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60-RESOLUΊΊONS

MARK MAHOWALD

This paper considers the Adams-Novikov type spectral se-
quence with bo as the spectrum. The action of the generator
of πφo in the spectral sequence is completely determined. The
result is a complete determination of the ^-periodic homotopy
of the stable sphere.

1* Introduction* Let bo be the β-spectrum representing con-
nected real iΓ-theory. This spectrum is a ring spectrum with a unit
and H*(bo) = A/A(Sq\ Sq2). (Unless otherwise noted, A is the mod 2
Steenrod algebra, all coefficient groups are Z2, and all spaces are
localized at 2.)

Associated to a spectrum with unit, like fro, we have a tower
of spectra

O < Oj. < O 2 < * * < O s < OJ-I-! < * *

id Λ *

bo Sλ Abo S2 A bo Ss A bo

where Ss A bo I—- Ss <— Ss+1 is a fibration and I: S° ->bo is the unit.
If we use the homotopy functor π*, we get an exact couple with
Elt = πt_s(Ss A bo). Under reasonable hypothesis on the spectrum,
E£ * is an associated graded group of π*(S°). This is true for bo
since πά(Sa) = 0 for j < 3s and so for t - s < 3s, Es/ = ESJ for large
enough r. This spectral sequence will be written {Er(S°, bo, π)}.

Clearly πj)o acts on E1 but dx is not a πj)o module map. Never-
theless, if two classes in Ex are related by the action of a class in
πj)o and they both survive to E^, then we will say that these two
classes are still related in this manner. In particular the class which
generates πφo is a basic periodicity class which we will call v\. (The
name is suggested by BP-theory and is discussed in [3].) A class
such that all multiples of it with v{k are non zero is called a v±-
periodic class. Glasses in E± which survive to E^ but for which all
πj)o compositions except the identity do not survive will be said to
generate a Z2 vector space. Our main theorem is:

THEOREM 1.1.

(a) EV(S°, bo,π) = Z ί = 0

= Z2 t = 1,2 mod 8

= 0 all other t .
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The classes for t = 1 and 2 mod 8 are v^periodic.

(b) Et\S\boyπ) = Z2p(k) t = 4k

= Z2 t = 1, 2 mod 8

= 0 otherwise

where pik) is defined by 4k = 2p{k)~ί mod2p(A:) and all the classes are
Vι-perίodίc.

(c) E^XS0, bo, π) = 0 for 6s > t + 12 α%cί ΐs α Z2 vector space (as
a π*(bo) module) for all s > 1 αwcZ all t.

This result was essentially announced in [6]. Since that time
Milgram [12] and Carlsson [1], [2] have also investigated bo resolutions.
The setting in the unstable range has also been investigated and
results which are based on Theorem 1.1 were described in [7]. A
second paper will be devoted to discussing that material.

The edge result stated in Theorem 1.1 part (c) guarantees that
the only classes which have a vx type periodicity acting on them are
described in parts (a) and (b). Other classes may admit finite mul-
tiples of Vx but must form finite families. This is discussed more
fully in §6 and also in [3].

The paper is organized as follows. Section 2 states the main
ancillary results, which are Theorems 2.4, 2.5 and 2.7. Most of the
section is devoted to definitions and the introduction of terminology.
In addition consequences of 2.5 and 2.7 are obtained. The proof of
2.5 and 2.7 occupies §3. Section 4 contains the proof of 2.4. Section
5 analyzes the bo resolution and contains the proof of the main
theorem. Section 6 discusses -^-periodicity but a more detailed dis-
cussion is contained in [3].

2* The homotopy of bo A bo* Let g: S3 —> B*O represent a
generator. Let Ω2g: Ω2S3—> BO be the double loop map. Clearly the
space Ω2S3 is homotopically equivalent to S1 x W where W is the fiber
of Ω2S3 -> S1. Let Fn(Ω2S3) be the May filtration. (Compare [11] and
[12].) This induces a filtration on W, Fn(W). Let /.: F2n(W) -> BO

be the composite F2n(W) c F2n(Ω2S5) c Ω2S3 Ά> BO. Let B(n)= T(fn),
the Thorn spectrum defined by fn. The following are some properties
of B(n) which follow immediately from the definition. (See [4] and
[5] for calculations of this type.)

2.1. B(n) A B(m) —> B(n + m). The induced map in homology
is onto if n = 2* and m < 2\

This follows from the fact that F2n x F2m —> F2Mm) using the
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multiplication in Ω2S\ The homology of Ω2S3 is a polynomial ring
Z2[xlf x3, •] w i t h άimXtei-D = 2* — 1. Then H*(W) — Z2[x2

lf x3, x7, •].

If we assign a degree to xt by deg xi = (i + l)/2 then H*(F2n) is the
vector space generated by all monomials in xt of degree <£ 2n. These
facts give 2.1 when translated to Thorn spectra.

