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§ 1. INTRODUCTION

THE APPROACH toward homotopy theory which is the basis of this note is the Adams spectral
sequence. Let A be the mod 2 Steenrod algebra. Then Adams has shown that there is a spectral
sequence {E.”'} such that E.** = Eo(amy") and E.** = Ext.>*(Z,, Z,). (There is a similar spectral
sequence for each prime.) A good reference is [1].

Let h; € Exta"*(Z,, Z-) be the family described by Adams in [1]. These classes are related to
Sq* which represent the generators over A of IA, the augmentation ideal of A. Adams also
shows in [1] that h.h# 0 in Exta>**%(Z,, Z2) if i# 2. Let .4, § =3 be the secondary operation
based on the relation in A, Sq**'Sq"'+ Sq>Sq* + Sq*Sq* >+ Sq*Sq* = 0. The main result of
this paper is the following.

THEOREM 1. For each i# 2 there is a class n: € w5 such that in the mapping cone of ni, @1 is
not zero.

In the Adams spectral sequence setting Theorem 1 is equivalent to
THeOREM I'. For each i+# 2, the class hhi is a permanent cycle.

This result establishes an infinite family of elements at filtration 2 in the Adams Spectral
Sequence. Adams in [1] showed that there were only a finite number of classes at level 1 and
the results of [9] show that the image J includes only finitely many classes at each filtration
level. In particular this family is not in the image of the J-homomorphism.

The technique to prove this resuit is much less technical than those in current vogue in
stable homotopy theory. Using these more technical methods one can construct from each v a
finite family of classes in .m,>

Previous results related to this problem are:

(1) If 6, € ,73-1_», represented by {h7} in the Adams spectral sequence, exists and 26, = 0,
then {h.h;..} € (8;, 2i, n). Hence the theorem is known if i <6.

(2) If there exists an element n: detected by hh;, i = 3, then H(n:,) = v on S* > where H(1:)
is the Hopf invariant and v is the generator of ° [8]. This settles the open cases on [i., v]
which were left by (8].

(3) In [10] (and corrections in [2]) it is shown that h:h; does not project to a homotopy class
except for h?, h;h: and a finite number of exceptional cases.

The theorem follows directly from the following result.

THEOREM 2. For each i =3 there is a stable complex X: of dimension 2'—1 and a map f::
X - S° such that

(@) H*"'(Xi; Z2) = Z. and H(X:; Z.) =0 for j<2' -2

(b) In S° Uy, CX,, Sq° is non-zero. »

(c) Thereisamap g.: S* — X; such that the composite S - X. - Xl X.)' = §*" representsn,
the generator of m.°.

Indeed, standard arguments show that the composite f; - g: represents h.h;, thus proving h.h
is a cycle for each r in the Adams spectral sequence. Since it cannot be a boundary, the proof
of Theorem 1 is complete.

tThis research is supported in part by the NSF Grant No. MPS75-06976.
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§2 contains the proof of Theorem 2 with the major technical part delayed until a later
section. §3 recalls some results on Q°S**'. §4 contains some new results on Q°S™ ™' which may
be of independent interest. In particular 2.6 and 4.1 may be of interest.

Theorem 1| seems to offer strong evidence for the existence of Kervaire manifolds of
dimension 2' — 2. It does not seem to be vseful in nmnf of the Kervaire invariant coniecture

UL >c LC UNC1UL a (L), A=} SUHpLL L.

This paper is concerned only with the prime 2. All coefficient groups for cohomology and
homology are assumed to be Z.. Where appropriate, spaces should be localized at the prime 2.

The author would also like to thank D. Kahn and Ed Brown for several profitable
conversations on the material of this note and Frank Adams who pointed out a gap in the original
version of this paper.

§2. THE PROOF OF THEOREM 2.
Let S° -»B?0 represent a generator of ws(B°0). Let Q1g: S° - BO be the loop map of g.

ProprosiTioN 2.1. (Qg)Y*we# 0 for all k.

