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BROWN-COMENETZ DUALITY AND
THE ADAMS SPECTRAL SEQUENCE

By MARK MaHowALD and CHARLES REzk

Abstract. We show that the class of p-complete connective spectra with finitely presented coho-
mology over the Steenrod algebra admits a duality theory related to Brown-Comenetz duality. This
construction also produces a full-plane version of the classical Adams spectral sequence for such
spectra, which converges to the homotopy groups of a “finite” localization.

1. Introduction. Inthe paper [3], Brown and Comenetz introduced a notion
of duality into stable homotopy. In [4] Hopkins and Gross showed that this notion
in certain situations is closely connected with Spanier-Whitehead duality. In this
note we wish to explore this connection and investigate it in connection with
Adams spectral sequence considerations. In particular, we study a class of spectra
which we call fp-spectra (Section 3). These are connective, p-complete spectra
whose mod p cohomology is finitely presented over the Steenrod algebra; that
is, the cohomology of such a spectrum is described by a finite set of generators
together with a finite set of relations. This class of spectra includes the Johnson-
Wilson spectra BP(n), connective K-theories, and the “higher” connective K-
theory spectrum eo,. The class of fp-spectra aso includes some objects whose
Bousfidld Ly-localizations are the same as L-localizations of finite complexes, at
least in some cases. A classical example is the connective image-of-J spectrum,
whose Li-localization is L1 <. It follows from calculations of Shimomura and
Yabe that a —1-connective cover of L,S at primes p > 5 is also an fp-spectrum
(Proposition 3.7).

We show that the category of fp-spectra admits a notion of duality (Theo-
rem 8.11). This duality is related to both Brown-Comenetz duality and Spanier-
Whitehead duality. The dual WX of an fp-spectrum X will be defined to be the
Brown-Comenetz dual of the fiber of the map X — L' X to the “finite localiza-
tion” of X (for n sufficiently large). The dual WX is itself an fp-spectrum. This
duality is related to Spanier-Whitehead duality through its action on cohomol-
ogy, in the following sense. If H*X ~ A" ®a«n) M where A*(n) C A* is afinite
sub-Hopf algebra of the Steenrod algebra, and M is a finite A*(n) module, then

H*WX ~ A* @a«m M, where M ~ homg, (M, Fp) is the “Spanier-Whitehead
dual” of M as a finite module over A*(n).
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Because of this duality, the LL-IocaIizati on of the fp-spectrum is quite com-
putable. We show that there is a full-plane spectral sequence computing LIX,
with E>-term a “ Tate cohomology” of H*X as a module over the Steenrod algebra
(Proposition 6.3 and Theorem 7.1). In all cases we know of LIX = LnX for an
fp-spectrum X.

1.1. Organization of the paper. In Section 2 we discuss modules and
comodules which are finitely presented over the Steenrod algebra. In Section 3
we define the notion of fp-spectra, and give examples. In Section 4 we discuss a
duality functor for finitely presented comodules over the Steenrod algebra, which
isrelated to the action of Brown-Comenetz duality on Eilenberg-Mac Lane spectra
discussed in Section 5. In Section 6 we note that an fp-spectrum admits a tower
associated to a spectral sequence whose Ep-term is the “ Tate cohomology” of the
homology of the spectrum, and in Section 7 show that such a tower realizes the
localization functor L.f1. In Section 8 we describe the duality theory of fp-spectra.
In Section 9 we calculate some examples.

1.2. Notation. In this paper we work at one prime p at a time. We let A*
denote the mod p Steenrod algebra, and A, denote the dua mod p Steenrod
algebra.

Unless otherwise indicated, all vector spaces, modules, and comodulesin this
paper are graded. If V is a graded vector space over [Fy,, then V denotes the linear
dual hom (V,Fp). If V isaleft comodule over a graded Hopf algebra B, then Vis
taken to be a left comodule over B, via the canonical anti-automorphism x of B.

When dealing with graded objects, we use the following sign convention: a
sign is introduced whenever two symbols of odd degree are commuted.

2. Finitely presented modules and comodules over the Steenrod algebra.
A module M over the mod p Steenrod algebra A* is called finitely presented if
it fits in an exact sequence of modules

AV = A" @Vg— M —=0

where V; for i =0, 1 are finite dimensional graded Fy-vector spaces. Likewise, a
comodule N over the dual mod p Steenrod algebra A, is caled finitely presented
if it fits in an exact sequence of comodules

0O—-N—-AQ®Vo— A ®V1

where V; for i =0, 1 are finite dimensional graded [Fy-vector spaces. Because all
finitely presented modules and comodules are of finite type, we can pass easily
between comodule and module language by taking vector space duals.
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The Steenrod algebra A* is a union of finite-dimensional sub-Hopf algebras.
For example, A* = J, A*(n), where A*(n) C A" is a finite dimensional sub-Hopf
algebra of the Steenrod algebra, generated as an algebra by {Sf? |i<n+1}if
p=2andby {3,P" | i < n}if pisodd. Recall that A* is free as an A*(n)-module.

LEMmA 2.1.

(1) A module M over A* is finitely presented if and only if it is of the form
M =~ A* ®g N for some finite dimensional sub-Hopf algebra E ¢ A* and some
finite dimensional E-module N.

(2 Every map f: M — M’ of finitely presented A-modules is of the form
f ~ A*®e g A*®e N — A* @ N’ for some finite dimensional sub-Hopf algebra
E c A* and somemap g: N — N’ of finite dimensional E-modules.

Proof. Any finite sub-Hopf algebra E C A* is contained in A*(n) for some
n > 0, whence part 1 is [12, Ch. 13, Prop. 2(a)]. Part 2 follows by similar
arguments. |

ProrPosITION 2.2.

(1) The kernel and cokernel of a map of finitely presented A*-modules are
finitely presented.

(2) Aretract of a finitely presented A*-module isfinitely presented.

3)If0—- M — M — M" — Oisashort exact sequence in which M’ and M”
arefinitely presented, then M is also finitely presented.

Proof. Since A* is A*(n)-free, the functor A* ®a-n) (—) is exact, and hence
part (1) follows from (2.1).

To prove part (2), note that a retract N of M is the kerndl of an idempotent
self-map e M — M. Hence part (2) follows from part (1).

The proof of part (3) is a standard result about finitely presented modules
over any ring. |

PropPosiTioN 2.3. Suppose M is an A*-module and F is a finite A*-module.
Then M isfinitely presented if and only if M ® F is.

