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EQUIVARIANT ORTHOGONAL SPECTRA

M.A. MANDELL AND J.P. MAY

Abstract. This is a summary of the Memoir AMS [12]. It was prepared by
the second author for the October 25-29, 2010, MSRI workshop on the Kervaire
invariant, with nearly all of the material extraneous to that application excised.
For a compact Lie group G, we construct a symmetric monoidal model category
of orthogonal G-spectra whose homotopy category is equivalent to the classical
stable homotopy category of G-spectra. We ignore all extra arguments needed
for the compact Lie case but not needed for the finite case, and we abbreviate
or omit most proofs. In particular, we describe change of universe, change of
group, fixed point, orbit, and geometric fixed point functors
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Introduction. Philosophically, orthogonal spectra are intermediate between S-
modules and symmetric spectra, enjoying some of the best features of both. They

1



2 M.A. MANDELL AND J.P. MAY

are defined in the same diagrammatic fashion as symmetric spectra, but with or-
thogonal groups rather than symmetric groups building in the symmetries required
to define an associative and commutative smash product. We let G be a compact
Lie group, and we understand subgroups of G to be closed.

Orthogonal spectra are more suitable than symmetric spectra for our purposes
although, for finite groups, symmetric G-spectra work similarly. They share two
of the essential features of the original G-spectra of [11] that facilitate equivariant
generalization. First, they are defined in a coordinate-free fashion. This makes it
simple and natural to build in spheres associated to representations, which play
a central role in the theory. Second, their weak equivalences are just the maps
that induce isomorphisms of homotopy groups. This simplifies the equivariant
generalization of the relevant homotopical analysis.

We define orthogonal G-spectra and show that the category of orthogonal G-
spectra is a closed symmetric monoidal category in Section 1. We show that this
category has a proper Quillen model structure whose homotopy category agrees
with that established in [11] in Section 2, and we describe the induced model struc-
tures on the various categories of orthogonal ring and module G-spectra. The proofs
are very much like those given in the nonequivariant case in [13] and will be omitted
or abbreviated. Actually, the inclusion of symmetric spectra in [13] added compli-
cations associated with subtleties about weak equivalences that need not detain us
here.

We also generalize the model theoretic framework to deal with families and
cofamilies of subgroups of G, and we discuss change of universe functors, change of
group functors, orbit functors, and categorical and geometric fixed point functors
on orthogonal G-spectra in Section 3.

Implicitly, equivariant orthogonal spectra were first applied in [15], and a global
form of the definition, with orthogonal G-spectra varying functorially in G, was
implicitly exploited in the proof of the completion theorem for complex cobordism
of Greenlees and May [8]. A version of the norm functor was first defined there,
where it was the key technical tool, but we do not consider that here.

1. Equivariant orthogonal spectra

This chapter parallels [13, Part I], and we focus on points of equivariance. It
turns out that we need to distinguish carefully between topological G-categories
CG, which are enriched over G-spaces, and their G-fixed topological categories GC ,
which are enriched over spaces. After explaining this in §1, we define orthogonal
G-spectra in §2, discuss their smash product in §3, and reinterpret the definition in
terms of diagram spaces in §4. Recall that G is a compact Lie group.

1.1. Preliminaries on equivariant categories. Let T denote the category of
based spaces, where spaces are understood to be compactly generated (= weak
Hausdorff k-spaces). Let GT denote the category of based G-spaces and based G-
maps. Then GT is complete and cocomplete, and it is a closed symmetric monoidal
category under its smash product and function G-space functors. For based G-
spaces A and B, we write F (A,B) for the function G-space of all continuous maps
A −→ B, with G acting by conjugation. Thus

GT (A,B) = F (A,B)G.

That is, a G-map A −→ B is a fixed point of F (A,B).



EQUIVARIANT ORTHOGONAL SPECTRA 3

It is useful to think of GT in a different fashion. Let TG be the category of
based G-spaces (with specified action of G) and non-equivariant maps, which we
henceforward call “arrows” to avoid confusion between maps and G-maps. Thus

TG(A,B) = F (A,B).

Then TG is enriched over GT : its morphism spaces are G-spaces, and composition
is given by G-maps. The objects of GT and TG are the same. If we think of G as
acting trivially on the collection of objects (after all, gA = A for all g ∈ G), then
we may think of GT as the G-fixed point category (TG)G.

Observe that TG is also closed symmetric monoidal under the smash product
and function G-space functors, with S0 as unit. Of course, limits and colimits of
diagrams of G-spaces (taken in T ) only inherit sensible G-actions when the maps
in the diagrams are G-maps, so that we are working in GT .

Many of our equivariant categories will come in pairs like this: we will have a
category CG consisting of G-objects and nonequivariant “arrows”, and a category
GC with the same objects and the G-maps between them. We can think of GC as
(CG)G, although the notation would be inconvenient. Formally, CG will be enriched
over GT , so that its hom sets CG(C,D) are based G-spaces and composition is
given by continuous G-maps. We call such a category a topological G-category. As
in [13], when the morphism spaces of CG are given without basepoints, we implicitly
give them disjoint G-fixed basepoints. We emphasize that it is essential to think
in terms of such topological G-categories CG even when the categories of ultimate
interest are the associated categories GC of G-objects and G-maps between them.
Note that, when constructing model structures, we must work in GC in order to
have limits and colimits.

A continuous G-functor X : CG −→ DG between topological G-categories is a
functor X such that

X : CG(C,D) −→ DG(X(C), X(D))

is a map of G-spaces for all pairs of objects of CG. In terms of elementwise actions,
this means that gX(f)g−1 = X(gfg−1). It follows that X takes G-maps to G-
maps. From now on, all functors defined on topological categories are assumed to
be continuous.

A natural G-map α : X −→ Y between G-functors CG −→ DG consists of
G-maps α : X(C) −→ Y (D) such that the evident naturality diagrams

X(C) //

α

��

X(D)

α

��

Y (C) // Y (D)

commute in DG for all arrows (and not just all G-maps) C −→ D.
For background, we give the definitions of the categories PG and GP of G-

prespectra and their full subcategories SG and GS of G-spectra. See [11] or [16]
for more details. In fact, we have such categories for any G-universe U , and we
write PU

G , etc, when necessary for clarity.

Definition 1.1. A G-universe U is a sum of countably many copies of each real
G-inner product space in some set of irreducible representations of G that includes
the trivial representation; U is complete if it contains all irreducible representations;
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U is trivial if it contains only trivial representations. An indexing G-space in U is a
finite dimensional sub G-inner product space of U . When V ⊂W , we write W −V
for the orthogonal complement of V in W . Define V (U) to be the collection of all
real G-inner product spaces that are isomorphic to indexing G-spaces in U .

Write SV for the one-point compactification of V , and write ΣVA = A∧SV and
ΩVA = F (SV , A) for the resulting generalized loop and suspension functors.

Definition 1.2. A G-prespectrum X consists of based G-spaces X(V ) for indexing
G-spaces V ⊂ U and based G-maps σ : ΣW−V X(V ) −→ X(W ) for V ⊂ W ; here
σ is the identity if V = W , and the evident transitivity diagram must commute
when V ⊂ W ⊂ Z. An arrow f : X −→ Y of prespectra consists of based maps
f(V ) : X(V ) −→ Y (V ) that commute with the structure maps σ; f is a G-map if
the f(V ) are G-maps. A G-spectrum is a G-prespectrum whose adjoint structure
G-maps σ̃ : X(V ) −→ ΩW−V X(W ) are homeomorphisms of G-spaces.

When U is the trivial universe, GS is the category of naive G-spectra, or spectra
with G-actions. When U is a complete universe, GS is the category of genuine
G-spectra, and the adjective is omitted: these G-spectra are the objects of the
equivariant stable homotopy category of [11].

Remark 1.3. From the point of view of enriched category theory, we have the
category GC of G-objects and G-maps, which we view as enriched over T : all
of our categories are topological, meaning that the categorical hom sets are based
topological spaces and composition is given by continuous based maps. We can
also view the category GC as enriched over the category of G-spaces, with the
enrichment given by the “enriched hom” G-spaces CG(C,D). From that point
of view the “category” CG is a red herring, an artifact of our special situation
rather than something intrinsically relevant to the mathematics. Its “arrows”,
the points of the CG(C,D), are special to the concrete nature of our equivariant
situation and should not be thought of as morphisms in a category of their own.
Our G-functors and natural G-maps are just examples of the category theorists’
GT -enriched functors and GT -enriched natural transformations. The naturality
may be expressed conceptually by the commutative diagram of G-spaces

CG(C,D)
X //

Y

��

DG(X(C), X(D))

α∗

��

DG(Y (C), Y (D))
α∗

// DG(X(C), Y (D)),

with no mention of arrows. For accessibility and to parallel more closely the
nonequivariant theory, we have chosen to avoid the language of enriched cate-
gory theory and to treat CG concretely. Our orthogonal G-spectra are G-functors,
thought of as objects in a category of diagrams. Their domain categories are of
the form CG, and not GC , with arrows as morphisms. We find it generally more
convenient to talk about orthogonal G-spectra concretely as ordinary functors with
additional structure rather than as enriched functors in the category theorists’ pre-
ferred language. The reader familiar with this language may view the use of CG as
just a notational device to record the use of the GT enrichment of GC .
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1.2. The definition of orthogonal G-spectra. As with G-spectra, we have sev-
eral kinds of orthogonal G-spectra, depending on a choice of a set of irreducible
representations ofG. The reader is warned that, as explained in [13, 7.1], non-trivial
orthogonal G-spectra are never G-spectra in the sense of the Definition 1.2.

Definition 1.4. Let V = V (U) for some universe U . Define I V
G to be the (un-

based) topological G-category whose objects are those of V and whose arrows
are the linear isometric isomorphisms, with G acting by conjugation on the space
I V

G (V,W ) of arrows V −→ W .
Define a canonical G-functor SV

G : I V
G −→ TG by sending V to SV . Clearly I V

G

is a symmetric monoidal category under direct sums of G-inner product spaces, and
the functor SV

G is strong symmetric monoidal.

Variant 1.5. We could relax the conditions on V by allowing any cofinal subcol-
lection W of V that is closed under finite direct sums. Here “cofinal” means that,
up to G-isomorphism, every V in V is contained in some W in W . We shall need
the extra generality when we consider change of groups.

We usually abbreviate IG = I V
G and SG = SV

G . The case of central interest
is V = A ℓℓ, the collection of all finite dimensional real G-inner product spaces,
but we shall work with the general case until we specify otherwise. From here, the
basic categorical definitions and constructions of [13] go through without essential
change. The only new point to keep track of is which arrows are G-maps and which
are not. We give a quick summary. We shall not spell out diagrams, referring to
[13] instead. We choose and fix a skeleton skIG of IG.

Definition 1.6. An IG-space is a (continuous) G-functor X : IG −→ TG. Let
IGT be the category whose objects are the IG-spaces X and whose arrows are
the natural transformations X −→ Y . Let GI T be the category of IG-spaces
and natural G-maps, so that

GI T (X,Y ) = IGT (X,Y )G.

It is essential to keep in mind the distinction between arrows and G-maps of
IG-spaces. We are interested primarily in the G-maps.

Definition 1.7. For IG-spaces X and Y , define the “external” smash product
X ⊼ Y by

X ⊼ Y = ∧ ◦ (X × Y ) : IG × IG −→ TG;

thus (X ⊼Y )(V,W ) = X(V )∧Y (W ). For an IG-space Y and an (IG ×IG)-space
Z, define the external function IG-space F̄ (Y, Z) by

F̄ (Y, Z)(V ) = IGT (Y, Z〈V 〉),

where Z〈V 〉(W ) = Z(V,W ).

Remark 1.8. The definition generalizes to give the external smash product functor

I V
G T × I V ′

G T −→ (I V
G × I V ′

G )T .

Definition 1.9. An orthogonal G-spectrum is an IG-space X : IG −→ TG to-
gether with a natural structure G-map σ : X ⊼SG −→ X ◦⊕ such that the evident
unit and associativity diagrams commute [13, §§1,8]. Let IGS denote the topologi-
cal G-category of orthogonalG-spectra and arrows f : X −→ Y that commute with
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the structure G-maps. Explicitly, the following diagrams must commute, where the
σ are G-maps but the f are non-equivariant in general:

X(V ) ∧ SW σ //

f∧id

��

X(V ⊕W )

f

��

Y (V ) ∧ SW
σ

// Y (V ⊕W )

If these diagrams commute, then so do the diagrams obtained by replacing f by
gf for g ∈ G, so that IGS (X,Y ) is indeed a sub G-space of IGT (X,Y ). Let
GI S denote the category of orthogonal G-spectra and the G-maps between them,
so that

GI S (X,Y ) = IGS (X,Y )G.

Orthogonal G-spectra are G-prespectra by neglect of structure.

Definition 1.10. Let V = V (U). Define a discrete subcategory (identity mor-
phisms only) of IG whose objects are the indexing G-spaces in U . By restricting
functors IG −→ TG to this subcategory and using structure maps for V ⊕(W−V ),
where V ⊂W , we obtain forgetful functors

U : IGS −→ PG and U : GI S −→ GP.