2.2. B(n)dB{n + 1) and \Jϊ=0B(n) = J5Γ(Z, O)(localized at 2).
This is discussed in detail in [4].

2.3. If M1(k) = A/A(Sq\ XSqn\n>2k) then Jff*(B(w)) = AΓ1(w). (We
will sometimes denote Mx{k) as M(2k) ®^0 ίf2 where Ao is the sub-
algebra of A generalized by Sq1.)

This follows immediately from 2.2 since H*(K(Z, 0)) = A ®A^Z2.

Using the spectra B(n) we define Ω+ = y?=0Σ
uB(i). The key

result about bo A bo is the following.

THEOREM 2.4. There is a homotopy equivalence between bo A bo
and Ω+ A bo. (All spaces are localized at 2.)

This theorem was first proved in 1969 [6]. Milgram [12] found
another proof which proceeds from a different point of view. The
proof given here, in spirit, is like the original one but the inter-
vening years have seen a development particularly in the Thorn
spectrum approach. The following proof has profitted from this.

The first step is to get an algebraic version of 2.4. We need
to show that as modules over the Steenrod algebra H*(bo A bo) and
H*(Ω+Abo) are isomorphic. Recall that H*(bό) = Aξ$ΛlZ2 where
Aλ c A, is the sub Hopf algebra generated by Sq1 and Sq2. Since
the ^.-module structure of A ® 4 l Z2 (x) M is determined completely by
the Ai-module structure of M, we need to determine the Ai-module
structure of A(ξ$AlZ2. Theorem 2.5 will do this but it needs some
introduction.

Using the Cartan basis representation we have a i^-basis for A
given by Sq1 where I is admissible. (I = (ilf i2, , it) and i y ^ 2i3 +1.)
Then XSq1 is also a basis where X is the anti-automorphism of A.
Since Sq'Sq2* = Sq2n+ι and SqΉςf* + Sq'Sq^Sq1 - Sqin+2, we see that
in order for a class XSq1 to be nonzero in A ® ^ Z2, ix = 0 mod 4.
Also since Sq'Sq^-1 + SqΉςf* = Sq^Sq1 we see that i2 = 0(2). A Z2-
bases for A ®Al Z2 is given by considering XSq1 with iγ = 0(4) and
i2 ΞΞ 0(2). The proof of 2.5 will give this. A Z2-basis for Mλ(k) can
be given by XSq1, I admissible, iλ = 0(2), and iλ <̂  2k. Thus each
class in Mλ(k) can be identified with a class in 4̂ by this basic choice.



368 MARK MAHOWALD

Then M^tyXSq41" will mean the action of A on XSq*k restricted to the
subspace of A represented by Mx{k).

These comments nearly complete the proof of the following.
What remains is to show that there are no further relations and
that the left Ax action is correct.

THEOREM 2.5. Let g*: φrί>0Σ
4fc^i(&) —>A(&AlZ2 be defined by

ΣAkMx{k) -> Mλ(k)XSqik c A ®AlZ2. Then g* is an isomorphism of left
Ax-modules.

The proof will be given in §3.

The next step is to calculate the homotopy of bo Abo. We will
use the Adams spectral sequence and, in view of 2.5, all we need to
do is to calculate Ext ^(M^k), Z2).

The key step in this calculation will be the following. First
some notation. Let {bo1} be a minimal Adams resolution for bo. By
this we mean t h a t the spaces boi fit into a sequence

bo< bo'< J^-bo*

and the fiber of bό1 <— boi+1 is a generalized Eilenberg MacLane space
IL K(ΈxtAl(Z2, Z2), t - i - 1) and pf is zero. Let a(k) be the number
of Γs in the dyaic expansion of k.

PROPOSITION 2.6. If k = 0(2) then A ®AlZ2 ® Mx{k) is stably A
isomorphic to H*(bo2k-a[k)). If k = 21 + 1, then A®AlZ2® MJJk) is
stably A isomorphic to H*(b spin4*~α). (6 spin* is defined analogously
to bo*.)

This will be proved in §3. Note that & spin = JMί(l) Λ bo, see
[10].. This proposition yields immediately.

THEOREM 2.7. For s > 0 and if k = 21, then Extsi1

ί(ikί1(2i), Z2) =
4 *-* ( Z M + 4 ' - α α ) (^ 2 , Z*) For s>0 and if k = 21 + 1, then

1), Z2) = Exti+4 I-β ( l ) *+4ϊ-β(ϊ)(Jlίi(l), Z2) .

Theorems 2.5 and 2.7 can be combined to give:

THEOREM 2.8. // s > 0 then

Exts/(H*(boΛbo),Z2)

) '-4I-α(I)(Z2, Z2) 0 Ext^-^'^-^-XM^l), Z2) .
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Since both Extχ(Z2> Z2) and Ext^CM^l), Z2) are zero for t - s =
3(4), there can be no differentials in the Adams spectral sequence
for bo A bo. This gives:

THEOREM 2.9. In the Adams spectral sequence for bo Abo, E2 — EO0.