Proof. It is immediate from Proposition 2.2 that M ® F is finitely presented
if M is, since F admits a finite filtration whose subquotients are copies of .

Suppose M ® F is finitely presented. Since F is a finite module, we can
choose a “pinch” map 7. F — ZdIFp to a “bottom-dimensional cell” of F, and
we can writei: F — F for the kernel of 7. Then there is an exact sequence

— 1RI® 1®
MSERF — " M®F — M — 0

which exhibits M as a cokernel of a map between finitely presented modules, and
the result follows from Proposition 2.2. O
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Remark 2.4. Note that Lemma 2.1, Proposition 2.2, and Proposition 2.3 dual-
ize to similar statements about finitely presented comodules. We will not state the
dual form of these results, although we will make use of them in what follows.

2.5. Homological algebra for finitely presented comodules. Henceforth
we concentrate on finitely presented comodules. We let My, denote the category
of finitely presented comodules over A,. By Proposition 2.2 we see that My is
an abelian category.

ProrosiTion 2.6. Thedual Seenrod algebra A., viewed asan A.-comodule, is
both projectiveand injectivein Msp, and Ms, hasenough projectivesandinjectives.

Proof. It is clear that A, is injective in the full category of A, comodules,
and hence A, is injective in My, and there are enough injectives in My,. To
prove that A, is projective, consider a surjection M — M’ of finitely presented
comodules. By Lemma 2.1, this map is extended up from a surjection N — N’ of
finite A.(n)-comodules. Since homa, (A., M) ~ homa, i) (A«,N) and A, is A.(n)-
free, any map A, — M’ can be lifted to a map to M. Furthermore, we can always
produce enough maps from A, to a finitely presented comodule, and thus My
has enough projectives. O

Remark 2.7. It is known that the Steenrod algebraisinjective as an A*-module
over itself [12, p. 201]. It would be interesting to know whether A, is projective
as acomodule over itself, without the restriction to the finitely presented category.

Given a finitely presented comodule M, one can define its Tate cohomol ogy
as follows. By Proposition 2.6 we can choose injective and projective resolutions

0—-M—-C—-C—-C—---

and

-+—>C3—-C,—-C1—-M—-0

by finitely generated free A.-comodules. By gluing the ends together, we obtain
an unbounded complex

-—>Co—>C.1—-Ch—Cy— -,
which in each degree is injective in the category of comodules. For s € Z define
H3ae(M) = H[ homa, (Fp, C.)].

Of course, if we can write M ~ A, ®a,m N for some A, (n)-comodule N, and
we choose resolutions0 — N — D, and D_, — N — 0 of N by finite free
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A.(n)-comodules, then we see that

These groups are the same as morphisms in the stable category of A.(n)-modules,
asis shownin [7, Sec. 9.6].

3. fp-spectra. In this section we define the notion of fp-spectra, and pro-
duce several examples. Recall that we work in the category of p-local spectra
We first note the following theorem of Mitchell.

THeorem 3.1. (Mitchell) [13] For each nthereexistsanontrivial finite complex
F such that H,F is A.(n)-free.

If X is a spectrum, say that =, X is finite if mX =0 for al but finitely many
k € Z, and is a finite group otherwise.

PropPosiTioN 3.2. Suppose X is a connective, p-complete spectrum. Then the
following are equivalent.

(2) H.X isfinitely presented as a comodule over the Steenrod algebra.

(2) H. X = A, ®a,mn) M for somen > 0 and some finite A, (n)-comodule M.

(3) There exists a nontrivial finite complex F such that X A F isa finite wedge
of suspensions of mod p Eilenberg-Mac Lane spectra.

(4) There exists a nontrivial finite complex F such that =..(X A F) isfinite.

Proof. The equivaence of (1) and (2) is just Lemma 2.1. Likewise, (4) is
immediate given (3).

To show that (2) implies (3), we let F be as in Theorem 3.1, with H,F free
over A.(n). Thus H.(X A F) is free over the Steenrod algebra on a finite set of
generators, whence X A F is awedge of mod-p Eilenberg-Mac Lane spectra HIF},.

To show that (4) implies (1) note that if 7, Y isfinite for a spectrum Y, then Y
can be built from finitely many copies of HIF,, whence H..Y is finitely presented
by Proposition 2.2. Thus if 7.(X A F) isfinite, then H.(X A F) = H. X ® H.F is
finitely presented, and hence H, X is finitely presented by Proposition 2.3. m|

We call a spectrum X an fp-spectrum if it is connective, p-complete, and
satisfies any of the four equivalent statements of Proposition 3.2. Let C denote
the class of al fp-spectra. This class includes the Eilenberg-Mac Lane spectra
HZ/p" and HZ,, the p-completed Johnson-Wilson spectrum BP(n), which has
m«BP(Nn) & Zp[ v, . .., tn], and connective Morava K-theories. Nontrivial suspen-
sion spectra, and in particular finite complexes, are not fp-spectra.

Recall that a finite complex F is of type nif K(0).F ~ --- ~ K(h—1),F =0
and K(n),.F % 0, where K(m) denotes the mth Morava K-theory. Define the
fp-type of an fp-spectrum X by

fptype(X) = min{(type(F) — 1) such that =.(X A F) is finite}.
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By the thick subcategory theorem [6], if fptype(X) = n then 7.(X A F) is fi-
nite for all F of type > n. Thus, fptype(HF,) = —1, fptype(HZ,) = O, and
fptype(BP(n)) = n. Furthermore, if H. X =~ A, ®a,n) M, then fptype(X) < n.

Let C, denote the class of fp-spectra of type < n. Then C, is a subcategory
of the category of spectra, and Cn, C Cn+1.

ProrosiTion 3.3. The classes C and Cy, for n > —1 are thick subcategories of
the homotopy category of spectra.

Proof. That C is a thick subcategory is an immediate consequence of crite-
rion (4) of Proposition 3.2. Alternately, this follows from criterion (1) of Propo-
sition 3.2 together with Proposition 2.2. The proof of Cy is similar. O

For example C_1 isthe class of al p-complete spectra X with 7, X finite; as
a thick subcategory it is generated by HIF,. Likewise, Co is the class of all fp-
spectra which are finite Postnikov towers; as a thick subcategory it is generated
by HZ,. The class C1 contains the p-completed connective K-theory spectra bo
and bu, along with their connective covers. Thus C; contains the image of J
spectrum, since J =~ fib(bo — bspin). The class C, contains eo,, the connective
version of the “higher real K-theory” spectrum EO, of Hopkins and Miller.

