17]. Since �kL1M(p) is known to be finite,
this shows that �kL2M(p) must be finite.

Hovey and Strickland [8, Thm. 15.1] actually carry out the careful analysis
to show that each group �kLK(2)M(p), k 2 Z, is finite, so we will derive what
we need from their results. To derive the finiteness of �kL2M(p), it suffices to
show that L1LK(2)M(p) has finite homotopy groups. This spectrum is equivalent to
v�1

1 LK(2)M(p), since the v1-self map of M(p) is trivial on K(2)�M(p). It happens
that ��LK(2)M(p) decomposes as a finite sum of copies Fp[v1] plus a summand
which is v1-torsion. Thus ��v

�1
1 LK(2)M(p) is a finite sum of copies of the form

Fp[v�1 ], which is clearly a finite group in each dimension.
When n = 2 and p � 5, the hypotheses of Proposition 3.5 hold for L2S0; this is

a consequence of the above remarks together with the calculation of Shimomura
and Yabe [19] of ��L2S0 at p � 5. They show that the homotopy of L2S0

consists of a free summand in dimension 0, summands of the form Q =Z (p) in
stems �3,�4, and �5, together with a summand T consisting of noninfinitely
divisible torsion. The above remarks on the finiteness of �kL2M(p) imply that
the summand T of ��L2S0 is finite in each stem.

We are led to make the following conjectures.

Conjecture 3.8. The hypotheses of Proposition 3.5 hold for any Ln-localization
of a finite complex, for any n � 0.

Conjecture 3.9. For every finite complex F there exists an fp-spectrum X
such that LnF � LnX.

Of course, Conjecture 3.8 implies Conjecture 3.9 as we have shown above.
There is also reason to believe that Conjecture 3.9 would imply Conjecture 3.8;
see Section 7.2.
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3.10. Adams towers for fp-spectra. For a spectrum X we can construct an
Adams tower. This is a tower of spectra � � � ! Xs+1 ! Xs ! � � � with X0 = X

and with fiber sequences Xs+1 ! X2
ks�! Σ�sHVs, where ks is injective on mod p

homology; hence there is a resolution

0! H�X ! X�HV�,

and an Adams spectral sequence with Es,t
2 = Exts,t

A�(Fp, H�, X).

If X is an fp-spectrum, we can choose an Adams tower in which each Vs is
a finite dimensional graded vector space. We call such an fp-Adams resolution.
In fact, if H�X � A 
A�(n) M for some finite A�(n)-module M, then the chain
complex H�HV� is induced from a resolution of M by A�(n)-comodules.

Given an Adams tower fXsg, we may produce another tower

� � � ! Xs
0 ! Xs�1

0 ! � � � ! X1
0 ! X0

0 ! �

by taking cofibers Xs+1 ! X ! Xs
0. The fibers in this tower are Σ�sHVs !

Xs
0 ! Xs�1

0 . Note that in the E2-term of the spectral sequence for this tower, each
horizontal line Es,�

2 is finite dimensional, and thus the spectral sequence satisfies
the complete convergence condition of [2, p. 263]. Thus the homotopy inverse
limit holims Xs

0 does not depend on the choice of fp-Adams resolution, and by
a result of Bousfield [1, Prop. 5.8 and Thm. 6.6] is equivalent to X, since X is
p-complete and connective.

4. Duality for finitely presented comodules. In this section we describe
a duality functor Ĩ on the category of finitely presented comodules. This functor
was essentially introduced by Brown and Comenetz in [3]. Our interest in this
functor stems from the fact that it generalizes the notion of “Spanier-Whitehead
duality” of finite comodules over A�(n), in which a comodule is dual to its vector
space dual. It will be needed in later sections to study duality on fp-spectra.

4.1. Construction of functors J̃ and Ĩ. To motivate the construction, note
that if X is spectrum and H denotes the mod p Eilenberg-Mac Lane spectrum, then
the graded vector space [H, X]� is in a natural way a module over the Steenrod al-
gebra. This object is approximated by the edge map [H, X]� ! homA� (H�H, H�X)
of the Adams spectral sequence. This algebraic approximation itself admits an
action by the Steenrod action, and we will call this module J̃(H�X). The vec-
tor space dual to J̃(H�X) will be Ĩ(H�X), which admits a coaction by the dual
Steenrod algebra.

Recall that is we regard the dual Steenrod algebra A� as a left-comodule over
itself, then each element a 2 A� of the Steenrod algebra induces a map A� ! A�
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of left A�-comodules via

a � z =
X

(� 1)jajjzjz0hz00, ai,

where z 2 A�,
P

z0
 z00 is the diagonal of z in A�
 A�, and hz, ai represents the
usual pairing of A� and A�. In fact, there is an isomorphism of algebras

homA� (A�, A�) � A�.(4.2)

We reserve the notation a � z for this action. Note that this action gives A� the
structure of a left A�-module; however, this is not identical to the usual left action
of the Steenrod algebra on H�H.