This completes the homotopy calculations for bo A bo, (modulo
the calculations done in §3 for 2.5 and 2.7). The rest of the proof
of 2.4 will be done in §4.

3* The proof of several results from §2* (The first part of
this section is heavily influenced by Peterson's lectures [13].)

We begin by studying the left Ai-module structure of Aξ&AlZ2.
It is easier to do these calculations in the dual. We have i: A —>
A ®AX Z2. In each gradation each side is a finite dimensional vector
space over Z2. In the dual we have Z2[ξl9 •] = A* =) (A&AlZ2)*.

The subset is more easily identified in the image of A* under
X, the anti-isomorphism. We represent this image as X[(A 0 ^ Z2)*].

PROPOSITION 3.1. As left A-modules

Proof. Since A ®Al Z2 = A/A(Sq\ Sq2) we have A 0 A R{Sq2) ® R{Sql\

A~>A/A(Sq\ Sq2)->0 which gives A*®A*£^——A* <-{A/A(Sq\

Sq2)}*<-0 and finally A* 0 A* ?{Sq2) Θ R{Sql) A* <- 1[(A ®Λί Z2)*] <- 0.
But ξκSq = ίfc + ίfe_i. Hence the proposition follows.

Assign to each ξt degree 2i"1 and each monomial ξ1 = ξlψj ,
the degree Σiβj-\

Let N4n be the Z2 vector space generated by monomials of degree
An. Then Z2[ίί, ζ\, f3, •] = θ N4n.

PROPOSITION 3.2. As left AΓmodules Z2[ξi, ξ2, ξ3, •] = ®nN4n.

Proof. The left A action is given by Sqξk = ξk + ί|_lβ In the
absence of ξlf ξl, ξl, ξ2 and products, degree (Sqψ) = degree ξ1 and
degree (Sqψ) = degree ξ1 (of course 0 has every degree).

PROPOSITION 3.3. XN*n = Mx(ri).

Proof. Using the multiplication A* and the multiplicative nature
of the degree we have maps

XN*
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which are monomorphism if n Φ 2* and Aj = 2ί and 4k < 2\ If w = 2*
then the class corresponding to ξi+i generates the kernel. Now using
the obvious isomorphism IN? = -MΊ(l) and the kind of argument of
[5] §4 we get the result.

Combining 3.2 and 3.3 we get the proof of 2.5. Using this
explicit calculation we also can get the following. Let QQ = Sq1 and
Qλ = Sq" + Sq2Sq\ Then Qό acts as a differential in M for any A
(or Ax) module M.

PROPOSITION 3.4. [13] H*(X(A (x) Z2)*, Qo) = Z2[ξt] and

Proof. Both of these are easy calculations from 3.2.

COROLLARY 3.5. ϋr*(M1(2i), Qo) = ^ generated by the class in
dimension 0 and ίZ"*(ikf1(2

i), Qλ) = Z'a generated by the class in dimen-
sion 2ί+1 - 2.

We now begin the proof of 2.6. The strategy will be to construct
spaces R(n) with the properties:

(3.6.1) There is an A-module map f*: H*(B(n)) -> H*(R(n)) which is
a stable .^-isomorphism.

(3.6.2) There are maps gn: R(n) A bo -> bo2n-a{n) n = 0(2) and

Λ &o • b spin2n-1-β(w) n = 1(2)

and gt are stable A-isomorphisms.
It would be nice to construct a map fn which induces the coho-

mology map but we have not done so.
Let Yi be the ith stage in an Adams resolution for S° constructed

by iterating the sequence Y1 -> S° -> K(Z29 0). Then Yt = Y3 A Y<_y

for any i and j .

LEMMA 3.6.3. Ext'/(H*(X A Yσ), Z2) s ExfA

+σ't+σ(H*(X), Z2) for
s > 0 cmcϊ any spectrum X.

The proof is immediate.

We will also use the following obvious lemma.

LEMMA 3.7. If there is a map f: X—>Y such that

), Z2) > ExtsAH*(Y), Z2)



δo-RESOLUTIONS 371

is an isomorphism for s > 0 then H*(Y) is stably A-isomorphic to
H*(X).

Let R(2ί-1) be the cofiber of the standard map RP2i+1~2 -> S°.
(λ is the stable adjoint of the composite RP-> SO -> Ω^S00.) Since
S° —> δoί —> bo, where c is a generator, is 2* times a generator, the
composite p 2 l + 1 - 2 -> S° —> fro2"1 is inessential if i > 0. Hence there is
a map

g2ί_x: R{21-1) > bo2'-1 = bo2i~a2i .

For n = Σ*=o £t2* and ε< = 0 or 1 let R(n) = A Riβfl) where R(0) =
S\ If n = 0(2) there is a map gn: R(n) -* fsJi=1boH{2i+ι-~ι). By 3.6.3
i?*(A6o^{2'+l-1}) is stably ^-isomorphic to jgr*(j02-«( >>oΛ Λ60)β τ h e

map flrΛ results by multiplying both sides by bo and multiplying
out.

