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Abstract

In this note we discuss how the first author came upon the Kervaire
invariant question while analyzing the image of the J-homomorphism in
the EHP sequence.

One of the central projects of algebraic topology is to calculate the homotopy
classes of maps between two finite CW complexes. Even in the case of spheres –
the smallest non-trivial CW complexes – this project has a long and rich history.

Let Sn denote the n-sphere. If k < n, then all continuous maps Sk → Sn are
null-homotopic, and if k = n, the homotopy class of a map Sn → Sn is detected
by its degree. Even these basic facts require relatively deep results: if k = n = 1,
we need covering space theory, and if n > 1, we need the Hurewicz theorem,
which says that the first non-trivial homotopy group of a simply-connected space
is isomorphic to the first non-vanishing homology group of positive degree. The
classical proof of the Hurewicz theorem as found in, for example, [28] is quite
delicate; more conceptual proofs use the Serre spectral sequence.

Let us write πiS
n for the ith homotopy group of the n-sphere; we may also

write πk+nSn to emphasize that the complexity of the problem grows with k.
Thus we have πn+kSn = 0 if k < 0 and πnSn ∼= Z. Given the Hurewicz theorem
and knowledge of the homology of Eilenberg-MacLane spaces it is relatively
simple to compute that

πn+1S
n ∼=

 0, n = 1;
Z, n = 2;
Z/2Z, n ≥ 3.

The generator of π3S
2 is the Hopf map; the generator in πn+1S

n, n > 2 is the
suspension of the Hopf map. If X has a basepoint y, the suspension ΣX is given
by

ΣX = S1 ×X/(S1 × y ∪ 1×X)

where 1 ∈ S1 ⊆ C. Then ΣSn ∼= Sn+1 and we get a suspension homomorphism

E : πn+kSn → π(n+1)+kSn+1.

∗The second author was partially supported by the National Science Foundation.
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By the Freudenthal Suspension Theorem, this map is onto if k ≤ n − 1, and if
k < n − 1 it is an isomorphism. The common value of this group for large n
is the kth stable homotopy group of spheres, written πs

kS0. For short, we may
write

colimkπn+kSn = πs
kS0.

Note that this formula makes sense even if k < 0.
There has been a great deal of computation in the stable homotopy groups

of spheres; see, for example, Appendix 3 of [26]. The answer is fairly complete
for k up to about 60; if we divide out by 2- and 3-torsion, this can be improved
to about k = 1000. However, we are a long way from any sort of complete
calculation. Research since the mid-1970s has shifted to the investigation of
large-scale phenomena, especially after the paper by Miller, Ravenel, and Wilson
[24] on periodic phenomena and the proofs of Ravenel’s nilpotence conjectures
by Devinatz, Hopkins, and Smith [10, 13].

Historically, the Kervaire invariant arose in Pontryagin’s calculation of πs
2S

0.
He noted that πs

kS0 is isomorphic to the group of cobordism classes of framed
k-manifolds; that is, differentiable manifolds with a chosen trivialization of the
stable normal bundle. Let F2 be the field with two elements. and let M be a
connected framed manifold of dimension k = 4m− 2. By collapsing all but the
top cell of M we obtain a map

M −→ S4m−2

which is an isomorphism of H4m−2(−, F2). Using surgery [6, 29] we can try to
to build a cobordism from M to the sphere. This may not be possible, but we
do find that the non-singular pairing

λ : H2m−1(M, F2)×H2m−1(M, F2) → H4m−2(M, F2) ∼= F2

given by Poincaré duality has a quadratic refinement µ; that is, there is a
function µ : H2m−1(M, F2) → F2 so that

µ(x + y) + µ(x) + µ(y) = λ(x, y).

Up to isomorphism, the pair (H2m−1(M, F2), µ) is completely determined by the
Arf Invariant. This invariant is 1 if µ(x) = 1 for the majority of the elements
in H2m−1(M, F2); otherwise it is 0.1 The Kervaire invariant of M is the Arf
invariant of this quadratic refinement.