Dynnd Qimea 08 v/ OBy oo e e DO Ly ooVl 1 ad o o3 2
£7007. oM (O X A0y Hdpd o 3o Y muiupiiCation ana since ug isan H mdp,
Stiefel Whitney classes of the composite is (1+ &) where {:} are the standard generators o f
i=1.k
HS®x -+ - x §%.
Let O%: S0°S°— BO be the adjoint of 0.

ProposiTioN 2.2. %g*(wyi) #0, i =3.

Proof. (1*g factors through Qg and if f: 2025° > QS’ is the adjoint of the identity then f* is a
monomorphism in dimension 2, i = 3.

2

-l

ProrositioN 2.3, Let J be the inclusion SO CQO7S”. Then the Thom complex of

2RO i N N uvv v

SV 1a2,CQ7S°.

g is
o

This is a standard result on Thom complexes of bundles over a space which is a suspension.

By Proposition 2.2 we see that in the Thom complex of °g, Sq” U # 0 for all i =3 where U
is the Thom class. The spaces and maps that are needed for Theorem 2 will turn out to be
subcomplexes and attaching maps of this Thom complex.

Milgram[12] gives a definition of 028! which exhibits the space as a filtered CW complex.

VANSIGGaI | 14) YOO @ UTiiiiawg Ui CAINIDILS AL 3pa

This filtration can also be described in the following way. Let C.(2) be the space of “llttle
cubes” in R?, i.e., C.(2) is the configuration space of n disjoint embedded rectangles in R’.
Then 0°S**' is an identification space of U C,(2)X:4(S*™")* where X, is the symmetric

Q<>
group on g-letters. Then F,(2{ + 1) C°S*"" is the image of U C,(2)X5,(S™™")* under this

g=sn

identification. Details can be found in [11] and also [14].
The following theorem of Snaith[14] is crucial.

Thus as a stable map JQg: 0°S°— S°is a sum of maps Z.f.: V Fa(9)/Fnv(9) - S°. We will
show that the choice of (X, f;) = (Fx-%9)/ Fx-_,(9), f2-») satisfies the conclusion of Theorem 2.
Property (a) follows immediately from the definition of the filtration, [11]. Property (b) follows
from 2.2. Property (c) remains to be proved.

The proof of part (c) will involve a detailed analysis of the spaces F.(9)/F._«(9) at the prime
2. The rest of the paper is devoted to this. We will need the following.

THEOREM 2.5. For all n, k and | positive integers there is a homotopy equivalence

SCCVE QL4 D)/ Fasi 2L+ 1) =3 F, 2k + 1)/F.(2k +1).
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This is proved in [5].
In [4] Brown and Gitler discussed the module M (k) over the Steenrod algebra, A, defined by

THEOREM 2.6. As modules over the Steenrod algebra

HXE.Ql+D/F...2l+1)=M

AN
—
NS
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e

This is proved in §4.
In their paper Brown and Gitler proved

THEOREM [41. There are spectra B(k) satisfying
(i) H*(B(k)) = M (k) as A-modules.
(i) Let H be the Eilenberg-MacLane spectrum K(Z>). If a: R(k\—) H is the map represent-

ing 1€M(k) then a,: B(k)o(X)— H,(X) is an epimorphism for any CW Complex X if
q<2k+2

The spaces F,/F._. satisfy (i) but so far have not been shown to satisfy (ii). The main
theorem couid be proved more easily if {(ii) were valid for F./F.-..

IRE. The spaces {F:.( 1)/ Fa._ (21 + 1)} realize the Brown-Gitler spectrum {B(n)}.

Lre ypac

Instead of proving the conjecture we calculate enough of the homotopy of Fan(9)/Fan-1(9)
to complete the proof. This will be done in §5.
Also for the remainder of the paper we will let B(n) be suspension spectra such that

B LY 7
\l}an"l n = rlnkﬂ T )2l

2i+1

W
175

In this section results on the filtration of Q are stated.