If n Ξ 1 mod 2 then εx = 1 and R(ri) = i2(w - 1) Λ Λ(l). This
gives Λ(Λ - 1) Λ Λ(l) -> 60

2(%-1)-α(w-1) Λ Λ(l). But since R(ΐ) Λbo =
b spin, jg-*(fto*<«-i>-«(»-i> Λ i?(i)) ^ JEΓ*(6 spin2 {— 1 )-β (- 1 )). This completes
the construction of the maps g%.

LEMMA 3.8. The maps gn induce stable A-ίsomorphisms.

Proof. By the way the maps are constructed it will be sufficient
to show that the lemma is true if n — 2*. Since R(T) Abo —
b spin (i?(l) = B(l)) there is nothing to show in this case. In general
we will show that

/ S s < - \ Z2)) = Ext ̂ -1'*-*-2*-1^, Z2) = Έxt'AH^bo2'-1), Z2) .

Then we will show that g2i induces this isomorphism. This will
complete the proof. Let the image of A, (g) (©£U H* (R (20) in

be F%. Then FJF^ = A, ®AQZ2. Thus there is a filtration
so that the associated graded is just [©fo1 J 4 i Λ <ĝ 0 Z2] 0

There is a spectral sequence going from Ext^C, Z2) of
this associative graded module to ExtAl(H^(R(2ί), Z2)).
But

t Z2) 0 Extiί+^-^dζd), Z2) .

So there cannot be any differentials. These groups are easily seen
to be the same as Exti^ffW*""1), Z2).

We now need to show that g% induces this isomorphism. Let
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Σ-ΨS+l^ -+ RP2i~ι~2 be the attaching map of the next two cells i.e.,
the mapping cone of q is RP2ί+\ The map q gives a map q1: P|ί+Li ->
R{2i). Since the bundle over P2ί+1 has order 2* the composite ^ g 1

must be essential; it must be essential in i2(2*) Λ δo also. There it
must represent the composite P%\^ -> S2i+ί > R(2€) A bo. Thus g2i

gen
must induce an isomorphism for t — s = 2ί+1 but this and the natural
bo action forces an isomorphism everywhere.

Next we need to construct maps from H*(B{ri)) —> H*{R(n)). By
the definition of R(n) and property 2.1 of B(n) it will be sufficient
to construct F£: H*{B{21)) -> H*(R(2i)). Since R(l) = B(l) we need
only consider i > 0. Following [5] we have M(2ί+1) -> H*(ΣPtΐι~2)
which is an epimorphism of A-modules.

The image of A(Sq\ XSqk\k > 2i+ι) -> A -> H*(ΣP*T-*) is just the
class in dimension 1. Hence there is a map between Afi(2*) and
H*(Rφ)). This is the map f*t.

LEMMA 3.9. T/̂ e map / 2 | : M ^ ) -^ H""{R{2i)) is a stable Ariso-
morphism.

Proof. We need check what the map does in Qi homology.
Clearly /2* induces an isomorphism in the Qo homology. Since HxiMffi),
Qi) = Z2 generated by the class in dimension 2 ί+1 — 2 and /2* maps this
class nontrivally we must verify that its image in £Γ*(J?(2ί)) is not
a boundary. Indeed it is easy to see that H^{H'¥{R{2i), Qx)) = Z2 gen-
erated by the class in dimension 2i+1 — 2, (since Sq*o£n-χ = α4w+2 and
Sq'Sq'a^1 = α4w+4). By the theorem of Wall [13] this implies that
/2* is a stable ^-isomorphism.

This now completes the proof of 2.6 since if n = 0(2)

, Έxt'ΛH*(B(n) A bo), zJJS*Ext'/(H*(R(n) A bo), Z2)

^*Ext2t(JBΓ*(δό2-β( )), Z*)

If n Ξ 1(2) we have the analogous formula.

4* The proof of 2A. We begin with the following corollary of
(3.6.2.)

LEMMA 4.1. If f: B(k) A B(l) —> B(k + Z) is the multiplication
map of 2.1 then / * is α stable A^isomorphism ifk = 2ί and I < 2*.

Proof. Indeed H*(B{k) A bo) and U*φo2k-«w) are stably A-iso-
morphic. Thus bo2k-aik) A bo2l~a{l) = δo

2(fc+Z)-α(fc+Z) if & = 2* and I < 2\
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We need to determine what happens if k — I — 2\

DEFINITION 4.2. A sequence N' —> N-+ N" of Armodules is stably
Aλ exact if there is a free .^-module which can be added to each
term to get an exact sequence.

PROPOSITION 4.3. A stably A1 exact sequence of Armodules induces
a long exact sequence in Ext groups for s > 0.

This is immediate.

