
Journal of Topology 8 (2015) 917–932 C�2015 London Mathematical Society
doi:10.1112/jtopol/jtv021

On a nilpotence conjecture of J. P. May
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Abstract

We prove a conjecture of J. P. May concerning the nilpotence of elements in ring spectra with
power operations, that is, H∞-ring spectra. Using an explicit nilpotence bound on the torsion
elements in K(n)-local H∞-algebras over En, we reduce the conjecture to the nilpotence
theorem of Devinatz, Hopkins, and Smith. As corollaries, we obtain nilpotence results in various
bordism rings including MSpin∗ and MString∗, results about the behavior of the Adams
spectral sequence for E∞-ring spectra, and the non-existence of E∞-ring structures on certain
complex-oriented ring spectra.

1. Introduction

Understanding the stable homotopy of the sphere has been a driving motivation of algebraic
topology from its very beginning. Early landmark results include Serre’s theorem that every
element in the positive stems is of finite order and Nishida’s theorem that every element in
the positive stems is (smash-)nilpotent. This was vastly generalized by the nilpotence theorem
of Devinatz, Hopkins, and Smith, which states that complex bordism is sufficiently fine a
homology theory to detect nilpotence in general ring spectra. On the other hand, Nishida’s
proof used basic geometric constructions, namely extended powers, to transform the additive
information of Serre’s theorem into the multiplicative statement of nilpotence. This was made
much more systematic and general in the work of May and his collaborators on H∞-ring
spectra, which in particular led to a specific nilpotence conjecture for this restricted class of
ring spectra. In this note, we will establish his conjecture, as follows.

Theorem A. Suppose that R is an H∞-ring spectrum and x ∈ π∗R is in the kernel of the
Hurewicz homomorphism π∗R → H∗(R; Z). Then x is nilpotent.

This result was conjectured by May and verified under the additional hypothesis that px = 0
for some prime p, in [3, Chapter II, Conjecture 2.7 and Theorem 6.2]. In the case where R
is the sphere spectrum, Theorem A is equivalent to Nishida’s nilpotence theorem. In contrast
to the nilpotence theorem of [5], Theorem A does not require any knowledge of the complex
cobordism of R, but we must add the hypothesis that R is H∞.

We will prove the following result, which implies Theorem A. (An elementary argument
shows that Theorem A implies Theorem B as well.)

Theorem B. Suppose that R is an H∞-ring spectrum and x ∈ π∗R has nilpotent image,
via the Hurewicz homomorphism, in H∗(R; k) for k = Q and k = Z/p for each prime p. Then
x is nilpotent.
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918 AKHIL MATHEW, NIKO NAUMANN AND JUSTIN NOEL

Indeed, since each of the above Hurewicz homomorphisms factors through the integral
Hurewicz homomorphism, we see that May’s conjecture follows from Theorem B.

The outline of this note is as follows: In Section 2, we reduce Theorem B to the nilpotence
theorem using designer-made power operations due to Rezk (Lemma 2.2). These operations
give explicit nilpotence bounds in a K(n)-local context (Theorem 2.1) which complete the proof
of the main theorem. In Section 3, we build on Strickland’s foundational work on operations
in Lubin–Tate theory to provide a proof of Lemma 2.2. We conclude with several applications
which should be of independent interest as well as some speculative refinements of Theorem B
in Section 4. These include results about the following topics.

(1) The nilpotence of elements in bordism rings (Proposition 4.4 and Theorems 4.6 and 4.7).
(2) The behavior of the Adams spectral sequence for E∞-ring spectra (Proposition 4.10).
(3) The non-existence of E∞-ring structures on certain complex-oriented ring spectra

(Proposition 4.11).

For one of these applications, we will need the following fact: If R is an E2-ring and x ∈ πkR,
then R[x−1] is canonically an E2-ring. In Appendix A, we provide a quick proof of the more
general statement for En-rings, provided n is at least 2.

In a preliminary version of this paper [16, Proposition 4.3], we observed that Theorem B
implied half of an analog in Morava E-theory of Quillen’s F-isomorphism [22, Theorem 7.1].
We meanwhile found an independent proof of the full result, and this will be documented
elsewhere.

2. The proof of Theorem B

Throughout this section, the notation and assumptions of Theorem B are in force.
Recall that, for each prime p and positive integer n, there are 2-periodic ring spectra K(n)

and En which are related by a map En → K(n) of ring spectra inducing the quotient map
of the local ring π0En to its residue field π0K(n). The first family consists of the 2-periodic
Morava K-theories, which play an important role in the Ravenel conjectures [23] and are
especially amenable to computation. The second family consists of Lubin–Tate theories which
satisfy certain universal properties that make them extremely rigid; in particular, each of
them admits an essentially unique E∞-algebra structure and a corresponding theory of power
operations; see Section 3 for more details.

By the nilpotence theorem [10, Theorem 3.i], if we can show that x is nilpotent in H∗(R; Q),
H∗(R; Z/p), and K(n)∗R for each prime p and positive integer n, then x is nilpotent. Since
x has nilpotent image in H∗(R; Q) ∼= π∗R ⊗ Q, by replacing x with a suitable power, we may
assume that it is torsion. Now, since x is torsion, it is zero in H∗(R; Q) and by assumption,
that x is nilpotent in H∗(R; Z/p) for each prime p. To show that x is nilpotent in K(n)∗R,
we will show that it is nilpotent in the ring π∗LK(n)(En ∧ R) and then map to K(n)∗R. So
Theorem B will follow from Theorem 2.1 below, applied to T = LK(n)(En ∧ R) and the image
of x in T under the En-Hurewicz map.