ProposiioN 3.1. H (Q°S™"") = P(xi;i =1,2,...) where dimension of x is 2"'(2))— 1.

Let x; have filtration 2" and assign to each monomial x,"-x," - -x.» the filtration 3j,2"~".
(The x; = Q.- - - Qux, in the usual Dyer Lashof notation.)

ProposiTioN 3.2, H (F, (2] + 1)) = A. where A, is the subset of P (x;) generated additively by

monomials of ﬁ]trgtu)n <n.

This follows immediately from the definition [11].
Another property of the filtration which is needed is:

s R L 2 Pat ] > R

‘11

maps

::

I ~1 I\ we T /AT AN b ) V.Y BN ERY 1 L1 N .
w20+ 1) X Fu(2l + 1) > Favm(21 + 1) such that pin . is
=N 2 and m<n. If n=2"" then x.., is the only

|| [=3

Henm
an epimorphism lf n+m= N 2,
class not in the image of tmm..

"I+I

This is clear from 3.2. The maps ... are induced by the multiplication in Q*S®

§4. BROWN-GITLER TYPE SPECTRUM

In this section some properties of the module M (k) are derived. Some connections with
double loop spaces are also discussed.

T At Q3 D3N st o et DI T e N2, o DA L el ot

Leth: = B°0O represent a generator of (B U). Let {i'n: {I°5S” - BO be the appropriate

loop map.
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THEOREM 4.1. Let h. be the composite F.(3) C QS>> BO. Then for the Thom complex of ha,
T(h.), we have H*(T(h,))= M (n).

Proof. The proof will proceed by induction. T(h) is the Z-Moore space whose cohomology
is also M(1). Suppose we have shown H*(T(h))= M(k) for all k <n. To complete the proof
we need to show

(1) that xSq“U. =0 for k >n if U, is the Thom class of h.;

(2) that the map H*(T(h.))- M(n) is onto;

(3) that H'(T(h.))= M.} for each j as Z. vector spaces.

To prove 1, note that T(h,) is the Z-Moore space and B(l) is also the Z,-Moore space.
Suppose for each p <n, xSq*U, =0 for k >p. Then by 3.3 we have a map T(h,) A T(hs)—>
T(h.) if p + q = n and, for suitable p and q, the map is a monomorphism in cohomology except
if n =2" and then fails only in dimension 2'"* ~ 1. By the Cartan formula we are thus finished
except for xSq* " '"'Us. Davis[6] has shown that xSq>"'™'=Sq* - - - Sq’Sq" and xSq* ' *=
Sq* - Sq*. Thus xSq* "~'Ux =Sq*Sq* '--- Sq’[U -x.]. Since as a space ’S’=S'xW
where W is l-connected, all Sq'x;=0 and so the formula is [Sq*Sq* '---Sq*1U -x,=
(xSq*7*U)x: =0 by the preceding argument. This shows that H*(T(f.)) satisfies Property 1.

The proof of Parts 2 and 3 requires a little more information about Mx. Some of thisisin [4] oris
easily implied by results there.

ProposITION 4.2. The kemnel of the natural map M= M. is M[g] xSq*.

Proof. A Z, basis for M is given by {xSq'; I is admissible in the usual sense and i, = k},
(1.3(3]). Thus a Z,-basis for MJMi-i={xSq'; I admissible and i,=k}. Hence I=

{k, iz, b3y, .., 0l s [%‘]} The proposition is now clear.

PrOPOSITION 4.3. Let n =2 +1 where | <?2'. Then the natural map M(n)>MQ2)Y®M(l) is a
monomorphism except if | =2' and then fails only in dimension 2"~ 1.

Proof. By direct calculation the result is true for n =2 and 3. Suppose the result is true for
all n <N. Suppose N#2' or 2' + 1. Consider the diagram

sa([Y]) 22 (merem((1])

i iz

M(N)— M2HQM()

M(N - 1) —> MQ2)QM(U - 1).