3.4. Lp-localization and fp-spectra. Let L, denote Bousfield localization
with respect to the wedge K(0) Vv - - - vV K(n) of Morava K-theories. A spectrum
W is Ly-local if LaW ~ W.

ProrosiTion 3.5. Let W be an L,-local spectrum such that for each k € 7 the
homotopy group m¢W has the form

W ~ F @ ZSBak o (Q/Z(p))EBbk o anck,

where Fy is a finite p-group, ax = 0 = ¢ for all sufficiently small k <« 0, and
bk = 0 = ¢ for all sufficiently large k > 0.

Then there existsa map f: X — W such that X is an fp-spectrum of fp-type n
and LpX — LW ~ W is a weak equivalence.

Proof. Consider the connected cover Y = W(—N, ..., 00), where N is chosen
so that ax = ¢x = 0 for k < —N. If F is a finite complex with bottom cell in
dimension 0 and top cell in dimension d, then the map YA F — WA F isan
isomorphism on m for k > d — N, as can be seen by comparing the Atiyah-
Hirzebruch spectral sequences computing Y,.F and W, F.

If Fisatype (n+1) complex, then WA F =~ %, and so Y A F has nontrivial
homotopy in only a finite range of dimensions ( — N,...,d — N), and each
homotopy group is finite. Thus we have found a connective spectrum Y which
satisfies criterion (4) of Proposition 3.2, and furthermore LY ~ W, since the
fiber of Y — W is coconnective with torsion homotopy and thus is killed by L.
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In order to get a p-complete spectrum, it suffices to replace any copies of
Q/Zp) or Qp in the homotopy of Y by a finite torsion group or a copy of Z,
respectively; by hypothesis there are only finitely many such copies to worry
about. Note that [Z—lHA,HQ/Z(p)] is a finite torsion group if A is a finitely
generated Zy-module and i > O; thus by induction on the Postnikov tower of Y
we can see that we can aways find a map

]
Y — \/ ZniHQ/Z(p)
i=1

which is surjective on homotopy, and so that the fiber X of this map is p-complete.
Then since LhHQ/Z(p) ~ = we see that X is the desired spectrum. O

Remark 3.6. In view of Conjecture 7.3 and of Proposition 8.9, it seems
likely that the converse of Proposition 3.5 should hold. That is, if X is an fp-
spectrum with fptype(X) = n, then we expect that m«L,X has the form given in
Proposition 3.5.

It is interesting to know when the L,-localization of a finite complex F is
also the Ly-localization of an fp-spectrum X. One can say the following.

ProrosiTion 3.7. If F is the p-completion of a finite complex, then L,F isthe
Ln-localization of an fp-spectrum X in the following cases,

(1) n=0orn=1(atanyprime),
(20 n=2ifp>5,o0r

(3) for any nand any prime p if F isatype n complex.

Proof. It suffices to show in each case that the hypotheses of Proposition 3.5
are satisfied.

Thecasesn = 0and n = 1 arewell known. In fact, for n = 0 take X = HZ, AF,
and for n =1 take X =J A F, where J is the connective image-of-J spectrum.

If nisarbitrary, but F is a type n complex, then the hypotheses of Proposi-
tion 3.5 hold. Thisis aconsequence of the fact that the cohomology of the Morava
stabilizer algebra is a finitely generated algebra (see [15, Theorem 6.2.10]), to-
gether with Hopkins and Ravenel’s demonstration of a horizontal vanishing line
at the E.-term of the Adams-Novikov spectral sequence of LF (see [16, Sec-
tion 8.3]). These imply that mF is finite for all k.

When n =2 and p > 5, one can take a spectrum of the form Y A F, where
Y is an fp-spectrum such that LY ~ LS. We show that the hypotheses of
Proposition 3.5 hold for L, at p > 5.

First, we note that the hypotheses of Proposition 3.5 hold for LoM(p), the
localization of the mod p Moore space. This is a consequence of Shimomura
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[18], as we explain below. There is a diagram

LeM(p) ——  LiM(p)  —— LaM(p, ¢1°)

l l [~

Lk@M(p) —— Lilk@M(p) —— LaM(p, 21°)

in which the left-hand square is a pull-back sguare; this is because all the objects
init are Lo-local, and the square is a pull-back after smashing with K(0) v K(1) v
K(2). Since LiM(p) ~ Li(z; *M(p)) ~ La(z; M(p)), the top row is a cofiber
sequence, and thus so is the bottom row.

Shimomura computes the E>-term of the adams-Novikov spectral sequence
for LoM(p, 27°). Using Shimomura's calculation one may (with careful analysis)
read off that each group mLoM(p, 7°) must be finite; see the presentation of the
results of this calculation given in [17]. Since mxL1M(p) is known to be finite,
this shows that mLoM(p) must be finite.

Hovey and Strickland [8, Thm. 15.1] actually carry out the careful analysis
to show that each group mLk@)M(p), k € Z, is finite, so we will derive what
we need from their results. To derive the finiteness of mLoM(p), it suffices to
show that L1Lk)M(p) has finite homotopy groups. This spectrum is equivalent to
UflLK(z)M(p), since the v1-self map of M(p) istrivia on K(2).M(p). It happens
that m.Lk@)M(p) decomposes as a finite sum of copies Fy[21] plus a summand
which is pi-torsion. Thus m.v; 1LK(2)M(p) is a finite sum of copies of the form
IFp[vf‘], which is clearly a finite group in each dimension.

Whenn =2and p > 5, the hypotheses of Proposition 3.5 hold for L,<; thisis
a consequence of the above remarks together with the calculation of Shimomura
and Yabe [19] of 7,L,S® a p > 5. They show that the homotopy of L,S’
consists of a free summand in dimension 0, summands of the form Q/Z in
stems —3, —4, and —5, together with a summand T consisting of noninfinitely
divisible torsion. The above remarks on the finiteness of wxLoM(p) imply that
the summand T of 7.L,S is finite in each stem. O

We are led to make the following conjectures.

Conjecture 3.8. The hypotheses of Proposition 3.5 hold for any L,-localization
of afinite complex, for any n > 0.

Conjecture 3.9. For every finite complex F there exists an fp-spectrum X
such that L,F ~ L. X.

Of course, Conjecture 3.8 implies Conjecture 3.9 as we have shown above.
There is aso reason to believe that Conjecture 3.9 would imply Conjecture 3.8;
see Section 7.2.
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3.10. Adams towers for fp-spectra. For a spectrum X we can construct an
Adams tower. This is a tower of spectra -- - — Xgi1 — Xg — -+ - With Xg = X

and with fiber sequences Xs+1 — Xo LR >SHVs, where ks isinjective on mod p
homology; hence there is a resolution

0 — H.X — X.HV,,

and an Adams spectral sequence with E5' = Ext,i’i (Fp, Hs, X).