To simplify notation in what follows, we have put E = En, Ě(X) = LK(n)(E ∧ X), and
Ě∗(X) = π∗Ě(X). The ‘check’ notation, for example, Ě, is meant to remind the reader that
we are working in a K(n)-local category. In particular, the T that appears in Theorem 2.1 is
K(n)-local; see the next section for our conventions.

Theorem 2.1. Suppose that T is an H∞-Ě-algebra and x ∈ πjT .

(1) If j is even and pmx = 0, then

x(p+1)m

= 0.
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ON A NILPOTENCE CONJECTURE OF J. P. MAY 919

(2) If j is odd, then x2 = 0.

Our proof of this will depend on the following unpublished result of Rezk [26, p. 12], which
we will prove in Section 3.

Lemma 2.2. Suppose that T is an H∞-Ě-algebra. Then there are operations Q and θ acting
on π0T and natural with respect to maps of H∞-Ě-algebras satisfying the following:

(1) (−)p = Q(−) + pθ(−);
(2) Q is additive;
(3) θ(0) = 0.

Proof of Theorem 2.1. The claim about odd degree elements is precisely
[25, Proposition 3.14], so we may assume that j is even. Since π∗T is a π∗E-algebra, either the
periodicity generator in π2E has non-trivial image in π2T or π∗T = 0. In the latter case, the
theorem holds vacuously, and so by dividing by a suitable power of the periodicity generator,
we can furthermore assume that j is zero.

It follows from the first two items in Lemma 2.2 that if p were not a zero-divisor in π0T,
then

θ(pmx) = ppm−1xp − pm−1Q(x)

= pm−1((p(p−1)m − 1)xp + xp − Q(x)),

which when combined with

pmθ(x) = pm−1(xp − Q(x))

yields

θ(pmx) = xp(ppm−1 − pm−1) + pmθ(x). (2.3)

To see that (2.3) also holds in rings with p-torsion, consider x ∈ π0T as a map x : S0 → T .
Since the target is an H∞-Ě-algebra, this map canonically extends, up to homotopy, through
the free H∞-Ě-algebra on S0:

S0

ι

��

x �� T

Ě(PS0).
P (x)

���
�

�
�

�

(2.4)

Since Ě0(PS0) is torsion-free [30, Theorem 1.1], (2.3) holds in Ě0(PS0) with ι in place of x.
After applying π0 to equation (2.4), P (x) induces a ring map sending Q(ι) and θ(ι) to Q(x)
and θ(x), respectively, so (2.3) holds in π0T .

Now, since pmx = 0, by multiplying (2.3) by x and using Lemma 2.2.(3), we see that
pm−1xp+1 = 0. The theorem now follows by induction on m.

Remark. Since 2x2 = 0 for x in odd degrees, we could alternatively appeal to Theorem
2.1.(1) to conclude x6 = 0. This weakening of Theorem 2.1.(2) suffices for proving Theorem B,
but misses Rezk’s sharp bound.

3. Power operations in Morava E-theory

Before proving Lemma 2.2, we first recollect enough results about the theory of E∞- and
H∞-algebras from [3, 6] to define their variants in E and Ě-modules.
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920 AKHIL MATHEW, NIKO NAUMANN AND JUSTIN NOEL

Recall that the category of E∞-ring spectra is equivalent to the category of algebras over
the monad

P(−) =
∨
n�0

O(n)+ ∧Σn
(−)∧n,

acting on S-modules. Here O(n) is the nth space of an E∞-operad, that is, any operad weakly
equivalent to the commutative operad such that O(n) is a free Σn-space. The structure maps
for the monad are derived from the structure maps for the operad in a straightforward way
[24, Section 11]. The category of such algebras forms a model category and any two choices
of E∞-operad yield Quillen equivalent models [7, Theorem 1.6]. In fact, any such category is
Quillen equivalent to a category of strictly commutative S-algebras.

The monad P descends to a monad on the homotopy category of S-modules and the category
of H∞-ring spectra is the category of algebras for this monad. Such spectra admit all of
the structure maps of E∞-ring spectra, but these maps only satisfy the required coherence
conditions up to homotopy. There is a forgetful functor from the homotopy category of E∞-ring
spectra to H∞-ring spectra which endows each E∞-ring spectrum with power operations as
defined below; see [12] for more details.

As shown in [7, 8], each Lubin–Tate theory E admits an essentially unique E∞-structure
realizing the π∗E-algebra E∗(E). Applying standard results from [6], we see that after taking
a commutative model for E, the category of E-modules is a topological symmetric monoidal
model category with unit E and smash product ∧E . The category of commutative E-algebras is
Quillen equivalent to the category of E∞-algebras in this category, which are in turn equivalent
to the category of algebras over the following monad:

PE(−) =
∨
n�0

O(n)+ ∧Σn
(−)∧En.

By [6, Chapter VIII, Lemma 2.7], PE respects K(n)-equivalences and descends to a monad
PĚ on the homotopy category of K(n)-local E-modules. The smash product in this category is
the K(n)-localization of the smash product of E-modules, that is, X ∧Ě Y := LK(n)(X ∧E Y ).
We will call the category of algebras over PĚ the category of H∞-Ě-algebras. Since the
equivariant natural equivalences

(Ě(−))∧Ěn ∼= Ě((−)∧n)

induce a natural equivalence
PĚ(Ě(−)) ∼= Ě(P(−)), (3.1)

we see that if R is an H∞-ring spectrum, then Ě(R) is an H∞-Ě-algebra and acceptable input
for Theorem 2.1.