After first getting the computation wrong, Pontryagin [25] noted that for
a particular framing of S1 × S1, the Kervaire invariant was non-zero, giving a
non-trivial cobordism class. Then πs

2S
0 ∼= Z/2Z generated by this element.

To study the higher homotopy groups of spheres, we must consider more
sophisticated methods. One such is the Adams spectral sequence

Exts
A(F2,ΣtF2) =⇒ πs

t−sS
0 ⊗ Z2.

1For this reason, Browder has called the Arf invariant the “democratic invariant”.
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Here A is the Steenrod algebra, Z2 is the 2-adic integers, and ΣtF2 = H̃∗(St, F2).
The Kervaire invariant elements are then classes

h2
j ∈ Ext2A(F2,Σ2j+1

F2)

which could detect elements in πs
2j+1−2S

0. If j = 1, this element detects Pon-
tryagin’s class.

In his work in smoothing theory, Kervaire [16] constructed a topological
manifold of dimension 4m−2 for m 6= 1, 2, 4 which had Kervaire invariant one
and which was smooth if a point was removed. The question then became “Is
the boundary sphere smoothable?” Browder [5], proved that it was smoothable
if and only if m = 2j−1, j ≥ 4 and if the elements h2

j detected a homotopy class.
The homotopy class was constructed for j = 4 before Browder’s work by Peter
May in his thesis [22]; the finer properties of this element were uncovered in [4].
The class in dimension 62 (that is, j = 5) was constructed later in [3].

Hill, Hopkins, and Ravenel [11] have shown that for j ≥ 7 the class h2
j is not

a permanent cycle in the Adams spectral sequence and cannot detect a stable
homotopy class. This settles Browder’s question in all but one case. Their proof
is a precise and elegant application of equivariant stable homotopy theory. It
is also very economical: they develop the minimum amount needed to settle
exactly the question at hand. The very economy of this solution leaves behind
numerous questions for students of πs

∗S
0. One immediate problem is to find

the differential on h2
j in the Adams spectral sequence. The target would be an

important element which we as yet have no name for.
The Kervaire invariant and Arf invariant have appeared in other places and

guises in geometry and topology. For example, it is possible to formulate the
Kervaire invariant question not for framed manifolds, but for oriented manifolds
whose structure group reduces to SO(1) = S1. In this formulation, Ralph
Cohen, John Jones, and the first author showed that the problem had a positive
solution [8]. The relevant homotopy classes are in the stable homotopy of the
Thom spectrum MSO(1); they are constructed using a variant of the methods of
[19], which certainly don’t extend to the sphere. Note that MSO(1) = Σ−2CP∞

is an infinite CW spectrum, but still relatively small. This may the best of all
positive worlds for this problem.

In [7], Brown found a way to extend the Kervaire invariant to another more
general class of manifolds. And, by contemplating work of Witten, Hopkins
and Singer found an application of the Arf invariant in dimension 6 to some
problems in mathematical physics. See [12].

Parallel to this geometric story, the Kervaire invariant problem also arose in
an entirely different line of research in homotopy theory, and here the negative
solution of [11] leaves as many questions as it answers. This line of inquiry, long
studied by the first author, asks just how the stable homotopy groups of spheres
are born. To make this question precise, we must introduce the EHP sequence.
This was discovered by James [15] in the mid-1950s and related techniques were
exploited by Toda to great effect in his landmark book [27].

If X is a based space, let ΩX denote the space of based loops in X. In
his work on loop spaces [14], James produced a small CW complex with the
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homotopy type of ΩSn+1 and later he noticed that this gave a splitting

ΣΩSn+1 '
∨
t>0

Snt+1.

Here
∨

is the one-point union or wedge. By collapsing all factors of the wedge
except for t = 2 and then taking the adjoint, we obtain the first Hopf invariant

H : ΩSn+1 → ΩS2n+1

There is also the map E : Sn → ΩSn+1 adjoint to the identity; it induces the
suspension homomorphism on homotopy groups. A calculation with the Serre
spectral sequence shows that

Sn E // ΩSn+1 H // ΩS2n+1

is a fiber sequence when localized at 2. As a consequence there is a long exact
sequence in homotopy groups, once we divide out by the odd torsion:

(1) · · · → πi+2S
2n+1 P // πiS

n E // πi+1S
n+1 H // πi+1S

2n+1 → · · · .