If X is an fp-spectrum, we can choose an Adams tower in which each Vs is
a finite dimensional graded vector space. We call such an fp-Adams resolution.
In fact, if H,X ~ A®a,n) M for some finite A,(n)-module M, then the chain
complex H,HV, isinduced from a resolution of M by A, (n)-comodules.

Given an Adams tower {Xs}, we may produce another tower

by taking cofibers Xsi1 — X — X§. The fibers in this tower are Z75HVs —
X5 — Xg_l. Note that in the Ex-term of the spectral sequence for this tower, each
horizontal line E5* is finite dimensional, and thus the spectral sequence satisfies
the complete convergence condition of [2, p. 263]. Thus the homotopy inverse
limit holims X3 does not depend on the choice of fp-Adams resolution, and by
a result of Bousfield [1, Prop. 5.8 and Thm. 6.6] is equivaent to X, since X is
p-complete and connective.

4. Duality for finitely presented comodules. In this section we describe
a dudity functor T on the category of finitely presented comodules. This functor
was essentially introduced by Brown and Comenetz in [3]. Our interest in this
functor stems from the fact that it generalizes the notion of “ Spanier-Whitehead
duality” of finite comodules over A.(n), in which a comodule is dual to its vector
space dual. It will be needed in later sections to study duality on fp-spectra.

4.1. Construction of functors J and 1. To motivate the construction, note
that if X isspectrum and H denotesthe mod p Eilenberg-Mac Lane spectrum, then
the graded vector space [H, X].. isin anatural way a module over the Steenrod al-
gebra. Thisobject is approximated by the edge map [H, X]. — homa, (H.H,H.X)
of the Adams spectral sequence. This algebraic approximation itself admits an
action by the Steenrod action, and we will cal this module J(H..X). The vec-
tor space dual to J(H.X) will be T(H,X), which admits a coaction by the dual
Steenrod algebra.

Recall that is we regard the dual Steenrod algebra A, as a left-comodule over
itself, then each element a € A* of the Steenrod algebra induces a map A, — A,
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of left A.-comodules via

a-z= Z( )‘aHz‘i >

whereze A,, Y. Z ®Z' isthe diagonal of zin A, ® A,, and (z a) represents the
usual pairing of A, and A*. In fact, there is an isomorphism of algebras

(4.2 homa, (A, AL) =~

We reserve the notation a - z for this action. Note that this action gives A, the
structure of aleft A*-module; however, thisis not identical to the usual left action
of the Steenrod algebra on H.H.

We define a functor J from left A,-comodules to left A*-modules by

J(M) = homa, (A, M).

This has a natural right A*-action induced by pre-composition of comodule maps,
using (4.2), which is made into a left A*-action using ; if z € A,, a € A*, and
f € J(M), the left action can be written

(@-H)@=(-1*"(xa-2.
Note that if M is finitely generated then J(M) is bounded below (where we use
cohomological grading for J(M)).

We define afunctor T from finitely generated left comodules to left comodules
by

T(M) = (3(M)) ~ homa_ (A, M).
Since J(M) was bounded below, (M) is bounded below, and thus receives a left
comodule structure in the usual way. This structure is characterized as follows:

if uei(M) and U U @u’ €A, ® 1(M) is the comodule action on u, and if
ac€ A" and f € J(M), then

(ua-f)y=>" (- i, ayu,f).

In comparison, Brown and Comenetz [3] define a functor ¢, on the category
of A*-modules; their functor is defined by

Cp(M) ~ homa, (M, AY),

with an appropriate A*-action. Thus, our T is just a comodule version of their Cp.
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4.3. Action of J and T on free comodules. Let Mee C My, denote the
full subcategory of comodules of the form A, ® V, where V is a finite vector
space. We want to compute the action of J and T on this subcategory.

The following describes the category Miree.

ProrosiTiON 4.4. For finiteV andW, homa, (A.®V, A.@W) ~ A*®hom (V, W),
wherea® o € A* ® hom (V, W) corresponds to the morphism of comodules

zo v (—DMa.zg 0(v), zeA,ae A, veV,oechom(V,W),

and composition of mapsisgiven by (a® o) o (b® 7) = (— D)l?llblab @ o7.
Proof. Straightforward. m|

ProrosiTION 4.5. Thereisa natural isomorphism
J(A. @ V) ~ homa, (A, A. ® V)~ A @V
of left A*-modules, wherea ® v € A* ® V corresponds to the map defined by
z— (—DAva-zev, zeA,aceAveV.

Givenamapa® o: A, ® V — A, @ W of comodules, the induced map J(a ®
0): A*®V — A* @ Wsendsb ® v — (— 1)lPlla*oDpya  o(w).

Proof. Straightforward. O

CoroLLARY 4.6. Thereisa natural isomorphism
AV~ (A" @V~ A, ®V
of left-comodules. Theinduced map i(a® 0): A, @ W — A, ® V sends
zoW (- DlPya.zo 5W), zeA,acA L WeW,

where& € hom (W, V) istheadjoint to o € hom (V, W). In other words, T(a® a) =
xXa® o.

Remark 4.7. In terms of bases ¢; and w; for V and W we can view maps
A, ®V — A, ®W as matrices (g;) with entries in the Steenrod algebra, acting

by
L EE L SL T
i ij

Hence, the induced map T(a;): A, ® W — A, ® V_corresponds to the matrix
(x&;) in terms of the dual bases 7; and W; of V and W.
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4.8. Properties of the duality functor.

ProposiTioN 4.9. The functor T restricts to a functor T: MgP — My, and is

exact on Myp. Furthermore, there is a natural isomorphismM — T1M for objects

Proof. That T is exact on the subcategory of finitely presented comodules fol-
lows from Proposition 2.6. By Corollary 4.6 the functor T takes finitely generated
free comodules to the same, and thus by exactness T(Mp) C Mip,.