Given an H∞-Ě-algebra T , a map x : S0 → T of spectra (that is, a map of E-modules
E → T ), and an α ∈ Ě0(BΣp+), we obtain an operation

Qα : π0T −→ π0T

defined by the following composite:

Qα(x) : S0 α−→ Ě(BΣp+) ∼= O(p)+ ∧Σp
E∧Ěp Dp(x)−−−−→ O(p)+ ∧Σp

T∧Ěp μp−→ T.

Here Dp is the functor associated to the pth extended power construction in E-modules and
μp is the H∞-Ě structure map on T . It is clear that, by construction, Qα is natural in maps
of H∞-Ě-algebras.

Example 3.2. The inclusion of the base point into BΣp and the E-Hurewicz homo-
morphism induce a map i : S0 → Ě(BΣp+). The associated operation is the pth power
map.
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ON A NILPOTENCE CONJECTURE OF J. P. MAY 921

Since Ě∗(BΣp+) is a finitely generated free E∗-module and concentrated in even degrees, we
have a duality isomorphism [30, Theorem 3.2]:

Ě0(BΣp+) ∼= Modπ0E(E0(BΣp+), π0E).

Therefore, we can construct operations by defining the corresponding linear maps on
E0(BΣp+).

By an elementary diagram chase, the additive operations correspond to the subgroup Γ of
Ě0(BΣp+) defined by the following exact sequence:

0 −→ Γ −→ Ě0(BΣp+) −→
∏

0<i<p

Ě0((BΣi × BΣp−i)+),

where the right-hand map is the product of the transfer homomorphisms; cf. [25, Section 6].
To rephrase this in terms of cohomology, let J be the ideal of E0(BΣp+) generated by the
cohomological transfer maps. Then the additive operations correspond to those π0E-module
maps E0(BΣp+) → π0E which factor through the quotient E0(BΣp+)/J .

Proof of Theorem 2.2. By [25, Proposition 10.3], we have a commutative solid arrow
diagram of π0E-algebras:

E0(BΣp+)

ε

��

r �� E0(BΣp+)/J

s

��
φ2

��
π0E

φ1 �� π0E/p.

Here ε is the map induced by the inclusion of a base point into BΣp. It is dual to the map i
from Example 3.2 and corresponds to the pth power operation (−)p. The maps r and φ1 are
the obvious quotient maps, while φ2 is the unique map making the diagram commute.

By applying [30, Theorem 1.1] once again, we know that E0(BΣp+)/J is a finitely generated
free π0E-module. So the map r admits a section s of π0E-modules. By the discussion above,
the composite map ε ◦ s ◦ r determines an additive operation Q. Moreover,

φ1 ◦ ε ◦ (Id − s ◦ r) = φ2 ◦ r ◦ (Id − s ◦ r)
= φ2 ◦ (r − r)
= 0.

It follows that

ε − ε ◦ s ◦ r = p · f (3.3)

for some homomorphism f : E0(BΣp) → E0. If we let θ be the operation corresponding to f ,
then parts (1) and (2) of Lemma 2.2 will follow from (3.3) and our definitions.

To prove Lemma 2.2.(3), suppose x = 0 ∈ Ě0R. Then the extended power Dp(x) factors
through

EΣp+ ∧Σp
∗∧Ep 	 ∗

and Qα(0) = 0 for all α.

4. Applications

We collect some applications of our main result in this section. Although all results can be
applied toward H∞-ring spectra, we state them in terms of E∞-ring spectra since that is the
case of greatest interest.
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922 AKHIL MATHEW, NIKO NAUMANN AND JUSTIN NOEL

Proposition 4.1. Suppose that x ∈ π∗R is an odd degree element in the homotopy groups
of an E∞-ring spectrum R which has nilpotent image in H∗(R; Z/2). Then x is nilpotent.

Proof. By Theorem B, it suffices to show that x has square zero image in rational and
mod-p homology for p odd. This is a consequence of the fact that the homotopy groups
of a commutative ring spectrum are graded-commutative, so odd degree elements square to
2-torsion by the sign rule.

Proposition 4.2. Suppose that R is an E∞-ring spectrum such that 0 = m · 1 ∈ π0R for
some m 
= 0. Then, for every prime p and non-negative integer n, K(n)∗R = 0.

Proof. By Theorem 2.1 applied with T = Ěn(R), the image of 1 in K(n)∗R is nilpotent.

Remark 4.3. The previous proposition immediately implies the following observation of
Lawson: Any finite E∞-ring spectrum R either has type 0, that is, H∗(R; Q) 
= 0, or is weakly
contractible. Indeed, if H∗(R; Q) ∼= π∗R ⊗ Q = 0, then Proposition 4.2 implies K(n)∗R = 0 for
every prime p and non-negative integer n. Since the two-periodic Morava K-theory spectrum
splits as a wedge of suspensions of the 2pn − 2-periodic Morava K-theory spectrum K(n), we
see that K(n)∗(R) = 0.

Since R is finite, the Atiyah–Hirzebruch spectral sequence for K(n)∗R collapses to
H∗(R; Z/p)[v±1

n ] for n � 0. This forces H∗(R; Z/p) = 0 and hence Rp, the p-completion of
R, is weakly contractible for all primes p. This combined with the fact that π∗R is torsion
implies that R is weakly contractible.

