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B 1. INTRODUCTION 

THE APPROACH toward homotopy theory which is the basis of this note is the Adams spectral 
sequence. Let A be the mod 2 Steenrod algebra. Then Adams has shown that there is a spectral 
sequence {E,‘.‘} such that E,** = E&~T*~) and Ez”.’ = ExtA’.‘(ZZ, Z,). (There is a similar spectral 
sequence for each prime.) A good reference is (11. 

Let hi E Extai’z’(Z?, Zz) be the family described by Adams in [l]. These classes are related to 
Sq” which represent the generators over A of IA, the augmentation ideal of A. Adams also 
shows in [l] that h,hi# 0 in ExtA 2~2’+t(Z2, Zz) if if: 2. Let (pl.ir i z 3 be the secondary operation 
based on the relation in A, Sq”+‘Sq’ + Sq’Sq” + Sq4Sq2’-* + Sq*‘Sq* = 0. The main result of 
this paper is the following. 

THEOREM 1. For each i# 2 there is a class vi E TT? such that in the mapping cone of vi, c+T~.~ is 
not zero. 

In the Adams spectral sequence setting Theorem 1 is equivalent to 

THEOREM t’. For each i# 2, the class hIhi is a permanent cycle. 

This result establishes an infinite family of elements at filtration 2 in the Adams Spectral 
Sequence. Adams in [I] showed that there were only a finite number of classes at level 1 and 
the results of [9] show that the image J includes only finitely many classes at each filtration 
level. In particular this family is not in the image of the J-homomorphism. 

The technique to prove this result is much less technical than those in current vogue in 
stable homotopy theory. Using these more technical methods one can construct from each vi a 
finite family of classes in 2~*s. 

Previous results related to this problem are: 
(1) If e, E &+I_~, represented by {hi’} in the Adams spectral sequence, exists and 20, = 0, 

then {hIhj+l}E (&, 2i, 17). Hence the theorem is known if i 16. 
(2) If there exists an element ni detected by h,h,, i 2 3, then H(ni) = v on S2’-2 where H(ni) 

is the Hopf invariant and v is the generator of ~,‘[8]. This settles the open cases on [L”, v] 
which were left by [8]. 

(3) In [IO] (and corrections in [2]) it is shown that hihj does not project to a homotopy class 
except for h2, hIhi and a finite number of exceptional cases. 

The theorem follows directly from the following result. 

THEOREM 2. For each i 2 3 there is a stable complex xi of dimension Zi - 1 and a map fi: 
X + So such that 

(a) H”-‘(Xi; Z,) = Zz and Z?‘(Xi; Zz) = 0 for j < 2’ - 2’-3. 
(b) In S” U,, CX,, Sq” is non-zero. 
(c) Thereisa mapgi: S” +Xisuch that thecompositeS” -,Xi +Xi/IXil”-‘= S*‘-’ represents 9, 

the generator of aIs. 

Indeed, standard arguments show that the composite fi .gi represents h,h,, thus proving h,hi 
is a cycle for each r in the Adams spectral sequence. Since it cannot be a boundary, the proof 
of Theorem 1 is complete. 

tThis research is supported in part by the NSF Grant No. MPS75-06976. 
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82 contains the proof of Theorem 2 with the major technical part delayed until a later 
section. 83 recalls some results on fH’+‘. 94 contains some new results on R’S”” which may 
be of independent interest. In particular 2.6 and 4.1 may be of interest. 

Theorem 1 seems to offer strong evidence for the existence of Kervaire manifolds of 
dimension 2’ - 2. It does not seem to be useful in a proof of the Kervaire invariant conjecture. 

This paper is concerned only with the prime 2. All coefficient groups for cohomology and 
homology are assumed to be ZZ. Where appropriate, spaces should be localized at the prime 2. 

The author would also like to thank D. Kahn and Ed Brown for several profitable 
conversations on the material of this note and Frank Adams who pointed out a gap in the original 
version of this paper. 

$2. THE PROOF OF THEOREM 2. 

Let S’ +B*O represent a generator of as(B20). Let Rg: RS’+BO be the loop map of g. 
Y 

PROPOSITION 2.1. (Rg)*wst # 0 for all k. 