This is the EHP sequence. As mentioned, E is the suspension map and H is the
Hopf invariant. The map P is more difficult to describe; however we do have
that if α ∈ π∗S

n−1, then (up to sign)

P (En+2α) = [ιn, Eα]

where [−,−] is the Whitehead product and ιn ∈ πnSn is the identity. Thus, for
example, P (ι2n+1) = [ιn, ιn].

From this point forward in this note, we will implicitly localize all
groups at the prime 2.

The EHP sequence gives an inductive method for calculating the homotopy
groups of spheres; the key is to do double induction on n and k in πn+kSn. To
this end we reindex the subscripts in Equation (1) and write a triangle

(2) πn+kSn E // π(n+1)+kSn+1

Hwwooooooooooo

π(2n+1)+(k−n)S
2n+1

P

ffL
L

L
L

L

for the EHP sequence. The dotted arrow indicates a map of degree −1. Then,
assuming we know πm+iS

m for all m ≤ n and for all i < k, we can try to
calculate π(n+1)+kSn+1. Coupled with the unstable Adams Spectral Sequence,
it is possible to do low dimensional calculations very quickly – but, as with all
algebraic approximations to the homotopy groups of spheres, it gets difficult
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fairly soon.2 Tables for this computation can be found in a number of places;
see, for example, [23] or §I.5 of [26].

Question 1.1. Suppose α ∈ πs
kS0 is a stable element.

1. What is the smallest n so that α is in the image of πn+kSn → πs
kS0? Then

Sn is the sphere of origin.

2. Suppose Sn is the sphere of origin of α and a is a class in πn+kSn which
suspends to α. What is H(a)? This is “the” Hopf invariant of α.

Technical Warning 1.2. As phrased, the second question is not precise, as
there maybe more than one a which suspends to α. There are several ways out
of this difficulty. One is to ignore it. In practice, this works well. Another is to
note that the EHP sequences, as in Equation (2) assemble into an exact couple
which gives a spectral sequence

E1
k,n = πn+kS2n−1 =⇒ πs

kS0.

Then questions (1) and (2) can be rephrased by asking for the non-zero element
in E∞ which detects α.

It is a feature of this spectral sequence that the E2-page is an F2-vector
space. This means, for example, that elements of high order must have high
sphere of origin. Charts for this spectral sequence can be developed from [17]
and can be found in explicit form in [23], which is based on work of the first
author.

Example 1.3. As a simple test case, the sphere of origin the generator η ∈
πs

1S
0 ∼= Z/2Z is S2 and a can be taken to the Hopf map S3 → S2. The Hopf

invariant of this map is (up to sign) the identity ι3 ∈ π3S
3. We can ask when

ι2n−1 ∈ π2n−1S
2n−1 can be the Hopf invariant of some stable class. This is the

Hopf invariant one problem, settled by Adams in [1]: it only happens when n
is 2, 4, or 8; the resulting stable classes are η ∈ πs

1S
0, ν ∈ πs

3S
0, and σ ∈ πs

7S
0.

There are instructive reformulations of the Hopf invariant one problem.
First, by the EHP sequence, ι2n−1 is the Hopf invariant of a stable class if
and only if

[ιn−1, ιn−1] = 0 ∈ π2n−1S
n−1.

Thus we are asking about the behavior of the Whitehead product.
Second, an argument with Steenrod operations shows there is an element of

Hopf invariant one if and only if the element

hj ∈ Ext1A(F2,Σ2j

F2)

survives to E∞ in the Adams spectral sequence. It is this last question that
Adams settled showing

d2hj = h0h
2
j−1

2Doug Ravenel has dubbed this general observation “The Mahowald Uncertainty Princi-
ple”.
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if j ≥ 4.
This example, while now part of our basic tool kit, remains very instructive

for the interplay of stable and unstable information, and the role of the Adams
spectral sequence. Notice also that we changed our question in the middle of
the discussion.