One can construct a natural isomorphism M — TIM when M =~ A, ® V,
since by Corollary 4.6 T1(A, ® V) is tautologically isomorphic to A, ® V. This
isomorphism extends by exactness to all finitely presented comodules. O

ProrosiTioN 4.10. Let M be a finite A, (n)-comodule. Then
T(A. @Ay M) = A, ®p, ) Z2OM
as left comodules, where a(n) is the dimension of the “ top cell” of A.(n).
Proof. There is an exact sequence
(aj)
0O—-M-AMeV—AMNHSW

of A.(n)-comodules, where a;; € A*(n). After applying vector space duals we can
identify the resulting sequence with

. . (&) .
03 — ANV — AN W

by “Poincaré duality” of A.(n) [12, Ch. 12.2]. The result follows from Remark 4.7
after extending up to A.. |

5. Brown-Comenetz duality. Recal that the functor
X +— hom (moX, Q/Z)

is a generalized cohomology theory satisfying the wedge axiom, and hence is
represented by a spectrum I. We write 1Y = F(Y,1) for the function spectrum,
whence 1Y is the spectrum representing the functor

X — 1YO(X) = hom (YoX, Q/Z).

The spectrum 1Y is caled the Brown-Comenetz dual of Y.

We write DX ~ F(X, S°) for the Spanier-Whitehead dual of X. Note that if X
isany spectrum and F isafinite complex, then the natural map IXADF — [ (XAF)
is an equivalence.
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There is natural double-dual map X — 11X. If Y is a spectrum such that each
homatopy group mY is finite, then Y = IlY via this map. Thus, given suicha'Y
and given any spectrum X, there is a natural isomorphism

[X,Y] ~ [IY,1X].

5.1. Eilenberg-Mac Lane spectra. Let H ~ HF, denote the mod p
Eilenberg-Mac Lane spectrum. Then IH ~ H. In fact, by the universal coef-
ficient theorem.

IH*X ~ hom (H..X, Q/Z) ~ hom (H..X,Fp) ~ H*X.
LemmA 5.2. Under the above identification the map
I: [H,H]« — [IH,IH]. =~ [H,H].

sendsa € A* to ya.

Proof. Thisis [3, Thm. 1.9(d)]. O

More generally, let V denote afinite dimensional graded IF,-vector space, and
let V = hom(V,[Fp) denote its vector space dual. Let HV denote the generalized
Eilenberg-Mac Lane spectrum with w,HV =V, whence HV, X ~ H, X ® V.

ProposiTIoN 5.3. There is an equivalence IHV ~ HV, and we have isomor-
phisms

H*(IHV) ~ J(H.HV)
of A*-modules and

H.(IHV) =~ T(H.HV)

of A*-comodules which are natural in HV.

Proof. This isimmediate from Corollary 4.6 and Lemma 5.2; aternatively, it
follows from [3, Thm. 1.3]. O

5.4. Algebraic approximation. We note that the functor T of Section 4
serves as an algebraic “approximation” to H,.I1X, at least when H. X has finitely
presented homology.

ProrosiTion 5.5. For each spectrum X with finitely presented homology, there
isamap

i T(HX) — H, X
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whichisnatural in X. Furthermore, this map isan isomorphismwhen r, X isfinite.
Compare with [3, Thm. 1.13].

Proof. Given X we can choose an Adams resolution
X —HVg—HV] — ---,
in which Vg and V; are finite dimensional vector spaces, and the sequence
0— H. X — H.HVy — H.HV;
is exact. Applying | to the first diagram gives maps
IX — HVp — HV;
and a seguence
H.IX — T(H.HVp) — T(H HV2),
not necessarily exact. We let vx be the induced map
12 T(H.X) = Cok (T(H.HV1) — T(H.HVp)) — H.IX.
To see that 1x is independent of the choice of resolution and is natural, use
a map between Adams resolutions.
The map ¢ is by construction an isomorphism for X = HF,. By the exactness
property of Proposition 4.9, we see that tx is an isomorphism for any X in

the thick subcategory generated by HIF,, which are precisely the X with finite
homotopy. O

6. Geometric realization of Tate cohomology. In this section we note
that one can construct for each fp-spectrum a Z-indexed Adams tower; thisis a
tower which extends both above and below X, whose layers and finite mod p
generalized Eilenberg-Mac Lane spectra, and which leads to a spectral sequence
whose Ex-term is the Tate cohomology of H.X. We give several constructions,
starting with the most general.

6.1. Construction of the tower.

LemmA 6.2. Let X be an fp-spectrum. Then

[H, X]. &~ homa, (A, H., X) = J(H., X).
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Proof. Choose an fp-Adams tower {Xs} for X. Then there is a spectra se-
quence E3' = [H,HVd]t = [H, X]i—s. We claim that

(1) ESt~0fors> 0, sothat Eg* ~ EX!, and
(2) EQ'~ homa, (A, H.X).

Since X is connective and p-complete, the first claim implies that the spectra
sequence converges, and thus EX* ~ [H, X];.

To prove the claim, recall that the resolution 0 — H. X — H,HV; is extended
up from aresolution 0 — M — C(s) of A.(n)-modules. Now

[H,HVg]. = homa, (As, Ax ®a.m) C(S)) = homa, n) (A, C(9)).

Since as an A.(n)-comodule A, =~ A.(n) ® A.//A.(n) we see that A, is projective
as an A.(n)-comodule, and thus the sequence

0 — homa, (A, H.X) — homa, (A, H.HV,)
is exact as desired. O

Thus, given an fp-spectrum X, we may construct a tower “realizing” the Tate
cohomology by constructing fp-spectra X_s for s > 0inductively asfollows. First,
let Xo = X. Since H,X_s ~ A, ®a,n) M(— s) for some finite module M( —s), we
can choose a surjection C(—s— 1) — M(— s) from a free A.(n)-comodule. This
may be extended to a surjection A, ®a, (n) C(—s—1) — A, ®a,.m) M(—5), which
in turn by the above lemmaiis realized by a map of spectraZSHV_g 1 — X_g. If
we take the cofiber

ZSHV—S—l — Xs— Xos1

we get another fp-spectrum X_¢_j; iteration produces an infinite sequence - - - —
X_s — X_s1 — ---. If we put this sequence together with an fp-Adams tower
for X, we get a tower {Xs}scz, which we call a Z-indexed Adams tower for X.

Note that given amap f: X — Y of fp-spectra and given Z-indexed Adams
towers {Xs} and {Ys}, we can extend f to a map of towers, by the “dua” of the
usual argument, using Lemma 6.2. In particular, given any two Z-indexed Adams
towers for X we can produce a map between them.

For such a tower, let X = hocolims_,., X_s. Thereis a full- -plane Adamstype
spectral sequence ES' ~ H3Lo(H.X) = m_<X approximating the homotopy of X,
where H3, is the cohomol ogy of Section 2.5.