Proof. Since (S8 X . * * x SE) maps to a.!?’ by multiplication and since Rg is an H map, the 
Stiefel Whitney classes of the composite is n (1 + K,) where {K,} are the standard generators of 

,=I.L 
H”(S” x * * * * x SE). 

Let &g: ZS1*S9+B0 be the adjoint of fl’g. 

PROPOSITION 2.2. fi*g*(w*i) # 0, i z 3. 

Proof. fi’g factors through Rg and if f: ZR2S9 + OS9 is the adjoint of the identity then f * is a 
monomorphism in dimension 2’, i z 3. 

PROPOSITION 2.3. Let .I be the inclusion SO C KS”. Then the Thorn complex of fi2g is 
S” u ,n~,Cm”. 

This is a standard result on Thorn complexes of bundles over a space which is a suspension. 
By Proposition 2.2 we see that in the Thorn complex of fi*g, Sq*‘U# 0 for all i 2 3 where CJ 

is the Thorn class. The spaces and maps that are needed for Theorem 2 will turn out to be 
subcomplexes and attaching maps of this Thorn complex. 

Milgram [ 121 gives a definition of n’s”” which exhibits the space as a filtered CW complex. 
This filtration can also be described in the following way. Let C,(2) be the space of “little 
cubes” in R’, i.e., C,(2) is the configuration space of n disjoint embedded rectangles in R*. 
Then fYS2’+’ is an identification space of u C,(Z)X,,(S”-‘)” where Z, is the symmetric 

q-=== 

group on q-letters. Then F.(21+ 1) c fi2S2’+’ is the image of U Cq(2)Xx,(S”-‘)4 under this 
qsn 

identification. Details can be found in [ll] and also [14]. 
The following theorem of Snaith[l4] is crucial. 

THEOREM 2.4. As a stable complex, JTS*“’ = V F,(21+ 1)/F,-,(2/i 1). 

Thus as a stable map JRZg: R’S’+ S” is a sum of maps x.6: V F,(9)/F,-,(9)+ S”. We will 
show that the choice of (Xi, fi) = (F2i-3(9)/F21-,_,(9), fzl-3) satisfies the conclusion of Theorem 2. 
Property (a) follows immediately from the definition of the filtration, [ 111. Property (b) follows 
from 2.2. Property (c) remains to be proved. 

The proof of part (c) will involve a detailed analysis of the spaces F.(9)/Fn-,(9) at the prime 
2. The rest of the paper is devoted to this. We will need the following. 

THEOREM 2.5. For all n, k and 1 positice integers there is a homotopy equicalence 

I: nc*k-‘)F,(21 + 1)/F,-421 + 1) = I”‘*‘-“F,(2k + l)/F,(2k + 1). 
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This is proved in [5]. 
In [4] Brown and Gitler discussed the module M(k) over the Steenrod algebra, A, defined by 

M(k) = A/AO(Sq’li > k}. 

THEOREM 2.6. As modules ocer the Steenrod algebra 

8*(F”(21+ l)/I7-,(21+ I))=M([;]) 

with an appropriate dimension shift. 

This is proved in 04. 
In their paper Brown and Gitler proved 

THEOREM [4]. There are spectra I?(k) satisfying 
(i) H*(B(k)) = M(k) as A-modules. 
(ii) Let H be the Eilenberg-MacLane spectrum K(&). If a:: B(k) + H is the map represent- 

ing 1 EM(k) then a *: B(k),(X)+H,(X) is an epimorphism for any CW Complex X if 
q<2k+2. 

The spaces F./F,-, satisfy (i) but so far have not been shown to satisfy (ii). The main 
theorem could be proved more easily if (ii) were valid for F./F,-,. 

CONJECTURE. The spaces {Fz.(21 + l)/Fz,-,(21 + 1)) realize the Brown-Gitler spectrum {B(n)}. 

Instead of proving the conjecture we calculate enough of the homotopy of Fz.(9)/F+,(% 
to complete the proof. This will be done in 85. 

Also for the remainder of the paper we will let B(n) be suspension spectra such that 

B(n)Zn,ZI-l, = Fz,(21 + I)/Fz.-,(21 + 1). 

83. THE SPACE Kl’S=‘+’ 

In this section results on the filtration of @S”+’ are stated. 

PROPOSITION 3.1. H.J0n2S2’+‘) = P(xi; i = 1,2,. . .) where dimension of xi is 2’-‘(21) - 1. 