We define a functor J̃ from left A�-comodules to left A�-modules by

J̃(M) = homA� (A�, M).

This has a natural right A�-action induced by pre-composition of comodule maps,
using (4.2), which is made into a left A�-action using �; if z 2 A�, a 2 A�, and
f 2 J̃(M), the left action can be written

(a � f )(z) = (� 1)jajj f jf (�a � z).

Note that if M is finitely generated then J̃(M) is bounded below (where we use
cohomological grading for J̃(M)).

We define a functor Ĩ from finitely generated left comodules to left comodules
by

Ĩ(M) = (J̃(M))̌ � homA� (A�, M)̌.

Since J̃(M) was bounded below, Ĩ(M) is bounded below, and thus receives a left
comodule structure in the usual way. This structure is characterized as follows:
if u 2 Ĩ(M) and u 7!

P
u0 
 u00 2 A� 
 Ĩ(M) is the comodule action on u, and if

a 2 A� and f 2 J̃(M), then

hu, a � f i =
X

(� 1)jajju
00jhu0, aihu00, f i.

In comparison, Brown and Comenetz [3] define a functor cp on the category
of A�-modules; their functor is defined by

cp(M) � homA� (M, A�),

with an appropriate A�-action. Thus, our Ĩ is just a comodule version of their cp.
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4.3. Action of J̃ and Ĩ on free comodules. Let Mfree � Mfp denote the
full subcategory of comodules of the form A� 
 V , where V is a finite vector
space. We want to compute the action of J̃ and Ĩ on this subcategory.

The following describes the category Mfree.

PROPOSITION 4.4. For finite V and W, homA� (A�
V , A�
W) � A�
hom (V , W),
where a
 � 2 A� 
 hom (V , W) corresponds to the morphism of comodules

z
 v 7! (� 1)j�jjzja � z
 �(v), z 2 A�, a 2 A�, v 2 V ,� 2 hom (V , W),

and composition of maps is given by (a
 �) � (b
 � ) = (� 1)j�jjbjab
 �� .

Proof. Straightforward.

PROPOSITION 4.5. There is a natural isomorphism

J̃(A� 
 V) � homA� (A�, A� 
 V) � A� 
 V

of left A�-modules, where a
 v 2 A� 
 V corresponds to the map defined by

z 7! (� 1)jzjjvj�a � z
 v, z 2 A�, a 2 A�, v 2 V .

Given a map a 
 �: A� 
 V ! A� 
 W of comodules, the induced map J̃(a 

�): A� 
 V ! A� 
W sends b
 v 7! (� 1)jbj(jaj+j�j)b�a
 �(v).

Proof. Straightforward.

COROLLARY 4.6. There is a natural isomorphism

Ĩ(A� 
 V) � (A� 
 V )̌ � A� 
 V̌

of left-comodules. The induced map Ĩ(a
 �): A� 
 W̌ ! A� 
 V̌ sends

z
 w̌ 7! (� 1)j�jjzj�a � z
 �̌(w̌), z 2 A�, a 2 A�, w̌ 2 W̌ ,

where �̌ 2 hom (W̌, V̌) is the adjoint to � 2 hom (V , W). In other words, Ĩ(a
 a) =
�a
 �̌.

Remark 4.7. In terms of bases vj and wi for V and W we can view maps
A� 
 V ! A� 
W as matrices (aij) with entries in the Steenrod algebra, acting
by X

j

zj 
 vj 7!
X

i,j

aij � zj 
 wi.

Hence, the induced map Ĩ(aij): A� 
 W̌ ! A� 
 V̌ corresponds to the matrix
(�aji) in terms of the dual bases v̌j and w̌i of V̌ and W̌.



1164 MARK MAHOWALD AND CHARLES REZK

4.8. Properties of the duality functor.

PROPOSITION 4.9. The functor Ĩ restricts to a functor Ĩ: Mop
fp ! Mfp, and is

exact onMfp. Furthermore, there is a natural isomorphism M ! Ĩ ĨM for objects
inMfp.

Proof. That Ĩ is exact on the subcategory of finitely presented comodules fol-
lows from Proposition 2.6. By Corollary 4.6 the functor Ĩ takes finitely generated
free comodules to the same, and thus by exactness Ĩ(Mfp) �Mfp.

One can construct a natural isomorphism M ! Ĩ ĨM when M � A� 
 V ,
since by Corollary 4.6 Ĩ Ĩ(A� 
 V) is tautologically isomorphic to A� 
 V . This
isomorphism extends by exactness to all finitely presented comodules.