Motivated by Lemma 3.7 we say / is a stable ^-isomorphism
through dimension t if / induces an isomorphism in Έxt8/ for s > 0
and t — s < t.

These ideas can be illustrated by the following example. Consider

J?(l) Λ B(l) > B{2) > Σ'M2e A B(l) .

The induced maps in cohomology give an ^-stably exact sequence.
Pictorially we have

B(l) Λ B(l) B(2) V Λi Σ*Mzι A 5(1)

The curved lines indicate Sq2 and the straight lines indicate Sq1.
This example generalizes to give

THEOREM 4.4. The cohomology sequence induced by

Λ p/ί)i\ J Γ?/Oi + 1\ v V27'"1 ό~4 71/7" \ / 7?/1 "\
±S\Δ ) > £>\Δ ) > 2J 1V12C V X>v-»-/

is a stably Ax exact sequence.

Proof. It is sufficient to verify the result for cohomology modules
which are stably equivalent. Thus the map / is equivalent by 3.6 to

h : bo2%+2~2 > bo2**2'1



374 MARK MAHOWALD

and h in dimension zero is a degree 1 map. (Note that it is not
obvious that such a map exists but the multiplication / does exist
and via 3.6 we get h.) The following charts will illuminate the
argument.

2 ,

i = o,
t-s = - 8 - 4 2 ί + s

Exti *(iϊ*δo8 i + 2-2

f Z2)

2 t + 3 - 8 - 4
2 " 1 ) , Z2)

Let a be defined by the cofiber sequence

ΣM2C A M2c • • M •

Let j be t h e composite Σ2i+Z~5M2C

Γ

2, Λ

- > 6 o 2 < + 2 - 2 .
6o2'+2~2 AlsoClearly a-j ~ 0 and so we have j$Σ2i+3-*M2c A B(l)

it is easy to see that hj$ is null homotopic.
Thus there is a map Λ: &o2'+2~2 \Jm CM2C A B(l) A bo -> δo2^2-1.
An easy calculation shows that h induces an isomorphism in the

Ext^ groups except if s — 0 and t — 2i+3 — 6. This is equivalent to
the theorem.

Now we can prove 2.4. We proceed by induction. Let Ω\ —
y^nΣ

4jB(j). Clearly Ω1 -> bo Abo and Ω\ A bo-+bo Abo is a homo-
topy equivalence through dimension 7.

Suppose we have a map ht: Ω%~1 —> bo Abo such that Ω%~1 A bo —>
6o Λ bo is a stable .A-isomorphism through dimension 2ί+2 — 1. Then
by 4.4 we see t h a t [β 2 ! " 1 Λ (S° V Σ2i+2B{2ι~ι) A B(2i~1))] A bo-> bo Abo

exists and gives a stable A-isomorphism through dimension 2i+3 — 5.
Consider the diagram

i 1 2 ^ 3 " 5 ^ Λ 5(1) • "1) Λ bo bo A bo

Σti+tB(2f) .

We need to show that the composite represented by the top row is
null homotopic. The composite is clearly filtration ^ 1. Therefore
it factors through Ω2t~ι A bo. But Ω2*-1 Λ bo is A equivalent to

V [ΣSiboij-aU) V Σa-
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The 2i+2 — 1 connected cover is just a wedge of Σ2i+2bo. The gen-
erating homotopy classes have various s filtrations depending on which
piece of Ω it came from. (The reader is encouraged to draw an
Ext diagram using 2.8 for i = 2, 3 or 4 to see this clearly.) There
is a map of bo1 —> bo for any I and this map induces an isomorphism
in homotopy in dimensions greater than 21 + et where εz = 0, I = 0(4),
= -1,1 = 1(4), = - 2 , ί Ξ 2, 3(4). Thus there is a map of degree
divisible by 2i+1 on the bottom cell of Σ2i+2B(2ί~1) A B{2i~1) A bo ->
Ω2*'1 A bo so that the following commutes.

Σ2i+3-δM2( A B(l) > Σ2iJr2B{2i~1) A B{21-1) A bo > bo A bo

\id

1) A B{21-1) A bo > Ω%~1-' A bo > bo A bo

The bottom row has degree divisible by 2ί+1 on the bottom cell.
Adding this map to the product map we have a map Σz%+2B(2i"1) A

B(2i"1) —> bo A bo of the right degree (1 on the bottom cell) which
can be extended over Σ*+2B(p). This gives Ωt1 A (S° V Σ*MBφ)) —

bQ2ί+i-i _^ j 0 ^ ft0 w i t h the desired properties. This completes the
proof.

5* bo resolutions* We now are prepared to analyze the bo
resolution. In order to facilitate the calculation we introduce another
spectrum. This and similar spectra are described in [4]. Let S5-^
B2O be a generator and let / : ΩSδ -> BO be the adjoint. Let X be
the Thorn spectrum of /. (This is called X5 in [4].) The key prop-
erties of X are the following:

5.1. X is a ring spectrum. (See 1.1 of [4].) The proof uses
the fact that the Thorn spectrum of a bundle classified by an ϋΓ-map
is a ring spectrum.