Let xi have filtration 2’-’ and assign to each monomial xli’*xziz+ * .xni” the filtration 2 j,2’-‘. 
(The x, = Q, + . . Q,x, in the usual Dyer Lashof notation,) 

PROPOSITION 3.2. H,(F,(21+ 1)) = A, where A,, is the subset of P(xi) generated additicely by 
monomials of filtration 5 n. 

This follows immediately from the definition [ 111. 
Another property of the filtration which is needed is: 

PROPOSITION 3.3. There are maps p..,,,: F,(21+ 1) x F,(21+ l)*F,+,(21+ 1) such that t.~.,,,. is 
an epimorphism if n + m = N, n = 2’, ni = N - 2’ and m <n. If n = 2”’ then xi+3 is the only 

class not in the image of c(,,,.,,,.. 

This is clear from 3.2. The maps pn.m are induced by the multiplication in a’(.S”“). 

44. BROW%GITLER TYPE SPECTRfhl 

In this section some properties of the module M(k) are derived. Some connections with 
double loop spaces are also discussed. 

Let h: S’+ B’O represent a generator of n3(B’O). Let R’h: R’S’+ BO be the appropriate 
loop map. 
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THEOREM 4.1. Let h, be the composite F.(3) C 0’s’ + BO. Then for the Thorn complex of h., 
T(h,), we have fi*(T(h.))- M(n). 

Proof. The proof will proceed by induction. T(h,) is the Zz-Moore space whose cohomology 
is also M(1). Suppose we have shown fi*(T(hL)) 2: M(k) for all k <n. To complete the proof 
we need to show 

(1) that xSq’U,, = 0 for k > n if U,, is the Thorn class of h. ; 
(2) that the map fi*(T(h.))+M(n) is onto; 
(3) that H’(T(h.))- M.’ for each j as Zz vector spaces. 
To prove 1, note that T(h,) is the Zz-Moore space and B(1) is also the Zz-Moore space. 

Suppose for each p < n, xSqkU, = 0 for k > p. Then by 3.3 we have a map T(h,) A T(h,)+ 
T(h.) if p + q = n and, for suitable p and q, the map is a monomorphism in cohomology except 
if n = 2’ and then fails only in dimension 2”‘- 1. By the Cartan formula we are thus finished 
except for xSq”*‘-I U21. Davis[6] has shown that xSq*“‘- = Sq*‘-’ . * . Sq*Sq’ and xSq*‘-‘-* = 
sq*‘... Sq*. Thus xSq”*‘-‘Uzc = Sq*‘Sq*‘-’ . . . Sq*[U =x1]. Since as a space 0*S3 = S’ X W 
where W is l-connected, all Sq’x, = 0 and so the formula is [Sq’Sq’- * * - Sq2]U OXI= 
(xSq2’-2U)xi = 0 by the preceding argument. This shows that H*(T(j,)) satisfies Property 1. 

The proof of Parts 2 and 3 requires a little more information about M,. Some of this is in [4] or is 
easily implied by results there. 

PROPOSITION 4.2. The kernel of the natural map Mk + Mk-1 is M k xsq’. 
[1 

Proof. A Zz basis for M, is given by {XSq ‘; I is admissible in the usual sense and i’ I k}, 
(1.3[3]). Thus a Z2-basis for MJMk-, =CySq’; I admissible and i, = k}. Hence Z = 

k,iz,i, ,..., ij(izG t [ 11 . The proposition is now clear. 

PROPOSITION 4.3. Let n = 2’ + I where 1 s 2’. Then the natural map M(n); M(2’)@M(I) is a 
monomorphism except if I = 2’ and then fails only in dimension 2”‘- 1. 

Proof. By direct calculation the result is true for n = 2 and 3. Suppose the result is true for 
all n <IV. Suppose N# 2’ or 2’ + 1. Consider the diagram 

YM([;]) +M(2?@M([;])) 

1 il I i2 

M(N) 2 M(2’)@M(I) 

I 
(I 

I 
b 

M(N - 1) 2 M(2’)@M(I - 1). 