Given such atower {Xs} write X§ = cof (Xq+1 — Xp) for —oo < p < < oo.
Then let X! = cof (X — X) ~ hocollms_>oo X_S A straightforward convergence
argument shows that the homotopy spectral sequence of this colimit converges,
and hence X! does not depend on the choice of the Z-indexed tower.

The above remarks are summarized in the following proposition.
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ProrosiTION 6.3.

(1) For each fp-spectrum X there exists a Z-indexed Adams tower {Xs}.

(2) Given Z-indexed Adams towers {Xs} and {Ys} for X and Y, and a map
f: X =Y, thereexistsamap {fs: Xs — Ys} of towerswhich extendsf.

(3) The colimit X = hocolims_ ., X_s of a Z-indexed Adams tower depends
only on X, and not on the choice of tower.

6.4. Alternate construction of the tower. Let X be an fp-spectrum, and
let F be afinite complex such that H..(X) ® H.(F) is free A.-comodule. Suppose
also amap S — F which is injective on homology. Such an F always exists; if
H.X is an extended A.(n)-comodule, let F be a Mitchell complex of typen asin
Theorem 3.1, and S” — F the inclusion of a bottom cell.

Form a fiber sequence F — & — F, 0 that by Spanier-Whitehead duality
we get a dual fiber sequence DF — S — DF. We obtain a Z-indexed Adams
tower with

_[XAF® if s> 0,
Xs - . (73) .
XA (DF) if s<0,

where the maps in the tower are induced by fiber sequences X A F&*D) — X A
FO — XAFOAF and X A DF® ADF — X A DF® — X A DFE,

In those cases when there actually exists a complex F with H.F =~ A.(n),
and H,. X is an extended A.(n)-module, then this complex realizes the unbounded
chain complex obtained by gluing together the bar complex for M and the co-bar
complex for M as an A,(n)-comodule.

6.5. An explicit construction for bo. Recall that H*bo ~ A*/A*(Sqt, S¢?).
Consider the minimal Adams tower {bo®} for bo a p = 2; write H*bo® =~
A" @pa-(1) M(S).

Let R(n) denote the cofiber of P" — S for n > 0; thus R(0) ~ . Recall
from [9] that

M(4s) ~ H*R(89).

We define a map R(8s+ 8) — R(89) as follows. Let p: R8s+ 8) — P&
denote the pinch map obtained by taking the quotient of R(8s) — R(8s+8). Then
p o (16) ~ 0, where (16) is the degree 16 map on R(8s+ 8) — R(8s+ 8), and
so (16) lifts to a map fs: R(8s+ 8) — R(8s). The map fs has degree 16 on the
bottom cell.

Likewise, we may consider the Spanier-Whitehead dual map

This map has degree 16 on the top cell. Note that f_1: S — DR(8s), so we can
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Figure 1. A chart for Extizl) (H*(DR(16)),Z/2) for s < 16.

put all the fs for s € Z together into a Z-indexed tower

15 Rrae) 5 RrE) ROy~ L = DRE) 22 DRAG) -

ProPosiTiON 6.6. Thereisa Z-indexed Adams tower {bo®} for bo with

bo?s ~ bo A R(8s) ifs> 0,
~ 1boADR(—8s) ifs<0,

and the map bo®** — bo* isbo A fs.

Proof. Set bo* as above, and construct the start of a minimal Adams tower
bo®*t3 — pbo*2 — po**l — bo* over boS. It is not difficult to see that
R(8s+ 8) — bo A R(8s) ~ ho* lifts to bo**3, so that we can extend to a
map bo A R(8s+ 8) — bos*3; likewise, DR(8s — 8) — bo A DR(8s) ~ bo~*S lifts
to bo~4$*3, so we can extend to a map bo A DR(8s— 8) — bo~#5*3, The resulting
tower is an Adams tower. O

We give a chart (see figure) which presents the Adams Ep-term for bo A
DR(16).

7. Finitelocalization. There exists a functor LL and natural map X — LLX,
called finite localization. It is Bousfield localization with respect to the wedge
Tel (0) v - - - v Tel (n), where Tel (k) denotes the -telescope on some chosen type
k finite complex. The functor L is characterized by the following properties [11].

(1) Thefiber Cf = X = fib(X — LhX) is a homotopy colimit of some diagram
of type-(n+ 1) finite complexes.
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(2) There are no essential maps from a type (n + 1) finite complex to L.qu
(i.e, LIX is LL—Iocal).

(3) L is smashing; i.e., LiX ~ ALLS.
Note also that (1) and (2) imply that LhX ~ X if X is Lh-local. Also, if X is a
type n finite complex, then LIX ~ v~1X, where v; $9X — X isa th-Self map
of X.

THeorem 7.1. Let X be an fp-spectrumwith fptype(X) < n, and let {Xs} bea
Z-indexed Adams tower for X, with colimit X. Then LFX ~ X.

Proof. Consider the map i: X — X. It suffices to show that
(1) Lh() is an equivalence, and
(2 XisLf-local.

Claim 1 follows immediately from the fact that LLHIFp ~ * and that L}, is smash-
ing, since X is obtained from X by attaching mod p Eilenberg-Mac Lane spectra.

To prove claim 2, we must show that X admits no essential maps from a type
(n+ 1) finite complex F, or equivalently, that X A F ~ * for any such complex.
This follows from the following:

(3) For any finite complex F, {XsAF} isaZ-indexed Adams tower for X AF,
and X A F ~ hocolimX_s A F.

(4) If Y is an fp-spectrum with =Y finite, then Y ~ « for any Z-indexed
Adams tower for Y.

The proof of claim 3 is straightforward.

To prove claim 4, apply Brown-Comenetz duality to the sequence

Y=Y%—Y_1—-Y_o—. .- =Y.
This produces a tower
IY = - > 1Y = 1Yo = 1Y = 1Y

which is easily seen to be an Adams tower for I'Y by Proposition 5.5. Since I'Y
is connective and p-complete and . lY is finite, its Adams spectral sequence
converges, and IY = , whence Y =~ x.

7.2. Relation between LL and L,. Let X — LyX denote Bousfield localiza-
tion with respect to K(0) Vv --- v K(n). There is a natural map t": Lix — LnX;
this map is an equivalence for X ~ S, and hence for al X, if and only if the
Telescope Conjecture holds for al m < n. This conjecture is true for n = 0 and
n=1, and is believed to be false for n > 2.

