
TOPOLOGICAL MODULAR FORMS OF LEVEL 3

MARK MAHOWALD AND CHARLES REZK

Abstract. We describe and compute the homotopy of spectra of topological mod-
ular forms of level 3. We give some computations related to the “building complex”
associated to level 3 structures at the prime 2. Finally, we note the existence of a
number of connective models of the spectrum TMF(Γ0(3)).

1. Introduction

In this paper we collect a number of results related to the spectrum of “topological
modular forms of level 3”, denoted by TMF(Γ0(3)). We investigated this spectrum as
part of an attempt to describe the homotopy of the K(2)-local sphere (at the prime
2) in terms of modular forms. We think this work will be most useful in the context
of a conjecture of Mark Behrens, which we describe below.

Along the way, we considered a cosimplicial spectrum associated to a certain “build-
ing”, constructed using the moduli of certain kinds of subgroups of elliptic curves.
The realization of this cosimplicial spectrum is denoted Q(3); it is discussed in §5.
Behrens conjectures [Beh, 1.6.1] that there is a cofiber sequence

DK(2)LK(2)Q(3)
Df−−→ S̃

f−→ LK(2)Q(3)

where DK(2) denotes Spanier-Whitehead duality in the K(2)-local category (at the
prime 2), and S̃ is a degree 2 Galois extension of the K(2)-local sphere. More precisely,
S̃ = EhG̃2

2 , where G̃2 = S̃2 oGal, with S̃2 an index 2 subgroup of the Morava stabilizer
group, the kernel of

S2
N−→ Z×2 → (Z/8)×/{1, 3}.

Behrens has proved a version of this conjecture at the prime 3 [Beh06].
In this paper we give results related to the calculation of the homotopy groups of

Q(3); we also describe how some known elements in the homotopy groups of spheres
are detected in it. In doing so we give a complete calculation of the homotopy of
TMF(Γ0(3)). We also describe some connected versions of TMF(Γ0(3)), which appear
naturally in the cobordism spectrum MString.

The spectrum TMF(Γ0(3)), or one very much like it, has appeared in a different
context. In [HK01], the authors construct “real” versions of the Johnson-Wilson
spectra E(n); these are Z/2-equivariant ring spectra, which admit an orientation by
the “real” complex bordism spectrum. The homotopy fixed points of the Z/2-action
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on the nth real Johnson-Wilson spectrum is denoted ER(n). As is clear from the
work of [KW], the spectrum ER(2) is very much like the spectrum TMF(Γ0(3)).
In particular, their calculation of π∗ER(2) gives essentially the same answer as our
calculation of π∗TMF(Γ0(3)). (Note that TMF(Γ0(3)) and ER(2) are not identical as
ring spectra, because they are Z/2-fixed points of TMF(Γ1(3)) and E(2) respectively,
whose formal groups are not isomorphic. Presumably the construction of [HK01] can
be carried out to construct a “real” version of TMF(Γ1(3)).)

We would like to take this opportunity to dedicate this paper to Professor Hirze-
bruch; in particular, we would like to express our thanks for his book on modular
forms [HBJ94].

2. Spectra of topological modular forms

In this section we describe the examples of spectra of topological modular forms we
are interested in. It will be convenient to use the language of moduli stacks to identify
them. Thus, let M denote the moduli stack of elliptic curves; an elliptic curve over
a base scheme S is a smooth proper morphism E → S whose geometric fibers are
elliptic curves. Likewise, let M denote the moduli stack of generalized elliptic curves;
this is a compactification of M obtained by “adding the cusp”. (See [KM85].) Thus,
any morphism f : S →M determines a generalized elliptic curve Cf → S.

There exists a line bundle ω →M, associated to the cotangent space of the identity
section of a generalized elliptic curve. We write ω(C) for the line bundle over S
associated to the generalized elliptic curve C → S. When C is smooth, we can
identify Γ(S, ω(C)) with the set of invariant 1-forms on C. A modular form of
level 1 and weight k is a section of ω⊗k →M. Explicitly, a modular form of weight
k is a function g which associates to each pair (C → S, η) with C a generalized elliptic
curve over S, and η ∈ Γ(S, ω), an element g ∈ OS , which is compatible with base
change and such that g(C, λη) = λ−kg(C, η) for λ ∈ O×S . We write mfk = Γ(M, ω⊗k).

An elliptic spectrum [AHS01] is a triple (E,C, φ) consisting of an even periodic
ring spectrum E, a generalized elliptic curve C over π0R, and an isomorphism φ from
the formal group of E to the formal completion of C at the identity. (“Even periodic”
means: π1R = 0, and there exists u ∈ π2R which is invertible in the graded ring π∗R.)

All the examples of spectra of topological modular forms we need arise from the
theorem of Goerss-Hopkins-Miller.

Theorem 2.1. There is a sheaf Otmf of E∞-ring spectra over the stack M in the étale
topology, which has the following property. For étale morphisms f : Spec(R) → M,
there is a natural structure of elliptic spectrum (Otmf(f), Cf , φ), where π0Otmf(f) = R
and Cf is the generalized elliptic curve over R classified by f .