Working with orthogonal G-spectra, we have an equivariant notion of a functor
with smash product (FSP). It was used when defining the norm functor in [8].

Definition 1.11. An IG-FSP is an IG-space X with a unit G-map η : S −→ X
and a natural product G-map µ : X ⊼X −→ X ◦ ⊕ of functors IG × IG −→ TG

such that the evident unit, associativity, and centrality of unit diagrams commute
[13, 22.3]. An IG-FSP is commutative if the evident commutativity diagram also
commutes.

We have the topological G-category of IG-FSP’s and its G-fixed point category
of G-maps of IG-FSP’s. An IG-FSP is an orthogonal G-spectrum with additional
structure.

Lemma 1.12. An IG-FSP has an underlying orthogonal G-spectrum with struc-
ture G-map

σ = µ ◦ (id⊼η) : X ⊼ S −→ X ◦ ⊕.

We emphasize that all structure maps (σ, η, µ) in the definitions above must be
G-maps, while their naturality requires their commutation with arrows.

1.3. The smash product of orthogonal G-spectra. Just as nonequivariantly,
we can reinterpret FSP’s in terms of a point-set level internal smash product on
the category of orthogonal G-spectra that is associative, commutative, and unital
up to coherent natural isomorphism.

Theorem 1.13. The category IGS of orthogonal G-spectra has a smash product
∧SG

and function spectrum functor FSG
under which it is a closed symmetric mon-

oidal category with unit SG.

Passing to G-fixed points on morphism spaces, we obtain the following corollary.

Corollary 1.14. The category GI S is also closed symmetric monoidal under
∧SG

and FSG
.
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After this section, we will abbreviate ∧SG
to ∧ and FSG

to F , but the more
cumbersome notations clarify the definitions. Monoids and commutative monoids
are defined in any symmetric monoidal category, such as IGS and GI S . The
external notion of an IG-FSP translates to the internal notion of a monoid in
IGS .

Theorem 1.15. The categories of IG-FSP’s and of commutative IG-FSP’s are
isomorphic to the categories of monoids in IGS and of commutative monoids in
IGS .

We are only interested in G-maps between these, and we adopt a more familiar
language.

Definition 1.16. A (commutative) orthogonal ringG-spectrum is a (commutative)
monoid in GI S .

Theorem 1.15 asserts that (commutative) orthogonal ringG-spectra are the same
as (commutative) IG-FSP’s. That is, they are the same structures, but specified
in terms of the internal rather than the external smash product.

We outline the proof of Theorem 1.13, which is the same as in [13]. We first
construct a smash product ∧ on the category of IG-spaces [13, 21.4]. This in-
ternalization of the external smash product is given by left Kan extension and is
characterized by the adjunction homeomorphism of based G-spaces

(1.17) IGT (X ∧ Y, Z) ∼= (IG × IG)T (X ⊼ Y, Z ◦ ⊕).

An explicit description of ∧ is given in [13, 21.4]. There is one key subtle point.
The Kan extension is a kind of colimit, and our G-categories of diagrams do not
admit colimits in general. However, the assumption that the maps

X : IG(V,W ) −→ TG(X(V ), X(W ))

given by an IG-space X must be G-maps ensures that the equivalence relation
that defines the Kan extension is G-invariant, producing a well-defined IG-space
X ∧ Y : IG −→ TG from IG-spaces X and Y .

There is an internal function IG-space functor F constructed from F̄ [13, 21.6].

Proposition 1.18. The category of IG-spaces is closed symmetric monoidal under
∧ and F . Its unit object is the functor IG −→ TG that sends 0 to S0 and sends
V 6= 0 to a point.

We can reinterpret orthogonal G-spectra in terms of the internal smash product.

Proposition 1.19. The IG-space SG is a commutative monoid in IGT , and the
category of orthogonal G-spectra is isomorphic to the category of SG-modules.

From here, we imitate algebra, thinking of ∧ and F as analogues of ⊗ and Hom.

Definition 1.20. For orthogonal G-spectra X and Y , thought of as right and left
SG-modules, define X ∧SG

Y to be the coequalizer in the category of IG-spaces
(constructed spacewise) displayed in the diagram

X ∧ SG ∧ Y
µ∧id

//

id∧µ′

// X ∧ Y // X ∧SG
Y,

where µ and µ′ are the given actions of SG on X and Y . Then X ∧SG
Y inherits

an orthogonal G-spectrum structure from the orthogonal G-spectrum structure on
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X or, equivalently, Y . The function orthogonal G-spectrum FSG
(X,Y ) is defined

dually in terms of a suitable equalizer [13, §22]

FSG
(Y, Z) // F (Y, Z) //

// F (Y ∧ SG, Z).

Theorem 1.13 follows from the definitions and the universal property (1.17).

1.4. A description of orthogonal G-spectra as diagram G-spaces. As in
[13, 2.1], there is a category JG = J V

G constructed from IG and SG such that
if we define JG-spaces exactly as in Definition 1.6, then a JG-space is the same
structure as an orthogonal G-spectrum. This reduces the study of orthogonal G-
spectra to a special case of the conceptually simpler study of diagram G-spaces.
Rather than repeat the cited formal definition, we give a more concrete alternative
description of JG in terms of Thom complexes.

Definition 1.21. We define the topological G-category J V
G . The objects of J V

G

are the same as the objects of I V
G . For objects V and V ′, let I (V, V ′) be the

(possibly empty) G-space of linear isometries from V to V ′; G acts by conjuga-
tion. Of course, a linear isometry is necessarily a monomorphism, but, in contrast
to our definition of the category IG, we no longer restrict attention to linear iso-
metric isomorphisms. Let E(V, V ′) denote the subbundle of the product G-bundle
I (V, V ′)×V ′ consisting of the points (f, x) such that x ∈ V ′− f(V ). The G-space
J V

G (V, V ′) of arrows V −→ V ′ in J V
G is the Thom G-space of E(V, V ′); it is ob-

tained from the fiberwise one-point compactification of E(V, V ′) by identifying the
points at infinity, and it is interpreted to be a point if I (V, V ′) is empty. Define
composition

(1.22) ◦ : J V
G (V ′, V ′′) ∧ J V

G (V, V ′) −→ J V
G (V, V ′′)

by (g, y)◦(f, x) = (g◦f, g(x)+y). The points (idV , 0) give identity arrows. Observe
that J V

G is symmetric monoidal under the operation ⊕ specified by V ⊕ V ′ on
objects and

(f, x) ⊕ (f ′, x′) = (f ⊕ f ′, x+ x′)

on arrows. Let GJ V be the G-fixed category with the same objects, so that

GJ V (V,W ) = J V
G (V,W )G.

We usually abbreviate JG = J V
G . If dim V = dimV ′, then a linear isometry

V −→ V ′ is an isomorphism and JG(V, V ′) = IG(V, V ′)+. This embeds IG as a
sub symmetric monoidal category of JG. If V ⊂ V ′, then

JG(V, V ′) ∼= O(V ′)+ ∧O(V ′−V ) S
V ′−V .

In particular, the functor JG(0,−) : IG −→ TG coincides with SG. The category
of JG-spaces is symmetric monoidal, as in Proposition 1.18 but with unit SG, and
we have the following result.

Theorem 1.23. The symmetric monoidal category of orthogonal G-spectra is iso-
morphic to the symmetric monoidal category of JG-spaces.

Using this reinterpretation, we see immediately that the category GI S is com-
plete and cocomplete, with limits and colimits constructed levelwise. The category
IGS is tensored and cotensored over the category TG of based G-spaces. For an
orthogonal G-spectrum X and a based G-space A, the tensor X ∧ A is given by
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the levelwise smash product, (X ∧ A)(V ) = X(V ) ∧ A, and the cotensor F (A,X)
is given similarly by the levelwise function space. We have both

(1.24) IGS (X ∧A, Y ) ∼= TG(A,IGS (X,Y )) ∼= IGS (X,F (A, Y ))

and, by passage to fixed points,

(1.25) GI S (X ∧A, Y ) ∼= GT (A,IGS (X,Y )) ∼= GI S (X,F (A, Y )).

From the enriched category point of view of Remark 1.3, these adjunctions give
that GI S is tensored and cotensored over GT . Here the enriched category point
of view is clearly the right one to take. When we specialize these adjunctions to
spaces A with trivial G-action, we may replace IGS (X,Y ) with the categorical
hom space GI S (X,Y ) and the enrichment over T takes a more elementary form.
We define homotopies between maps of orthogonalG-spectra by use of the cylinders
X ∧ I+, and similarly for G-homotopies between G-maps.

We also use JG to define represented orthogonal G-spectra that give rise to left
adjoints to evaluation functors, as in [13, §3].

Definition 1.26. For an object V of IG, define the orthogonal G-spectrum V ∗

represented by V by V ∗(W ) = JG(V,W ). In particular, 0∗ = SG. Define the shift
desuspension spectrum functors FV : TG −→ IGS and the evaluation functors
EvV : IGS −→ TG by FV A = V ∗ ∧ A and EvV X = X(V ). Then FV and EvV

are left and right adjoint:

IGS (FV A,X) ∼= TG(A,EvV X).

To mesh with notations used elsewhere, especially [11], we give these functors
alternative names.

Notations 1.27. Let Σ∞ = F0 and Ω∞ = Ev0. These are the suspension orthog-
onal G-spectrum and zeroth space functors. Note that Σ∞A = SG ∧A. Similarly,
let Σ∞

V = FV and Ω∞
V = EvV ; we let S−V = Σ∞

V S
0 and call it the canonical

(−V )-sphere.

As in [13, 1.8], we have the following commutation with smash products.

Lemma 1.28. There is a natural isomorphism

FV A ∧ FWB ∼= FV ⊕W (A ∧B).

As in [13, 1.6], but with an evident tensor product of functors notation, we have
the following description of general orthogonal G-spectra in terms of represented
ones. Observe that V ∗ varies contravariantly in V , so that we have a contravariant
functor D : JG −→ IGS specified by DV = V ∗.

Lemma 1.29. 1 The evaluation maps V ∗∧X(V ) −→ X of IG-spectra X, thought
of as JG-spaces, induce a natural isomorphism

D ⊗JG
X =

∫ V ∈skIG

V ∗ ∧X(V ) −→ X.

The definitions and results of this section have analogues for prespectra. Recall
Definition 1.10.

1In [9], it is said that X is the homotopy colimit of the spectra S−V
∧X(V ).
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Definition 1.30. Let V = V (U). We have a subcategory KG = K V
G of JG such

that a KG-space is the same thing as a G-prespectrum. The objects of KG are
the indexing G-spaces in U ; the G-space KG(V, V ′) of arrows is SV ′−V if V ⊂ V ′

and a point otherwise. The forgetful G-functor U : IGS −→ PG has a left
adjoint prolongation functor P. It is the tensor product PX = D ◦ ι⊗KG

X , where
ι : KG −→ JG is the inclusion. See also [13, §3].

2. Model categories of orthogonal G-spectra

We explain the model structures on the category of orthogonal G-spectra and
on its various categories of rings and modules. The material here is parallel to the
material of [13, §§5-12]. We focus on points of equivariance. One new equivariant
feature is the notion of a G-topological model category, which is an equivariant
analogue of the classical notion of a topological (or simplicial) model category. To
make sense of this, we must take into account the dichotomy between CG and GC :
only GC can have a model structure, but use of CG is essential to encode the
G-topological structure, which is used to prove the model axioms.

2.1. The model structure on G-spaces. We take for granted the generalities on
nonequivariant topological model categories explained in [13, §5]. In particular we
have the notion of a compactly generated model category, for which the small object
argument for verifying the factorization axioms requires only sequential colimits.
All of our examples of model categories will be of this form. However there are a
few places where equivariance plays a role. We discuss these and then recall the
model structure we need on the category GT of based G-spaces.

We begin with a topological G-category CG and its G-fixed category GC of G-
maps. We assume that GC is complete and cocomplete and that CG is tensored and
cotensored over GT , so that (1.24) and (1.25) hold with IGS and GI replaced by
CG andGC . The discussion in [13, §5] applies to GC . One place where equivariance
is relevant is in the Cofibration Hypothesis, [13, 5.3]. That uses the concept of an
h-cofibration in GC , namely a map that satisfies the homotopy extension property
(HEP) in GC . Since the maps in GC are G-maps, the HEP is understood to be
equivariant. That is, h-cofibrations in GC satisfy the G-HEP. As in [13], we write
q-cofibration and q-fibration for model cofibrations and cofibrations, but we write
cofibrant and fibrant rather than q-cofibrant and q-fibrant.

A more substantial point of equivariance concerns the notion of a topological
model category. As defined in [13, 5.12], that notion remembers only that GC is
tensored and cotensored over T , which is insufficient for our applications. We shall
return to this point and define the notion of a “G-topological model category” after
giving the model structure on GT .