The left column is exact; the map i, is defined by i,(xSq’)=xSqNSq’; i2 is defined by 
i&Sq’@xSq’) = x(Sq*‘Sq’)@x(Sq’Sq’). The maps a and b are the natural projections. On 
the set generated by J$q’li, <IV} the map a is a monomorphism and, by induction p2 is also. 
By direct calculation b is a monomorphism on Imp. Thus IL is a monomorphism on this set. 
The image of i, together with this set generates M(N) and izpl is clearly a monomorphism. 
Thus p is a monomorphism. The minor modifications necessary if N = 2’ or 2’ + 1 are clear. 

It is worth noting that the class Sq’Sq’. * * Sq” E M(2’) is the only class which p maps to 
zero. 

We return to the proof of 4.1. Suppose by induction we have shown H*(T(h.)) = M(n) for 
all n <N. Then we have 

H*(T(hN)): H*(T(hi))@H*(T(hi)) 

J J 

MN - MY~M’. 
P 
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Since p is a monomorphism except as noted, the classes p(xSq’) form a 22 basis. Thus 
,ySq’UN are linearly independent as 2: classes. Finally, we have to check Sq’Sq* - . . Sq2’U2i. 
But Sq' . . . Sq”U2e# 0 and Sq'(Sq' . . . Sq”UzE) = Sq’U(x?-,) = U * xi + U . x,x~_,. The second 
term is zero in T(h.). This completes the proof of part 2. 

PaoPoslTroN 4.4. H,(F,(21 + 1)/E-,(21 + 1)) = ~~(~“‘2’-‘T(h(h,,lz,)) as Zz-modufes. 

Proof. Let {xi} be the generators of H,(R2S3) and let {yi} be the generators of H*(,*S*‘+‘). 
Recall that dim x, = 2’ - 1 and dim yi = 2’.I- 1. The l-l correspondence is given by xr = y’“’ 
where J(Z) = (j,. jz,. . . , jk+,) satisfies 

j, = n -2i,-4i,-8i,-....-2’ir; jp = i,-, p > 1. 

It is clear that this map is l-l and if the filtration of I is less than or equal to f then the [I 
filtration of J is n. 

To complete the proof of Theorem 4.1 we note that as Z2 vector spaces M.’ = @MiWk . 

Also as Z2 vector spaces H’(T(h.)) = @I Hi-‘(T(hrr,2,)) an d so, if by induction, H*(T(h,)) = M, 
Irzzn 

for p <n, then H* (T(h,,)) = M, as Zz vector spaces. Again note that H*(T(h,)) = MI and so 
theorem 4.1 is established. 

COROLLARY 4.5. The Thorn complex of R’h is the Eilenberg-MacLane spectrum. 

This result was first observed several years ago. The proof was computational (related to the 
above). In [7] a very elegant proof was given. (That proof has some serious misprints and at 
least one error but the corrections are easily seen and a valid proof follows the lines suggested.) 

From the above it follows easily that 

THEOREM 2.6. fi*(F.(21+ 1)/~,-,(21+ I))= M([:]), as modules over the Steenrod algebra. 

Proof. Proposition 4.4 implies that the homology modules are isomorphic as graded Z2 
vector spaces. 

After 4.4 we need to show that in #*(F,,(2/ + 1)/F,,-,(21+ l))Sq’x,“’ f 0 if Sq'l f 0 in M 
([ I> 
5 

and ,ySq*x,” = 0 if k > n. 
First note that &IF, is a Zz Moore space. Suppose 2.6 is true for p <n. Then 

The map ii comes from 4.3. If Sq’ 1 # 0 in M 
([ I> : then FSq’ 1 f 0 for suitably chosen p unless 

n = 2’ and Sq’ = Sq2’-‘. Thus except for the case just noted Sq’(x,“) # 0. Finally Sq”-‘XI*’ = xi 

and this handles the one exception. Thus H*(F./F.-,)= M([:]) and this establishes 2.6. 

IS.CO\iPLETION OF THE PROOF OF THE MAIN THEOREM 

To complete the proof of Theorem 2 we need to verify. 

PROPERTY C OF THEOREU 2. There is a map g,: S” 
Xi/[Xi]“-’ = S*‘-’ represents q, the generator of T,‘. 

+ xi such that the composition S’ + Xi --) 

Were and for the rest of this argument a basis for the cohomology group is represented by the same symbol as the 
homology basis. The reader should not assume that an indicated product, which is a homology product, is also a 
cohomology product. 