5.2. X A X = ΩSδ

+ A X and this homotopy equivalence is induced
by the composite map g given by

ΩS5 x SΩ5^iΩSδ x ΩS5 x ΩSδ^ΩS6 x ΩSδ

where Δ is the diagonal and μ is the multiplication. The homotopy
equivalence the other way looks the same except Δ is replace by
Δ(x) -> (a?, or1). We will call that composite h. Clearly g and h are
homotopy equivalences and one is the homotopy inverse of the other.
(Again see [4] for a fuller discussion.)

5.3. The bundle / has a bo orientation o: X —> bo and o* induces
an isomorphism in QQ homology.

Proof. Consider S4 -̂ -» S 4 x x S ^ ΩS\ Since in the Thorn
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complex of it of, XSq* is also nonzero and XSq* has the same Cartan
formula as Sqi (with Sq* ® Sqk replaced by XSqί (x) XSqk) we see that
XSq'kU is nonzero in H*(X) for each fc. But (2.4.1) shows that W f c

on the fundamental class of bo generates the Qo homology.
Consider a resolution of S° by X. This gives the following

diagram

X2 > X2 AX

1
(5.4) X >Xί\X

Since o: X->bo there is a mapping of resolutions

(5.5) N ^ J J

For resolutions of this sort the Ex and i?2-terms are more easily
described in the following way. Let Ibo be defined by the cofiber

sequence S° ^bo >̂ Ibo. (IX is similarly defined.) Consider the
sequence of spectra where 1 is the identity map and the trailing
S°'$ are suppressed. In particular

bo = bo A S° > Ibo A bo
V Λ eQ

is the first map.

A bo > (Ibo)2 A bo
(5.6) 1ΛP'°

PROPOSITION 5.7. The Eλ chain complex of the bo resolution is
the chain complex resulting from the sequence of spectra 5.6 after
applying the homotopy functor.

This is a standard result.

The results of the first three sections assert that the homotopy
of (Ibo)σ A bo is a sum of modules of the form π* (boj) for various
values of j together with ^-summands of Adams filtration zero.
We will always disregard the Z2summands of Adams filtration zero
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in this resolution. The π*(boj) modules are given by 3.6. In par-
ticular (Ibo)σ A bo = Ωq A bo and H*(H*(Ωg), Qo) is in 1 - 1 correspon-
dence with the distinct boj modules. Since the map o:X-*bo has
the property that o* induces a Qo homology isomorphism we can
analyze dλ by looking at the X-resolution. The first result is the
following.

THEOREM 5.8. The following diagram commutes

(IX)' Λ X^?-^> (IXY+1 A X

I" 1"
(ΩSδ)a A X --—> (ΩSδ)σ+1 A X

where δσ = Σ( — l)Ψσ and δl is induced by the following map of spaces:

δl:ΩSδ x . . . x ΩSδ >ΩS" x x ΩSδ

σ + 1 factors σ + 2 facto7*s

st = i x * - 1 . . . l , J , l x ... x l .

Proof The map 1 Λ p A Lo and the resulting chain complex is
equivalent to

Xσ+1 - ί U X°+2

where F = Σ(—l)ίFί and F ^ l x x 1, *0, 1 1 where t h e c0 is
in t h e i t h place. Consider the composite

t ( Ω S y > (ώS) >
lxhxl lxhxl hxl

l x l x x f x l x l g X 1

The Thorn complex picture is

(Ωs\y A x—> (ΩS'+y-1 Λ x Λ x—> > xa+l jy> xσ+2

> ΩS% A Xσ+1 > > (ΩSδ

+)σ+1 A X .

The map h is just h(x, y) = h(x, x"xy). The composite h which
induces the homotopy equivalence (ΩS%)σ Λ l - > Xσ+1 is

The "diίferential" map just inserts a base point in the ith position.
The map g just unravels the map giving (xl9 x2, x3, , α^j, xif xif xt+ί,
••*, *ff+i)- This is the assertion of the theorem.
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COROLLARY 5.9. The maps δl for i S o are π*(X) module maps,
δa

σ

+1 is not a π*(X) module map.

We will analyze the differential in the bo resolution by the
following device. Each class in H*{H*{Ωa), Qo) is identified with a
class in H*((ΩSδ)σ). We will determine what happens to the Armodule
so determined by tracing it in the X-resolution sequence. What we
will prove is that by just considering the part of the differential
which is a bo map, we get an acylic chain complex except for σ — 0
and 1 modulo, at each level, elements of Adams filtration zero. To
begin we need the following.

THEOREM 5.10. The construction of the ho splitting can he made
so that the following diagram commutes modulo elements of Adams
filtration >̂ 2.

bo A bo < Ω+ A bo

o Λ o\ ? Λ o

X A X< ΩS5 A X

where q: ΩS5

+ ->yά^ΣAjB(j) is the stable map ΩS%-+y^Σ''-^ Ω,r

and c0: S° —> B(j) is the inclusion of the bottom cell.