As a consequence of this result, there is a spectral sequence

E2 = Hs(N , f∗ω⊗k) =⇒ π2k−sOtmf(f)

associated to any étale map f : N →M. The spectral sequence is functorial in N . If
N = Spec(R) is an affine scheme, the spectral sequence collapses at E2 and we have
π2kOtmf(f) = Γ(Spec(R), f∗ω⊗k).

Here are some of the basic examples we care about.
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(1) Let tmf denote the (−1)-connected cover of Otmf(id : M→M). This is the
connective spectrum of topological modular forms, first constructed
by Hopkins, Miller, and the first author; some details are given in [HM].

(2) Let TMF = Otmf(M→M), the periodic spectrum of topological mod-
ular forms; the periodic invertible element is ∆24 ∈ π576TMF.

Another family of examples comes from introducing a level 3 structure. Let S be
a scheme over Z[13 ]. If C → S is an elliptic curve, let C[3] denote the scheme of “3-
torsion points” of C (that is, the kernel of [3] : C → C). Then C[3] → S is an finite
étale morphism (of degree 9). Locally in the étale topology on S, C[3] is isomorphic
to the discrete group scheme Z/3× Z/3.

(1) A Γ(3) structure on C → S is a choice of isomorphism Z/3×Z/3 → C[3] of
group schemes over S. Equivalently, a Γ(3)-structure is a choice of a pair of
sections s1, s2 of C[3] → S which are (locally in S) linearly independent.

(2) A Γ1(3) structure on C → S is a choice of monomorphism Z/3 → C[3] of
group schemes over S. Equivalently, a Γ1(3)-structure is a choice of a (locally
non-identity) section of C[3] → S.

(3) A Γ0(3) structure on C → S is a choice of subgroup scheme A ⊆ C[3] over
S which is isomorphic to Z/3. Equivalently, a Γ0(3)-structure is a choice
of equivalence class of Γ1(3)-structures, where we identify sections which are
carried to one another by the inversion [−1] : C[3] → C[3].

Each of these notions of level structure has an associated moduli stack, and there are
finite étale morphisms

M(Γ(3)) →M(Γ1(3)) →M(Γ0(3)) →M[13 ]

of degrees 6, 2, and 4 respectively. Associated to these are maps of E∞-rings
TMF[13 ] → TMF(Γ0(3)) → TMF(Γ1(3)) → TMF(Γ(3)). Thus we obtain a spec-
trum of topological modular forms TMF(Γ(3)), and similarly for Γ(3) replaced with
Γ1(3) and Γ0(3). All these spectra are E∞-rings under the commutative ring spectrum
S[13 ].

Remark 2.2. These notions of level structure admit generalizations to generalized
elliptic curves over arbitrary schemes S (i.e., without requiring 3 to be inverted, and
allowing non-smooth curves). However, the resulting moduli stacks are not étale over
M, and they won’t play a role in this paper. See [KM85].

Let G = GL(2, Z/3). It is clear that this group acts on the set of Γ(3)-structures of
an elliptic curve, and thus acts on TMF(Γ(3)). In particular, it is the Galois group of
the finite étale coverM(Γ(3)) →M, and thus we have that TMF[13 ] ≈ TMF(Γ(3))hG.
Let

GΓ1(3) =
{(

1 ∗
0 ∗

)
∈ G

}
≈ Z/3 n Z/2

and

GΓ0(3) =
{(

∗ ∗
0 ∗

)
∈ G

}
≈ Z/6 n Z/2.



4 MARK MAHOWALD AND CHARLES REZK

Then we have TMF(Γ1(3)) ≈ TMF(Γ(3))hGΓ1(3) and TMF(Γ0(3)) ≈ TMF(Γ(3))hGΓ0(3) .
Furthermore, since GΓ1(3) is normal of index 2 in GΓ0(3), we have TMF(Γ0(3)) ≈
TMF(Γ1(3))hZ/2.

A Weierstrass curve over a ring R is the closure Ca = C(a1,...,a6) in P2
R of an

affine curve of the form

y2 + a1 xy + a3 y = x3 + a2 x2 + a4 x + a6,

with a1, . . . , a6 ∈ R. A Weierstrass curve is smooth if and only if the discriminant
∆ = ∆(a1, . . . , a6) is invertible in R. An isomorphism Ca′ → Ca between Weierstrass
curves is an algebraic map given by

x 7→ λ−2x + r, y 7→ λ−3y + λ−1sx + t

which sends Ca′ into Ca. There is an Artin stack MWeier of Weierstrass curves,
determined by the Hopf algebroid implicitly described above.

Every generalized elliptic curve C → S admits a presentation, locally over S in
the flat topology, as a Weierstrass curve, in which the identity element of the elliptic
curve corresponds to the unique point at infinity on the Weierstrass curve. Thus there
is an open embedding M→MWeier. There is a line bundle ω over MWeier generated
by invariant differential

ηa =
dx

2y + a1 x + a3
=

dy

3 x2 + 2a2 x + a4 − a1 y
,

and this pulls back to the line bundle ω over M.
In particular, this means that the ring mf∗ of level 1-modular is a subring of

A = Z[a1, a2, a3, a4, a6], and there are polynomials C4, C6 ∈ A such that for any
Weierstrass curve Ca, ci(Ca, η) = C(a1, . . . , a6). These polynomials are those of
[Del75], [Sil86, p. 46].