Definition 2.1. Let I be the set of cell h-cofibrations

i : (G/H × Sn−1)+ −→ (G/H ×Dn)+

in GT , where n ≥ 0 (S−1 being empty) and H runs through the (closed) subgroups
of G. Let J be the set of h-cofibrations

i0 : (G/H ×Dn)+ −→ (G/H ×Dn × I)+

and observe that each such map is the inclusion of a G-deformation retract.
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Recall that, for unbased spaces A and B, (A×B)+ ∼= A+ ∧B+. Recall too that,
for a based H-space A and a based G-space B,

(2.2) GT (G+ ∧H A,B) ∼= HT (A,B).

If A is a G-space, then we have a natural homeomorphism of G-spaces

(2.3) G+ ∧H A ∼= (G/H)+ ∧A,

where G acts diagonally on the right; it sends the class of g ∧ a to gH ∧ ga. Also,
for a based space A regarded as a G-trivial G-space,

(2.4) GT (A,B) ∼= T (A,BG)

and therefore

(2.5) GT ((G/H)+ ∧A,B) ∼= T (A,BH).

As a right adjoint, the G-fixed point functor preserves limits. It also preserves
some, but not all, colimits.

Lemma 2.6. The functor (−)G on based G-spaces preserves pushouts of diagrams
one leg of which is a closed inclusion and colimits of sequences of inclusions. For a
based space A and a based G-space B, F (A,B)G ∼= F (A,BG). For based G-spaces
A and B, (A ∧B)G ∼= AG ∧BG.

Definition 2.7. A map f : A −→ B of G-spaces is a weak equivalence or Serre
fibration if each fH : AH −→ BH is a weak equivalence or Serre fibration; by (2.5),
f is a Serre fibration if and only if it satisfies the RLP (right lifting property) with
respect to the maps in J . Note that a relative G-cell complex is a relative I-cell
complex as defined in [13, 5.4].

Theorem 2.8. GT is a compactly generated proper G-topological model category
with respect to the weak equivalences, Serre fibrations, and retracts of relative G-cell
complexes. The sets I and J are the generating q-cofibrations and the generating
acyclic q-cofibrations.

We must explain what it means for GT to be a “G-topological” model category.
We revert to our general categories CG and GC , and we suppose that GC has a
given model structure. For maps i : A −→ X and p : E −→ B in GC , let

(2.9) CG(i∗, p∗) : CG(X,E) −→ CG(A,E) ×CG(A,B) CG(X,B)

be the map of G-spaces induced by CG(i, id) and CG(id, p) by passage to pullbacks.

Definition 2.10. A model category GC is G-topological if the map CG(i∗, p∗) is
a Serre fibration (of G-spaces) when i is a q-cofibration and p is a q-fibration and
is a weak equivalence (as a map of G-spaces) when, in addition, either i or p is a
weak equivalence.

The point is that we must go beyond the category GC to the category CG to
formulate this equivariant notion. From the point of view of enriched category
theory of Remark 1.3, this is the obviously right enriched version of the standard
definitions of a simplicial or topological model category. It follows on passage to
G-fixed point spaces that GC is also nonequivariantly topological, in the sense of
[13, 5.12], but we need the equivariant version. The nonequivariant version has the
following significance.
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Lemma 2.11. The pair (i, p) has the lifting property if and only if GC (i∗, p∗) is
surjective.

As in [13, §5], we will need two pairs of analogues of the maps CG(i∗, p∗). First,
for a map i : A −→ B of based G-spaces and a map j : X −→ Y in GC , passage to
pushouts gives a map

(2.12) i�j : (A ∧ Y ) ∪A∧X (B ∧X) −→ B ∧ Y

and passage to pullbacks gives a map

(2.13) F�(i, j) : F (B,X) −→ F (A,X) ×F (A,Y ) F (B, Y ),

where ∧ and F denote the tensor and cotensor in CG.
Second, assume that CG is a closed symmetric monoidal category with product

∧C and internal function object functor FC . Then, for maps i : X −→ Y and
j : W −→ Z in GC , passage to pushouts gives a map

(2.14) i�j : (Y ∧C W ) ∪X∧C W (X ∧C Z) −→ Y ∧C Z,

and passage to pullbacks gives a map

(2.15) F�(i, j) : FC (Y,W ) −→ FC (X,W ) ×FC (X,Z) FC (Y, Z).

Inspection of definitions gives adjunctions relating these maps.

Lemma 2.16. Let i : A −→ B be a map of based G-spaces and let j : X −→ Y
and p : E −→ F be maps in GC . Then there are natural isomorphisms of G-maps

CG((i�j)∗, p∗) ∼= TG(i∗,CG(j∗, p∗)∗) ∼= CG(j∗, F�(i, p)∗).

Therefore, passing to G-fixed points, (i�j, p) has the lifting property in GC if and
only if (i,CG(j∗, p∗)) has the lifting property in GT .

Lemma 2.17. Let i, j, and p be maps in GC , where CG is closed symmetric
monoidal. Then there is a natural isomorphism of G-maps

CG((i�j)∗, p∗) ∼= CG(i∗, F�(j, p)∗).

Returning to TG and using Lemma 2.16, we see by a formal argument that the
following lemma is equivalent to the assertion that GT is G-topological.

Lemma 2.18. Let i : A −→ X and j : B −→ Y be q-cofibrations of G-spaces.
Then i�j is a q-cofibration and is acyclic if i or j is acyclic.

2.2. The level model structure on orthogonal G-spectra. We here give the
category GI S of orthogonal G-spectra and G-maps a level model structure, fol-
lowing [13, §3]; maps will mean G-maps throughout. We need three definitions, the
first of which concerns nondegenerate basepoints. AG-space is said to be nondegen-
erately based if the inclusion of its basepoint is an unbased h-cofibration (satisfies
the G-HEP in the category of unbased G-spaces). As in [20, Prop. 9], a based h-
cofibration between nondegenerately based G-spaces is an unbased h-cofibration.
Each morphism space JG(V,W ) is nondegenerately based.

Definition 2.19. An orthogonal G-spectrum X is nondegenerately based if each
X(V ) is a nondegenerately based G-space.

Definition 2.20. Define FI to be the set of all maps FV i with V ∈ skIG and
i ∈ I. Define FJ to be the set of all maps FV j with V ∈ skIG and j ∈ J , and
observe that each map in FJ is the inclusion of a G-deformation retract.
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Definition 2.21. We define five properties of maps f : X −→ Y of orthogonal
G-spectra.

(i) f is a level equivalence if each map f(V ) : X(V ) −→ Y (V ) of G-spaces is a
weak equivalence.

(ii) f is a level fibration if each map f(V ) : X(V ) −→ Y (V ) of G-spaces is a
Serre fibration.

(iii) f is a level acyclic fibration if it is both a level equivalence and a level
fibration.

(iv) f is a q-cofibration if it satisfies the LLP with respect to the level acyclic
fibrations.

(v) f is a level acyclic q-cofibration if it is both a level equivalence and a q-
cofibration.

Theorem 2.22. The category GI S of orthogonal G-spectra is a compactly gener-
ated proper G-topological model category with respect to the level equivalences, level
fibrations, and q-cofibrations. The sets FI and FJ are the generating q-cofibrations
and the generating acyclic q-cofibrations, and the following identifications hold.

(i) The level fibrations are the maps that satisfy the RLP with respect to FJ
or, equivalently, with respect to retracts of relative FJ-cell complexes, and
all orthogonal G-spectra are level fibrant.

(ii) The level acyclic fibrations are the maps that satisfy the RLP with respect
to FI or, equivalently, with respect to retracts of relative FI-cell complexes.

(iii) The q-cofibrations are the retracts of relative FI-cell complexes.
(iv) The level acyclic q-cofibrations are the retracts of relative FJ-cell com-

plexes.

Moreover, every cofibrant orthogonal G-spectrum X is nondegenerately based.

The proof is the same as that of [13, 6.5]. As there, the following analogue of
[13, 5.5] plays a role.

Lemma 2.23. Every q-cofibration is an h-cofibration.

The following analogue of [13, 3.7] also holds. The proof depends on 1.28 and
Lemma 2.18 and thus on the fact that products of orbit spaces are triangulable as
G-CW complexes.

Lemma 2.24. If i : X −→ Y and j : W −→ Z are q-cofibrations, then

i�j : (Y ∧W ) ∪X∧W (X ∧ Z) −→ Y ∧ Z

is a q-cofibration which is level acyclic if either i or j is level acyclic. In particular,
if Z is cofibrant, then i ∧ id : X ∧ Z −→ Y ∧ Z is a q-cofibration, and the smash
product of cofibrant orthogonal G-spectra is cofibrant.

Let [X,Y ]ℓG denote the set of maps X −→ Y in the level homotopy category
HoℓGI S and let π(X,Y )G denote the set of homotopy classes of maps X −→ Y .
Then [X,Y ]ℓG

∼= π(ΓX,Y )G, where ΓX −→ X is a cofibrant approximation of X .
Fiber and cofiber sequences of orthogonal G-spectra behave the same way as for

based G-spaces, starting from the usual definitions of homotopy cofibers Cf and
homotopy fibers Ff [13, 6.8]. We record the analogue of [13, 6.9]. Most of the
proof is the same as there. Some statements, such as the last clause of (i), are most
easily proven by using (2.5) and Lemma 2.6 to reduce them to their nonequivariant
counterparts by levelwise passage to fixed points.
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Theorem 2.25. (i) If A is a based G-CW complex and X is a nondegenerately
based orthogonal G-spectrum, then X ∧A is nondegenerately based and

[X ∧A, Y ]ℓG
∼= [X,F (A, Y )]ℓG

for any Y . If f : X −→ Y is a level equivalence of nondegenerately based
orthogonal G-spectra, then f ∧ id : X ∧A −→ Y ∧A is a level equivalence.

(ii) For nondegenerately based Xi,
∨

i Xi is nondegenerately based and

[
∨
i

Xi, Y ]ℓG
∼=

∏
i

[Xi, Y ]ℓG

for any Y . A wedge of level equivalences of nondegenerately based orthogo-
nal G-spectra is a level equivalence.

(iii) If i : A −→ X is an h-cofibration and f : A −→ Y is any map of orthogonal
G-spectra, where A, X, and Y are nondegenerately based, then X ∪A Y is
nondegenerately based and the cobase change j : Y −→ X ∪A Y is an h-
cofibration. If i is a level equivalence, then j is a level equivalence.

(iv) If i and i′ are h-cofibrations and the vertical arrows are level equivalences
in the following commutative diagram of nondegenerately based orthogonal
G-spectra, then the induced map of pushouts is a level equivalence.

X

��

A

��

ioo // Y

��

X ′ A′

i′
oo // Y ′

(v) If X is the colimit of a sequence of h-cofibrations in : Xn −→ Xn+1 of non-
degenerately based orthogonal G-spectra, then X is nondegenerately based
and there is a lim1 exact sequence of pointed sets

∗ −→ lim1[ΣXn, Y ]ℓG −→ [X,Y ]ℓG −→ lim[Xn, Y ]ℓG −→ ∗

for any Y . If each in is a level equivalence, then the map from the initial
term X0 into X is a level equivalence.

(vi) If f : X −→ Y is a map of nondegenerately based orthogonal G-spectra, then
Cf is nondegenerately based and there is a natural long exact sequence

· · · → [Σn+1X,Z]ℓG → [ΣnCf,Z]ℓG → [ΣnY, Z]ℓG → [ΣnX,Z]ℓG → · · · → [X,Z]ℓG.

We shall also need a variant of the level model structure, called the positive
level model structure, as in [13, §14]. It is obtained by ignoring representations V
that do not contain a positive dimensional trivial representation. We can obtain a
similar model structure by ignoring only V = 0, but that would not give the right
model structure for some of our applications.

Definition 2.26. Define the positive analogues of the classes of maps specified in
Definition 2.21 by restricting attention to those levels V with V G 6= 0.

Definition 2.27. Let F+I and F+J be the sets of maps in FI and FJ that are
specified in terms of the functors FV with V G 6= 0.

Theorem 2.28. The category GI S is a compactly generated proper G-topological
model category with respect to the positive level equivalences, positive level fibrations,
and positive level q-cofibrations. The sets F+I and F+J are the generating sets
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of positive q-cofibrations and positive level acyclic q-cofibrations. The positive q-
cofibrations are the q-cofibrations that are homeomorphisms at all levels V such
that V G = 0.

As in [13, §14], this is one case of a general relative version of Theorem 2.22.

Variants 2.29. There are other variants. Rather than using varying categories
I V

G , we could work with orthogonal G-spectra defined with respect to V = A ℓℓ
and define a “V -level model structure” by restricting to those levels V that are
isomorphic to representations in V when defining level equivalences, level fibrations,
and the generating sets of q-cofibrations and acyclic q-cofibrations. This allows us to
change V by changing the model structure on a single fixed category of orthogonal
G-spectra; see Remark 3.9.

Remark 2.30. Everything in this section applies verbatim to the category GP
of G-prespectra. Recall 1.10 and 1.30. Because KG contains all objects of JG,
the forgetful functor U : GI −→ GP creates the level equivalences and level
fibrations of orthogonal G-spectra. That is, a map f of orthogonal G-spectra is a
level equivalence or level fibration if and only if Uf is a level equivalence or level
fibration of prespectra. In particular (P,U) is a Quillen adjoint pair [13, A.1].