4.1. Applications to bordism

Recall that BGL1S is the classifying space for stable spherical fibrations [18]. This is an infinite
loop space and associated to any infinite loop map G → GL1S is an E∞ Thom spectrum
MG (see [13, Chapter IX]). Standard examples include the J-homomorphisms from SO , Spin,
String , and their complex analogs. The homotopy groups of these geometric Thom spectra
correspond to the bordism rings of the corresponding categories of (compact) manifolds [27,
Chapter IV]. In this language, if a G-manifold M represents a bordism class [M ] ∈ π∗MG,
then the nilpotence of [M ] is equivalent to the statement that the cartesian powers Mn bound
G-manifolds for all sufficiently large n.

Now all G-manifolds are oriented if and only if MG is Z-orientable. A choice of orientation
determines a Thom isomorphism H∗(BG; Z) ∼= H∗(MG; Z). Even if G does not arise from one
of our geometric examples, MG is Z-orientable if and only if π0MG ∼= Z, and otherwise one
has π0MG ∼= Z/2 (see [18, Chapter IX, Proposition 4.5]). The latter case occurs if and only
if the map f : G → GL1S does not lift to SL1S, the connected component of the identity in
GL1S.

In the oriented case, we have Thom isomorphisms H∗(BG; k) ∼= H∗(MG; k) for any field k.
In the geometric examples, this happens when the classifying map

f : G −→ O

lifts to SO . In these cases, the Thom isomorphism can be used to characterize the Hurewicz
image of a G-bordism class [M ] in H∗(MG; k) in terms of the k-characteristic numbers of
M (at least if G is of finite type). These characteristic numbers can be calculated by pairing
the fundamental class of M with the characteristic classes of the stable normal bundle of
M (see [31, p. 401–402]). In particular, [M ] has trivial image in H∗(MG; k) if and only if the
k-characteristic numbers of M vanish.
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ON A NILPOTENCE CONJECTURE OF J. P. MAY 923

In many important cases, these characteristic numbers have names. For example, when M is
a manifold, not necessarily oriented, it still admits a fundamental class in k = Z/2-homology
and the Z/2-characteristic numbers of M are the Stiefel–Whitney numbers. These numbers
determine the image of [M ] in H∗(MO; Z/2). Stably complex manifolds, that is, U -manifolds,
have fundamental classes in integral homology and their images in H∗(MU ; Z) are described
in terms of their Chern numbers. Oriented manifolds also have Pontryagin numbers which
determine their image in H∗(MSO; Z[1/2]) ↪→ H∗(MSO; Q).

The previous discussion, Theorem B, and Proposition 4.1 now imply the following
proposition.

Proposition 4.4. Suppose that G → SO is a map of infinite loop spaces and G is of finite
type (for example, the 2-connected cover G = Spin or the 6-connected cover String). If M is
a G-manifold whose rational and Z/p-characteristic numbers vanish for all primes p, then Mn

bounds a G-manifold for all sufficiently large n.
Moreover, if M is an odd-dimensional manifold, then it suffices that the Z/2-characteristic

numbers vanish.

For the sake of completeness, we note that the unoriented case is simpler.

Proposition 4.5. Suppose that f : G → GL1S is a map of based homotopy commutative
H-spaces and non-trivial on π0. Then MG is a homotopy commutative ring spectrum such
that the mod-2 Hurewicz homomorphism

π∗MG −→ H∗(MG; Z/2)

is a split injection. In particular, an element in π∗MG is nilpotent if and only if its mod-2
Hurewicz image is nilpotent.

Proof. It follows from the results of [13, Chapter IX] that MG is a homotopy commutative
ring spectrum and, by the discussion above, π0MG = Z/2. So by [32, Theorem 1.1], MG is an
HZ/2-module and the Hurewicz homomorphism splits.

To understand how these results fit in with classical bordism ring calculations, we offer the
following two results.

Theorem 4.6. (1) For a String– (respectively, Spin–)manifold M, the following are
equivalent.

(i) For all sufficiently large n, Mn bounds a String– (respectively, Spin–)manifold;
(ii) M bounds an oriented manifold;
(iii) all Stiefel–Whitney and Pontryagin numbers of M vanish.

(2) For a U〈6〉– (respectively, SU –)manifold M, the following are equivalent.
(i) For all sufficiently large n, Mn bounds a U〈6〉– (respectively, SU –)manifold;
(ii) M bounds a stably complex manifold;
(iii) all Chern numbers of M vanish.

Theorem 4.7. Suppose that R is one of the following Thom spectra: MO, MSO , MSpin,
MString , MU, MSU , or MU〈6〉. Then the kernel of the integral Hurewicz homomorphism
π∗R → H∗(R; Z) is precisely the ideal of nilpotent elements, that is, the converse of Theorem A
also holds for these R.
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924 AKHIL MATHEW, NIKO NAUMANN AND JUSTIN NOEL

Figure 4.1. The Hurewicz homomorphisms for π∗MString , π∗MSpin, and π∗MSO .

In general, the converse of Theorem A holds when the integral homology ring is reduced,
so every nilpotent element in the homotopy ring is in the kernel of the Hurewicz map. For
example, the case of MO in Theorem 4.7 follows from Proposition 4.5 and the identification
of H∗(MO; Z/2) ∼= H∗(BO; Z/2) as a polynomial algebra. For the remainder of the claims in
Theorem 4.7, we will show (see Figures 4.1 and 4.2) that the relevant integral homology ring
is a subring of a reduced ring.