PROPOSITION 4.10. Let M be a finite A�(n)-comodule. Then

Ĩ(A� 
A�(n) M) � A� 
A�(n) Σa(n)M̌

as left comodules, where a(n) is the dimension of the “top cell” of A�(n).

Proof. There is an exact sequence

0! M ! A�(n)
 V
(aij)
���! A�(n)
W

of A�(n)-comodules, where aij 2 A�(n). After applying vector space duals we can
identify the resulting sequence with

0 Σ�a(n)M̌  A�(n)
 V̌
(�aji)
 ��� A�(n)
 W̌

by “Poincaré duality” of A�(n) [12, Ch. 12.2]. The result follows from Remark 4.7
after extending up to A�.

5. Brown-Comenetz duality. Recall that the functor

X 7! hom (�0X, Q =Z)

is a generalized cohomology theory satisfying the wedge axiom, and hence is
represented by a spectrum I. We write IY = F(Y , I) for the function spectrum,
whence IY is the spectrum representing the functor

X 7! IY0(X) = hom (Y0X, Q =Z).

The spectrum IY is called the Brown-Comenetz dual of Y .
We write DX � F(X, S0) for the Spanier-Whitehead dual of X. Note that if X

is any spectrum and F is a finite complex, then the natural map IX^DF ! I(X^F)
is an equivalence.
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There is natural double-dual map X ! IIX. If Y is a spectrum such that each
homotopy group �kY is finite, then Y � IIY via this map. Thus, given such a Y
and given any spectrum X, there is a natural isomorphism

[X, Y] � [IY , IX].

5.1. Eilenberg-Mac Lane spectra. Let H � HFp denote the mod p
Eilenberg-Mac Lane spectrum. Then IH � H. In fact, by the universal coef-
ficient theorem.

IH�X � hom (H�X, Q =Z) � hom (H�X, Fp) � H�X.

LEMMA 5.2. Under the above identification the map

I: [H, H]� ! [IH, IH]� � [H, H]�

sends a 2 A� to �a.

Proof. This is [3, Thm. 1.9(d)].

More generally, let V denote a finite dimensional graded Fp-vector space, and
let V̌ = hom (V , Fp) denote its vector space dual. Let HV denote the generalized
Eilenberg-Mac Lane spectrum with ��HV = V , whence HV�X � H�X 
 V .

PROPOSITION 5.3. There is an equivalence IHV � HV̌, and we have isomor-
phisms

H�(IHV) � J̃(H�HV)

of A�-modules and

H�(IHV) � Ĩ(H�HV)

of A�-comodules which are natural in HV.

Proof. This is immediate from Corollary 4.6 and Lemma 5.2; alternatively, it
follows from [3, Thm. 1.3].

5.4. Algebraic approximation. We note that the functor Ĩ of Section 4
serves as an algebraic “approximation” to H�IX, at least when H�X has finitely
presented homology.

PROPOSITION 5.5. For each spectrum X with finitely presented homology, there
is a map

�X: Ĩ(H�X)! H�IX
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which is natural in X. Furthermore, this map is an isomorphism when ��X is finite.

Compare with [3, Thm. 1.13].

Proof. Given X we can choose an Adams resolution

X ! HV0 ! HV1 ! � � � ,

in which V0 and V1 are finite dimensional vector spaces, and the sequence

0! H�X ! H�HV0 ! H�HV1

is exact. Applying I to the first diagram gives maps

IX  HV̌0  HV̌1

and a sequence

H�IX  Ĩ(H�HV0) Ĩ(H�HV1),

not necessarily exact. We let �X be the induced map

�: Ĩ(H�X) = Cok
�
Ĩ(H�HV1)! Ĩ(H�HV0)

�
! H�IX.

To see that �X is independent of the choice of resolution and is natural, use
a map between Adams resolutions.

The map � is by construction an isomorphism for X = HFp . By the exactness
property of Proposition 4.9, we see that �X is an isomorphism for any X in
the thick subcategory generated by HFp , which are precisely the X with finite
homotopy.

6. Geometric realization of Tate cohomology. In this section we note
that one can construct for each fp-spectrum a Z-indexed Adams tower; this is a
tower which extends both above and below X, whose layers and finite mod p
generalized Eilenberg-Mac Lane spectra, and which leads to a spectral sequence
whose E2-term is the Tate cohomology of H�X. We give several constructions,
starting with the most general.

6.1. Construction of the tower.

LEMMA 6.2. Let X be an fp-spectrum. Then

[H, X]� � homA� (A�, H�, X) � J̃(H�, X).
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Proof. Choose an fp-Adams tower fXsg for X. Then there is a spectral se-
quence Es,t

1 = [H, HVs]t ) [H, X]t�s. We claim that

(1) Es,t � 0 for s > 0, so that E0,t
2 � E�,t

1 , and

(2) E0,t
2 � homA� (A�, H�X).