TOP Vol. 16. No. 3-D 
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Recall that X, = FZ~-$9)/F2~-3-,(9). Let B(n) be the stable complex FZ.(21 + 1)/F*,-,(21+ 1) 
which by 2.5 does not depend on 1. Normalize B(n) so the first essential cell is in dimension 
zero. Since Xi = ~‘*‘-‘X7)B(Zi-4), we need to prove 

PROPOSITION 5.1. There is a map gI: S*‘+‘+ B(2’) such that the composite 

s2’+‘~B(2’)-,B(2’)/[B(2’)]2’-‘-2= S2’*‘-’ 

is essential. 

We will use the Adams spectral sequence approach. Let A be the A algebra of Kan et al. PI. 
Recall that A is generated by symbols Ai,Ai,. . . Ai, with 2ii 1 ii+,. We abbreviate such a symbol 
by A, where I = {i,, i2,. . . , i,}. Let A, CA be the subset of A generated by {A,\1 admissible, 
i, <n}. In [4] the following is proved 

PROPOSITION 5.2[4]. The subset A. is a sub-chain complex and if d(n) = A/A. then H,(ti(n), 
d) = Exta*(M(n), 2,). 

Note that a basis for &I(n) can be taken to be {A,]Z admissible, ir 2 n}. 
We are indebted to Ed. Brown for the following lemma. 

LEMMA 5.3. If A, E &(n)i for j 5 2n + 1, then dAl = 0. 

- Proof. Let I = (i,, . . . , i,) be admissible; let L(I) = i, and I(I) = 1. The relations in A are 
given by 

hihi = 2 
s-l 

2s - (j - 2i) > 
Ai+&,. 

The differential on Ai is given by the same formula for i = - 1. To prove the lemma we will use 
induction on I(Z). The lemma is true for li by an easy calculation. Now suppose it is true for all 
A, such that l(Z) < 1. Since Ai,A-,Ai, = A&A,A,) when arranged in admissible form, we need only 
verify the lemma for I-,A,. Suppose A-IA{, * . . Ai,_, = Z A[,. Let sI = L(I,). By induction we have 

Cij?2S,+2 
j=l 

for each t. Hence Ar,Ai, = AIiAs,Ai, 

where 2~~’ 5 i, + 2s,. This last conclusion uses the formula for relations. Therefore Ar,Ai, = 
I-I 

z Ar,;,, L(1t.r.p) 5 u: and I,.,., admissible. Hence 2L(I,.,,) 5 2~~’ 5 ii + 2s, 5 iI + & ii 5 III- 2. 

Thus if L(Z,.,,) 2 n for some t, r, p, then 2 + 2n 5 111. This implies 5.3. 

COROLLARY 5.4. In the Adams spectral sequence for B(2’), the class A24-‘E Ez”~‘*‘+’ is not 

zero. 

To prove 5.1 we will show that AZ,+1 projects to a non-zero homotopy class which has the 
desired property. To prove that it is a cycle for each r we need another lemma. 

LEMMA 5.5. There is a cofiber sequence B(n - 1)-B(n)-+ 2 B f [I . 
Proof. Let (RZS2’C’)k be the k skeleton. Then F,(2’ + 1) = [~2SZi+‘]‘n+“‘2’-“-’ if n + 1 < 2’. Let 
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*zs*'+'3**sz'+'+I be the James map H. Then H,, the induced map in homology, is an 

epimorphism. This shows that there is a map FZ,(2’ + I)+ F,(2”’ + 1) for all j < 2’-‘. Finally note 
that at the prime 2 we have a principal fibration 

Hence S*’ x S”-’ x Fzi(2’ + l)+ FIi+?@ + l)+F+,(2”’ + 1) factors through F(2”’ + l)+ 

Fi+,(2i” + 1). Thus for each n and i such that n + 1 < 2’-‘, the composite 

s2’-’ x S”_’ X Fz,,_,,(2i + 1) i F,,(2’ + 1) p F42”’ -I- 1) 

SZ’-’ x S”-’ x FZ+_,(2i + 1) - Fz,-,(2i + 1) - F.-42’ + 1) 

is trivial but in homology j* is a monomorphism and p* is an epimorphism so the sequence is a 
cofiber sequence. This establishes the lemma. 

(This argument is due to R. J. Milgram and replaces the more complicated original proof.) 