2.3. The homotopy groups of G-prespectra. By 1.10, an orthogonalG-spectrum
has an underlying G-prespectrum indexed on a universe U such that V (U) = V .
The homotopy groups of orthogonal G-spectra are defined to be the homotopy
groups of their underlying G-prespectra. We discuss the homotopy groups of G-
prespectra here. We first define Ω-G-spectra (more logically, prespectra).

Definition 2.31. A G-prespectrum X is an Ω-G-spectrum, if each of its adjoint
structure maps σ̃ : X(V ) −→ ΩW−V X(W ) is a weak equivalence of G-spaces. An
orthogonal G-spectrum is an orthogonal Ω-G-spectrum if each of its adjoint struc-
ture maps is a weak equivalence or, equivalently, if its underlying G-prespectrum
is an Ω-G-spectrum.

It is convenient to write
πH

q (A) = πq(A
H)

for based G-spaces A.

Definition 2.32. For subgroupsH of G and integers q, define the homotopy groups
πH

q (X) of a G-prespectrum X by

πH
q (X) = colimV π

H
q (ΩV X(V )) if q ≥ 0,

where V runs over the indexing G-spaces in U , and

πH
−q(X) = colimV ⊃Rq πH

0 (ΩV −R
q

X(V )) if q > 0.

A map f : X −→ Y of G-prespectra is a π∗-isomorphism if it induces isomorphisms
on all homotopy groups. A map of orthogonal G-spectra is a π∗-isomorphism if its
underlying map of G-prespectra is a π∗-isomorphism.

As H varies, the πH
q (X) define a contravariant functor from the homotopy cat-

egory hGO of orbits to the category of Abelian groups, but the functoriality need
not be considered in the development of the model structures. We shall later use
the terms “π∗-isomorphism” and “weak equivalence” interchangeably, but we pre-
fer to use the term π∗-isomorphism here to avoid confusion among the different
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model structures on G-prespectra and orthogonal G-spectra. We state the results
of this section for G-prespectra but, since the forgetful functor U preserves all rele-
vant constructions, they apply equally well to orthogonal G-spectra. The previous
section gives GP a level model structure.

Lemma 2.33. A level equivalence of G-prespectra is a π∗-isomorphism.

The nonequivariant version [13, 7.3] of the following partial converse is trivial.
The equivariant version is the key result, [11, I.7.12], in the classical development of
the equivariant stable homotopy category, and it is also the key result here. While
the result there is stated for G-spectra, the argument is entirely homotopical and
applies verbatim to Ω-G-spectra and is given in detail in the Memoir [12].

Theorem 2.34. A π∗-isomorphism between Ω-G-spectra is a level equivalence.

Using that space-level constructions commute with passage to fixed points, as in
Lemma 2.6, all parts of the following equivariant analogue of [13, 7.4] follow from
or are proven in the same way as the corresponding part of that result. As there,
the nondegenerate basepoint hypotheses in Theorem 2.25 are not needed here.

Theorem 2.35. (i) A map of G-prespectra is a π∗-isomorphism if and only if
its suspension is a π∗-isomorphism.

(ii) The homotopy groups of a wedge of G-prespectra are the direct sums of the
homotopy groups of the wedge summands, hence a wedge of π∗-isomorphisms
of G-prespectra is a π∗-isomorphism.

(iii) If i : A −→ X is an h-cofibration and a π∗-isomorphism of G-prespectra
and f : A −→ Y is any map of G-prespectra, then the cobase change
j : Y −→ X ∪A Y is a π∗-isomorphism.

(iv) If i and i′ are h-cofibrations and the vertical arrows are π∗-isomorphisms in
the comparison of pushouts diagram of Theorem 2.25(iv), then the induced
map of pushouts is a π∗-isomorphism.

(v) If X is the colimit of a sequence of h-cofibrations Xn −→ Xn+1, each of
which is a π∗-isomorphism, then the map from the initial term X0 into X
is a π∗-isomorphism.

(vi) For any map f : X −→ Y of G-prespectra and any H ⊂ G, there are
natural long exact sequences

· · · −→ πH
q (Ff) −→ πH

q (X) −→ πH
q (Y ) −→ πH

q−1(Ff) −→ · · · ,

· · · −→ πH
q (X) −→ πH

q (Y ) −→ πH
q (Cf) −→ πH

q−1(X) −→ · · · ,

and the natural map η : Ff −→ ΩCf is a π∗-isomorphism.

Equivariant stability requires consideration of general representations V ∈ V ,
rather than just the trivial representation as in (i).

Theorem 2.36. Let V ∈ V . A map f : X −→ Y of G-prespectra is a π∗-
isomorphism if and only if ΣV f : ΣVX −→ ΣV Y is a π∗-isomorphism

Half of the theorem is given by the following lemma, which will be used in our
development of the stable model structure.

Lemma 2.37. Let V ∈ V . If f : X −→ Y is a map of G-prespectra such that
ΣV f : ΣV X −→ ΣV Y is a π∗-isomorphism, then f is a π∗-isomorphism.
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Proof. By Proposition 2.39 below, ΩV ΣV f is a π∗-isomorphism. The conclusion
follows by naturality from the following lemma. �

Lemma 2.38. For G-prespectra X and V ∈ V , the unit η : X −→ ΩV ΣVX of the
(ΣV ,ΩV ) adjunction is a π∗-isomorphism.

Proposition 2.39. If f : X −→ Y is a π∗-isomorphism of G-prespectra and A
is a finite based G-CW complex, then F (id, f) : F (A,X) −→ F (A, Y ) is a π∗-
isomorphism.

The analogue for smash products is a little more difficult and gives the converse
of Lemma 2.37 that is needed to complete the proof of Theorem 2.36.

Theorem 2.40. If f : X −→ Y is a π∗-isomorphism of G-prespectra and A is a
based G-CW complex, then f ∧ id : X ∧A −→ Y ∧A is a π∗-isomorphism.

We can reduce this to the case A = G/H+ by use of Theorem 2.35, but that case
seems hard to handle directly. One first proves the following partial result directly.
The rest drops out model theoretically in the next section.

Lemma 2.41. If f : X −→ Y is a level equivalence of G-prespectra and A is a
based G-CW complex, then f ∧ id : X ∧A −→ Y ∧A is a π∗-isomorphism.

2.4. The stable model structure on orthogonal G-spectra. We give the cate-
gories of orthogonal G-spectra and G-prespectra stable model structures and prove
that they are Quillen equivalent. The arguments are like those in the nonequiv-
ariant context of [13], except that we work with π∗-isomorphisms rather than the
equivariant analogue of the stable equivalences used there. All of the statements
and most of the proofs are identical in GI S and GP. Definition 2.21 specifies
the level equivalences, level fibrations, level acyclic fibrations, q-cofibrations, and
level acyclic q-cofibrations in these categories.

Definition 2.42. Let f : X → Y be a map of orthogonal G-spectra or G-
prespectra.

(i) f is an acyclic q-cofibration if it is a π∗-isomorphism and a q-cofibration.
(ii) f is a q-fibration if it satisfies the RLP with respect to the acyclic q-cofi-

brations.
(iii) f is an acyclic q-fibration if it is a π∗-isomorphism and a q-fibration.

Theorem 2.43. The categories GI S and GP are compactly generated proper G-
topological model categories with respect to the π∗-isomorphisms, q-fibrations, and
q-cofibrations. The fibrant objects are the Ω-G-spectra.

The set of generating q-cofibrations is the set FI specified in Definition 2.1. The
set K of generating acyclic q-cofibrations properly contains the set FJ specified
there. As nonequivariantly [13, §§8, 9], it is defined in terms of the following maps
λV,W , which turn out to be π∗-isomorphisms.

Definition 2.44. For V,W ∈ V , define λV,W : FV ⊕WSW −→ FV S
0 to be the

adjoint of the map

SW −→ (FV S
0)(V ⊕W ) ∼= O(V ⊕W )+ ∧O(W ) S

W

that sends w to the class of e ∧ w, where e ∈ O(V ⊕W ) is the identity element.

The following observation is the reason these maps play an important role.
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Lemma 2.45. For any orthogonal G-spectrum or G-prespectrum X,

λ∗V,W : IGS (FV S
0, X) −→ IGS (FV ⊕WSW , X)

coincides with σ̃ : X(V ) −→ ΩWX(V ⊕W ) under the canonical homeomorphisms

X(V ) = TG(S0, X(V )) ∼= IGS (FV S
0, X)

and
ΩWX(V ⊕W ) = TG(SW , X(V ⊕W )) ∼= IGS (FV ⊕WSW , X).

The following result is the equivariant version of [13, 8.6]. It is proven separately
in the cases of G-prespectra and orthogonal G-spectra, using [13, 4.1] in the first
case and [13, 4.4] in the second.

Lemma 2.46. For all based G-CW complexes A, the maps

λV,W ∧ id : FV ⊕W ΣWA ∼= FV ⊕WSW ∧A −→ FV S
0 ∧A ∼= FV A

are π∗-isomorphisms.

Recall the operation � from (2.12).

Definition 2.47. Let MλV,W be the mapping cylinder of λV,W . Then λV,W factors
as the composite of a q-cofibration kV,W : FV ⊕WSW −→MλV,W and a deformation
retraction rV,W : MλV,W −→ FV S

0. Let jV,W : FV S
0 −→ MλV,W be the evident

homotopy inverse of rV,W . Restricting to V and W in skIG, let K be the union
of FJ and the set of all maps of the form i�kV,W , i ∈ I.

We need a characterization of the maps that satisfy the RLP with respect to K.
It is the equivariant analogue of [13, 9.5] and we delete the proof, but this is the
place where we need the notion of a G-topological model category.

Definition 2.48. A commutative diagram of based G-spaces

D
g

//

p

��

E

q

��

A
f

// B

in which p and q are Serre fibrations is a homotopy pullback if the induced map
D −→ A×B E is a weak equivalence of G-spaces.

Proposition 2.49. A map p : E −→ B satisfies the RLP with respect to K if and
only if p is a level fibration and the diagram

(2.50)

EV
σ̃ //

pV

��

ΩWE(V ⊕W )

ΩW p(V ⊕W )

��

BV
σ̃

// ΩWB(V ⊕W )

is a homotopy pullback for all V and W .

From here, the proof of Theorem 2.43 is virtually identical to that of its nonequiv-
ariant version in [13, §9]. We record the main steps of the argument since they give
the order of proof and encode useful information about the q-fibrations and q-
cofibrations. Rather than repeat the proofs, we point out the main input. The
following corollary is immediate.
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Corollary 2.51. The trivial map F −→ ∗ satisfies the RLP with respect to K if
and only if F is an Ω-G-spectrum.

It is at this point that the key result, Theorem 2.34, comes into play. It implies
that p−1(∗) −→ ∗ is a π∗-isomorphism in the following analogue of [13, 9.8].

Corollary 2.52. If p : E −→ B is a π∗-isomorphism that satisfies the RLP with
respect to K, then p is a level acyclic fibration.

Arguing as in [13, 9.9], Lemma 2.46 and Theorem 2.35 imply the following char-
acterizations.

Proposition 2.53. Let f : X −→ Y be a map of orthogonal G-spectra.

(i) f is an acyclic q-cofibration if and only if it is a retract of a relative K-cell
complex.

(ii) f is a q-fibration if and only if it satisfies the RLP with respect to K, and
X is fibrant if and only if it is an orthogonal Ω-G-spectrum.

(iii) f is an acyclic q-fibration if and only if it is a level acyclic fibration.

The proof of the model axioms is completed as in [13, §9]. The properness of
the model structure is implied by the following more general statements.

Lemma 2.54. Consider the following commutative diagram:

A
f

//

i

��

B

j

��

X g
// Y.

(i) If the diagram is a pushout in which i is an h-cofibration and f is a π∗-
isomorphism, then g is a π∗-isomorphism.

(ii) If the diagram is a pullback in which j is a level fibration and g is a π∗-
isomorphism, then f is a π∗-isomorphism.

The following consequence of Propositions 2.49 and 2.53 leads to the proof of
Theorem 2.40, which uses cofibrant approximation in the level model structure and
Lemma 2.41.

Lemma 2.55. If A is a based G-CW complex, then (−∧A,F (A,−)) is a Quillen
adjoint pair on GI S or GP with its stable model structure.

The following result, which is immediate from Lemmas 2.55 and 2.38, implies
that the homotopy category with respect to the stable model structure really is an
“equivariant stable homotopy category”, in the sense that the functors ΣV and ΩV

on it are inverse equivalences of categories for V ∈ V .

Theorem 2.56. For V ∈ V , the pair (ΣV ,ΩV ) is a Quillen equivalence.

Finally, as in [13, 10.3] we have the following promised comparison theorem.

Theorem 2.57. The pair (P,U) is a Quillen equivalence between the categories
GP and GI S with their stable model structures.
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2.5. The positive stable model structure. In §2, we explained the positive level
model structure, and we need the concomitant positive stable model structure, as
in [13, §14].