3. Modular forms of level 3

Explicit calculations about level 3 structures flow from the following observation.

Proposition 3.1. Let C = Ca ⊂ P2 be a smooth Weierstrass curve over a ring R in
which 3 is invertible. An R point P on C has order 3 if and only if it is a flex point;
that is, if and only if the tangent line L at P makes a triple intersection with C at P .

Proof. This is a consequence of the description of the group structure on a smooth
Weierstrass curve. If L ⊂ P2 is a line and P1, P2, P3 its three points of intersection
with C, counted with multiplicity, then [P1] + [P2] + [P3] = 0 in the group structure
of C. (See [Sil86] or [KM85].) �

We give a concrete description of M(Γ1(3)).

Proposition 3.2. Let R be in which 3 is invertible. Let (C, η, P ) be a smooth elliptic
curve C over R together with an invariant 1-form η on C and a Γ1(3)-structure
P ∈ C(R). Then there is a unique triple (C1, η1, P1) and a unique isomorphism
(C1, η1, P1) ≈ (C, η, P ) of this data such that

C1 : y2 + A1 xy + A3 y = x3, η1 =
dx

2 y + A1 x + A3
=

dy

3 x2 −A1 y
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with ∆ = A3
3(A

3
1 − 27A3) invertible in R, and such that P1 is the point with xy-

coordinates (0, 0).
In particular, the moduli problem of triples (C, η, P ) as above is represented by the

affine scheme Z[13 , A1, A3,∆−1].

Proof. Note that on the Weierstrass curve C1, the tangent line to P1 is precisely the
x-axis (so that P1 is indeed a point of order 3 by (3.1)). The result amounts to
showing that given (C, η, P ) where C is a smooth Weierstrass curve, there is a unique
Weierstrass transformation sending P to the origin and sending the tangent line at
P to the x-axis. This is easiest to see in three steps. Given a pair (C,P ) where
C is a Weierstrass curve and P = (α, β) a point of exact order 3, use the variable
substitution x′ = x + α, y′ = y + β to get a Weierstrass curve C ′ of the form

y2 + A1 xy + A3 y = x3 + A2 x2 + A4 x,

so that P ∈ C corresponds with P ′ = (0, 0) ∈ C ′. The tangent line L at P ′ is
given by A3y = A4x, and since L cannot be vertical (every vertical line in the xy-
plane intersects the curve at the infinity), we have that A3 is invertible. Thus the
transformation x′′ = x′, y′′ = y′+(A4/A3)x′ gives rise to a new Weierstrass curve C ′′,
which must have the desired form, since P ′′ = (0, 0) must be a triple intersection point
of C ′′ with the x-axis. Finally use a transformation of the form x′′′ = λ−2x′′, y′′′ =
λ−3y′′ to get the invariant differential in the right form. �

Corollary 3.3. We have

π∗TMF(Γ1(3)) ≈ H0(M, ω⊗∗) ≈ Z[13 , a1, a3,∆−1],

where |a1| = 2 and |a3| = 6.

Proof. By (3.2), H∗(M(Γ1(3)), ω⊗∗) is equal to the cohomology of the Hopf algebroid
with A = Z[13 , a1, a3,∆−1] and Γ = A[λ, λ−1]. �

Note that for a curve of the form y2 + a1 xy + a3 y = x3, the inversion map is given
by [−1](x, y) = (x,−y − a1 x − a3). In particular, the point −P has xy-coordinates
(0,−a3).

Proposition 3.4. We have Hs(M(Γ0(3)), ω⊗k) ≈ Hs(Z/2, Z[13 , a1, a3,∆−1]), where
the generator of σ of Z/2 acts by σ(a1) = −a1 and σ(a3) = −a3. In particular, there
is a spectral sequence Er(TMF(Γ0(3))), with

Es,t
2 (TMF(Γ0(3))) ≈ Hs(Z/2, πtTMF(Γ1(3))) =⇒ πt−sTMF(Γ0(3)).

Recall that the spectral sequence of (3.4) is that computing homotopy groups of
the homotopy fixed point spectrum TMF(Γ(3))hGΓ0(3) . Thus there is a comparison
map Er(TMF) → Er(TMF(Γ0(3))) with the spectral sequence for TMF = TMFhG.
Associated to the natural map of commutative ring spectra f∗ : TMF → TMF(Γ0(3))
there is a transfer map f! : TMF(Γ0(3)) → TMF, which is a map of TMF-module
spectra. We note that there is a map of spectral sequences f! : Er(TMF(Γ0(3))) →
Er(TMF), and that on E2-terms, this map is precisely the cohomology transfer. In
particular, we have
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Proposition 3.5. The composite TMF
f∗
−→ TMF(Γ0(3))

f!−→ TMF is equal to 4 id.