We also need 

LEMMA 5.6. The cofiber sequence of 5.5 induces a long exact sequence 

. . . + E<“(B(2’ - 1)) -k E;.‘(B(f)) 2 E~“-“(B(2’-‘)) :E,“‘,‘(J3(2i - I))+. . . and p,: 

E2..2’*‘-‘+S (B(2’)) + EZS~“+‘-’ (8(2’-‘)) is zero for each s. 

Proof. The long exact sequence follows from the fact that the cohomology modules form a 
short exact sequence [ 11. The homomorphism property is obtained by combining 5.5 and 5.3. At 
the chain level we have 

sJ(2’-‘) >.~4(2 - 1) L&(2’) where qAI = Arhz,-,. 

Recall that if AI E 6(2’-‘) then Ar = Ar.Ai, with ir 2 2’-’ and so gh, is already admissible if A, is. 
Lemma 5.3 implies that if ]I/< 2”’ then dh, = 0 in d(2’ - 1). Thus q induces a monomorphism 
on classes A, with (J( < 2’. But q induces S in the exact sequence and this implies the claim on 

P* 

Now we prove 

LEMMA 5.7 The class AS;+1 E Ez’.*‘*“‘(f3(2’)) is a cycle for each r in the Adams spectral 
sequence. 

Proof. Clearly AZ,+1 is never a boundary and so if it is an r cycle it is non-zero in E,+,. Define 
for each i an integer or m, r,, by the following rule: if &AZ’+1 # 0 in E,,(B(2’)) then this defines 
ri. If AY+~ is a cycle for all r, then let ri = =J. 

Now fix i so that ri is the smallest integer in the set {ri}. We need to show r, = 0~. Consider 
the cofiber sequence 

B(2”’ _ 1)-,B(2’+‘)-,ZZ’*‘B(2’). 

By hypothesis on AZ’+’ E E’.z’*‘*‘(B(2i+‘)) a., is defined. By direct calculation we have p,A~-z = 
AY+I, thus p,&,Ay- = i3,,A2s-~ # 0 but in this gradation p+ is zero by Lemma 5.6. This implies 
Lemma 5.7. 

To complete the proof of 5.1 we must show that if gl represents AZ,+’ it has the additional 
property required. It will be sufficient to show that the map 

E2”‘(E(2’)) 2 Ezs.‘(S’“‘-‘) hrAZ,+l = h,. 

satisfies 
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LEMMA 5.8. If N is any power of 2 larger than 2’, there is a map of A-modules 

Hi*(C_ _ N+z”“‘P,“Z~~-~-,) t M(2’) with k( 1) # 0. 

Proof. The easiest way to see this is to observe that if B(2’) is the actual Brown-Gitler 
spectrum then according to [4] there is a map of 9(P’“‘)+8(2’) whose induced map in 
cohomology is the one we want. 

Note that k is an isomorphism in dimension 2’+‘- 1 since the single generator in each 
module is Sq”*‘-’ on the zero dimensional cell. 

LEMMA 5.9 For each i and for N = order R(RP”) there is a map 8: SN-‘+Ps73-, which is 
coextension by Suez,’ on the top cell. 

Proof. Recall that the Radon Hurwitz theorem on vector fields on spheres implies that there 

is a map SN-’ +PEI$_, of degree 1. Consider the composite SN-‘+P~I$-, C PG-:a-1 which 

we will call p. ;hen 2p factors through the N - 2 skeleton but not through the N - 3 skeleton. 
To see this consider 

Since the first two cells of the right hand space form a Zz Moore space, pzp,(2a) = 0. Thus p 
factors through the N -2 skeleton. Let g: S”-’ +P,“I&, be such a factorization. Since 
TN-,(PN-,) = Z4 generated by pIB we see that p,(2p) # 0[13]. Hence 2p does not factor through 
N - 3 skeleton. This implies 2 is an essential coextension of the N - 2 cell and this implies 5.9. 

We now can complete the proof of 5.1. By construction the map g has filtration 1 and so we 
have 

E2(S’*‘-‘) 

L/ \ 

E&Z - N+*“‘+lP:&,) -3 Ez(B(2’)). 
k. 

Let [g] be the class representing S then $,[g] = h, hence h,k,[g] = h,. Thus k,[g] # 0. Thus 
k,[g] = hz,+l and h,hra+l = hl and this completes the proof of property (c) and hence Theorem 2. 
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