Since X is connective and p-complete, the first claim implies that the spectral
sequence converges, and thus E0,t

2 � [H, X]t.
To prove the claim, recall that the resolution 0! H�X ! H�HVs is extended

up from a resolution 0! M ! C(s) of A�(n)-modules. Now

[H, HVs]� � homA� (A�, A� 
A�(n) C(s)) � homA�(n) (A�, C(s)).

Since as an A�(n)-comodule A� � A�(n)
A�==A�(n) we see that A� is projective
as an A�(n)-comodule, and thus the sequence

0! homA� (A�, H�X)! homA� (A�, H�HV�)

is exact as desired.

Thus, given an fp-spectrum X, we may construct a tower “realizing” the Tate
cohomology by constructing fp-spectra X�s for s � 0 inductively as follows. First,
let X0 = X. Since H�X�s � A�
A�(n) M(� s) for some finite module M(� s), we
can choose a surjection C(� s� 1)! M(� s) from a free A�(n)-comodule. This
may be extended to a surjection A�
A�(n) C(� s�1)! A�
A�(n) M(� s), which
in turn by the above lemma is realized by a map of spectra ΣsHV�s�1 ! X�s. If
we take the cofiber

ΣsHV�s�1 ! X�s ! X�s�1

we get another fp-spectrum X�s�1; iteration produces an infinite sequence � � � !
X�s ! X�s�1 ! � � � . If we put this sequence together with an fp-Adams tower
for X, we get a tower fXsgs2Z, which we call a Z-indexed Adams tower for X.

Note that given a map f : X ! Y of fp-spectra and given Z-indexed Adams
towers fXsg and fYsg, we can extend f to a map of towers, by the “dual” of the
usual argument, using Lemma 6.2. In particular, given any two Z-indexed Adams
towers for X we can produce a map between them.

For such a tower, let X̂ = hocolims!1 X�s. There is a full-plane Adams-type
spectral sequence Es,t

2 � Hs,t
Tate(H�X)) �t�sX̂ approximating the homotopy of X̂,

where Hs,t
Tate is the cohomology of Section 2.5.

Given such a tower fXsg, write Xq
p = cof (Xq+1 ! Xp) for �1 < p � q <1.

Then let X�1
1 = cof (X ! X̂) � hocolims!1 X�1

�s . A straightforward convergence
argument shows that the homotopy spectral sequence of this colimit converges,
and hence X�1

1 does not depend on the choice of the Z-indexed tower.
The above remarks are summarized in the following proposition.
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PROPOSITION 6.3.
(1) For each fp-spectrum X there exists a Z-indexed Adams tower fXsg.
(2) Given Z-indexed Adams towers fXsg and fYsg for X and Y, and a map

f : X ! Y, there exists a map ffs: Xs ! Ysg of towers which extends f .
(3) The colimit X̂ = hocolims!1 X�s of a Z-indexed Adams tower depends

only on X, and not on the choice of tower.

6.4. Alternate construction of the tower. Let X be an fp-spectrum, and
let F be a finite complex such that H�(X)
H�(F) is free A�-comodule. Suppose
also a map S0 ! F which is injective on homology. Such an F always exists; if
H�X is an extended A�(n)-comodule, let F be a Mitchell complex of type n as in
Theorem 3.1, and S0 ! F the inclusion of a bottom cell.

Form a fiber sequence F̄ ! S0 ! F, so that by Spanier-Whitehead duality
we get a dual fiber sequence DF ! S0 ! DF̄. We obtain a Z-indexed Adams
tower with

Xs =

(
X ^ F̄(s) if s � 0,
X ^ (DF̄)(�s) if s < 0,

where the maps in the tower are induced by fiber sequences X ^ F̄(s+1) ! X ^
F̄(s) ! X ^ F̄(s) ^ F and X ^ DF̄(s) ^ DF ! X ^ DF̄(s) ! X ^ DF̄(s+1).

In those cases when there actually exists a complex F with H�F � A�(n),
and H�X is an extended A�(n)-module, then this complex realizes the unbounded
chain complex obtained by gluing together the bar complex for M and the co-bar
complex for M as an A�(n)-comodule.

6.5. An explicit construction for bo. Recall that H�bo � A�=A�(Sq1, Sq2).
Consider the minimal Adams tower fbosg for bo at p = 2; write H�bos �
A� 
A�(1) M(s).

Let R(n) denote the cofiber of Pn ! S0 for n � 0; thus R(0) � S0. Recall
from [9] that

M(4s) � H�R(8s).