In the remainder of this subsection, we will simultaneously prove Theorems 4.6 and 4.7 by
analyzing the Hurewicz homomorphisms. First we note that the equivalences (ii) ⇐⇒ (iii) in
parts (1) and (2) of Theorem 4.6 are classical.

Proposition 4.8. Suppose that M is an oriented manifold and N is a stably complex
manifold. Then

(1) M bounds an oriented manifold if and only if the Stiefel–Whitney and Pontryagin
numbers of M vanish [20, Corollary 1];

(2) N bounds a stably complex manifold if and only if the Chern numbers of N vanish [31,
Corollary 20.26].

Now we consider the assertion about nilpotence in part (1) of Theorem 4.6. For this,
we consider the diagram of graded-commutative rings in Figure 4.1. The vertical maps are
induced by forgetting structure, the horizontal maps on the left are the integral Hurewicz
homomorphisms, and the horizontal maps on the right are the product of the mod-2 reduction
maps and the rationalization maps. The diagram commutes by the naturality of the Hurewicz
homomorphisms.

Lemma 4.9. The maps in Figure 4.1 labeled with hooked arrows are injective. In particular,
since the bottom right term is reduced, so are all of the displayed subrings. As a consequence,
every nilpotent element in the displayed bordism groups maps to zero under the integral
Hurewicz map.

This lemma and Theorem A immediately imply that the kernels of the integral Hurewicz
maps in Figure 4.1 are precisely the nilpotent elements. It also immediately follows that these
classes are precisely the elements that map to zero in π∗MSO .

Proof (of Lemma 4.9). Since all of these Thom spectra are orientable, the homology of
these Thom spectra are isomorphic as rings to the homology of their corresponding classifying
spaces. All of these spaces are of finite type, so their homology is dual to their cohomology
when working with field coefficients. We will use this fact repeatedly below.

We begin with the column on the right. The induced maps in mod-2 homology are injections
by Stong’s analysis of the associated Serre spectral sequences [29]. An easy argument with the
Serre spectral sequence shows that the maps in rational homology are injections as well.
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ON A NILPOTENCE CONJECTURE OF J. P. MAY 925

Figure 4.2. The Hurewicz homomorphisms for π∗MU 〈6〉, π∗MSU , and π∗MU .

Since all of our Thom spectra are of finite type, the injectivity of the horizontal homomor-
phisms on the right is equivalent to the claim that the only torsion in the integral homology
groups is simple 2-torsion. We first show that all 2-torsion is simple, which is equivalent to
the claim that the mod-2 Bockstein spectral sequence collapses at E2. In the case of MSO ,
the calculation of the Bockstein action in [31, p. 513] shows that the E2-page of the Bockstein
spectral sequence is concentrated in even degrees and hence collapses. For MSpin and MString ,
this follows from the given injections into H∗(MSO ; Z/2) and the naturality and convergence
of the Bockstein spectral sequences. Altogether this implies that the maps in homology with
Z(2)-coefficients are injective.

To see that there is no odd primary torsion, we recall that the composite map of spectra

KO −→ KU −→ KO

corresponding to complexifying real vector bundles and then forgetting the complex structure is
an equivalence after inverting 2. It follows that there is a similar retraction between the zeroth
spaces of their higher connective covers. This implies that H∗(BO〈k〉; Z[1/2]) is a retract of
H∗(BU〈k〉; Z[1/2]). It is well known that latter groups are torsion-free if k � 4, in which case
BU〈k〉 is either BU or BSU . By [11, Middle of p. 3485], H∗(BString ; Z/p) is concentrated in
even degrees for p odd and H∗(BU〈6〉; Z/p) is concentrated in even degrees for all primes p.
By applying the Bockstein spectral sequence again, we see that H∗(BString ; Z[1/2]) and
H∗(BU〈6〉; Z) are torsion-free.

The vertical homomorphisms in the middle are now injective due to the commutativity of the
diagram. The bottom composite horizontal homomorphism can be calculated by calculating
the Stiefel–Whitney and Pontryagin numbers of the manifold. This map is an injection by the
first half of Proposition 4.8.

This completes the proof of the first half of Theorems 4.6 and 4.7. To conclude this subsection,
we address the complex analogs. The relevant diagram of homology rings in this case appears
in Figure 4.2.

The bottom left map in this diagram is injective by the second half of Proposition 4.8. The
maps in rational homology are injections by an easy argument with the Serre spectral sequence.
The injectivity of the horizontal arrows on the right is addressed during the proof of Lemma
4.9. Now one completes the proof of Theorem 4.6 using Theorem A as before.

4.2. Differentials in the Adams spectral sequence and non-existence of E∞-structures

We can use our main result to establish differentials in the Adams spectral sequence, as follows.

Proposition 4.10. Suppose that R is a bounded below E∞-ring spectrum such that
H∗(R; Z/p) is of finite type. Let x be an element in positive filtration in the HZ/p-based Adams
spectral sequence converging to the homotopy of the p-completion Rp of R. Then either
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(1) x does not survive the spectral sequence;
(2) x detects a non-trivial element in π∗Rp ⊗ Q; or
(3) x detects a nilpotent element in π∗Rp and as a consequence all sufficiently large powers

of x do not survive the spectral sequence.

Proof. First we note that the hypotheses on R guarantee the convergence of the Adams
spectral sequence and hence any element in π∗Rp is detected somewhere in the spectral
sequence. If our specified element x fails the first two properties, then it is a permanent cycle
and detects a torsion element z ∈ π∗Rp. Since x is in positive filtration, z has trivial mod p
Hurewicz image and is therefore nilpotent by Theorem B. Thus, for every sufficiently large n,
the element xn is a permanent cycle detecting zn = 0 in homotopy. Such an element cannot
survive the spectral sequence.