Proof. The splitting of X A X can be constructed by using the
analogous induction argument to that given for Ω+ A X. The fact
that we needed to consider the possibility of modifying the argument
at each power of 2 given a possible obstruction to commutativity.
But we were careful to show that the modification was always done
by a class of high filtration and only involved the bottom class of
B(j). Compare the proof of 2.4 given in §4.

Now we are prepared to prove the main theorem. The first step
is the following.

THEOREM 5.11. Each homotopy class in π*(Iσbo A bo) is either
of Adams filtration zero, or in the image of dσ, or is mapped
essentially under dσ, or σ — 0 or σ = 1 and the homotopy can be
identified with 7Γ*(J3(1) Λ bo).

Proof. The strategy of the proof will be first to look at the
part of the differential which preserves Adams filtration. Then we
will look at the part which raises filtration by 1 and see that these
two considerations cover all the homotopy except as described in the
theorem.
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The first part we will accomplish by noticing that the resolution

is really a standard resolution of an exterior algebra. To set this

up recall that Γbo A bo -> V Σ4h+—^λBOΊ) Λ Λ B(jq) A bo. We

label the wedge on the the right by y^σΣ
mB(N) A bo where Λ~σ =

{N = (nlf , nσ)}, B(N) = BMABinjABfa.) and \N\ = ΣANt. Sup-
pose \N'\ = \ JV" I with N' e

bo -> V,rΣ^B{N) Abot V^σ+1

zero if JY' and JV" are not "adjacent". By this we mean that nί =

n't for i < s, n\ = nί'+i and n{ = w{+x for i > s. The map is a map

of degree n), between the bottom cells otherwise. This is the

content of 5.8. When the degree is l(mod 2), i.e., when ^J, = 1

mod 2 then the composite is a homotopy equivalence modulo a wedge
of K(Z2y& on each side. Indeed

and N" e ̂ *ς+ 1. The map Σ]NΊB(N') A

ΣlN'ιB(N) A bo — Σ^B(N") A bo is

B(N') ") Λ

ni

= a(nϊ) + a(n't'+1) - α(%;) mod 2

But

Thus to discuss the filtration preserving situation it will be sufficient
to determine how the bottom cell of each B(N) maps. To do this
we need look at the resolution

(5.12)

and apply homology and then take the homology with respect to Qo.

H*(H*(Ω), Qo) > i?*(#*(£2), Q.) .

This complex is just the same as

(5.13) H*(ΩS%) -^> H*(ΩS% A ΩS%) — H* ((ΩS%)) — .

Finally this complex is just a resolution of an exterior algebra and
its homology is a polynomial algebra on generators, J^ with dimension
2* and of filtration 1. These generators correspond to 2?(2*). Thus
there is a way to write H*((ΩSδ)σ) as a sum Λ^σ

σ + ί C + %Ό so that
= %Tσ+1 and c ^ / 7 = 0. The classes Λ'* can be chosen so that

= {{n^n, = 2^ and i, ^ j<+1}.
Now we look at ,yKσ = {(wJIn, = 2iέ and ii
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LEMMA 5.14. Let Ne,yKσ be such that nσ_1<no. Then the
composite

ΣlNlB(N) A bo > Ω« A bo • Ωq+ι A bo > ΣlNιB(N') A bo

where N' = (n[) and n[ — ns, s < σ, nr

σ = nan = nf

a+x is a homotopy
equivalence mod element of Adams filtration zero.

Proof. As in the preceeding proof we compare with X. In this

case we have the binomial coefficient (n° ). Recall that nσ = 2j° and
\"Ό/2/

so the coefficient is 2 x k where k is odd.
Now B(N) = 6o(1ΛΓ1"σ)/2 and B(N') = bo^m-a~1)J\ Thus a map of

Adams filtration 1, but not higher, on the bottom cell induces an
isomorphism of homotopy, modulo classes of filtration zero. This
proves the lemma.

Note that in this case the classes in the coker are not just Z2-
summands of π*(B(N')) but include classes which are a part of the
essential bo homotopy of B(N). They still are classes of Adams
filtration zero.

We have completed the proof of the Theorem 5.11. What remains
to be proved in the main theorem is "edge" result in part (c) and
to consider the map in homotopy induced by bo —> Ibo A bo —> Σ*B(1) A
bo. This second part is described completely in [10]. An easy way
to see those results from our perspective is to again consider the
diagram.

bo — Σ"B{1) A bo

f I
X >Σ'X

k

The fact that k factors through X -> ΩSδ A X allows one to show
that k*(a4j) = jσ{a^~^). This implies that in k1 the homotopy in
τr4i(δo) increases in Adams filtration by i where j = 2i x odd. From
this calculation parts a, and 6 follow immediately.

To establish the "edge theorem" we first note.