Question 1.4. Let α ∈ πs
kS0 be a stable element, then α desuspends uniquely

to πn+kSn if n > k + 1. Suppose 2n− 1 > k + 1. Is

α ∈ π2n−1+kS2n−1

the Hopf invariant of a stable element in π2n−1+kSn?

The solution of the Hopf invariant one problem, completely answers this
question for a generator of πs

0S
0. We will have other examples below.

It is exactly in thinking about Question (1.4) that the first author came to
the Kervaire invariant problem.

In the middle 1960s, Adams [2] (with an addendum by the first author at the
prime 2 [18]) wrote down an infinite family of non-zero elements in the homotopy
groups of spheres. These elements we now call the image of J, and they were
the first example of “periodic” families. They are easy to define, although less
easy to show they are non-trivial.

Let SO(n) be the special orthogonal group. Then SO(n) acts on Sn by
regarding Sn as the one-point compactification of Rn. This action defines a
map

SO(n) → map∗(S
n, Sn)

from SO(n) to the space of pointed maps. Taking the adjoint, assembling all n,
and applying homotopy yields map

(3) J : πkSO → πs
kS0.

By Bott periodicity, we know the homotopy groups of SO. What Adams did
was compute the image. To state the result, let k > 0 be an integer, let ν2(−)
denote 2-adic valuation, and define

λ(k) = ν2(k + 1) + 1.

Thus λ(7) = 4 and λ(11) = 3. The image of the J-homomorphism lies in a split
summand Im(J)∗ ⊆ π2

∗S
0 with Im(J)1 ∼= Z/2Z generated by η and for k ≥ 2,

Im(J)k =


Z/2λ(k)Z k = 8t− 1, 8t + 3;
Z/2Z k = 8t, 8t + 2;
Z/2Z× Z/2Z k = 8t + 1;
0 k = 8t + 4, 8t + 5, 8t + 6.

Let’s write ρ8t−1 and ζ8t+3 for the generators of the groups in degrees 8t − 1
and 8t+3 respectively. Some of these elements are familiar; for example, ν = ζ3

and σ = ρ7. The elements ηρ8t−1 and η2ρ8t−1 are non-zero in Im(J)∗. There
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is another generator µ8t+1 in degree 8t + 1; ηµ8t+1 6= 0 and η2µ8t+1 = 4ζ8t+3.
Despite the name, the J-homomorphism of Equation (3) is not onto Im(J)∗, as
the elements µ8t and ηµ8t are not in the image, although we see that they are
intimately connected to that image. In fact, we can think of µ1 as η; then

η2µ1 = η3 = 4ν = ζ3

and the equation η2µ8t+1 = 4ζ8t+3 is then forced by the periodic behavior of
these elements.

There were several revealing new features to this family. One was that it
was infinite: this was the first systematic collection of elements produced in the
stable homotopy groups of spheres and took us beyond the era of stem-by-stem
calculations. Another feature was that this was the first of what we now call
periodic families of stable homotopy classes. The attempt to understand stable
homotopy theory in terms of periodic families led to a reorganization of the
field, including the work of Miller, Ravenel, and Wilson [24], and the Ravenel’s
nilpotence conjectures, proved by Devinatz, Hopkins, and Smith [10, 13].

We now say that Im(J)∗ is the v1-periodic homotopy groups of spheres. We
won’t dwell on this point, but in modern language (a language not available in
the 1960s), we say the the composite

Im(J)∗
⊆ // πs

∗S
0 // π∗LK(1)S

0

is an isomorphism in degrees greater than 1 and an injection in degree 1. Here
LK(1)S

0 is the localization of the sphere spectrum at the K-theory with coeffi-
cients in Z/2Z.

In the mid-1960s, the first author began an extensive study of the image of
J in the EHP sequence; the first results appeared in [17] and there was followup
paper [20] almost fifteen years later.