We define a map R(8s + 8) ! R(8s) as follows. Let p: R(8s + 8) ! ΣP8s+8
8s+1

denote the pinch map obtained by taking the quotient of R(8s)! R(8s + 8). Then
p � (16) � 0, where (16) is the degree 16 map on R(8s + 8) ! R(8s + 8), and
so (16) lifts to a map fs: R(8s + 8) ! R(8s). The map fs has degree 16 on the
bottom cell.

Likewise, we may consider the Spanier-Whitehead dual map

f�s = Dfs�1: DR(8s� 8)! DR(8s).

This map has degree 16 on the top cell. Note that f�1: S0 ! DR(8s), so we can
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Figure 1. A chart for Exts,t
A(1)

(H�(DR(16)),Z=2) for s < 16.

put all the fs for s 2 Z together into a Z-indexed tower

� � �
fs
! R(16)

f1
! R(8)

f0
! R(0) � S0 f�1

�! DR(8)
f�2
�! DR(16)

f�3
�! � � �

PROPOSITION 6.6. There is a Z-indexed Adams tower fbosg for bo with

bo4s �

(
bo ^ R(8s) if s � 0,
bo ^ DR(� 8s) if s < 0,

and the map bo4s+4 ! bo4s is bo ^ fs.

Proof. Set bo4s as above, and construct the start of a minimal Adams tower
bo4s+3 ! bo4s+2 ! bo4s+1 ! bo4s over bos. It is not difficult to see that
R(8s + 8) ! bo ^ R(8s) � bo4s lifts to bo4s+3, so that we can extend to a
map bo^ R(8s + 8)! bo4s+3; likewise, DR(8s� 8)! bo^DR(8s) � bo�4s lifts
to bo�4s+3, so we can extend to a map bo^DR(8s� 8)! bo�4s+3. The resulting
tower is an Adams tower.

We give a chart (see figure) which presents the Adams E2-term for bo ^
DR(16).

7. Finite localization. There exists a functor Lf
n and natural map X ! Lf

nX,
called finite localization. It is Bousfield localization with respect to the wedge
Tel (0)_� � �_Tel (n), where Tel (k) denotes the vk-telescope on some chosen type
k finite complex. The functor Lf

n is characterized by the following properties [11].
(1) The fiber Cf

n = X = fib (X ! Lf
nX) is a homotopy colimit of some diagram

of type-(n + 1) finite complexes.
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(2) There are no essential maps from a type (n + 1) finite complex to Lf
nX

(i.e., Lf
nX is Lf

n-local).
(3) Lf

n is smashing; i.e., Lf
nX � ^Lf

nS0.
Note also that (1) and (2) imply that Lf

nX � X if X is Lf
n-local. Also, if X is a

type n finite complex, then Lf
nX � v�1X, where v: ΣdX ! X is a vn-self map

of X.

THEOREM 7.1. Let X be an fp-spectrum with fptype(X) � n, and let fXsg be a
Z-indexed Adams tower for X, with colimit X̂. Then Lf

nX � X̂.

Proof. Consider the map i: X ! X̂. It suffices to show that

(1) Lf
n(i) is an equivalence, and

(2) X̂ is Lf
n-local.

Claim 1 follows immediately from the fact that Lf
nHFp � � and that Lf

n is smash-
ing, since X̂ is obtained from X by attaching mod p Eilenberg-Mac Lane spectra.

To prove claim 2, we must show that X̂ admits no essential maps from a type
(n + 1) finite complex F, or equivalently, that X̂ ^ F � � for any such complex.
This follows from the following:

(3) For any finite complex F, fXs^Fg is a Z-indexed Adams tower for X^F,
and X̂ ^ F � hocolim X�s ^ F.

(4) If Y is an fp-spectrum with ��Y finite, then Ŷ � � for any Z-indexed
Adams tower for Y .

The proof of claim 3 is straightforward.
To prove claim 4, apply Brown-Comenetz duality to the sequence

Y = Y0 ! Y�1 ! Y�2 ! � � � ! Ŷ .

This produces a tower

IŶ ! � � � ! IY�2 ! IY�1 ! IY0 = IY

which is easily seen to be an Adams tower for IY by Proposition 5.5. Since IY
is connective and p-complete and ��IY is finite, its Adams spectral sequence
converges, and IŶ � �, whence Ŷ � �.

7.2. Relation between Lf
n and Ln. Let X ! LnX denote Bousfield localiza-

tion with respect to K(0) _ � � � _ K(n). There is a natural map tn: Lf
nX ! LnX;

this map is an equivalence for X � S0, and hence for all X, if and only if the
Telescope Conjecture holds for all m � n. This conjecture is true for n = 0 and
n = 1, and is believed to be false for n � 2.