It is reasonable to ask whether t,, is an equivalence when X is an fp-spectrum.
We note that t is an equivalence in the following cases, which include al cases
we know of.
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(1) Since BP(n) is a BP-module spectrum, one can compute L,BP(n) using
the chromatic tower method of [14, Sec. 6]. (We would like to thank Hal Sadofsky
for pointing this out to us.) This calculation shows in particular that the fiber of
BP(n) — L,BP(n) is coconnective with torsion homotopy; thus the fiber is killed
by L), and hence t, is an equivalence on LnBP(n), and is in fact an equivalence
on the thick subcategory of C generated by BP(n).

(2) For any fp-spectrum X obtained by the procedure of the proof of Propo-
sition 3.5, the map tp: LIX — LnX is an equivalence, since by construction the
fiber of X — LnX is coconnective with torsion homotopy.

We make the following conjecture.

Conjecture 7.3. The map t,: LIx — LnX is an equivalence for al fp-
spectra X.

This conjectureis of interest, because it would give information on how badly
the Telescope Conjecture fails, assuming it does fail. Namely, suppose F isatype
n finite complex and v~ 1F is its ¢,-telescope; then if the Telescope Conjecture
fails for n and Conjecture 7.3 holds, it follows that m(v~1F) is an infinite group
for somek € Z, whereas myLF isfinitefor all k. To seethis, we argue as follows;
if each m(v~1F) were a finite group, then the proof of Proposition 3.5 would
apply to show that there exists an fp-spectrum X with LhX ~ o~1F. (We could
take X to be a connective cover of v~ F, for example.) However, Conjecture 7.3
would then imply that vF ~ LnX =~ L,F, contradicting the failure of the
Telescope Conjecture.

Conjecture 7.3 also would imply, using Proposition 8.9 of the next section,
that the two conjectures (3.8 and 3.9) discussed in Section 3 are in fact equivalent
statements.

8. Duality
8.1. Duality for fp-spectra of type lessthan n. Let
Wi X = ICPX,

where Cl, = fing — LLX). Thus W, is a contravariant functor from spectra to
spectra. Since Ly, is smashing,

WX ~ F(X A CLS 1) =~ F(X, WL S).

That is, W,S isa“duaizing complex” for W,. Furthermore, there is anatural map
X — WaWpX; this map is adjoint to the evaluation map X A F(X, W, S°) — W, S,
Note that W, vanishes on LL-IocaI spectra. Also, if w, X isfinite, then LLX %
and we have WX ~ I X.
Recall that Cp, denotes the homotopy category of fp-spectra with fp-type < n.
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THEOREM 8.2. Let X bean object in Cp.

(1) Thereisanatural isomorphism H,WhX ~ T(H,X).
(2) WpXisinCy.

(3) Thenatural map X — WrW,X isan equivalence.

From this we obtain the following.

CoROLLARY 8.3. Thefunctor W, restrictsto a functor Wy: C3° — Cp, whichis
an equivalence of categories.

Proof. The corollary follows from the fact that the functor W, is “self-
adjoint”; that is,

W S® =2 S0 (Wy)®

isapair of adjoint functors, where S represents the homotopy category of spectra.
Part (2) of Theorem 8.2 says that W, carries Cy' into C,, and part (3) says that
the restriction of W, to Cy, gives an adjoint equivalence Wy: CoP = Cpn: (Wh)%P
of categories. O

Proof of Theorem 8.2. If X is an fp-spectrum, choose a Z-indexed Adams
tower {Xs}, and as in Section 6.1 write X§ = cof (Xp+1 — Xg). Then

Cix~ szt hocolim X2
by Theorem 7.1, and thus
~ imIx-1
(8.4) WhX ~ & (ch[ im |x_s) .

Write H. X = A, ®a, n M. We can construct the bottom part of the Z-indexed
tower to redlize any projective resolution of M by finite A.(n)-modules, e.g., by
the resolution dual to the minimal resolution 0 — M — C, of M by finite
A.(n)-modules. Then (8.4) immediately implies that WX is connective and p-
complete, since the tower {I (X:l)}szl must necessarily be the tower associated
with an Adams tower for W,X which redlizes C,, and so the connectivity of
I(X_Y) is bounded below by a fixed N for all s> 1.

Note that for any Y we have that HIFp, A LLY ~ *, whence the map H*CLY —
H.Y is an isomorphism, so that there exists by Proposition 5.5 a natural compar-
ison map

MY): THLY) S T(H.CLY) — HWLY.

We want to show that ."(X) is an isomorphism.
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Since X has a Z-indexed tower, there is a sequence
-+ —HV_, —-HV_; =X
which induces an exact sequence
HHV_> - HHV_1 - HX -0
on homology. Applying W, to this sequence gives a sequence
WX - WyHV_1 — HHV_, — - --

which corresponds to an Adams resolution for WX and hence induces an exact
sequence
0 — HWX — HWyHV_ 1 — HWLHV 5.

It is clear that the comgarison maps "(HV_s) are isomorphisms, and so ."(X) is
an isomorphism, since | is exact. Thus we have proved parts (1) and (2) of the

proposition.
Part (3) follows from parts (1) and (2) together with Corollary 8.7, to be
proved below. m|

Remark 8.5. If X is a spectrum which might not be p-complete, and X,
denotes its p-completion, then one can show via an arithmetic square argument
that ChX ~ C‘;,Xp, and hence WX ~ Wy X. In particular, if X is an fp-spectrum,
we may conclude that WaWiX = X,.

We still owe the reader one more fact

ProrosiTioN 8.6. Suppose X and W, X have finitely presented homology. Then
there is a commutative square

- t"(WhX)
T(HWhX) 2 HL WhWhX

foor ]

MHX) —— H.X
CoroLLARY 8.7. If X and WX have finitely presented homol ogy and the maps
MOX): T(HeX) — HoWhX,  and  c"(WhX): T(H.WhX) — H, WaW,X

areisomor phisms, thenthemap X — W, W, X inducesanisomor phismin homol ogy.
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Proof of Proposition 8.6. Choose resolutions X — HCy — HC; and WX —
HDg — HD;. This leads to a sequence

HD; — HDo — WaWhX — HCo — HC;.
The diagonal map in the diagram is the induced map
Cok (H.HD; — H.HDg) — ker (H.HCo — H.HCy).
It is straightforward to check commutativity of the diagram. m|

8.8. A finiteness result.

ProrosiTion 8.9. Let X be an fp-spectrumwith fptype(X) = n,andlet Y = LEx
beitsfinitelocalization. Then for each k € 7Z the homotopy group 7xY hastheform

mY & Fie @ Z3% @ (Q/Z(p) ™™ & QF%,

where Fy is a finite p-group, ax = 0 = ¢ for all sufficiently small k <« 0, and
bk = 0 = ¢ for all sufficiently large k > 0.