Proof. Since both are maps of TMF modules, we only have to check the image of
1 ∈ π0TMF. It is a straightforward fact about group cohomology that the composite
H∗(G, π∗TMF(Γ(3)) → H∗(GΓ0(3), π∗TMF(Γ(3))) → H∗(G, π∗TMF(Γ(3))) is given
by multiplication by 4. The result follows from the fact that Es,s

∞ (TMF) = 0 for
s > 0. �

4. Topological modular forms of level 3

The E2-term can be described in terms of the bigraded ring Rs,t = Z[13 , a1, a3, ζ,∆−1]/(2ζ),
where ζ is given bidegree (1, 0). If we assign “odd” weight to a1, a3, and ζ, then
E2 = Hs(Z/2, πtTMF(Γ1(3))) can be identified with the even part of Rs,t.

Let x = ζa3
3 ∈ E1,18

2 . There is an isomorphism

E2 ≈ Z[13 , a2
1, a1a3, a

2
3,∆

−1][x]/(2x).

We write

h1 = ζa1 = x a1a3 a−4
3 , h2 = ζ3a3 = x3 a−8

3 , h2,0 = ζa3 = x a−2
3 .

We have the following d3 differentials:

d3 : a2
1 7→ h3

1, a2
3 7→ h1h

2
2,0, a1a3 7→ 0, h1 7→ 0.

In general, if c ∈ R0,t has odd weight, then d3(c2) = h1(ζc)2; this can be proved
by a cup-1 construction. We can identify h1 as the class representing the image of
η ∈ π1S

0. We will show in (6.2) that a1a3 is a permanent cycle.
This forces:

d3 : h2,0 7→ h1h2,0ζ
2, x 7→ 0.

(The differentials already computed show that d3 : E4,20
3 → E7,22

3 is injective, so
d3(x) = 0, and h2,0 = xa−2

3 .)
We note that the transfer argument of (3.5) shows that whenever there is an element

α of order 8 in π∗TMF, its image α′ in π∗TMF(Γ0(3)) is non-trivial. Furthermore, if
α and 4α are detected on the s0-line and s1-line of E∞(TMF), respectively, then α′

must be detected on the s-line of E∞(TMF(Γ0(3))), where s0 ≤ s ≤ s1. This allows
us to see that

h2 = ζ3a3 ∈ E3,6
2 detects ν ∈ π3TMF(Γ0(3)),

and
h4

2,0 = ζ4a4
3 ∈ E4,24

2 detects κ̄ ∈ π20TMF(Γ0(3)),
where these elements are images of the like-named classes in π∗S

0.
At this point there are no possible differentials until the E7-term. There is a map

E7 → F2[∆,∆−1, x] which is surjective, and is an isomorphism on lines s ≥ 3.
The element h4

2,0 = x4∆−1 is the image of the class representing κ̄ in the spectral
sequence for π∗TMF, so it is a permanent cycle. There is a relation κ̄6 = 0 in π∗TMF,
and hence this relation must hold in π∗TMF(Γ0(3)). The only possible differential
which can do this is is d7(x17∆−7) = (h4

2,0)
6.
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This implies that d7 is non-trivial on either x or on ∆4 (but not both). In either
case, one sees that E7 = E∞, and that this vanishes for lines s ≥ 7.

Thus, we see that x is a permanent cycle, whence d7(∆) = h4
2,0ν.

Proposition 4.1. The above provides a description of π∗TMF(Γ0(3)). In particular,
there is an exact sequence

0 → F2[∆±2]{ν, ν2, x, ηx, κ̄, x2, νx2} → π∗TMF(Γ0(3))

→ bo∗[13 ,∆±1]{1, a1a3} ⊕ bsp∗[
1
3 ,∆±1]{2a2

3, 2(a1a3)a2
3} → ∆ F2[∆±2] → 0.

The spectrum TMF(Γ0(3)) is 48-periodic, with periodicity generated by ∆2. The ele-
ments η, ν, and κ̄ are images of the like-named elements in the 1, 3 and 20 stems of
S0. The element x lies in π17TMF(Γ0(3)). Furthermore, this sequence encodes the
multiplicative structure, except that in addition we must note that a4

1x = η(a1a3)3,
a1a3 x = η∆, a1a3 x2 = η2(a1a3)a4

3, νx = κ̄, and that x3 = ν∆2, x4 = κ̄∆2,
x5 = νx∆2, x6 = ν2∆4, and x7 = 0.

Remark 4.2. It is notable how element x generates all the v1-periodic torsion in
π∗TMF(Γ0(3)). It is particularly nice since x and x2 are v4

1 periodic. An elementary
calculation on homotopy groups shows that there is a cofiber sequence

Σ17TMF(Γ0(3)) x·−→ TMF(Γ0(3)) → TMF(Γ1(3))

in the category of TMF(Γ0(3))-module spectra. This seems to be an example of one
of the fibrations produced in [KW], where such fibrations are constructed for all the
“real” Johnson-Wilson spectra.

5. Hecke operators, and the building complex

In this section we describe a version of the “building complex” which has been
studied fruitfully by Behrens [Beh06]. In the following, we assume that all schemes S
are defined over Z[13 ].

We define a semi-simplicial stack N•, together with a “line bundle” ω• over N•, as
follows. Let Nk be the moduli stack of data of the form

C0
φ1−→ C1

φ2−→ · · · φk−→ Ck,

where the Ci are smooth elliptic curves over a base S, and the φi are isogenies of elliptic
curves which are not isomorphisms, such that ker(φk · · ·φ1) ⊆ C0[3]. In particular,
each φi has degree either 3 or 32. Face maps are defined in the evident way. It is
readily apparent that Nk is empty for k > 2.