Theorem B also implies the non-realizability of certain E∞-ring spectra. To precisely state
this result, recall that there are non-nilpotent elements called vn ∈ π2(pn−1)MU for each
positive n and prime p. There are many choices for such elements, but for our purposes we can
take any such element detected in positive Adams filtration.

Proposition 4.11. Let R be a bounded below ring spectrum (up to homotopy) under
MU such that, for some prime p, the image of vk

n in π∗Rp is non-nilpotent p-torsion for some
positive integers n and k. Moreover, suppose that H∗(R; Z/p) is of finite type. Then R does
not admit the structure of an E∞-ring spectrum.

Proof. If R admitted an E∞-ring structure, then so would its p-completion Rp. So assume
that Rp is E∞. Since maps of spectra never lower Adams filtration, the image of vn in π∗Rp

must be detected in positive Adams filtration. Since this element is torsion and non-nilpotent,
its existence is a contradiction to Proposition 4.10.

Example 4.12. The previous result implies that many ring spectra such as R = MU/(pi),
BP/(pivk

n), or ku/(piβk), where β is the Bott element and i and k are positive integers, do not
admit E∞-ring structures.

4.3. Conceivable refinements of Theorem B

In deducing nilpotence in the homotopy of ring spectra from homological assumptions, there is
an obvious tension between the class of ring spectra to allow and the homology theories used
to test for nilpotence. On one extreme, the nilpotence theorem works for general ring spectra
but needs the more sophisticated homology theory MU to test against. On the other extreme,
Theorem B applies only to H∞-ring spectra, but only needs the most elementary homology
theories to test against.

An approximately intermediate result will be derived from Theorem 4.16, which is an
unpublished result of Hopkins and Mahowald. Before proving this, we will now check that
homotopy colimits of connective algebras are connective.

We will use the language of ∞-categories [14] and the formalism of ∞-operads [15, Chapter 2]
in this subsection. We note that, at least when there are no nullary operations, the homotopy
theory of ∞-operads has been shown to be Quillen equivalent to that of dendroidal sets [9],
while the homotopy theory of dendroidal sets is Quillen equivalent to the homotopy theory of
colored simplicial operads [4].

In this context, the symmetric monoidal smash product functor on spectra makes the
associated ∞-category Sp into a symmetric monoidal ∞-category such that the smash product
commutes with (homotopy) colimits in each variable [15, Proposition 4.1.3.10]. Using this
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symmetric monoidal structure, we obtain categories AlgO(Sp) of O-algebras in Sp for every
∞-operad O (see [15, Section 2.1.3]). For example, if 0 � k < ∞, then the little k-cubes operad
defines a topological category of operators whose operadic nerve is the ∞-operad Ek (see [15,
Definition 5.1.0.2]). This ∞-operad corresponds to a simplicial operad with one color such that
the ∞-category of Ek-ring spectra is the ∞-category AlgEk

(Sp) (see [15, Definition 8.1.0.1]).
Since the smash product of two connective spectra is again connective, the smash product

functor restricts to a symmetric monoidal structure on the subcategory Sp�0 of connective
spectra [15, Example 2.2.1.3]. This makes AlgO(Sp�0) into a subcategory of AlgO(Sp).

Lemma 4.13. Let O be an ∞-operad with one color and let AlgO(Sp) be the ∞-category of
O-algebras in spectra. Then the subcategory AlgO(Sp�0) ⊆ AlgO(Sp) spanned by O-algebras
in connective spectra is closed under colimits.

Proof. There is a free-forgetful adjunction [15, Proposition 3.1.3.11]

(PO, UO) : Sp � AlgO(Sp). (4.14)

Here UO is the functor that sends an O-algebra to its underlying spectrum. It is conserva-
tive [15, Lemma 3.2.2.6] and commutes with sifted colimits [15, Proposition 3.2.3.1], so it is
monadic [15, Theorem 6.2.2.5]. The functor PO is described via

PO(X) 	
⊔
n�0

(O(n)+ ∧ X∧n)hΣn

by [15, Proposition 3.1.3.11] since O has one color. Since Sp�0 is closed under smash powers,
smashing with the spaces O(n)+, and colimits, we see that PO takes Sp�0 to AlgO(Sp�0) ⊂
AlgO(Sp). Consider the composition

TO = PO ◦ UO : AlgO(Sp) → AlgO(Sp).

Since the adjunction (4.14) is monadic, any X ∈ AlgO(Sp) can be obtained as the geometric
realization of the simplicial bar construction B(TO,X)•, where B(TO,X)• is a simplicial object
in AlgO(Sp) with B(TO,X)n = Tn+1

O X (see [15, Proposition 6.2.2.12]).
Let I be an ∞-category and let F : I → AlgO(Sp�0) be a functor. We can use the bar

construction to compute lim−→I F . Namely, consider the functor F̃• : I → Fun(Δop,AlgO(Sp))
given by B(TO, F )•. Then F 	 |F̃•| as functors I → AlgO(Sp). Therefore, we have

lim−→I
F = lim−→I

|F̃•| 	
∣∣∣∣∣lim−→I

B(TO, F )•

∣∣∣∣∣ . (4.15)

By definition, lim−→I B(TO, F )• refers to the simplicial O-algebra A• with An = lim−→I Tn+1
O F ,

where the colimit is computed in AlgO(Sp). Since PO is a left adjoint, it commutes with
colimits and we can also write this as An 	 PO(lim−→I UOTn

OF ). Since Sp�0 ⊂ Sp is closed under
colimits, and PO preserves connectivity, it follows that each An ∈ AlgO(Sp) is connective. Since
the forgetful functor UO commutes with geometric realizations, (4.15) now shows that lim−→I F
is connective as desired.