Proof. Thereisafiber sequence ClX — X — LhX, and the Brown-Comenetz
dual WX of ciXisan fp-spectrum by Theorem 8.2. Thus X is connective with
mX ~ Fi @ Zp¥, and ChX is coconnective with mChX ~ Fi ® (Q/Zp))™. The
image and coimage of the connecting map wkCEX — mX can only be a finite
torsion group; thus, to prove the result for kaLX we need to show that, in a
group extension of the form

0—FaZl - M—F &(QZy)" -0,

where F and F’ are finite p-groups, that M is as described in the statement of the
proposition.

It is easy to reduce to the case when F = 0 = F'. Then extensions are clas-
sified by elements of Ext((Q/Zp)", Z") ~ hom(Z], Zg); if A € hom(Z], Z)
classifies the extension then

M ~ Cok (ZB Wzre QB)

where | : Z3 — Qp is the standard inclusion. It follows that M ~ Z7'/imA &
Qp/ ker A; this can be shown by choosing a map B @ Zg' — Qp such that
(I — BA) : Z5 — Qp projects to the kernel of A® Q, in which case there is an
exact sequence

n (AD —m n (Xy)—(x,y—Bx) mo .
0—>Zp — Zp @@p —>Zp/lmA@Qp/kerA_>o
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which realizes the splitting of M. Now the result follows from the fact that
7/ imA ~ F @ Z3 and Qp/ ker A =~ (Q/Zp)P @ Q§, where F is a finite p-
group. O

8.10. Duality for fp-spectra. Recall that there exist natural transformations
LI,ﬂx — LLX, and hence natural transformations WaX — Wh+1X. We define

WX = hglcigllm WhX.

If X is an fp-spectrum with fptype(X) = n, then Theorem 7.1 shows that Lfnx R
LLX for m > n, and thus WX ~ WX for m > n. This, together with Corollary 8.3
and the fact that C = |J,,Cy is the homotopy category of all fp-spectra, gives:

THeorem 8.11. Thefunctor Winduces an equivalence of categoriesW: C%® —
C,and H.WX =~ I (H.X) for all XinC.

9. Calculations. In this section we compute WX in severa cases, and thus
implicitly compute Lhx (and LpX, by Section 7.2) for sufficiently large n.

Lemma 9.1. If Xisaring spectrumand Y isan X-module spectrum, then W, Y
is also an X-module spectrum.

Proof. Thisis aformal consequence of the fact that W,Y ~ F(Y,WxS"). O

ProposiTion 9.2. If X is an fp-spectrumwhich isa ring spectrum, H..X is self-
dual as a finitely-presented comodule (i.e,, T(H.X) ~ S:9H.X for some d), and
H..X does not split over the Steenrod algebra, then WX =~ 39 X.

Proof. Choose a map & — WX which hits the bottom homology class, dua
to the unit in H,X. By Lemma 9.1 this map extends to a map Z9X — WX of X-
module spectra, and this map is necessarily an isomorphism on mod p homology,
and hence an equivalence. O

CoroLLARY 9.3. We have that

(1) WK(n) ~ =2"1k(n),

(2) WBP(n) ~ z¥WBP(n), where e(n) = Zpr:izl —(n+1),
(3) Whbu = Z*bu (at all primes),

(4) Who ~ 2°bo (at all primes), and

(5) Weo, ~ >%en,atp=2andatp=3.

Proof. The only case which needs comment is (5). In this case it can be
derived from the following facts [5]. At p = 2, eo, A F = BP(2), where F is
a certain finite complex with H*F ~ DA*(1), the “double” of A*(1). At p = 3,
€0 A (S U, € Uy, €9) = BP(2) v 28BP(2). O
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Remark 9.4. In each of the above examples, we can read off 7,.L,X from
our knowledge of the homotopy of X. In particular, in cases 2-5 there is a wide
“gap” between the first copy of 7, and the last copy of Q/Zp in the homotopy
of LpX; if WX =~ Z9X, then

T if s=0,
X~ <0 ifl-d<s<0, and
Q/Zp ifs=1-d.

There is a convenient heuristic for reading off the expected size of the “gap”
in .LnX for many ring spectra of the above type. If 7. X® Q ~ Qp[x1,. .., %],
then the size of the gap is XL, (|x| + 1). For example, m.€0; ® Q ~ Qp[Xg, X12]
ap=2or3 sothegapis(8+1)+(12+1) =22. For BP(n) the gap is the same
as the dimension of the Toda complex V(n), should it exist.

Recall from (4.10) that if H.X ~ A, ®a.m M, then T(H.X) = A, ®a, ) ZM,
where d is the dimension of the “top cell” of A.(n).

ProrosiTiON 9.5. Let J, denote the connective image-of-J spectrum compl eted
at the prime p.

(1) For podd, WJ, ~ 33J;,.

(2) For p=2,thereisa cofiber sequence Z3HF,; — J; A (S Uz et U, €%) —
W,.

Proof. At an odd prime, Jp is the fiber of any map BP(1) — X9BP(1),
q = 2(p — 1), which sends the cohomology generator . € HIZ9BP(1) to P, €
HIBP(1). At p = 2, J, is the fiber of any map bo — bspin which sends the
cohomology generator tpspin € H*bspin to Sg*upe € H*bo [10]. In either case, the
map in cohomology is induced from a map of A*(2)-modules.

We leave the odd prime case to the reader. Suppose p = 2, and let F =
Uz etu, €. Since bspin ~ £’bo A DF and H*(F A DF) is a direct sum over the
Steenrod algebra of a spherical class in dimension 0 with a free A*(1) module on
one generator, we see that J A F fits in a fiber sequence

JAF —boAF — 5boV S*HF,.

We can kill the copy of HF» by taking the evident cofiber 3HF> — JAF — C,
so that we obtain a cofiber sequence

C — boAF — Z'ho.
On applying W we get a fiber sequence

> 1o — %o A DF — WC — bo -+ 37bo A DE.
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We can compute the action on f on cohomology, since by Proposition 4.10 it is
induced from a map of A*(2)-modules. The computation, which is straightfor-
ward, shows that the bottom class of >’bo A DF hits Sy, € H*bo, and thus
WC =~ J. O

CoroLLARY 9.6. (Hopkins)

1(L1S) ~ Li(ST U2 U, €9).
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