Definition 2.58. A G-prespectrum or orthogonal G-spectrum X is a positive Ω-
G-spectrum if σ̃ : X(V ) −→ ΩW−V X(W ) is a weak equivalence for V G 6= 0.

Definition 2.59. Define acyclic positive q-cofibrations, positive q-fibrations, and
acyclic positive q-fibrations as in Definition 2.42, but starting with the positive
level classes of maps specified in Definition 2.26.

Theorem 2.60. The categories GI S and GP are compactly generated proper
G-topological model categories with respect to the π∗-isomorphisms, positive q-fibra-
tions, and positive q-cofibrations. The positive fibrant objects are the positive Ω-G-
spectra.

The set of generating positive q-fibrations is the set F+I specified in Definition
2.27. The set of generating acyclic positive q-cofibrations is the union, K+, of the
set F+J specified there and the set of maps of the form i�kV,W with i ∈ I and
V G 6= 0 from Definition 2.47.

The proof of Theorem 2.60 depends on the positive analogue of Theorem 2.34.

Theorem 2.61. A π∗-isomorphism between positive Ω-G-spectra is a positive level
equivalence.

This can be shown by restricting the proof of Theorem 2.34 to positive Ω-G-
spectra and positive levels. For orthogonal Ω-G-spectra, there is an illuminating
alternative argument. Indeed, for V ∈ V and an orthogonal G-spectrum X , the
map λ = λ0,V : FV S

V −→ F0S
0 = S induces a map

(2.62) λ∗ : X ∼= F (S,X) −→ F (FV S
V , X).

Standard adjunctions imply that

F (FV S
V , X)(W ) ∼= ΩV X(V ⊕W ),

and this leads to the following relationship between orthogonal Ω-G-spectra and
orthogonal positive Ω-G-spectra.

Lemma 2.63. If E is a positive orthogonal Ω-G-spectrum, then F (F1S
1, E) is an

orthogonal Ω-G-spectrum and λ∗ is a positive level equivalence.

Therefore, for orthogonal G-spectra, Theorem 2.61 can be proven by applying
Theorem 2.34 to F (F1S

1,−). From here, Theorem 2.60 is proven by the same
arguments as for the stable model structure, but with everything restricted to
positive levels. Similarly, the proof of the following comparison result is the same
as the proof of Theorem 2.57.

Theorem 2.64. The pair (P,U) is a Quillen equivalence between the categories
GP and GI S with their positive stable model structures.

The relationship between the stable model structure and the positive stable
model structure is given by the following equivariant analogue of [13, 14.6].

Proposition 2.65. The identity functor from GI S with its positive stable model
structure to GI S with its stable model structure is the left adjoint of a Quillen
equivalence, and similarly for GP.
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2.6. Model categories of ring and module G-spectra. As we summarize here,
the categories of orthogonal ring spectra and of modules over an orthogonal ring
spectrum are Quillen model categories. The proofs are essentially the same as
those in the nonequivariant case given in [13, §§12, 14]. but the inclusion of the
case of symmetric spectra there dictated a more complicated line of argument than
is necessary here. We give an outline.

In the language of [19], we show that the monoid and pushout-product axioms
hold for orthogonal G-spectra. As in [11, 11.2], the following elementary comple-
ment to Lemmas 2.23 and 2.24 is used repeatedly.

Lemma 2.66. If i : X −→ Y is an h-cofibration of orthogonal G-spectra and Z is
any orthogonal G-spectrum, then i ∧ id : X ∧ Z −→ Y ∧ Z is an h-cofibration.

The following lemma is the key step in the proof of the cited axioms. Its
nonequivariant analogue is part of the proof of [13, 12.3].

Lemma 2.67. Let Y be an orthogonal G-spectrum such that π∗(Y ) = 0. Then
π∗(FV S

V ∧ Y ) = 0 for any V ∈ V .

Proposition 2.68. If X is a cofibrant orthogonal G-spectrum, then the functor
X ∧ (−) preserves π∗-isomorphisms.

Proof. When X = FV S
V , this is implied by Lemma 2.67, as we see by using

the usual mapping cylinder construction to factor a given π∗-isomorphism as a
composite of an h-cofibration and a G-homotopy equivalence and comparing long
exact sequences given by Lemma 2.66 and Theorem 2.35(vi). As in the proof of
[13, 12.3], the general case follows by use of Theorems 2.35, 2.36, and 2.40. �

As in [13, 12.5 and 12.6], this together with other results already proven implies
the monoid and pushout-product axioms. These apply to GI S with both its
stable and its positive stable model structures.

Proposition 2.69 (Monoid axiom). For any acyclic (positive) q-cofibration
i : X −→ Y of orthogonal G-spectra and any orthogonal G-spectrum Z, the map
i ∧ id : X ∧ Z −→ Y ∧ Z is a π∗-isomorphism and an h-cofibration. Moreover,
cobase changes and sequential colimits of such maps are also π∗-isomorphisms and
h-cofibrations.

Proposition 2.70 (Pushout-product axiom). If i : X −→ Y and j : W −→ Z are
(positive) q-cofibrations of orthogonal G-spectra and i is a π∗-isomorphism, then the
(positive) q-cofibration i�j : (Y ∧W )∪X∧W (X∧Z) −→ Y ∧Z is a π∗-isomorphism.

As in [13, §§12, 14], the methods and results of [19], together with Proposition
2.65, entitle us to the following conclusions. More explicitly, [13, 5.13] specifies
conditions for the category of algebras over a monad in a compactly generated
topological model category C to inherit a structure of topological model category,
and that result generalizes to G-topological model categories. The pushout-product
and monoid axioms allow the verification of the conditions in the cases on hand.

Theorem 2.71. Let R be an orthogonal ring G-spectrum, and consider the stable
model structure on GI S .

(i) The category of left R-modules is a compactly generated proper G-topological
model category with weak equivalences and q-fibrations created in GI S .
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(ii) If R is cofibrant as an orthogonal G-spectrum, then the forgetful functor
from R-modules to orthogonal G-spectra preserves q-cofibrations, hence ev-
ery cofibrant R-module is cofibrant as an orthogonal G-spectrum.

(iii) If R is commutative, the symmetric monoidal category GI SR of R-modules
also satisfies the pushout-product and monoid axioms.

(iv) If R is commutative, the category of R-algebras is a compactly generated
right proper G-topological model category with weak equivalences and q-
fibrations created in GI S .

(v) If R is commutative, every q-cofibration of R-algebras whose source is cofi-
brant as an R-module is a q-cofibration of R-modules, hence every cofibrant
R-algebra is cofibrant as an R-module.

(vi) If f : Q −→ R is a weak equivalence of orthogonal ring G-spectra, then
restriction and extension of scalars define a Quillen equivalence between
the categories of Q-modules and of R-modules.

(vii) If f : Q −→ R is a weak equivalence of commutative orthogonal ring G-
spectra, then restriction and extension of scalars define a Quillen equiva-
lence between the categories of Q-algebras and of R-algebras.

Parts (i), (iii), (iv), (vi), and (vii) also hold for the positive stable model structure.

Parts (ii) and (v) do not hold for the positive stable model structure, in which SG

is not cofibrant. As in [13, 12.7], we have the following generalization of Proposition
2.68, which is needed in the proofs of parts (vi) and (vii) of the theorem.

Proposition 2.72. For a cofibrant right R-module M , the functor M ∧R N of N
preserves π∗-isomorphisms.

2.7. The model category of commutative ring G-spectra. Let C be the
monad on orthogonalG-spectra that defines commutative orthogonal ringG-spectra.
Thus CX =

∨
i≥0X

(i)/Σi, where X(i) is the ith smash power, with X(0) = SG.

Theorem 2.73. The category of commutative orthogonal ring G-spectra is a com-
pactly generated proper G-topological model category with q-fibrations and weak
equivalences created in the positive stable model category of orthogonal G-spectra.
The sets CF+I and CK+ are the generating sets of q-cofibrations and acyclic q-
cofibrations.

This is a consequence of the following two results, which (together with two
general results on colimits [2, I.7.2, VII.2.10]) verify the criteria for inheritance of
a model structure given in [13, 5.13].

Lemma 2.74. The sets CF+I and CK+ satisfy the Cofibration Hypothesis.

Lemma 2.75. Every relative CK+-cell complex is a π∗-isomorphism.

Remark 2.76 (Correction). As in [13, §15], the proof of the previous lemma reduces
to use of the second statement of the following result, which is [12, III.8.4]. It is
the analogue of the nonequivariant results [2, III.5.1] and [2, 15.5]. Its proof in [12]
is incorrect, as Mandell and I realized some time ago. Mike Hopkins rediscovered
the error, and [9, B.52] fixes it. The culprit is mainly a typo in [12], noted in [9,
B.52] and corrected below: EΣi in [12] should read EGΣi, the total space of the
universal (G,Σj)-bundle. It is a G × Σi-space characterized by the property that,
for a subgroup H ⊂ G × Σi, (EGΣi)

H is empty unless H ∩ Σi = {e}, when it is
contractible. Correcting the typo corrects the proof, as the details of [9, B.52] make
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clear. As a matter of detail, there is a related misstatement immediately above [9,
B.51], where H ⊂ Σi should read H ∩Σi 6= {e}, but that does not effect the proof.

Lemma 2.77. Let A be a based G-CW complex, X be an orthogonal G-spectrum,
and V G 6= 0. Then the quotient map

q : (EΣi+ ∧Σi
(FV A)(i)) ∧X −→ ((FV A)(i)/Σi) ∧X

is a π∗-isomorphism. If X is a positive cofibrant orthogonal G-spectrum, then

q : EGΣi+ ∧Σi
X(i) −→ X(i)/Σi

is a π∗-isomorphism.

2.8. Families, cofamilies, and isotropy separation. We discuss in model the-
oretical terms the familiar idea of concentrating G-spaces or G-spectra at or away
from a family of subgroups. Write [X,Y ]G for maps X −→ Y in the homotopy
category HoGI S with respect to the stable model structure.

We call weak equivalences G-equivalences, and we drop the adjective orthogonal
from orthogonal G-spectra. We will not use any other kind. For the moment,
they can be indexed on any universe. For H ⊂ G, we say that a G-map is an
H-equivalence if it is a weak equivalence when regarded as an H-map; we will treat
restriction to subgroups systematically shortly. Let F be a family of subgroups of
G, namely a set of subgroups closed under passage to conjugates and subgroups.
There is a universal F -space EF . It is a G-CW complex such that (EF )H is
contractible for H ∈ F and empty for H /∈ F . Of course, its cells must be of
orbit type G/H with H ∈ F . The following definitions make sense for G-spaces,
orthogonal G-spectra, or objects in virtually any category of G-objects.

Definition 2.78. Consider G-spectra and G-maps

(i) A map f : X −→ Y is a F -equivalence if it is an H-equivalence for all
H ∈ F .

(ii) X is an F -spectrum if the map π : EF+ ∧ X −→ X induced by the
projection EF+ −→ S0 is a G-equivalence.

In the model structures on GI S , the generating q-cofibrations and generating
acyclic q-cofibrations are obtained by applying the functors FV to certain maps
G/H+ ∧A −→ G/H+ ∧B of G-spaces. We can restrict attention to those H ∈ F
in all of these definitions. We refer to F -cofibrations rather than q-cofibrations for
the retracts of the resulting relative F -cell complexes. The following is a generic
result that applies starting from any given q-type model structure in sight.

Theorem 2.79. The category GI S is a compactly generated proper G-topological
model category with weak equivalences the F -equivalences and with generating F -
cofibrations and generating acyclic F -cofibrations obtained from the original gen-
erating q-cofibrations and generating acyclic q-cofibrations by restricting to orbits
G/H with H ∈ F .

A similar result holds for GT , GP and GS . We refer to these as F -model
structures. The following result is a straightforward inspection of the G/H appear-
ing in cells, but we warn the reader that the underlying spaces of F -cell spectra
are generally not F -spaces, so that the conclusion is not as obvious as its space
level analogue.
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Lemma 2.80. If A is a based F -CW complex and X is a cell G-spectrum, then
A ∧X is an F -cell object.

This and fibrant approximation are used to prove that (i) implies (iii) in the
following result.

Proposition 2.81. The following conditions on a map f : X −→ Y are equivalent.

(i) f is an F -equivalence.
(ii) f∗ : πH

∗ (X) −→ πH
∗ (Y ) is an isomorphism for H ∈ F .

(iii) id∧f : is an EF+ ∧X −→ EF+ ∧ Y is a G-equivalence.

Remark 2.82. When X is fibrant, πH
∗ (X) = π∗(X

H), just as for G-spaces, as we
will see shortly. Thus, when X and Y are fibrant, f : X −→ Y is an F -equivalence
if and only fH : XH −→ Y H is a weak equivalence for all H ∈ F .

While the model structure above is the most natural one for us here, there is
another very important model structure with the same weak equivalences.

Definition 2.83. Let E be cofibrant in the stable model structure.

(i) A map f : X −→ Y is an E-equivalence if id∧f : E ∧ X −→ E ∧ Y is a
G-equivalence.