The semi-simplicial stack can be completed to a simplicial stack by formally adding
degeneracies (which amounts to allowing some of the φi to be isomorphisms).

To give the line bundle ω•, we set ωk to be the line bundle over Nk defined by
ωk = ω(C0), together with “descent data” specified by the following isomorphisms

(d∗jωk−1
∼−→ ωk) = (id: ω(C0) → ω(C0)) for 0 < j ≤ k,

(d∗0ωk−1
∼−→ ωk) = (φ∗1 : ω(C1) → ω(C0)),
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where φ∗1 : ω(C1) → ω(C0) is the map induced by pulling back 1-forms; since 3 is
inverted in the ground ring, these are isomorphisms.

We now describe all the structure here in terms of more familiar objects, making
use of the fact that the moduli of isogenies C0 → C1 is equivalent to the moduli of
pairs (C0, A), consisting of a curve C0 and a finite subgroup A. Thus, consider the
following morphisms of moduli stacks.

h : M→M, (C) 7→ (C/C[3]),

f : M(Γ0(3)) →M, (A < C) 7→ (C),

q : M(Γ0(3)) →M, (A < C) 7→ (C/A),

t : M(Γ0(3)) →M(Γ0(3)), (A < C) 7→ (C[3]/A < C/A).

We have described the morphisms in terms of the effect on objects. For instance,
q : M(Γ0(3)) →M is the morphism of stacks associated to the operation which sends
the data of a smooth elliptic curve C, together with a subgroup scheme A < C locally
isomorphic to Z/3, and produces the quotient group scheme C/A, which is again an
elliptic curve. The notation C[3] denotes the subgroup of 3-torsion points in C; under
our hypotheses on the base scheme, C[3] is an etale group scheme locally isomorphic
to Z/3× Z/3.

We may now describe the semi-simplicial stack N• by the following picture.

M(Γ0(3))

d1=f
uuu

u

zzuuuu
d0=q

uuu
u

zzuuuu

M q M(Γ0(3))

d2=idNNNN

ffNNNNd0=tNNNN

ffNNNN

d1=f
ooo

o

wwooooo

M
d1=idJJJJ

eeJJJJd0=hJJJJ

eeJJJJ

N0 N1 N2

The simplicial identities follow from the identities

(5.1) q = ft and qt = hf.

The line bundle ω• is described by

ω0 = ω, ω1|M(Γ0(3)) = f∗ω, ω1|M = ω, ω2 = f∗ω,

with the non-trivial parts of the descent data given by the maps q∗ω
∼−→ f∗ω and

h∗ω
∼−→ ω induced by isogenies.
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There is an associated semi-cosimplicial commutative ring spectrum

TMF(Γ0(3))

d2=id
PPPP

P

((PPPP
P

d0=t∗
PPPP

P

((PPPP
P

TMF

d1=f∗
qqqq

88qqqqd0=q∗qqqq

88qqqq

d1=id
NNNN

&&NNNN
d0=h∗
NNNN

&&NNNN

× TMF(Γ0(3))

TMF

d1=f∗
mmmmm

66mmmm

Following Behrens, we write Q(3) for the geometric realization of the cosimplicial ring
There is also a cosimplicial bigraded ring given by H∗(N•, ω⊗∗); we also write

f∗, q∗, t∗, h∗ for the induced maps on cohomology. In this section we compute the
effect of these maps.

Write MFk = H0(M, ω⊗k) and MF(Γ0(3))k = H0(M(Γ0(3)), ω⊗k) for the rings of
modular forms. Recall that

MF∗ = Z[c4, c6,∆,∆−1]/(c3
4 − c2

6 − 1728∆),

MF(Γ0(3))∗ = Z[13 , a2
1, a

2
3, a1a3, (a3

1a
3
3 − 27a4

3)
−1].

Proposition 5.2. The maps f∗ : MF → MF(Γ0(3)), h∗ : MF → MF, q∗ : MF →
MF(Γ0(3)), and t∗ : MF(Γ0(3)) → MF(Γ0(3)), are described by

f∗(c4) = a4
1 − 24 a1a3, h∗(c4) = 34 c4,

f∗(c6) = −a6
1 + 36 a3

1a3 − 216 a2
3, h∗(c6) = 36 c6,

f∗(∆) = a3
1a

3
3 − 27 a4

3, h∗(∆) = 312 ∆.

q∗(c4) = a4
1 + 216 a1a3,

q∗(c6) = −a6
1 + 540 a3

1a3 + 5832 a2
3,

q∗(∆) = a9
1a3 − 81 a6

1a
2
3 + 2187 a3

1a
3
3 − 19683 a4

3.

t∗(a2
1) = −3 a2

1,

t∗(a1a3) = 1
3 a4

1 − 9 a1a3,

t∗(a2
3) = − 1

27 a6
1 + 2 a3

1a3 − 27 a2
3.