The left column is exact; the map i, is defined by i\(xSq')=xSq"Sq'; i. is defined by
2(xSq"' ®xSa’) = x(Sq*Sq" )R x(Sq'Sq’ ). The maps a and b are the natural projections. On
the set generated by {xSq'|i, < N} the map a is a monomorphism and, by induction u. is also.
By direct calculation b is a monomorphism on Im w. Thus p is a monomorphism on this set.
The image of i, together with this set generates M(N) and i»u, is clearly a monomorphism.
Thus p is a monomorphism. The minor modifications necessary if N = 2" or 2'+1 are clear.

It is worth noting that the class Sq'Sq’- - - Sq* € M(2') is the only class which p maps to
zero.

We return to the proof of 4.1. Suppose by induction we have shown H*(T (h.)) = M(n) for
all n <N. Then we have

HH(T () — HHT(h2)Q@H*T(h)

! !
My — Mz‘@M.
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Since p is a monomorphism except as noted, the classes p(ySq') form a Z, basis. Thus
xSq'Un are linearly independent as Z. classes. Finally, we have to check Sq'Sq*- - - Sq*U>.
But Sq*- - Sq*U~#0and Sq'(Sq*- - - Sq*Ux)=8q'U(x*..) = U - x; + U - x,x2-.. The second
term is zero in T(h.). This completes the proof of part 2.

PropostTioN 4.4. Hi(F. (2l + 1)/F._.2l + 1)) = H{(Z" * ' T(h(hiw2)) as Zr-modules.

Proof. Let {x;} be the generators of H,(Q’S”) and let {y:} be the generators of H,(Q’S*"").
Recall that dim x; =2' -1 and dim y: =2'-/ - 1. The 1-1 correspondence is given by x' =y’
where J(I) = (ji, j2, ..., jxr1) satisfies

ji=n=2i,—4i:-8iy~—-- =2 =i p>L

It is clear that this map is 1-1 and if the filtration of I is less than or equal to [g] then the

filtration of J is n. ' ‘
To complete the proof of Theorem 4.1 we note that as Z. vector spaces M) = QM'™ .

Also as Z, vector spaces H'(T(h,)) = @ H'*(T(hus)) and so, if by induction, H*(T(h,)) =M,
k=n

for p <n, then H* (T(h.)) = M. as Z. vector spaces. Again note that H*(T(h,)) = M, and so
theorem 4.1 is established.

CorOLLARY 4.5. The Thom complex of O’h is the Eilenberg-MacLane spectrum.

This result was first observed several years ago. The proof was computational (related to the
above). In [7] a very elegant proof was given. (That proof has some serious misprints and at
least one error but the corrections are easily seen and a valid proof follows the lines suggested.)

From the above it follows easily that

THEOREM 2.6. H*(F.(21 + 1)/F._,2l + l))EM<[g]>, as modules over the Steenrod algebra.

Proof. Proposition 4.4 implies that the homology modules are isomorphic as graded Z,
vector spaces.

After 4.4 we need to show that in H*(F, (2l + 1)/ F._,(2l + 1))Sq"x,"" # 0if Sq"1# 0in M([g])

and xSq“x," =0 if k> n.
First note that F>/F, is a Z> Moore space. Suppose 2.6 is true for p <n. Then

H*(F./F._\)> HMF,/Fpy AFu_p/Facy))
U

N 4 p h—p
M([z]) ” M([2]>®M<[ 2 ])
The map 4 comes from 4.3. If Sq' 1 # 0 in M([g]) then 2Sq" 1 # 0 for suitably chosen p unless
n=2"and Sq" = Sq*'. Thus except for the case just noted Sg’(x,") # 0. Finally S¢*'x\* = x;

and this handles the one exception. Thus H*(F,/F,_,) = M([g]) and this establishes 2.6.

§5. COMPLETION OF THE PROOF OF THE MAIN THEOREM
To complete the proof of Theorem 2 we need to verify.

PROPERTY C OF THEOREM 2. There is a map g:: S* — X. such that the composition §* - X; -
Xil[X:]*™'= S™"' represents n, the generator of m,>.