It is reasonable to ask whether tn is an equivalence when X is an fp-spectrum.
We note that tn is an equivalence in the following cases, which include all cases
we know of.
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(1) Since BPhni is a BP-module spectrum, one can compute LnBPhni using
the chromatic tower method of [14, Sec. 6]. (We would like to thank Hal Sadofsky
for pointing this out to us.) This calculation shows in particular that the fiber of
BPhni ! LnBPhni is coconnective with torsion homotopy; thus the fiber is killed
by Lf

n, and hence tn is an equivalence on LnBPhni, and is in fact an equivalence
on the thick subcategory of C generated by BPhni.

(2) For any fp-spectrum X obtained by the procedure of the proof of Propo-
sition 3.5, the map tn: Lf

nX ! LnX is an equivalence, since by construction the
fiber of X ! LnX is coconnective with torsion homotopy.

We make the following conjecture.

Conjecture 7.3. The map tn: Lf
nX ! LnX is an equivalence for all fp-

spectra X.

This conjecture is of interest, because it would give information on how badly
the Telescope Conjecture fails, assuming it does fail. Namely, suppose F is a type
n finite complex and v�1F is its vn-telescope; then if the Telescope Conjecture
fails for n and Conjecture 7.3 holds, it follows that �k(v�1F) is an infinite group
for some k 2 Z, whereas �kLnF is finite for all k. To see this, we argue as follows;
if each �k(v�1F) were a finite group, then the proof of Proposition 3.5 would
apply to show that there exists an fp-spectrum X with Lf

nX � v�1F. (We could
take X to be a connective cover of v�1F, for example.) However, Conjecture 7.3
would then imply that v�1F � LnX � LnF, contradicting the failure of the
Telescope Conjecture.

Conjecture 7.3 also would imply, using Proposition 8.9 of the next section,
that the two conjectures (3.8 and 3.9) discussed in Section 3 are in fact equivalent
statements.

8. Duality

8.1. Duality for fp-spectra of type less than n. Let

WnX = ICf
nX,

where Cf
n = fib (X ! Lf

nX). Thus Wn is a contravariant functor from spectra to
spectra. Since Lf

n is smashing,

WnX � F(X ^ Cf
nS0, IS0) � F(X, WnS0).

That is, WnS0 is a “dualizing complex” for Wn. Furthermore, there is a natural map
X ! WnWnX; this map is adjoint to the evaluation map X^F(X, WnS0)! WnS0.

Note that Wn vanishes on Lf
n-local spectra. Also, if ��X is finite, then Lf

nX � �
and we have WnX � IX.

Recall that Cn denotes the homotopy category of fp-spectra with fp-type � n.
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THEOREM 8.2. Let X be an object in Cn.

(1) There is a natural isomorphism H�WnX � Ĩ(H�X).

(2) WnX is in Cn.

(3) The natural map X ! WnWnX is an equivalence.

From this we obtain the following.

COROLLARY 8.3. The functor Wn restricts to a functor Wn: Cop
n ! Cn, which is

an equivalence of categories.

Proof. The corollary follows from the fact that the functor Wn is “self-
adjoint”; that is,

Wn: Sop
� S: (Wn)op

is a pair of adjoint functors, where S represents the homotopy category of spectra.
Part (2) of Theorem 8.2 says that Wn carries Cop

n into Cn, and part (3) says that
the restriction of Wn to Cn gives an adjoint equivalence Wn: Cop

n � Cn: (Wn)op

of categories.

Proof of Theorem 8.2. If X is an fp-spectrum, choose a Z-indexed Adams
tower fXsg, and as in Section 6.1 write Xp

q = cof (Xp+1 ! Xq). Then

Cf
nX � Σ�1 hocolim

s!1
X�1
�s

by Theorem 7.1, and thus

WnX � Σ
�

holim
s!1

IX�1
�s

�
.(8.4)

Write H�X � A�
A�(n) M. We can construct the bottom part of the Z-indexed
tower to realize any projective resolution of M by finite A�(n)-modules, e.g., by
the resolution dual to the minimal resolution 0 ! M̌ ! C� of M̌ by finite
A�(n)-modules. Then (8.4) immediately implies that WnX is connective and p-
complete, since the tower fI(X�1

�s )gs�1 must necessarily be the tower associated
with an Adams tower for WnX which realizes C�, and so the connectivity of
I(X�1

�s ) is bounded below by a fixed N for all s � 1.

Note that for any Y we have that HFp ^Lf
nY � �, whence the map H�C

f
nY !

H�Y is an isomorphism, so that there exists by Proposition 5.5 a natural compar-
ison map

�n(Y): Ĩ(H�Y) �
! Ĩ(H�C

f
nY)! H�WnY .