We will give the proof of (5.2) at the end of the section.
Let A = Z[13 , a1, a3,∆−1]; let C denote the curve given by Weierstrass equation

y2 + a1 xy + a3 y = x3, and let η = dx
2y+a1 x+a3

denote the usual invariant 1-form.
Thus C is a model for the universal curve over M(Γ1(3)), with P0 = (0, 0) as the
distinguished point of order 3, and −P0 = (0,−a3).

Proposition 5.3. Let C ′ denote the Weierstrass curve over A defined by the affine
equation

Y 2 + a1XY + 3a3Y = X3 − 6a1a3X − (9a2
3 + a3

1a3),
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with non-vanishing 1-form η′ = dX/(2Y +a1X+3a3). There is an isogeny φ : C → C ′

of degree 3 defined by

φ : (x, y) 7→ (X, Y ) =
(

x− a3y

x2
+

a3x

y
, y − a2

3y

x3
− a3x

3

y2

)
,

and under this map φ∗η′ = η. The kernel of this isogeny is precisely the subgroup A
of order 3 generated by P0 ∈ C

Proof. It is straightforward to check that the function φ defines a rational map of
curves C → C ′ with φ∗η′ = η, for example using a computer algebra package. One
calculates that the discriminant of the curve C ′ is ∆′ = a3(a3

1 − 27a3)3, and hence
C ′ is a non-singular elliptic curve in Weierstrass form. Thus one concludes that φ is
a non-singular map between smooth elliptic curves. Since the coordinate functions
X(x, y) and Y (x, y) have poles only on the subgroup A of E we see that A is precisely
the kernel of the map. �

Remark 5.4. The curve C ′ was obtained by the following procedure. First, consider
the map σ : C → C defined using the group structure on E by σ(P ) = P + P0 where
P0 = (0, 0) is a generator of A. One computes that σ(x, y) = (−a3y/x2,−a2

3y/x3).
Then X = x+σ∗x+(σ∗)2x and Y = y+σ∗y+(σ∗)2y must be Weierstrass coordinates
for the quotient variety E′ and hence satisfy a Weierstrass polynomial which one can
solve for explicitly; this polynomial is the equation for C ′.

Proof of (5.2). We compute the effect of the maps f∗ and q∗ on modular forms, using
the fact that the isogeny C → C ′ of (5.3) exhibits the universal example of an isogeny
of degree 3. Thus, the map f∗ : MF → MF(Γ0(3)) sends ci ∈ MFk (i = 4, 6) to

(f∗ci)(φ : C → C ′, η) = ci(C, η),

which can be read off from formulas found in [Sil86, p. 46] which express the cis as
polynomials Ci(a1, a2, a3, a4, a6) in the Weierstrass parameters a1, a2, a3, a4, a6; in this
case, we have f∗ci = Ci(a1, 0, a3, 0, 0). The map q∗ : MF → MF(Γ0(3)) is described
by

(q∗ci)(φ : C → C ′, η) = ci(C ′, η′),
so that q∗ci = Ci(a1, 0, 3a3,−6a1a3,−(9a2

3 + a3
1a3)).

The effect of h∗ is computed using the 3-power isogeny [3] : C → C. This isogeny
acts on invariant 1-forms by [3]∗η = 3η, so that

(h∗ci)([3] : C → C, η) = ci(C, 1
3η) = 3i ci(C, η).

The formula for t∗ is obtained from the others, using the identities (5.1), and the
fact that MF(Γ0(3)) is an integral domain. Thus, we have

t∗(10a4
1) = t∗(9f∗(c4) + q∗(c4)) = 9q∗(c4) + f∗(h∗(c4)) = 90a4

1,

from which we see that t∗(a2
1) = ε 3a2

1 where ε ∈ {±1}. We also have

t∗(240a1a3) = t∗(q∗(c4)− f∗(c4)) = f∗(h∗(c4))− q∗(c4) = 80a4
1 − 2160a1a3,

whence t∗(a1a3) = 1
3a4

1−9a1a3. The identity t∗((a1a3)2) = t∗(a2
1)t

∗(a2
3) gives t∗(a2

3) =
ε(− 1

27a6
1 + 2a3

1a3 − 27a2
3). Finally, we can use the identity t∗f∗(c6) = q∗(c6) to show

that ε = +1. �
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6. Some homotopy classes detected by Q(3)

In this section we describe how the image of J classes are detected in Q(3); this
will give a proof of (6.2) which we needed for the computation of π∗TMF(Γ0(3)).

Recall that TMF admits an E∞ String orientation [AHR] which refines the Witten
genus. We use this to detect elements in the image of J in the homotopy of Q(3),
using the standard formalism which we review below.

Let γ : X → BString be the map classifying a stable string bundle over a pointed
space X. Write T (γ) for the Thom spectrum of γ, and define T̄ (γ) and α by the
cofiber sequence

Σ−1T̄ (γ) α−→ S0 → T (γ) → T̄ (γ).
Let R• denote a cosimplicial E∞-ring spectrum, such that R0 admits a string orien-
tation, and let Q = TotR•. Then the composite Σ−1T̄ (γ) α−→ S0 → Q is detected by
an element e(α) ∈ [T̄ (γ), R1], defined by a diagram

Σ−1T̄ (γ)
α // S0 //

1

��

T (γ) //

t

��

T̄ (γ)

e(α)

��

Q // R0
d0−d1

// R1

where t is the map determined by the string orientation of R0.
If X = ΣY , then T̄ (γ) = Σ∞ΣY and α = Jγ̃ : Σ∞Y → S0, where γ̃ : Y → String

is the adjoint of γ.