(ii) Z is E-local if f∗ : [Y, Z]G −→ [X,Z]G is an isomorphism for all E-equiva-
lences f : X −→ Y .

(iii) An E-localization of X is an E-equivalence λ : X −→ Y from X to an
E-local object Y .

Theorem 2.84 (Bousfield localization). Let E be cofibrant. Then GI S has an E-
model structure whose equivalences are the E-equivalences and whose E-cofibrations
are the q-cofibrations. The E-fibrant objects are the E-local objects, and E-fibrant
approximation constructs a Bousfield localization λ : X −→ LEX of X at E.

Taking E = EF+, we call the resulting model structures Bousfield F -model
structures. Here Bousfield localization takes the following elementary form.

Proposition 2.85. The map ξ : X −→ F (EF+, X) induced by the projection
EF+ −→ S0 is an EF+-localization of X.

Proof. The map ξ is an EF+-equivalence by [7, 17.2], and it is immediate by
adjunction that F (EF+, X) is EF+-local. �

Completion theorems in equivariant stable homotopy theory are concerned with
the comparison of this Bousfield localization at G-spectra such as SG, KG, and
MUG with another, more algebraically computable, Bousfield localization. See for
example [4, 4.1], [5]. This is an extremely important strand of equivariant stable
homotopy theory, but it does not enter directly into the Kervaire invariant problem.
Study of this for E = MUG in [8] led to the first introduction of norm maps.

Now return to the notion of an F -spectrum in Definition 2.78. While that
is an intrinsic notion, independent of any model structure, it has the following
characterization.

Theorem 2.86. A G-spectrum X is an F -spectrum if and only if its F -cofibrant
approximation γ : ΓX −→ X is a G-equivalence.
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Let HoFI S denote the homotopy category associated to the F -model struc-
ture onGI S , or, equivalently, the Bousfield F -model structure, and write [X,Y ]F
for the set of maps X −→ Y in this category. The results above imply the following
description of HoFI S .

Theorem 2.87. Smashing with EF+ defines an isomorphism

[X,Y ]F ∼= [EF+ ∧X,EF+ ∧ Y ]G

and thus gives an equivalence of categories from HoFI S to the full subcategory
of objects EF+ ∧X in HoGI S .

There is an analogous theory for cofamilies, namely complements F ′ of families.
Thus F ′ is the set of subgroups of G not in F . We define ẼF to be the cofiber
of EF+ −→ S0. Then (ẼF )H is contractible if H ∈ F and is S0 if H /∈ F . In
contrast to the situation for G-spaces, the evident analogue of Proposition 2.81 is
false for G-spectra. This motivates the following variant of Definition 2.78.

Definition 2.88. A map f : X −→ Y is an F ′-equivalence if it is an ẼF -
equivalence. A G-spectrum X is an F ′-spectrum if the map λ : X −→ ẼF ∧ X
induced by the inclusion S0 −→ ẼF is a G-equivalence.

Remark 2.89. We do not obtain model structures by restricting attention to or-
bits G/H with H ∈ F ′, but we do still have the Bousfield F ′-model structure
whose weak equivalences are the F ′-equivalences and whose cofibrations are the
q-cofibrations.

We have the following analogue of Theorem 2.86.

Theorem 2.90. A G-spectrum X is an F ′-spectrum if and only if the ẼF -fibrant
approximation λ : X −→ LẼFX is a G-equivalence, or equivalently, X is ẼF -local.

Let HoF ′I S denote the homotopy category associated to the Bousfield F ′-
model structure and write [X,Y ]F ′ for the set of maps X −→ Y in this category.
The previous theorem implies the following one.

Theorem 2.91. Smashing with ẼF defines an isomorphism

[X,Y ]F ′
∼= [ẼF ∧X, ẼF ∧ Y ]G

and thus gives an equivalence of categories from HoF ′C to the full subcategory of
objects ẼF ∧X in HoGC .

For a G-spectrum X , smashing with the cofiber sequence that defines ẼF gives
the “isotropy separation cofiber sequence”

EF+ ∧X −→ X −→ ẼF ∧X.

Smashing it with the map ξ : X −→ F (EF+, X) gives the F -Tate diagram

EF+ ∧X //

��

X //

��

ẼF ∧X

��

EF+ ∧ F (EF+, X) // F (EF+, X) // ẼF ∧ F (EF+, X)



26 M.A. MANDELL AND J.P. MAY

The left horizontal arrow is an equivalence and the bottom right corner is called
the Tate F -spectrum of X . See [7]. In the most important special case, F = {e}
and the diagram is written as

EG+ ∧X //

��

X //

��

ẼG ∧X

��

EG+ ∧ F (EG+, X) // F (EG+, X) // ẼG ∧ F (EG+, X).

Isotropy separation is used in the Kervaire invariant proof and everywhere else in
equivariant stable homotopy theory.

3. “Change” functors for orthogonal G-spectra

We develop the versions for orthogonal G-spectra of the central structural fea-
tures of equivariant stable homotopy theory: change of universe, change of group,
fixed point and orbit spectra, and geometric fixed point spectra. The last notion
is very important in the Kervaire invariant problem, and the geometric fixed point
functor on orthogonal spectra is far more satisfactory than it analogs in earlier
constructions of the equivariant stable category.

3.1. Change of universe. Change of universe plays a fundamental role in the
homotopy level theory of [11]. The theory for orthogonal G-spectra takes a precise
point-set level form, which is used in [9]. For brevity, we focus on inclusions of
universes. A key fact is the following non-obvious implication of the definition of
an orthogonal G-spectrum, which really justifies the name.

Lemma 3.1. Let V and W be G-inner product spaces in V of the same dimension.
Then, for orthogonal G-spectra X, the evaluation G-map

JG(V,W ) ∧X(V ) −→ X(W )

of the G-functor X induces a G-homeomorphism

α : JG(V,W ) ∧O(V ) X(V ) −→ X(W ).

Its domain is homeomorphic, but not necessarily G-homeomorphic, to X(V ).

Change of universe appears in several equivalent guises. We could apply the
general theory of prolongation functors left adjoint to forgetful functors, but we
can be more explicit, mimicking the analogous theory for EKMM spectra [3].

Definition 3.2. Let V and V ′ be collections of representations as in 1.1 and
2.1. Thus both collections contain all trivial representations. Define a G-functor
IV
V ′ : I V ′

G S −→ I V
G S by letting

(IV
V ′X)(V ) = J V

G (Rn, V ) ∧O(n) X(Rn)

for X ∈ I V ′

G S and V ∈ V with dim V = n. We omit specification of the morphism
or, equivalently, evaluation G-maps here.

If V = V (U) and V ′ = V (U ′) for universes U and U ′, then V ⊂ V ′ if and only
if there is a G-linear isometry U −→ U ′. This is the starting point for the change
of universe functors in [11]. By inspection or [13, §3], the inclusion V ⊂ V ′ induces

a full and faithful strong symmetric monoidal functor J V
G −→ J V ′

G . Then the
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theory of prolongation of functors of [12, I.2.10] or [13, §3] applies. Here we have a
more natural looking but equivalent form of the definition of IV

V ′ , namely

(3.3) (IV
V ′X)(V ) = X(V )

for X ∈ I V ′

G S and V ∈ V . However, Definition 3.2 also gives a functor IV ′

V . By
the following theorem, it is an inverse isomorphism to IV

V ′ , hence is left (and right)

adjoint to IV ′

V and therefore coincides with the prolongation functor. Writing F V
V A

to indicate the universe of shift desuspension functors, it follows by inspection of
right adjoints and use of the inverse isomorphism property that

(3.4) IV
V ′F V ′

V A ∼= F V
V A and IV ′

V F V
V A

∼= F V ′

V A

for V ∈ V and any based G-space A.
Returning to general collections, write ΣV : TG −→ I V

G S for the suspension
G-spectrum functor. The following result is analogous to [3, 2.3, 2.4].

Theorem 3.5. Consider collections V , V ′ and V ′′.

(i) IV
V ′ ◦ ΣV ′

is naturally isomorphic to ΣV .

(ii) IV
V ′ ◦ IV ′

V ′′ is naturally isomorphic to IV
V ′′ .

(iii) IV
V is naturally isomorphic to the identity functor.

(iv) The functor IV
V ′ commutes with smash products with based G-spaces.

(v) The functor IV
V ′ is strong symmetric monoidal.

Therefore IV
V ′ is an equivalence of categories with inverse IV ′

V .2 Moreover, IV
V ′ is ho-

motopy preserving, hence IV
V ′ and IV ′

V induce inverse equivalences of the homotopy
categories obtained by passing to homotopy classes of maps.

We turn to the relationship with model structures. It is important to realize
what Lemma 3.1 does not imply: a map f : X −→ Y can be a weak equivalence at
level Rn for all n but still not be a level equivalence. The point is that the H-fixed
point functors do not commute with passage to orbits over O(n).

Similarly, it is important to realize what the last statement of Theorem 3.5
does not imply: the functors IV

V ′ do not preserve either level equivalences or π∗-
isomorphisms in general. Therefore, there is no reason to expect the homotopy
categories associated to the model structures to be equivalent. However, (3.3) and
the characterization of q-fibrations and acyclic q-fibrations given in 2.53 imply the
following result.

Theorem 3.6. If V ⊂ V ′, then the functor IV
V ′ : GI V ′

G −→ GI V
G preserves level

equivalences, level fibrations, q-fibrations, and acyclic q-fibrations, and similarly for
the positive analogues of these classes of maps. Therefore (IV ′

V , IV
V ′) is a Quillen

adjoint pair relating the respective level, positive level, stable, and positive stable
model structures.

There is another way to think about change of universe. For V ⊂ V ′, we can
define new V -model structures on the category of orthogonal G-spectra indexed
on I V ′

G . For the V -level model structure (or positive V -level model structure),
we define weak equivalences and fibrations by restricting attention to levels in V ;
equivalently, the V -level equivalences and fibrations are created by the forgetful
functor IV

V ′ . We define the V -cofibrations of GI V ′

S to be the G-maps that

2In [9], the authors overlooked that this result was already in [12]; they learned it from Hes-
selholt and Hovey.
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satisfy the LLP with respect to the V -level acyclic fibrations. Compare [13, 6.10].
We then let the V -stable equivalences and the V -fibrations be created by IV

V ′ .
Thus the V -stable equivalences are the V π∗-isomorphisms, that is, the maps that
induce isomorphisms of the homotopy groups defined using only those V ∈ V in
the relevant colimits. Arguing as for the stable model structure, we obtain the
following result.

Theorem 3.7. For V ⊂ V ′, the category GI V ′

S of orthogonal G-spectra indexed
on I V ′

G and natural G-maps has a V -stable model structure in which the functor
IV
V ′ creates the V -stable equivalences and the V -fibrations. The acyclic V -fibrations

coincide with the V -level acyclic fibrations, and the V -cofibrations are the maps
that satisfy the LLP with respect to the acyclic V -fibrations. The pair (IV ′

V , IV
V ′) is

a Quillen equivalence between GI V S with its stable model structure and GI V ′

S
with its V -stable model structure. The analogous statements for positive V -stable
model structures hold.

Here the Quillen equivalence is easily proven using the usual characterization
[13, A.2]. It is a rare example of an interesting “Quillen equivalence” of model
categories that is an actual equivalence of underlying categories. There is another
observation to make along the same lines.

Corollary 3.8. For V ⊂ V ′, the identity functor Id : GI V ′

S −→ GI V ′

S is the
right adjoint of a Quillen adjoint pair relating the (positive) stable model structure

on GI V ′

S to the (positive) V -stable model structure on GI V ′

S .

Thus the forgetful functor IV
V ′ : GI V ′

S −→ GI V S relating the (original)

stable model structures factors through the V -stable model structure on GI V ′

S .
That is, the Quillen adjoint pair of Theorem 3.6 is the composite of the Quillen
adjoint pair of Corollary 3.8 and the Quillen adjoint equivalence of Theorem 3.7.

Remark 3.9. There is yet another way to think about change of universe. Fix
IG = I A ℓℓ

G . Then, for any V , the (positive) V -stable model structure on the
category GI S is Quillen equivalent to the (positive) stable model structure on
GI V S , and similarly for the various categories of rings and modules. However, to
make sense of some of the constructions in the following sections, we must work with
original categories of orthogonal GI V

G -spectra indexed on V , with their intrinsic
model structures.

Remark 3.10. In addition to changes of V , we must deal with changes of the choice
of “indexing G-spaces” within a given V , as in 1.5. Thus let W ⊂ V be a cofinal
set of G-inner product spaces that is closed under finite direct sums and contains
the Rn. We have a forgetful functor IW

V : I V
G S −→ I W

G S specified as in (3.3).
It can also be specified as in Definition 3.2 and, arguing as in that definition and
Theorem 3.5, IW

V is an equivalence of categories with inverse equivalence IV
W . We

can carry out all of our model category theory in the more general context. The
functor IW

V : GI V S −→ GI W S preserves q-fibrations, and cofinality ensures
that IW

V creates the stable equivalences in GI V S . We conclude that (IV
W , I

W
V ) is

a Quillen equivalence.