Theorem 4.16 (Hopkins–Mahowald). For every prime p, the free E2-ring R with p = 0 is
the Eilenberg–MacLane spectrum HZ/p.

The following argument has also appeared in the preprint of Antol̀ın-Camarena and
Barthel [1].
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Proof. First we recall how R is constructed. Let P2(−) (respectively, P2,p(−)) denote the
free E2-ring functor on spectra (respectively, HZ/p-modules). Given an E2-ring spectrum T
and a map f : X → T of spectra, let f̃ denote the adjoint map P2X → T of E2-rings. Now R
is given as the following homotopy pushout diagram of E2-ring spectra:

P2(S0)
p̃ ��

0̃

��

S0

��
S0 �� R.

First we observe that R is connective, by Lemma 4.13. Next we claim that R is p-complete. By
construction, π∗R is a graded Z/p-algebra and hence πnR is a Z/p-module for each integer n.
It follows that

Hom(Z[1/p], πnR) = Ext(Z[1/p], πnR) = 0

for each n, so R is p-complete by [2, Proposition 2.6].
By construction, R admits a canonical E2-ring map f : R → HZ/p extending the unit map

S → HZ/p. Now f is a map between two p-complete spectra and hence an equivalence if and
only if it induces an isomorphism in mod-p homology [2, Theorem 3.1]. The homology of HZ/p
is the dual Steenrod algebra A∗. To compute the homology of the source, we smash the defining
homotopy pushout diagram for R with HZ/p and apply π∗.

After applying the natural equivalence HZ/p ∧ P2(−) ∼= P2,p(HZ/p ∧ −), we obtain the
following homotopy pushout diagram of E2-rings in HZ/p-modules:

P2,p(HZ/p)
p̃ ��

0̃

��

HZ/p

��
HZ/p �� HZ/p ∧ R.

Since p 	 0 in HZ/p-modules, we see that

HZ/p ∧ R 	 P2,p(HZ/p ∧ S1) ∼= HZ/p ∧ P2(S1).

Now the generalized Snaith splitting theorem shows that P2(S1) 	 Σ∞
+ Ω2Σ2S1

(see [19, Section 6; 13, VII Section 5; 17, Theorem 6.1]). Using this splitting and two
applications of the Serre spectral sequence, we see that H∗(R; Z/p) has the same Poincare
series as A∗, so it suffices to show that H∗f is surjective.

The remainder of the argument is essentially that of [3, Chapter III, Proposition 4.8].
Since H∗f is a map of graded-commutative rings, it is surjective if it surjects onto the
indecomposables of A∗. By [3, Chapter III, Theorems 2.2 and 2.3], the indecomposables of
A∗ are generated by the Bockstein class in degree 1 under the action of the Dyer–Lashof
operations coming from the underlying E2-ring structure. Since H∗f commutes with these
operations, it suffices to show that it hits the Bockstein class in degree 1.

Since R is connective and π0R is a Z/p-module, we see that

π0R ∼= H0(R; Z) ∼= H0(R; Z/p) ∼= H0(Ω2S3; Z/p) = Z/p.

It follows that 1 ∈ H0(R; Z/p) must be the target of a Bockstein operation and similarly for
1 ∈ A∗. Since H∗f is a map of unital algebras commuting with the Bockstein operations,
we see that H∗f hits the Bockstein class generating A1. It now follows that f is a weak
equivalence.
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This leads to the following nilpotence result, whose assumptions lie roughly in between the
nilpotence theorem and Theorem B. It is a generalization of Nishida’s argument [21] on the
nilpotence of order p elements in the stable stems.

Proposition 4.17. Suppose that R is an E2-ring, p is a prime, and x ∈ π∗R is simple p-
torsion and has nilpotent image under the Hurewicz homomorphism π∗R → H∗(R; Z/p). Then
x is nilpotent.

Proof. It suffices to show that the localization R[x−1] is weakly contractible. Now
R[x−1] is an E2-ring by Theorem A.1 and p = 0 ∈ π0R[x−1]. By Theorem 4.16, R[x−1]
is an HZ/p-algebra, and in particular a generalized Eilenberg–MacLane spectrum. Since
H∗(R[x−1]; Z/p) = 0, R[x−1] must be weakly contractible.

As mentioned earlier, it is also known that any homotopy commutative ring spectrum with
2 = 0 is a generalized Eilenberg–MacLane spectrum; this is the main result of [32]. We do not
know if analogs of these results hold with respect to higher-order torsion. For instance, we do
not know if the free E2-ring with 4 = 0 is K(n)-acyclic for 0 < n < ∞. Such a claim would
strengthen our main result. We do note that the free En-ring with pk = 0 is not a generalized
Eilenberg–MacLane spectrum for n, k � 2 (unpublished).

Appendix. Localizations of En-ring spectra

In this appendix, we give a proof of the following result.

Theorem A.1. Let n � 2. Let R be an En-ring and S ⊆ π∗R be a multiplicative subset of
homogeneous elements. Then there exists a unique En-ring S−1R under R such that the map
R → S−1R induces on π∗ the localization map π∗(R) → S−1π∗(R).