The sphere of origin and the Hopf invariants of the elements in the image of
J are all known. For example, the sphere of origin of ζ8k+3 is S5 and its Hopf
invariant is an element on S9 which suspends to 2λ(8k−1)−1ρ8k−1; in particular,
the Hopf invariant of ζ8k+3 is another element in the image of J . The remarkable
fact is that this is (almost) true in general; the exception is ηρ8k−1 which has
sphere of origin S3 and Hopf invariant νζ8k−5 on the 5-sphere.3 In this sense
the image J is very nearly a closed family. The detailed answers are nicely laid
out in [23].

But there are exceptions. Once the the sphere-of-origin and Hopf invariant
calculations have been answered for the elements in the image of J , there are
still a few elements left that could be Hopf invariants of new elements in the
stable homotopy groups of spheres. There are some sporadic examples (see the
table below) and there are also two infinite families. The first is

ν = ζ3 ∈ π2j+1−2S
2j+1−5, j ≥ 4.

3Since ν = ζ3, the element νζ8k−5 could be regarded as an honorary element of the image
of J , failing to attain full membership because it is unstable.
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This turns out to be the Hopf invariant of an element

ηj ∈ πs
2j S0

detected by the element

h1hj ∈ Ext2A(F2,Σ2j+2F2).

This element was constructed by the first author in [19].
The Kervaire invariant elements arose as part of conjectural solution to what

happens for the second infinite family. To describe this conjecture we need some
notation.

Let j ≥ 2 and define integers a and b by the equation j = 4a + b for
0 ≤ b ≤ 3. Define φ(j) = 8a + 2b. Notice that if i ≥ 2, then πiSO 6= 0 if and
only if i = φ(j)−1 for some j. Let βj be a generator of the image of J in degree
φ(j)− 1; thus, for example, we have

β2 = ν β3 = σ β4 = ησ β5 = η2σ β6 = ζ11.

Notice we are excluding the generators µ8k+1 and ηµ8k+1.
The remaining classes available to be Hopf invariants were the infinite family

βj ∈ π2n+φ(j)S
2n+1, n + φ(j) + 1 = 2j+1.

The first author made the following conjecture in 1967 [17].

Conjecture 1.5. Let n+φ(j)+1 = 2j+1. The Whitehead product [ιn, βj ] = 0
if and only if h2

j detects a non-zero homotopy class.

To paraphrase the conjecture we have: if h2
j detects a non-zero homotopy

class Θj , then Θj has sphere of origin S2j+1−φ(j) and Hopf invariant βj .
This conjecture has been proved in all aspects by Crabb and Knapp [9], but,

of course, the negative solution of [11] leaves only the case j = 6 of interest.
Indeed, we now see that for j > 6

[ιn, βj ] 6= 0 ∈ π∗S
2j+1−φ(j)−1.

So, somewhat surprisingly, the image of J has led us into unknown territory.
What else can we say about this class?

Open Problem 1.6. There is another, richer, question left as well. If the
Kervaire invariant class Θj had existed, it would have had Hopf invariant βj . A
likely consequence of this was that for all odd k, the element

P (βj) ∈ π∗S
k2j+1−φ(j)−1

would have had Θj as its Hopf invariant. Now we have no idea what the Hopf
invariant of this family of elements could be, but they are presumably a new and
very interesting collection of elements in the stable homotopy groups of spheres.
For example, they should play a key role in the iterated root invariant [21] of
2ι ∈ πs

0S
0. The elements in this family should depend only on m, and not on k.
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Here is a table showing the generators in the stable homotopy groups of
spheres which are not in the image of J , yet which have Hopf invariants in the
image of J . Listed also are their spheres of origin, and their Hopf invariants.
There are five (or six) sporadic elements and one infinite family. The element
Θ6 is the unsettled case of the Kervaire invariant problem. It may or may not
exist. The element ν∗ is the Toda bracket 〈σ, 2σ, ν〉 in πs

18S
0. It is detected by

h2h4 in the Adams Spectral Sequence. In this context the ηj family looks quite
curious. Why does it have this privileged role?

Element Sphere of Origin Hopf Invariant

ν2 4 ν
σ2 8 σ
ν∗ 12 σ
Θ4 23 ησ = β4

Θ5 54 η2σ = β5

Θ6(?) 116 ζ11 = β6

ηj 2j − 2 ν
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