3.2. Change of groups. Let H be a subgroup of G and write ι : H −→ G for
the inclusion. For a G-space A, let ι∗A denote A regarded as an H-space via ι.
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We want analogues for G-spectra of such space level observations as (2.2) – (2.5).
Spectra mean orthogonal spectra throughout.

This involves change of universe as well as change of groups. If V = {V } is a
collection of representations of G, then ι∗V = {ι∗V } is a collection of representa-
tions of H . According to our conventions in 2.1, G-summands of representations
in V are in V , but this need not be true of H-summands of representations in
ι∗V . For example, not all H-representations are in ι∗A ℓℓ(G). However, we can
let W be the collection of H-representations that are isomorphic to summands of
representations in ι∗V . Since ι∗V is cofinal in W and closed under finite direct
sums, Remark 3.10 applies. For example, if V = A ℓℓ(G), then W = A ℓℓ(H) since
any H-representation is a summand of a G-representation.

To fix ideas and simplify notation, we work with A ℓℓ(H) when defining H-
spectra, and we do not introduce notation for the change of universe functor that
passes from H-spectra indexed on ι∗A ℓℓ(G) to H-spectra indexed on A ℓℓ(H).

Definition 3.11. For a G-spectrum X , let ι∗X be the H-spectrum that is specified
by (ι∗X)(ι∗V ) = ι∗X(V ) for representations V of G and is then extended to all
representations of H by Remark 3.10.

Except that the statement about q-cofibrations requires inspection of cells, the
following result is clear from the definitions.

Lemma 3.12. The functor ι∗ preserves level fibrations, level equivalences, q-cofi-
brations, π∗-isomorphisms, and q-fibrations.

We claim that the functor ι∗ has both a left and a right adjoint. On the space
level, for H-spaces B, the left adjoint of ι∗ is given by G+ ∧H B and the right
adjoint is given by the G-space of H-maps FH(G+, B). For G-spaces A and A′, we
have obvious identifications of H-spaces

ι∗F (A,A′) = F (ι∗A, ι∗A′) and ι∗(A ∧A′) = ι∗A ∧ ι∗A′.

On passage to left and right adjoints, respectively, these formally imply natural
isomorphisms of G-spaces

(G+ ∧H B) ∧A ∼= G+ ∧H (B ∧ ι∗A)

and
F (A,FH(G+, B)) ∼= FH(G+, F (ι∗A,B)),

and it is easy to write down explicit isomorphisms.

Proposition 3.13. Let X be an orthogonal G-spectrum and Y be an orthogonal
H-spectrum. Let G+ ∧H Y be the orthogonal G-spectrum specified by

(G+ ∧H Y )(V ) = G+ ∧H Y (ι∗V )

for representations V of G. Then there is an adjunction

GI S (G+ ∧H Y,X) ∼= HI S (Y, ι∗X),

which is a Quillen adjoint pair relating the respective (positive) level and stable
model structures. Moreover, there is a natural isomorphism

(G+ ∧H Y ) ∧X ∼= G+ ∧H (Y ∧ ι∗X).

In particular,
G/H+ ∧X ∼= G+ ∧H ι∗X.
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Proposition 3.14. LetX be a G-spectrum and Y be an H-spectrum. Let FH(G+, Y )
be the G-spectrum specified by

FH(G+, Y )(V ) = FH(G+, Y (ι∗V ))

for representations V of G. Then there is an adjunction

GI S (X,FH(G+, Y )) ∼= HI S (ι∗X,Y ),

which is a Quillen adjoint pair relating the respective (positive) level and stable
model structures. Moreover, there is a natural isomorphism

F (X,FH(G+, Y )) ∼= FH(G+, F (ι∗X,Y )).

In particular,
F (G/H+, X) ∼= FH(G+, ι

∗X).

The following fundamental result is called the Wirthmüller isomorphism, after
its precursor [21], and is not in [12]. Its homotopical proof in [11] applies verbatim,
and a more modern exposition is given in [17].

Theorem 3.15 (The Wirthmüller isomorphism). In the stable homotopy category
of G-spectra, the canonical natural map

G+ ∧H Y −→ FH(G+, Y )

is an isomorphism for H-spectra Y . That is, the left adjoint of ι∗ is isomorphic to
its right adjoint.

Corollary 3.16. Orbit G-spectra Σ∞
GG/H+ are self-dual in the stable category.

3.3. Fixed point and orbit spectra. We relate (orthogonal) G-spectra to (or-
thogonal) spectra via fixed point and orbit functors, just as for G-spaces.

Definition 3.17. Let GI trivS denote the category of G-spectra indexed only
on trivial G-representations. We call the objects of GI trivS “naive” G-spectra,
in contrast to the genuine G-spectra of GI S . The G-fixed point functor is the
composite of the change of universe functor

GI S = GI A ℓℓS −→ GI trivS

and the G-fixed point functor

GI trivS −→ I S .

More generally, for H ⊂ G, define XH = (ι∗X)H .

The following fundamental result relating equivariant and nonequivariant homo-
topy groups is immediate from the definitions.

Proposition 3.18. Let E be an Ω-G-spectrum. Then

πH
∗ (E) ∼= π∗(E

H).

For any G-spectrum X, πH
∗ (X) ∼= πH

∗ (RX), where RX is a fibrant approximation
of X in the stable or positive stable model structure.

Giving spaces trivial G-action, we obtain a functor

(3.19) ε∗ : I S −→ GI trivS .

We then have the following fixed-point adjunction and its composite with the evi-
dent change of universe adjunction.
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Proposition 3.20. Let X be a naive G-spectrum and Y be a nonequivariant spec-
trum. There is a natural isomorphism

GI trivS (ε∗Y,X) ∼= I S (Y,XG).

For (genuine) G-spectra X, there is a natural isomorphism

GI S (i∗ε
∗Y,X) ∼= I S (Y, (i∗X)G),

where i∗ = IA ℓℓ
triv

and i∗ = ItrivA ℓℓ. Both of these adjunctions are Quillen adjoint pairs
relating the respective (positive) level and stable model structures.

The last statement means that passage to fixed points preserves q-fibrations and
acyclic q-fibrations. We have the following observation about q-cofibrations. In
the following two results, we agree to be less pedantic and to write (−)G for the
composite of i∗ and passage to G-fixed points. With this notation, the counit of
the second adjunction is a natural G-map i∗ε

∗XG −→ X .

Proposition 3.21. For a representation V and a G-space A, (FV A)G = ∗ unless
G acts trivially on V , when (FV A)G ∼= FV (AG) as a nonequivariant spectrum. The
functor (−)G preserves q-cofibrations, but not acyclic q-cofibrations.

For the last statement, for non-trivial representations V of G, the maps k0,V of
2.47 are acyclic q-cofibrations, whereas kG

0,V is equivalent to ∗ −→ S.

Warning 3.22. The last statement implies that the functor (−)G is not a Quillen
left adjoint. This functor does not behave homotopically as one might expect from
the results of [11]. The reason is that it does not commute with fibrant replacement,
whereas all objects are fibrant in the context of [11], and we must replace G-spectra
by weakly equivalent Ω-G-spectra before passing to fixed points in order to obtain
the correct homotopy groups.

The following two results are in marked contrast to the situation in [11, 16],
where the (categorical) fixed point functor does not satisfy analogous commutation
relations. The point is that these results do not imply corresponding commutation
results on passage to homotopy categories, in view of Warning 3.22.

Taking V = 0, Proposition 3.21 has the following implication.

Corollary 3.23. For based G-spaces A,

(Σ∞A)G ∼= Σ∞(AG).

(This isomorphism of spectra does not imply an isomorphism in HoI S ).

Note that the functors i∗ and ε∗ are strong symmetric monoidal.

Proposition 3.24. For G-spectra X and Y , there is a natural map of (nonequiv-
ariant) spectra

α : XG ∧ Y G −→ (X ∧ Y )G,

and α is an isomorphism if X and Y are cofibrant. (This isomorphism of spectra
does not imply an isomorphism in HoI S ).

We can obtain a more general and detailed version of Proposition 3.20. Let NH
denote the normalizer of H in G and let WH = NH/H . We can obtain an H-fixed
point functor from G-spectra to WH-spectra. It factors as a composite

GI S −→ NHI S −→ NHI H-trivS −→WHI S
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of a change of group functor as in Definition 3.11, a change of universe functor, and
a fixed point functor, all three of which are right adjoints.

It is useful to be more general about the last two functors. Thus let N be
any normal subgroup of G, let J = G/N , and let ε : G −→ J be the quotient
homomorphism. In the situation above, we are thinking of the normal subgroup H
of NH with quotient group WH .

Definition 3.25. Let GI N-trivS be the category of G-spectra indexed on N -
trivial representations of G. Define

ε∗ : JI S −→ GI N-trivS

by regarding J-spaces (and spectra) as N -trivial G-spaces (and spectra). Define

(−)N : GI N-trivS −→ JI S

by passage to N -fixed points spacewise, (XN )(V ) = X(V )N for a J-representation
V regarded as an N -trivial G-representation.

Proposition 3.26. Let X ∈ GI N-trivS and Y ∈ JI S . There is a natural
isomorphism

GI N-trivS (ε∗Y,X) ∼= JI S (Y,XN).

For (genuine) G-spectra X, there is a natural isomorphism

GI S (i∗ε
∗Y,X) ∼= JI S (Y, (i∗X)N ),

where i∗ = IA ℓℓ
N-triv

and i∗ = IN-triv

A ℓℓ . Both of these adjunctions are Quillen adjoint
pairs relating the respective (positive) level and stable model structures.

Similarly, we can define orbit spectra. Here again, we must first restrict to trivial
representations. However, since this change of universe functor is a right adjoint
and passage to orbits is a left adjoint, the composite functor appears to be of no
practical value (just as in [11]).

Definition 3.27. For X ∈ GI trivS , define X/G by (X/G)(V ) = X(V )/G for an
inner product space V . More generally, for X ∈ GI N-trivS , define X/N ∈ JI S
by (X/N)(V ) = X(V )/N for a J-representation V regarded as an N -trivial G-
representation.

Proposition 3.28. Let X ∈ GI N-trivS and Y ∈ JI S . There is a natural
isomorphism

GI N-trivS (X, ε∗Y ) ∼= JI S (X/N, Y ).

This adjunction is a Quillen adjoint pair relating the respective (positive) level and
stable model structures.

Remark 3.29. The left and right adjoints of ε∗ in this section and of ι∗ in the
previous section can be regarded as special cases of a composite construction that
applies to an arbitrary homomorphism α : H −→ G of compact Lie groups. Let
N = Ker(α) and K = H/N . We have a quotient homomorphism ε : H −→ K and
an inclusion ι : K −→ G induced by α. Since α = ι ◦ ε, α∗ = ε∗ ◦ ι∗. Therefore, if
X ∈ GI S and Y ∈ HI N-trivS , we have the composite adjunctions

GI S (G+ ∧K Y/N,X) ∼= HI N-trivS (Y, α∗X)

and
GI S (X,FK(G+, Y

N )) ∼= HI N-trivS (α∗X,Y ).
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3.4. Geometric fixed point spectra. There are two G-fixed point functors on
(orthogonal) G-spectra, namely the “categorical” one already defined and another
“geometric” one. Because the categorical fixed point functor seems to enjoy some
of the basic properties that motivated the introduction of the geometric fixed point
functor in the classical setting, the discussion requires some care. We want a version
of the G-fixed point functor for which the commutation relations of Corollary 3.23
and Proposition 3.24 are true, but which also preserves acyclic q-cofibrations, so
that these properties remain true after passage to homotopy categories.

To establish context, we record the tom Dieck splitting, which is proven in [11].
(As an aside, there is an informative new proof due to Guillou and May).

Theorem 3.30 (tom Dieck splitting). Let A be a based G-space. Then there is a
natural isomorphism

(Σ∞
G A)G ∼=

∨
(H)

Σ∞(EWH+ ∧WH AH)

in the stable homotopy category, where H ranges over the conjugacy classes of
subgroups of the (finite) group G.

Let P denote the family of proper subgroups of G. Using an easy commutation
relation with suspension and the observation that (A ∧ ẼP)H = ∗ unless H = G,
this implies that

((Σ∞
G A) ∧ ẼP)G ∼= (Σ∞

G (A ∧ ẼP))G ∼= Σ∞AG.

This suggests a standard homotopical definition of the geometric fixed point functor:

ΦG(X) ≡ (X ∧ ẼP)G.

Any definition must give this answer in the stable homotopy category. However,
[12] gives a more precise construction (denoted ΦG

M in [9]). The essential property
needed there is that ΦG be a symmetric monoidal functor, before passage to ho-
motopy, and the more precise construction gives that. The details of proof are less
obvious than in previous sections and may be found in [12].

In this section, we work from the beginning in the general context of a normal
subgroup N of G with quotient group J . The reader may wish to focus on the
special case N = G, in which case J is the trivial group. However, G plays two quite
different roles in that case, and the general case is valuable in other applications and
clarifies some issues of equivariance. We need some categorical preliminaries which
generalize Definition 1.21. As there, we can think in terms of Thom complexes.
(Some misleading misprints are corrected in the following definition.)