The analog of this result for E1-rings is [15, Section 8.2.4]. Specifically, in there, it is shown
as follows.

Theorem A.2. Let R be an E1-ring. Let S ⊆ π∗R be a multiplicative subset of homo-
geneous elements that satisfies the left Ore condition [15, Definition 8.2.4.1]. Consider
the subcategory CS ⊆ Mod(R) consisting of those left R-modules M such that for s ∈ S,
multiplication by s induces an isomorphism on π∗(M). Then the following conditions are
satisfied.

(1) The subcategory CS is closed under arbitrary limits and colimits.
(2) The inclusion CS ⊆ Mod(R) admits a left adjoint denoted by M �→ S−1M .
(3) The subcategory CS is generated as a localizing subcategory by S−1R, which is a

compact object of CS .
(4) For any M, the adjunction map M → S−1M induces the map π∗(M) → S−1π∗(M) on

homotopy groups.
(5) Let NilS be the collection of R-modules M such that S−1M is contractible. For each

s ∈ S, let R/s ∈ Mod(R) denote the cofiber of the map Σ|s|R → R given by right multiplication
by s. Then NilS is the stable subcategory generated under colimits by the R/s for s ∈ S.

Theorem A.2 is proved in [15] by constructing the ∞-category of S−1R-modules, and
appealing to the analog of the Schwede–Shipley theorem [28] for compactly generated,
presentable stable ∞-categories. We will explain how this proof can be modified to prove
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Theorem A.1 using the En-version of the Schwede–Shipley theorem [15, Proposition 8.1.2.6],
which states that a presentable, stable En−1-monoidal ∞-category where the tensor structure
preserves colimits in each variable is equivalent to Mod(R) for an En-ring R if and only if the
unit 1 is a compact generator. In addition, given En-rings R, and R′, to give a morphism of
En-rings R → R′ is equivalent to giving an En−1-monoidal functor Mod(R) → Mod(R′). Here
an En−1-monoidal functor Mod(R) → Mod(R′) induces a map between the endomorphism
algebras of the unit objects in these two categories and this is the desired En-ring map.

Proof of Theorem A.1. Since R is an En-ring, the ∞-category Mod(R) is naturally En−1-
monoidal [15, Proposition 6.3.5.17]. Given X,Y ∈ Mod(R), we let X ⊗R Y denote the ordered
En−1-monoidal product. It is well defined up to a connected space of choices since the connected
components of the spaces in the En−1-operad are determined by linear orderings for n =
2 (while there is only one component for n � 3). Moreover, since n � 2, π∗(R) is graded-
commutative and the left Ore condition on S is automatically satisfied [15, Remark 8.2.4.2].
Therefore, it is possible to construct a theory of S-localization: that is, one can construct
subcategories CS ,NilS ⊆ Mod(R) as in Theorem A.2.

We claim that the En−1-monoidal structure on Mod(R) is compatible with S-localization. In
other words, there exists an En−1-monoidal structure on the subcategory CS ⊆ Mod(R), such
that the S-localization M �→ S−1M is an En−1-monoidal functor.

This follows from [15, Proposition 2.2.1.9] if we can prove that, whenever we have maps
of R-modules M1 → M2 and N1 → N2 that induce equivalences upon S-localizations, then
M1 ⊗R N1 → M2 ⊗R N2 induces an equivalence on S-localizations, because then, it will follow
inductively that the operation of S-localization respects arbitrary k-fold operations from the
operad En−1.

Now, to say that M1 → M2 (respectively, N1 → N2) induces an equivalence on S-
localizations is to say that the cofibers belong to NilS .

It thus suffices to show that if M,N ∈ Mod(R) and one of M,N belongs to NilS , then
M ⊗R N does. Suppose for definiteness that M belongs to NilS . To show that M ⊗R N ∈ NilS ,
consider the collection of all N ∈ Mod(R) such that M ⊗R N ∈ NilS . This collection contains
R, as the unit, and it is a localizing subcategory. Therefore, it is equal to Mod(R) and we
have proved the existence of an En−1-monoidal structure on CS , with S−1R as the unit; as
this is a compact generator, we have CS 	 Mod(S−1R) as En−1-monoidal ∞-categories. It
follows from [15, Proposition 8.1.2.6] that we acquire a natural En-ring structure on S−1R.
Moreover, we obtain a natural map R → S−1R of En-rings from the En−1-monoidal functor
Mod(R) → CS , by looking at endomorphisms of the unit.

We now prove uniqueness. From our construction of Mod(S−1R) as a localization of Mod(R),
it follows that, for any En-ring R′, to give an En−1-monoidal functor Mod(S−1R) → Mod(R′)
is equivalent to giving an En−1-monoidal functor Mod(R) → Mod(R′) that takes R/s to
0 for each s ∈ S. In particular, it follows that if R′ is an En-ring, then the mapping
space HomEn

(S−1R,R′) of En-ring maps can be identified with the union of components of
HomEn

(R,R′) consisting of those En-ring maps φ : R → R′ that take each s ∈ S to an invertible
element of π∗(R′). Therefore, if R′ is an En-ring under R such that the map π∗(R) → π∗(R′)
exhibits π∗(R′) as S−1π∗(R), then it follows that we obtain a map S−1R → R′ of En-rings
that is necessarily an isomorphism.

Acknowledgements. Theorem A is originally due to Mike Hopkins, who has known this
result for some time. We would like to thank him for his blessing in publishing our own
arguments above. We would also like to thank Charles Rezk, Tyler Lawson, and Jacob Lurie for
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this paper.
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