*Here and for the rest of this argument a basis for the cohomology group is represented by the same symbol as the
homology basis. The reader should not assume that an indicated product, which is a homology product, is also a
cohomology product.

TOP Vol. 16, No. 3—D
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Recall that X; = F5 (9)/Fx-3_1(9). Let B(n) be the stable complex F:.(2[ + 1)/Fz2n_ (21 + 1)
which by 2.5 does not depend on [. Normalize B(n) so the first essential cell is in dimension
zero. Since X: =3% "”B(2'™*), we need to prove

ProOPOSITION 5.1. There is a map gi: S*"'—> B(2') such that the composite
Szin _)B(zi)_)B(zi)/[B(zi)]ziﬂ_z - sz"l-l
is essential.

We will use the Adams spectral sequence approach. Let A be the A algebra of Kan et al.{3].
Recall that A is generated by symbols AiAi,. .. A, with 2i; = i;.,. We abbreviate such a symbol

by Ar where I ={i,,iz...,i}. Let A CA be the subset of A generated by {A;|I admissible,
ir <n}. In [4] the following is proved

PRropoSITION 5.2{4). The subset A. is a sub-chain complex and if sf(n) = AJA, then H (d(n),
d) = EXtA*(M(n), Zz).

Note that a basis for s£(n) can be taken to be {A;|I admissible, i, = n}.
We are indebted to Ed. Brown for the following lemma.

LemMma 5.3. If A, € A(n); for j<2n+1, then dr, = 0.

- Proof. Let I =(iy,...,i) be admissible; let L(I}) =i and [{I)=1 The relations in A are
given by

s—1

Ay =E<2s —(j-20)

)/\H’sAj—x-

The differential on A; is given by the same formula for i = —1. To prove the lemma we will use
induction on I(I). The lemma is true for I; by an easy calculation. Now suppose it is true for all
Ar such that [(I) <. Since AyA-iAi, = Ay, (2 AA,) when arranged in admissible form, we need only
verify the lemma for [_;A,. Suppose A_iA;, - -+ Ai_, = £ Ay, Let sc = L(IL). By induction we have

-1

>i=2s+2

i=1
for each t. Hence Ardi = ArAsA,

=D Aduths,
where 2v,' =i +2s. This last conclusion uses the formula for relations. Therefore ArAy, =
-1

S Aus L(L.p)<v' and L., admissible. Hence 2L(L.,) <20, <ii+2s. =i+, i =|I|-2.
X i=

Thus if L(I..,)=n for some ¢, r, p, then 2+ 2n <|I|. This implies 5.3.

12411

COROLLARY 5.4. In the Adams spectral sequence for B(2'), the class Ay € E, is not

zero.

To prove 5.1 we will show that A»++ projects to a non-zero homotopy class which has the
desired property. To prove that it is a cycle for each r we need another lemma.

an
LeEMMA 5.5. There is a cofiber sequence B(n —1)— B(n)— 2 B [g]

Proof. Let (2°S™*")* be the k skeleton. Then F,(2' + 1) = [Q2S**' """ """ if n + 1 <2'. Let
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epimorphism. This shows that there is a map Fx(2' + 1) F;(2""'+ 1) for all j <2'"". Finally note

that at the prime 2 we have a principal fibration
QS‘:‘ _)025241 _’stz-’\ﬂ.

Hence S* XS¥'XFy(2 +1)= Fyu2 + D> F(2*'+1) factors through FQ™'+1)-
hn

and i such that n + 1< 27" the composite
ch that n + 1 <27, the composite

) =4 l‘)'*'.L 1Y Thus for eac
iri\& 15, 10US 10T €ac

SZ‘—l X Szi_l X Fz(n—n(zi +1) . an(zi + 1) ", F"(zi*f +rl)
S7TX ST X Faw_1(2°+ 1) Fa 2+ 1) F.@+1)

is trivial but in homology j« is a monomorphism and p is an epimorphism so the sequence is a
cofiber sequence. This establishes the lemma.