Definition 3.31. Let E denote the extension

e // N
ι // G

ε // J // e.

We define a category JE enriched over the category JT of (based) J-spaces. The
objects of JE are the G-representations V . We have the J-space IE(V,W ) of
N -linear isometries ι∗V −→ ι∗W and can form a bundle and Thom J-space as in
Definition 1.21. A non-basepoint arrow (f, x) : V −→ W of JE(V,W ) is an N -
linear isometry f : V −→W together with a point x ∈ WN − f(V N ); composition
and identity arrows are defined as in Definition 1.21. Then JE = GJ when N = G
and JE = JG when N = e. Let

φ : JE −→ JJ
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be the N -fixed point J-functor. It sends the G-representation V to the J-repre-
sentation V N and sends an arrow (f, x) : V −→ W to the N -fixed point arrow
(fN , x) ∈ JJ(V N ,WN ). Let

ν : JJ −→ JE

be the J-functor that sends a J-representation V to V regarded as a G-representa-
tion by pullback along ε and is given on morphism spaces JJ(V,W ) by identity
maps; this makes sense since every linear isometry V −→W is an N -map. Then

φ ◦ ν = Id : JJ −→ JJ .

Definition 3.32. Let JET denote the category of JE-spaces, namely (continu-
ous) J-functors JE −→ TJ . Note that a JE-space Y has structural J-maps

Y (V ) ∧ SW N−V N

−→ Y (W )

for V ⊂W . Let

Uφ : JJT −→ JET and Uν : JET −→ JJT

be the forgetful functors induced by φ and ν. Left Kan extension along φ and ν
gives prolongation functors

Pφ : JET −→ JJT and Pν : JJT −→ JET

left adjoint to Uφ and Uν . Since φ◦ν = Id, Uν ◦Uφ = Id and therefore Pφ◦Pν
∼= Id .

With these definitions in place, we can define the geometric fixed point functors.

Definition 3.33. Define a fixed point functor FixN : JGT −→ JET by sending

a G-spectrum X to the JE-space FixNX with

(FixNX)(V ) = X(V )N

and with evaluation J-maps

X(V )N ∧ JG(V,W )N −→ X(W )N

obtained by passage to N -fixed points from the evaluation G-maps of X . Define
the geometric fixed point functor

ΦN : JGT −→ JJT

to be the composite Pφ ◦ FixN . Define a natural J-map γ : XN −→ ΦNX of J-
spectra by observing that the categorical fixed point functor can be reinterpreted
as XN = UνFixNX and letting γ be the map

(3.34) Uνη : XN = UνFixNX −→ UνUφPφFixNX = PφFixNX = ΦNX,

where η : Id −→ UφPφ is the unit of the prolongation adjunction.

We have the following analogue of Proposition 3.21.

Proposition 3.35. For a representation V of G and a G-space A,

ΦN (FV A) ∼= FV NAN .

The functor ΦN preserves q-cofibrations and acyclic q-cofibrations.

Analogues of Corollary 3.23 and Proposition 3.24 follow readily.

Corollary 3.36. For based G-spaces A,

ΦNΣ∞
G A

∼= Σ∞
J (AN ).
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The functors Pφ and Pν are strong symmetric monoidal, by the elementary cat-
egorical properties of prolongation [13, 3.3].

Proposition 3.37. For G-spectra X and Y , there is a natural J-map

α : ΦNX ∧ ΦNY −→ ΦN (X ∧ Y )

of J-spectra, and α is an isomorphism if X and Y are cofibrant.

In the previous section, we interpreted the homotopy groups of the categorical
fixed points of a fibrant approximation of X as the homotopy groups of X . We
now interpret the homotopy groups of the geometric fixed points of a cofibrant
approximation of X as a different kind of homotopy groups of X . For this, we
introduce homotopy groups of JE-spaces.

Definition 3.38. Let Y be a JE-space and X be a G-spectrum. Let K ⊂ J and
write K = H/N , where N ⊂ H ⊂ G.

(i) Define

πK
q (Y ) = colimV π

K
q ΩV N

Y (V ) if q ≥ 0,

where V runs over the indexing G-spaces in the universe U , and

πK
−q(Y ) = colimV ⊃Rq πK

0 ΩV N−R
q

Y (V ) if q > 0.

(ii) Define a natural homomorphism

ζ : πK
∗ (UνY ) −→ πK

∗ (Y )

by restricting colimit systems to N -fixed indexing G-spaces.
(iii) Define

ρK
q (X) = πK

q (FixNX),

so that ρK
q (X) = colimV π

K
q ΩV N

X(V )N for q ≥ 0, and similarly for q < 0.
(iv) Define a natural homomorphism

ψ : πK
∗ (XN ) −→ πH

∗ (X)

by restricting colimit systems to N -fixed indexing G-spaces W , using

(ΩWX(W )N )K ∼= (ΩWX(W ))H .

(v) Define a natural homomorphism

ω : πH
∗ (X) −→ ρK

∗ (X)

by sending an element of πH
q (X), q ≥ 0, that is represented by an H-map

f : Sq ∧ SV −→ X(V ) to the element of ρK
q (X) that is represented by the

K-map fN : Sq ∧ SV N

−→ X(V )N , and similarly for q < 0.

Define π∗-isomorphisms of JE-spaces and ρ∗-isomorphisms of G-spectra in the
evident way.

If X is an Ω-G-spectrum, then ψ is a natural isomorphism. In this case, we may
identify ζ and ω in view of the following immediate observation.

Lemma 3.39. The homomorphism

ζ : πK
∗ (XN) = πK

∗ (UνFixNX) −→ πK
∗ (FixNX) = ρK

∗ (X)

is the composite of ψ : πK
∗ (XN) −→ πH

∗ (X) and ω : πH
∗ (X) −→ ρK

∗ (X).

The following complementary observation is proven by examination of colimits.
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Lemma 3.40. For J-spectra Z, the homomorphism

ζ : πK
∗ (Z) = πK

∗ (UνUφZ) −→ πK
∗ (UφZ)

is an isomorphism.

Via the naturality of ζ, this leads to the following identification of γ∗, where
γ = Uνη as in (3.34). Observe that the unit η of the prolongation adjunction for φ
induces a natural map

η∗ : ρK
∗ (X) = πK

∗ (FixNX) −→ πK
∗ (UφPφFixNX)

ζ−1

−−→ πK
∗ (PφFixNX) = πK

∗ (ΦNX).

Lemma 3.41. Let K = H/N , where N ⊂ H. For Ω-G-spectra X, the map
γ∗ : πK

∗ (XN ) −→ πK
∗ (ΦNX) is the composite

πK
∗ (XN) ∼= πH

∗ (X)
ω
−→ ρK

∗ (X)
η∗

−→ πK
∗ (ΦNX).

We have the following basic identification of homotopy groups.

Proposition 3.42. The map η∗ : ρK
∗ (X) −→ πK

∗ (ΦNX) is an isomorphism for
cofibrant G-spectra X.

Corollary 3.43. If f : X −→ Y is a π∗-isomorphism of G-spectra, then f is a
ρ∗-isomorphism.

To see that the geometric fixed point functor bears the homotopical relationship
to the categorical fixed point functor suggested by the tom Dieck isomorphism (or
[11, II§3]), we need the following notations and lemmas.

Notations 3.44. Let F = F [N ] be the family of subgroups of G that do not
contain N ; when N = G, this is the family of proper subgroups of G. let EF be
the universal F -space, and let ẼF be the cofiber of the quotient map EF+ −→ S0

that collapses EF to the non-basepoint. Then (ẼF )H = S0 if H ⊃ N and

(ẼF )H is contractible if H ∈ F . The map S0 −→ ẼF induces a natural map

λ : X −→ X ∧ ẼF of G-spectra.

Although trivial to prove, the following lemma is surprisingly precise.

Lemma 3.45. For G-spectra X, the map

ΦNλ : ΦNX −→ ΦN (X ∧ ẼF )

is a natural isomorphism of J-spectra.

Proof. For G-spaces A, FixN (X ∧ A) ∼= (FixNX) ∧ AN . Since (ẼF )N = S0, the
conclusion follows. �

Lemma 3.46. Let K = H/N , where N ⊂ H. For cofibrant G-spectra X, the map

ω : πH
∗ (X ∧ ẼF ) −→ ρK

∗ (X ∧ ẼF ) is an isomorphism.

The following analogue of [11, II.9.8] gives an isomorphism in the homotopy
category HoJS between the geometric N -fixed point functor and the composite
of the categorical N -fixed point functor with the smash product with ẼF . Let
ξ : X −→ RX be a fibrant replacement functor on G-spectra, so that ξ is an acyclic
cofibration and RX is an Ω-G-spectrum.



EQUIVARIANT ORTHOGONAL SPECTRA 37

Proposition 3.47. For cofibrant G-spectra X, the diagram

R(X ∧ ẼF )N
γ

//ΦNR(X ∧ ẼF ) ΦN (X)
ΦN (ξλ)
oo

displays a pair of natural π∗-isomorphisms of J-spectra.

Therefore, in the stable homotopy category of J-spectra, we have an equivalence

(3.48) ΦNX ≃ (X ∧ ẼF [N ])N

for G-spectra X . We have given a natural geometric definition of ΦN and have
derived (3.48) from that definition.

An important role of the original geometric fixed point functor was to prove
an equivalence between the homotopy category of J-spectra indexed on UN and
the homotopy category of G-spectra indexed on U that are concentrated over N ,
namely G-spectra X such that πH

∗ (X) = 0 unless H contains N .

Theorem 3.49. A G-spectrum X is concentrated over N if and only if the map
λ : X −→ X ∧ ẼF [N ] is a weak equivalence. Smashing with ẼF [N ] defines an
equivalence of categories from HoF ′[N ]I S to the full subcategory of G-spectra
concentrated over N in HoGI S .

Theorem 3.50. There is an adjoint equivalence from HoJI S to the full subcat-
egory of G-spectra concentrated over N in HoGI S .

By the last statement of Theorem 2.90, for a G-spectrum X concentrated over
N and any J-spectrum Y ,

(3.51) λ∗ : [ẼF [N ] ∧ ε#Y,X ]G −→ [ε#Y,X ]G ∼= [Y,XN ]J

is an isomorphism. This gives the required adjunction, and its unit and counit are
proven to be equivalences in [11, II.§9].

3.5. N-free G-spectra and the Adams isomorphism. Following [11, II§2],
which is clarified by the model theoretic framework, we relate families to change
of universe and use this relation to describe N -free (orthogonal) G-spectra and
state the Adams isomorphism, which is one of the deeper foundational results in
equivariant stable homotopy theory.

Theorem 3.52. Let i : U ′ −→ U be an inclusion of G-universes and consider
the family F = F (U,U ′) of subgroups H of G such that there exists an H-linear
isometry U −→ U ′.

(i) H ∈ F if and only if U is H-isomorphic to U ′.
(ii) I (U,U ′) is a universal F -space.

(iii) i∗ : HoFS U ′

−→ HoFS U is an equivalence of categories.

Now return to the consideration of a normal subgroup N of G with quotient
group J . Let U be a complete G-universe and let U ′ = UN . Using these universes,
the results of §3.1 allow us to transport the conclusion of the previous theorem to
G-spectra.

Definition 3.53. Define F (N) to be the family of subgroups H of G such that
H ∩ N = e. (By contrast, F [N ] is the family of subgroups H such that H does
not contain N . Clearly F (N) ⊂ F [N ], with equality only if N = e). An F (N)-
spectrum indexed on either U or UN is called an N -freeG-object, and an F (N)-cell
complex is called an N -free G-cell complex.
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Thus an N -free G-cell complex is built up out of cells of orbit types G/H such
that H ∩ N = e. This correctly captures the intuition. The following elementary
observation [11, II.2.4] ties things together.

Lemma 3.54. The families F (U,UN ) and F (N) are the same.

Theorem 3.55. For a normal subgroup N of G,

i∗ : HoF (N)I S UN

−→ HoF (N)I S U

is an equivalence of categories.

In either universe, we can identify HoF (N)I S with the full subcategory of
N -free G-spectra in HoGI S . The previous result is summarized by the slogan
that “N -free G-spectra live in the N -trivial universe”. It gives

(3.56) [X/N, Y ]J ∼= [X, ε∗Y ]G ∼= [i∗X, ε
#Y ]G

for an N -free G-spectrum X and any G-spectrum Y , both indexed on UN . We
can ask about the behavior with the order of variables reversed, and the Adams
isomorphism ([1, 11]) relating the orbit and fixed point functors gives the answer.
On homotopy categories (with G finite) there is a natural isomorphism

(3.57) X/N ∼= (i∗X)N

for an N -free G-spectrum X indexed on UN . Use of i∗ to pass to the complete
universe before taking fixed points is essential. This result is proven for LMS G-
spectra X in [11, II§7], but the conclusion carries over to orthogonal G-spectra.
Using standard adjunctions, this implies that

(3.58) [Y,X/N ]J ∼= [ε#Y, i∗X ]G.
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