PROPOSITION 5.15. If X is a space whose cohomology is free
over A then El'*(X, bo, π) = Exti'(jff*(X), Z2).

Proof. Let Aλ be a space such that H*(A1) = At. Then bo A
A1 = K(Z2, 0). Hence the bo resolution for A1 is just an Adams
resolution.

We can filter if* (SO by letting
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Fk = θ im A ®

Then Fk/Fk^ is as follows.

•-i = 0 i = 4, 5, 6, 8, 9, 10, 12, 13, 14

F,/F. = £ 7 ( Λ ®^0 Z8)
^Π/F1O = ̂ ( Λ ® , 0 Z2) 0

Using this filtration we can get an estimate on S4 A M2c. First
observe that S4 is 11-conneeted. The first portion of iϊ*(S4 Λ M2e)
is M1(l)(g)M1(l)®M1(l)®M1(l)(g)H*(M2c) and a simple calculation
shows that this module is stably Arisomorphic to H*(SU A M2c).
Hence for s^4 there is a function of t, f(t), such that Es

2\M2c, bo, π) =
0 for s > f(t) if EΓ^-XSt A M2c, bo, π) = 0. This last expression is
valid if Extr4 f ί" l β(Λ, ^2) = 0 and EΓ4>t~28(M2(, bo, π) = 0. The first
occurs for 6s > ί + 12. (This follows easily from a calculation of
Ext^Ai, ϋΓ2.) Using this estimate inductively we see that if 6s >
ί + 12 then 6(s - 4) > (t - 28) + 12. This implies El \M2i, bo, π) = 0
if 6s > t + 12.

A much sharper estimate is available. Indeed the theorem is
true for 6s > t + 6 but the proof requires a much sharper analysis
of the resolution. Our goal was only to establish the "1/5 line".

6. ^periodicity* There are a variety of ways to define vx

compositions in homotopy. The followihg is equivalent and is con-
venient for our purposes. Let Y be the stable complex Σ~2M2c A CP2.
It is easy to see that there is a map / : ΣΎ—> Y of filtration 1 such
that H*(Y\J/CΣ2Y) is the subalgebra of A generated by Sq1 and
Sq2. There are four choices of vx and we use any one and call the
map /, vλ. Let 7: Sj —> X be a class. Then there are potentially
four maps

(6.1.1) Σj-Ύ-^-+S> >X where pλ is of degree 1.

(6.1.2) Σj~2 -^-* ΣjM2c ~^-> X where p2 is of degree 1 and 7* is an
extension of 7 (if it exists).

(6.1.3) Σ*-Ύ >Σ*-2Pi-^*X where P2

4 = RP'/S1 and p, and 7*
Vz

are analogously defined.

(6.1.4) Σ>Ύ-^+Y.
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If (6.1.1) exists we call the map 7*. The first always exists but
may be inessential. The others sometime exist and, when they exist,
are sometimes essential. If a map of type i exists and the composite

n
is essential for all I for every 7*, then we say that 7 is ^-periodic
of type i.

To illustrate this we give the following examples. 6.2(a) If η
generates τr1(S°) then rj is ^-periodic of type 2, ΎJ\ is inessential and
η\,i = 3 and 4 do not exist.

(b) If v generates 7Γ3(S°) then v is ^-periodic of type 3 but not
of type 1.

(c) The generator of the image of J in the 8k — 1 stem is vΓ

periodic of type 1. The element of order 2 in the image of J in the
8k — 1 stem is ^-periodic of type 2.

THEOREM 6.3. The only homotopy elements in π*(S°) which are
VrPeriodic of any type are those classes discribed in E0>t(S°f bot π)
E^\S\ bo, π).

Note that other classes may have finite ^-compositions but this
theorem describes all the those which admit ^-composition of all
order.

Proof. Let 7 be a homotopy class of bo filtration s^2. This gives
Sj-> S8, s^>2. Now consider the composite if possible Σd~2+ίY-+

Σf-*+iY-+S,. The filtration of y\vx is 1 and hence by l.l.(c), there

is a commutative diagram

Σ*-*+*γΆs. >S8Λbo

\ /
/ \ /A

ΛSU Λ bo

where dλ is the connecting map in the spectral sequence. Thus
y*Vi — Pf- Σd~2+iY-+ Ss is a map which when projected to S° re-
presents 7ft;!. But 7*̂ 1 — pf lifts to S8+ί. Clearly the edge theorem
of 1.1. (c) or just the fact that S8 is 3s — 1 connected guarantees
that some v riterate will lie in a zero group. This gives the
theorem.

REMARK. TO connect this result with other results about vr

periodicity we give the following result.
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PROPOSITION 6.4. There is commutative diagram

where the maps pt are degree 1 and 8*7* is the coextension over Σ20M
of the extension of Σί0M2, —> S3.

8(7*

The result is an easy calculation using the Adams spectral
sequence because there are no classes of filtration 4 earlier than
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