(This argument is due to R. J. Milgram and replaces the more complicated original proof.)

We also need

LeMMa 5.6. The cofiber sequence of 5.5 induces a long exact sequence

.- sz.x(B(zi _ 1))_:_) E:S"(B(Zi))—p‘—) Ezu—zi(B(z.--l)) iEzsﬂ,r(B(zi _ 1))_) . and P

- 52— 1es = 5245 -1,y g

E> (B(Z)»E;"""""(B(2'™") is zero for each s.

Proof. The long exact sequence follows from the fact that the cohomology modules form a

short exact sequence[1]. The homomorphism property is obtained by combining 5.5 and 5.3. At
the chain level we have

A2 SAQ = 1) »s(2) where gAr = Ada-v.

Recall that if A; € (27" then Ar = Ar-A, with i, = 27" and so gA, is already admissible if A, is.
Lemma 5.3 implies that if |I| <2'*' then dA; = 0 in &/(2°' — 1). Thus g induces a monomorphism
on ciasses A, with |J{<2" But q induces & in the exact sequence and this implies the ciaim on
p.

Now we prove

LeMMa 5.7 The class A+ € E;"*"*"(B(2')) is a cycle for each r in the Adams spectral
sequence.

" Proof. Clearly A+ is never a boundary and so if it is an r cycle it is non-zero in E..,. Define
for each i an integer or «, r. by the following rule: if 8,4+ # 0 in E, (B(2')) then this defines

r. If A~ is a cycle for all r, then let r, = =,

Now fix i so that r; is the smallest integer in the set {r:}. We need to show r; = . Consider
the cofiber sequence

i+1

B2 -1)~»B{2
By hypothesis on A»-:€ E'* "Y(B(2'*")) 8., is defined. By direct calculation we have p.Az-:=
Az+t, thus p.d,Az-2=§,A2-+ #0 but in this gradation p. is zero by Lemma 5.6. This implies
Lemma 5.7.

To complete the proof of 5.1 we must show that if gi represents Ax- it has the additional
property required. It will be sufficient to show that the map

hl il
E:™(B(2Y) — E™(8™"™") hukst = hy.

satisfies
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Lemma 5.8. If N is any power of 2 larger than 2, there is a map of A-modules
H*EN"'PRE- L)« M(2) with k(1)#0.
k

Proof. The easiest way to see this is to observe that if B(2) is the actual Brown-Gitler
spectrum then according to [4] there is a map of 2(P*")— B(2') whose induced map in
cohomology is the one we want.

Note that k is an isomorphism in dimension 2'*'—1 since the single generator in each
module is Sq*'~* on the zero dimensional cell.

LemMma 5.9 For each i and for N = order K(RP™) there is a map g: S¥~'— PR "3, which is
coextension by new,® on the top cell.

Proof. Recall that the Radon Hurwitz theorem on vector fields on spheres implies that there

is a map S~ ->PNJ., of degree 1. Consider the composite S™ ' —» PN 3_, C Px-x-, which

14
we will call . Then 2§ factors through the N — 2 skeleton but not through the N — 3 skeleton.
To see this consider

Py —> Pz s Py
T [4
SN—I

Since the first two cells of the right hand space form a Z, Moore space, p.p\(25) = 0. Thus p
factors through the N -2 skeleton. Let g: S™'-»>PX7%_, be such a factorization. Since
mn-1(Pn-2) = Za generated by p,p we see that p,(25) # 0{13]. Hence 2p does not factor through
N -3 skeleton. This implies g is an essential coextension of the N — 2 cell and this implies 5.9.

We now can complete the proof of 5.1. By construction the map g has filtration 1 and so we
have

E(S*"'

E (37N pl2 _l)—k—> EAB(2)).

Let [g] be the class representing g then h.[g] = h, hence h.k.[g]= h,. Thus k.[g] # 0. Thus
k#lg]=Az+ and h.A»- = h, and this completes the proof of property (c) and hence Theorem 2.
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