We want to show that �n(X) is an isomorphism.
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Since X has a Z-indexed tower, there is a sequence

� � � ! HV�2 ! HV�1 ! X

which induces an exact sequence

H�HV�2 ! H�HV�1 ! H�X ! 0

on homology. Applying Wn to this sequence gives a sequence

WnX ! WnHV�1 ! HnHV�2 ! � � �

which corresponds to an Adams resolution for WnX and hence induces an exact
sequence

0! H�WnX ! H�WnHV�1 ! H�WnHV�2.

It is clear that the comparison maps �n(HV�s) are isomorphisms, and so �n(X) is
an isomorphism, since Ĩ is exact. Thus we have proved parts (1) and (2) of the
proposition.

Part (3) follows from parts (1) and (2) together with Corollary 8.7, to be
proved below.

Remark 8.5. If X is a spectrum which might not be p-complete, and Xp

denotes its p-completion, then one can show via an arithmetic square argument
that Cf

nX � Cf
nXp, and hence WnX � WnXp. In particular, if Xp is an fp-spectrum,

we may conclude that WnWnX � Xp.

We still owe the reader one more fact

PROPOSITION 8.6. Suppose X and WnX have finitely presented homology. Then
there is a commutative square

Ĩ(H�WnX)
�n(WnX)
����! H�WnWnX??yĨ�n(X)

x??
Ĩ Ĩ(H�X)

�
 ��� H�X.

COROLLARY 8.7. If X and WnX have finitely presented homology and the maps

�n(X): Ĩ(H�X)! H�WnX, and �n(WnX): Ĩ(H�WnX)! H�WnWnX

are isomorphisms, then the map X ! WnWnX induces an isomorphism in homology.
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Proof of Proposition 8.6. Choose resolutions X ! HC0 ! HC1 and WnX !
HD0 ! HD1. This leads to a sequence

HĎ1 ! HĎ0 ! WnWnX ! HC0 ! HC1.

The diagonal map in the diagram is the induced map

Cok (H�HĎ1 ! H�HĎ0)! ker (H�HC0 ! H�HC1).

It is straightforward to check commutativity of the diagram.

8.8. A finiteness result.

PROPOSITION 8.9. Let X be an fp-spectrum with fptype(X) = n, and let Y = Lf
nX

be its finite localization. Then for each k 2 Z the homotopy group �kY has the form

�kY � Fk � Z�ak
p � (Q =Z (p) )

�bk � Q �ck
p ,

where Fk is a finite p-group, ak = 0 = ck for all sufficiently small k � 0, and
bk = 0 = ck for all sufficiently large k� 0.

Proof. There is a fiber sequence Cf
nX ! X ! Lf

nX, and the Brown-Comenetz
dual WnX of Cf

nX is an fp-spectrum by Theorem 8.2. Thus X is connective with
�kX � Fk � Z

mk
p , and Cf

nX is coconnective with �kCf
nX � F0k � (Q =Z (p) )nk . The

image and coimage of the connecting map �kCf
nX ! �kX can only be a finite

torsion group; thus, to prove the result for �kLf
nX we need to show that, in a

group extension of the form

0! F � Zm
p ! M ! F0 � (Q =Z ( p) )

n ! 0,

where F and F0 are finite p-groups, that M is as described in the statement of the
proposition.

It is easy to reduce to the case when F = 0 = F0. Then extensions are clas-
sified by elements of Ext ((Q =Z ( p) )n,Zm

p ) � hom (Zn
p ,Zm

p ); if A 2 hom (Zn
p ,Zm

p )
classifies the extension then

M � Cok
�
Zn

p
(A,I)
! Zm

p � Q n
p

�

where I : Zn
p ! Q n

p is the standard inclusion. It follows that M � Zm
p = im A �

Q n
p= ker A; this can be shown by choosing a map B : Zm

p ! Q n
p such that

(I � BA) : Zn
p ! Q n

p projects to the kernel of A 
 Q , in which case there is an
exact sequence

0! Zn
p

(A,I)
! Zm

p � Q n
p

(x,y)!(x,y�Bx)
�������! Zm

p = im A� Q n
p= ker A! 0
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which realizes the splitting of M. Now the result follows from the fact that
Zm

p = im A � F � Za
p and Q n

p= ker A � (Q =Z (p) )b � Q c
p , where F is a finite p-

group.

8.10. Duality for fp-spectra. Recall that there exist natural transformations
Lf

n+1X ! Lf
nX, and hence natural transformations WnX ! Wn+1X. We define

WX = hocolim
n!1

WnX.

If X is an fp-spectrum with fptype(X) = n, then Theorem 7.1 shows that Lf
mX �

Lf
nX for m � n, and thus WmX � WnX for m � n. This, together with Corollary 8.3

and the fact that C =
S

n Cn is the homotopy category of all fp-spectra, gives:

THEOREM 8.11. The functor W induces an equivalence of categories W: Cop !
C, and H�WX � Ĩ(H�X) for all X in C.