Proposition 6.1. Let γ2n : S4n → BString be the standard generator (n ≥ 2), so that
α2n = Jγ̃2n : S4n−1 → S0 is the generator of the image of J . Then e(α2n) : S4n →
R1 → R1

Q is given by

un · ((d0)∗(b2n)− (d1)∗(b2n)) ∈ π4nR1 ⊗Q,

where

Q(x) =
x

expF (x)
= exp

2
∑
k≥1

b2k
x2k

2k!

 ∈ H∗(CP∞, π∗R
0 ⊗Q)

is the Hirzebruch series associated to the given string orientation of R0, and un = 1
if n is even and un = 2 if n is odd.

Proof. This is “standard”; a proof appears, for instance, in [AHR]. �

In particular, taking R• to be the cosimplicial ring associated to the build-
ing complex of §5, and Q = Q(3) = Tot(R•), we see that e(α2n) ∈ π4nR1 ≈
π4nTMF(Γ0(3))× π4nTMF is a class which modulo torsion has the name

(un · (q∗G2n − f∗G2n), un · (32n − 1)G2n),

where G2n ∈ mf2n ⊗Q is the unnormalized Eisenstein series with q-expansion

G2n(q) = −B2n

4n
+

∑
m≥0

qm
∑
d|m

d2n−1.
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Corollary 6.2. There is an element in π8TMF(Γ0(3)) which maps to a1a3 ∈
π8TMF(Γ1(3)).

Proof. The element is given by e(γ4) : S8 → TMF(Γ0(3)), since 240 G4 = c4, so that
q∗G4 − f∗G4 = 1

240 [(a4
1 + 24 a1a3)− (a4

1 − 216 a1a3)] = a1a3. �

A number of elements in π∗S
0 are detected in π∗Q(3); we hope to provide calcula-

tions of these in a future paper.

7. Connective models for TMF(Γ0(3))

By a “connective model” of a v2-periodic ring spectrum R, we mean a connective
spectrum X such that LK(2)X ≈ LK(2)R. More optimistically, we can ask that
LK(1)∨K(2)X ≈ R∧

p . Even more optimistically, we may hope that X is a ring spectrum,
or even an E∞-ring.

Thus, the periodic spectrum of topological modular forms TMF comes with a
canonical connective model tmf, which is itself an E∞-ring. There seems to be no
known construction of a connective tmf(Γ0(3)) which is also an E∞-ring.

In this section, all results are at the prime 2. Cohomology refers to mod 2 coho-
mology. We will make much use of the fact that H∗tmf ≈ A⊗A(2) Z/2.

Our first result is to construct a simple finite complex and a map of this com-
plex into TMF(Γ0(3)) such that the extension over TMF is a weak equivalence. We
will think of this as a recognition complex. Then if we can map this complex into
other naturally occurring module spectra we can determine if such a spectrum is a
connective model for TMF(Γ0(3)).

We begin with a finite complex X = bo1, which is the 7-skeleton of bo; that is,
X = S0∪ν e4∪η e6∪2ι e

7. Let Y = Σ7Dbo1; that is, Y is the Spanier-Whitehead dual
of bo1, shifted so that the bottom cell is in dimension 0.

Theorem 7.1. There is a map f : Σ6X → Y so that the composite S6 → Σ6X → Y
is ν2 on the bottom cell.

Proof. The proof is straightforward after computing π∗Y through dimension 14. The
following is the Adams E2-term in the usual way of presenting such charts.
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r

ExtA(H∗(Y ), Z/2)

From this chart it is easy to see that the class which begins the map Σ6X → Y
sends the bottom class to a class in the six stem. Clearly, ν on this class is zero and
this allows an extension over the four skeleton of X. The last Moore space maps in
dimensions 11 and 12, both of which are zero. �

The following result is our recognition principle. Let Z = Y ∪f CΣ6X.

Proposition 7.2. There is a map g : Σ17Z → TMF(Γ0(3)) whose extension to Σ17Z∧
TMF → TMF(Γ0(3)) is a weak equivalence.

Proof. This follows from the calculations of π∗TMF(Γ0(3)) we made in §4. In
particular, g is constructed so that on the bottom cell it is given by x : S17 →
TMF(Γ0(3)). �

We will use this result to show that various naturally occurring spectra X are
copies of covers of TMF(Γ0(3)). In each case, a complete homotopy calculation of X
looks like a connective version of TMF(Γ0(3)); this allows the construction of a map
from Z to X just as in the proof of (7.2). When X is a tmf-module, the map extends
to a map Z ∧ tmf to X.

The first example is the bit in MString which begins in dimension 16. Recall that
the cohomology of MString is free over A ⊗A(2) Z/2. In dimension 16 there is a
free generator and starting in dimension 20 there begins an extended A(2)-module
A(2)/(Sq1,Sq5,Sq6). It was determined in [DM82] that these two pieces are connected
by 2ν. The homotopy of the resulting tmf module was computed in [GM95]. An
inspection of that calculation shows that this module is just a connected version of
π∗TMF(Γ0(3)).