9. Calculations. In this section we compute WX in several cases, and thus
implicitly compute Lf

nX (and LnX, by Section 7.2) for sufficiently large n.

LEMMA 9.1. If X is a ring spectrum and Y is an X-module spectrum, then WnY
is also an X-module spectrum.

Proof. This is a formal consequence of the fact that WnY � F(Y , WnS0).

PROPOSITION 9.2. If X is an fp-spectrum which is a ring spectrum, H�X is self-
dual as a finitely-presented comodule (i.e., Ĩ(H�X) �

Pd H�X for some d), and
H�X does not split over the Steenrod algebra, then WX �

Pd X.

Proof. Choose a map Sd ! WX which hits the bottom homology class, dual
to the unit in H�X. By Lemma 9.1 this map extends to a map ΣdX ! WX of X-
module spectra, and this map is necessarily an isomorphism on mod p homology,
and hence an equivalence.

COROLLARY 9.3. We have that

(1) Wk(n) � Σ2pn�1k(n),

(2) WBPhni � Σe(n)BPhni, where e(n) = 2 pn+1�1
p�1 � (n + 1),

(3) Wbu � Σ4bu (at all primes),

(4) Wbo � Σ6bo (at all primes), and

(5) Weo2 � Σ23eo2 at p = 2 and at p = 3.

Proof. The only case which needs comment is (5). In this case it can be
derived from the following facts [5]. At p = 2, eo2 ^ F � BPh2i, where F is
a certain finite complex with H�F � DA�(1), the “double” of A�(1). At p = 3,
eo2 ^ (S0 [� e4 [2� e8) � BPh2i _ Σ8BPh2i.
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Remark 9.4. In each of the above examples, we can read off ��LnX from
our knowledge of the homotopy of X. In particular, in cases 2–5 there is a wide
“gap” between the first copy of Zp and the last copy of Q =Z ( p) in the homotopy
of LnX; if WX � ΣdX, then

�sX �

8><
>:
Zp if s = 0,
0 if 1� d < s < 0, and
Q =Z (p) if s = 1� d.

There is a convenient heuristic for reading off the expected size of the “gap”
in ��LnX for many ring spectra of the above type. If ��X 
 Q � Q p[x1, : : : , xn],
then the size of the gap is Σn

i=1(jxij + 1). For example, ��eo2 
 Q � Q p[x8, x12]
at p = 2 or 3, so the gap is (8 + 1) + (12 + 1) = 22. For BPhni the gap is the same
as the dimension of the Toda complex V(n), should it exist.

Recall from (4.10) that if H�X � A�
A�(n) M, then Ĩ(H�X) � A�
A�(n) ΣdM̌,
where d is the dimension of the “top cell” of A�(n).

PROPOSITION 9.5. Let Jp denote the connective image-of-J spectrum completed
at the prime p.

(1) For p odd, WJp � Σ3Jp.

(2) For p = 2, there is a cofiber sequence Σ3HF2 ! J2 ^ (S0 [2 e1 [� e3)!
WJ2.

Proof. At an odd prime, Jp is the fiber of any map BPh1i ! ΣqBPh1i,
q = 2(p � 1), which sends the cohomology generator � 2 HqΣqBPh1i to P1� 2
HqBPh1i. At p = 2, J2 is the fiber of any map bo ! bspin which sends the
cohomology generator �bspin 2 H4bspin to Sq4�bo 2 H4bo [10]. In either case, the
map in cohomology is induced from a map of A�(2)-modules.

We leave the odd prime case to the reader. Suppose p = 2, and let F =
S0[2 e1[� e3. Since bspin � Σ7bo^DF and H�(F^DF) is a direct sum over the
Steenrod algebra of a spherical class in dimension 0 with a free A�(1) module on
one generator, we see that J ^ F fits in a fiber sequence

J ^ F ! bo ^ F ! Σ7bo _ Σ4HF2 .

We can kill the copy of HF2 by taking the evident cofiber Σ3HF2 ! J ^F ! C,
so that we obtain a cofiber sequence

C! bo ^ F ! Σ7bo.

On applying W we get a fiber sequence

Σ�1bo! Σ6bo ^ DF ! WC! bo
f
! Σ7bo ^ DF.
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We can compute the action on f on cohomology, since by Proposition 4.10 it is
induced from a map of A�(2)-modules. The computation, which is straightfor-
ward, shows that the bottom class of Σ7bo ^ DF hits Sq4�bo 2 H4bo, and thus
WC � J.

COROLLARY 9.6. (Hopkins)

I(L1S0) � L1(S�1 [2 e0 [� e2).
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