We write tmf(Γ0(3)) for this connected model of TMF(Γ0). It is of special interest,
since it has a good chance of being a ring spectrum. The homotopy of π∗tmf(Γ0(3)) is
described in [GM95]; in terms of the spectral sequence calculation of π∗TMF(Γ0(3))
given in §4, the homotopy of tmf(Γ0(3)) corresponds to the part of the Es,t

2 -term for
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which (i) s ≤ t − s (i.e., below the line of slope one), and (ii) whose E1-names only
include non-negative powers of the element ∆.

If one knew that, after localizing at 2, tmf split off of MString, then it would follow
that Σ16tmf(Γ0(3)) is also a summand of MString. Unfortunately, we do not know
how to do this.

Remark 7.3. The module Z/2⊕Σ4A(2)/(Sq1,Sq5,Sq6) admits the following nice de-
scription: it is isomorphic as a module to H∗(bo1)⊗2/Σ2, the symmetric coinvariants
of H∗bo1.

In [GM95] it is also shown that there is an extended A(2)-module M beginning in
dimension 44 which is

A(2){a44, a49}/(Sq1 a44, Sq5 a44, Sq7 a44 + Sq2 a49, Sq4 a49 + Sq6 Sq3 a44).

The Adams spectral sequence for this extended A(2)-module is easy to compute. Let
M1 = A(2){a5}/A(2){Sq2 a5, Sq4 a5}, and M2 = A(2){a0}/A(2){Sq1 a0, Sq5 a0, Sq13 a0}.
Then we have a short exact sequence

M2 → M → M1.

The Ext chart for M1 is computed in [DM82]. The module M2 fits into an exact
sequence

M2 → A(2)/(Sq1,Sq5) → A(2){a13}/(Sq1,Sq2,Sq10).
The Ext-chart for the right module is computed in [DM82] while the middle module is
just H∗bsp. Thus all parts are easily computed and there is a non-trivial connecting
homomorphism in the sequence to compute ExtA(2)(M). Again there are no possible
Adams differentials. Its homotopy agrees with the 11 homotopy skeleton of the fiber
of a map from tmf(Γ0(3)) → bo ∨ Σ8bo. The first map picks up the unit and the
second picks up a1a3.

These two results suggest that a possible path toward understanding MString is
via these module maps and others like them. We have the orientation now thanks to
Ando, Hopkins, and Rezk. As noted above, to obtain splitting results at the prime 2,
one would want to show that the orientation map MString → tmf splits.

The A(2)-module structure of A⊗A(2) Z/2 is known. It is most easily described in
terms of bo-Brown-Gitler spectra. Compare [GJM86]. The first two after the unit are
Σ8bo1 = Σ8X and Σ16bo2. Because of a differential in the Adams spectral sequence,
these two pieces are connected. We have the following:

Proposition 7.4. K(2)-locally, there is a cofiber sequence

Σ32TMF → (Σ8bo1 ∪ Σ16bo2) ∧ TMF → TMF(Γ0(3)).

The proof consists of computing the homotopy of the middle spectrum and then
applying the “recognition principle”.

8. Some calculations in the building complex

We want to understand how the map δ = q∗−f∗ : MF∗ → MF∗(Γ0(3)) works, which
in turn gives us a good understanding of the corresponding map TMF → TMF(Γ0(3))
in homotopy.
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Proposition 8.1. We have

δ(∆2r(2k+1)) = a3·2r+1

1 a
2r+1(4k+1)
3 + higher terms in a1 (mod 2).

Proof. To get the formula, recall that

f∗(∆) = −27 a4
3 + a3

1a
3
3, q∗(∆) = −19683 a4

3 + 2187 a3
1a

3
3 − 81 a6

1a
2
3 + a9

1a3.

This gives

f∗(∆) ≡ (a4
3 + a3

1a
3
3), q∗(∆) ≡ a4

3 + a3
1a

3
3 + a6

1a
2
3 + a9

1a3 (mod 2).

Formally setting a1 = t and a3 = 1, the answer is obtained by determining the first
non-zero term in

(1 + t3 + t6 + t9)2
r(2k+1) − (1 + t3)2

r(2k+1) (mod 2).

Since this expression is equal to (1 + t3)2
r(2k+1)((1 + t6)2

r(2k+1)− 1), it is not hard to
see that the leading term is t3·2

r+1
. �

Proposition 8.2. We have

δ(ck
4) = 24+ν2(k)

[
(odd) a

4(k−1)
1 a1a3 + higher terms in a1

]
and

δ(ck
4c6) = 23

[
(odd) a4k+2

1 a1a3 + higher terms in a1

]
.

Proof. The first equality is a straightforward application of the following lemma to
the identity q∗(c4) = f∗(c4) + 24(15 a1a3). The second equality can be derived from
the first together with the identity q∗(c6) = f∗(c6) + 23(63 a2

1 a1a3 + 756 a3
3). �

Lemma 8.3. If d > 1, then

(u + 2d v)k = uk + 2d+ν2(k) g(u, v),

where g(u, v) ∈ Z[u, v] has the form g(u, v) = (odd) uk−1v + higher terms in v.
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